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ABSTRACT

Employing two FM-CW radar spectrometers, scattering data were

acquired from stands of deciduous trees during the spring and

autumn. The data suggest that the trees act as a volume scatter

target particularly in the 7-18 GHz region. A comparison of data

collected in spring and autumn indicates that the radar scattering

coefficient, a°, as measured in spring can be substantially larger

(as much as 10 dB) than a° as measured in the autumn.
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1.0 INTRODUCTION

Of the earth's renewable natural resources forests are certainly

one of the largest and one of the most versatile. Of the 13,034 miliion
hectares of the earth's land mass appronimately 4,126 million hectares,
representing about 32 per cent, are forest covered [1). 	 Not only do
these timberlands provide products such as fuel, building material and

paper, they also provide recreational facilities and a host of benefits

for the ecosystem such as wildlife habitat. Because of the sociological

and ecological impact of possible mismanagement of these timberlands the

management task has been assumed, to varying degrees, by most governments

throughout the world.

Due to the vast areal extent of the world's forest covered land,

relatively little quantitative information is available to the forest-

land use manager, in many forested areas the nature of the terrain makes

large scale surface surveys extremely difficult, if not prohibitively ex-

pensive. This is particularly true when repetitive collection of data is

necessitated as is the case for annual identification and monitoring of clear-

cut areas. Perhaps a more extreme example would be monthly assessment of

forest fire damage. To alleviate the task of collecting the vast quantity

of data needed to manage forest lands, forest managers have turned to the

use of aerial photographic surveys.	 indeed, of all the applications of

remote sensing techniques, aerial photographic surveying of forest land is

one of the best developed and best understood applications. This is not to

say that photographic surveys are without limitations. Certainly photography

cannot be employed to accurately make measurements of trunk diameter. Rather,

as with nearly all remote sensing techniques, aerial photography is used to

complement field work.	 (A well presented discussion of the applications 	 and

limitations of aerial photography to forest management is available from

the U. S. Deparmtent of Agriculture [21).

Because of the proven success of using photographic techniques in

forest management it is a natural step to begin to investigate the possible

benefits of applying other sensors to forest management. 	 One possible

candidate is side looking radar. Perhaps the most obvious difference between
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radar imagery and photography is the vast difference in the wavelengths

used	 in constructing the	 image.	 While photographic	 imagery	 is obtained

using wavelengths on the order of microns,	 radar employs wavelengths on

the order of centimeters. 	 Because of this extreme difference in wave-

length	 it	 is expected that radar imagery can provide information of a

different nature than that provided through photographic techniques. 	 A

second	 important difference between photography and radar imagery is that

radar can	 in general	 image much larger expanses of area than photographic

techniques	 in a given amount of time. 	 This can be an	 important advantage

when	 timely information, such as the assessment of fire damage, 	 is required.

Radar has	 the added advantage of being able to penetrate cloud cover. 	 This

particular advantage and	 the ability of radar to quickly	 image	 large areas

was clearly demonstrated by Project RAMP	 (Radar Mapping of Panama)	 in 1965

when the nearly continuously cloud covered Darien Province of Panama

(17,000 km2 ) was	 imaged	 in four hours	 (3).

While radar seems	 to have certain capabilities which may complement

photographic techniques,	 these capabilities have not been	 thoroughly	 investi-

gated.	 Indeed even	 in general	 terms very	 little qualitative data 	 is avail-

able on the microwave scattering properties of woodlands. 	 This report

documents an experiment designed 	 to aid	 in developing an understanding of the

radar response to woodlands.	 Using two FM-CW radar spectrometers, 	 scatter- a

ing data were acquired from stands of mixed deciduous trees during the

autumn,	 September 24,	 1974 and during the spring, 	 May 14,	 1975.

2.0 INSTRUMENTATION

While the radar systems used in this experiment have been described

elsewhere in detail (4,51, a brief description of these systems will be

provided. Two systems, the MAS 1-8 (Microwave Active ^.pectrometer, 1-8 GHz)

and the MAS 8-18 were employed to gather scattering data over the.1-18 GHz

spectral range*. These are mobile, truck mounted FM-CW scatterometers

employing hydraulic booms approximately 25 meters tall as instrumentation

platforms. Both systems employ separate transmitting and receiving anterinas

*Due to hardware difficulties data were not collected from 1-8 GHz during the

autumn of 1974.	 2



configured to allow both horizontal transmit-receive and vertical transmit-

receive operation. During the winter months of 1975 both systems, the

HAS 1-8 and the HAS 8-18, were fitted with improved antennas to allow cross

(horizontal transmit, vertical receive) polarized operation during the

springtime segment of the experiment. Measurements were acquired at 19

frequencies over the 1-18 GHz frequency range and at angles of incidence

between 0 0 (nadir) and 80°. Table I summarizes the operational characteristics

of the two scatterometers.

As noted in Table I, the RF bandwidths of the HAS 1-8 and the HAS

8-18 are hOO MHz and 800 MHz respectively. However, only a very small

fraction of the bandwidth is use- to provide range resolution which allows

the majority of the bandwidth to ae used for reducing signal scintillation.

By assuming the envelope amplitude of the backscattered signal to be Rayleigh

distributed it is possible to estimate the amount of signal variance reduction

afforded by the excess bandwidth of the system [6]. This variance reduction

Is, however, directly proportional to D -1 where D is the extent of the illu-

minated target measured radially from the antenna. For a two dimensional

target where little signal penetration can be expected, for example a very

wet fallow field, D can be estimated rather accurately. However, when study-

ing targets such as trees which will certainly allow a significant degree of

signal penetration to occur, D cannot be accurately estimated. Thus it is

rather difficult to assign specific confidence intervals (with respect to

the reduction in scintillation variance) to the data presented herein. 	 It

should be noted, however, that spatial averaging was also employed by collect-

ing scattering data at 15 different boom azimuth positions. Not only did

this allow a further reduction in scintillation (over that provided by

frequency averaging) but it also provided a better average of the scatter-

ing properties of the woodlands studied.

3.0	 TARGET AREA DESCRIPTION

The wooded area studied during this experiment consisted of a rather

typical northeastern Kansas distribution of hardwood trees located near

Lawrence, Kansas. In particular the major varieties included in the area

3

4



Y

3
x

r
t;

4

I

J

TABLE I.

HAS 1-8 and MAS 8-18 Nominal System Specifications

TYPE

Modulating Waveform

Frequency Range

FM Sweep:	 Af

Transmitter Power

Intermediate Frequency

IF Bandwidth

Antennas

Height of ground

Reflector diameter

Feeds

Incidence Angle Range

Calibration:

Internal

External

HAS 1-8 HAS 8-18

FM-CW FM-CW

Triangular Triangular

'.-8 GHz 8-18 GHz

400 MHz 800 MHz

10 dBm 10 dBm

50 KHz 50 KHz

10 KHz 10 KHz

20 m 25 m

122 cm 46 cm

Crossed Log- Quad-Ridgkd Horn
Periodic

0°	 (nadir)-80° 0°	 (nadir)-80°

Signal	 Injection Signal	 Injection

(delay	 line) (delay	 line)

Lunebe! • g Lens Luneberg Lens

Reflector Reflector
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were Olin, hickory, hackberry, and locust. Figure la through If are

photographs of the test area taken with a camera boresighted with the

antennas. As noted in the caption: the photographs were taken at angles

of incidence of 0°, 10°, 20°, 30°, 40° and 60°.

4.0	 DATA PRESENTATION

4.1	 Spectral	 Response	 of	 a°

Figures 2 through 5	 present	 the spectral	 response of a H °	 , aV ° and

a C ° of the trees as measured during bo , h the autumn and spring phases of

the experiment	 (the subscript H,	 V and C	 refer	 to the polarization configura-

tion).	 As noted earlier	 in this	 report no	 1-8 GHz data were collected 	 in

the autumn nor were cross polarized measurements collected during the autumn.

(Appendix A contains a	 listing of	 the data presented	 in	 this	 report).	 If we

f first consider	 Figure 2	 in which	 the 0 0	(nadir)	 spectral	 response	 is	 plotted,

a number of significant trends are apparent. 	 The first observation	 is the

consistent	 increasing trends of 	 aH °,aV °	 (mostly between	 1	 and	 10 GHz)	 and

i particularly	 a C ° of the spring data.	 While aH° and	 aV °	 increase by about

2 d6 and 5 dB respectively,	 aC °	 increases by approximatEly 11	 dB as	 frequency

` is	 increased	 from 1-18 GHz.	 This	 is	 indeed suggestive of a target consist-

ing of a random collection of scatterers whose geometric and dielectric

properties become even more random and complex as the signal wavelength is

decreased.	 Of equal	 significance	 is the difference	 in magnitude,	 approxi-

mately 3 dB to 5 dB,	 between those data collected 	 in spring and autumn.

Particularly noticeable	 is	 the vertically	 polarized data where a maximum

difference of about 6 dB occurs at the higher frequencies.

In Figure 3,	 presenting the 20° data, 	 these trends are even more

apparentas noted by the 8 dB 	 increases	 in a H ° and o V ° and the 10 dB	 increase

in a C ° as frequency	 is	 increased	 from 1-18 GHz.	 Perhaps of more interest,

however, are the relative variations of the fall 	 and spring data.	 While the

spring data show a 4 dB	 increase as frequency 	 increases from 8 to 18 GHz,

the fall	 data	 remains relatively constant, or prrhaps even decreases a small

amount between 8 and 	 18 GHz.	 At the higher frequencies the fall and spring

data exhibit a	 10 dB separation,	 the spring data being	 the higher , of	 the

5
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two. While the cause of this extreme difference in a° for the autumn and

spring data is not necessarily obvious, it is suggested that perhaps dif-

fering amounts of water contained in the leaves in spring and fall and the

lesser density of leaves in the fall are probable causes.

Similar trends appear in the data collected at angles of incidence of

40° and 60°, Figures 4 and 5. At all angles the measurements from the spring

phase of the experiment show a consistent increasing trend as frequency is

varied from 1-18 GHz whereas the autumn gathered data exhibit a nearly

frequency independent behavior in the 8-18 GHz portion of the spectrum.

Furthermore the data collected during the autumn season were markedly lower

than those data collected in the spring, particularly at the higher frequencies.

Perhaps the most striking observation to be made, however, concerns the relative

frequency variations of the like and cross polarized scattering coefficients.

Ncte for example the relationship between aH and aC as measured at nadir as

frequency increases from 1.0 GHz to 17.0 GHz. While the ratio a C /aH at

1.0 GHz is -9.0 dB,aC / aH at 17.0 GHz is +0.4 dB (Figure 6a).

The fact that aH and cC are nearly equal at the higher frequencies

at nadir was quite troublesome at first notice. Data collected by Ament,

MacDonald and Shewbridge [81 from New Jersey coniferous trees indicated for

example that at nadir at a frequency of 9.3 GHz, a
HV / aHH	

-12.5 dB while

the data reported herein indicate a  / aH = -3.9 dB at 9.4 GHz. However, a

further inspection of the data reported by Ament at al. [81 shows that at
L-band at 10° a ratio of a

VH a / a VV 0 - 
+1.3 dB was measured while at 60°

a V H / a V^ = +6.9 dB.
Although it is f0 t that the rather large degree of depolarization

measured is probably a result of dielectric anisotropy within the volume, a

more exact explanation of this depolarization phenomenon cannot be suggested

at this time. The same systems were. used prior to and after this experiment

to measure the backscatter of a Luneberg lens for calibration purposes and
f

the backscatter of other vegetation types as part of other experiments, and

in both cases the measured target depolarization was much smaller than was

observed for the trees case. Hence it was concluded that the observed

depolarization behavior can only be attributed to the trees and not to the

system.	 s
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4.2 Angular	 Response of a°

Because only 8-18 GHz data were collected both in the spring and

autumn phases of the experiment, let us first compare the angular responses

of the trees as measured between 8-18 GHz during these two differing seasons.

Figure 7 presents aH° and aV° as measured at 8.6 GHz. Again the difference

in magnitudes of (Y° of the autumn and spring data is quite apparent,

particularly to the 30° to 40° angular region. Furthermore there is a

marked difference in the shapes of the two responses. The curve representing

the spring data is again quite suggestive of a volume scattering phenomenon

although the increasing trend of a° between 0° and 10° is somewhat irregular

for a volume effect. It is felt that this irregularity may be the result of

the signal penetrating the tree canopy as viewed at nadir, thus introducing

effects due to radar return from the soil surface. The autumn data also

show the increase of a° at the lower angles to a certain extent. Perhaps

more surprising though is the relatively rapid decay in the autumn a °

curve between angles of incidence of 10° and 40°. Again it is suggested that

the soil underlying the tree canopy is playing a role in determining the

shape of these curves at the lower angles of incidence. This may b: partic-

ularly true when considering the proposition that during the autumn phase of

the experiment the leaves were less dense and held considerably less moisture

than during the spring phase. At angles of incidence greater than 40° the

autumn data remains fairly constant while the spring data continues to decay.

At 13.0 GHz, Figure 8, th, trends are similar to those noted at 8.6 GHz.

At this higher frequency, however, the separation between the spring and autumn

data is quite extreme, nearly 9 dB for aH ° at 30° and about 8 dB for a v ° at

30°. Finally at 17.0 GHz, Figure 9, the separation, at 30 0 , between the

autumn and springtime data has reached about 10-12 dB. The trends of the

data have remained, in general, very similar throughout the frequency range

from 8-18 GHz.

Next let us compare the angular response of ail three polarizations,

HH, VV and cross between 1 and 18 GHz for the spring data. In Figures 10

through 15 both a° and y are plotted where y = a°/cos 0 ( 0 is the angle

of incidence). Consider Figures 10a and 10b containing 1.1 GHz data. Note

that in these figures the angular responses do not immediately suggest that a
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volume scatter phenomenon is dominant. Certainly the target does not appear •	 1

extremely smooth but aH ° does show a 7 dB decay between 0° and 30°. Also,

while aH° and av° show similar returns at nadir, the shapes of the curves

are somewhat different with aH ° being lower than a
V

° at all angles but

nadir. aC ° shows a very flat response between 0° and 50° at which point the

aC ° begins to decay. Expressed as y , Figure 10b, the curves have a tendency

to show an increase in magnitude at the higher angles.

At 3.3 GHz, Figure 11, aH° and aV ° have more similar responses than

those at 1.1 GHz. aH ° and a
V
° begin to show an indication that volume scatter

is becoming more pronounced. Except at nadir (at which angle it is felt that

return from the soil is significant) the curves of a° are relatively flat

between 10° and 40° at which point a slow decay begins. As at 1.1 GHz, aCo

shows a very flat response between 10° and 60°.	 In Figure llb, y has a flatter
i

response than at 1.1 GHz although the tendency for y to increase at the higher

angles is still apparent.

At 7.3 GHz, Figures 12a and 12b, it is noted that volume scatter is

ti	 becoming quite prominent. Note the nearly identical response of C H ° and

a
V
° and that the curves of co show a trend characteristic of a volume scat

shows a response similar to aH ° and av °. Note thatter phenomenon. aC° 

yH and yV , Figure 2b, exhibits a nearly flat response between 0° and 60°

with yC showing a dip in magnitude at 10°.

Next consider the angular response of a° and y at 8.6 GHz as plotteJ

in Figures 13a and 13b. For all practical purposes, the horizontally and

vertically polarized returns are identical. Note also that the cross polarized

return, while about 6 dB lower than the like polarized returns, has very nearly

an identical shape as the like polarized returns. Furthermore as shown in

Figure 13b, y has a fairly flat response throughout the 0 0 to 80° angular range.

In Figures 14 and 15 the angular responses of the 13.0 and 17.0 GHz

data continue to indicate that volume scatter is predominant. At both frequencies

the horizontally and vertically polarized returns show very similar responses

as a function of angle of incidence. The cross polarized returns, while

t similar in shape to the like polarized returns, show a tendency to increase

in magnitude as frequency is increased. 	 Moreover y , at both 13.0 and

17.0 GHz shows an almost flat response throughout the angular range.
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Figure Were Gathered in Springtime.
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It is interesting to compare the data of Reitz 171 to those contained

in this report. Operating an X-band (9.375 GHz) horizontally polarized side

looking radar, data were collected over a variety of terrain types. One

target studied was forest (New Jersey) land consisting of oak and pine trees.

Figure 16 presents a comparison of Reitz's data with data collected with the

MAS 8-18. Note that the data show very goou agreement both in magnitude and in

terms of their angular variations. Figures 17a-c present horizontally polarized

data collected by Ament, MacDonald and Shewbridge of the Naval Research	 -w

LaL•uratory [81. Again the target was New Jersey forest lands. Data were

gathered at 0.45, 1.25, 3.30 and 9.30 GHz with a multipolarized, forward look-

ing pulsed radar. While neither the L-band (Figure 17a) nor the K-band (Figure

170 data collected by NRL and KU show any significant agreement, the S-band

(Figure 17b) data show similarities both in terms of magnitude (excepting nadir

data) and angular trend.	 In Figure 18 further data are presented. These data	 9

were collected by Edison, Moore and Warner [91 using a near nadir looking

pulsed radar over Pine Island, Minnesota. These data suggest the target to

be nearly isotropic over the angular region shown with a magnitude of about

0 dB. This is not in agreement with the KU data which indicate not only a

large discrepancy in the magnitude of a°,with the KU data being an order of 	 j}

magnitude less,but also the shapes of the curves indicate the targets were

of quite different character.

5.0 CONCLUDING REMARKS

An experiment has been performed to study the 1 to 18 GHz scattering

behavior of deciduous trees. The results of this experiment have led to the

following observations:

a) Data collected in the springtime indicate that a° as measured

between 1 and 18 GHz is an increasing function of frequency. Data

collected in the fall do not, in general, show an increasing trend

with frequency (8-18 GHz) and in some cases even shows a slight

decrease as frequency increases.
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Figure 16. Angular Variations of QH° as Measured by the Kansas University

Scatterometer and 6H° as Measured with the Goodyear System.
Note the Close Agreement of the Measurements.
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Figure 17. Angular Variations of O—H o as Measured by the Kansas University
System as Compared to O—H o as Measured by the NRL System. Data

Are Presented at 1.1 GHz (17a), 3.3 GHz (17b), and 9.4 GHz

(17c).
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b) The angular response to both spring and autumn data indicate

that between about 7 and 18 Gliz, volume scatter is the pre-

dominant scattering mechanism. Furthermore, cross polarized

measurements, when available, substantiate this observation.

c) Data collected in the springtime are consistently higher

in magnitude (as much as 11 dB) than those collected in the

autumn. This effect is most apparent in the angle of incidence

range between 30° and 50°.

d) A comparison of woodland data collected from various sources

show that a wide range of scattering characteristics exists

indicating that further measurements of forest lands is warranted.



i

REFERENCES

[1] Food and Agricultural Organization of the United Nations, World

Forest Inventory. Rome, 1963.

[2] Avery, T. E., "Foresters Guide to Aerial Photo Interpretation,"
Agricultural Handbook 308, U. S. Department of Agriculture, Forest

Service,I

131 Viskne, A. T., C. Liston and C. D. Sapp, "SLR Reconnaissance of

Panama," Photogrammetric Engineering, v. 36, n. 3, pp . 253-259,	 r'

March, 1970.

[41 Bush, T. F. and F. T. Ulaby, 118-18 GHz Radar Spectrometer," University

of Kansas Center for Research, Inc., RSL Technical Report 177-43,

Lawrence, Kansas, September, 1973.

[51	 Jberg, J. M. and F. T. Ulaby, "MAS 2-8 Radar and Digital Control Unit,"

University of Kansas Center Po- Research, Inc., RSL Technical Report

177-37, Lawrence, Kansas, October, 1974.

[6] Bush, T. F. and F. T. Ulaby, "Fading Characteristics of Radar Backscatter
from Selected Agricultural Targets," IEEE Trans. on Geoscience

Electronics,	 v. GE-13, n.4, pp. 149-157, October, 1975.

171 Reitz, E. A., "Radar Terrain Return Study, Final Report: Measurements
of Terrain Backscattering Coefficients with an Airborne X-band Radar,"

Goodyear Aerospace Corporation Report, GERA-463, 1959.

[8] Ament, W., F. MacDonald and R. Shewbridge, "Radar Terrain Reflections for
Several Polarizations and Frequencies," Trans. 1959 Symposium on Radar
Return, Pt. 2, May 11-12, 1959, University of New Mexico N.O.T.S_

TP 2339, U.S.Naval Ordnance Test Station, China Lake, California.

[91 Edison, A. R., R. K. Moore and B. D. Warner, "Radar Terrain Return at
Near-Vertical Incidence," IRE Trans. on Antennas and Propgation, v. AP-8,

pp. 246-254, May, 1960.

37


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A04_.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B06_.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf

