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CALCULATIONS USING POLYNOMIAL INTERPOLATION•1-

by

S. G. Rubin* and S. Rivera

Polytechnic Institute of New York
Aerodynamics Laboratories
Farmingdale, New York

ABSTRACT

Higher-order numerical methods derived from polynomial

spline interpolation or Hermitian differencing are applied

to a separating laminar boundary layer, i.e., the Howarth

problem, and the turbulent flat plate boundary layer flow.

Preliminary results are presented herein; as in earlier non-

separating laminar flow studies, it is found that accuracy

equal to that of conventional second-order accurate finite-

difference methods is achieved with many fewer mesh points

and with reduced computer storage and time requirements.

tThis research was sponsored by the National Aeronautics and
Space Administration, Langley Research Center, Hampton, Va.,
under Grant NSG-1244.

*Professor, Dept. of Mechanical and Aerospace Engineering.
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Introduction

In a series of recent reports (1-4) polynomial spline and Hermite

interpolation procedures have been developed and applied to laminar

boundary layer and incompressible Navier-Stokes problems. The poly-

nomial interpolation development is quite general so that a variety

of second, fourth and sixth-order spatially accurate representations

for both convection and diffusion terms are possible; e.g., a quadra-

tic polynomial leads to the familiar central finite-difference dis-

cretization formulas (2) . A detailed discussion of the various form-

ulations with comparisons, interrelationships and examples is given

in Refs. (1-4). All of the governing systems are block tridiagonai;

the unknowns at each mesh point i) i are at most the function V  and

the spline approximations mi . M  of the derivatives (V',)j, (Vnr)j,

respectively. For the second-order procedures, the governing system

can be reduced to include only V j ; for the fourth-order procedures,

a reduction requiring only Vi and M  is possible, and for the sixth-

order development the complete 3x3 bloc], tridiagonai system is

required.

In the present rote, the applicability of the polynomial spline

methods for a laminar separating flow, i.e., the linearly deceler-

ating Howarth problem, and the turbulent boundary layer over a flat

plate is investigated. in the latter case, the Cebeci-Smith two-

layer eddy viscosity model is used for turbulent closure. For both

the Howarth and turbulent flat plate flows the solutions have been

studied extensively by many investigators so that meaningful compari-

sons with the present calculations are possible. These two problems

1
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provide somewhat different and in certain ways more severe tests of

the polynomial interpolation methods than did previous boundary

layer calculations, see Refs. (2-4). From these earlier laminar

flow'studies, it was found that the fourth-order spline methods

generally required one-quarter the number of grid points, in each

coordinate direction, as did second-order central finite-difference

methods in order to achieve equal accuracy (3 ' 4) . This can lead to

reductions of from 50% to 75% in computer time and storage (3,4).

The present calculations will determine the gains, if any, when

points of zero shear are approached and when a thick turbulent

boundary layer with a thin high shear viscous sublayer 5.s to be ap-

proximated.

Pour of the polynomial interpolation procedures (1-4) will be

considered here: (1) Second-order central differences; (2) a

mixed second and fourth-order method termed Spline 2, (3) a fourth-

order system termed Spline 4, and (S) a sixth-order Hermite 6 de-

velopment. The block tridiagonal governing equations are presented

in the following sections. For details of the derivations, see

Refs. (2-4).

Governing Equation s

After appropriate normalization and transformation, the govern-

ing equations for both the Howarth flow and turbulent flat plate

boundary layer become (5)

(1+C)V•n+ (c-n+f+29f 9)V TI R(1-V2 ) =2 SVV 9 ,	 (1)

f In V,	 (2)

where V=V(t;,n)=u/ue; u is the streamwise velocity and e denotes po-
•	 4

2
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tential flow conditions at the boundary layer edge

f = f(S,n), ue=uc(E),

x
g = g (x) = J u  (x) dx,

0

2g(ue)x

u 

yu
n = n( x,Y) =	

e

(2vS)^,

k-

x,y denote the axial and normal coordinate directions; v is the

kinematic viscosity; e is the eddy viscosity for the turbulent

boundary layer. The two-layer Cebeci-Smith (6) model is used for

1ZC, see Ref. 7. For the Howarth flow: e=o, ue = 1-x = ( 1-2F)	 g.=29/(1-2g)

For Turbulent flow: ue=constant, S=o.

Polynomial Spline Interpolation

consider a mesh with nodal points at rFnj . Define the mesh

width hj =nj - nj-1 and ai =hjFl/h j . At the mesh points,

V (g, n) =V (g, nj ) =Vj . Define an nth order polynomial S ( g , n) on

fj-1,j1 such that S(g,n j )=Vj ,and mj , Mj denote the polynomial ap-

proximations of the functional derivatives (V n ) i t (Vnn) j , respective-

ly. A similar procedure is applied on rj,j+l1 and continuity of

S(g,n) and its derivatives is prescribed at nj . This leads to a

coupled system of equations for Vj , mj , M  at each mesh point. The

system is closed with the differential equation (1) for V j ; func-

tional derivatives are replaced by their polynomial approximations.

A similar procedure is used for the function f(g,n). finally, in

the marching or g direction, simple backward differencing is used

for V ;i.e., V.n+l-V n
S	 ( J	 7 )/'^g= (vg)j, where g=nag; n=0,1,2,.

For the polynomials considered here, the governing block tri-

3



The deri-diagonal systems for mj , Mj , with aj=(r=1, are as follows.

vations and results for Yl are found in Refs. (1-4).
.l.

AjLj+^I•BjLj+CjLj_l=Dj, where Lj=Cm,M]j 	, (3a)

(3b)

(3c)

Central. Differencing: Aj= 1 0 01 ,B j- ;0 1]' Cj= [ 0 01

Spline 2,4*: 6A j= [ 1 11, 3Bj= [2 2 1, 6Cj= L 1 11

Iiermite 6: 120A j. 1.28/h -4h J' jr j= 18 0]' 120C j= 	 28
/h

 4h)	 (3d)

2h2Dj=+l -1in all cases.	 (3e)

2(Vj+1 2Vj+Vj-1)

Equation (1) becomes

(1+e . ) n+1M . n+l+ ( e +f-+2 Pf ) n-11M n+l+ Pn+l (1-V 2 ) n+1=2 
9 V 

n+1 n+l	 n
7	 7	 n	 $J	 j	 7	 7 7

	
(VI

	 _ V  ) (4)

A9

Non-linear termsV2 nil are treated b

	

( 
i

)	 y quasi-linearization;

i.e., (Vj2
) n+1=2V3n+lV7n-

(V72)n.

The block -tridiagonal system (3a) and ( 4) are solved by a now

standard inversion algorithm (1) . For Spline 2 or 4 the blocks can

be reduced to 2x2, while for Iiermite 6 they are 3x3. The implicit

formulation ( 4) is unconditionally stable.

*For Spline 4, (V 
Inn

) j is approximated by Mi4j+1+Mj-1-2Mj )/12, see

Refs. (2,3).

4
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The results for both the Howarth and turbulent flow examples
ti
are quite encouraging. Significantly fewer grid points are re-

quired to achieve accuracy comparable with that of finite-differ-

, ence solutions. Even though operational counts are increased due

to the larger matrix systems, reductions in computer storage and

time are only slightly less than Lhat found in earlier laminar.

studies (1-4).

Howarth Problem

Typical results are shown on Table 1 and Pig. 1. N denotes

the number of mesh points and h2 =r2 is the mesh width at the sur-

face. Even with the very coarse grid (h 7=1.0), the Spline 4 re-

sult is within 4% of the usually accepted value of x.1198(5);

moreover, the Hermite 6 solution is in error by less than 1%. Al-

so shown on Table 1 are the results (8) of an alternate but somewhat-

less accurate fourth-order scheme termed here Hermite 4 or compact(8

This scheme is discussed in Refs. (3, 4, 8). The f-iniLe.-dif-

ference results are in error by more than 20% and require at least

four times as many grid points to reduce this error to 4%. it

.would appear then that separation can be predicted accurately with

a minimal number of grid points if polynomial interpolation methods

are applied.

N	 h2	 ..a. 	 P.D.	 .HERMITS 4,	 ..SPLINE 4	 HERMITS 6

61	 0.1	 1.0	 0.1199	 0.1198	 0.1198	 0.1198

i

^7	 1.0	 1.0	 0.1458	 0.1121	 0.1159'	 0.1193	 _.

*If second-order boundary conditions are applied, this value is 0.1191.
Since the shear vanishes near separation, and Vn7jn'0 (9,c)-Vn(F,o), these
boundary conditions are in fact fourth-order at separation. The spline 4
boundary conditions can be modifiet	 se V rnrrt(F,o) throughout and im-
prove the accuracy of the solution	 ThisThis is important for coarse
grids and near separation points.
TABLE I SEPARATION POINT - HOWARTH PROBLEM

5
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Turbulent Plow

Similar trends are observed for the •.,,rbulent boundary layer,

although considerably larger number of mesh points are required

to approximate these thicker high ;shear regions. Coordinate trans-

formations might facilitate further reductions in the number of

points. These were not considered here. Typical results are shown

on Tattle 2 and Figs. 2,3. All indications are that reductions of

from one-third (Spline 4) to one-quarter (Hermite 6) the number of

mesh points, and 50% in computer time and storage, are possible.

N	 h2	 c;	 Cent. Diff.	 Spline 4 Hermite 6

141	 0.001	 1.063	 3.456 -	 3.455	 -

61	 0.2	 1.0	 5.479	 3.891	 3.476

61	 0.1	 1.0	 5.148	 -	 3.682

21	 0.02	 1+411^	 4.396	 3.472	 -

11	 0.05	 1.5	 6.823	 3.759	 -

11	 0.05	 1+4h^	 -	 3.598	 -

Wieghardt Data (Ref. 9) C  = 3.45 x 10-3

(Cf ) laminar = 0.664 x 10-3

TABLE 2: COEFFICIENT OF FRICTION ( Cf x 103 ) at Re x = 106.

At Re x = 106 the turbulent flat plate boundary layer is approximate-

ly twice as thick as its laminar counterpart and the local shear

stress is five times greater. The Spline 4 results with 11 and 21

points are quite good. Hermite 6 solutions are excellent but are

given here only for a  = 1.0; the variable grid formulationsare given

in Ref, 3 and will be applied in future studies. in view of the

6
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present results, the applicati,4,ii of higher-order polynomial interpo-

lation for separating and turbulent flows appears to be quite promis-

ing. More detailed results and discussion can be found in Ref. 7.

In the Appendix attached herein are a number of additional figures from

Ref. 7 describing the flow field and solutions for both laminar and

turbulent cases. Further analysis of turbulent flows with uniform

and variable grid spline 4 and Hermite 6 methods are presented in	 .^.

ti

Ref. 10. Several transformed coordinate systems and flows with surface
s

mass transfer are also considered.	 4

,
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APPENDIX: Additional Figures
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Ûe =,99'

0.l

0.

C

U/Ue

STREMARIJ ISE V' LOGITY VARIATION
IN THE LP.C-MNIAR eCUNDARY LM'ER

WITH ADV vC-- iSE PF ;ESSUPE GRADIENT

)9



^	 I	 i
A

0.6

C S 1

UL,=.995

0.4

0.2

0.8

I.0

0

0 0.2	 0.4	 06	 08	 1.0

U/Ue

STREAMWISE VCL0G6 T VARIATION

IN Tl-!E LAE-: INAR EOUN' DARY LAYER

WITH ADVERSE I=itiESSURE GRADIENT

20



1 0 - —	 -T---- -
	 I--

SPLINE  4

N = 61, h 2 =0. I,	 = 1 0 --

N- 7, h 2 n 1.0,	 1.0 — —
0.8 --

BLASILIS PROFILE
X =0

U
-)

X = 0.11X = 0.1198

	 •
Ue =.995	 X =0. 1166

04-

0.2

O	 I
0	 0.2	 0.4	 0.6	 0.6

	
1.0

U /Ue

SThEAf,AVj'13E VELOMY VARIATION

IN THE LAMINAR BOUNDARY LAYER

WITH ADVERSE PRESSURE GRADIENT

21



7

N,

O

SPLINE 2
N=G1

Q h2

•	 1	 0 0.1

--_ -- –	 1.01 0.07

—	 1.05 0.02

1.063 0.001

61-

5

C F x 10

4

3

2

O EXPERIMENTAL- WEIGHARDT

	

0 L	 I --	 -_ L_ -_ L	 --- --1	 -1
	0 	 2	 4	 G	 a	 10

Rex x 10-5

C0EFFICIrN'T OF FRICTION- f RANSI TIUN
REGION

22



t

4

C F x 103

3

O

C7
C)

8	 10

6

O

OL
0

2
N = 141, h2 = 0.001,0' =1.063

- — — FINITE DIFFERENCE
_	 SPLINE 2

SPLINE 4

C EX PER11,4ENTAL - WEIGNARDT

2	 4	 6

Rex x 10 -5

COEFRCIENT OF FRIC IUM-TRA l l-MCN
REGIO<<I

23



6r

51

3
CF X10

3

2
N= 121, 11 2 = 0.1 10-

— — — FINITE UIF'F
----- S P L I N' 2
— — SPLINE 4

-	 O	 EXPERIMEN1

OL
0	 4	 6

Rex K 10`

COLT. CE Ibl— f IT OF ^'^^^r^^G ►d — ^^^af^CE 6 fJfv
RCGt0N



6 -	 I

^O
5^':^^

T

r s	 -

--A-A= -- _.^--- -	
.1

J

4

CF x 103

f

21-
I	 IJ =G1, li e =0.1, a =1.0

---- FINITE DIFFERENCE
SPL.INl E 2
SPLINE 4

O EXPERI1,1ENTAL - WEIGHARDT
PERMITE 6

0	 1— — -- - 1—	 —1-	 -
0	 2	 4	 6	 6	 Ili

	

R 	 10-5

COCFE:'ECIE NT OF E= f ^t^: EQE'+^ -- i E ^^^I 'EO ►^J

RErGEOE-,4'

25



I-N ^^-r'f" R r )l % P, fIeq4 r-	 a rr- i ^f%rl"^%s 	

t
,. [ y

	

1 .0 
1 -
	 -----,-- ---- -T--	 --- O

14 X 121, h 2 = 0. I, a =1.0

	

--	 FI.dITE [DIFFERENCE,
SPLINE 2 8 SPLINE 4

/0,

0,8 - 0 EXPERIMENTAL — WEIGNARUT

Re x = I x 106

O

	

Y

D
 0.6	

O

	

Ue".9095
	

O

0.41-
	 O

/O

O
0.2

0 0
0	 0.2	 0.4	 0.f	 0.0	 1.0

U/U(-



i

.1
Unclass ,ficd

SECURITY CLA551FICATIOR OF TINS PAGC (117irtl flat,- /:',-fared)

REPORT DOCUMENTATION PAGE
NEW) tt NIVIA- 1'ING	 s

nErortt conu r t.tc • i^wc ror.M
I. RLPORT NUMBER 2. GOVT ACC E551014 NO, 3.	 RECIPILNT ' S CATALOG NUMRCR.

POrIY-M/AE Report No. 77 -4
4.	 TITLE (end 51,641110)  S. TYPE OF REPORT A PERIOD COVERED

SEPARATING AND TURBULENT BOUNDARY LAYER Sc9.entific	 Interim
CALCULATIONS USING POLYNOMIAL INTERP0LATI0 1"i.	 PER FO RIAING OIlG, REPORT Rl11A OGR

7.	 AUTHOR(s) 0, CONTRACT OR GRANT NUMUER(s)

S. G.	 RUBIN Grant No. NSG 1244
S. RIVERA

9. PFRFOFIIA114G OROANI7. ATION NAME A140 ADDRESS 10. PROGRAM ELEMENT• PROJECT, TASK
AREA A WORK UN T NU140FRSPolytechnic Institute of New Yorlc

Aerodynamics Laboratories
Route 110, Farmingdale, NY 11735

ih CONTROLLING OFFICE NAME AND ADDRESS t2, REPORT DATE
National Aeronautics and Space FebruarV 1977

Administration 13,	 14UTABER OF PAGES
Langley Research Center 26
14,	 14	 NITORING AGENCY NAME A AODRESS(If dilforoni Iran, Controlling Office) 15.	 SECURITY CLASS. (of this roperO

Unclas sified
ISn,	 DECL A_.,I FI CATI ON/DOWNGRADING

SCHEDULE

15,	 DISTRIOUTION STATEMENT (of line )?.port)

Approved for public release; distribution unlimited.

17.	 DISTRIBUTION .STATEMENT (of Oho Abstract entered In Block 20, if different from Roport)

10. SUPPLEMENTARY NOTES

19.	 KEY WORDS (Continue on reverse Aldo If necessary and Idonlil), by block number)

Splines
Hermite interpolation
Iiowarth flow
Turbulent

20,	 ABSTRACT (Continuo on reverse side If necessar y and Idonilfy by block number)

Higher-order numerical methods derived from polynomial spline
interpolation or Hermitian differencing are applied to a separatinc_
laminar boundary layer.,	 i.e.,	 the Iiowarth problem, and the turbu-
lent flat plate boundary layer flow.	 Preliminary results are pre-
sented herein; as in earlier non-separating laminar flow studies,

it is found that accuracy equal to that of conventional second-
order accurate finite-difference methods is achieved with many

DO I JAR 73 14.1



I

0

ml

bl.( U MI Y	 I' II,11 I 'UH UP I 111^ 1'A%J4t P,#41II " IfIlf 9;F1;i'T vtf/

20. Abstract (ConLd.)

fewer mesh points and with reduced computer storage and time
requirements.

Unclassified
ol wv	

SECURITY CLASSIFICATION OF THIS PAGEOVII"n DMn EIII-10d)

-R00%


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C05_.pdf
	0001C06.pdf

