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FINITE STATE MOPEI,IN(; OF AFROEI,ASTIC SYSTEMS

Ran jan Vepa

Stanford IJnivers_ ty

SFM_b\RY

A general theory of finite state modeling of aerodynamic loads on

thin airfoils and lifting surfaces performing completely arbitrary, small,

time-dependent motions in an airstream is systematically developed and

presented. In particular, the nature of the behavior of the unsteady

airloads in the frequency domai> is explained. This scheme employs as

raw materials any of the unsteady l inearized theories that have been

mechanized for simple harmonic oscillations. Each desired aerodynamic

transfer function is approximated by means of an appropriate Pad6

approximant, that is, a rational function of finite degree polynomials

in the Laplace transform variable.

The modeling technique is applied to several two-dimensional and

three-dimensional airfoils. Circular, elliptic, rectangular and tapered

planforms are considered as examples. Identical functions are also ob-

tained for contro] surfaces for two- and three-dimensional airfoils.

] N TR(H)UCTI (?N

In the last decade r,tpid advances have taken place in the area of

automatic control of practicg_l engfneering systems. The vast tech-

nologicai developments in autopilot: design and in the design of aircraft

take-off ,and landing systems hn_ led to the possibility of applying

this technology to control the vibration modes of aircraft wing structures

and the elimination of aer(,clastic instnbitities in the flight envelope



of the aircraft. Although the mathematical theory of distributed parameter

systems has made rapid advances recently, it seems more expedient, from a

practical point of view, to approximate aeroelastic systems, mainly aircraft

wings and control surfaces, by finite state models. The techniques of

approximating aircraft wing structures by finite state models which make use

of finite elements and other structural idealizations are well known. No

systematic techniques exist, however, for approximating the aerodynamic loads

on these structures by compatible finite state models for aeroelastic purposes.

Thus a systematic theory for approximating aerodynamic loads on aircraft wings

by finite state models used along with well-known techniques of structural

idealization could be tremendously useful not only for understanding aero-

elastic instabilities but also in the development of control systems for

suppressing aeroelastic instabilities. Such theories can also prove helpful

in the minimum weight design of aircraft structures.

This paper is concerned with the finite state modeling of aeroelastic

systems. The well-known theories of modeling of aircraft wing structures are

briefly presented. A general theory is then developed for the modeling of

unsteady aerodynamic loads on wings and airfoils. These aerodynamic models

may be used in conjunction with structural models for aeroelastic purposes.

General Description of the Problem

The general techniques of calculating unsteady aerodynamic loads for

simple harmonically oscillating airfoils and lifting surfaces are out-

lined in [_ , [2J and [3]. With these techniques it is possible to

calculate the unsteady aerodynamic loads for different modes of oscilla-

tion at a given frequency of oscillation. Little is known about che

analytical behavior of these loads in the frequency domain. Thus it is

2



first essential to identify the behavior in the frequency domain of the

aerodynamic loads on airfoils and lifting surfaces.

The next step is to approximate this behavior in a manner that will

permit the construction of aerodynamic models, which maybe used along

with structural models for aeroelastic purposes. Also, for the work

described in this paper existing techniques of calculating aerodynamic

loads for airfoils and lifting surfaces were utilized whenever possible.

Review of Pertinent Literature

The theory of finite state modeling of structures for dynamic

analysis is well known. The various methods of weighted residuals [4],

finite element techniques [5] and variational techniques [4] have all

proved extremely useful for analytical modeling purposes. Recently

system identification techniques [6] have been formulated for approxi-

mating structures by finite state models from experimental data.

The author is not aware of any systematic modeling procedures in

unsteady aerodynamics. However, there were several related developments

in the past fifty years. In 1925, Wagner[1,3] first studied the

growth of lift on a two dimensional airfoil in incompressible flow due

to an impulsive change in the vertical velocity of the airfoil. Garrick

[7] , later showedthe relationship betweenWagner's solution and Theo-

solution [8] for the lift on an oscillating airfoil. Sears [9]dorset' s

showedthe relationship between solutions for a sharp edge gust and a

sinusodial gust. R. T. Jones [I0] first considered the aerodynamic forces

on finite wings of elliptic platform in non-uniform motion in incompressible

flow. W. P. Jones [11] calculated the lift on rectangular and tapered

wings for impulsive motion in incompressible flow. Lomax, et al., [12]

solved the problem of obtaining the lift and momentfor impulsive motion,

3



exactly, at the starting instant< _ _ _ ,:_,i _ i <r., ,.,J_th_,_itb _ipersonic

steady flow over three dimensio_la] l_f:t _ _ - _-ze_:_,,_, and brisc]_ler

[13] and Drischler [cl4qj used the Fo1_ri_ _ t _-_....i, _i.... l_tJonship for osci]]a-

tory and impulsive motions deve]oppd })_ _:' : _ ,,:, {:,!tafne_i approximations

to the indicial lift an<] moment in pl<u_:,_il_ :{i_ {_ :i_it_ in compressible

flow, over two-dimens_onal airfoi]s. "_i i, _ ., _ <:.m_idc, red t},__ trans:ient

loading on wide delta w_nzs and recta.n£_];i_ _' _;,, _ _ul)ersonic speeds.

Recently Djojodihnrdjo and Widnail i ]):] _r, }i,.:; [18-] developed a

numerical technique for arbitrarily mov[_1_ ,_[_i, _ : m<i lifting surfaces

based on Green's representation theu,,_.__; i:_ ._,t_, i '_ <he,__ry.

While the theo<{ to be prese_ted i_ ri, s.... _, _{_ so[le ,7_iill_onfeatures

with each one of the above techniques, one ,],._s;_,,_i _,_i_ <_om them any

insight into the general behavior of ti_e _ ,,i,_,_,_. i_ads and pressure

distributions in the frequency dol_ " F]_ "" "_,a]n. . {i__ _{ r<_<es in the beha¢ior of

incompressible and compressible fLow.,_ }_._.v,.: _t i,.:,_,_]u]L_: exp]ained.

Several techniques have been presented [r_ _, _ ,'_-'t!<r the calculation

of aerodynamic loads for simple ha_-m,.u_.i-,I I._.... <. , .: _,_{airfoils and

lifting surfaces. _ese techniqu_'s h_,, !)_'_'_ t_ _._ <_ by ,<sh!ey, Widna[l

and Landahl _9], Landahl and Stark i2_Ii. :r..........r ,iij and Ashley _22j.

Recent methods now widely in use are th_ !.,._,q_, :_._ t lon techn_quer_ of

Cunningham _3j, Rowe [24j and Laschk_ ;_ . .,- r, doublet-lattice

I .,.- ]

technique of Albano and Rodden Lzoj. i _,_• _,

useful and practical tool for aer<_e]asti _,_,_, _ , .

methods and their extensions are b_iel ]v h, 4, _ } :,

In this paper _h:: th_-ory of rinit{ _ _.{i_

_< Iio ]-e :{n extremely

[J(,me t_f trlese

:i Ai_pendix C.

_. of stm,ctures is



first outlined. Then a systematic procedure is presented for the modeling

of unsteady aerodynamic loads. Some contributions are also made towards

extending and modifying methods for calculating aerodynamic loads for

oscillating airfoils and lifting surfaces.

Summary of Contributions

(I) A general theory is presented to describe the behavior of

the aerodynamic pressure and loads in the frequency domain.

(2) A numerical technique has been developed for modeling the

aerodynamic loads in the frequency domain.

(3) A numerical technique is developed for calculating the aero-

dynamic loads on two dimensional airfoils with trailing and leading

edge flaps, for a fairly large frequency bandwidth. For three

dimensional lifting surfaces the bandwidth, for which the doublet lattice

method leads to reasonable results, is improved.

(4) Indicial functions have been obtained for various types of

impulsive motions for wings of different planform.



SYMBOLS

distance of elastic axis from the center of gravity.

b reference semi-chord of wing.

speed of sound in the free street.

Co

l distance of flap hingeline from the center of gravity.

C(k) Theodorsen' s flmetion.

Cp non-dimensional pressure coefficient _ Ap/q

C (x,_) bending influence function.
zz

Cee(x,_) torsional influence function.

E1 flexural rigidity.

GJ torsional rigidity.

vertical displacement of wing elastic axis.

Hankel functions.

I unit matrix.

Ie moment of inertia of wing.

moments of inertia of flaps.

modified Bessel functions of the first kind.

_b

k reduced frequency -9- "

6



Kh

K(t)

Ko,K1

Ksi

I

_w

Lh

re(x)

Mo, 

M

Me

M_ i

NB

wing root stiffness in shear

wing root stiffness in lateral rotation.

wing root stiffness in torsion.

Wagner's indicial function.

stiffness matrices.

p Laplace transform variable.

p(x,s),
p (x,y,s) pressure distribution.

NF

semi-span of wing.

lift in the plunging mode.

mass per unit length.

Mass matricies

Mach number

aerodynamic pitching moment.

aerodynamic flap moment.

number of collocation points.

number of flaps

K2(X,s ) Kernel function for two dimensional aerofoils.

K20(X,s) Kernel function for two dimensional aerofoils in incompress-

ible flow.

K3(X,Y,s)Kernel function for three dimensional lifting surfaces.

Control surface stiffness constant.

defined in figure i.



_p(x,_),
_p(x,y,s) pressure jump across the wing.

q dynamic pressure = 1/2 pV2 •

qo I
nodal displacement vector.

ql modal displacement vector.

Laplace transform of qo' q1"

qij (s ,M)

.th
i, j element of Q(s,M).

Q(s,M) aerodynamic load matrix.

pb
S -

V

se(x) unbalance of entire wing.

S_ i
unbalance of ith flap.

t time

Tc_i

.th
control torque on i flap.

U gust velocity.

U(n,a,t) Kummer functions.

V free stream velocity.

w(x,y,t) downwash velocity.



w(x_y,p) Laplace transform of w(x_ y, t).

x ,y _z _!artesian coordinates.

Y= y- _

Z = z -

zj(x,y)
th

displacement of the j mode.

angle of attack

_ for M < i_ _-i for M > i.

8i (t) flap rotation of ith flap

o(_,t) torsional rotation

Laplace transform of Wagner s function.

_(s) : sm(_)

Vt Vt
T or --

b
w

Cartesia_ coordinate system



FINITE STATE MODELING OF STRUCTURES

Finite Element Models

The finite element method is often regarded as generating a dis-

crete model of a physical system. The method may also be viewed as a

variational technique, where an attempt is made to minimize the demand

for ingenuity in the construction of trial functions. This discrete

matrix technique for the formulation and solution of linear dynamic

problems in engineering mechanics has been widely discussed in the

literature [5]. This approach has proved useful in obtaining approxi-

mate analyses of complex structural configurations that are difficult

to handle by exact mathematical formulations. The bookkeeping required

for solving the large number of linear simultaneous equations involved

is readily handled by matrix algebra techniques and the resulting

analytical formulations are tremendously simplified. Thus concurrent

development or revision of different sections of large digital computer

programs to perform the analysis is feasible. This feature has led to

its use and acceptance as a basic tool for dynamic structural response

calculations. The aim of this section is to briefly describe how the

technique can be useful for finite state modeling of wing structures.

The efficient utilization of the discrete element influence-

coefficient approach in a digital computer would provide for con-

struction of a stiffness matrix and a mass matrix for the entire wing

I0



structure by simple superposition of each matrix, from corresponding

matricies for the discrete elements that model the wing in detail. A stiffness

and massmatrix generator program (SAMGEN)was written for this pur-

pose. Several different types of elements were incorporated in the

program. This program was found to be extremely useful in structural

optimization work [27].

Idealization as a Beam-Rod

The swept wing structure shownin Figure i is considered. The

wing is connected structurally to the fuselage, so that the root is not

completely rigid. Further it is assumedto have a finite numberof trail-

ing edge flaps, NF in number, which provide for the control torques.

The flaps are assumedto function as rigid bodies which are good approx-

imations for most control flaps. The wing is assumedto have a large

aspect ratio, at least, for structural purposes. This permits the

wing to be modeled as a beam-rod. The actual root is replaced by an

effective root normal to the elastic axis of the wing. Rotational

inertia, shear deformations and sectional bending are neglected.

Let h(x, t), e(x, t), _i(t) i = l, 2, 3, .-- NF, be the vertical

displacement of the wing along the elastic axis, the torsional dis-

placement of the wing along the elastic axis and the angular displace-

ments of the flaps respectively. The kinetic energy of the wing/flap

system maybe written as

11



i=l i

i

_-- I' .i )

where _i(t) is as_-mr_!_,:ito be equal _,{__:<,_'c:_

• fr,_ c ._flap does not cx_,_!:,. _,_,_poL_tieN , n, _l, i

as

th
"egJons where the i

. _y:-_t.em may be written

1 _ (EI (
---- _ \X/'

0

-,7% fx t _

4- _j (ix ( -- ..... .> )dx
C"

1 O, 'p .-]Z.W :

r_

, j

. _:( t "1

A prime (') w_ll b,' use_i to rqu'_--':en_ ..... '-._, ! . .

37

' to repr_sent

The aerodynamic fc_ ,,_:: and control L ':.<.-.. :to <, _,_,..._,<] a,s non-

conservative for<u_: .

Using the [_ra:'_<i'>.u tv_,h;;iauc_. _,. _,_,._

of motion and boLLn_!ari{ ,'malt +.i<:ns .

,.I _owin_ equations

12



NF

m(x)}_(x,t)- Se (x)e'(x,t) - (i_lSSi_i(t))+ (EI(x)h"(x,t))" = Lh(X) (2.3a)

NF

-S8(x)_(x,t)+Ie(x)_'(x,t)+ (i=l(ISi+7 b(c i- a)Ssi)fli'"(t))-(GJ(x)e'(x,t))'

= Me (x) (2.3b)

-Ssi_ (x,t)+ (Isi+ b (ci- a)Ssi)_" (x,t)+ Isi_i (t)+

K8i8 i (t)

_i- _i-i

= Msi(x)+ Tcsi , i = 1,2,_,...NF
(2.3c)

where Lh(X), M0(x ) and Msi(x), i = i, 2, 3, -.. NF, are the aero-

dynamic forces and moments and Tcsi , i = i, 2, 3_ ... NF, the control

torques on the flaps.

The boundary conditions at x = O are given by,

(EI(x)h"(x,t))'- _h(x t) : 0 (2.4a)

EI(x)h"(x,t)+ KRh'(x,t ) : 0 (2,15b)

GJ(x)e'(x,t)+ _@(x,t) = 0 (2._c)

The boundary conditions at the wing tip x = _w are

El(x)h"(x,t) = 0 (2.5a)

(EI(x)h"(x,t))' = 0 (2 .Sb)
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GJ(x)@'(x,t) = 0 (2.5c)

If El(x) and GJ(x), the flexural and torsional rigidities are

zero at the wing tip, the boundary conditions are,

EI'(x)h"(x,t)= o

2El'(x)h'''(x,t) + El''(x)h''(x,t) = 0

(2.6a)

(2.6b)

- GJ'(x)e'(x,t) = 0 (2.6c)

In the above equations the inertia and aerodynamic loads are also

assumed to be zero at the wing tip •

Since the properties of a practical wing are not uniform it is

difficult to solve the above boundary value problem even in the

absence of external loads. Hence these differential equations are

reduced to integral equations and then discretized.

The influence functions Czz(X_ _ ), the static deflections at

station x due to a unit load at station _ along the elastic axis, and

Cee(x , _ ), the state torsional deflection at station x due to a unit

moment at station _ along the elastic axis _ for a wing with a flexible

root_ are given in Appendix A.

The inertial properties are assumed to be lumped at NB collocation

points, xi, along the elastic axis. Then following standard techniques

it is possible to rewrite the equations of motion, in the absence of

14



external loads, in the form,

where

[I ] [qo} = "[Ko ]-I [M0] [qo]

[I] is the unit matrix,

{qo _ is the vector of nodal displacements, torsional

rotations and flap rotations,

[Ko ]-l is the influence coefficient matrix_ and [MO] is

the inertia matrix.

(2.7)

Defining [Uc]T : [TCSl _ Tc82 _ ... TCSNF]
(2.8)

NF x NB • NF x NB . NF xNF

and [BO]T = [ 0 " 0 : I ] (2.9)

we may rewrite the entire equations of motion as

[Kl]ql + [MI ] ql : FO (t) + BU c (2.1o)

where Fo(t ) is the aerodynamic load vector, Uc is the vector of con-

trol torques, B the control torque distribution matrix, and ql the

vector of modal displacements. It is also assumed it is possible to

measure modal displacements and rates and these measurements can be

written as,

: Eql +  241

15



If a linear aerodynamic theory is assumed, the Laplace transform

of this load vector, Fo(P), where p is the Laplace transform variable,

is specified as,

i

where Q(s,M) = [qij (s,M)] is an aerodynamic load matrix, defined by

the relations,

qij(s'M) =_wA1 _A

w

Zi(x'Y) ApJ(x'y's'M) dxdy

b 1 v2

where A is the area of the lifting surface for a three dimensional
w

lifting surface and equal to the chord for two dimensional aerofoils,

i
z (x,y) is the modal deflection surface in the ith mode and Ap] (x,y3

s,M), is the Laplace transform of the pressure difference in the ]th

mode. The modal deflection Surfaces may be obtained by solving

the free vibration problem given by equation 2.7

A general theory for approximating the aerodynamic loads qij(s,M)

in the frequency domain, will be presented in the next chapter. This

theory will permit the entire aeroelastic system to be replaced by a

finite state modal.
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i'[N['l_:: %'IAiE _!i',l)<l.lN!; C)F .,\F,Ri_I)YNA_I[('. I_OA1)S

In thi_ _ecti,_n, a gen,_'al method o£ approximating the aero-

dynmr_ic load_ in the frequency _}omain is presented for wings in two

and three dimensional 11ow.

'£'h_ Pade _._[,_i,io..:Jmant r_,:_!_,! ic app]iud t,:->(:b_,ain !,he so].u%ion

to the. pce_u_'u _li_<trJbuti<,n on wing.- perfc_r';_:lng arbitrary oscillations

in two dimens:ional inc<mlg_-_:_':_ibl__ Ylow. _-'he m<_thod is then generalized

and applJ_.d to two {[imun,_[ real comp.-o:::_[ble flow p_'ob]ems.

[j_cO].pres_ih]e !l_.'. -- Aerody,lamic l_nds _m nrbitrarily

os<i]lating rigid wiI_Hn in tw_--:iimeI_i{,l_a] incc,uq_'<'_sib]<' flow can be syn-

thesized f_'or,_Wagne_' '_ ;:olut]on loz" bhe lJ ft o_l a wJn_ d__tci,oa sudden step-

wise change in the do_,m_,,a_h as _qeserJbed in Her. i. R. T. Jones [I0]

has obtained an app_o×Jmate Laplace 1:ransfoz_r_ of Wagner's indicial

function. It can b,_ shown that eeuations [or the pres,oure distribution

and aerodyns.n_-i{', loadf' may b,__ obtaJrl{= ! for eonw_rging or diverging

oscillat]om: by _._:placJng C(k) by 6(s _6(s) where 9(s) is the

Laplace transform of W_q._n,_r':', indicia! _imct:ion. Thus equations of

motion of a wJng_ with a tr.a.!]ing edge flap [:' ] or a wing with an

a:,leron and _ Ilap _: , ; '] _ay b_ obtained by using the correspond-

ing equ_t:iom_ for o_<c[ilatot.g moi, ior_. ,_"or converging oscillations

the wake is asstm_e.d to b_: finit_ an,J dupendunt on initial conditions.

In this s<:etion_ Theodor_mn'._ uircu!ation Izg function is

an'_lytical.ly e.oniJnu,--ci [7_[- (:orl_,,.!_'iy_!_T '_'_[ ["_, L_t ;_:_ ;iil [o[] w_th no
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oscillating components in two dimensional incompressible flow, and

the physical significance of the results explained. By representing

Theodorsen's function as a series of Kummer functions, an asymptotic

expression for Wagner's indicial function is obtained. The first two

terms of this approximation are identical to the approximation for

Wagner's function obtained by Garrick. By applying the Pade

approximant theory, it is shown that Theodorsen's function may be

represented by a sequence of rational functions which converge

uniformly. This method of approximating Theodorsen's function is

generalized so one can construct rational function approximations not

only to Theodorsen's function, but to gust response problems also.

These rational function approximations may be easily inverted, using

Laplace inversion_ to obtain good approximations to various indicial

functions •

The lift and moment about the elastic axis on a rigid thin air-

foil_ performing vertical translational or torsional oscillations can

be easily obtained by integrating the pressure and its moments (given

in Appendix B).

These expressions are,

, 2 • • i

[ ] s2+ 2s_(s) ' s-as +2$(s)(l+(_-a)s)
Lb = 2wqb 2 --5 ...... f ....... ,..... l---f---5--Z ..... f ........... f .....

M as +2(a+_)@(s).sls(a-_)-(7_+a )s +(a+_)2._5(s)(l+(_-a)s

h/b
×

C_
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These equations maybe written also as,

E]Lb = 2wqb 2 s s - as

Ms as2 s(a-i/2)-(1/8+ a2)s2

+

I 22a+ 1 1 a)s)] l
¢(s)[sl(1+(_ -

Thus the circulatory part of the aerodynamic matrix can be decomposed

into the product of two vectors. As a consequence we have,

= 2Trqb2

M_ as 2

2
S - as

i a2s(a - _)-(_+ )s2

h

[hiz _ a)s)]
y(s)= $(s)[s,(Z+( _

Thus it is sufficient to construct a finite state model of _(s) (shown

in Figures 2 and 3 ) in order to obtain finite state models of the

generalized aerodynamic forces. _n application of this approach to

flutter suppression studies is presented in Ref. 30.
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In general_ if the influence of comprc_;_ibility and finite span

are included_ it is impossible to deeompo_:e!i_e matrix in the above

manner. In two dimensional ineomp_s:_:ibl _ J<l,_w_the circulatory aero-

dynamic forces are dependent only on tLe ! _w_m_ashvelocity at one

point (the _,/4 chord point for a :,dgi_I ,_iri_r_l ). In compressible

flow or for three dimensional lifting _ar:iac_.__the aerodynamic forces

are dependent on the downwashat a finit-= _lumberof collocation

stations. Further the contribution of t_he iownwashat each of the

collocation point_ to different generali;,_ I _oYces_is different. Thus

one cannot assumeapriori that a decompo_:iti<_of the form discussed

above is possible. Thus, the above _Pl)_:,_:'I_ is not useful in com-

pressible flow or for three dimensional lif{,:ing surfaces.

Garrick has shownthat Wagner's inflicial function and

Theodorsen's function are related by the Fou,;er transform relation-

ships. Thus,

i C(k)-i il_t ,_- for t _> 0Kl(t): [ e ....

-_ 0 for t < O.

This may be written in the form

Wg(t ,_Kl(t + T)- i

where Cf ( 2_
C(k)-1

e
ik

df
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This equation suggests that numerical quadrature may be used to

compute K(t) for T _ t _ 2T for any given T. An equivalent possibility

is the use of discrete Fourier transforms like the fast Fourier trans-

forms [31]. In order to show the disadvantages of this technique a

brief discussion of the method is presented.

To observe the effect of sampling both in the frequency and time

domain, at finite but equal intervals, the above equation is evaluated

at the points,

tj = j.At, j = O, +_ i, +_ 2, ..., +_ (N-I) and

f = n'Af, n = O, + i, + 2, ..., + (N-l)
n _ -

where N = TF, with F = 1/At and T = i/Af. At. is chosen small enough
J

for the highest frequency present to be sampled at least twice during

each cycle. With the assumption that the indicial function and the

spectrum Cf(f) are periodic with period T we have,

Let A
n

N-I )e+2Wi n.j/N
1 _ Cf(n. At

Wg(j.At) : _ n=O

N-I

T E W_(j.At)e -27ri n.j/N
Cf(n'Af) = _ n=O _

- 2_i/N
A Cf(n,Af), Xj A TWg(j ,At) and w e

We then have the discrete transform pair,

N-I _+n-J ] = [fl]{An= E Aw {xj }Xj n=O n

N-I -nj

I Z X.w,
An= N j= O 0

{An ] = [_]-I{xj}
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From the orthogonality properties and the properties of the exponential

function it is possible to factor [_] in such a manner that the number
N

of computations involved for inversions are reduced from N2 to _ log2N

_rovided N = 2m). This decomposition technique is the Fast Fourier trans-

form. Thus it is possible to obtain numerical values for Wg(tj) for

various values of tj by using different sampling periods T to any desired

degree of accuracy. Also errors due to the assumption of periodicity

can be corrected for_using WindowTechniques. Howeverthis does not lead

to a finite state model. From the numerical data generated for the

indicial functions_ Kl(t), it is essential to fit the data with a finite

numberof exponentials (2 or 3). This is usually a non-linear technique

[32]. The Laplace transform of such an approximation would then lead to

a finite state model in the frequency domain. This whole procedure is

undoubtedly extremely tedious and involves several computational steps.

Conceptually the procedure involves approximating a distributed parameter

system by a discrete time system which is then approximated again by a

continuous system in the time domain. Thus a direct procedure of finite

state modelling from knownvalues of the response at f = fn' with the

correct initial and steady state behavior is desirable. In order to develop

such a technique_ Theodorsen's function is analyzed in detail.

Analytic continuation of Theo_orsen's function: The function _(s)

will nowbe evaluated in the left half of the 's' plane along the real

axis and the physical significance of the results will be explained. In

this case, _(s) may be written as
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¢(s)= 1 -

I+Lt
_e-S cosh v

0

cosh v dv

e-S cosh v dv

0

The integrands of the two integrals are monotonically increasing in the

domain of v. Further they are both divergent. Hence the limit may be

evaluated by using L'Hospitals rule_ which immediately leads to

#(s) : 1 for Re (s) < O, Im(s) : 0 .

This result is of fundamental importance. It was assumed that at time

t = O, the wing was stationary and unperturbed. Clearly, converging

motion with no oscillatory components from an unperturbed state is not

possible. This implies that on the negative real axis of the 's'

plane the 'motion' remains unperturbed. As _(s) = l, is the solution

for the case of steady translation of the wing, the quasi-steady solution

for the pressure distribution is the exact solution on the negative

real axis of the 's' plane.

Asymptotic expansions of Wagner's indicial function: In terms of

Krummer functions we have

1

_(s) = Re(s) > O

i+½ l, 2s)
s (1½,3,2s)

The Kummer functions U(a, n, z) are a class of confluent hypergeo-

metric functions that are multiple valued with the principal branch

defined for -v < arg(z) < v. The order of the singularities for large
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and small values of z are determined by a and n respectively.

As a consequenceof the properties of Kummerfunctions $(s) maybe

represented as an asymptotic series for large s as_

N+4

: 1 - (4sU(1,1,4s)+ E
&.

i=l

1
Bi (Cis)U (]. ,1 ,Cis )+ 0 (s)

N : 0, l, 2, ...,

where Bi and Ci are constants. Apart from being asymptotic for large

s the expression also satisfies the condition,

T,t : l
s-*0

Further_ the inverse Laplace transform of the asymptotic series can be

easily found. Hence it is also possible to find an asympZotic expression

for Wagner's indicial function. In particular_ for N = 0,

3
2 T

K(t) = 1 T + I_ + 768 'P(_)

4
where P(T) = i + 0.875T + 1.28435T 2 + 1.8428_ 3 + 4.09134T

The first two terms are identical to the indicial function given by

Garrick. In general the correction to Garrick's approximation may be

written as,

2 3 (Polynomial of degree N in r)

K(t) - 1 + _ = _ (Polynomial of degree N+4 in _)

The rational function in the brackets is usually referred to as a

[N + 4, N] Pad_ approximant. Baker [33] has discussed the methods of
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construction and the properties of Pad_ approximants.

Pad@approximants of Theodorsen's function: For small values of s,

W. P. Jones [34] gives the following series for _(s):

_f(s) z i + ys + y2s + s
2

where y = log(s/2) + _. The correct asymptotic series for small values

of s is given by,

_(s) = 1 + ys + y2s2 + s3[ z_l

2
Y
2 +y3+_ ]+ s4<y4y4 y2 _)

3 4 _ y3 19 2 ll ll+ sS(y 5-_y +_ - i---g_ +liy-_ )

4 19.2 77+ of:l,

R_(s) >0

Obviously it is quite difficult to construct a Pad_ approximant from

this series. However for large values of s, we have the asymptotic

expansion,

l(i+ i_(s) : _ 1 + 7 19 143 629 8273081

8s2 64s 3 1282 + +512s 5 i024s _ 4194304s 7
+ o(-_))

S

Re (S) > 0

The fact that the lag function has a value of 0.5 for s = _ and i for

s = 0, suggests that it may be approximated by an [N_N] Pad_
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approximant quite accurately. To demonstrate this, the first four

Pade approximants are constructed from the asymtotic series for large

s. They are asymptotic to the lag function uptothe first, third,
i

fifth and seventh orders in -- respectively. They are given by
S

s+o.5 s2 + 1.5 s ÷ 0.375

2s ÷ 0.5 ' 2s2 + 2.5s + 0.375

s3 ÷ 3.5 s2 ÷ 2.7125s ÷ 0.46875 and

2s 3 + 6.5s 2 ÷ 4.25 s ÷ 0.46875

4
s 4 4.64696s 3 + 9.33371s 2 + 5.51735 s + 0.49334

, Re(s) > 0 ,
2s 4 ÷ 8.79392s 3 + 16.71894s 2 ÷ 7.67296s ÷ 0.49334

These expressions are found to converge rapidly over the entire right

half of the 's' plane. However the above approximations are not very

good for small values of s as they are obtained from the asymptotic

series for large s.

This method of approximating Theodoresen's function and evaluating

the Wagner indicial function approximately is similar in principle to

the method suggested by Luke [35] for evaluating the Randall function

in the theory for the unsteady aerodyn_nics of oscillating cylindrical

shells in supersonic flow.

The method of construction of the Pad_ approximants may be

generalized. Since the lag function is known exactly along the

imaginary axis s = ik, the Pad_ approximant may be constructed by a

suitable least squares technique If C(k) = N(ik)(D(ik)) -1. , where

N(s) and D(s) are polynomials in s, the coefficients of tne polynomials

may be determined by minimizing
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m
z (D(ikj)C( j)- 2

j=l

where kj, j = i, 2, 3, ..., m are the values of k at n different points.

This technique needs only the values of C(k) at a finite number of

points in the frequency domain_ and hence may be generalized to other

cases, where the aerodynamic loads can be calculated numerically only.

This problem may then be reduced to the solution of an over determined

linear system for the coefficients of the polynomials N(s) and D(s).

This procedure results in

" s4÷ 0.761036s3+ 0.i02058s2+ 0.00255067s + 9.55732 × 10 -6

2s4÷ 1.063996s3+ 0.i13928s2+ 0.00261680s + 9.55732 × 10 -6

Re(S) > O.

Clearly Wagner's indicial function may be approximated using the

formula

4 -BiT
K(t) : Z -I _(s)__= 1 - _ A.e

s 1
i=l

where _i are the roots of the denominator polynomial where

Ai _i

0.011285763

0.043280564

0.21639860

O.229O35O8

0.0044482234

0.027697193

0.096054968

0.40379780
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By taking the Laplace transform of the approximation for Wagner's

function obtained by R. T. Jones [i0], wehave

@(s) = _+ 0.5615s + 0.0273 Re(s) > 0

2s2+ 0.6910s + 0.0279 _

The [4,4] Pad_ approximant obtained by least squares and the corres-

ponding indicial function are compared to the exact values and the

results of R. T. Jones (Figures 4 - 8).

This approximation is very good both in the frequency and the time

domain. The simplicity of this method compared to the one given by

R. T. Jones is quite obvious. The main advantage of this method is that

it can be generalized to three dimensional lifting surfaces.

It is also interesting to note that the poles of the six approxi-

mations for the lag function are negative real values. This indicates

that the transient pressure response to a downwash input is

asymptotically stable. Further since the negative real axis is a

branch cut of the exact expression for the lag function it represents

a continuous distribution of poles.

Application to gust response problems: In applying the above

theory to gust response problems, a certain amount of caution is essential.

It must be emphasized that only the Laplace transform of the temporal

portion of the circulatory pressure distribution can be approximated by

a sequence of [N,N] Pad@ approximants. This does not hold for sinu-

sodially convected gusts.

Sears [9] considers a gust velocity of the form,
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WG = Woeie(t-x/V)

and showsthat lift to be equal to

Wo ic_c
L(k) = 4_ q'b. -_- e S(k)

where S(k) = (Jo(k)- iJl(k))C(k)+ iJl(k ).

Kussner's indicial function is related to S(k)e -ik in the same manner as

Wagner's indicial function is related to c(k). However to obtain an

exponential approximation of Kussner's function one should construct

a [N,N-I ] sequence of Pad6 approximants of S(k)e -ik In fact, using the

least squares smoothing technique developed above and taking the inverse

Laplace transform we obtain the following expression for Kussner's

indicial function K2(t ),

4 -_.T
1

K 2(t) = 1 - Z Aie
i=l

where

A i Bi

0.012994467

0.062319920

0.40920539

0.51548O22

0.0049896174

0.0349314o0

0.13796713

1.1645811
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In order to showthe relationship between the temporal and spatial

portions of the gust response, it is essential to consider a gust of

for_n_

i_t - iFx/V
WG = WOe

Kemp [36] shows the lift to be of the form

W

o ei_t: V b

where K_,k) = ((Jo(k)- iJl(k))C(_+ _ Jl(k))

and k = _- .

The first term in the function K(k_X) is the circulatory part while

the second is the virtual inertia effect. Clearly it is now sufficient

to approximate C(k) by an [N,N] Pad_ approximant to obtain the indicial

function corresponding to a downwash of the form

WG -- WO e'iFx/V H(t)

where H(t) is a step'function.

A sinusoidally convected chordwise gust past an airfoil at a

steady angle of attack G, of the form, UG = UO elf(t-x/v), is known to

produce a lift equal to [37],

Uo

L(k) = 4_q-_- _be ic_t T(_

where T_) = C_)(J0 _)-iJl(k))+ J0(k)+ i2J l(k).
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From this result we may obtain the indicial function for a sharp edged

chordinse gust striking the leading edge of the aerofoil at t = 0

Us _

U X >Vt -b
U0 X <Vt - b

The indicial lift is given by

Uo

L(t) : 4vq -_- _bK3(t )

where K3(t ) may be found in the same manner as Kussner's function.

fact K3(t ) is approximately given by

In

4 -8iw

K3(t ) = 2 - _ A. e
i=l I

i

1

A i 8i

0.026965564

0.044268810

0.45282297

1.4759427

o.002369o134

0.o4o6473o2

0.14614369

1.73o58o2

Separating the spatial and temporal portions of the gusts into

iwt - iyx/V
Ug= Uoe
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we may show the lift to be

U 0

L : 4vq _- _be i_t V(k,k)

where V(k,k) = C(k)(Jo(k )- iJl(k))+ jo(k)+ iJl(X)+

Sharp edge gusts moving with respect to inertial observers are

consideredj i.e., gusts of the form

i

= 1 0 X > Ut -bwa
!Wo X < Ut - b

and °
U o

X >Ut -b

X <Ut -b

where U is different from the free stream velocity V. U0 is assumed to

be very small compared to U so only first order effects need be con-

sldered. The corresponding indicial functions are related to K(k,_k)

-i_k and -i_ke V(k,_k)e _ where _ = V/U, in the same manner as Kussner's

function is related to S(k)e -ik and hence may be written as,

4 -Bj%
KT = i - jTIA/= e

K C = 2 - FACe J
J=l J

These indicial functions are shown graphically in Figure 9 and Figure

lO.

Before going into the nature of the solution of the pressure distri-

bution in two dimensional compressible flow it may be instructive to
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review the effects of thickness and viscosity on _(s). Hewson-Browne

[38] has investigated the oscillation of a thick airfoil in an incom-

pressible flow and obtain a general expression for _(s) (which he

evaluates only for simple harmonic motionS) including thickness effects.

The generalization is different in the expressions for lift and moment.

This would destroy the decomposition property of the circulatory portion

of the aerodynamic matrix discussed earlier. The singularity in the

derivative of _(s) continues to exist. Woods[39] has presented a new

approach for the calculation of the unsteady two dimensional flow about

aerofoils performing arbitrary motion in an incompressible fluid. While

the flow is assumedinviscid_ the potential flow boundary conditions

are modified semi-empirically to makesomeallowance for viscous

effects. The method is applicable to thick airfoils, the only limita-

tion being that the velocities and displacments of the unsteady perturba-

tion about the meanmotion be small. Results are obtained for the lift

and momentby an application of Blasius theorem. Howeverthese results,

while being very impressive mathematically, seemto be practically useless

as most of the integrals cannot be evaluated for general motion. Pro-

vided the Reynolds number is sufficiently large for boundary layer

theory to be applicable, viscosity has three main effects on the

theoretical potential flow. These are_ I) the Kutta condition is

modified in that the position of the rear stagnation point is indepen-

dent of incidence 2) the velocity distribution of the meansteady flow

particularly near the rear trailing edge is modified 9) viscosity

contributes to the damping that is independent of the velocity but does

not effect the inertial loading. Woodsaccounts for i) and 2) but not

3)- The results indicate that the reduction in the wakevelocity due
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to the thickness and viscous effects, changes the flat plate deriva-

tives by an amountwhich is quite large for k large but neglegible

for small values of k. Chenand Wirtz [40] have included second order

wake effects, but it appears that the singularities they obtain are

no different from those of the first order solution.

It seemsprobable that the nonlinear and viscous effects in the

wake mayreduce the wake velocity and distort the wake which maybe

significant especially for low values of k and large values of Isl.

So far there is no theoritical justification of this. The above consid-

erations are important if experimental verifications of Wagner's solu-

tion are sought.

Subsonic flow. - In Appendix C, the behavior of the pressure

differential across the airfoil in subsonic flow was shown to be

essentially like incompressible flow for low values of reduced frequency

and mach number. However for large values of reduced frequency, unlike

incompressible flow, the force required to generate impulsive motion may

be expected to remain bounded for all time and finally reach a steady

state value. In particular, the work required to generate impulsive

motion is not entirely recoverable, so that the process is irreversible_

and some part of the starting force must be regarded as "damping". It

is well known, that for large values of reduced frequency the pressure

is given by Piston theory [i] for all mach numbers, M, greater than

ze ro •

_p 4 _z
i.e.,

q MTY
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where z is the displacement of the airfoil.

Another curious fact, that has not received the attention of any

previous investigators in unsteady aerodynamics_ is that the steady state

aerodynamic load on an airfoil in steady subsonic flow or supersonic

flow is always finite as long as the mode shapes are bounded. This

indicates that the aerodynamic system by itself is a completely stable

system_ in subsonic or supersonic flow_ in spite of being a circulatory

system. This physical fact fully explains the reason for all the poles,

of each one of the PEui6 approximants of $(s)_ being in the left half of

the 's' plane. The stability problem is especially significant in

transonic shock free flows and hence is discussed in greater detail in

the next section.

In Appendix B_ it was shown that the integral equation for the

pressure distribution can be reduced to a Fredholm integral equation of

the second kind with a completely continuous kernel. The significance

of complete continuity will be discussed in 3.2. In Appendix D_ it was

shown that for an equation of this type _ the solution has the form of

a [N_ N+J] Pade approximant. Clearly_ comparing this result, with the

Piston theory result for large s _ we conclude that the loads must be of

the form,

aosml+ al ""
qij (s,M) = it N-I

N-._ MsN+ b2s ... bN+ I

where the coefficients ai and b i are functions of Mach number alone.

Clearly as s _ % qij = a_/M and a0 can be obtained from piston

0 (M) and
theory. In the limit as s -_ Oj qij (O,M) = aN+l/bN+ 1 = qij

equals the steady state value. As the mach number approaches zero,
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one of the poles of the denominator moves to negative infinity in the

's' plane. This clearly indicates that in incompressible flow an impul-

sive force is needed to generate impulsive motion. Hencefor large values

of s_ qij behaves like an inertial force in incompressible flow. In

compressible flow, unlike incompressible flow, the coefficients bi are

different for different types of loads and modeshapes.

This difference in behavior maybe easily explained physically.

In incompressible flow there is a lag in the development of the circulation

around the aerofoil, while the pressure variations are propogated with an

infinite speed. In compressible flow in addition to this lag the

pressure variations caused by the motion of the aerofoil are propogated

by a finite speed. This introduces an additional lag in the loads.

On the other hand as the speed of the airfoil increases, it is clear

that the pressure variations moveupstream more and more slowly in

relation to the aerofoil. If the airfoil movesfaster than the speed

of sound_ it cannot make its presence knownto the fluid ahead of it and

the mechanismfor bending the streamlines aheadof the airfoil no longer

exists. Eventually for very high speeds, the influence of the pressure

variations is only local. At this stage the a_rfoil behaves like a one

dimensional piston and piston theory leads to the exact pressure on the

aerofoil for all values of s.

Thus

aOs

qij(s,M)=.. _ for M _ _

It was also shown in Appendix D that the sequence of rational

functions for increasing values of N converge and hence can be

truncated and assumed to be of the form
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aoml + alsN + %{ + qO (M)bml
"'" iJ (3 .i)

qij (s,M) = N N-I
Ms + b2s ... + bN+ I

for some fixed N.

Further, in view of the aerodynamic system being completely stable,

we may conclude that all the poles of qij (s,M) lie in the left half

of the 's' plane. This is an important and useful property, as it can

check on the validity of the rational function approximants after they

have been constructed.

The exact solution for subsonic flows, can be obtained by Mathieu

functions [1]. However the actual computation of the solutions is ex-

tremely tedious. Furthermore, the solutions are not closed form

solutions and hence are only approximate. Thus it is difficult to

obtain series expansions in frequency of the aerodynamic loads, in order

to analytically construct the Pad_ approximants.

Hence a numerical technique used often in the area of system iden-

tification and for digital filter synthesis [41] is proposed and

applied to various cases. The problem of computing the approximants

is reduced to a least squares minimization problem. This is then

transformed to a overdetermined linear system for the coefficients of

the Pad_ approximants and the solution obtained by QR decomposition.

Now qij (s ,M) may be easily calculated by the numerical method out-

lined in Appendix C for a given mach number, and for various real values

of reduced frequency.

k = k. = -is
m m

m = i, 2, 3, ..., m 0
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O (M) from steady stateAlso aO can be obtained from :piston theory and qij

calculations. Thus the above equation maybe written as_

-2 -N _o bNSmN)alSmI+ Sma2 + ''" SmaN - qij(Sm'M)(b2Sm_-+ "'"

- (N+I)+ sm (qOj(M)- qij (Sm'M))bN+l = smlMqij (Sm'M)" ao

m = i, 2, 5, ".. m0 (3.2)

Hence these equations are a system of m0 complex equations in the 2N real

unknowns al_ a2, ... a N and b2, b 3 ... bN+ I. If mo, is chosen larger

than N_ this system of equations may be solved by the linear least

squares technique.

Numerical experience indicates that a large number of values must

be chosen fork, in the low and high frequency regions. In the low

frequency regions the coefficient of bN+ 1 could be a small complex

quantity while at high frequencies the right side of equation (3.2)

would be a small complex quantity. Hence a large number of values

must be chosen for km, in the low and high frequency regions, in order

that the approximation be sufficiently accurate in these frequency

regions.

These approximants for nondimensional generalized forces in (1)

plunging, (2) pitching and (3) flapping mode and tabulated in Tables

1 - 5. The flap hinge is assumed to be at the rear quarter chord point.

In most of these cases N was chosen equal to 2. In these cases it was
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found that more accurate results could be obtained with N = 4. However

these results are not tabulated.

It was assumedthat it is possible to calculate the aerodynamic

loads qij (s ,M) accurately for all values of k and M in the subsonic

regime. This assumption is generally true in two dimensional subsonic

flow, provided a fairly large numberof collocation and integration

points are used in the method described in Appendix C. The method is

very accurate even in the presence of control surfaces, provided

collocation points are not chosen too close to the hinge line.

The influence of compressibility which is well known in steady

flow is different for the steady and unsteady components of the loads.

For low mach numbers (0.i < M < 0.3) it was found that higher order
m

Pad_ approximants were required to model the pitching moments, where

the poles of the approximants have a tendency to move towards the

imaginary axis of the s plane. This could be due to the higher order

of the approximants without any physical significance.

For high subsonic mach numbers (0.7 _ M _ 0.9) the loads were less

stable even with lower order Pade approximants. On the other hand it

is well known [42, 43 and Section 9.2, l] that oscillations of a two

dimensional aerofoil about a pitching axis may become unstable for low

values of reduced frequency and high mach numbers_ if the axis lies in

a certain region, ahead of the quarter chord axis and if the moment

of inertia about this axis is sufficiently large. This has been

attributed to the fact that the logarithmic term in frequency in the

kernel function is stronger at high mach numbers for two-dimensional

aerofoils than for three dimensional lifting surfaces.

By taking the Lapalce inverse transform of qij (s,M)/s_ it is

possible to obtain the indicial response in the ith mode due to a tin_e-
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.th
wise step change in displacement of the 3 modeat time t = O. These

results are shown in Figures ii to 19, and have been obtained from

[4, 9] Pad_ approximants in all cases except in the case of qll at M = 0.7.

From these figures it is quite clear the loads corresponding to the same

pressure mode have the same general behavior in the time domain. Also

the loads corresponding to the flap mode take much longer to reach the

steady state value_ than the loads due to plunging and pitching.

The influence of compressibility on Wagner's indicial function may

be studied. In this case, the lift qll' due to a rigid plunging mode is

calculated at several Mach numbers and the corresponding indicial

function is obtained by taking the Laplace inverse of qll/S 2. This

result is shown in Figure 20. These curves are compared with that of

Mazelsky and Drischler [15] for Mach number = 0.5, in which case the

error was found to be the highest.

Supersonic and transonic flow. - In supersonic flow the

expressions for the lift, moment and partial moment for an aerofoil

with a flap are given in [44] and for an aerofoil with both trailing

and leading edge flaps in [45]. The Pads approximants for the exact

expressions for the lift and moment of a rigid aerofoil in plunging and

pitching may be obtained. The lift coefficient for an airfoil in pure

plunging motion is,

Lh . 2+ h
--= 4( s as+b )V
qb Ms2+ cs + 8b

s+ 2 h

+ 83 ) V

or
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whe re

a- 3MB
[SMB + 3 + 3M3(_-M)- M2_J_ A = M2(TM 2- 3)

b : -_3_ (_2!B2(__M)+ 3_2M) 31B2M2 ((3M2+ i)(_-M)+ 4M)
c= 7

The moment coefficient in pure plunging motion is,

Mh als
_ 4(

qb 2 Ms2+ ClS + bI

h

) V ' where aI =
-5_

3M (IIM 2- 3)

b I - 564 , and cI - IOM62

M(IIM2-3) IIM 2- 3

The lift coefficient in pitching is given by,

L a2s + b2 M 3M 2- 2 ), b2 _ 3M_
qb - 4( Ms + 6b 2 )G ' where a2 = 5( 3M2+ I 3M2+ i

The moment coefficient in pitching is given by,

M s2+ a.Ss M2 2 3(2 - M2)M_2+ 3_ 5

qbC_2- 4( 3Ms + b 3 )C_, a_._ - _2- b3' ]03 = 2M2

All four approximants have the correct asymptotic behavior in the

limit s _ 0 and the piston theory limit was enforced for s = _. Also

the poles of all four of the approximants satisfy the stability cri-

terion discussed in the last section. The approximants are good
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approximations for the loads for M > 2.0. Thoughnot extremely accur-

ate these approximations are certainly better than piston theory or

quasi-steady theory.

It was observed that for higher order Pade approximants, the poles

behaved in an erratic manner especially for low supersonic machnumbers,

moving often into the right half of the 's' plane. In transonic flow,

it is well knownfrom the exact solution for the pressure [46], that

the linear aerodynamic theory leads to infinite aerodynamic loads in

the steady state as the loads have a pole of the form _. This was

probably the reason for one of the poles of the approximants moving

towards the origin for low machnumbers in the supersonic regime and

high machnumbers ( > 0.8) in the subsonic regime. For the reason

indicated above it seemsappropriate that in transonic flow_ the

aerodynamic loads maybe written as a [N,N+2] Pade approximant in

with apole at v_ = O. However this result has no practical value, as the

linear theory is known to be invalid in steady transonic flow.

The physical interpretation of this result is that two dimensional

shock-free transonic flows are unstable on the basis of linear theory.

One of the arguments against the physical existence of shock-free

transonic flows was based on the supposed instability of these flows

with respect to upstream moving disturbance waves [47]. The argument

was that these waves when superposed on a steady shock-free basic flow

could move upstream as long as the local steady flow speed was subsonic,

but as they entered a region of supersonic flow they would come to a

standstill and coalesce to form a steady shock wave.
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HoweverPearcey [48] showedusing laborious experimental tech-

niques, that the disturbance wavesmoving upstream can penetrate the

supersonic region, and that in fact, shock-free transonic flow

could be experimentally realized. This is attributed to the non-

linear turning effect of the wavesmoving upstream into the supersonic

region, which was not theoretically accounted for earlier [49]. Then

based on geometrical acoustics one mayshow that disturbance waves

moving upstream can penetrate the supersonic region. The problem of

shock-free transonic flow is too complex at present for a strict

mathematical treatment.

The numerical technique developed in the last section is also

applicable to supersonic flow. The results are tabulated as in the

subsonic case for N = 2 in Tables 6 - 8. It maybe noted that the

derivatives of the indicial response functions to time-wise step

changes in the downwashin plunging and pitching [12] are not continuous,

since the period of influence of an impulsive source is finite. The

above technique approximates these derivatives by continuous exponential

functions (Figure 21). Thus higher order Pad6 approximants are

essential to approximate the derivatives of the above indicial

functions.

It was found that for Machnumbers less than 1.5 second order Pad_

approximants were insufficient for modelling the loads. The possible

reason for this has already been discussed. On the other hand for

Machnumbersgreater than 2, a first order Pad6 approximant was sufficient
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for the lift and momentin plunging and pitching in the frequency domain.

This is to be expected as for a wide range of frequencies. In fact

Piston theory maybe considered as a zeroth order Pad_ approximant

for high machnumbers.

Three Dimensional Lifting Surfaces

In this section a systematic method of obtaining Pade approximants

of the aerodynamic pressure loads is presented. Thoughthe method is

actually quite difficult to apply in practice_ it will prove the

existence of Pade approximants and the form of the solution. The method

is also applicable for two dimensional airfoi]s.

First it must be noted that Piston theory is also valid for three

dimensional lifting surfaces for high frequencies and that any solution

for the pressure distribution must converge to this limit for high

frequencies.

In subsonic flow for two-dimensional airfoils, it is well known

that the non-dimensional pressure _(_,_,ik) maybe written as_

0

For three-dimensional lifting surfaces it is given by

_p = E p}on (ik)n+ (ik)21og ik p_(ik)n (3- 4)
n=O

n n

where PSO and Pgl are independent of f_equency. Assuming the downwash

to be WOO + ik wOl and using the kernel function expansion in Appendix
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B, for low frequency (equation B18), wehave

8 (wlO÷ikWol)
V

co

Z an(ik)n+(ik)21og ik bn(ik)n]_(_,_,ik)d_dw_
n=O

Hence we have the infinite system of equations,

Woo 1 j,j. o
-9- = -_ AaOP30

wOl 1

-_- = - _-_ _;(alp300 + aOp310)d$ dq

0 : (a2P + alP30 + aOP )d_ dq

The first equation in this infinite set, involves the calculation of the

pressure distribution by application of steady state lifting surface

theory. After having determined the steady state pressure the second

term is also determined from steady state lifting surface theory since

O 1

P30 is known and P30 occurs in combination with the steady state kernel

aO. Thus the coefficients may be obtained numerically by a procedure

llke the kernel function technique. In this manner it is possible to

i i

obtain all the coefficients P30 and P31" One special case of importance

0 0

is when WOO = O. In this case P30 = 0 and P31 = O. Hence in this case,

1 2 k 2 O(k3i + O(k31og ik)
_P = P30 ik - P30 +
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Thus the existence of a solution of the form given by (3.2) is estab-

lished.

Next we note that

QO

s log(so(S/So)): s (-i)i+l
i=l

+ s log sO O < s < 2s O-

From (3.2) we have

_p= Z psn0(ik)n+ [ik 2 (-1) j+l
n=O J n=l

J
(k _i)
ko

P31 (ik)n+(ik)21°g iko ]

This can be rearranged in the form,

2N-2

_pp = E C (ik) n (3 5)
n=o n

The coefficients Cn are functions of the number of terms included

in the series for the logarithm. However the coefficients converge.

Further the first two coefficients are unaffected. We may now construct

a [N, N+l] Pad_ approximant such that Piston theory is satisfied in

the limit s _. The coefficients of [N, N+l] Pade approximants may be

obtained in terms of Cn by solving a linear system. Thus one may con-

struct a sequence of [N, N+l] Pade approximants. These would have the

!

same asymptotic behavior as equation (3.5) for small values of frequency

and the correct limit for high frequency.

It is now essential to establish the convergence of this sequence of

p

Pade approximants.
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In Appendix D, a similar problem was considered. First the Neumann

series solution of the problem was established. It was then shownthat

convergence of the Pade approximants is assured if the kernel function is

a completely continuous kernel.

Symbollically we maydenote the lifting surface problem as_

w = Lp = [L0 + ikL1 + (ik)2L 2 ... + (ik)21og ik(M0+ ik M1 ...)]p

where Li and Mi are integral operators.

problem is

The solution to the steady state

Psteady = LO1 w

The iterative method described can be symbolically written as_

p: T,olW-  'ol[ikLl+(ik)%,2+...+(ik)21og(ik)(MO+ ik ...)]p

The above is a Fredholm integral equation of the second kind of the type

considered in Appendix D. Complete continuity of the kernel function in

the above equation can be assumed in view of the uniform numerical con-

vergence of the kernel function method. As explained in Appendix D the

condition of boundedness of the kernel function is not related to the

condition of boundedness of the operator or complete continuity.

Complete continuity ensures that the integral equation may be reduced

to an algebraic system and that the solution converges uniformly. If

47



it is so, L maybe thought of as a matrix and

[ADJ(L)1
p = L-lw_

det (L)- w

If the elements of L are rational functions or polynomials of a parameter

[A_J (L) ]
s, then elements of Det(L) are ratios of polynomials. It is from this

fact that we are able to conclude that there exists a sequence of Pade

approximants if the kernel function is completely continuous. Hence

the theory developed in Appendix D may be applied to the above system

and it could be concluded that there exists a sequence of [N,N+I] Pad6

approximants that converge to the exact pressure distribution as N _ _.

The same conclusions hold for the aerodynamic loads.

Thus we may write qij(s,M) approximately as,

qij (s'M) "

N+I N
aoS + als ... aN+ 1

MsN+ b2 sN-I ... bN+ I

In compressible flow a0 may be calculated exactly from piston theory.

In the case of M = O, we can easily verify from the equation that the

loads are given by a sequence of IN,N+2] Pads approximants. In the

limit M 40 and s _ _ we have the integral equation for virtual inertia

given by

2 z(x,y) l ,s l
s b - _ J'_A d_ 'rl )(X2 + y2)9/2 )
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This is a self adjoint integral equation and can be solved by a kernel

function technique. Unlike compressible flow the pressure distribution

has no singularities along the boundaries. It is important to realize

that virtual inertia and Piston theory loads are independent of the

direction of flight. Howeveras circulation begins to develop the Kutta

condition is of importance and the classical theory of motion of a body

through an ideal fluid is not valid. W. P. Jones [50] has proposed a

simple method for solving the above equation for rectangular wings. Two

dimensional broadside configurations such as circles and ellipse with

symmetrically placed fins have been treated by Bryson [51, 52, 55] with a

view to analyzing the stabilizing effect of control surfaces onaircraft.

For a circular wing of radius ro, in incompressible flow it could

easily be shown (Appendix C) using the sametechnique as van Spiegel's

[54] solution for low frequencies, that for large frequencies

 Cp(r,O) = O(k2)

The actual computation of the Pads approximants, though possible

in principle, was not carried out. Exact Pads approximants could also

be computed in compressible flow. However the amount of computations

involved to get meaningful results is enormous_ as it is essential to

expand several special functions and their products in power series.

Also circular and elliptic wings are not used often in practice. The

numerical technique outlined in the previous sections with some modifi-

cations for three dimensional lifting surfaces is more useful.

For three dimensional lifting surfaces the aerodynamic loads may

be written as
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0 1
qij(s_M) = qij(M) + sqij(M)

÷

_i N 2
CoS ÷ ClS + ... CN_ 1 s

N N-I
s ÷ b2s ''" bN+ 1

0 (M) ÷ I (M) are the exact loads in the limit s -_0 and
where qij sqij

0

Co = ao - qijl(M)'M. qijO(M) and qijl(M) may be calculated from P30

i

and P30 "

If [A0 + ikA I ] is the influence coefficient matrix for small values

of k and [wj} = {wj0 i ikWjl}, the downwash vector, the pressure

coefficients for small k are given by

PJ = [AO]-l[{wj}_ ik AI[A 0]-lwj0 ]

[AO] may be calculated exactly as in steady flow. [AI] is calculated

from the coefficient of ik in the expansion for the kernel function

given by equation BI$, using either the doublet-lattice or kernel function

technique. Integrating the pressure with appropriate displacement mode

o(M) and I(M).
shapes leads to qij qij

The numerical evaluation of the coefficients bi and ci in compres-

sible flow is similar to the two dimensional case. In incompressible

flow since the numerical technique for the calculation of the virtual

inertia loads for arbitrarily shaped wings was not completed, a0 was

assumed to be unknown and b 2 euqal to unity.
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After some numerical experiment N was chosen to be equal to 2.

This leads to a first order rational function in incompressible flow.

A simple lag is sufficient to model the circulatory effects in this

case. In compressible flow two lags are essential_ for large aspect

ratio wings at low m_ch numbers, one to account for the lag due to

compressibility effects at high frequencies and the other to model the

lag due to circulatory effects at low frequencies. For moderately low

aspect ratios at high subsonic mach numbers the lag due to compressibility

effects may be modelled by a single lag. For low aspect ratio wings

(AR < i) there exists no physical reason for aerodynamic lag and hence

no lags are required at all Mach numbers. Some examples are presented.

(I) Circular Planforms: A circular wing is considered in

incompressible flow. For circular wings the exact results of Van Spiegel

and Benthem and Wouters [55] for simple harmonic motion in plunging_

pitching_ chordwise bending and spanwise bending modes are used.

Rational function approximations to these loads are given in Table (9).

The error in the virtual inertia lift in plunging is about 30% • This

high value is due to the lack of any data points for k > I. The growth

of lift and moment for a timewise step change in the downwash in the

plunging and the spanwise bending modes are shown in Figures 22 to 25.

No other results were available for comparisons. The corresponding indicial

functions and the indicial functions for the lift and moment due to a time

wise step change in the displacement in different modes are tabulated in

Tables i0 and 12. The lift and moment in the spanwise bending mode

reached the steady state value much faster than the chordwise bending

mode. This is to be expected as in the first case_ the major contribution
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to the load is from the pressure at the wing tips where it does not change

aprreciably with time.

(2) Elliptic Planform: An elliptic wing, AR = 6, is considered

in incompressible flow. R. T. Jones considered elliptic wings of aspect

ratio 6 and 3 and computed the indicial response for the lift due to

In the limiting case for high frequencies, he obtains approx-plunging.

imately,

qll(S) = _( l _ )[ (st + s(l+O( ))+o(sO))

S(71-(_) _)

where E(') is the complete elliptic function of the second kind and

represents the ratio of the semi-perimenter to the span. The first

term represents virtual inertia. It may be noted that it is independent

of the direction of flight and hence is minimum for circular planforms.

For low reduced frequencies, we may compute the asymptotic value

of qll by the iterative technique described, using the kernel function

method to solve the integral equations. Fifteen spanwise integration

points, three chordwise collocation points and ten chordwise integra-

tion points were used for the calculation. Thus for small s we have,

11
2 2 ._)

i + s ql + O(s + O(sPlogs)(s): sq11 I

1 is identically equal to the stability derivative C_ may beqll

approximated by the formula,

C_ :: _:_( (13AR)2 + 1.7D72(13AR) )
c_ (BAR)2 + _.7680(15AR) + 6.94_ii

The corresponding formula for rectangular wings is,
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2_ (BAR) 2 + 0.7881 (BAR) )

C_c : -_- ( (BAR)2 + 3"5760(_ AR) + 3.1526

Both the above formulae have the correct limiting solutions for AR -_

and O.
C_.

2(: v .
qll 2_b ) is also computed for elliptic and rectangular wings

for increasing values of AR and shown in Figure 26. The curves indi-

cate a maxima for circular and square lifting surfaces. For lower

aspect ratios, low aspect ratio wing theory is a good approximation.

i 2
For a circular wing q II and q Ii may be obtained from the exact cal-

culations of Van Spiegel. The errors in the numerically calculated

values, using the method described above, were found to be 0.16_ and

0.9% respectively.

From these asymptotic values it is possible to construct exact

[i, 3] Pad_ approximants. Taking the Lapalce inverse transform we

obtain the indicial response to a impulsive displacement. These results

are compared to those R. T. Jones in Figure (27). Though the difference

in the two results is not too large for high frequencies (') it is con-

siderable in steady flow.

Next the lift due to an elliptic wing_ performing simple harmonic

oscillations in the plunging mode was calculated at ten frequency points

using Laschka's collocation technique with fifteen spanwise integration

points, eleven chordwise integration points and three chordwise colloca-

tion points. The least squares technique for computing Pad_ approximants

described earlier was used and the indicial function was computed for an

A2 = 6 lifting surface. This is compared to the results of R. T. Jones
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in Figure 28. This result comparesvery well with the corresponding

indicial function, obtained by using only th_ asymptotic values. This

is quite significant for as it clearly indicates that with only the

calculation of the asymptotes and the aerodyn_nic loads for one

frequency of oscillation, it is possible to predict aerodynamic loads

for all types of arbitrary motion.

(3) Rectangular Planform: Rectangular planforms of aspect ratio

4 and 6, in incompressible as well as compressible flow, are considered.

The aerodynamic loads for simple harmonic motion are obtained using

Laschka's method with fifteen spanwise collocation points, three chord-

wise collocation points and eleven chordwise integration points. The

optimumnumberof chordwise integration points is the integer value of

[n(m + 0.5)], n = i, 3, 5, 7, ..., m = numberof chordwise collocation

points. It has been shownby Rowe[24] that not using the optimum

numberof integration points could lead to considerable amount of

oscillations in the predicted values of the loads as comparedto the exact

values. The numerical technique is used to calculate Pade approximants

and indicial functions. The indicial function_ for plunging are compared

with those of W. P. Jones [Ii] for AR= 6.0 and 4.0 in incompressible

flow (figures 29, 90, and 31, Table ii). In [56] the result for AR= 6.0

is comparedto the one obtained by a potential flow technique. The fact

that the virtual inertia for an AR= 6 wing is slightly lower than the

case AR= 4.0 cannot be attributed to any physical reason. In fact it

can be argued that the virtual inertia must be a minimumfor a square

lifting surface (AR= i) and have the samevalue as a two dimensional

airfoil AR= 0.
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Whencompressibility effects are included (Figure 32) the influ-

ence of finite aspect ratio is to reduce the steady state lift while

the starting value given by Piston theory is unaffected. Sweepingthe

lifting surface backwards, with the plauform area a constant, further

reduces the steady state lift without effecting the starting value.

In Figure (33) and Table 13 is shown a comparison of the

generalized aerodynamic loads due to plunging (1) and pitching (2) for an

aspect ratio 6 wing. This indicates that the basic behavior of the loads

due to the pressure in any one of the modes is about the same. Thus

this raises the possibility of approximating all the loads due to the

pressure in any one mode, by the same combination of exponentials

with different magnitudes. Also one may conclude that the exponential

rise times in all the loads due to the pressure in the same mode are

interelated. This fact led to a simplified scheme of approximating

the aerodynamic load matrices for purposes of flutter analysis. This

scheme is briefly discussed in the next chapter.

In Figure (34) the influence of compressibility on the indicial

response in the plunging mode for a finite aspect ratio wing (AR = 6.0)

is shown. This again is similar to its two dimensional counterpart

shown earlier. The steady state lift is considerably reduced due to

induction effects.

The indicial rolling moment for an impulsively rolling wing is

shown (Figure 35) for a straight and swept wing of AR = 6. Here the

influence of sweep is to reduce the lift uniformly for all value of

time •

(4) Tapered Planform: A tapered planform of AR = 5.84 and a

"taper ratio of 0.524 was considered. The indicial lift for plunging
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was comparedwith that of W. P. Jones in Figure 36, and indicates

good agreement. The influence of taper is to raise the magnitude of

the indicial lift quite uniformly for all time. This is to be expected

as the pressure falls to zero, near the wing tips and hence does not

contribute much to the total lift. Hence the influence of tapering

with AR and planform area fixed would be to increase the total lift,

both in steady and unsteady flow.

(5) Swept Wing (A = 45 ° ) with a control surface (AR = 4.16):

This wing (Figure 37) was studied extensively using the improved

version of the doublet-lattice method described in the appendix to

calculate the aerodynamic loads on the wing for simple harmonic

oscillations.

The wing was modelled as a beam-rod and its mode shapes (first

bending and first torsion) were calculated by curve fitting discrete

mode shapes (Table l_). These two polynomial mode shapes and a rigid

control surface mode were used to calculate the aerodynamic loads

on the wing.

First the convergence of the doublet lattice method in the limits

of small and large reduced frequencies was investigated. For low

reduced frequencies, the method was applied with l) 6 chordwise boxes

(NCB) and _ spanwise boxes (NSB) 2) NCB = 6_ NSB = lO and 3) NCB = 9,

NSB = 5 (Table 19).

This indicated that increasing the number of spanwise boxes

(from 9 to 7, 8, and I0) resulted in a converging result. However

changing the number of chordwise boxes did not alter the results signi-

ficantly.

56



To veri_y the usefulness of the box integration schemeat high

frequencies it was assumedthat the pressure at the sending point

(quarter chord point) of each box is given by 4/M times the downwash

at the receiving point (three quarter chord point) of each box. In

this manner the generalized forces are computedin each of the three

cases given above and comparedwith the exact piston theory results.

This did indicate convergence with increasing numberof chordwise

boxes. These results are shownin Table 16.

Finally the method was used to calculate the loads at a number of

frequencies starting from small values of frequencies to high reduced

frequencies (up to 5 based on semi-chord).

The generalized forces due to the pressure in the bending and

control surface modes did converge slowly to the piston theory result.

However. the generalized forces _ associated with the torsion mode did

not converge to the results of piston theory. Hence using the results

of the first case and the numerical method for calculating Pade

approximants, it was found that the poles of the approximants were

unstable in the loads associated with the torsion mode. In the sec-

Ond case (Table 17) the results did improve considerably at low fre-

quencies hut not at high frequencies. It was not possible to con-

struct a stable first order Pade approximant for the generalized

force in the second mode due to the pressure in the first. Also the

rise times for the loads (Figures 38 - 46) associated with the torsion

mode were small when compared to the first bending and control surface

modes. The partial moment on the partial span flap has the same

behavior as the corresponding indicial function for two dimensional
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aerofoils. Also since the results for simple harmonic motion did

converge to the piston theory limit in this case the indicial function

seems quite accurate. However there is no check on the accuracy of

the results as no comparisons are available.

From squations (3.3) and (3.4) we may conclude that the influence

of finite aspect ratio would be to push the poles of the approximants

further into the left half of the 's' plane. For this reason also,

it is important to calculate the aerodynamic loads for higher reduced

frequencies in order to get accurate representations of the loads

than would be necessary in the two dimensional case. An efficieint

and fast method for calculating unsteady aerodynamic loads at all

frequencies is therefore essential.

On the other hand for aeroelastic purposes _ it may not be necessary

to enforce the piston theory limit for low aspect ratio wings. How-

ever extensive flutter calculations are essential for any conclusive

results.

The doublet lattice method does not converge uniformly for all

frequencies. The reason for this appears to be the lattice integra-

tion scheme. Hence the doublet lattice method is not too useful for

finite state modelling of aeroelastic systems.

58



SUGGESTIONS FOR FUTURE RESEARCH

Generally for purposes of flutter analysis, it is sufficient

to calculate aerodynamic loads accurately at the frequency and

flight velocity at which flutter begins to occur. However for

designing control systems for the suppression of flutter, it is

not only essential to predict the root locus in the neighborhood

of the flutter frequency, with respect to the flight velocity,

but also some of the stable roots of the transcendental characteristic

equation which influence the unstable locus. Thus aerodynamic

models used for flutter suppression studies must be fairly accurate

over a range of frequencies. Numerical techniques must converge

uniformly over a large bandwidth. Collocation techniques discussed

earlier for the calculation of aerodynamic forces generally satisfy

these convergence requirements.

The aerodynamic modeling theory presented in this report

suggests the possibility of representing the aerodynamic load matrices,

Qx' in a certain modal coordinate system X, as

-I

Qx = {qxij } = {Pxij(s)/rxj (s)} = P RX X

where R is diagonal.
X

system Z = TX

Transforming to the actual modal coordinate

Q = T-IQx T = T-IPxT [T-IRx T ]-I = P(s)R(s)-!
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where R(s) is not diagonal. Hence in general

and

N
n N+l

P(s) = Z Pn s + PN+I s
n_O

N-1

R(s)= z R n + N
n

n=O

(4.1)

The interpretation of this approximation is based on the fact that the

loads due to the pressure in a_mode may be approximated by the same

combination of exponentials with different magnitudes. If M = O,

this reduces to a [N + l_ N - l] matrix Pade approximant. The

coefficients Pn' Rn may be obtained numerically using a combination of

Lagrangian interpolation and least squares technique. This has already

been verified for two-dimensional aerofoils and in certain s_ecial cases in

three dimensional wings • In these cases _ however, the Piston theory limit was

not enforced and N = 0 and N = i were sufficient in the range of frequencies for

which the phenomenon of flutter becomes a possibility.

The above approximation of the aerodynamic load matrix has

several advantages over the method of approximation already discussed.

The matrlx approximants lead to only Mn'N (Mn(N-I) in compressible

flow) states, in addition to states required to define the structural

system, where M n is the number of vibration modes considered for

modelling the structure. Approximating every individual element of

the aerodynamic matrix by a Pad_ approximant leads to M 2"N (Mn2(N-I) in
n

incompressible flow) additional states.

The equations of motion of the entire system can be written as
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_il + 5ql - _vP(S'M)R-l(s'M)ql: BUc

8v = q Awb

The equation reduces to,

[MIR(s,M)s% 2--_ + 5R(s,M)-BP(s,M)]R-_s,M)qI : BUc

The flutter speed is determined by

det[MiR(s,M ) _2 2 + KIR(S,M )- 8vP(S,M)] = 0

The equations of motion can be reduced to the form

(_..2)

(_.3)

(_.4)

X= FX+GU

Zm=HX

where X is the vector of states {y]{#] etc. and U are the control

torques on the aerodynamic control surfaces. There are several

criteriawhen such a realization would lead to a system which is con-

trollable and observable [57]. These are generalizations of the

criteria for scalar transfer functions. The survey article by

Silverman [58] presents an excellent description of the realization

problem,
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The model is useful for synthesizing control laws for active

flutter suppression. Control laws maybe written in terms of the

state vector [X] as

A

U= -CX

may be obtained by arbitrary pole placement. The characteris-

tic polynomial of the open loop system is assumed to be

N
n n-i

X(F) = s + Z ais
i=l

and that of the desired closed loop system,

A

(F - Gc) : sn +
N

n-i
E pis

i=l

The coefficients a. are related to F by the relations,
I

k

1 r a. Sk+l_j ,
ak-- _ j:o J

k = i, 2, 3_ ... N

where S$ = trace (F_) and a0 = i. Similar relationships hold for
#%

(F- GC) and Pi" Using the notation,

T A
P = [PI' P2' "'" Pn ]

and

T A
a = [al, a2, ... an]
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A

i 0

h 1

an_ 1 an_ 2

an an_ 1

0 ... 0 0

0 ... 0 0

I 0

A

it is possible to obtain a relationship between the control gains C and

[p]-[a]. It may be tinted, that A -1 always exists and can be evaluated

easily• In [99] it is shown that provided F is cyclic (if not an

,% *k

initial gain Ci may be chosen such that [F - GC i] is cyclic)

A

trace GC

*%

trace FGC

• •,

trace Fn-lGc

-i

:A (p-a)

This is a linear system of equations in terms of the unknowns in C and

may be easily solved. Preliminary results are extremely encouraging.

A detailed discussion of the modeling procedure and numerical results

is beyond the scope of this paper. A simple scheme for control

law synthesis is shown in Figure _7. This technique is outlined by

Lyons, et al. [60]. Optimal laws based on quadratic synthesis may be

obtained by theaigenvector decomposition technique as applied in

Ref. 61. An offshoot of this technique would be a new method

of flutter analysis which would be useful in structural optimization [62].
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CONCLUDING REMARKS

A general theory of finite state modeling of the aerodynamic

loads on oscillating airfoils and lifting surfaces has been systema-

tically developed and presented. In particular, the nature of the

behavior of the unsteady aerodynamic loads in the frequency domain

is now well understood. The analytical reasons for the difference in

the behavior of these loads at high frequencies in incompressible and

compressible flows are explained. Extensive studies need to be

carried out for supersonic lifting surfaces, where it is expected that

higher order Pad_ approximants would be necessary for an accurate

prediction of the aerodynamic loads for arbitrary motion. The theory

presented has several useful applications, especially in the control of

the vibration modes of aircraft wing structures and in the active

suppression of aeroelastic instabilities.

This study suggests the possibility of approximating aerodynamic

loads as Pad6 approximants in Mach number as well. However, in the

transonic regime nonlinearities need to be considered to account for

shock waves.

Several other suggestions for improving the results and for

applying the theory have also been presented.
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APPENDIXA

INFLUENCECOEFFICIENTSFORA BEAM-RODWITHA FLEXIBLEROOT

The influence coefficients for bending of a beamof length _ are

given by (the deflection at point x due to a unit load at point _)

X

Czz(X,_)_-] (_-_)(x-_) _ 10 EI(X) dk + + _ , for g > x _> 0

_-_ (_-X)(x-_)d_+ _x 1
o E_(_) _ + _ ' for _ _>x _>

where EI(_) is the flexural rigidity distribution , _ is the root restraint

stiffness constant for rotation in the plane of bending, and Kh is

the root stiffness constant in shear. The influence coefficients for

torsion of a rod of length _ are given by (torsional deflection at

point x due to unit moment at point $)

X

cee(x,_) = O_ dk iGj-rO_7+_ , fo_ __>x_>O

dk i

=oS

where GJ(k) is the torsional rigidity distribution and K e is the

torsional spring constant at the root. If the root is rigidly fixed_

the influence coefficients reduce to those given in [1].
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APPENDIXB

INTEGRALEQUATIONSFORUNSTEADYAERODYNAMICS

Three Dimensional Lifting Surface

The source solution of the linearized equation for the velocity

potential is given by

47r@= -H(T - r/c) (B.I)
r

where H(-) is the Heaviside step function, r is the distance between

the observation and the source point, T is the time measured from the

instant of the disturbance and c is the speed of sound. The observa-

tion point is affected at time T if the disturbance moving with a

velocity c can trayerse the distance r in that time; the strength of

the disturbance is -1/4wr.

A coordinate system (g,_ _ _ r) moving with respect to a fixed

coordinate system (Xo,Yo,Z0,to) , along the negative x 0 axis with a

velocity v, fixed in the wing_ is considered. The fixed and moving

coordinate systems are assumed to coincide at time t = t. The
o

coordinates of the point (_, _, _, T) referred to the fixed axes are

(_ - v(t 0- t), _, C , to). A unit acceleration potential source at the

point (_, _, C ) in the moving reference frame will produce an

acceleration disturbance at the point, (x, y, z), after some time delay;

the magnitude of the disturbance is
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[ i ] l= HC'v'-r/c) _ =-_'

2
r = (x - _ + v(t o- t))2+(y _ _)2

2

+ (z - C), (B.2)

In fixed coordinates, the velocity potential is related to the accelera-

tion potential as

@(x,y,z,t) = _t2_(x,y,z,_)dt

tI

where [tl,t 2] is the time domain of influence of _, which affect_ the

velocity potential at time t in fixed coordinates, t2 and tI are the

last and first instants of time at which the moving source can affect

the observation point.

Therefore the velocity potential at (x,y,z,t) due to a moving

doublet at (_, _, _, to) of strength A_(_, _, _, to) is given by,

t2
i _ i

¢(x,y,z,t) = - I_ _ _ A_(_, _, _, to) _ dt 0 (B.3)

tI

The time t2 satisfies the equation,

((x - _) ÷ v(t 2- t))2+(y-_)2+(z-_)2 = c2(t 2- t) 2 (B.4)

This is the equation for en ellipse and determines the region of

integration for equation (B.3). If X = x- _, Y = y - _ and Z = z -

and t2 - t = T, we have
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MX+R
cT - or

I -M2
R -MX+
M2 - i

i

_B.5)

where R =_2 + (i - M2)(Y 2 + Z2)

For M < i, only one of the solutions is negative. Hence

t2= t+
IMX -R

c i - M2
(B.6)

If the perturbations in the flow field existed for infinite time in

the past then tI = _ • 0n the other hand if the flow field is

unperturbed for time t < 0, then clearly

and

t2 = tO +
i MX -R

c i - M 2

tI = 0 provided t >
IMX -R

c i -M 2

(B.7)

IMX -R

If t < c i M 2 ' tl

the observation point.

= t2 = 0, as the disturbance has not reached

For M > i_ both solutions for T are negative

and the period of influence is the time an advancing spherical wave

would take to pass the point of observation. Therefore,

t2= t+

tI = t

IR -MX

c M2 -i

IR+MX

c M 2 -i

(B.
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provided, of course, both tI and t2 are positive. For M = i, (transonic

limit), we may let M = I + Eor i - e and take the limit as z _0. If

we denote U i A= X + V(t i - t), i = 0, i, 2, then in subsonic flow,

X -MR
U 2 - = Vt (B. 9)i -M 2 ' UI x -

provided the flow field is unperturbed for time t < 0.

For supersonic flow, t sufficiently large,

- (MR + X) (B.IO)
MR X ,UI= M 2U2 - M 2 - 1 - 1

Hence the velocity potential at (x, y, z, t) due to a moving

doublet at (_,_,_,to) is equal to

U2 UO- X

_(x,y,z,t) = 1 _ A_(_,I]_ ,t + --V--- )
-_ J" dU o

u1 _/Uoe+y2 + z2

(B.II)

The total velocity potential at (x, y,z,t) due to a distribution of

moving doublets on the lifting surface S, at _ = 0, is given by

U0- X

1 _z jU2 A_(_,_,O,t + T4vr@(x,y,z,t) = - V j'j'd_ d_

s u1 _/Uo2+y2 + z2

)
dUo (B.12)

The downwash on the surface is _iven by

1Lt _ If d_ dy _ fU2
4_ w(x,y,t) = - V z-_0 S--z _z

S U I

A¢(_,n, 0,t + U -X)dU
o o

/ 2
U + y2 + Z2
o (B. 13)
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It can be shown that a discontinuity across a doublet layer exists

such that [I]

A$(x,y,O,t) = _(x,y,O,t) - _(x,y,-0,t) = Ap(x,y,t)
0 =J (B.14)

where Ap is the pressure differential across the surface.

Substituting (B.14) in (B.13) and performing the differentiation

using Liebnitz rule, we have the following integral equation for the

downwash in subsonic flow.

w(x,y,t) = 1 ff dEdn
V 8_q S

MX+R 1

[Ap(_,_ t + U_X)

M

' R I X2+y 2

Uo-X i I+ IU Ap _,n,t +--

O V I(/U 2+y2 )
O

dU
3 o

t _(_-x/v) ]+ I Ap(_,q,(t-T)) VdT
0 ((X-VT)2+Y 2)

X-MR I

where Ap(_,n,t) = 0 for t<O, U -
I-M 2 '

q = ½p®V2,Rl =/X 2 + (I-M2)y 2 and t >
1 RI-MX

c I-M 2

(B.15)

In the limit as t + 0, U + X, MX + R 1 and X2 + y2 + 0, and only the

first of the 3 terms remain in the equation B.15. Integrating over a

small region around the receiving point (x,y), we have

w(x,y,O) = _ _M Ap(x,y,O)
V 4 q
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which is the familiar piston theory result. At the initial instant, the

lifting surface behaves like a piston, and the flow over it is

similar to one dimensional compressible flow. It maybe noted that a

similar equation obtained by Drischler[63] maybe reduced to the

sameform as (B.15) after somealgebraic manipulations.

Taking the Laplace transforms of Equation B.15, wemay obtain an

integral equation relating the Laplace transform of the downwash

w(x,y, pb pb. _-) and the pressure Ap(x,y, -_-), where p is the Laplace trans-

form variable.

..... pb pb81rw(x,y_(pb/V))v ql _ de d_ _(¢,_, _-)K3(X,Y, -_ )

where
p(X -MR1re -x>

K3(x,Y, _ )= [ R1 X 2 + y2

X -MR 1

l_M2 _(Uo-X)

+ _ eV H(t - X/V) ] ] (B.16)
0 (U02+ y2)3/2 dUo + V ,_ { ((x - vt)2+ y2) 3/2

£ (m) represents the Laplace transform of m. The third term converges

only for real (s) _> O, and - X

K3(X,Y Pb_ _ [ vP-(_l_-M2) M MX+ R1_V) = e e RI X 2 + y2

0 - p-!_
V

+ j, e dT

m__-x(_2+y2)3/2

1 -M2

ye ) IHI-z(v V

71



where IHI_I(') is a Struve function and

Y(-) is a Bessel function of the second kind.

For simple harmonic motion this reduces to the kernel function given

by Watkins, et al. (64). For purposes of calculations however it is
pb

convenient to write, K3(X, Y_ -_ ) as,

pX P MRI-X
pb - V [ -_[ _ ] M MX+ R1

K5(x,Y,V ) = e [ e R1 X2 + y2

o v ]j, e dT

+ MI:{I_ X (1.2+ y2)5/2

(B.17)

As shown by Landahl [65], the integral is also equal to,

Ii [ ]-- Exp -PY_ dT

X 2 + y2

However equation B.17 is most convenient for calculation purposes. The

second term in equation B.17 is a singular integral at Y = O. Hence

the integration over the lifting surface must be done in the sense

of Hadamard, as expalined by Mangler [66]. This is indicated in

equation B.16 by the symbol _.
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For small values of the reduced Laplace transform variable s = pblV ,

wemaywrite the Kernel function as [67].

0O

sn s2
Ks(X,Y,s ) = E (an + _n(s).bn sn) (B.18)

nr-O

i

where a0 - y2
(1+ x )

_1/X2÷ 132y2

X 2 y2
l 1 (X+ + )

al = b y2 _X2+8% 2

b 0 = 1/2

bl : - X
2b

The coefficients b
n

not of X]

are functions of the spanwise variable Y only (and

In steady flow, for s : O,

1 (i+
<x,Y,o):

X
(B.19)

and in the limit as s _ _, from piston theory

K3(X,Y,S)Is_ : 2WMS(X,Y) (B.20)

In the limit as M -_ O, we have,
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(T+x)
b

K3 (X,Y,s)IM:O = J' e
-X (T2+ y2).5/2

d"[ (B.21)

In two dimensional incompressible flow we have,

-s (_+x)

I a (x,s)= J' J" eK2(X's) M:O = K20
-_ -x (T2+y2)3/2

d_" dY

2 + 2s -s X/b: 2 ye si(sxfo)

2 _7(i,i _ sXX - -b- ) (B.22)

E (sX]
where i'-b-" is the exponential integral and U(l,l,-sX/b) is a Kummer

function.

The above Kernel function indicates a distribution of time delays

over an infinite time domain. Further they are not valid for Real(s)

< O. However if a solution to the integral equation can be obtained

for Real (s) > O, the convolution principle may be used to find the

solution for any s.

For purposes of calculations, we note that the function

]HI-I _'s--i_b)- YI ( _b ) in equation B.17 may be approximated by a

convergent sequence of rational functions in b--_ or Pads approxi-

i
mants. It follows therefore that can be approximated by a

(2+z)_/2
finite sum of exponential functions. Two such approximations are

known, one due to Laschka [25] and the other due to Runyan and Watkins
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[68] The errors in these approximations are comparedin [69].
• aT

b
Laplace transforms of exponentials of the type e are given by

rational functions. Hence, in principle, it is possible to approximate

the entire Kernel function by a rational function in s. Further in

order that it converge to the piston theory kernel for large S_ the

approximation must be [N, N] Pade approximant. This point of view

has useful consequences, regarding the behavior of the aerodynamic

loads in the frequency domain.

In supersonic flow the kernel function may be easily shown to be

sX

b

K3(x,Y,s)= e

x+ mi su

_-i e b

+

s X+MR1

e

R 1 X2+y 2

s X'MRI 1

M MX+RI b M2_l for X > _- 1 IYI

+ R1 X2÷y 2 e

= 0 for X < 2_-i IYI

(B.23)

In this case the kernel function is valid for all s, including the

left half of the 's' plane.

In transonic flow though the linea_ized theory cannot predict

shock waves We may obtain the kernel function by proceeding to the

limit as M _ 1 from the supersonic case. We have,
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K3(X,Y,s ) = e

sX
b

sU
m b

j. e dU
-X y2 (U2+y2)3/2

y2
s (x- )

+ e
X2+ y2

X>O

= o eor x < o (B.24)

In this case again the kernel function is only valid for real (s) _> O.

Two Dimensional Airfoils

In two dimensional flow, the integral equation relating the down-

wash and the pressure distribution may be obtained by integrating the

corresponding three dimensional kernel function with respect to the

spanwise coordinate from - _ to + ®. For the case of arbitrary motion

of an airfoil , one can show after some computation, that

87rw(x,t) _ _I _ X2

V q Xl

ea_
Vt -X

J' _p (e,t- X÷T]--g--.
-X

I+M

aT

T_I M2T2
(_X) 2

-X

I+M
(l-_(X))d_ X+_

+ J' Ap(g, (t - -V-))

-X___ 2_I M2T 2

1-M (T+x)2

(B.25)
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where x I x Vt(1 + M) (l+M) >= M ' if x - Vt M XL

= xL , ifx -Vt (I+M)<M x_

Vt(1 - M)
x2= x+ M if x + V (t_M M) < xT

= x T if x + V (lt_MM >x T

Eqtmtion B.25 is valid for any type of airfoil motion. In incompressible

flow we have,

8Ww(x ,t)

V

XT Vt -X

i _ 2 d_ _ Ap(_ t (X+_)) d_

qk -x v
(B.26)

At time t = O, we have

w(x,O) M @(x,O)
V - _ q

(B.27)

Non-dimensionalizing the time variable t to T = Vt/b and taking the

Laplace transforms of the integral equations, we have

8_(x,s)
V

1 # K2(x - _, s) _(g,s)d_

q_
(B.28)

where w(x,s) is the Laplace transform of the downwash and _(x,s),
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the Laplace transform of the pressure

K2(x,s)= 2s*S£e+S*_[(_l(Ms*Ixl)+%(M/Ixll

l+_+ 1 s x(x-l) K0(Ms lXlX)dX]] (B.29),+ e-S x_ _n( M "- sx _e *
0

where s = s/_ 2, K0(. ) and Kl(. ) being modified Bessel functions of the

second kind.

AlsoK2(X,s)Is- o0: + 2M_6(x) (B.5o)

26 (B.31)
and K2(X's) Is- 0 - X

In incompressible flow, equation B.29 reduces to equation B.22. Equation

B.22 has a well known inverse given by, (after non-dimensionalizing

all distances by the semi-chord).

where

i

_o(X,S) = _ a(x,z,_)_(z,s)dz (B.32)
-1

-x
G(x,z,s) = - 2_ [sA(.,z) _ 1-_ i:_ (¢(s)- _ + _---__x)] (B.55)

1
^(x,z) = _ log

i -xz+ -_xe./_ - z2

_ 2i _ xz __--_x2 __z

(B.3_)

Kl(S)

$(s) : Kl(S)+ K0(s ) ,
real (s) > 0 (B.35)

continued
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2su(1_,3, 2s)

2so(1½,3, 2s)+ l, 2s)
, real (s) > 0 (B.35)

continued

2 -i -xt
= S "_[i - [(K0(x)_ KI(X))2+ 2(I0(x) + ii(x)) ] e 2

0 x
ax]

Ki(" ) and li(- ) are modified Bessel functions and U(a,b,z) is a

Kummer function.

Equation (B.28) may be reduced to several alternate forms. One

method of doing this reduction was given by Fettis [70]. The integral

equation may be reduced to a non-singular Fredholm integral equation

with a completely continuous kernel function (defined in Appendix D)

given by,

_Po(x,,) .M2jf
Ap(x,s) = ._ - s Kcc(X,_,s)_p(_,s)d_ (B.56)

-i

KNc(X,_,s) = H(_ - x)- cos x _ (_(s)-l) l-x
7T IT

I

- I_ _ _-IG(X'Z's)K(s(z-_))dz"

H(_ - x) is the unit step function and

K20(z- _,s) 2 M2

_(s(z-_) = K2(z - _,s)- B + _

Another important representation of the integral equation may be

obtained. The kernel function K2(X,s) may be written as,
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K 2 (X,s) e+M2Xs* M 2 * s (X ,s*) ]: _{K2o(X,s*)-T[K2o(X,s )-K20

___2 _ *
+ _-_-.s*.[ -- in 2+B 2 in s - 4 (l-B)in M _ 2¥]

M2

M 2 .2 4 2

2 s [_anl+-- _ - 1 -_-_in - ---

+ o(M4).o(x2+ax logx)} (B.37)

+ s*XM 2 * M2
= e B{K20(X,s )- _[K20(X,s*)-K20S (X,s*)]

+ M2s* (l-2 [in (_Ms )+ _])+ M mV(X,s )] (B.38)
2

s * ½ *where K20(X,s ) = 2( + s In X) (B.59)

Kv(X,s ) : O(M°+ alnM) (B._)

Using equation B.38 we may invert equation B.28 using the well known

solution for incompressible flow. Thus we have

a_(x,s) _Pov(x's*)_s*x M2 _s*x[ 1
q - V e - 2"_ e _ A. (s,*x *i:o _ )ji(s,-I)

. M 4 M2s*x 1 1 . )e_M2s*_.+ Bi(s, x)Ji(s*,x)]- _ e J"_ G(x,z,s )Kv(Z-g,s _(_,s)
-i-i q

• d_dz (B. 41)

where
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APov(x's*) i i .
q = _ j"c(_,_,s)_(_,s)e-M2sz

-I

dz (B.4_)

i _M2s* _
Ji (s*'x) : 7 _ Ap(_,s) e

q
X

Ao(S* x ) = ln-lx(2s*_s*2x)+ l-_x_x(s*@(s*)in 2-(@(s*)-l)l+x

S _ * *

+ -_-(_(s )+s (l+x))+s*2(l+ in 2)(1 + x)).

Bo(S ,x) = -(2 - s _)Trs

Al(S ,x) = s*21n-lx + s*(_(s*)-l) 1-x

* *2
Bl(s ,x) = -TTs

= [i - 2(in( 1 Ms*)+ V)]

Thus for sufficiently small M we have for Ap,

_p(x,s) _%v (x'_*)M2s*x
= e

q q

1

M 2 M2s*x[ _ A i(s* 0 * * 0 *
- --_ e i:O ,x)J (s,-l) + Bi(s ,x)Ji(s ,x)]

+ O(M4s*4(a + b in M)) (B._3)
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where jO (s*_x) = ]l_i APov(_s) d_.
I q

x

This solution is exact to O(M2s*). The first term is identical

to Osborne's thin airfoil theory [71]. The usefulness of this

representation will be briefly discussed in Appendix C.
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APPENDIX C

CALCULATION OF AERODYNAMIC LOADS

FOR SIMPLE HARMONICALLY OSCILLATING AIRFOILS AND LIFTING SURFACES

In this appendix some of the existing methods and their extensions

for the calculation of aerodynamic loads on wings with and without

control surfaces will be briefly discussed.

Two Dimensional Airfoils

Analytical methods. - In incompressible flow Theodorsen's

solution is well known for calculating pressure distributions and air-

loads on two dimensional aerofoils.
w n

For a downwash V = WnX ,

we have

4_ n-i n-_ -12-_ _Ap _ Wn[xn+( _ x :-_- = Cp =
_=0 I(_)

ik(l+x)
)+ n+l

n n-_ 2-_ _ : -I]i]:( z x )+(C(k)-l)2
_:o,2,_,... T(_) _ ]

2
n , for n even

where I(n) = (5 ")

n+l , n-i ,
= -_ • V . for n odd.

(C .i)

_- )nw _(x - xcFor a down%ash given by

= 0

for x > x
C

for x < x
c
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[nl nrl
4 n

_P--_]l_ _ z cr { z (-i)
n r=O k=O

k-i n-r-i C kij +j
kx t n-r-1-]k n-r-k )]"

• (x - Xc)r

)ncoslX + _.__(I+x)- (x-x c o _. _-y n n-r )k-lxk n-r_ j )rZ rrblc ( Z (-1 Ck n_r.k). (x-x
r c

r:O }_0

4
---W

n

n r l+(1 -C(k)) Z nCr(-Xc) (Jn-r + Jn-r+l )
r=O

ik(x-xo I l-XcX+ i-x2
[(x--Xc]T_n_ n + 1 }log[ (_ - xe)I

vZi_x 2 _-i

c (x2_-i + Z
where J2_ - 2g k=l

(2e-1) (2_-3)... (2e-2R+l)
2_(_-l) (_,-2)... (,_-R)

t (c.2)

2 _,-2k-ix )
C

and

26 _ -i
+ cos x

22_ :£ :
C

c x2_+ _ -i k+l
- Z #2,g - " ('_ -1) (,g -2). • • (,_ -k) c2'_ -2k-2

J2,_+l 2Z + 1 c k=O (26-3)... (2_-2k+1) x

The expressions for the loads may be easily obtained by integrating

the corresponding moments of the pressure distributions.

Equation B.43 extends Theodorsen's solution to subsonic flow for

low mach numbers and frequency. The first term of equation B.43 is

identical to Osborne's theory• Kemp [72] has provided the closed form
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expressions for the lift and moment based on Osbourne's theory. How-

ever it was found that this approach is not too attractive for purposes

of numerically computing pressure distributions or aerodynamic loads.

Further these solutions are not valid for either high subsonic mach

numbers or high reduced frequencies, when compressibility effects are

not small relative to circulatory effects.

For high frequencies, and Mach numbers M _ O, the method of

acoustic planforms of Lomax, et al. [12] is useful. The two dimen-

sional unsteady problem for compressible flow can be formulated in a

coordinate system x'_y' _z',t' fixed in the undisturbed fluid_ by the

equation,

1

q°x'x' + _z'z'- 2 _t't'
C

with the appropriate boundary conditions. For the three dimensional

steady supersonic case, in body fixed coordinates, it is

Hence it is seen that the solution of the unsteady problem can be

obtained from the solution for the steady flow about a swept forward

wing tip placed in a supersonic flow with Mach number M = 4. The

angle of sweep is determined by the Mach number of the two dimensional

aerofoil from than relation A = ta_ll/M. The wake vortices in the

unsteady two dimensional problem correspond to the tip vortices in the

steady three dimensional problem. The three dimensional steady flow
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problem maybe solved by Evvard's method [i]. For example the pressure

distribution obtained this way, corresponding to an indicial down-

wash w0, for t _ O_ is given by_

4Wo A(_,x)- M = _pl

for T < min( M M (i -x))
- I-_ ' Y_

8 Wo [ _ M I/(I+M)T ]A C1p(_,x) = A Cpl + _ -_- tan -I - 1 + I-_VM--_-_ - 1

for l-_M(l+x) _<T -<i--_(i-x)

8Wo , I-M)T
A Cp(_,x) : ACpl + _-_ tan "I VM-_-_ - 1

for _M (l-x) _< T _<I_M(I+x)

vt
where • - and 0 <M < i

b

Expanding in the variables (l-x) and (l+x) indicates that for t > O,

at the leading edge (x = -i)

1

_p(_,x)* ® as

and at the trailing edge (x = l)

_Cp(_,x)÷ o as
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The indicial aerodynamic load coefficients may be obtained by

integrating the pressures over the entire chord of the aerofoil.

Taking the Laplace transforms, and using the asymptotic expansions

of the resulting Frenel integrals

R -ih -iR
l-i ie i 3__)Fr(R) : _ e du - + (i

0 _ 2 _ SiR 4R2

we may obtain the expressions for the non-dimensional lift and moment

coefficients in plunging and pitching for large values of k.

These are

Lh 4ik + _(I_M) 1-i _ t e "k2-M 12b'q - M _ e-ikl_M + (I-M) 2 -i_-/_

+ o(i/k)
-ikO_M 2_M

Mh _ 1___2 I I+M (I_M)2 -i i-_ I + 0(i_ )2b----2q M_-7_ _ e - e

.k_M k_4

-i-- -i-- I2bqL: _ M_ + _l'i _k e I+M-(I-M)2e I-M + 0(i_)

M_ _ 4 ik --2(l'M) + l-i ./_{e -dkl-_-M e-ik_-M" 12b2q _ M- + M S _----_-/_V_ + (I-M) 2 + 0(i/k).

It is interesting to note that it is not possible to expand these

coefficients in a power series in (l/k). Also they are not valid for

M = 0. Thus it is possible to analytically obtain the behavior of the
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aerodynamic loads for low and high frequencies. While they contribute

to a better understanding of the behavior of the pressure and aero-

dynamic loads at high and low frequencies, they do not serve ar_v other

useful purpose. For this reason and for computational efficiency, it

is convenient to resort to numerical techniques which are valid for

all values of frequency and mach number.

Numerical methods. - One of the earliest methods to calculate

aerodynamic loads on two dimensional aerofoils is due to Dietz

(described in Refs. I_ 2_ and 3). For wings with trailing or leading

edge flaps_ Fettis suggests a method that is fairly accurate. From

a computational point of view Hsu's method [73] for wings without

flaps seems to be simplest. However Hsu's method can be extended for

wings with control surfaces. This modification is briefly described

below. A pressure loading function of the form,

M N

ACp = E Pmhm(x) 2 6 _. an(X. xc)n
m=O 7r 8 n=O

2 2 _XXc+
log

_

is assumed, where hm(X ) are identical to Hsu's chordwise loading

functions in compressible flow and are the exact loading functions

n
corresponding to a downwash of x in incompressible flow, given by

equation C.1. 5 is the angular deflection of the trailing edge flap.

The above loading function is substituted in the integral equation and

integrations of those terms that contribute to discontinuities in the
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downwashand its chordwise derivatives are performed analytically. The

coefficients an can then be found by comparing like terms on both

sides of the integral equations. The kernel functions K2(x,s ) maybe

written as

K2(x,s) 2B 2s lnlxl-(s I_I~ x -8- -_ )2(_-384)x in

+ r_ _xn+n inlxl Z 8nxn
n=O r_2

aO, a1 and a2 depend only on the terms outside the summation signs and

are given by,

and

: = 2(i + 82), a2
a 0 i, a1

s )3.o(M)
a3 = o( _-_

2
S

In incompressible flow a3, a4, ..., etc., are equal to zero (from

equation C.2).

The singular part of the above kernel function and the pressure

loading functions are integrated exactly. A computer program is

developed that evaluated the Possio kernel by Gaussian and Berthod

Zabrowski quadrature, integrates the assumed pressure loading functions

and the non-singular portion of the kernel function numerically and

then solves for Pi" The program then obtains the corresponding

generalized aerodynamic forces for any mode shapes. Results indicate

that for M = 0.O and 0.7 , the error in using a ten point collocation
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schemeand not including the flap singularity is 20 - 25%of the four

point collocation solution with the singularity included. In incom-

pressible flow using the four point collocation schemeresults in an

error of less than 1%, in the momentabout the flap hinge line. The

program maybe used for values of 0 < k < lO and can include trailing

and leading edge flaps. For high frequencies a large nu_nberof colloca-

tion and integration points are required.

In supersonic flow, the expression for the pressure and airloads

given in Ref. 1 maybe integrated using Gaussian integration with no

difficulty as control surfaces do not contribute to any singularities.

Results for a rigid airfoil with trailing and leading edge flaps are

given in [44] and [45].

Three Dimensional Lifting Surfaces

Analytical techniques. - There are no known analytical tech-

niques available for arbitrarily shaped three dimensional lifting

surfaces. However, as pointed out by Miles [74], the solution of the

partial differential equations for the velocity potential by separating

the variables is possible only in eleven Euclidean coordinate systems.

Of these only three define lifting surfaces of practical interest.

These are (i) elliptic cylindrical (two dimensional aerofoil) (2)

oblate spheroidal (circular planform) and (3) ellipsoidal (elliptic

planform).

The circular oscillating lifting surface in incompressible flow

was considered by van Spiegel [54]. It is interesting to note that from

van Spiegel's general solution, we may extract the solution for the
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virtual inertia loading.

circular wing is given by

x= + 2 -_

The orthogonal coordinate system for the

cos V y= + -u sin v j

z = u_ where 0 < _, -i < _ < i, 0 < _ < 27[ so that the entire space

is covered just once. The wing itself is given by _ = O, while the

part of the x_ y - plane outside the surface is given by _ = O.

The problem is treated by van Spiegel by the method of the

acceleration potential. The regular solution is equal to

_l = _ r_
i=l j=O

J(u)Qi j(i_){cijcos i v + S Jsin i v]Pi i

Pi j and Qi j are Legendre's associated functions of the first andwhere

second kinds. Since @l should be an odd function of z and u, the

summation sign is restricted to i + j = odd. This is indicated by

the prime added to the summation over j in the equation for @. The

constants C.j and S.j are determined by the prescribed normal derivatives
1 1

at the airfoil. By expanding _iz = _i_/_ in a series of surface

harmonics the constants are determined• It is found that_

i 2_

_l(n"_' ) = _ _ _0 _lz(_l'_l)G(n'_'V'O"_l'Vll_ldY
-i

where the Green's function of the second kind is equal to,

v;o, k' vl) --
W m

E E 1 2n+l(n-m) : m m

n=l m=O _m 27[ _ Pn (U)Pn (_l)
m

Qn (i_)

• • Cos m( V-V i)

_Qj(iO)
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where T0 : 2, E1 = _2 = _3 ..... i.

The above solution is one that has the exact prescribed acceleration

on the aerofoil. Further the solution is not singular at the leading

and trailing edges and behaves as V_ where r is the distance of the

leading edge or trailing edge. The solution that has the exact normal

velocity w(u,V), prescribed on the airfoil is

_t 2_ i _
_*(_,_,v): ( + '__) o -1 'Vl

"G(q,m ,V ;O,!_l,Vl)dV, d'a

This solution leads to apressure singularity at the trailing and lead-

ing edges due to the differentation in x.

Consider now

o, o, vl) _- 1 + 1__ 2

This is a solution of Laplace's equation having zero normal velocity

on the aerofoil and a singularity at the point G : O, _ = O, V = V 1

which lies either at leading or at the trailing edge. The singularity

is of the type _(cos G)/r 3 , where r is the distance from a point on

the aerofoil to the singular point and G the angle between the vector v

and the radius of the circle. Thus the singular solution is,
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3_/2

/2

where the integration is along the leading edge only, since no singu-

larities are admitted at the trailing edge. As in the two dimensional

case the singularity in _2 is of the type V_-/_, where r is the dis-

tance from the leading edge. The function a (rl) should be deter-

mined from the condition that the normal velocity at all points on

the aerofoil due to the total acceleration potential _i + @2 agree

with the prescribed normal velocity. Hence the normal velocity at

all points due to the acceleration potential _i + @2 " @* should be

equal to zero. This leads to an integral equation which may be

solved by Fourier series expansions.

On examining this solution carefully, we find that very large

frequencies of oscillation or at the starting instant (_i + _2 - _*)

is independent of frequency. Hence we conclude that the solution

corresponding to the virtual inertia loads is,

2 1 _2

_I*= oSo__i(--_t2Z(_l,vl))a(_,_,v_°,_l,vl)_v,d'_

Like the regular solution this is not singular at both the lead-

ing and trailing edges.

The effect of compressibility may be taken into account by means

of spheroidal wave functions. Also the oscillating elliptic wing can

be treated when Lame functions are used. However, these analytical
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solutions are not really exact and the degree of computations is

enormouswhencomparedto numerical methods. Hencethese techniques

are not too useful.

Numerical techniques. - Numerical techniques may be broadly

classified into two groups (a) finite element methods and (b) kernel

function techniques. The doublet lattice method of Albano and Rodden

[26] and potential flow methods [16] in subsonic flow and the Mach

box method in supersonic flow [7_ 76] are examples of the first

type. The kernel function methods of Laschka [25], Cunningham [23]

and Rowe [24] in subsonic flow and Muller's method [67] in supersonic

flow are examples of the latter type. Two of the methods that were

actually used in a slightly modified form during the course of this

work are briefly described.

The doublet lattice method: This method for lifting sur-

faces is based on the developments of Albano and Rodden. The surfaces

are divided into trapezoidal panels, the downwash being taken at the

midspan of the 5/4 chord. A distribution of acceleration potential

doublets whose strength is to be determined, is assumed along the

quarter chord of each panel. The assumed pressure loading is

then integrated along the quarter chord line. In the original method,

the integrals were obtained by approximating the kernel function in

each box with a parabola in the direction of the quarter chord of

each panel divided by rl 2 where rl 2 2 2' ' = YO + z0 ' Y0 and z0 being

relative y and z distances of the midpoints of the quarter chords

(sending points) and the three quarter chord (receiving points).
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The force on the panel due to the pressure distribution is assumedto

be equal to the force on the doublet line segment. The accuracy of

the method was remarkable for aeroelastic purposes. However for

large frequencies (reduced frequencies k > l) it was found that the

method was not only not accurate, but also did not converge to the

results obtained by piston theory. It was found that by approximating

the kernel in each box with a quartic in the spanwise direction of the

2
quarter chord point of each panel divided by rI , the results were

tremendously improved for planar lifting surfaces for high fre-

quencle s •

Using the same notation as Rodden, Giesing and Kalman [77] we

may rewrite equation 27b of Ref. 77 as,

P (,i)

_

[Klexp{-i_o(x-n tan k s)/V} - KIO]

: AO _2 + BO_ +

+ + Cl

Assuming that P (_) is evaluated at _ = +_ ae, +_ be and O, where e is

the semi-span of each panel we have,

1

2 (a 2-b 2 )e3
1 (P(ae) -P (-ae) )- I(P (be)-P (-be) ) ]
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= +
2 (b2-a2)e a "j

cI : P(O)

'a' and 'b' were chosen to be 1.O and 0.5 respectively. For

A 0 = B0 = O, the formulas for A1, B1 and C1 reduce to those given

by Albano and Rodden. The above approximation is very good for high

frequencies, especially for swept wings (ks _ 0). At high frequencies,

for swept wings_ P (_) varies rapidly for different values of _. How-

ever extensive numerical experiments have to be carried out determine

the optimum values of a, b and the receiving and sending points in

various frequency domains.

In spite of the improvement in the results for moderately high

frequencies, the results did not converge to the piston theory limit

for certain mode shapes. For convergence the distance between the

sending and receiving point on each panel must vanish as this condition

is known to hold in the case of piston theory. This would require,

theoritically, am infinite number of boxes in the chordwise direction.

Also for a proper spanwise pressure distribution, which critically

effects the aerodynamic loads a large number of spanwise boxes are

required at all frequencies. This leads to an excessively large

computer storage requirements and thus the method is not too attrac-

tive for high frequencies.
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Laschka's kernel function method:

distribution is taken in the form

(x,y)=

In this method the pressure

N

z a.(y)hi(x)
i=l I

Following Laschka, the terms in the kernel function which are singular

are separated from the part that is regular. The singular terms are

integrated analytically while the regular terms are integrated

numerically. The integral equation is reduced to a linear system and

the values of the unknown coefficients ai(Y ) are obtained at different

spanwise and chordwise stations. For the chordwise integration, the

integrations points and the collocation points may be chosen inde-

pendentally. For high frequencies one may choose fewer collocation

points and a large number of integration points, in order to converge

to piston theory. Thus the kernel function method is more efficient

than the doublet lattice method.

Control surfaces may be handled by both methods, without taking

into account the singularities at their leading edges. However, the

computational time for high frequencies is quite high when compared

to the corresponding time at low frequencies, in both methods.
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APPENDIXD

PADEAPPROXIMANTSANDINTEGRALEQI_TIONS

Pad@Approximants

The [N_M] Pad_ approximant of a matrix function F(z) is defined by

F(z) = P(z)R-l(z)

where

P(z) is a matrix polynomial of degree M and

R(z) is a matrix polynomial of degree N

If in particular F(z) is a power series defined by,

L
i

F(z) : E Fiz and if
i=O

P(z) = M zi M .zi A
Pi , R(Z) = _ R , RN = I

i=O i=0

(D .2)

• and R.
we have the following equations for Pl i

N-I

Fk_ j Rj + Fk_ N = Pk'
J=0

k = 0, I, _, 3, M_i ° • •

N-I

J=O
Fk_jR j = -Fk_N, k = M i i_ M ÷ 2, M ÷ 3, ... L

(D .3)
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For L _> M + N_ equations D.3 may be solved for the matrices Rj and Pk

successively.

On the other hand, if F(z) is known for z = zk, k = 0,1,2,3 ... L

we have

M N-I

kN (Zk) iF(Zk)Z = _. PiZk i - F r. R.z , k = 0,I,2,3,... L
i=O i:O i

(D .4)

It is now assumed that PO and PM are known apriori. (If PM is not

known, we may increase value of M by 1 and assume that PM+l = [O]).

From the L known values of Zk, we pick M-1 values, _, kI = 1,2,3,

... M-l, and rewrite equations D.4 in part as

M-I N-I

i=l i:O

: i_ 2, 3, ... M-I

We now have M-1 unknowns P. and M-I equations and hence we may solve
1

for the unknowns P. in terms of R. as
1 1

N-1

Pi = J=O?' BijR'J + BO (D.6)

Hence equations D.4 reduce to a system of L-M+1 equations for the N

unknowns Rj_ j = 0,1,2, ... N-l, which may determine by least squares

provided the system of equations are solvable. On. the other hand it is

also possible to solve equation D.4 directly by least squares. These

equations are also applicable for scalar quantities. Properties of

Pad_ approximants are discussed further in [78].
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Properties of Integral Equations Related to Pad_Approximants

([79] and [80])

In this section someof the basic definitions and properties of
I

integral equations of the form

b

_(x) = f(x,s) + s J' dy K(x,y,s)_(y) (D.7)
a

where f(x_s) and K(x,y,s) are defined on the closed internal [a_b],

are discussed. We can regard_

b

K -- j' dy K(x,y,s)(-) (D.8)
a

in equation D-7 as an operator acting on the function $.

form the integral equation is

In operator

= f + sK_ (D.9)

The function K(x,y,s) is the kernel of the equation and in order

to ensure a valid definition and a unique solution of D.7, various

restrictions can be imposed on _, f, and K. It is usual to assume

and f are functions of bounded norm II"If in the Hilbert space L 2

of functions defined on the inter_al [a,bl; for example,

b

II 112=J' <
a

A sequence of functions [fn} is bounded if

(D.ZO)
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IIfnll _< B < - (D.II)

Bounded operators. - The operator defined by D.8 is bounded

if there is a finite constant M, such that

II II_<Mllhll (D •12 )

for all functions h of finite norm. This is a different condition from

the boundedness of the function K (x,y,s) given by IK(x,y_s)l j c < = •

The norm of a bounded operator K is the least value of M satisfying

D.12. The operator is unbounded if no finite M can be found such that

(D.12) holds for all h.

Kernels of finite rank.- A kernel K
n

if it is expressible in the form

is of finite rank n

n

Kn(x,y,s ) = E _i(x)Bi(y) (D.13)
i=l

where [Gi ] and [8i } are linearly independent sets of functions in L2.

If the kernel K(x,y,s) is a kernel of finite rank and _i and 8i are

rational functions or polynomials of s equation (D.7) may be solved

exactly. For simplicity it is assumed that f(x,s) is independent of

S.

The kernel function method_ - The scalar product of functions

f and g in L 2 is
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b

(f,g) = j'_ f(Y)g(Y)

a

(D.14)

Substituting (D-13) in (D.7) gives,

_(x)= f(x)+ s
n

Z ($,_i)(_i(x) (D.15)
j---1

The coefficients ($,_i) are complex numbers and ar_ solution of (D.7)

may be of the form,

n

_ = f(x) + E _j _.
j=l 0

where the coefficients _j and to be determined.

Substituting (D.16) in (D.19), _j are determined by

n

i=l[6ij - s(°ti'_J)SEi = s(fi,6j).

Let A(s) be the determinant of the coefficients of _j and the

th
minor associated with i,j element be Aij.

Then

n

_i = A-1 j=EIAijs(f'_j)

and
n n

q9= f(x)+ Z A"I Z Ajis(f,Bi)
J=l i=l

Hence,_ = a-i[_ (x)+
n n

Z s (f(x),Si (x) ] (D.16)

As a function of the parameter s_ this a rational function, the numera-

tor degree and the denominator degree being dependent on oi and Bj.
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Compact operators. - Let T be a linear operator that trans-

forms any function h in L 2 into another function Th of L2; in parti-

cular T could be of the form given by equation D.8. Every linear

operator of this type is continuous in the sense that it transfors a

sequence [hn] converging in the mean to h into a sequence [Thn]

converging to Th.

Compactness or complete continuity of a linear operator is a

stronger condition than continuity. Let [fn } be any bounded infinite

sequence in L2, so that [Tf n} is another infinite sequence in L 2.

Then if for all bounded [fn},{Tfn] contains a subsequence converging

to some function h as n-_ _, so that

llTf n - hll = O

then T is completely continuous. Reiz and St.-Nagy [80] give necessary

and sufficient conditions for complete continuity.

Completely continuous operators can be uniformly approximated by

operators with kernels of finite rank. Also, if a kernel function

can be approximated with kernels of finite rank, then the operator

is completely continuous. In unsteady aerodynmmics the kernels are

implicitly approximated by kernels of finite rank and resulting solu-

tions are known to converge to the exact pressure distributions uni-

formly, for all frequencies.

Thus there exists an infinite sequence of kernels K1,K2,K 3 ...

of rank i, 2, 3, --. such that
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¢ -, 0 as n-_ _ for all h ¢ L2_ uniformly for all s.with
n

m

Let K n be of the form E Gi (s,x)Bi (s ,y) where G. (s,x) and _i(s,x)
i=l l

are rational functions or polynomials in the variables s. Hence it

may be assumed that as s _ = Kn is of O(s E) for all n. Then from

equations D.16 we obtain a sequence of solutions, which are rational

functions of s. The degree of the numerator would be N-E and that of

the denominator N where N _ _ as n _ m •

Neumann series solutions, -

Another method of solving (D-7) is to substitute the series

_(x) = f(x)+ E snfn(X,S) (D.17)
r_-l

and equate the coefficients of s on each side. This gives

b

fn+l(X'S) : S dy K(x,y,s)fn(y,s)
a

n : 1,2,9, ...

The series (D.17) is known as a series and may be written in

operator notation as

_(x) = f(x) + Kf(x) + K2f(x) ...

When K is uniformly bounded in the norm, then the series converges in

the norm if,
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IsI_<11KII

When s does not satisfy this condition Chisholm [79] has shown that

Pad6 approximants of the series may be formed which will give approxi-

mations to the solution for all s.

From Chisholm's theorem it follows that: If the kernel

function K(x, y, s)of the integral equation D.7 can be approximated

by a sequence of ksrnels of finite rank 3 then there exists a sequence of

solutions which are rational functions in the 's' domain, the degree of the

numerator being N + J and the degree of the denominator being N, which

converges uniformly to the exact solution as N -_ _ , where J depends

on the limiting behavior of K(x_y,s) and f(x_s) as s ÷ _ •

Thus if the behavior of the pressure distributions in unsteady

aerodynamics are known for high frequencies and in steady flow and if

it is possible to show that the associated kernel functions are

completely continuous for all s_ then it is possible, in principle,

to construct Pad_ approximants for the aerodynamic loads from the

numerically obtained solutions.
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V = Free
Stream Velocity
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Fig. i.
Swept wing with two flaps and nine node points_
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