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SEPARATING AND TURBULENT BOUNDARY LAYER

CALCULATIONS USING POLYNOMIAL INTERFPOLATION +

by

S. . Rubin* and S. Rivera
Polytechnic Institute of New York
Aerodynamics Laboratories
Farmingdale, New York
ABSTRACT
Higher-order numerical methods derived from polynomial
spline interpolation or Hermitian differencing are applied
to a separating laminar boundary layer, i.e., the Howarth
problem, and the turbulent flat plate boundary layer flow,
Preliminary results are presented herein; as in earlier non-
separating laminar flow studies, it is found that accuracy
equal to that of conventional second-order accurate finite-
difference methods is achieved with many fewer mesh points

(Al

£ and with reduced computer storage and time requirements.

This research was sponsored by the National Aeronautics and
Space Administration, Langley Research Center, Hampton, Va.,
under Grant NSG-1244,

*Professor, Dept. of Mechanical and Aerospace Engineering.
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Introduction

(1-4) polynomial spline and Hermite

In a series of recent reports
interpolation procedures have been develceped and applied to laminar
boundéry layer and incompressible Navier~Stokes problems, The poly-
nomial interpolation development is guite general so that a variety
of second, fourth and sixth-order spatially accurate representations
for both convection and diffusion terms are possible; e.g., a quadra-
tic polynomial leads to the familiar central finite-difference dis-
cretization formulas (2). A detailed discussion of the various form-
ulations with comparisons, interrelationships and examples is given
in Refs. (1-4). All of the governing systems are block tridiagonail;
the unknowns at each mesh point Hj are at most the function Vj and

nn' 3’
respectively. TFor the second-—order procedures, the governing system

the spline approximations my., Mj of the derivatives (Vﬂ)j' (v. )

can be reduced to include only Vj; for the fourth-order procedures,
a reduction reguiring only Vj and Mj is possible, and for the sixth-
order development the complete 3x3 block tridiagonal system is
required.

in the present note, the applicability of the polynomial spline
methods for a laminar separating flow, i.e., the linearly deceler~
ating Howarth problem, and the turbulent boundary layer over a flat
plate is investigated. In the latter case, the Cebeci-Smith two-
layer eddy viscosity model is used for turbulent closure. For both
the Howarth and turbulent flat plate flows the solutions have been A
studied extensively by many investigators so that meaningful compari-

sons with the present calculations are possible. These two problems

e bt S i



provide somewhat different and in certain ways more severe tests of
the polynomial interpolation methods than did previous boundary
layer calculations, see Refs, (2~4), TFrom these earlier laminar
flow studies, it was found that the fourth-order spline methods
genérally required one-quarter the number of grid points, in each
coordinate direction, as did second-order central finite~difference

(3'4). This can lead to

(3,4)

methods in orxder to achleve equal ac&uracy
reductions of from 50% to 75% in computer time and storage
The present calculations will determine the gains, if any, when
points of zero shear are approached and when a thick turbulent
boundary layer with a thin high shear viscous sublayer is to bhe ap-
proximated,

(1-4) 4311 be

Four of the polynomial interpolation procedures
considered hewre: (1) Second-order central differences; (2) a
mixgd second and fourth-order method termed sSpline 2, (3) a Fourth-
order system termed Spline 4, and (4) a sixth-~order Hermite 6 de-
velopment. The block tridiagonal governing equations are presented
in the following sections. For details of the derivations, see

Refs. (2-4).

Governing Equations

After appropriate normalization and transformation, the govern-

ing equations for both the Howarth flow and turbulent flat plate

boundary layer become (5)
(1+e)V_ + (e +E42EL )V +B(1-V2)=2§VV ' (1)
nn n g n g
gV . | - 2

where V=V(§:n)=u/ue; u is the streamwise velocity and e denotes po-

TR
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tential flow conditions at the boundary layer edge

28(u,)
. _ _ e’'x
£=£(8,n), ue—ue(g), A= u-v-—— 5
@
x
yu
g = B(x) = | u (X)dx, »= n(x,y) = g
I (2v8)

%,y denote the axial and normal coordinate directions; v is the

kinematic viscosity; e is the eddy viscosity for the turbulent

{6)

boundary layer., The two-layer Cebeci-Smith model is used for

€, see Ref. 7. For the Howarth flow: e=o0, u, = lex = (1~2§)%, g=2E/(L-28)

For Turbulent f£flow: ue=constant, B=0.

Polynomial Spline Interpolation

Consider a mesh with nodal points at ﬂ=ﬂj. Define the mesh

width h.=mn.~n. , and o.=h. ./h.. At th ) ints,
55157 M1 5 j+l/ 5 e mesh points

v(g,n)=v(g,nj)=v Define an nth order polynomial S(&,M) on

5

M[§=1,5] such that S(g,ﬂj)=vj,and my, M denote the polynomial ap-

proximations of the functional derivatives (Vn)j, (Vnn)j' respective-
ly. A similar procedure is applied on [j,j+1] and continuity of
5(g,n) and its derivatives is prescribed at nj. This leads to a
coupled system of eguations for Vj, mj, Mj at each mesh point., The
system is closed with the differential eqguation (1) for Vj; func-
ticnal derivatives are replaced by their polynomial approximations.

A pimilar procedure is used for the function £(g,n). IFinally, in

the marching or £ direction, simple backward differencing is used

n+l_

for Vg;i.e., (Vj an)/A§=(Vg)j' where E&=nAZ; n=0,1,2,.

~For the polynomials considered here, the governing block tri-

vty T e o i o ks m e



diagonal systems for LY Mj‘ with Gj=ﬁ=l, are as follows., The deri-
vations and results fox 05#1 are found in Refs. (l-4).

Il

Qentral Differencéng: Aj= [O 0]’Bj= [é g], cj= [8 8] (3h)

Spline 2,4%: G6A,= (5 2) 3B4= [g 21 6¢;= [é_g} (3¢)

Hermite G: 120A,- [gg/h ), 1 4= gL 1éocj= [-45/h 5] (34)

2h2Dj= (Vj+l_Vj_l)h in all case;r o . (3e)
| 2(Vj+1‘2Vj+Vj-1)

Equation (1) becomes

n+l,, n+l 1+l n+l, n+l 2, n+l , D+l nt+l .. n
. . +£4-2 Bf n., - R -V, =2E.V. . -V 4
(;+ej) Mj +(eﬂ + -‘;2; nj + (1 Vj ) Ej 5 (V3 \Tj Yy (4)
A%
Non-linear terms (Vg)n*l are treated by dquasi-linearization;
. 2, n+l n+l.. n 2n
2., (V. =2V, V. =(V. .
tee., (V47) 5 vy ~V50)

The block~tridiagonal system (3a) and (4) are solved by a now
L
standard inversion algorithm ( ). For Spline 2 or 4 the blucks can
be reduced to 2x2, while for Hermite 6 they are 3x3. The implicit

formulation (4) is unconditionally stable.

*F i i i -
*For Spline 4, (th)j is approximated by Mj+®.+l+M

; —2Mj)/12, see
Refs. (2,3).

j-1




The results for both the Howarth and turbulent flow examples
are cquite encouraging. Significantly fewer grid points are re-
quired to achieve accuracy comparable with that of finite-differ-

, ence éolutions. Even lthough operational counts are increased due
to the larger matrix systems, reductions in computer storage and
time are only slightly less than that found in earlier laminax

studies (1"4).

; Howarth Problem

Typical results are shown on Table 1l and Fig., 1. N denotes
- the nupber of mesh points and h,=n, is the mesh width at the sux-
- face. Even with the very coaxrse grid (hj=l.0), the Spline 4 re-
. sult is within 4% of the usually accepted value of x=0.1198 (5,
. moreover, the Hermite 6 solution 1ls in error by less than 1%. Al-
. so shown on Table 1 are the resultsta) of an alternate but somewhat-
legs accurate fourth-~order scheme termed here Hermite 4 or compact(a
. This scheme is discussed in Refs. (3, 4, 8). The finite~dif-
ference results are in error by more than 20% and require at least
:four times as many grid points to reduce this érror to 4%. It
. would appear then that separation can be predicted accurately with

a2 minimal number of grid points if polynomial interpolation methods

_are applied,

‘N h, 05 F.D. .HERMITE 4 _SPLINE 4 HERMITE 6
‘6L 0.1 1.0 0.1199 0.1198 0.1198 0,1198
L7 1.0 1.0 0.1458 0.1121 0.1159% 0.1193

*If second-order boundary conditions are applied, this value is 0.1191,
Since the shear vanishes near separation, and Vnnmm (&,0)~Vn(f,0), these
houndary conditions are in fact fourth-order at separation. The spline 4
bhoundary conditions can be modifie?4tioyse‘Vﬂnﬁn(f,o) throughout and im-
prove the accuracy of the solution'”™’ . This is important for coarse
grids and near separation points.

TABLE I SEPARATION POINT - HOWARTH PROBLEM
5
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Turbulent Flow

similar trends are observed for the -urbulent boundary layer,
although conmiderably larger numbey of mesh points axe required
to approximate these thicker high ~shear regions. Coordinate trans-
formations might facilitate furthes reductions in the number of
points. These were not considered here, Typical results are shown
on Taule 2 and Figs, 2,3. All indications are that reductions of
from one-third (Spline 4) to one~quarter (Hermite 6) the number of

mesh points, and 50% in computer time and storage, are possible.

N h2 Uj Cent, Diff. Spline 4 Hermite 6
141 0,001 J..063 3.456 3,455 -

6l 0.2 l.0 5.479 3.891 3.476
el .1l 1.0 5.148 - 3.682
21 0.02 l+4hj 4,396 3.472 -

1l 0.05 1.5 6.823 3.759 -

1l 0.05 l+4hj - 3,598 -

3

Wieghardt Data (Ref. 9) Cp = 3.45 x 10~

(c = 0.664 x 10™3

f)laminar

TABLE 2: COEFFICIENT OF FRICTION (Cf X 103) at Re X = 1064

At R, x = 106 the turbulent flat plate boundary layer is approximate-
ly twice as thick as its laminar counterpart and the locul shear
stress is five times greater. The Spline 4 results with 11 and 21
points are quite good. Hermite 6 solutions are excellent but are
given here only for o,

J
~in Ref, 3 and will be applied in future studies. In wview of the

= 1.,0; the variable grid formulationsare given



proscﬁt results, the application of highexr~order polynomial interpo- »
lation for separating and turbulent flows appcars to be quite promis-
ing. Moxec detailed results and discussion can be found in Ref. 7.

In the Appendix attached herein are a number of additional figures from
Ref. 7 describing the flow field and solutions for both laminar and
turbulent cases. Further analysis of turbulent flows with uniform

and variable grid spline 4 and Hermite 6 methods are presented in

Ref. 10. Several transformed coordinate systems and flows with surface

mass Lransfer are also considered.

'al
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fewer mesh points and with reduced computer storage and time
requirements. ' ‘

¢ 1
L]
' 4 b |
. .',- € e | ;
[] ' * P L Ty
Yoo ' ‘J.:. . s , :
Y ) . _—‘.
vkl Lo : Unclassified
- ,1'.,0'
OB,XGN _ Q‘ﬂ Bl SECURITY CLASSIFICATION OF THIS PAGE(Whon Data Enicred)



	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C05_.pdf
	0001C06.pdf

