General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
NASA GRANT NSG. 8036

BIO-GAS PRODUCTION FROM ALLIGATOR WEDGES

Initiation date: June 1, 1976

Principal Investigator: Dr. Abdul Latif

Research Assistants:
 Mr. Daniel Malone
 Mr. Mohammed Rizvi

Technical Advisor:
 Mr. William Wolverton
 NASA N.S.T.L.
 Bay St. Louis, Mississippi

Participating Institution:
 Department of Biological Sciences
 Alcorn State University
 Lorman, Mississippi

(NASA-CA-149609) BIO-GAS PRODUCTION FROM
ALLIGATOR WEDGES Semiannual Report (Alcorn
State Univ., Lorman, Miss.) 11 p HC A02/MF
A01 CSCL 06C Unclas
G3/51 21957
Laboratory experiments were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds (Alternanthera philoxeroides [Mart.] Griesb.). Efforts were also made for the isolation and characterization of the methanogenic bacteria, responsible for methane production. Briefly, methodology and results are presented as follows:

Materials and Methods

Alligator weeds were collected from a water cooling pond located at Crosby Chemical Company, Picayune, Mississippi. Harvesting was done manually by rakes and the plants were transported to the Alcorn State University Campus in plastic bags. Several fermentation units were constructed to conduct experiments to evaluate the effect of temperature, sample preparation, light intensity, reducing agents, and pH of the media, on the production of bio-gas and methane from the microbial anaerobic decomposition of alligator weeds.

A fermentation unit was constructed as follows: A large Coke bottle (970 ml) was sealed to the atmosphere with two hole rubber stopper. One outlet was fitted with a rubber septum for gas chromatographic sampling, and the other outlet was connected with plastic tubing to a sealed container filled with water acidified with sulfuric acid. The displacement of water in the second container by bio-gas produced in the fermentation bottle provided a convenient method of measuring the volume of bio-gas produced. Samples for gas chromatographic analysis were taken through the rubber septum. Perkins Elmer 811 Gas Chromatographs was used to estimate the methane content of the bio-gas.
Alligator weeds were chopped into approximately one inch long pieces and placed in fermentation bottles. Each fermentation bottle had 250 gram (wet weight) chopped plants, 20 ml of fresh rumen content from the cow's stomach and 250 ml of water. The purpose of adding inoculum from the rumen content was to initiate an aerobic decomposition-process and supply methanogenic bacterial populations. Since absolute anaerobic conditions are necessary for the growth of methanogenic bacteria, all units, once sealed, were not disturbed. A sealant was used to insure air-tightness around the tubes and rubber stopper. There were five treatments. Each treatment was replicated four times. The detail of various treatments is given below.

Treatment No. 1: Temperature

Four fermentation units were placed in an incubator maintained at 35°C and four other units were incubated at room temperature (24°C ± 3°C).

Treatment No. 2: Sample Preparation

In one experiment plants were chopped into approximately one-inch long pieces. In the second, plants were blended into a slurry form and in the third experiment, the plants were first boiled in water for one hour and then blended into a slurry form.

Treatment No. 3: Light Intensity

In one experiment, four fermentation bottles were placed under bright light produced by fluorescent tubes (400 W). In the second, fermentation bottles were covered by aluminum foil to prevent exposure to light. In the third experiment, the fermentation bottles were left in the laboratory under ordinary light.

Treatment No. 4: Reducing Agents
Cysteine sulfide and cysteine hydrochloride were used as reducing agents. Cysteine sulfide was added to four fermentation bottles at the rate of 2 ml per 100 ml media whereas cysteine hydrochloride was added to the other four bottles at the same rate. The concentration of reducing agents was 2.5%. A control without the addition of reducing agents was also maintained.

Treatment No. 5: Effect of pH

The effect of pH was determined by adjusting the initial pH of liquid content in each fermentation bottle to 7, 8, and 9 respectively by the addition of sodium hydroxide. A control was maintained which had a pH of 6.6.

All the experiments were conducted at room temperature (24°C ± 3°C) with the exception of experiments of treatment number 1, in which the incubation temperature for one experiment was 35°C. In all the experiments plants were chopped into approximately one-inch long pieces with the exception of treatment number 2, where plants were blended into a slurry form with and without boiling the plants. Each fermentation bottle had 250 gram (wet weight) alligator weeds, 20 ml of fresh rumen content and 250 ml water.

Isolation and Characterization of Methanogenic Bacteria

Samples for bacterial isolation and characterization were taken from those fermentation units which had produced the highest amount of bio-gas and methane during anaerobic decomposition of alligator weeds. These units were those which were incubated at 35°C and those in which the initial pH of the liquid media was adjusted to 9. During the process of isolating pure cultures from these anaerobic microorganisms, strict anaerobic conditions were maintained as described by Bryant et al. The process of isolation and characterization is still in progress. The result of this study will be reported in the annual report which will be submitted in May 1977.
Results:

The data from the various experiments which were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds, are presented in Tables 1, 2, 3, 4, and 5 respectively.

Temperature

Effect of temperature on the rate and amount of bio-gas production as well as on the percentage of methane in the bio-gas was very prominent (Table 1). Increasing incubation temperature of the fermentation units from 24°C ± 3°C to 35°C increased not only the rate of bio-gas production but also the methane percentage in the bio-gas. The methane content of total bio-gas was increased from 58.1% to 66.0% by increasing the incubation temperature to 35°C. Furthermore, higher temperature also decreased the lag time between the production of bio-gas and production of methane gas.

Sample Preparation

Data presented in Table 2, revealed that sample preparation, (alligator weeds chopped, blended, and boiled and blended) had no effect on the total bio-gas production. However, the methane production from samples which were boiled and blended, was reduced to a great extent (47.7%) when compared with chopped or blended samples (58.1% and 62.1%).

Light Intensity

Comparison of the data from experiments in which fermentation units were exposed to different light intensity, in Table 3 revealed that total bio-gas produced under bright light was slightly higher when compared with ordinary light or dark conditions. On the other hand, methane content of the bio-gas
was more (66.61) when bio-gas was produced under darkness.

Reducing Agents

According to the data presented in Table 4, addition of cysteine sulfide and cysteine hydrochloride to the fermentation units had slightly increased both, the bio-gas production and percentage of methane in the bio-gas. Cysteine sulfide was slightly more effective than cysteine hydrochloride.

Effect of pH

Data from the experiments in which pH of the liquid media in each fermentation unit was adjusted before anaerobic microbial decomposition of the alligator weeds, are presented in Table 5. The data showed that increasing pH of the media from 6.6 (control) to 7.0 had a slight decrease in bio-gas production as well as in the methane content of the bio-gas produced. However, when the pH of the media was increased to 8.0, there was a little effect on bio-gas production but methane content of the bio-gas produced was increased up to 64.0%. By further increase in the pH of the media to 9.0, there was a significant increase in the bio-gas production as well as in the methane content of the bio-gas produced.
Table 1: Bio-gas and Methane Production From the Anaerobic Decomposition of Alligator Weeds at Various Temperatures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24°C ± 3°C</td>
<td>No. Days Elapsed</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>353</td>
<td>15</td>
</tr>
<tr>
<td>42</td>
<td>940</td>
<td>503</td>
</tr>
<tr>
<td>60</td>
<td>1351</td>
<td>788</td>
</tr>
<tr>
<td>81</td>
<td>2075</td>
<td>1363</td>
</tr>
<tr>
<td>102</td>
<td>2726</td>
<td>1584</td>
</tr>
<tr>
<td>35°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculated Data:

- % Methane in Total Bio-gas: 58.1 (24°C ± 3°C), 66.0 (35°C)
- ml Bio-gas Per Gram Wet Weight: 10.9 (24°C ± 3°C), 12.8 (35°C)
- ml Methane Per Gram Wet Weight: 6.3 (24°C ± 3°C), 8.4 (35°C)
Table 2: Effect of Sample Preparation on Bio-gas and Methane Production
From the Anaerobic Decomposition of Alligator Weeds

<table>
<thead>
<tr>
<th>No. Days Elapsed</th>
<th>Chopped</th>
<th>Blended</th>
<th>Boiled & Blended</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>353</td>
<td>15</td>
<td>307</td>
</tr>
<tr>
<td>42</td>
<td>940</td>
<td>503</td>
<td>885</td>
</tr>
<tr>
<td>60</td>
<td>1351</td>
<td>788</td>
<td>1615</td>
</tr>
<tr>
<td>81</td>
<td>2075</td>
<td>1363</td>
<td>2015</td>
</tr>
<tr>
<td>102</td>
<td>2726</td>
<td>1524</td>
<td>2603</td>
</tr>
</tbody>
</table>

Calculated Data:

- % Methane in Total Bio-gas:
 - Chopped: 58.1
 - Blended: 62.1
 - Boiled & Blended: 47.7

- ml Bio-gas Per Gram Wet Weight:
 - Chopped: 10.9
 - Blended: 10.4
 - Boiled & Blended: 10.6

- ml Methane Per Gram Wet Weight:
 - Chopped: 6.3
 - Blended: 6.5
 - Boiled & Blended: 5.1

-7-
Table 3. Bio-gas and Methane Production From the Anaerobic Decomposition of Alligator Weeds Under Different Light Intensities

<table>
<thead>
<tr>
<th>No. Days Elapsed</th>
<th>Bright Light</th>
<th>Ordinary Lab Light</th>
<th>Dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>39</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>330</td>
<td>17</td>
<td>353</td>
</tr>
<tr>
<td>42</td>
<td>968</td>
<td>467</td>
<td>940</td>
</tr>
<tr>
<td>60</td>
<td>1390</td>
<td>789</td>
<td>1351</td>
</tr>
<tr>
<td>81</td>
<td>2155</td>
<td>1287</td>
<td>2075</td>
</tr>
<tr>
<td>102</td>
<td>2840</td>
<td>1797</td>
<td>2726</td>
</tr>
</tbody>
</table>

Calculated Data:

- % Methane in Total Bio-gas
 - Bright Light: 63.3
 - Ordinary Lab Light: 58.1
 - Dark: 66.6

- ml Bio-gas Per Gram Wet Weight
 - Bright Light: 11.4
 - Ordinary Lab Light: 10.9
 - Dark: 10.7

- ml Methane Per Gram Wet Weight
 - Bright Light: 7.2
 - Ordinary Lab Light: 6.3
 - Dark: 7.1
Table 4: Effect of Reducing Agents on Bio-gas and Methane Production
From the Anaerobic Decomposition of Alligator Weeds

<table>
<thead>
<tr>
<th>No. Days Elapsed</th>
<th>Cysteine Sulfide</th>
<th>Cysteine Hydrochloride</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>70</td>
<td>24</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>584</td>
<td>364</td>
<td>470</td>
</tr>
<tr>
<td>42</td>
<td>1315</td>
<td>874</td>
<td>1145</td>
</tr>
<tr>
<td>60</td>
<td>1995</td>
<td>1264</td>
<td>1750</td>
</tr>
<tr>
<td>81</td>
<td>2595</td>
<td>1614</td>
<td>2420</td>
</tr>
<tr>
<td>102</td>
<td>2945</td>
<td>1804</td>
<td>2870</td>
</tr>
</tbody>
</table>

Calculated Data:

- % Methane in Total Bio-gas:
 - Cysteine Sulfide: 61.3
 - Cysteine Hydrochloride: 59.4
 - Control: 58.1

- ml Bio-gas Per Gram Wet Weight:
 - Cysteine Sulfide: 11.8
 - Cysteine Hydrochloride: 11.5
 - Control: 10.9

- ml Methane Per Gram Wet Weight:
 - Cysteine Sulfide: 7.2
 - Cysteine Hydrochloride: 6.8
 - Control: 6.3
Table 5: Bio-gas and Methane Production From the Anaerobic Decomposition of Alligator Weeds at Various pH

<table>
<thead>
<tr>
<th>No. Days Elapsed</th>
<th>Control (pH 6.6)</th>
<th>pH 7</th>
<th>pH 8</th>
<th>pH 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>0</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>353</td>
<td>15</td>
<td>350</td>
<td>25</td>
</tr>
<tr>
<td>42</td>
<td>940</td>
<td>503</td>
<td>972</td>
<td>443</td>
</tr>
<tr>
<td>60</td>
<td>1351</td>
<td>788</td>
<td>1300</td>
<td>715</td>
</tr>
<tr>
<td>81</td>
<td>2075</td>
<td>1363</td>
<td>1800</td>
<td>1065</td>
</tr>
<tr>
<td>102</td>
<td>2726</td>
<td>1584</td>
<td>2554</td>
<td>1475</td>
</tr>
</tbody>
</table>

Calculated Data:

<table>
<thead>
<tr>
<th>% Methane in Total Bio-gas</th>
<th>58.1</th>
<th>57.8</th>
<th>64.0</th>
<th>68.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml Bio-gas Per Gram Wet Weight</td>
<td>10.9</td>
<td>10.2</td>
<td>10.1</td>
<td>11.5</td>
</tr>
<tr>
<td>ml Methane Per Gram Wet Weight</td>
<td>6.3</td>
<td>5.9</td>
<td>6.5</td>
<td>7.8</td>
</tr>
</tbody>
</table>