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FINITE STATE MODELING OF AFROELASTIC SYSTEMS

Ranjan Vepa
Stanford University

SUMMARY

A general theory of finite state modeling of aerodynamic loads on
thin airfoils and 1ifting surfaces performing completely arbitrary, small,
time-dependent motions in an airstream is. systematically developed and
presented. In particular, the nature of the behavior of the unsteady
airloads in the frequency domain is explained. This scheme employs as
raw materials anv of the unsteady linearized theories that have been
mechanized for simple harmonic oscillations. Each desired aerodynamic
transfer function is approximated by means of an appropriate Padé
approximant, that is, a rational function of finite degree polynomials
in the Laplace transform variable.

The modeling techrique is applied to several two-dimensional and
three-dimensional airfoils. Circular, elliptic, rectangular and tapered
planforms are considered as examples. Tdentical functions are also ob-

tained for control surfaces for two- and three-dimensional airfoils.

INTRODUCTTION

In the last decade rapid advances have taken place in the area of
automatic control of practical engineering systems. The vast tech-
nological developments in autopilot design and in the design of aircraft
take-off and landing systems has led to the possibility of applying
this technology to control the vibration modes of aircraft wing structures

and the elimination of aercelastic instabilities in the flight envelope



of the aircraft. Although the mathematical theory of distributed parameter
systems has made rapid advances recently, it seems more expedient, from a
practical point of view, to approximate aeroelastic systems, mainly aircraft
wings and control surfaces, by finite state models. The techniques of
approximating aircraft wing structures by finite state models which make use
of finite elements and other structural idealizations are well known. No
systematic techniques exist, however, for approximating the aerodynamic loads
on these structures by compatible finite state models for aeroelastic purposes.
Thus a systematic theory for approximating aerodynamic loads on aircraft wings
by finite state models used along with well-known techniques of structural
idealization could be tremendously useful not only for understanding aero-
elastic instabilities but also in the development of control systems for
suppressing aeroelastic instabilities. Such theories can also prove helpful
in the minimum weight design of aircraft structures,

This paper is concerned with the finite state modeling of aeroelastic
systems. The well-known theories of modeling of aircraft wing structures are
briefly presented. A general theory is then developed for the modeling of
unsteady aerodynamic loads on wings and airfoils. These aerodynamic models

may be used in conjunction with structural models for aercelastic purposes.

General Description of the Problem
The general techniques of calculating unsteady aerodynamic loads for
simple harmonically oscillating airfoils and lifting surfaces are out-
lined in (1], [2] and [3]. With these techniques it is possible to
calculate the unsteady aerodynamic loads for different modes of oscilla-
tion at a given frequency of oscillation. Little is known about the

analytical behavior of these loads in the frequency domain. Thus it is

2



first essential to identify the behavior in the frequency domain of the
aerodynamic loads on airfoils and lifting surfaces.

The next step is to approximate this behavior in a manner that will
permit the construction of aerodynamic models, which may be used along
with structural models for aeroelastic purposes. Also, for the work
described in this paper existing techniques of calculating aerodynamic

loads for airfoils and 1lifting surfaces were utilized whenever possible.

Review of Pertinent Literature

The theory of finite state modeling of structures for dynamic
analysis is well known. The various methods of weighted residuals [4],
finite element techniques [5] and variational techniques [4] have all
proved extremely useful for analytical modeling purposes. Recently
system identification techniques [6] have been formulated for approxi-
mating structures by finite state models from experimental data.

The author is not aware of any systematic modeling procedures in
unsteady aerodynamics. However, there were several related developments
in the past fifty years. In 1925, Wagner [1,3] first studied the
growth of 1ift on a two dimensional airfoil in incompressible flow due
to an impulsive change in the vertical velocity of the airfoil. Garrick
[7] , later showed the relationship between Wagner's solution and Theo-
dorsen's solution [8] for the 1ift on an oscillating airfoil. Sears [9]
showed the relationship between solutions for a sharp edge gust and a
sinusodial gust. R. T. Jones {10] first considered the aerodynamic forces
on finite wings of elliptic planform in non-uniform motion in incompressible
flow. W. P. Jones [11] calculated the 1ift on rectangular and tapered
wings for impulsive motion in incompressible flow. Lomax, et al., [12]

solved the problem of obtaining the lift and moment for impulsive motion,
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first outlined. Then a systematic procedure is presented for the modeling
of unsteady aerodynamic loads. Some contributions are also made towards
extending and modifying methods for calculating aerodynamic loads for

oscillating airfoils and 1lifting surfaces.

Summary of Contributions

(1) A general theory is presented to describe the behavior of
the aerodynamic pressure and loads in the frequency domain.

(2) A numerical technique has been developed for modeling the
aerodynamic loads in the frequency domain.

(3) A numerical technique is developed for calculating the aero-
dynamic loads on two dimensional airfoils with trailing and leading
edge flaps, for a fairly large frequency bandwidth. For three
dimensional lifting surfaces the bandwidth, for which the doublet lattice
method leads to reasonable results, is improved.

(4) 1Indicial functions have been obtained for various types of

impulsive motions for wings of different planform,
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SYMBOLS

distance of elastic axis from the center of gravity.
reference semi-chord of wing.

speed of scund in the free stream.

distance of flap hingeline from the center of gravity.
Theodorsen's function.

non-dimensional pressure coefficient - Ap/q .
bending influence function.

torsional influence function.

flexural rigidity.

torsional rigidity.

vertical displacement of wing elastic axis.

Hankel functions.

unit matrix.

moment of inertia of wing.

moments of inertia of flaps.

modified Bessel functions of the first kind.

reduced frequency %? .



Kh wing root stiffness in shear

KR wing root stiffness in lateral rotation.
KT wing root stiffness in torsion.

kK(t) Wagner's indicial function.

KO’Kl stiffness matrices.

KQ(X,S) Kernel function for two dimensional aerofoils.

K2O(X’S) Kernel function for two dimensional aerofoils in incompress-
ible flow.

K3(X,Y,s)Kernel function for three dimensional 1lifting surfaces.

KBi Control surface stiffness constant.
Zi defined in figure 1.

£, semi-span of wing.

Lh lift in the plunging mode.

m(x) mass per unit length.

MO’Mi Mess matricies

M Mach number

Me gerodynamic pitching moment.
MBi aerodynamic flap moment.

NB number of collocation points.
NF number of flaps

P Laplace transform variable.
p(x,s),

ressure distribution.
p(x,y,s) P ¢



AP(X:S))
AP(X,Y:S)

q

cfi

U(nJa’t)

W(X:Y;t)

Pressure jump across the wing.
dynamic pressure = 1/2 QVQ-
nodal displacement vector.
modal displacement vector.
Laplace transform of 950 9-
i, jth element of Q(s,M)-

aerodynamic load matrix.

unbalance of entire wing.
unbalance of ith flap.

time

control torque on ith flap.
gust velocity.

Kummer functions.

free stream velocity.

downwash velocity.



w(x,y.p) Laplace transform of w(x, y, t).

X, ¥ .2 lartegian coordinates.
X=x -§&
Y=y -7
7=z -§
J . .th
Z¢ (x,y) displacement of the j = mode.
o angle of attack
8 Ao for M < 1, AP 1 for > 1.
. .th
Bi(t) flap rotation of i~ flap
o(x,t) torsional rotation
o(s) Laplace transform of Wagner s function.
Y(s) = so(s)
SR
b y/
W

€, 7, ¢ Cartesian coordinate system



FINTTE STATE MODELING OF STRUCTURES

Finite Element Models

The finite element method is often regarded as generating a dis-
crete model of a physical system. The method may also be viewed as a
variational technique, where an attempt is made to minimize the demand
for ingenuity in the construction of trial functions. This discrete
matrix technique for the formulation and solution of linear dynamic
problems in engineering mechanics has been widely discussed in the
literature [5]. This approach has proved useful in obtaining approxi-
mate analyses of complex structural configurations that are difficult
to handle by exact mathematical formulations. The bookkeeping required
for solving the large number of linear simultaneous equations involved
is readily handled by matrix algebra techniques and the resulting
analytical formulations are tremendously simplified. Thus concurrent
development or revision of different sections of large digital computer
programs to perform the analysis is feasible. This feature has led to
its use and acceptance as a basic tool for dynamic structural response
calculations. The aim of this section is to briefly describe how the
technique can be useful for finite state modeling of wing structures.

The efficient utilization of the discrete element influence-
coefficient approach in a digital computer would provide for con-

struction of a stiffness matrix and a mass matrix for the entire wing

10



structure by simple superposition of each matrix, from corresponding
matricies for the discrete elements that model the wing indetail. A stiffness
and mass matrix generator progrem (SAMGEN) was written for this pur-
pose. Several different types of elements were incorporated in the

program. This program was found to be extremely useful in structural

optimization work [27].

Idealization as a Beam-Rod

The swept wing structure shown in Figure 1 is considered. The
wing is connected‘structurally to the fuselage, so that the root is not
completely rigid. Further it is assumed to have & finite number of trail-
ing edge flaps, NF in number, which provide for the control torques.

The flaps are assumed to function as rigid bodies which are good approx-
imations for most control flaps. The wing is assumed to have a large
aspect ratio, at least, for structural purposes. This permits the

wing to be modeled as a beam-rod. The actual root 1s replaced by an
effective root normal to the elastic axis of the wing. Rotational
inertia, shear deformations and sectional bending are neglected.

Let hix, t), a(x, t), Bi(t) i=1,2, 3, ... NF, be the vertical
displacement of the wing along the elastic axis, the torsional dis-
placement of the wing along the elastic axis and the angular displace-
ments of the flaps respectively. The kinetic energy of the wing/flap

system may be written as

11
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NFo
m(x)h(x,t)- se(x)é(x,t) -(Z Sg B, (E) I+ (EI(x)n" (x,t))" = L, (x) (2.3a)

i=1 "3
NF .
—Se(x)ﬁ(x,t)+16(x)§(x,t)+( T (1B + be, - a)sB )B, (£))-(6T(x)e" (x,t))"
i=1 Pi i
= M, (x) (2.3b)
Ka.Bi(t)
-ssiﬁ(x,t)+(lai+ b(e, - a)ssi)é(x,t)+ Iaiﬁi(t)+ -ziﬁrz;ti

= MB (x)+ Teg » 1= 1,2,3,...NF
i i

(2.3¢)
where Lh(x), Me(x) and MB.(X), i=1,2, 3, ... NF, are the aero-
i
dynamic forces and moments and Tca , 1=1,2, 3, ... NF, the control
i
torques on the flaps.
The boundary conditions at x = O are given by,
(EI(x)h"(x,t))"'- Khh(x t) = 0 (2.4a)
EI(x)h"(x,t)+ KRh'(x,t) =0 (2.4b)
GI(x)e" (x,t)+ KTe(x,t) =0 (2.ke)
The boundary conditions at the wing tip x = gw are
EI(x)h"(x,t) = O (2.5a)
(ET(x)h"(x,t))" = O (2.5b)

13
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GIF(x)8'(x,t) = O (2.5¢)

If FI(x) and GJ(x), the flexural and torsional rigidities are

zero at the wing tip, the boundary conditions are,

EI'(x)h"(x,t) = O (2.6a)
2EI' (x)h"" " (x,t) + EI'"(x)h'"(x,t) = O (2.6b)
-G (x)p'(x,t) = O (2.6¢)

In the above equations the inertia and aerodynamic loads are also
assumed to be zero at the wing tip .

Since the properties of a practical wing are not uniform it is
difficult to solve the above boundary value problem even in the
absence of external loads. Hence these differential equations are
reduced to integral equations and then discretized.

The influence functions sz(x, §), the static deflections at
station x due to a unit load at station § aelong the elastic axis, and
C66<x’ E), the state torsional deflection at station x due to & unit
moment at station § along the elastic axis, for a wing with a flexible
root, are given in Appendix A.

The inertial properties are assumed to be lumped at NB collocation
points, X5, along the elastic axis. Then following standard techniques

it is possible to rewrite the equations of motion, in the absence of



external loads,in the form,

[1){a} = -[k, )™ M, 34}
where

[T] is the unit matrix,

{qo} is the vector of nodal displacements, torsional

rotations and flap rotations,

[KO]_l is the influence coefficient matrix, and [MO] is
the inertia matrix.
. T
Defining [Uc] = [Tcs s TcB s e Tcla ]
1 2 NF
o NF XNB . NF XNB . NF X NF
and [BO] = [ 0 : 0 . I ]

we may rewrite the entire equations of motion as

(Kydag + M1 ) = Fo(t) + BU,

(2.7)

(2.8)

(2.9)

(2.10)

where Fo(t) is the aerodynsmic load vector, Ué is the vector of con-

trol torques, B the control torque distribution matrix, and 9 the

vector of modal displacements. It is also assumed it is possible to

measure modal displacements and rates and these measurements can be

written as,

4, = Hjq) + Hyqy

15
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If a linear aerodynamic theory is assumed, the Laplace transform
of this load vector, fo(p), where p is the Laplace transform variable,
is specified as,

o VA b+ [Q(s M) 1{q, (p) ]

I o

where Q(s,M) = {qij(s,M)} is an aerodynamic load matrix, defined by

the relations,

A1 Zi(X’Y) Apj(X>Y;S)M)
qij (s,M) = a .r.r ) 1 VE dx dy
WAy 3 fs

where Aw is the area of the lifting surface for a three dimensional
lifting surface and equal to the chord for two dimensional aerofoils,
zj(x,y) is the modal deflection surface in the 1°® mode and Apj(x,y,
s,M), is the Laplace transform of the pressure difference in the jth
mode . The modal deflection surfaces may be obtained by solving
the free vibration problem given by equation 2.7 .

A general theory for approximating the aerodynamic loads qij(s’M)
in the frequency domain, will be presented in the next chapter. This

theory will permit the entire aeroelastic system to be replaced by a

finite state modal.



FINTTE STATE MODELING OF AERODYNAMIC LOADS

In this section, a gensral method of approximating the aero-
dynamic load: in the frequency domain iz presented for wings in two

and three dimensional tlow.

Two Dimensional Airfoils

4 - . v ~ 1 . I
The Pade approdimant oo bl ip applicd Lo cbizin the zolution
to the pressure diqtribubion on wings performing arbitrary oscillations
in two dimensicnal incowpr=ecible tlow. The method is then generalized

and applied to two dimensional comprecsible flow problems .

Tncompressible tlow. -~ Aerodynamic loads on arbitrarily
oscillating rigid wings in two-dimensiona] incempressible flow can be syn-
thesized fromWagner 's -olution for the it onawing dus o a sudden step-
wise change in the Aownwarh as deceribed in Ref. 1. R. T. Jones (10]
has obtained an approximate Laplace trancform of Wagner's indicial
function. It can be shown that eouations (or the prescsure distribution
and aerodynami: load:r may be obtained for converging or diverging
oscillations by replacing Clk) by d(s)  s¢le) whers o(s) is the
Laplace transform of Wagner's indicial function. Thus equationg of
motion of a wing with a trailing edge flap |''] or a wing with an
arleron and o flap [, 7 ] mey be obtained by using the correspond-
ing equations for osciliatory motion. Far converging ozcillations
the wake i assumed to be finite and dependent on initial conditions.

In thie scetion, Theodorsen's cireulation lag function is

analytically continued for convorgsing vofion of an airfoil  with no
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oscillating components in two dimensional incompressible flow, and
the physical significance of the results explained. By representing
Theodorsen's function as a series of Kummer functions, an asymptotic
expression for Wagner's indicial function is obtained. The first two
terms of this approximation are identical to the approximation for
Wagner's function obtained by Garrick. By applying the Padé
approximant theory, it is shown that Theodorsen's function may be
represented by a sequence of rational functions which converge
uniformly. This method of approximating Theodorsen's function is
generalized so one can construct rational function approximations not
only to Theodorsen’'s function, but to gust response problems also.
These rational function approximations may be easily inverted, using
Laplace inversion, to obtain good approximations to various indicial
functions.

The 1ift and moment about the elastic axis on a rigid thin air-
foil, performing vertical translational or torsional oscillations can
be easily obtained by integrating the pressure and its moments (given
in Appendix B).

These expressions are,

b | 2| --3-t-SBeASL L D i T

h/b



These equations may be written also as,

Lb 2 52 s - as2
M_|= @mb > 2, 2
o as s(a-1/2)-(1/8 + a%)s
2 b
+ Y(s)s, (+( 3 - a)s)]p | P
o8 + 1 o

Thus the circulatory part of the aerodynamic matrix can be decomposed

into the product of two vectors. As a consequence we have,

Lb o 32 s - as2 %
= 2mgb 2 1, 1, 2,2
M, as” sf(a - 5)-68 + a%)s o
2
+ 2mgb® y(s)
28 + 1

¥(s) = $(s) s, (1 +( 5 - a)s)]

R Tl

Thus it is sufficient to construct a finite state model of {(s) (shown
in Figures 2 and 3 ) in order to obtain finite state models of the
generalized aerodynamic forces. ®#An application of this approach to

flutter suppression studies is presented in Ref. 30.
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In general, if the influence of compreszibility and finite span
are included, it is impossible to decompor= the matrix in the above
manner. In two dimensional incompreszibl= [low, the circulatory aero-
dynamic forces are dependent only on the sswrwash velocity at one
point  (the 5/L chord point for a rigid airinil ). In compressible
flow or for three dimensional lifting surtace:, the aerodynamic forces
are dependent on the downwash at a finit: nunber of collocation
stations. Further the contribution of the -“ownwash at each of the
collocation point, to different generaliscd farces, is different. Thus
one cannot assume apriori that a decompositinsn of the form discussed
above 1s possible. Thus, the above app:;oocb iz not useful in com-
pressible flow or for three dimensional 1i7ting surfaces.

Garrick has shown that Wagner's indicizl function and
Theodorsen's function are related by the ¥ourler transform relation-

ships. Thus,

oo
(k) - ikt
Ky(t) = 14 = [ 9——&)——% etk for t >0
-0
-0 for t < O.
This may be written in the form
s <]
Wgl(t) - Ky (b4 T)-1 - [ oo Y ar

J oy Cl)-1 kT

where C . w: T

£

n



This equation suggests that numerical quadrature may be used to
compute K(t) for T <t < 2T for any given T. An equivalent possibility
is the use of discrete Fourier transforms like the fast Fourier trans-
forms [31]. In order to show the disadvantages of this technique a
brief discussion of the method is presented.

To observe the effect of sampling both in the frequency and time
domain, at finite but equal intervals, the above equation is evaluated

at the points,

t, = 3-At, j =0,

|+
[
"
|+
no
.
-+

+ (N-1)  and

fn =nAf, n=0,+1,+2, ..., + (N-1)

where N = TF, with F = 1/At and T = 1/Af. Atj is chosen small enough
for the highest frequency present to be sampled at least twice during
each cycle. With the assumption that the indicial function and the

spectrum Cf(f) are periodic with period T we have,

N-1

W (j-At) = % > cf(n-At)e+2Tr1 ne/N
g n=0
N-1 .
C,(n-af) = % T W (5.at)e 2T BI/N
g
n=0
A 21i/N
Let A = Cf(n,Af), X, = e

™ (j,At) and w =
3 g(J: )

We then have the discrete transform pair,

N-1 tn-j
X.= £ AW {x.} = [02){a Y} .
J npo B J n
N-1 -nj
1 — -1
A= § jfo Xj w o, {An] = (] {Xj}

21



From the orthogonality properties and the properties of the exponential
function it is possible to factor [Q] in suchk a manner that the number
of computations involved for inversions are reduced from N2 to g loggN

m) This decomposition technique is the Fast Fourier trans-

{provided N = 2
form. Thus it is possible to obtain numerical values for wg(t.) for
various values of tj by using different sampling periods T to any desired
degree of accuracy. Also errors due to the assumption of periodicity

can be corrected for,using Window Techniques. However this does not lead
to a finite state model. From the numerical data generated for the
indicial functions, Kl(t), it is essential to fit the data with a finite
number of exponentials (2 or 3). This is usually a non-linear technique
[32]. The Laplace transform of such an approximation would then lead to
a finite state model in the frequency domain. This whole procedure 1is
undoubtedly extremely tedious and involves several computational steps.
Conceptually the procedure involves approximating a distributed parameter
system by a discrete time system which is then approximated again by a
continuous system in the time domain. Thus a direct procedure of finite
state modelling from known values of the response at f = fn’ with the
correct initial and steady state behavior is desirable. Inorder to develop

such a technique, Theodorsen's function is analyzed in detail.

Analytic continuation of Theodorsen's function: The function ¥(s)
will now be evaluated in the left half of the 's' plane along the real
axis and the physical significance of the results will be explained. 1In

this case, y(s) may be written as
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P(s) = 1 -

The integrands of the two integrals are monotonically increasing in the
domain of v. Further they are both divergent. Hence the limit may be

evaluated by using L'Hospitals rule, which immediately leads to

Y(s) = 1 for Re (s) < 0, In(s) = O .

This result is of fundamental importance. It was assumed that at time
t = 0, the wing was stationary and unperturbed. Clearly, converging
motion with no oscillatory components from an unperturbed state is not
Possible. This implies that on the negative real axis of the 's'

plane the 'motion' remains unperturbed. As ¥(s) = 1, is the solution

for the case of steady translation of the wing, the quasi-steady solution
for the pressure distribution is the exact solution on the negative

real axis of the 's' plane.

Asymptotic expansions of Wagner's indicial function: In terms of

Krummer functions we have
1
¥(s) = Re(s) >0
U(%, 1, 2s)
1+4
sU(1%, 3, 2s)

The Kummer functions U(a, n, z) are a class of confluent hypergeo-

metric functions that are multiple valued with the principal branch

defined for -7 < arg(z) < 7. The order of the singularities for large
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end small values of z are determined by a and n respectively.
As a consequence of the properties of Kummer functions ¥ (s) may be
represented as an asymptotic series for large s as,
b 2 (L)

F(s)=1 -—]é-(th(l,l,hs) + ifl Bi(Cis)U(l,l,Cis)+ 0( %)

N=O)l)2: ceey X

where Bi and Ci are constants. Apart from being asymptotic for large
8 the expression also satisfies the condition,

Lt ’dr(s) = l .

s—0
Further, the inverse Laplace transform of the asymptotic series can be

easily found. Hence it is also possible to find an asymptotic expression

for Wagner's indicial function. In particular, for N = O,

3
2 T
K(t) =1 - =51+ 788 500)

where P(T) = 1 + 0.8751 + 1.281;5572 + 1.8&28}1-5 + u.o915lml* .
The first two terms are identical to the indicial function given by

Garrick. In general the correction to Garrick's approximation may be

written as,

K(t) - 1+ 2 > (Polynomial of degree N in r)
THL T %%8 (Polynomial of degree NtL in T)

The rational function in the brackets is usually referred to as a

[N + 4, N] Padé approximant. Baker [33] has discussed the methods of
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construction and the properties of Padé approximants.
Padé approximants of Theodorsen's function: For small values of s,
W. P. Jones [3h] gives the following series for ¥ (s):

2
¥(s) = 1+ ys + yos + s5( Xii - %? + y5 + %g )

where y = log(s/e) + Y. The correct asymptotic series for small values
of s is given by,

>

2
¥(s) = L+ ys + y°s° + [ Xﬁi - %? +y o+ % 1+ su(yu— y5 2. Y

+y-§

z l# Fd
+ 5707 2y 4 257 - 2232 V- g )

6 11 4
e Tv - }89_yi+ i—zyg - %Ew _1Ige)+ o(s),

Re(s) >0 .

Obviously it is quite difficult to construct a Padé approximant from
this series. However for large values of s, we have the asymptotic

expansion,

12+ T 19 A 629 . 8273081
8s

6us5 128sl’ 512s5 1021+s6 u191+3ol+s7

U(s) = 51+ = - + 0(3))
S

Re(s) >0 .

The fact that the lag function has a value of 0.5 for s = ® and 1 for

s = 0, suggests that it may be approximated by an [N,N] Pade
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approximant quite accurately. To demonstrate this, the first four
Padée approximants are constructed from the asymtotic series for large
S. They are asymptotic to the lag function up tothe first, third,

fifth and seventh orders in % respectively. They are given by

w
|+

(el {e]
P\

£° 4+ 1.55 + 0.375
26° + 2.58 + 0.375
3 2
s” + 3.58° + 2.7125s + 0.46875
057 + 6.58° + h.25s + 0.46875

s* 4 4.64696s° + 9.3737152 + 5.517355 + 0.4933L

28" + 8.79595” + 16.7L89ks” + 7.67296s + 0.4953k

» Re(s) >0,

These expressions are found to converge rapidly over the entire right
helf of the 's' plane. However the above approximations are not very
good for small values of s as they are obtained from the asymptotic
series for large s.

This method of approximating Theodoresen's function and evaluating
the Wagner indicial function approximately is similar in principle to
the method suggested by Luke [35] for evaluating the Randall function
in the theory for the unsteady aerodynamics of oscillating cylindrical
shells in supersonic flow.

The method of construction of the Padé approximants may be
generalized. Since the lag function is known exactly along the
imaginary axis s = ik, the Padé approximant may be constructed by a
suitable least squares technique. If C(k) = N(ik)(D(ik))—l, where
N(s) and D(s) are polynomials in s, the coefficients of the polynomials

may be determined by minimizing
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m . . 2
jfl(D(lkj)C(kj)- N(ik,))

where kj’ J=1,2,3, ..., m are the values of k at n different points.
This technique needs only the values of C(k) at a finite number of
points in the frequency domain, and hence may be generalized to other
cases, where the aerodynamic loads can be calculated numerically only.
This problem may then be reduced to the solution of an over determined
linear system for the coefficients of the polynomials N(s) and D(s).

This procedure results in

s™ 0.7610567+ 0.1020585%+ 0.00255067s + 9.557%2 X 10~°

vis) = —p 3 2 %
2s '+ 1.063996s5"+ 0.113928s+ 0.00261680s + 9.55732 X 10

Re(s) > 0.

Clearly Wagner's indicial function may be approximated using the

formula,

L -B. T
K(t) = 2% iéfl -1 - _21 Ae *
1=

where Bi are the roots of the denominator polynomial where

+ Ay By

1 0.011285763% 0.004448023L
2 0.043280564 0.027697193
3 0.21639860 0.096054968
L 0.22903508 0.40%79780
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By taking the Laplace transform of the approximation for Wagner's
function obtained by R. T. Jones [l10], we have
£+ 0.5615s + 0.0273

p(s) = —5 ,  Re(s) >0
25+ 0.6910s + 0.0273

The (4,4] Padé approximant obtained by least squares and the corres-
ponding indicial function are compared to the exact values and the
results of R. T. Jones (Figures 4 - 8).

This approximation is very good both in the frequency and the time
domain. The simplicity of this method compared to the one given by
R. T. Jones is qQuite obvious. The main advantage of this method is that
it can be generalized to three dimensional 1lifting surfaces.

It is also interesting to note that the poles of the six approxi-
mations for the lag function are negative real values. This indicates
that the transient pressure response to a downwash input is
asymptotically stable. Further since the negative real axis is a
branch cut of the exact expression for the lag function it represents

a continuous distribution of poles.

Application to gust response problems: In applying the above
theory to gust response problems, a certain amount of caution is essential.
It must be emphasized that only the Laplace transform of the temporal
portion of the circulatory pressure distribution can be approximated by
a sequence of [N,N] Padé approximants. This does not hold for sinu-
sodially convected gusts.

Sears [9] considers a gust velocity of the form,
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~ io(t-x/v)
WG = Woe

and shows that 1ift to be equal to

iwt

Yo
L(k) = br q-b- < © 8(k)

where S(k) = (o (k)- iJl(k))C(k)+ iJl(k).

Kussner's indicial function is related to s(k)e‘ik in the same manner as
Wagner's indicial function is related to C(k). However to obtain an
exponential approximation of Kussner's function one should construct
a [N,N-1] sequence of Padé approximants of S(k)e_ik. In fact, using the
least squares smoothing technique developed above and taking the inverse

Laplace transform we obtain the following expression for Kussner's

indicial function K2(t),

L -B.T
Ky(t) =1 - TAe §
N 1
i=1
where

i A; Bi
1 [0.012994467 | 0.0049896174
2 |0.062319920 | 0.034931400
3 |0.40920539 0.13796713
4 ]0.51548022 1.1645811
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In order to show the relationship between the temporal and spatial
portions of the gust response, it is essential to consider a gust of
form,

Jlot - ivx/fv

W = Y,

Kemp [36] shows the lift to be of the form

w

L(k,\) = lbmg 70 p o1t

K(k,\)

where Kk ,A) = ((35(M)- 17, () (w+ 3 5 (1)
b

and A= T .

The first term in the function K(k,\) is the circulatory part while
the second is the virtual inertia effect. Clearly it is now sufficient
to approximate C(k) by an [N,N] Padé approximant to obtain the indicial
function corresponding to a downwash of the form

W= we IV pigy
G 0
where H(t) is & step function.

A sinusoidally convected chordwise gust past an airfoil at a

steady angle of attack a, of the form, U, = U lo(t-x/V)

0 > 1s known to

produce a 1lift equal to [37],

U

Lk) = Wmg 70 ab et

T(k)

where Tk) = C(k)(JO(k)-iJl(k))+ Jo(k)+ iEJl(k).
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From this result we may obtain the indicial function for a sharp edged

chordinse gust striking the leading edge of the aerofoil at t = O
U X>Vt -b

U X<Vt -b

The indicial 1ift is given by

Yo
L(t) = lWmg .2 dei(t)

where K3(t) may be found in the same manner as Kussner's function. In

fact KB(t) is approximately given by

4 -B.7T
Kp(6) =2- T A e *
i=1 -
1 A By

1 | 0.02696556L | 0.0023690134
2 | 0.044268810 | 0.040647%02
3 | 0.45280297 0.14614369

b | 1.4759Lk27 1.7305802

Separating the spatial and temporal portions of the gusts into

U - yel®wt-iwx/v
g 0
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we may show the 1lift to be

13)

L = bmg -\—IQ crbemot

(k)

1kg) (1)
where V(k,\) = C(k)(JO()\)- iJl(l))+ JO(J\)+ iJl(l)+ —

Sharp edge gusts moving with respect to inertial observers are

considered; i.e., gusts of the form

0 X>Ut-b
WG =
WO X<Ut -b
0 X>Ut -b
and UG =
UO X<Ut -b

vwhere U is different from the free stream velocity V. UO is assumed to

be very small compared to U so only first order effects need be con-
sidered. The corresponding indicial functions are related to K(k,ak)
-iak

-iak .
e and V(k,ak)e ™" | where o = V/U, in the same manner as Kussner's

function is related to S(k)e-l'k and hence may be written as,

Lo BT
Kp=1- Zafe J
J=1

Y BCr
Ky = 2 - gale I
J=1 9

These indicial functions are shown graphically in Figure 9 and Figure

10.

Before going into the nature of the solution of the pressure distri-

bution in two dimensional compressible flow it may be instructive to
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review the effects of thickness and viscosity on ¢(s)- Hewson-Browne
[38] has investigated the oscillation of a thick airfoil in an incom-
pressible flow and obtain a general expression for ¥(s) (which he
evaluates only for simple harmonic motion!) including thickness effects.
The generalization is different in the expressions for 1lift and moment.
This would destroy the decomposition property of the circulatory portion
of the aerodynamic matrix discussed earlier. The singularity in the
derivative of ¥ (s) continues to exist. Woods [%9] has presented a new
approach for the caleulation of the unsteady two dimensional flow about
aerofoils performing arbitrary motion in an incompressible fluid. While
the flow is assumed inviscid, the potential flow boundary conditions

are modified semi-empirically to make some allowance for viscous
effects. The method is applicable to thick airfoils, the only limita-
tion being that the velocities and displacments of the unsteady perturba-
tion about the mean motion be small. Results are obtained for the 1lift
and moment by an application of Blasius theorem. However these results,
while being very impressive mathematically, seem to be practically useless
as most of the integrals cannot be evaluated for general motion. Pro-
vided the Reynolds number is sufficiently large for boundary layer
theory to be applicable, viscosity has three main effects on the
theoretical potential flow. These are, 1) the Kutta condition is
modified in that the position of the rear stagnation point is indepen-
dent of incidence 2) the velocity distribution of the mean steady flow
particularly near the rear trailing edge is modified 3) viscosity
contributes to the damping that is independent of the velocity but does
not effect the inertial loading. Woods accounts for 1) and 2) but not

%). The results indicate that the reduction in the wake velocity due
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to the thickness and viscous effects, changes the flat plate deriva-
tives by an amount which is quite large for k large but neglegible
for small values of k. Chen and Wirtz [40] have included second order
wake effects, but it appears that the singularities they obtain are
no different from those of the first order solution.

It seems probable that the nonlinear and viscous effects in the
wake may reduce the wake velocity and distort the wake which may be
significant especially for low values of k and large values of |s|.

So far there is no theoritical justification of this. The above consid-
erations are important if experimental verifications of Wagner's solu-

tion are sought.

Subsonic flow. - In Appendix C, the behavior of the pressure

differential across the airfoil in subsonic flow was shown to be
essentially like incompressible flow for low values of reduced frequency
and mach number. However for large values of reduced frequency, unlike
incompressible flow, the force required to generate impulsive motion may
be expected to remain bounded for all time and finally reach a steady
state value. In particular, the work required to generate impulsive
motion is not entirely recoverable, so that the process is irreversible,
and some part of the starting force must be regarded as '"damping". It
is well known, that for large values of reduced frequency the pressure
is given by Piston theory [1] for all mach numbers, M, greater than

Zero.

H
®
.
o
il
=2l=
A
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where 2z 1s the displacement of the airfoil.

Another curious fact, that has not received the attention of any
previous investigators in unsteady aserodynsmics, is that the steady state
aerodynamic load on an airfoil in steady subsonic flow or supersonic
flow is always finite as long as the mode shapes are bounded. This
indicates that the aerodynamic system by itself is a completely stable
system, in subsonic or supersonic flow, in spite of being a circulatory
system. This physical fact fully explains the reason for all the poles,
of each one of the Padé approximants of ¥ (s), being in the left half of
the 's' plane. The stability problem is especially significant in
transonic shock free flows and hence is discussed in greater detail in
the next section.

In Appendix B, it was shown that the integral equation for the
pressure distribution can be reduced to a Fredholm integral equation of
the second kind with a completely continuous kernel. The significance
of complete continuity will be discussed in 53.2. In Appendix D, it was
shown that for an equation of this type, the solution has the form of
a [N, MJ] Padé approximant. Clearly, comparing this result, with the

Piston theory result for large s, we conclude that the loads must be of

the form,
a sN+l+ a SN¥ cee
0 1 1
qu (S)M) = «ft N N-1
N—ow Ms™+ b2s . bN+l

where the coefficients a; and bi are functions of Mach number alone.
Clearly as 5 = o, qij = atF/M and &, can be obtained from piston

- 0
theory. 1In the limit as s =0, 9 5 (o,M) = aN+l/bI\H-l = 4 (M) and

equals the steady state value. As the mach number approaches zero,

35




one of the poles of the denominator moves to negative infinity in the
's' plane. This clearly indicates that in incompressible flow an impul -
sive force is needed to generate impulsive motion. Hence for large values
of s, qij behaves like an inertial force in incompressible flow. In
compressible flow, unlike incompressible flow, the coefficients bi are
different for different types of loads and mode shapes.

This difference in behavior may be easily explained Physically.
In incompressible flow there is a lag in the development of the circulation
around the aerofoil, while the pressure variations are propogated with an
infinite speed. In compressible flow in addition to this lag the
Pressure variations caused by the motion of the aerofoil are propogated
by a finite speed. This introduces an additional lag in  the loads.
On the other hand as the speed of the airfoil increases, it is clear
that the pressure variations move upstream more and more slowly in
relation to the aerofoil. If the airfoil moves faster than the speed
of sound, it cannot make its presence known to the fluid ahead of it and
the mechanism for bending the streamlines ahead of the airfoil no longer
exists. Eventually for very high speeds, the influence of the pressure
variations is only local. At this stage the airfoil behaves like a one
dimensional piston and piston theory leads to the exact Pressure on the
aerofoil for all values of s.

Thus

a.S
0
=3 for M—®

qij (s,M)
It was also shown in Appendix D that the sequence of rational

functions for increasing values of N converge and hence can be

truncated and assumed to be of the form



1 N 0.,
et a5 ... + as + Q4 (M)bl\H-l (3.1)
N N-1 )
Ms™ + bES cee + bN+1

qij (S )M) =

for some fixed N.

Further, in view of the aerodynamic system being completely steble,
we may conclude that all the poles of qy 4 (s,M) lie in the left half
of the 's' plane. This is an important and useful property, as it can
check on the validity of the rational function approximants after they
have been constructed.

The exact solution for subsonic flows, can be obtained by Mathieu
functions [1]. However the actual computation of the solutions is ex-
tremely tedious. Furthermore, the solutions are not closed form
solutions and hence are only approximate. Thus it is difficult to
obtain series expansions in frequency of the aerodynamic loads, in order
to analytically construct the Padé approximants.

Hence a numerical technique used often in the area of system iden-
tification and for digital filter synthesis [k1] is proposed and
applied to various cases. The problem of computing the approximants
is reduced to a least squares minimization problem. This is then
transformed to a overdetermined linear system for the coefficients of
the Padé approximants and the solution obtained by QR decomposition.

Now qij(S’M) may be easily calculated by the numerical method out-
lined in Appendix C for a given mach number, and for various real values

of reduced frequency.
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Also &, can be obtained from piston theory and qgg(M) from steady state

calculations. Thus the above equation may be written as,

a1, -2 N -2 N
&15n t Sp Byt . Sm &y qij(sm’M)(bESm o bNsm )
S(W1), 0 oy o
+ Sm (qu (M) qu (Sm,M))bl\H‘l = Sm Mql,j '\Qm)M)' a’o
m=1, 2,5, +v.om (52)

Hence these equations are a system of m, complex equations in the 2N real
unknowns a5 ag, P aN and b2, b3 ces bN+l' If Mqs is chosen larger
than N, this system of equations may be solved by the linear least
squares technique.

Numerical experience indicates that a large number of values must
be chosen for km, in the low and high frequency regions. In the low
frequency regions the coefficient of bN+l could be a small complex
quantity while at high frequencies the right side of equation (3.2)
would be a small complex quantity. Hence a large number of values
must be chosen for km’ in the low and high frequency regions, in order
that the approximation be sufficiently accurate in these frequency
regions.

These approximants for nondimensional generalized forces in (1)
plunging, (2) pitching and (3) flapping mode and tabulated in Tables
1-5. The flap hinge is assumed to be at the rear quarter chord point.

In most of these cases N was chosen equal to 2. In these cases it was
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found that more accurate results could be obtained with N = 4. However
these results are not tabulated.

It was assumed that it is possible to calculate the aerodynamic
loads qij(s,M) accurately for all values of k and M in the subsonic
regime. This assumption is generally true in two dimensional subsonic
flow, provided a fairly large number of collocation and integration
points are used in the method described in Appendix C. The method is
very accurate even in the presence of control surfaces, provided
collocation points are not chosen too close to the hinge line.

The influence of compressibility which is well known in steady
flow 1is different for the steady and unsteady components of the loads.
For low mach numbers (0.1 <M < 0.3) it was found that higher order
Padé approximants were required to model the pitching moments, where
the poles of the spproximants have a tendency to move towards the
imaginary axis of the s plane. This could be due to the higher order
of the approximants without any physical significance.

For high subsonic mach numbers (0.7 <M < 0.9) the loads were less
stable even with lower order Pade approximants. On the other hand it
is well known [42, U3 and Section 9.2, 1] that oscillations of a two
dimensional aerofoil about & pitching axis may become unstable for low
values of reduced frequency and high mach numbers, if the axis lies in
a certain region, ahead of the guarter chord axis and if the moment
of inertia about this axis is sufficiently large. This has been
attributed to the fact that the logarithmic term in frequency in the
kernel function is stronger at high mach numbers for two-dimensional
aerofoils than for three dimensional lifting surfaces.

By taking the Lapalce inverse transform of qij(s,M)/s, it is

possible to obtain the indicial response in the ith mode due to a time-
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wise step change in displacement of the jth mode at time t = 0. These
results are shown in Figures 11 to 19, and have been obtained from

(4, 5] Padé approximants in all cases except in the case of qll at M= 0.7.
From these figures it is quite clear the loads corresponding to the seme
pressure mode have the same general behavior in the time domain. Also

the loads corresponding to the flap mode take much longer to reach the
steady state value, than the loads due to plunging and pitching.

The influence of ~ompressibility on Wagner's indicial function may
be studied. In this case, the 1ift Uy due to a rigid plunging mode is
calculated at several Mach numbers and the corresponding indicial
function is obtained by taking the Laplace inverse of qll/sg. This
result is shown in Figure 20. These curves are compared with that of
Mazelsky and Drischler [13] for Mach number - 0.5, in which case the

error was found to be the highest.

Supersonic and transonic flow. - In supersonic flow the

expressions for the 1ift, moment and partial moment for an serofoil
with a flap are given in [4h4] and for an aerofoil with both trailing
and leading edge flaps in [45]. The Padé approximants for the exact
expressions for the lift and moment of a rigid aerofoil in plunging and
pitching may be obtained. The lift coefficient for an airfoil in pure

plunging motion is,

o .
h( s tas + b ) % or

In
gb Ms“+ cs + Bb

2
u’( S+BM"B)
Ms + BM - B
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where

a= 2 e+ 5+ (8- 1E), A= ME(D-3)
3B, 22 387N o
b=z‘(L+MB (B -M)+ 552M), c:T((5M+1)(f3—M)+ M)

The moment coefficient in pure plunging motion is,

a.s )
My 1 -
—5 = L( 5 ) % » where a; = ——-—:E%;———
qb Ms“+ cys + by M(1IM"- 3)
L 2
b - —2 , emd o - —OF
M(11M=-3) 1M - 3
The 1ift coefficient in pitching is given by,
L a.s +b 2
Z -0 Z
E%- = L( ﬁ§_¥—552 )} ,  where 8, = %( JMQ =, b2 = Jgg
= 2 M+ 1 M+ 1
The moment coefficient in pitching is given by,
Ma s+ ais M2_ 5 3(2 - ME)M82+ 355
27 MR 8t T by by 2
gb 3 2 oM

All four approximants have the correct asymptotic behavior in the

limit ¢ = O and the piston theory limit was enforced for s = .

Also

the poles of all four of the approximants satisfy the stability cri-

terion discussed in the last section. The approximants are good
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approximations for the loads for M > 2.0. Though not extremely accur-
ate these approximations are certainly better than piston theory or
quasi-steady theory.

It was observed that for higher order Pade approximants, the poles

behaved in an erratic manner especially for low supersonic mach numbers,

1 1

moving often into the right half of the 's' plane. In transonic flow,
it is well known from the exact solution for the pressure [4L6], that
the linear serodynamic theory leads to infinite aerodynamic loads in
the steady state as the loads have a pole of the form J/s. This was
probably the reason for one of the poles of the approximants moving
towards the origin for low mach numbers in the supersonic regime and
high mach numbers (‘2 0.8) in the subsonic regime. For the reason
indicated above it seems appropriate that in transonic flow, the
serodynemic loads may be written as a [N,NM2] Padé approximant in /s
withapole at /s = O. However this result has no practical value, as the
linear theory is known to be invalid in steady transonic flow.

The physical interpretation of this result is that two dimensional
shock-free transonic flows are unstable on the basis of linear theory.
One of the arguments against the physical existence of shock-free
transonic flows was based on the supposed instability of these flows
with respect to upstream moving disturbance waves [47]. The argument
was that these waves when superposed on a steady shock-free basic flow
could move upstream as long as the local steady flow speed was subsonic,

but as they entered a region of supersonic flow they would come to a

standstill and coalesce to form a steady shock wave.
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However Pearcey [48] showed using laborious experimental tech-
niques, that the disturbance waves moving upstream can penetrate the
supersonic region, and that in fact, shock-free transonic flow
could be experimentally realized. This is attributed to the non-
linear turning effect of the waves moving upstream into the supersonic
region, which was not theoretically accounted for earlier [43]. Then
based on geometrical acoustics one may show that disturbance waves
moving upstream can penetrate the supersonic region. The problem of
shock~free transonic flow is too complex at present for a strict
mathematical treatment.

The numerical technique developed in the last section is also
applicable to supersonic flow. The results are tabulated as in the
subsonic case for N = 2 in Tables 6 - 8. It may be noted that the
derivatives of the indicial response functions to time-wise step
changes in the downwash in plunging and pitching [12] are not continuous,
since the period of influence of an impulsive source is finite. The
above technique approximates these derivatives by continuous exponential
functions (Figure 21). Thus higher order Padé approximants are
essential to approximate the derivatives of the above indicial
functions.

Tt was found that for Mach numbers less than 1.5 second order Padé
approximants were insufficient for modelling the loads. The possible
reason for this has already been discussed. On the other hand for

Mach numbers greater than 2, a first order Padé approximant was sufficient
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for the lift and moment in plunging and pitching in the frequency domain.
This is to be expected as for a wide range of frequencies. In fact
Piston theory may be considered as a zeroth order Padé approximant

for high mach numbers.

Three Dimensional Lifting Surfaces

In this section a systematic method of obtaining Pade approximants
of the aerodynamic pressure loads is presented. Though the method is
actually quite difficult to apply in practice, it will prove the
existence of Padé approximants and the form of the solution. The method
is also applicable for two dimensional airfoils.

First it must be noted that Piston theory is also valid for three
dimensional lifting surfaces for high frequencies and that any solution
for the pressure distribution must converge to this limit for high
frequencies.

In subsonic flow for two-dimensional airfoils, it is well known

that the non-dimensional pressure E;(E,ﬂ,ik) may be written as,

— O, .. 1 . 0 2 o . N
Cp = Py + ik Pog + ik log ik Py + 0(k™) + 0(k"log ik) (3.3)

For three-dimensional lifting surfaces it is given by

[}
To- ¢ pP )™ (ik) log ik pl (ik)® (3.4)
P ~ 20 31
n=0
where pgg and pgi are independent of fraquency. Assuming the downwash

to be Y00 + ik Yol and using the kernel function expansion in Appendix
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B, for low frequency (equation Bl8), we have

@

8w, -+ ikw., )
1°v o _ 1 = a.n(ik)n-l-(ik)elog ik b_(ik)"1G (£,7,1k)aEay
A no0 n

Hence we have the infinite system of equations,

w
00 1 ¢ 0
v = B e an
Yoo 1 [T(a.p2 + apl)aa
v - "B 1P30 T 8gP3g n
v O 0
0 = ‘]I{(bop5o+aop51)d5 an
0 1 2
0 = ;{(aepao + alp5o + aopjo)dﬁ dn

The first equation in this infinite set, involves thecalculation of the
pressure distribution by application of steady state lifting surface
theory. After having determined the steady state pressure the second
term is also determined from steady state lifting surface theory since
pgz is known and p;b occurs in combination with the steady state kernel
a5 Thus the coefficients may be obtained numerically by a procedure
like the kernel function technique. In this manner it is possible to
obtain all the coefficients p;b and p;i- One speciﬁl case of importance

. 0 0 . .
is when Yoo = 0. 1In this case p50 = 0 and p51 = 0. Hence in this case,

= _ 1 . 2. 2 3, 3 .
cp-p5o ik pﬁok + 0(k”) + 0(k"log ik)
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Thus the existence of a solution of the form given by (3.2) is estab-
lished.

Next we note that

i
- '+1(§(; ")
i
s log(so(s/so)) = s.Z (1) ———+slogs, 0<s< 2s4-
i=1 i
From (3.2) we have
J
k
> o +1 (i‘—o- ") 2
Co= (k)™ + [ik® 2 (-1)9™ 2 5B (%)% (ik)%1og ik
p 30 . 31 0
n=0 n=1 J
This can be rearranged in the form,
_oN-2 .
= = ¢, (ik) (3.5)
n=0

The coefficients Cn are functions of the number of terms included
in the series for the logarithm. However the coefficients converge.
Further the first two coefficients are unaffected. We may now construct
a [N, M1] Padé approximant such that Piston theory is satisfied in
the limit s = =. The coefficients of [N, M1] Padé approximants may be
obtained in terms of Cn by solving a linear system. Thus one mey con-
struct a sequence of [N, M1] Pade approximants. These would have the
same asymptotic behavior as equation (3.5) for small values‘of frequency
and the correct limit for high frequency.

It is now essential to estéblish the convergence of this sequence of

Padé approximants .
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In Appendix D, a similar problem was considered. First the Neumann
series solution of the problem was established. It was then shown that
convergence of the Padé approximants is assured if the kernel function is
a completely continuous kernel.

Symbollically we may denote the lifting surface problem as,
. Y- 1\ 2 . .
w=Lp = [LO + kL, + (ik) Ly oo F (ik)“log 1k(MO+ ik My L) 1p

where Li and Mi are integral operators. The solution to the steady state

problem is

psteady = L_l

The iterative method described can be symbolically written as,

p- L

-1, - 2 . .
o ¥ - Ly [1kLl+(1k) Lt et (ik) log(lk)(MO+ ik My o) p

The above is a Fredholm integral equation of the second kind of the type
considered in Appendix D. Complete continuity of the kernel function in
the above equation can be assumed in view of the uniform numerical con-
vergence of the kernel function method. As explained in Appendix D the
condition of boundedness of the kernel function is not related to the
condition of boundedness of the operator or complete continuity.
Complete continuity ensures that the integral equation may be reduced

to an algebraic system and that the solution converges uniformly. If
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it is so, L may be thought of as a matrix and

-1 (ADJ (L) ]

P=L W= gRwy

If the elements of L are rational functions or polynomials of a parameter
s, then elements of —5—51%%l are ratios of polynomials. It is from this
fact that we are able to conclude that there exists a sequence of Padé
approximants if the kernel function is completely continuous. Hence

the theory developed in Appendix D may be applied to the above system
and it could be concluded that there exists a sequence of [N,Nt1] Padé
approximants that converge to the exact pressure distribution as N — =.

The same conclusions hold for the aerodynamic loads.

Thus we may write q,.(s,M) approximately as,
1]

In compressible flow a, may be calculated exactly from piston theory.

In the case of M = O, we can easily verify from the equation that the
loads are given by a sequence of [N,Nt+2] Padé approximants. In the
1limit M =2 0 and s — ® we have the integral equation for virtual inertia

given by

_<__:.¥_>_-1 1
s = TT.” dg dn(Cy(€;nss (m)



This is a self adjoint integral equation and can be solved by a kernel
function technique. Unlike compressible flow the pressure distribution
has no singularities along the boundaries. It is important to realize
that virtual inertia and Piston theory loads are independent of the
direction of flight. However as circulation begins to develop the Kutta
condition is of importance and the classical theory of motion of a body
through an ideal fluid is not valid. W. P. Jones [50] has proposed a
simple method for solving the above equation for rectangular wings. Two
dimensional broadside configurations such as circles and ellipse with
symmetrically placed fins have been treated by Bryson [51, 52, 53] with a
view to analyzing the stabilizing effect of control survaces onaircraft.

For & circular wing of radius ro» in incompressible flow it could
easily be shown (Appendix C) using the same technique as van Spiegel’'s

[54] solution for low frequencies, that for large frequencies

6 (r,6) = 0(x%)

The actual computation of the Padé approximants, though possible
in principle, was not carried out. Exact Padée approximants could also
be computed in compressible flow. However the amount of computations
involved to get meaningful results is enormous, as it is essential to
expand several special functions and their products in power series.
Also circular and elliptic wings are not used often in practice. The
numerical technique outlined in the previous sections with some modifi-
cations for three dimensional lifting surfaces is more useful.

For three dimensional lifting surfaces the aerodynamic loads may

be written as
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where q.o. M) + sq.l. (M) are the exact loads in the limit s = O and
ij iJ

1 0 1 0
= - ‘M. .. .. ) t
< = 8 qij(M) M qlJ(M) and qlJ(M) may be calculated from P2
1
and pEO .
If [AO + ikAl] is the influence coefficient matrix for small values

of k and {wb} = {wjo + ikwjl}, the downwash vector, the pressure

coefficients for small k are given by

p, = (o) vy d- g Ay () g ]

W,
J Jo

[AO] may be calculated exactly as in steady flow. [Al] is calculated

from the coefficient of ik in the expansion for the kernel function

given by equation BLE, using either the doublet-lattice or kernel function

technique. Integrating the pressure with appropriate displacement mode
0 1
shapes leads to q,. (M) and q. (M).
1 1J
The numerical evaluation of the coefficients bi and cy in compres-
sible flow is similar to the two dimensional case. In incompressible
flow since the numerical technique for the calculation of the virtual

inertia loads for arbitrarily shaped wings was not completed, a, was

assumed to be unknown and b2 eugal to unity.



After some numerical experiment N was chosen to be egqual to 2.
This leads to a first order rational function in incompressible flow.
A simple lag is sufficient to model the circulatory effects in this
case. In compressible flow two lags are essential, for large aspect
ratio wings at low mach numbers, one to account for the lag due to
compressibility effects at high frequencies and the other to model the
lag due to circulatory effects at low frequencies. For moderately low
aspect ratios at high subsonic mach numbers the lag due to compressibility
effects may be modelled by a single lag. For low aspect ratio wings
(AR < 1) there exists no physical reason for aerodynamic lag and hence
no lags are required at all Mach numbers. Some examples are presented.

(D Circular Planforms: A circular wing is considered in
incompressible flow. For circular wings the exact results of Van Spiegel
and Benthem and Wouters [55] for simple harmonic motion in plunging,
pitching, chordwise bending and spanwise bending modes are used.
Rational function approximations to these loads are given in Table (9).
The error in the virtual inertia 1ift in plunging is about 30% . This
high value is due to the lack of any data points for k > 1. The growth
of 1ift and moment for a timewise step change in the downwash in the
plunging and the spanwise bending modes are shown in Figures 22 to 25.
No other results were available for comparisons. The corresponding indicial
functions and the indicial functions for the 1ift and moment due to a time
wise step change in the displacement in different modes are tabulated in
Tables 10 and 12. The lift and moment in the spanwise bending mode
reached the steady state value much faster than the chordwise bending

mode. This is to be expected as in the first case, the major contribution
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to the load is from the pressure at the wing tips where it does not change

aprreciably with time.
(2) Elliptic Planform: An elliptic wing, AR = 6, is considered
in incompressible flow. R. T. Jones considered =lliptic wings of aspect
ratio 6 and 3 and computed the indicial response for the lift due to
plunging. In the limiting case for high fregquencies, he obtains approx-
imately,
4y, (s) = T( — = )

B4i-(om) )

(6" + s(140( =) 10(s))

o'l

where E(-) is the complete elliptic function of the second kind and

represents the ratio of the semi-perimenter to the span. The first

term represents virtual inertia. It may be noted that it is independent

of the direction of flight and hence is minimum for circular planforms.
For low reduced frequencies, we may compute the asymptotic value

of CIEY by the iterative technique described, using the kernel function

method to solve the integral equations. Fifteen spanwise integration

points, three chordwise collocation points and ten chordwise integra-

tion points were used for the calculation. Thus for small s we have,

1 22 p) )
S + s + Ofs + 0(s logs
11() 0 14 (s7) ( gs)

is identically equal to the stability derivative Cz may be

ql
11 o

approximated by the formula,

(IBAR)2 + 1.7%72(BAR) )
(BAR)Z + 3.76B0(BAR) + 6.9473

2m
- 7

The corresponding formula for rectangular wings is,



_er (BAR)° + 0.788L (BAR)
o B " (eaRr)2 + 5.5760(BAR) + 3.1526
Both the above formulae have the correct limiting solutions for AR - «

and O.
Cl

2 (L y. G

V- 57 ) is also computed for elliptic and rectangular wings
11

aq
for increasing values of AR and shown in Figure 26. The curves indi-
cate a maxima for circular and square lifting surfaces. For lower
aspect ratios, low aspect ratio wing theory is a good approximation.

For a circular wing q}i and qii_may be obtained from the exact cal-
culations of Van Spiegel. The errors in the numerically calculated
values, using the method described above, were found to be 0.16% and
0.9% respectively.

From these asymptotic values it is possible to construct exact
[1, 3] Padé approximants. Taking the Lapalce inverse transform we
obtain the indicial response to a impulsive displacement. These results
are compared to those R. T. Jones in Figure (27). Though the difference
in the two results is not too large for high frequencies (!) it is con-
siderable in steady flow.

Next the 1ift due to an elliptic wing, performing simple harmonic
oscillations in the plunging mode was calculated at ten frequency points
using Laschka's collocation technique with fifteen spanwise integration
points, eleven chordwise integration points and three chordwise colloca-
tion points. The least squares technique for computing Padé approximants
described earlier was used and the indiecial function was computed for an

AR = 6 lifting surface. This is compared to the results of R. T. Jones
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in Figure 28. This result compares very well with the corresponding
indicial function, obtained by using only the asymptotic values. This
is quite significant for as it clearly indicates that with only the
calculation of the asymptotes and the aerodynamic loads for one
frequency of oscillation, it is possible to predict aerodynamic loads
for all types of arbitrary motion.

(3) Rectangular Planform: Rectangular planforms of aspect ratio
L and 6, in incompressible as well as compressible flow, are considered.
The aerodynamic loads for simple harmonic motion are obtained using
Laschka's method with fifteen spanwise collocation points, three chord-
wise collocation points and eleven chordwise integration points. The
optimum number of chordwise integration points iz the integer value of
[n(m+ 0.5)], n=1, 3,5, 7, ..., m = number of chordwise collocation
points. It has been shown by Rowe [24] that not using the optimum
number of integration points could lead to considerable amount of
oscillations in the predicted values of the loads as compared to the exact
values. The numerical technique is used to calculate Padé approximants
and indicial functions. The indicial functions for plunging are compared
with those of W. P. Jones [11] for AR = 6.0 and 4.0 in incompressible
flow (figures 29, %0, and 31, Table 11). In [56] the result for AR = 6.0
is compared to the one obtained by a potential flow technique. The fact
that the virtual inertia for an AR = 6 wing is slightly lower than the
case AR = 4.0 cannot be attributed to any physical reason. In fact it
can be argued that the virtual inertia must be a minimum for a square

lifting surface (AR = 1) and have the same value as a two dimensional

airfoil AR = 0,

54



When compressibility effects are included (Figure 32) the influ-
ence of finite aspect ratio is to reduce the steady state lift while
the starting value given by Piston theory is unaffected. Sweeping the
lifting surface backwards, with the planform area a constant, further
reduces the steady state lift without effecting the starting value.

In Figure (33) and Table 13 is shown a comparison of the
generalized aerodynamic loads due to plunging (1) and pitching (2) for an
aspect ratio 6 wing. This indicates that the basic behavior of the loads
due to the pressure in any one of the modes is about the same. Thus
this raises the possibility of approximating all the loads due to the
Pressure in any one mode, by the same combination of exponentials
with different magnitudes. Also one may conclude that the exponential
rise times in all the loads due to the Pressure in the same mode are
interelated. This fact led to a simplified scheme of approximating
the aerodynamic load matrices for purposes of flutter analysis. This
scheme is briefly discussed in the next chapter.

In Figure (34) the influence of compressibility on the indicial
response in the plunging mode for a finite aspect ratio wing (AR = 6.0)
is shown. This again is similar to its two dimensional counterpart
shown earlier. The steady state lift is considerably reduced due to
induction effects.

The indicial rolling moment for an impulsively rolling wing is
shown (Figure 35) for a straight and swept wing of AR = 6. Here the
influence of sweep is to reduce the 1ift uniformly for all value of
time.

(4) Tapered Planform: A tapered planform of AR = 5.84 and &

%aper ratio of 0.524 was considered. The indicial 1ift for plunging
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was compared with that of W. P. Jones in Figure 36, and indicates

good agreement. The influence of taper is to raise the magnitude of
the indicial 1ift quite uniformly for all time. This is to be expected
as the pressure falls to zero, near the wing tips and hence does not
contribute much to the total lift. Hence the influence of tapering
with AR and planform area fixed would be to increase the total lift,
both in steady and unsteady flow.

(5) swept Wing (A = 145°) with a control surface (AR = 4.16):
This wing (Figure 37) was studied extensively using the improved
version of the doublet-lattice method described in the appendix to
calculate the aerodynamic loads on the wing for simple harmonic
oscillations.

The wing was modelled as a beam-rod and its mode shapes (first
bending and first torsion) were calculated by curve fitting discrete
mode shapes (Table 14). These two polynomial mode shapes and a rigid
control surface mode were used to calculate the aerodynamic loads
on the wing.

First the convergence of the doublet lattice method in the limits
of small and large reduced frequencies was investigated. For low
reduced frequencies, the method was applied with 1) 6 chordwise boxes
(NCB) and 5 spanwise boxes (NSB) 2) NCB = 6, NSB = 10 and 3) NCB = 9,
NSB = 5 (Table 15).

This indicated that increasing the number of spanwise boxes
(from 5 to 7, 8, and 10) resulted in a converging result. However

changing the number of chordwise boxes did not alter the results signi-

ficantly.
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To verify the usefulness of the box integration scheme at high
frequencies it was assumed that the pressure at the sending point
(quarter chord point) of each box is given by 4/M times the downwash
at the receiving point (three quarter chord point) of each box. In
this manner the generalized forces are computed in each of the three
cases given above and compared with the exact piston theory results.
This did indicate convergence with increasing number of chordwise
boxes. These results are shown in Table 16.

Finally the method was used to calculate the loads at a number of
frequencies starting from small values of frequencies to high reduced
frequencies (up to 5 based on semi-chord).

The generalized forces due to the pressure in the bending and
control surface modes did converge slowly to the piston theory result.
However the generalized forces, associated with the torsion mode did
not converge to the results of piston theory. Hence using the results
of the first case and the numerical method for calculating Padé
approximants, it was found that the poles of the approximants were
unstable in the loads associated with the torsion mode_, 1In the sec-
end case (Table 17) the results did improve considerably at low fre-
quencies but not at high frequencies. It was not possible to con-
struct a stable first order Padé approximant for the generalized
force in the second mode due to the pressure in the first. Also the
rise times for the loads (Figures 38 - 46) associated with the torsion
mode were small when compared to the first bending and control surface
modes. The partial moment on the partial span flap has the same

behavior as the corresponding indicial function for two dimensional
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aerofoils. Also since the results for simple harmonic motion did
converge to the piston theory limit in this case the indicial function
seems quite accurate. However there is no check on the accuracy of
the results as no comparisons are available.

From squations (3.3) and (3.4) we may conclude that the influence
of finite aspect ratio would be to push the poles of the approximants
further into the left half of the 's' plane. For this reason also,
it is important to calculate the aerodynamic loads for higher reduced
frequencies in order to get accurate representations of the loads
than would be necessary in the two dimensional case. An efficieint
and fast method for calculating unsteady aerodynamic loads at all
frequencies is therefore essentisal.

On the other hand for aeroelastic purposes, it may not be necessary
to enforce the piston theory limit for low aspect ratio wings. How-
ever extensive flutter calculations are essential for any conclusive
results.

The doublet lattice method does not converge uniformly for all
frequencies. The reason for this appears to be the lattice integra-
tion scheme. Hence the doublet lattice method is not too useful for

finite state modelling of aerocelastic systems.



SUGGESTIONS FOR FUTURE RESEARCH

Generally for purposes of flutter amalysis, it is sufficient
to calculate aerodynamic loads accurately at the frequency and
flight velocity at which flutter begins to occur. However for
designing control systems for the suppression of flutter, it is
not only essential to predict the root locus in the neighborhood
of the flutter frequency, with respect to the flight velocity,
but also some of the stable roots of the transcendental characteristic
equation which influence the unstable locus. Thus aerodynamic
models used for flutter suppression studies must be fairly accurate
over a range of frequencies. Numerical techniques must converge
uniformly over a large bandwidth. Collocation techniques discussed
earlier for the calculation of aerodynamic forces generally satisfy
these convergence requirements.

The aerodynamic modeling theory presented in this report
suggests the possibility of representing the aerodynamic load matrices,

Q , in a certain modal coordinate system X, as
X

-1
Q, = (q y

X xij} B {pxij(s)/rx ()} = PxR

]
where RX is diagonal. Transforming to the actual modal coordinate
system Z = TX

1

Q=T QT = T P T [T—IRXT ]_1 = P(s)R(s)_}
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where R(s) is not diagonal. Hence in general

N
n N1l
P(s) = z Pns + PN+l s (4.1)
n=0
and
N-1 n N
R(s) = Z R_S + Ms
n
n=0

The interpretation of this approximation is based on the fact that the
loads due to the pressure in any mode may be approximated by the same
combination of exponentials with different magnitudes. If M = O,
this reduces to a [N+ 1, N - 1] matrix Padé approximant. The
coefficients Pn’ Rn may be obtained numerically using a combination of
Lagrangian interpolation and least squares technique. This has already
been verified for two-dimensional aerofoils and in certain special cases in
three dimensional wings. Inthese cases, however, the Piston theory limit was
not enforced and N= O and N = 1 were sufficient in the range of frequencies for
which the phenomenon of flutter becomes a possibility.

The above approximation of the aerodynamic load matrix has
several advantages over the method of approximation already discussed.
The matrix approximants lead to only M ‘N (Mn(N-l) in compressible
flow) states, in addition to states required to define the structural
system, where Mn is the number of vibration modes considered for
modelling the structure. Approximating every individual element of
the aerodynamic matrix by a Padé approximant leads to an-N (an(N—l) in
incompressible flow) additional states.

The equations of motion of the entire system can be written as
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M + Ka, - BP(s MR (s,M)q, = BU (4.2)

4y = Hyy + Hq
By = Q4 AD
The equation reduces to,
s2y° )
[MlR(s,M) —b—e— + KlR(s,M)~ BVP(s,M)]R s,M)q, = BU, (4.3)

The flutter speed is determined by

272

b2

det[MlR(s M) + KlR(s M) - avP(s,M)] = 0 (4.4)

The equations of motion can be reduced to the form

X

n

FX + GU (4.58)

&

7 (.5b)
where X is the vector of states {y}{y} etc. and U are the control
torques on the aerodynamic control surfaces. There are several
criteria when such a realization would lead to a system which is con-
trollable and observable [57]. These are generalizations of the
criteria for scalar transfer functions. The survey article by
Silverman [58) presents an excellent description of the realization

problem.
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The model is useful for synthesizing control laws for active
flutter suppression. Control laws may be written in terms of the

state vector [X] as

C may be obtained by arbitrary pole placement. The characterig-

tic polynomial of the open loop system is assumed to be

and that of the desired closed loop system,

N N )
x(F -ac) = sT+ np st
. 1
i=1

The coefficients a; are related to F by the relations,

L R
M=

ak_:

j__o aj Sk'*'l-,j b k: l) 2} 5) ¢ N

where SZ = trace (Fz) and ay = 1. Similar relationships hold for
(F - GC) and pi- Using the notation,

T A

P = [pyspys ooepp ]

T A
& = [8‘1’ a2, see an]

and
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1 0 0 0 0
8y 1 0 0 0
xé :
1 0
8.1 %o
... 1
a'n a'n-l a1

it is possible to obtain a relationship between the control gains C and
[pl-[a]. It may be noted that A'l always exists and can be evaluated
easily. In [59] it is shown that provided F is cyclic (if not an

initial gein C, may be chosen such that [F - GC,] is cyclic)

p— —

trace GC

trace FGC _-l

| trace Fn-lGC

This is & linear system of equations in terms of the unknowns in 8 and
may be easily solved. Preliminary results are extremely encouraging.
A detalled discussion of the modeling procedure and numerical results
is beyond the scope of this paper. A simple scheme for control

law synthesis is shown in Figure 47. This technique is outlined by
Lyons, et al. [60]. Optimal laws based on quadratic synthesis may be
obtained by theeigenvector decomposition technique as applied in

Ref. 61. An offshoot of this technique would be a new method

of flutter analysis which would be useful in structural optimization [62].
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CONCLUDING REMARKS

A general theory of finite state modeling of the aerodynamic
loads on oscillating airfoils and 1ifting surfaces has been systema-
tically developed and presented. In particular, the nature of the
behavior of the unsteady aerodynamic loads in the frequency domain
is now well understood. The analytical reasons for the difference in
the behavior of these loads at high frequencies in incompressible and
compressible flows are explained. Extensive studies need to be
carried out for supersonic lifting surfaces, where it is expected that
higher order Padé approximants would be necessary for an accurate
prediction of the aerodynamic loads for arbitrary motion. The theory
presented has several useful applications, especially in the control of
the vibration modes of aircraft wing structures and in the active
suppression of aerocelastic instabilities.

This study suggests the possibility of approximating aerodynamic
loads as Padé approximants in Mach number as well. However, in the
transonic regime nonlinearities need to be considered to account for
shock waves.

Several other suggestions for improving the results and for

applying the theory have also been presented.
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APPENDIX A

INFLUENCE COEFFICIENTS FOR A BEAM-ROD WITH A FLEXIELE ROOT

The influence coefficients for bending of a beam of length 2 are

given by (the deflection at point x due to a unit load at point &)

i —<T—(E';‘%(’{’U ax + % ¥ EJ; , for >x >

1

Oy

sz (X)E)

g
_ (E-\) (x-)) 1

-+
A
-+

where EI()) is the flexural rigidity distribution K, 1s the root restraint
stiffness constant for rotation in the plane of bending, and Kh is
the root stiffness constant in shear. The influence coefficients for
torsion of a rod of length 4 are given by (torsional deflection at

point x due to unit moment at point &)

X aa 1
Cee(x’g) = g m‘*‘fg‘ ) for EEXEO
S ax 1
= —_— >
g —G::Fm + Ke , for 2 =X 2 g

where GJ(\) is the torsional rigidity distribution and K6 is the
torsional spring constant at the root. If the root is rigidly fixed,

the influence coefficients reduce to those given in [1].
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APPENDIX B

INTEGRAL EQUATIONS FOR UNSTEADY AERODYNAMICS

Three Dimensional Lifting Surface

The source solution of the linearized equation for the velocity

potential is given by

yps - -H(T - x/c) (5.1)

r

where H(-) is the Heaviside step function, r is the distance between
the observation and the source point, T is the time measured from the
instant of the disturbance and ¢ is the speed of sound. The observa-
tion point is affected at time T if the disturbance moving with a
velocity c can traverse the distance r in that time; the strength of
the disturbance is -1/lrr.

A coordinate system (&,M , {, T) moving with respect to a fixed

coordinate system (xo,yo,zo,to), along the negative x. axis with a

0
velocity v, fixed in the wing, is considered. The fixed and moving
coordinate systems are assumed to coincide at time to = t. The
coordinates of the point (&, M, {, T) referred to the fixed axes are
(& - v(to- t), M, ¢, to)- A unit acceleration potential source at the
point (&, M, §) in the moving reference frame will produce an

acceleration disturbance at the point, (%, y, z), after some time delay;

the magnitude of the disturbance is
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1 o
H(t-r/c) gi=- Ty 2

2 2 2 2
r¥ = (x - £+ vt - 8)HG - WE+ (2 - 0), (B-2)
In fixed coordinates, the velocity potential is related to the accelera-

tion potential as

t

2 — -

q’(x)y’Z:t) = j‘ ¢(x,y,z,t)dt
%

where [tl,tg] is the time domain of influence of ¢, which affectg the

velocity potential at time t in fixed coordinates, t2 and t, are the

1
last and first instants of time at which the moving source can affect
the observation point.

Therefore the velocity potential at (x,y,z,t) due to a moving

doublet at (§, M, ¢, ty) of strength A(E, M, €, ty) is given by,

t

2
Q(x:y,z:t) = "é; g% f Ad(ﬁ, m, ¢, tO) % dto (B.3)
t
1

The time t2 satisfies the equation,

((x - &) + vity- £) 2N (z0)? = o5ty 1) (B.1)

This is the equation for en ellipse and determines the region of
integration for equation (B.3). If X =x- §,Y=y -7 and Z= z - {

and t2 -t =T, we have
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cT = ——= or i T— \B-5)

vhere R =AKS + (1 - M) (Y2 + 2°)

For M < 1, only one of the solutions is negative. Hence

1;2:t+%1v£l—RE (B.6)
1 - M

If the perturbations in the flow field existed for infinite time in

the past then t - ® . On the other hand if the flow field is

l:
unperturbed for time t < O, then clearly

l1 M -R
t, =t + > —=
2 0 ¢ 1 - Ma
and (B.7)
b = 0 provided t > - % ME—:—g
1 -M
If t < % MZ—:¥% >t =%, =0, as the disturbance has not reached

1 -M
the observation point. For M > 1, both soluticns for T are negative

and the period of influence is the time an advancing spherical wave

would take to pass the point of observation. Therefore,

t2=t+%32—'-@
M -1
(B.%)
tl:t-%R—;——Ng 1
M -1
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provided, of course, both tl and t2 are positive. For M = 1, (transonic

1limit), we may let M= 1 4+ eor 1 - ¢ and teke the limit as &€ = 0. If

A

we denote U, =X+ V(ti - %), i=0,1, 2, then in subsonic flow,

5

:’X-

2
271 2

U, = x -Vt (B-9)

U 1=

provided the flow field is unperturbed for time t < 0.

For supersonic flow, t sufficiently large,

ngMg'-X,Ulz-——-——(h%‘i-X) (B-lO)
M -1 M~ -1

Hence the velocity potential at (x, y, z, t) due to a moving

doublet at (&,ﬂ,C,tO) is equal to

UO- X
2 MENLL+ —<—)

[
2, 2. 2
A ‘VUO-!-Y + Z

U

3

1
Q(X:Y)Z,t) Rl 4 Sz du

(B.11)

The total velocity potential at (x, y,z,t) due to a distribution of

moving doublets on the lifting surface S, at y = 0, is given by

U Up- X
1 ep a . 2 A¢(E,T],O,t + v )
bre(x,y,z,t) = - 5 [ a€ an 57 ——— au, (B.12)
S
U ’\/Uo + Y+ 2

The downwash on the surface 1s given by

1 Lt 9 3 U2 A¢(€.n, 0,t + UL—_)E)dUO
41 w(x,y,t) = - V 240 32 I/ dg dy 3 / v

S U,
2 2 2
US+ Y+ 2 (B.13)
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It can be shown that a discontinuity across a doublet layer exists

such that [1]

86(x,y,0,t) = 6(x,7,0,t) - d(x,y,-0,t) = LRLLYE)

Pa (B.14)

where Ap 1is the pressure differential across the surface.
Substituting (B.1l4) in (B.13) and performing the differentiation
using Liebnitz rule, we have the following integral equation for the

downwash in subsonic flow.

MX+R
t 1 -
W08 o s dean [epGen,e + 55 § 5
1 3 1 X°4Y
U ~-X 1
+ Y Ap(g,n,c + °V 7 dU
0 v
( U 2+Y2 )
o
t
H(t-X/V
+ J Ap(E,n, (t-1)) __il__é_li_ VdT] (B.15)
0 ((X-V1) " +Y7)
X—MR1
where Ap(£,n,t) = 0 for t<0, U = 5
1-M
R,-MX
q =% VZ,R =ﬁ+ (l—MZ)Y2 and t > 1.1 .
L 1 c 1—M2

2

In the limit as t - 0, U -+ X, MX » R. and X2 4+ Y™ + 0, and only the

1
first of the 3 terms remain in the equation B.15. Integrating over a

small region around the receiving point (x,y), we have

70



which is the familiar piston theory result. At the initial instant, the
lifting surface behaves like a piston, and the flow over it is
similar to one dimensional compressible flow. It may be noted that a
similar equation obtained by Drischler([63] may be reduced to the
same form as (B.15) after some algebraic manipulations.

Taking the Laplace transforms of Equation B.15, we may obtain an
integral equation relating the Laplace transform of the downwash
w(x,y, %;) and the pressure Ap(x,y, %?), where p is the Laplace trans-

form variable.

87 W(X:y‘,}(Pb/V)) - - _é_ x de an A_p(e,ﬂ, %)KB(X’Y’ _PE )

v
Bty
yloT——> - X M MX + Rl
where K, (x,Y, b ) = [e A -M = -
> v B X242
X-MR
2  p(U,X)
1-M 0
+ eV av, + v £{ H(t - X/V) } ] (B.16)
5 (U02+ y2)2/2 0 ((x - vt)2 y2)5/2

£z (m) represents the Laplace transform of m. The third term converges

only for real (s) > 0, and

—, -
L Bx _E(E_) w+r O - B
pb v v M2’ M l
K3(X’Y"V') =€ € f{—__-—_ f 2 2—37— ar
1%° 4 ¥2 MR1X(T+Y)
l-M2

av

bly P
=1 (2L [|H|_1<—V|ﬂ>+yl<%,m>]
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where !Hl_l(-) is a Struve function and
Y(-) is a Bessel function of the second kind.
For simple harmonic motion this reduces to the kernel function given

by Watkins, et al. (64). For purposes of calculations however it is

convenient to write, Kﬁ(X’ Y, %; ) as,

pX MRl-X
g, v | vliTogelim MR
Ky (Y - ¢ R E g2
1 X +Y

T

hd i
d aT
+ = . (B.17)
MR, X (T v2)7/2

1
35 I 5 EXD _TPYT dar
¥° MyT-xR [z
X° + ¥°

However equation B.17 is most convenient for calculation purposes. The
second term in equation B.17 is a singular integral at Y = 0. Hence
the integration over the lifting surface must be done in the sense

of Hadamard, as expalined by Mangler [66]. This is indicated in

equation B.16 by the symbol ﬁg.
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For small values of the reduced Laplace transform variable s = pblV,

we may write the Kernel function as [67].

K (XY ,s) = nfo(ansn + 52 £a(s)b_s") (B.18)

R . —

) - . S
¥ V% p%y°

where a

2 2
a:_;‘i(XJr X+ v )
1 b ye 4.2 2
X“+8%y
b, = 1/2
X
b, = - X
1 2b

The coefficients bn are functions of the spanwise variable Y only (and

not of X)
In steady flow, for s = 0,
1 X
KB(X,Y,O) == 0+ ) (B.19)
Y */X2+ B2Y2
and in the limit as s = ®, from piston theory
Ka(x,y,s)is_m = 2mM8(X,Y) (B.20)

In the limit as M = 0, we have ,

73



(T+X)

-~} ST
¢ e
St o * LB o

In two dimensional incompressible flow we have,

-s (T+X)

A I e
K, (X,s) VI Ko (X58) = {w 4X z;é:j;§;37§ dr dy

+ %? e”® X/ Ei(sX/b)

!
»slno

2s sX
- '-—b_U<l)l;' - )

5 (B.22)

»<lro

where Ei(%§) is the exponential integral and U(1,l,-sX/b) is a Kummer
function.

The above Kernel function indicates a distribution of time delays
over an infinite time domain. TFurther they are not valid for Real(s)
< 0. However if a solution to the integral equation can be obtained
for Real (s) > O, the convolution principle may be used to find the

solution for any s-

For purposes of calculations, we note that the function

§le ) Eizi ) in equation B.1l7 may be approximated by a

Hl, G- (=5
. . . sIY[ . .
convergent sequence of rational functions in Y or Pade approxi-
mants. It follows therefore that ——El—_37§— can be approximated by a
(t5+1)

finite sum of exponential functions. Two such approximations are

known, one due to Laschka [25] and the other due to Runyan and Watkins
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[68]. The errors in these approximations are compared in [69].

Laplace transforms of exponentials of the type e— b are given by
rational functions. Hence, in principle, it is possible to approximate
the entire Kernel function by a rational function in s. Further in
order that it converge to the piston theory kernel for large S, the
approximation must be [N, N] Padé approximant. This point of view

has useful consequences, regarding the behavior of the aerodynamic

loads in the frequency domain.

In supersonic flow the kernel function may be easily shown to be
o[ M sy XHMR

Y Ml e P -Rl % M2~
K.(x,¥,8) = e ° du + 2 1
5 : J' -MRl (U2+Y )5; Ry X +Y

e ME-1 for X > M-1 |v]

(B.23)

=0 for X < A1 hdl

In this case the kernel function is valid for all s, including the
left half of the 's' plane.
In transonic flow though the linearized theory cannot predict
shock waves . We may obtain the kernel function by proceeding to the

limit as M = 1 from the supersonic case. We have,
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sX - = S
. SA + - —
K. (X,Y,s) = e b J? e ° av P e eb(x
LR = 2
5 X f (U2+Y2)5/2 X%+ Y
2 2X
X >0
=0 for X <O

(B.2k)

In this case again the kernel function is only valid for real (s) > O.

Two Dimensional Airfoils

In two dimensional flow, the integral equation relating the down-

wash and the pressure distribution may be obtained by integrating the

corresponding three dimensional kernel function with respect to the

spanwise coordinate from - ® to + ®. For the case of arbitrary motion

of an airfoil , one can show after some computation, that

X Vt-X
CILI R -2 f Peag| ) to(et- rny &

X X 22
1+M T]L1- 5
(T+X)

X

M

+ | Ll:ﬁi!llgz_ op(E, (t - §%I))
X 2h MBR
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_ VE(l + M) . (14M)
wherexl_x- W R 1fx—Vt—-————-M >xL
_ . (1+M)
= X s if x -Vt T < X
_ vt(1 - M) (L-M)
x2 =x + M P if x + Vt—-T-
- x if x + vl 5 o
0T ? M T

Equation B.25 is valid for any type of airfoil motion. In incompressible

flow we have,

X,
Bmw(x,t) 1 T Vt-X (Xtr) | ar
—-v——-aiQdE Ix Ap(E,t--—v——):é (B-26)
L
At time t = O, we have
w(x,0) M &(x,0)
-—-—-—V’ = - -—————q’ (B.27)

Non-dimensionalizing the time variable t to T = Vt/b and taking the

Laplace transforms of the integral equations, we have

- Xp
%wéb's—) - -2 K (x-£,5) BE,s)aE (B.28)
1%, 2

where w(x,s) is the Laplace transform of the downwash and 2p(x,s),
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the Laplace transform of the pressure

Ke(x,s) = ES*B{e+S MEX[(MK]_ (M‘s* lX|)+KO(MS* x])

* 1 ¥*
+ 7 X8 gn( l—;“/I—B-)+ sX ges X(A-1) KO(MS*IXI)\)d)\]} (B.29),

*
where s = s/BQ, KO(-) and Kl(-) being modified Bessel functions of the

second kind.

1}

Also K2(X,s)is_ L= + 2Mrb(X) (B.30)

28 z
s-0~ X (.31)

and K, (x,s)l
In incompressible flow, equation B.29 reduces to equation B.22. Equation

B.22 has a well known inverse given by, (after non-dimensionalizing

all distances by the semi-chord).

1
EO(X)S) = drlG(X,Z,S)-‘;(Z,S)dZ (3'32)

where  G(x,z,8) = - 2 [sA(x,2) W/i’r_i T2 (g(s)- 1+ =) (B.33)

2 2
Ax,z) = 3 log =221 A-x® A - (B.34)
1l -xz ~ A-xe A-zz
R P (s) (8.35)
s ; real (s) > O B.
Ky s)+ Kyls - continued
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2sU(l—%, 3, 2s)

- T T » real (s) >0 (B.35)
28U(l§, 3, 2s)+ U(§, 1, 2s) continued

> 2, 2 2,1 e
=sz[1 - E)r Ly ()= %) ()% 75150+ T, (1))°) dx]

Ki(-) and Ii(°) are modified Bessel functions and U(a,b,z) is a
Kummer funection.

Equation (B.28) may be reduced to several alternate forms. One
method of doing this reduction was given by Fettis [70]. The integral
equation may be reduced to a non-singular Fredholm integral equation

with a completely continuous kernel function (defined in Appendix D)

given by,
_ Bp (x,s) sk _
Ap(x)s) = B B s M {chc(x,C,s)Ap(E,s)dE, (B56)

K (00 6os) = BE - x)- 2% _ (6(e)1) 1ox

T T 1+x

- = £ flG(x z,8)K (s (z- £) )dz.
Hrst -1 o

H(E - x) is the unit step function and

K (Z - EJS) 2
K(s(z-€) = K2(z - &,8)- 20 5 + E%EP.B%

Another important representation of the integral equation may be

obtained. The kernel function KE(X,s) may be written as,
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* N >
+M2XS M:KQO(X)S )‘ M?[K2O(X’S )"K (X S )}

M x _ Lp > * . (1-B) . M
+_2_.s-[;2-ln§§-21ns-1+———M2 ln 3 - 2v]

o .2
- [M—L-;-alnﬁ—g-l -jglnga-aé ) IX
+ o(r4“)-o(x2+ aX log X)} (B.37)
+S*XME * M2 * s *

- BlK, o (Xss ) - F[K o (X8 ) Ky (Xs87) ]
+ Me; (1-2[1n(%Ms*)+ v+ MMKV(X,S*)} (B.38)
where Kéz(x,s*) = 2(%-+ s 1n X) (B.39)

K V(X’S*) = o(MO + a ln M) (B.L0)

Using equation B.38 we may invert equation B.28 using the well known

solution for incompressible flow. Thus we have

Ap(x,s) ApO’V(X s ) Mgs X_ M Mzs X
q v 2W

Z A, (s, x)J (s -1)
1:0

Mes X Mzs*g, EP(E:S)
q

+ Bi(sf x)Ji(s*,x)] J I G(x,z,s )KV z-£,s)e

- d€dz (B.41)

where
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- *
Apov(x,s )
q

1 2
¥ = =]
= % J'G(x,z,s w(z,s)e M'sz 4,
-1

1. % 2 *
Ji(s*,x)=IEl-A-E%E’-§le'MS & at .
X

*

- * %
Ao(s ,X) = 1ln lx(Es e

X T (s79(s )in 2-(p(s*)-1)
+ 220 (s s (14x) )42 (1 1n 2)(1 + x)).

* * *
Bo(s ,X) = ~(2 - s x)Ts

»*

A ("0 = P+ st (B2
Bl(s*,x) = s @
@ = [1-2(1n( M)t )]

Thus for sufficiently small M we have for Zp,

- *
- X,s *
bp(x,s) _ APOV( ’ )eMgs x
q a

1l
* ¥* * * *
M Ms x[ T A, (s ,x)JF)(s,-l) + B, (s ,x)Jf%s »%) ]
o i-0 * ' ' '

n
+ O(Mhs* (a+ b1ln M))

(B.42)

(B.L3)
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APOV(E)S) dg-

0, * 1 3
where J; (s ,x) = £ £ a2

*
This solution is exact to O(Mes ). The first term is identical
to Osborne's +thin airfoil theory [71]. The usefulness of this

representation will be briefly discussed in Appendix C.
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APPENDIX C

CALCULATION OF AERODYNAMIC LOADS
FOR SIMPLE HARMONICALLY OSCILLATING AIRFOILS AND LIFTING SURFACES

In this appendix some of the existing methods and their extensions
for the calculation of aerodynamic loads on wings with and without

control surfaces will be briefly discussed.

Two Dimensional Airfoils

Analytical methods. - 1In incompressible flow Theodorsen's

solution is well known for calculating pressure distributions and air-

loads on two dimensional aerofoils. For a downwash g = wnxn,
we have,
Z_g- -u}li W [xH( il ety y 1)
q P~ Itx 'n 40 I0) L
n —Z z
( z -_—TTZS—— M (ck)-1) —TTES (c.1)
z=o:2:l"ﬂ"
n 2 for n even
where I(n) = (5 1)
ml , n-1 ,
=——2——-—-2——- for n odd.
For a downwash given by = = w_(x - x )" for x > x
v N c c
=0 for x < x
c
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n-1 n-r-1

L [1-x n k1l n-r-1, _k
— saf b _ .
=2 "a ¢, L F () Ci¢ U xMnrg )
r=0 =
r
(x -x,)
n n-r
n_ -1 . (14x) ntl k-1 k n-r r
-(x-xc) cos Xt ik-—Ts T Cr( T (-1)" x CkJn-r-k) (x-xc)
r=0 k-0
n n r
tA-ck)) E e (-x )@, I L)
r=0
4 n ik(x—xc)n+l l-x x + A—xcg J{-XE
"y (xS Nog —y ' (c-2)
-X 2 £-1
where Jee _ 2Vc (Xceg-1+ 5 (2,5-1)(4-5)...(2@-23+1) xc2a,-2k-1 )
: - k=1 2" (¢g-1)(¢-2)...(2-R)
+ 2514- cos'lxC
CEy BV
and

J

X

2 R R B (T PO (=

2
Vi-x, { g, 222 2k+l-z-(z-1)(z-2)---(z-k)

24 -2k-2 }
k
The expressions for the loads may be easily obtained by integrating
the corresponding moments of the pressure distributions.
Equation B.L3 extends Theodorsen's solution to subsonic flow for
low mach numbers and frequency. The first term of equation B.L43 is

identical to Osborne's theory. Kemp [72] has provided the closed form
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expressions for the lift and moment based on Osbourne's theory. How-
ever it was found that this approach is not too attractive for purposes
of numerically computing pressure distributions or aerodynamic loads.
Further these solutions are not valid for either high subsonic mach
numbers or high reduced frequencies, when compressibility effects are
not small relative to circulatory effects.

For high frequencies, and Mach numbers M # O, the method of
acoustic planforms of Lomax, et al. [12] is useful. The two dimen-
sional unsteady problem for compressible flow can be formulated in a
coordinate system x',y',z',t' fixed in the undisturbed fluid, by the

equation,

' _ 1
(pxlxl @zlzi e 02 cpt!tl
with the appropriate boundary conditions. For the three dimensional
steady supersonic case, in body fixed coordinstes, it is

2
Oyt Bpp = M- L

Hence it is seen that the solution of the unsteady problem can be
obtained from the solution for the steady flow about a swept forward
wing tip placed in a supersonic flow with Mach number M = /2. The
angle of sweep is determined by the Mach number of the two dimensional
aerofoil from than relation A = taﬁal/M- The wake vortices in the
unsteady two dimensional problem correspond to the tip vortices in the

steady three dimensional problem. The three dimensional steady flow
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problem may be solved by Evvard's method [1].

For example the pressure
distribution obtained this way, corresponding to an indicial down-
wash w

0’ for t >0, is given by,

MP(T,X) == % wo 4

for 7 <

8 Yo -1\ [T M ‘/(1+M5'r
AC‘p(T;X)=ACPI+-M-—T—T—[tan M{itx -l“"m m-l
M M
for m (1+X) S T S'l—:—' (l —X)
W
ACp(‘r,x) = X

8 0 -1 f1-M)r
151 + M tan M{1-x) ~ 1

M
T %) 57 S ()
where T = 5 and 0 <M

for

<1

at the leading edge (x = -1)

Expanding in the variables (1-x) and (1+x) indicates that for t > O,

ACP(T,x) » ®© ag

1+x
and at the trailing edge (x

- 1)

ACp('r,x) + 0 as \/1-x
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The indicial aerodynamic load coefficients may be obtained by
integrating the pressures over the entire chord of the aerofoil.
Teking the Laplace transforms, and using the asymptotic expansions
of the resulting Frenel integrals
-1h i . -iR

1- ie 1 3
Fr(R) = U= —= 4 1-==--2)
cJ; Y PR gf

<‘

+0(R—717§)

we may obtain the expressions for the non-dimensional 1ift and moment

coefficients in plunging and pitching for large values of k.

. These are
oM L koM
In Mk 20 .y. it 2 -1k F(Lm)2 T
2b-q M2 M572 m |° ¢
+ 0(1/x)
-1k2M - M
_ TIM [ n2 T T
e = 5/2\/—1‘{ (1-M)%e }-l-Ol/k)
koM
L, 1+M 2 T
o C & gt -7— \/ 2 -(1-M)%e + 0(1/k)

2M .

o bk, 2(1) . 1[5 (Ko o iy
- + 2-M) \/_._ e T+ (1-M) e T 0(1/k).
b2 M e o2 VT { ;

M

It is interesting to note that it is not possible to expand these
coefficients in a power series in (1/k). Also they are not valid for

M= 0. Thus it is possible to analytically obtain the behavior of the
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gerodynamic loads for low and high frequencies. While they contribute
to a better understanding of the behavior of the pressure and aero-
dynamic loads at high and low frequencies, they do not serve any other
useful purpose. For this reason and for computational efficiency, it
is convenient to resort to numerical techniques which are valid for

all values of frequency and mach number.

Numerical methods. - One of the earliest methods to calculate

aerodynamic loads on two dimensional aerofoils is due to Dietz
(described in Refs. 1, 2, and 3). For wings with trailing or leading
edge flaps, Fettis suggests a method that is fairly accurate. From
a computational point of view Hsu's method [73] for wings without
flaps seems to be simplest. However Hsu's method can be extended for
wings with control surfaces. This modification is briefly described

below. A pressure loading function of the form,

N
2 6
m=0 n=0
l-xx + -x2 -x2
c c
log

is assumed, where hm(x) are identical to Hsu's chordwise loading
functions in compressible flow and are the exact loading functions
corresponding to a downwash of X" in incompressible flow, given by
equation C.1. & is the angular deflection of the trailing edge flap.
The above loading function is substituted in the integral equation and

integrations of those terms that contribute to discontinuities in the
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downwash and its chordwise derivatives are performed analytically. The
coefficients a, can then be found by comparing like terms on both

sides of the integral equations. The kernel functions K,(x,s) may be

2

written as

Kg(x,s) ~ %; - %; 1n|x|-( % )2(5-5Bh)x 1n!x|
+ Zax"+1nlx| = px®.
n=0 1 =2 o

8y, 8y and a, depend only on the terms outside the summation signs and

are given by,

2
%7 1oy - B0+ 8,y = ) -6
and

- o E% )2.0(M)

In incompressible flow a5, )5 e, etc., are equal to zero (from
equation C.2).

The singular part of the above kernel function and the pressure
loading functions are integrated exactly. A computer program is
developed that evaluated the Possio kernel by Gaussian and Berthod
Zabrowski quadrature, integrates the assumed pressure loading functions
and the non-singular portion of the kernel function numerically and
then solves for Pi' The program then obtains the corresponding
generalized aerodynamic forces for any mode shapes. Results indicate

that for M = 0.0 and 0.7, the error in using a ten point collocation
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scheme and not including the flap singularity is 20 - 2% of the four
point collocation solution with the singularity included. In incom-
pressible flow using the four point collocation scheme results in an
error of less than 1%, in the moment about the flap hinge line. The
program may be used for values of O <k <10 and can include trailing
and leading edge flaps. For high frequencies a large number of colloca-
tion and integration points are required.

In supersonic flow, the expression for the pressure and airloads
given in Ref. 1 may be integrated using Gaussian integration with no
difficulty as control surfaces do not contribute to any singularities.
Results for a rigid airfoil with trailing and leading edge flaps are

given in [44] and [L5].

Three Dimensional Lifting Surfaces

Analytical techniques. - There are no known analytical tech-

niques available for arbitrarily shaped three dimensional lifting
surfaces. However, as pointed out by Miles [74], the solution of the
partial differential equations for the velocity potential by separating
the variables is possible only in eleven Euclidean coordinate systems.
0f these only three define lifting surfaces of practical interest.
These are (1) elliptic cylindrical (two dimensional aerofoil) (2)
oblate spheroidal (circular planform) and (3) ellipsoidal (elliptic
planform) .

The circular oscillating lifting surface in incompressible flow
was considered by van Spiegel [54]. It is interesting to note that from

van Spiegel's general solution, we may extract the solution for the
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virtual inertia loading. The orthogonal coordinate system for the

circular wing is given by

= Y1+ ﬂg‘Vg - u2 cos Vv V= V{'+ ne'v{ - u® sin v s

z = un where 0 <7, -1 <pu <1, 0<V<2T so that the entire space

is covered just once. The wing itself is given by n = O, while the
part of the x, y - plane outside the surface is given by u = O.
The problem is treated by van Spiegel by the method of the
acceleration potential. The regular solution is equal to
o i-1

= £ & P J(u)Q J(lq){c cos i v + 8, J51n iv}
i=1l j=0

where Pij and Qij are Legendre's associated functions of the first and
second kinds. Since ¢l should be an odd function of z and u, the
summation sign is restricted to i + j = odd. This is indicated by

the prime added to the summation over j in the equation for Y. The
constants Cij and Sij are determined by the prescribed normal derivatives
at the airfoil. By expanding wlz = wln/u in a series of surface

harmonics the constants are determined. It is found that,

1 2T
‘JJl(ﬂ;‘i; ) = ‘I]_ul .,ro ‘»blz(U'l)Vl)G(T]:U;V:O;!Jrl)vl)dvldy

where the Green's function of the second kind is equal to,

w ©
G(T]J”')V; O, uq," ) = Z X
1’1
n=1 m=0 m

_1_ ontl (n-m) !

B (——_7T )P (ul)
Qnm(ln)
3, (10)
on-

Cos m( v—x!l)
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where §O=2, El:§2:§5:...=1.

The above solution is one that has the exact prescribed acceleration
on the aerofoil. Further the solution is not singular at the leading
and trailing edges and behaves as \/r where r is the distance of the
leading edge or trailing edge. The solution that has the exact normal

velocity w(u,V), prescribed on the airfoil is

v

* 3 3. LTl
¥ (mu;V) = (E tu 5;) g ,_rlulW(ul,Vl) :
'G(n)u,V;O,ul;Vl)dV; du
This solution leads to apressure singularity at the trailing and lead-

ing edges due to the differentation in x.

Consider now

Gu(mu,‘vi 0, O, Vl) =

- L 1
™1+ n2- YL+ 12yl —ugcos(V—V_L)+l -u2

This is a solution of Laplace's equation having zero normal velocity
on the aerofoil and a singularity at the point n = 0, u = 0, v = vy

which lies either at leading or at the trailing edge. The singularity

is of the type V(cos o')/rE , where r is the distance from a point on
the aerofoil to the singular point and o the angle between the vector v

and the radius of the circle. Thus the singular solution is,
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3r/2
we(q,u,v) =J za.(vl)GLl (q,u,v;o,-o,vl)dvl X
T/2 1

where the integration is along the leading edge only, since no singu-
larities are admitted at the trailing edge. As in the two dimensional
case the singularity in ¥, is of the type V1/r, vwhere r is the dis-
tance from the leading edge. The function a (rl) should be deter-
mined from the condition that the normal velocity at all points on
the aerofoil due to the total acceleration potential wl + wg agree
with the prescribed normal velocity. Hence the normal velocity at
all points due to the acceleration potential $l + w2 - 4" should be
equal to zero. This leads to an integral equation which may be
solved by Fourier series expansions.

On examining this solution carefully, we find that very large
frequencies of oscillation or at the starting instant (wl + wg - ﬁ*)
is independent of frequency. Hence we conclude that the solution

corresponding to the virtual inertia loads is,
% 2 1 52
w]: = I Iul( "é“'éZ(Hl,vl))G(T],,U.,V;O,U.l;Vl)d‘V,d‘,l
0 0 t

Like the regular solution this is not singular at both the lead-
ing and trailing edges.

The effect of compressibility may be teken into account by means
of spheroidal wave functions. Also the oscillating elliptic wing can

be treated when Leme functions are used. However, these analytical
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solutions are not really exact and the degree of computations is
enormous when compared to numerical methods. Hence these techniques
are not too useful.

Numerical techniques. - Numerical techniques may be broadly

classified into two groups (a) finite element methods and (b) kernel
function techniques. The doublet lattice method of Albano and Rodden
[26] and potential flow methods [18) in subsonic flow and the Mach
box method in supersonic flow [75, 76] are examples of the first
type. The kernel function methods of Laschka [25], Cunningham [23]
and Rowe [2L4] in subsonic flow and Miller's method [67] in supersonic
flow are examples of the latter type. Two of the methods that were
actually used in a slightly modified form during the course of this
work are briefly described.

The doublet lattice method: This method for lifting sur-
faces is based on the developments of Albano and Rodden. The surfaces
are divided into trapezoidal panels, the downwash being taken at the
midspan of the 3/L chord. A distribution of acceleration potential
doublets whose strength is to be determined, is assumed along the
quarter chord of each panel. The assumed pressure loading is
then integrated along the quarter chord line. In the original method,
the integrals were obtained by approximating the kernel function in
each box with a parabola in the direction of the quarter chord of
each panel, divided by rlg, where rlg = y02 + 202, Yo and z, being
relative y and z distances of the midpoints of the quarter chords

(sending points) and the three quarter chord (receiving points).
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The force on the panel due to the pressure distribution is assumed to
be equal to the force on the doublet line segment. The accuracy of
the method was remarkable for aerocelastic purposes. However for
large frequencies (reduced frequencies k > 1) it was found that the
method was not only not accurate, but also did not converge to the
results obtained by piston theory. It was found that by approximating
the kernel in each box with a quartic in the spanwise direction of the
quarter chord point of each panel divided by rle, the results were
tremendously improved for planar lifting surfaces for high fre-
quencies.

Using the same notation as Rodden, Giesing and Kalman [77] we

may rewrite equation 27b of Ref. 77 as,

P (v) [Klexp{-iw(i-ﬁ tan A s)/V} - Klo]

G2 F - 7)°

Aln + Bln + C

F - M

= Aon + B

Assuming that P (7}) is evaluated at n = + ae, + be and O, where e is

the semi-span of each panel we have,

1 1 1
A, = 2—(-;2—_-_;2—);5 ;é-(P(ae)+P(-ae)-2P(O))- -I;-Q-(P(be)+P(-be)-2P(O))
B, = A + -2-(—2110—2-)-—5 [ L(p(ae)-P(-ae))- £(P(be)-P(-be)) ]
a - e
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-2 ?_b2 1 .
y ;}iET;ESQ ;3(P(ae)-P(—ae))- ;3(P(be)-P(-be))

9
|
1
mw
+

Q
1

P(0)

'a' and 'b' were chosen to be 1.0 and 0.5 respectively. For
Ao = BO = 0, the formulas for Al’ Bl and Cl reduce to those given
by Albano and Rodden. The above approximation is very good for high
frequencies, especially for swept wings (As # 0). At high frequencies,
for swept wings, P () varies rapidly for different values of 7. How-
ever extensive numerical experiments have to be carried out determine
the optimum values of a, b and the receiving and sending points in
various frequency domains.

In spite of the improvement in the results for moderately high
frequencies, the results did not converge to the piston theory limit
for certain mode shapes. For convergence the distance between the
sending and receiving point on each panel must vanish as this condition
is known to hold in the case of piston theory. This would require,
theoritically, an infinite number of boxes in the chordwise direction.
Also for a proper spanwise pressure distribution, which critically
effects the merodynamic loads a large number of spanwise boxes are
required at all frequencies. This leads to an excessively large
computer storage requirements and thus the method is not too attrac-

tive for high frequencies.
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Laschka's kernel function method: In this method the pressure

distribution is taken in the form

N
& (x,y) = T e () (x) Zes

i=1

Following Laschka, the terms in the kernel function which are singular
are separated from the part that is regular. The singular terms are
integrated analytically while the regular terms are integrated
numerically. The integral equation is reduced to a linear system and
the values of the unknown coefficients ai(y) are obtained at different
spanwise and chordwise stations. For the chordwise integration, the
integrations points and the collocation points may be chosen inde-
pendentally. For high frequencies one may choose fewer collocation
points and a large number of integration points, in order to converge
to piston theory. Thus the kernel function method is more efficient
than the doublet lattice method.

Control surfaces may be handled by both methods, without taking
into account the singularities at their leading edges. However, the
computational time for high frequencies is quite high when compared

to the corresponding time at low frequencies, in both methods.
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APPENDIX D
PADE APPROXIMANTS AND INTEGRAL EQUATIONS

Padé Approximants

The [N,M] Padé approximant of a matrix function F(z) is defined by
-1
F(z) = P(z2)R ~(z)
where

P(z) is a matrix polynomial of degree M and

R(z) is a matrix polynomial of degree N

If in particular F(z) is a power series defined by,

L X
F(z) = T F.z' and if
. i
i=0
(D.2)
M i M i A
P(z) = £ P,z ,R(z)= T R,27, Ry, =1
. 1 . i N
i=0 i=0
we have the following equations for Pi and Ri
N-1
b Fk— R. + Fk-N = Pk’ k=0,1, 2, 3, M
J=0
(D.%)
N-1
= - = . 3 PR
?OFK_J.RJ._ Foy E=MH 1, M+ 2, M+ 3, L
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For L > M + N, equations D.3 may be solved for the matrices Rj and Pk
successively.

On the other hand, if F(z) is known for z = 2z, k = 0,1,2,3 ... L

k

we have
y M i N-L
F(z )z = £ Pz~ -F(z) I Rz ,k=0,1,2,3,...L
k' 7k i & kT, i
(D-4)

It is now assumed that PO and PM are known spriori. (If PM is not

known, we may increase value of M by 1 and assume that P, = [0]).
From the L known values of zk, we pick M-1 values, zki, kl =1,2,3,

. M-1, and rewrite equations D.4 in part as

M-1 N-1 .
i

L Pzl -F 2N e _p My T k.
i bk (Zkl K 0T MK (zk.l.) o i

}i =1,2, 5, .. M-1

We now have M-1 unknowns Pi and M-l equations and hence we may solve
for the unknowns Pi in terms of Ri as
N-1

P, = Jfo BiJ.RJ. + B, (D.6)
Hence equations D.4 reduce to a system of L-Mtl equations for the N
unknowns Rj’ j=0,1,2, ... N-1, which may determine by least squares
provided the system of equations are solvable. On. the other hand it is
also possible to solve equation D.4 directly by least squares. These
equations are also applicable for scalar gquantities. Properties of

Padé approximants are discussed further in [78].
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Properties of Integral Equations Related to Padé Approximants
([79] and [80])
In this section some of the basic definitions and properties of
i
integral equations of the form

b
CP(X) = f(X:S) + s .J. dy K(X:YJS)CP(Y) (DY)

a
where f(x,s) and K(x,y,s) are defined on the closed internal [a,b],

are discussed. We can regard,

b
K = Idy K(X)y:s)<') (D8)
a
in equation D.T as an operator acting on the function ¢. In operator

form the integral equation is
o =1 + sKo (D.9)

The function X(x,y,s) is the kernel of the equation and in order
to ensure a valid definition and a unique solution of D.7, various
restrictions can be imposed on ¢, f, and K. It is usual to assume
9 and f are functions of bounded norm ll'll in the Hilbert space L2

of functions defined on the interval [a,b]; for sxample,

b
oll?= | lox) Pax < o (D.10)
a

A sequence of functions {fn} is bounded if
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el <B<= (0 .11)

Bounded operators. - The operator defined by D.8 is bounded

if there is a finite constant M, such that

lxn|l < mllnl (p.12)

for all functions h of finite norm. This is a different condition from
the boundedness of the function K (x,y,s) given by |K(x,y,s)| <c <= .
The norm of a bounded operator K is the least value of M satisfying
D.12. The operator is unbounded if no finite M can be found such that

(D.12) holds for &ll h.

Kernels of finite rank.- A kernel Kn is of finite rank n

if it is expressible in the form

n
K (x,y,8) = B o (), () (0-13)

i=1
where {ai] and {Bi} are linearly independent sets of functions in L2.
If the kernel K(x,y,s) is a kernel of finite rank and o; and Bi are
rational functions or polynomials of s equation (D.7) may be solved
exactly. For simplicity it is assumed that f(x,s) is independent of
S.

The kernel function method:. ~ The scalar product of functions

f and g in L2 is

101



b
(£,8) = J ay £(y)ely) (D.14)
a

Substituting (D-13) in (D.7) gives,

n
?(x) = £(x) +s Z (9,8;)e,(x) (D-15)
J=1
The coefficients (m,ﬁi) are complex numbers and any solution of (D.7)
may be of the form,

n
p=1f(x)+ Z E, o
j=1 J J

where the coefficients §j and to be determined.
Substituting (D.16) in (D.15), gj are determined by
n
i=l[6ij- s(ai)ﬂj)]gi = S(fi)aj)'
Let A(s) be the determinant of the coefficients of gj and the

minor associated with i,j™ element be 8,

5
1 B
= @+ = a3 o4 s(68.)
p=-f(x)+ T AT £ A,.s(f,B.
J=1 =1 9% .
-1 n n
Hence, @ = A [Af(x)+ £ T A i s(f(x),B. (x))a, ] (D.16)
4=1 i-1 9 1 J

As a function of the parameter s, this a rational function, the numera-

tor degree and the denominator degree being dependent on o, and B

i 3
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Compact operators. - Let T be a linear operator that trans-

forms any function h in L2 into another function Th of LE; in parti-
cular T could be of the form given by equation D.8. Every linear
operator of this type is continuous in the sense that it transfors a
sequence {hn} converging in the mean to h into a sequence {Th,}
converging to Th.

Compactness or complete continuity of a linear operator is a
stronger condition than continuity. Let {f,} be any bounded infinite
sequence in L2, so that {Tfn} is another infinite sequence in 2.
Then if for all bounded {fn}’{Tfh} contains a subsequence converging

to some function h as n -+ «, so that

|z, - n|l = o

then T is completely continuous. Reiz and St.-Nagy [80] give necessary
and sufficient conditions for complete continuity.

Completely continuous operators can be uniformly approximated by
operators with kernels of finite rank. Also, if a kernel function
can be approximated with kernels of finite rank, then the operator
is completely continuous. In unsteady aerodynamics the kernels are
implicitly approximated by kernels of finite rank and resulting solu-
tions are known to converge to the exact pressure distributions uni-
formly, for all frequencies.

Thus there exists an infinite sequence of kernels Kl,KQ,K3 cee

of rank 1, 2, 3, ... such that
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& -x )l <e lIn]

with € 50 as n> ©for all h ¢ L2, uniformly for all s.
m
Let K be of the form I o, (s,x)B, (s,y) where o, (s,x) and B. (s,x)
n jo1 1 i i i
are rational functions or polynomials in the variables s. Hence it
may be assumed that as s + @ K is of O(sE) for all n. Then from
equations D.16 we obtain a sequence of solutions, which are rational

functions of s. The degree of the numerator would be N-E and that of

the denominator N where N+ ®»as n > « .

Neumann series solutions. -

Another method of solving (D.7) is to substitute the series

P(x) = £(x) + Z s"f (x,s) (D.17)
n=1

and equate the coefficients of s on each side. This gives
b
£ &:s) = [ dy K(x,¥,5)fn(y,s)
’ a

n=1,2,3,

The series (D.17) is known as a series and may be written in

operator notation as,

O(x) = £(x) + Kf(x) + K°F (x) ...

When K is uniformly bounded in the norm, then the series converges in

the norm if,
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-1
ls| < Nkl

When s does not satisfy this condition Chisholm [79) has shown that
Padé approximants of the series may be formed which will give approxi-
mations to the solution for all s.

From Chisholm's theorem it follows that: If the kernel
function K(x, ¥y, s)of the integral equation D.7 can be approximated
by a sequence of kernels of finite rank, then there exists a sequence of
solutions which are rational functions in the 's' domain, the degree of the
numerator being N + J and the degree of the denominator being N, which
converges uniformly to the exact solution as N+« , where J depends
on the limiting behavior of X(x,y,s) and f(x,s) as s > .

Thus if the behavior of the pressure distributions in unsteady
aerodynemics are known for high frequencies and in steady flow and if
it is possible to show that the associated kernel functions are
completely continuous for all s, then it is possible, in principle,
to construct Padé approximants for the aerodynemic loads from the

numerically obteined solutions.
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V=Free Stregm Velocity

Fig. 1. Swept wing with two flaps and nine node points.
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“Elastic

20 AXIis

o

Ref, Semi-chord=11.985

Fig. 37. Swept wing, AR = 4.16, A - 45°, M = 0.6 .
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Analysis

Fig. u47.
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Control Laws For Flutter
Suppression

Block diagram for control law synthesis procedure.
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