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I. INTRODUCTORY



At the time when this grant was proposed, it was evident that American


investigators would have no opportunity for at least several years to study


the physiological response of small mammals to weightlessness (0 G). However,


as a result of the efforts of a few investigators, substantial progress had


been made in studying the physiological effects of accelerations greater than


terrestrial gravity (I G) simulated by chronic centrifugation. Thus, it


appeared that the best way to prepare for eventual opportunities to study


weightlessness and at the same time to add to the sum of knowledge of gravi­

tational physiology was to build on the progress achieved with centrifugation.



This research grant was intended to support research on the effects of


chronic centrifugation upon body size and composition in the rat. Because


of the similar stresses placed upon the body by acceleration and physical


exercise and because space voyagers had successfully employed exercise as


a conditioner at 0 G, it was proposed to study the effects on body size and


composition of exercise with and without concomitant centrifugation. (Explor­

ation of the differences between exercise and acceleration which were revealed


was also profitable.)



Because it was known that gross body mass could be altered by dietary
 

regimens, it was proposed to study the interaction with centrifugation of


high protein and high fat diets.



Soon it became evident that some body composition parameters were vigor­

ously defended against efforts to perturb them with AG, exercise, diet and


other factors. It was then realized that one would be handicapped in inter­

preting the effects of acceleration on body composition without knowledge of


the possible involvement of physiological regulation. This led us into a


profitable reexamination of data collected for other purposed which yielded


evidence that some body components are physiologically regulated and others


are not. Because of evidence that some systems of physiological regulation


do not begin to function effectively in the rat until several weeks after


birth, it became desirable to study the effects of our various experimental


variables on the young growing rat as well as on the adult.



At the very end of the study period it became evident that hypodynamia in


its various forms is a special case of our experimental variable activity. It


may be regarded as the ultimately mild exercise regimen, below ad libitum


activity which is usually the control condition. Hence, as the period of


support closed we had just completed a preliminary study of cage restraint.



The briefest outline of our studies by category is provided by the


TABLE OF CONTENTS. However, the succession of topics in the TABLE is a logical


one and, in many respects, does not agree with the chronological development


of our ideas presented above.



NOTE


Most of the investigations listed in the TABLE OF CONTENTS are presented



here in their final form. However, statistical and graphical analyses of


II C., IV.A., and V.A. are not yet completed Consequently, the presentations


of them are tentative and incomplete.
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II. ACCELERATION STUDIES



A. Body Size and Acceleration.


The following is a manuscript accepted for publication in the next



number of Life Sciences And Space Research. Its principal contribution


is that it provides a first approximation to a general theory for the body


composition response of mammals (including man to AG.)
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(Life Sciences And Space Research. in press.)



BODY SIZE AND CHRONIC ACCELERATION



Grover C Pitts



Department of Physiology, School of Medicine



University of Virginia, Charlottesville, Va., U.S A



Body composition studied as a function of acceleration



(1-4.7 G) in mice and rats showed fat-free body mass (FFBM) to



be a predictable function of G-force while corroborating the



known lability of body fat. Of 9 studied components of FFBM



only skeletal muscle, liver and heart contributed to the



observed changes induced by cG. (Body water / FFBM) was
 


independent of A G When FFBM (as a percentage of 1 G controls)



was plotted versus G for mice, rats and monkeys (1-4 7 G) and



men (0-1 0), the mass of the fat-free compartment passed



through a maximun at 1 G The data distribution in the figure



suggested possible effects of body size and of age
 


COSPAR Identification No V 7.5
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Numerous reports in the literature have demonstrated a



change in body size of several species of mammals following 

exposure to a change in chronic acceleration (A G). For 

laboratory mammals A G has been achieved by chronic centri­

fugation and for man, by exposure to weightlessness. The body­

size parameter usually monitored is live weight. The useful­

ness of this datum is impaired by its heterogeneous nature, 

comprising fat and numerous non-fatty tissues and organs in 

addition to gut content and fur. Interpretation of the results 

obtained is facilitated if one fractionates the body into fat 

and the fat-free body mass (FFBM) as a first approximation 

and further fractionation of the FFBM is desireable. This 

approach requires body composition analyses which are encoun­

tered infrequently. We have attempted here to collate and 

interpret the few useful data which we have been able to find 

Data are available on four species: male Swiss Webster



white mice [1] , female Sprague-Dawley rats [2,31, male monkeys



(Macaca nemestrina) [4] and men [5,6,71. The body composition



data are more detailed for the mice and rats, while in the



case of the monkey and man, the only available data useful to



us are live weight and body water values or values of FFBM
 


calculated from water In each case the individuals studied



were adults. Data on mice exposed during the period of rapid



growth [1] were not used.



Mouse and rat data are summarized in Table 1. The



coefficients of variation demonstrate the stability of the



FFBM and the lability of fat in either absolute or relative
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units. These findings corroborate several earlier reports,



for example, in adult rats at terrestrial gravity fatness



changed in response to: treadmill exercise [8], combinations



of exercise and/or force-feeding [91, surgical stress [10],



changes in the daily light cycle [101 and changes in diet [i1].



None of these conditions in the adult altered the FFBM. Conse­


quently, the evidence in Table 1 that FFBM changes with A G



stands in clear contrast to its marked stability at terrestrial



gravity. Among nine components constituting the FFBM which



have been studied [2] only skeletal muscle, liver and heart



contributed to the changes noted in FFBM. In the rat these



changes have been shown to be prompt, reversible and recti­


linearly related to A G [2].



In our experience the water fraction of the fat-free



compartment is so stable under steady-state conditions that



it is frequently more useful as an index of technical precision



than of state of hydration. In Table I the mouse values are



somewhat low, possibly because, unlike the rat data, fur and



gut content were included with FFBM. The water fraction of



the rats on high-protein diet are seen to be lower than for



those on chow, a statistically significant (P<.0001) difference



pointed out earlier [31 The data of others [121 show a similar



effect of high-protein diet.



The data in Table 1 can be combined with those on monkeys



and men in a single plot of body composition parameters versus
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acceleration if the parameters are normalized in terms of



percentage of the control value at I G. When this is done



for fat (either in grams or percentage), no meaningful rela­


tionships are apparent. Such a plot of FFBM is presented



in Fig. 1. Obviously, there is agreement among the investi­


gators that acceleration levels above 1 G reduced FFBM. Also



the data suggest a body size effect. As size increases from



mouse to monkey, the lines show an increasing negative slope.



On the other hand the two sets of rat data may reflect an



age difference since the FFBM at 1 G was 300 g in one case



[21 and 242 g in the other 13], reflecting an age difference



of approximately 75 days. Probably such uncontrolled



variables would result in an envelope of values for each
 


species comparable in breadth to that required to include



both sets of rat data In the monkey study j4] total body



water was measured and the FFBM estimated by assuming it



contained 73.2% water.



Values for man were obtained by multiplying th6 reported



mean daily loss (percent/day) in "lean body mass" of Skylab



crews as tabulated in [7], by the mission duration in days.



The human point plotted in Fig. 1 showing a loss of 3.9% is



the crew mean for Skylab mission number 2. This mission with



a bicycle ergometer available was judged most nearly comparable



with the other plotted species where ad libitum activity was



allowed within the living cages On later Skylab missions



the crews had access to additional exercisers which simulated
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load bearing in a gravitational field [7] As a result the



mean crew loss in "lean body mass" for the whole mission was



1.4% in Skylab 3 and 1.1% in Skylab 4. In studies of Apollo



missions the mean reduction in total body water was 2.4% j6j.



Assuming the FFBM had 73% water [1] this corresponds to a loss



of --3.3% in FFBM, as plotted in Fig. 1. Limb circumference



measurements corrected for variations in thickness of sub­


cutaneous fat were made on cosmonauts on the Salyut mission [5]



and lend semi-quantitative corroboration to the reports on



Apollo and Skylab.



Considering the general implications of Fig. 1, we might
 


predict from extrapolations that at 0 G the FFBM will be 104%



in the mouse, 104.5 and 106.5% in the rat, and 110 5% in the
 


monkey. By contrast, a homology with the human data suggests
 


that these species would all be below 100% when weightless.



But it appears reasonable to assume that if FFBM were measured



in each species from 0 to 4 7 G, it would pass through a



maximum at I G. However, until data on weightless laboratory



mammals or data on men at hyper-gravity are in hand, we cannot



confidently choose between extrapolated values and homologous



values and we must consider four alternative explanations­


1. 	 The steady-state values of mouse, rat and monkey at



0 G will be species-related and may fall either above



or below 100% of control.



2. 	 The steady-state values at 0 G will be body size-related



and may fall either above or below 100%.
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3. 	 Adaptation to weightlessness was incomplete in the men.



After completion, FFBM in men would be in excess of 100%.



4. Factors primarily responsible are as yet unidentified.



For the present, we will accept the hypothesis of a continuous



function passing through a maximum at 1 G with secondary



displacements due to combinations of the factors body size,



age, species and perhaps others.



It is probably hielpful to consider involvement of regula­


tory mechanisms in the functions described by Fig. 1. The



relative constancy of the FFBM at terrestrial gravity in spite



of numerous perturbing influences (see above) probably reflects



physiological regulation of at least its major components.



However, the same may not be true of the prompt and predictable



changes in FFBM evoked by A G [3]. If we accept the proposi­


tions that regulatory mechanisms are generally the result of



evolutionary processes and that terrestrial gravity has not



shown a physiologically significant change during the evolution



of terrestrial life, then living organisms could not possess



regulatory defenses against chronic 6hanges in acceleration per



se. However, A G does change weight-load and mammals possess



physiological mechanisms (e.g., hypertrophy - atrophy of muscle



and 	 bone) for responding to changes in load encountered at



terrestrial gravity. Thus, the general pattern of changes in



FFBM of men on orbital missions with and without exercisers



which stimulate weight-bearing [7] was in accord with a Priori
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expectations that weightlessness would cause atrophy of



skeletal muscle which might be prevented by an appropriate



exercise regimen. Atrophy in skeletal muscle, the largest



component of the FFBM, could alone account for the reduction



in FFBM reported for the weightless men. The reductions in



FFBM seen with accelerations greater than 1 G are more



difficult to explain. Chronic acceleration must exert effects



beyond the increased weight-load which we expect to evoke



hypertrophy and an increase in FFBM. We can suggest no



explanations but reaffirm our conviction that the observed



response is physiologic rather than pathologic for two reasons.



First, rats exposed to hypergravity approach their new lower



level of FFBM from either above or below [3] which suggests



a steady state rather than a progressive decline. Secondly,



weanling rats at 4.15 G show normal growth curves running



approximately parallel to those for controls at 1 G during



exposures as long as one year [unpublished].



If the major components of the FFBM are regulated, the



pertinent masses must be monitored as a function of time.



it is difficult to conceive of "ponderoceptors," i.e.,



receptors capable of monitoring FFBM as weight but their



existence must be considered. Since alteration of chronic



acceleration can change weight independently of mass, it



constitutes a possible test for the existence of pondero­


ceptors. The appropriate response of a regulatory system


0 

based upon ponderstasis would be a decrease in FFBM during
'A 
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centrifugation and an increase during weightlessness Fig.



I shows that the former occurs but the latter does not Thus



ponderostatic regulation isnot supported by these results.



The reduction of - 4% in the FFBM of weightless men 

appears to be of doubtful practical importance. But since it 

can possibly be explained primarily as a result of skeletal 

muscle atrophy and since skeletal muscle constitutes approxi­

mately one-half the FFBM, then the reduction in that component 

could be t 8%. If the mass reduction should be greatest in 

the antigravity muscles, the percentage reduction would be 

even greater.
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Fig. 1. 	 Effect of chronic acceleration on fat-free body mass (FFBM) in


four species. Sources of the data indicated by references
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Table 1. Effect of chronic acceleration on body composition (group means ±SEM).



Species, Reference Acceleration-G, Exposure Period



White mouse (1] 1.0, 1 mo. 4.7, 1 mo. 

N per group, Diet 9, chow 9, chow 

fat (g) 3 .08±.5 5b (5 3)e 0.86±.17b (59) 

FFBMa (g) 33.14±.93c (8) 28 .41±.77c (8) 

fat/FFBM (%) 9.28±1.67 c (53) 3 .01±.5 9c (58) 

H20/FFBM (%) 70.53±.34 (1) 70.44±.24 (1) 

White rat [2] 1.00, 2 mo. 2.76, 2 mo. 4.15, 2 mo. 

N per group, Diet 7, chow 8, chow 8, chow 

fat (g) 4 5±4 d (23) 25±2d (22) 15±2 d (37) 

FFBM (g) 300±8d (7) 2 77 ±8d (8) 25 8±4 d (4) 

fat/FFB4 (%) 15.5±1.5e (25) 9.0±.7c (22) 5 . 8 ±.7C (34) 

H20/FFBM (%) 73.4±.3 (1) 74.2±.3 (1) 73.8±.2 (1) 

White rat [3] 1.00, 28 da. 3.18, 28 da. 3.18, 28 da. 

N per group, Diet 6, chow 6, chow 5, high fat 

fat (g) 4 6±6d (32) 25±2d (19) 51±7 (31) 

FFBM (g) 263±8d (7) 228±5d (5) 225±17d (17) 

fat/FFBM (%) 18±3 (41) 12±Jc (20) 22±2 c (20) 

H20/FFBM (%) 72.8±.5 (2) 73.9t.3 (1) 73.2±.3 (1) 

White rat [3] 1.00, 24 da. 2.76, 24 da. 

N per group, Diet 8, high prot. 7, high prot. 

fat (g) 4 8±4d (24) 33±5d (40) 

FFBM (g) 233±5d (6) 203±5d (6) 

fat/FFBM (%) 21±2 (27) 17±3 (46) 

H20/FFBM (%) 71.4±.4 (2) 71.4±.7 (2) 

a FFBM = fat-free body mass. b P<.02 by t test. e P<.O1 by t test

/ 

d P<.O by analysis of variance. e 	 The values in parentheses are coefficients


of variation (SD as % of mean).
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B. Regulation of Body Mass in Rats Exposed to Chronic Acceleration.


This paper published in 1975 made the following general contributions



which are useful in the context of NASA's program. Body fatness showed the



same lability during centrifugation that characterizes its response to a



variety of other variables. However, the fat-free body mass (FFBM) yielded



several lines of evidence suggesting that it is regulated physiologically



Of the many factors studied, AG is the only one capable of altering FFBM


in the adult. Probably this reflects the fact that AG is the only one of
 

these factors which living organisms have never had an opportunity to adapt


to during the whole course of evolution.
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AMYRICAN JOURNAL OF PtSLIOOy 

Vol 228 No 3, March 1975 PTnnd US -4 

Regulation of body mass in rats exposed 

to chronic acceleration 

G C PITTS, L S BULL, AND J OYAMA 
Department of Physiology, Unversity of Virginia School of Medicine, Charlottesville, Virginza 22901, 
and EnvironmentalBiology Division, Ames Research Center, National Aeronautics and 
Space Administration, Mofett Field, California94035 

Prrrs, G C, L S BULL, AND J YAuiA Regulation of body mass MqETHODS 

in ratsexposed to chronic acceleratzon Am J Physiol 228(3) 714-717 
1975 -Female rats approximately 6 mo old were chronically cen- Female Sprague-Dawley-denved rats (Simonsen Labora­

triluged for up to 30 days at 2 76 G~or 3 18 G and sacrificed at tories, Inc, Gilroy, Calif) approximately 6 mo of age were 

intervals for body-composition study Both fat and the fat-free received on day - 10 (centrifugation initiated on day 0) On 

body mass (FFBM) were reduced during the 1st wk of centrifuga- day -3 they were segregated into three mass-matched 

tion, with the fat showing considerably more variation both witun groups one eating a chow diet ad libitum, one a high-fat 

and between groups The FFBM was reduced below control level diet ad libitum, and one fasting All groups had water 

to the same extent in rats fed commercial chow, a high-fat diet, or a available ad libitum at all times On day 0 seven randomly 

high-protem diet or in rats prefasted to produce a body-mass chosen rats of each group were sacrificed for body-composi­

deficit at the start of centrifugation There were no centrifugation­

associated changes in body water content It was concluded that tion studies The remainder were randomly segregated into 


body fat showed no evidence of regulation, FFBM is regulated at four groups--group I 1 00 G, chow ad libitum, n = 20, 
any constant level of acceleration between I and 4 15 G, and the group 1I 3 18 G, chow ad libitum, n = 20, group HI 3 18 
change in FFBM induced by a change in acceleration is probably G, high-fat diet ad libitum, n = 17, group IV 3 18 G, ha ing 
not regulated a mass deficit due to previous fasting but returned to chow 

ad libitum on day 0, n = 20 The mean body mass per
gravity, centrifugation, body composition, regulation, body fat, group may be seen in Fig 1 Body-composition data during 
fat-free compartment the centrifugation regimen were obtained on randomly 

designated rats sacrificed at days +7, +24, and +30 

THE AMOUNT OF BODY FAT is relatively labile in studies Two additlional experiments were carried out later In 

carried out at earth gravity For example, in adult rats it one, female Sprague-Dawley-derived rats from the same 

changed in response to treadmill exercise (7), combinations source were segregated into two mass-matched groups­

of exercise and/or force-feeding (9), surgical stress (10), group I-HP 1 00 C, high-protein diet, n - 24, group I1-HP 

and changes in the fraction of darkness in the 24-h cycle 2 76 G, high-protein diet, n = 16 Animals were sacrificed 

(10) However, none of these conditions altered the fat-free on days 0, +7, and +24 
body mass (FFBM) Thus, the finding that hypergravity In the last e\periment Sprague-Dawley-derived female 

conditions simulated by chronic centrifugation altered rats (Flow Laboratories, Dublin, Va ) -300 g i body 

FFBM and that the observed changes bore a simple mathe- mass were segregated into two mass-matched groups 

matical lth i to force (8) notable by contrast Group I-PF 1 00 G, chow diet, n = 14, on each experi­
and asseraonsip rb iyorce wi repe to the mental day each rat was limited to the mean weight of pcssue eonsderable importance with respect to the food consumed by group I on that day in the earlier study
possible regulation of body mass 

Because previous studies of the body-composition effects Group Il-PF 1 00 G, chow diet, n = 17, on each expert­

of chronic centrifugation in rats (8) and mice (2) have mental day each rat was limited to the mean weight of food 

been based on analyses of the carcasses of animals sacrificed consumed by group II on that day in the earlier study The 
This feedingterminally, one cannot determine whether the reported animals ate all the food provided on each day 

arrangement is referred to as pair-feeding although groupschanesstadystateprsen meelyonechanges represent steady-state conditionseodmos oro merely one were paired and not indtviduals On days 0, +7, and +24 
The present study, incorpo­time point in transient effects 

at intervals rats were sacrificed for body-composition studiesrating body-composition analyses performed 
during the centrifugation regimen, was designed to establish Centrifugation was continuous, 7 days/wk for 24 or 30 

the time course of changes in body fat and FFBM We have days except for one service stop per day of 35 9 = 5 7 (SE) 

also investigated the effects on body composition of dietary n The animal compartments holding 16 rats, 2 to a cage, 
alterations in energy and protein balances both at 1 G and were suspended in pivotal-yoke assemblies so that the re­
during centrifugation since resistance of body composition sultant of gravitational and centrifugal forces was perpen­
parameters to such changes in balance would be presump- dicular to the cage floor The cage floor was approximately 
tive evidence of physiological regulation 8 3 feet from the axis of rotation Each compartment was 
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illuminated with fluorescent lights providing 12 h of light 
and 12 h of darkness per day 

The ground chow diet (Simonsen maintenance diet) 
contained 4 2 kcal/g of gross energy (determined by oxygen 
bomb calorimetry) It was composed primarily of natural 
products supplemented with vitamins and minerals and 
contained 24% crude protein and 6% fat by weight 

The high-fat diet was that of Schemmel et al (12) con­
taining 7 3 kcal/g gross energy It was composed primarily 
of purified components including 60% fat and approxi­
inately 23 % protein by mass Rats on this high-fat diet ad 
libitum at earth gravity ingest more calories per day and 
absorb a higher fraction of digestive tract contents than do 
those on the chow (1) In the present case group III was ab­
sorbing ,-50% more dietary energy per day than group I 
prior to the start of centrifugation It was hoped that this 
higher level of absorbed energy in group III rats might pardy 
compensate for the transient reduction in food intake corn­
monly reported in rats for the first few days of centrifuga­
tion (3) 1 

The high-protein diethad the following percentage corn­
position by mass protein (hydrolyzed casen) 71, hydro­
genated fat (Crisco) 15, corn oil 3, vitamin diet fortification 
mixture (Nutritional Biochencals Corp, Cleveland) 3, 
Hegstead salt mix 5, and residue 3 Its gross energy content 
was 5 8 kcal/g During a 20-day metabolic trial eight 
weanling female rats on this diet grew at a rate very similar 
to that of eight rats on Purina laboratory chow It was 
hoped that this diet would raise daily protein intake toward 
maintenance values during the first few days of centrifuga­
tion when feeding activity is reduced, thus removing pro­
tern as a nutritional limitation 

The rats were killed by decapitation, bled out, sheared 
as closely as possible with animal clippers and the content 
of the gastrointestinal tract was removed and weighed 
Body mass after sacrifice, plus mass of shed blood, minus 

SI 100 6.* 	 
o N 318 hoaw 
+
IoM 3111G h*,- dit , 	 

iaem
o a IHP100 Q iit 	 
- i 2 76 G hi proten dt

0S 
0 o 

-

:below 
" 90 
0­

i/ 


Co _ % 
o 	 .following 

Stanr.tni 

Cerfua 	 SI I 


-30 10 20 30 

Days 

Flo 1 Effects of centrifuganon on live body mass Groups 1, II, 
-and IV on chow diet are expressed as a percentage ofIon day 0 Group 
III on high-fat diet is expressed as a percentage of III on day 0 Groutpi
I-HP and T-HPon high-protein diet are expressed as a percentage of 
I-HP on day 0 

(17)
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TABLE 1 Body fat by group and days of exposure 
to chronuc centrifugation 

Body Pat, g 

Gop Period of ewo sme, cls 

0 7 24 30 1. 

­


I 100 G chow 64 ±E9 54 E6 46 L 6 56 h 4 45 4 

1 3)18 G,chow 64 4(_4 26(6) (8) (8)

11 1 Gcho 64!: 48 = 26d: 2 2i A=2 23
 

(7) (5) (6) (8) 
111 3 13 G high fat diet 74 :! 5 76 = 4 51 = 7 48 d: 7(7) (6) (3) (6)l$ tl is C.chow assdii- 61 = 	 6 35 2 ()6 2
 

cit- (7) (5) (6) (8) 
i-HP i 00 G, huh-prote 53 t 3 53 t 4 48 t 4 

diet (8) (8) (a) 
1-liP 276 0,high-proteem 53 42 :! 3 33 5 

diet (8) (a) (7) 

I-PF 1 00 G,pa-fed to Y 33 .2 38 de 3
(s) - (s) 

11-P i 0 0 par-fed to il 33 e 2 24 22 12 e 2 
(6) (8) (9) 

Values arc means = SE sumbirs in parenthess are numbers in group 

- Sxty day values are from a previous studv(8) inwhsch3 levels ofG were used Our 
value for3 18 was calculated from the equation y = 53 S - 9 Sx 

mass of fur and gut content, minus the mass of extracted 
lipid yielded FFBM The carcass was ground and duplicate 
aliquots were taken for determination of water content by 
freeze-drying and fat content by Soxhlet extraction with 
petroleum ether (BP30-60'C) 

For the most part, analyses of variance for factorial de­
signs (15) were utilized in statistical analyses of body-corn­
position data with two groups times two, three, or four 
periods of ctntrifugation 

RESULT 


Mean live weights by groups before and during centrfu­

gation are presented in Fig I All centrifuged groups showed 
the 	 decrease in body mass during the Ist wk of exposure,
which has been previously reported (2, 3, 8, 16) The rela­
tive order of magnitude of these initial weight losses was 
IV > II >III > Il-HP Although body weights of the pair­
fed groups (I-PFand lI-PF)are not represented in Fig 1, 
it should be noted that they followed closely the weight 

curves of the- groups to which they were pair-fed On day 
+24 group II-PFwas 67 g below I-PFand group I1 was 63 g 

I 
Table 1 presents data on the quantity of body fat by 

groups and by sampling days, Table 2 summarizes the re­
sults of analyses of variance on both fat and the FFBM The 

responses of body fat should be noted Comparing 
groups I and II, differing only in level of acceleration, the 

an P < 00 f rg o p)difference in fat level was sgnficant (P < 0 01 for groups),
there was a progressive fall in fat content during centnfu­
gation (P < 0 01 for days), and the progressive change in 
body fat during the period of observation was different in 
the two groups (P <0 01 for interaction) Comparing 
groups III and I to test whether the high-fat diet ameliorated 
the effects of centrifugation, the level of body fat between 

groups did not differ significantly However, fat decreased 
progressively during centrifugation inboth groups ivith.the 
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TABLE 2 Results of analyses of variance on 
body-compostton effects of centrifugation 

Statistic Evaluated Groups Compared Min Effects Interaction 
Goups Dnays 

Body fat, g I and I-HP t 
I and II 0 01 0 01 0 01 
I and III 0 05 0 05 
I and IV 0 0L 0 05 
I-HP and lI-HP '0 01 

Fat-free body I and I-HP 0 01 0 01 
mas, g 	 I and 17 0 01 0 05 

Iand III 0 01 
I and IV 0 01 0 01 0 05 
II and II 0 05 
II and I7 0 01 0 05 
III and IV 0 01 
i-ip and lI-HP 0 01 0 05 

* Calculations of days effect were based on all days in which 
data were collected (see Table 1) except day 0, which represents 
precentrifugation condition tBlank spaces indicate no sta­
ustical significance (P > 0 05) In all other spaces, probability of 
null hypothesis is less than value indicated 

Days 
0 10 20 30 40 so 6o 

so; 1 1 
	 300o30 G 	
 
G,p It 0 31a o chew 
 f 

280 Goup Er- 318 G ishfoe diet REFERENCE
E ~~ 1 ~ hw."eii ~ ~ ~ 276 GCroeI ~ EEC 


-E Group I+ c dfi38 33
8 ,s 	 s o 

".260 LePoted) 
E A 415 G 
0 

240 
2. 220 q 	 Potsvalues 

1 11 

"0 200 	 / 260 

C how dietaw 
2 2 0f 240 

Ogf-proto,. dii fedto1I 
0

O .,op76
:Eu200 	 220 

t 0ff 
ii 	 

I rfield 
0 10 20 0 10 20 

Days Days at 100 G 

FIG 2 Effects of centrfugatioa on fat-free body mass 

steeper, continued drop in I1 being significantly different 

from that in I (P < 0 05 for interaction) Group IV, starting 
centrifugation with a weight deficit (Fig 1), surprisingly 
showed no fat deficit, its body fat content being comparable 
with that of group I on day 0 However, its body fat level 
was sigificanNly lower than that of group I after centrifuga-


tton began During the first 7 days of centrifugauon it 
dropped lower than in any other group The level of body 
fat in lI-HPwas lower than in I-HP However, the effect of 
days did not attain statistical significance 

The values representing 60 days of exposure were not 
included in the statistical analysis (Table 2) because they 
were collected in an earlier study (8) and interpolation was
required to obtain the value at 3 18 G 

The effects of the experimental variables on the FFBMV 

(18) 

PITTS, BULL, AND OYAlJA 

are presented in Table 2 and Fig 2 and can be summarized 
briefly In all possible comparisons centrifuged groups had 
lower FFB-Ms than noncentrifuged groups In nearly all 
groups the effect of days was significant, indicating the 
presence of continued growth There were two significant 
interactions involving group IV that merely verify statisti­
cally that the time course of change in FFBM in group IV is 
different from that of any other group (Fig 2) In Fig 2A 
on day 30 all groups appear to be converging That this is 
a statistical accident is indicated by the 60-day values 

showing that the centrifugation-induced reduction of FFBM 
persists for at least 2 me 

Table 3, presenting mean values for energy and protein 
intake, established our success in altenng balance of those 

factors Energy absorption in centrifuged groups ranged 
from 6 5 to 75 8 kcal/day per two rats, this latter value 
being 60 and 78 % of values for the noncentrifuged groups 
(I-HP and I, respectively) With respect to dietary protein 
the ingestion in centrifuged groups ranged from 0 48 to 
9 96 g/day per two rats, the latter value (group lI-HP) 
being roughly comparable with the noncentrifuged groups

Because body water expressed as a percentage of FFBM 
shows small interindividual variability (4) and is quite 
independent of various changes in regimen (5, 7-10), we 
have employed it as an index of changes in gross state of 

hydration The only statistically significant change in this 
value was that demonstrated by companng either group on 
high-protein diet with any other group, I-HP and Il-HP 
being lower in each case The mean ±- SE for the corn­

bined water data from groups .,If, III, and IV (n = 98) 
was 734=0 8%,for-HPandI-HP(n = 39) itwas 714 

wa2 % By the Student I test the difference between these 
is statistically significant (P < 0 001) 

DISCUSSION 

Chronic centrifugation has proved to be a valuable tool 

in the study of regulation of body mass Centrifugation of 
approximately half-grown chickens until they were 75+ % 
grown (300+ days of exposure) revealed that mature body 
size bore an inverse rectilinear relationship to accleration

strength in the range of 1-2 G and that the smaller 
body size during continued centrifugation was "closely 

TABLE 3 Daily energy and protein intakes for 2 rats n a 

single cage duingfirst 7 days of Centrifugation 

Groups-

I "" III IV I-iF? I tl-Hp 
eys da 

Numbers ofvalues
Energy absorbed, cal/ 

S 
64
96 7 

67
20 4 

64
32 2 

66
6 5 

56 
127 6 

49 
75 8 

dayt =2 2 =I 3 !:2 1 -i] 0 -­2 2 -10 9 
Protei. ,gteted, 

dayt 
g/ 1 

=017 
I 1 51 

1_010 
1 22 

-0 08 
0 48 

*; 07 
16 6 
:3 

9 96 
±1 42 

Values are meani =E:SE As tested 	by Student I with P < 0 01 as criterion for 
rejeetig the null hypothems, each value for energy absorption i different from every
other With respect to protein ingestion, while all other centrifuged groups are 3ig­
nificantly below controls at earth gravity, 11-HPIs not significeantly different from I 

However. I-HP i significantly below its simultaneous control, I-HP -See 
Table I for regimen of each group t Energy values represent number of kilo­r lorces absorbed from gut lumen Since fraction absorbed had not been determined 

car protein, protein values represent grams ingested 
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BODY MCASS AND CHRONIC ACCELERATION IN THE RAT 

regulated" (13) Smith and Burton (13) concluded from 
calculations of centrifugation results reported for mice and 
rats that a similar relationship obtained in mammals Acting 
on our conviction that one must separately evaluate fat 
and the fat-free compartment in studying body-mass regu­
lation (6) and expanding the acceleration range studied (I­
4 15 G), we found that, as has been reported in mce (2), 
both fat and the FFBM participated in the reduction of 
mass after 60 days of centrifugation (8) In both cases the 
relationship of mass to acceleration was inverse and in the 
case of FFBM it was clearly rectilinear (8) 

The present study provides no evidence that quantity of 
body fat is regulated either at earth gravity or in the centri­
fuged animal The mean value for each group appears to 
be determined by the details of the existing regimen (diet, 
G force, duration of exposure) and within each group the 
interndividual variability is high, the coefficient of varia­
tion (SD X 100/mean) for each group ranging from 14 to 
35% 
 

By contrast with the results on body fat, we have obtained 
the following four lines of evidence suggesting that FFBM 
is physiologically regulated in rats subsisting continuously 
at any one level of acceleration 

a) 	 Low interindividual variation within groups The co­
efficients of variation were 4-12 % in Table 1 and 4-8 % m 
the earlier study (8) 

b) 	 The failure of increased intake of energy or protein 
(Table 3) to raise the steady-state level of FFBM during 
centrifugation 

c) 	 The ability of centrifuged rats to approach the new 
lower level of FFBM from below as well as from above 
(Fig 2A) 

d) 	 The maintenance of late growth paralleling that of a 
control group at earth gravity for 30 (Fig 2) or 60 days (8) 

However, the adjustment to a new level of FFBM as­

sociated with a change in level of chronic acceleration does 
not suggest regulation Indeed, the rectilinear relationshipbe e 
between FFBM and G force (8)strongly rebemables Prosser's 
 
idealized diagram for an unregulated parameter (11), and 
it suggests that there may exist a continuous spectrum of 
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C. Growth during Centrifugation.


This is an unpublished study on which the body composition analyses



have only recently been completed. As a result of a centrifuge failure



before centrifugation of the animals was completed, we were unable to employ



the analytical methods which were used in the growth experiments listed



under III.A. Consequently, the information yield was seriously reduced.



The Materials and Methods are presented in the protocol which follows.
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PAT GROWTH DbRING CHRONIC CENTRIFUGATTON 

A. Objectives



1. Using weanling female rats, to describe growth to maturity


at 4.15G (compared with controls at 1G) in terms of 10


individual body codiponents and 4 chemical components.



- 2. To determine whether the effects of centrifugation are


reversible after retirement from the centrifuge.



B. Equipment



Two cage assemblies modified as diagrammed below:



VakW 

Cage La a'r lv PanS 

r ' p 

FPo/r VI'EW_ 
One such assembly to go on the centrifuge at 4.15G. This


houses the "experimental" group and will be known as the E 
assembly. One to stay in the room above the centrifuge at 
1G. This houses the "control" group and will be known as the 
C assembly. As can be seen in the diagram above, the indi­
vidual cages are designated E-I, E-It, E-Ill and E-IV or 
C-I, C-tI, etc. 

C. Aninals 

Weanling female Simonsen rats to be used. 'x115 to be ordered.


The animals will be placed 14 per cage in the cage assemblies


for the Experimental Group (E) and 12 per cage in the cage


assembly for the Control Group (C).
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D. Schedule of centrifuge stops for weighing and servicing.



Time from start


of centnfugation 
 

-1 day 
 

0 day


(Sept. 14) 
 

0 thru 30 
 

28 (Oct. 12) 
 

28 thru 63 
 

63 (Nov. 16) 
 

63 thru 105 
 

105 (Dec. 28) 
 

105 thru 180 
 

Service required
 


Weigh all rats. Eliminate unacceptables.



Segregate into groups E & C.



Weigh all rats. Check Lixit valves and food.



Sacrifice 8 pups for body composition study.



Weigh all rats once a week, half on Monday



or Tuesday and half on Thursday or Friday.


Check all Tlxits and food containers at


each stop.



Sacrifice 2 rats from each cage (I, II, III, and-


IV). N will equal 8E and 8C.



Weigh all rats once a week, half on Monday



or Tuesday and half on Thursday or Friday.


Check all Lixits and food containers at


each stop.



Sacrifice 6 rats from the E group and 6 from



the C group. Also retire 8 rats from the E


group to 1G in the room above the centrifuge.


This will be designated the R group.



Weigh all rats (E, C and R) once a week,


group E on Tuesdays and group C on Fridays



or vice versa. Check all Lixits and food


containers at each stop.



Sacrifice 6 rats from the E group and 6 from



the C group.



Weigh all rats (E,C and R) once a week.



After Dec. 28 Lonnie should find it necessary


to make only one visit a week. On the day


that Lonnie is not present for the centrifuge


stop someone else should make sure to check


Lixits and food supply.
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(cont'd) 
 

180 (Nar. 12, '74) 	 Sacrifice 8 rats from each group (E,C and R).



180 thru 365 	 Weigh all rats once a week. Check Lixits



and food at each stop.



365 (Sept 14, '74) 	 Sacrifice 8 rats from each group (E and C).



All surviving rats to be weighed and retired



from the centrifuge. (Consult Dr. Pitts



for continuation of schedule.)



E. Schedule for sacrifices.
 


Date Duration of Rat Sacrifices


Centrifugation Ace



(weeks) (weeks) (number & group) 

9/14/73 0 4 SC 
10/12/73 4 8 8C & 8E 
11/16/73 9 17 6C & 6E, also SE retired (R) 
12/28173" 15 23 6C & 6E 
3/12/74 26 	 30 8C, 8E & 8R
 

9/14/74 52 56 	 8C & 8E



Remaining rats retired to 1G.



3/14/75 	 Remainder in C & E. 

F. - IN CASE OF DIFFICULTIES: 

Consult Dr. Oyama



Calt Collect - Dr. Grover C. Pitts



Dept. of Physiology


School of Medicine



Univ. of Virginia


Charlottesville, Va. 22901



Area Code - 804-924-2585
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Growth in live mass by groups is presented in Fig. 1. An examination


of the growth curves for the two major groups suggests that they had reached


a steady state with little to be learned by continuing the study. However,


our body composition studies (Figs. 2,3 and 4) corroborate reports in the


literature that the major body compartments do not reach plateaus until well


after one year of age. This largely explains our feeling that the centrifuge


failure which occurred at 305 days was an unfortunate setback to the study.


The group that was retired on the 63rd day of centrifugation from 4.15 G to
 

1 G rejoined the I G growth curve by the 150th day. However, we cannot deter­

mine whether the group retired on the 290th day would have rejoined the 1 G
 

group.



The detailed body composition results are presented in Table 1. At the


head of the columns in the Table the roman numerals represent sacrifice


groups as follows:



Number Duration of exposure (days)



I 0


!I 28


III 63


IV 105


V 179


VI 305 (centrif. failure)



Statistical analyses have not yet been carried our on these data.


However, the tabulated results are more easily interpreted when plotted


(Figs. 2,3,and 4). Fig 2 corroborates our earlier finding that the fat-free


compartment is reduced in size by centrifugation. That reduction is contrib­

uted to by water, muscle (Fig. 2), bone, liver (Fig. 3), kidneys and heart


(Fig. 4). Skin (Fig. 2), the pulmonary system (Fig. 3), gut and CNS (Fig. 4)


appear unaffected by centrifugation.
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Fig. 1. Growth in live mass by groups.
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Fig. 2. Mean fat-free mass of individual components, Values on groups
retired from 4.15 G to 
 1 G are indicated by +.Subscripts


C = control group (1 G) and E = 
 experimental group (4.15 G).

FF M = fat-free body mass.
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Fig. 3. 	 Mean fat-free mass of individual components. Values on groups


retired from 4.15 G to I G are indicated by +.Subscripts


C = control group (1 G) and E = experimental group (4.15 G).
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C = control group (1 0) and E - experimental group (4.15 G). 
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Table 1. Rat growth during chronic centrifugation. Body composition


(mean + SEM) by sacrifice groups.



Component I-Basal II-IG II-4.15G 
N=8 N=8 N=8 

CLW (g) 78.9 + 1 181.5 + 6.1 134.5 + 3.7 
Total Body Fat (g) 8.41 + 0.57 17,49 + 1.14 4.6 + 1.79 
TBF/CLW (%) 10.6 +±0.6 9.7 + 0.6 3.4 + 0.4 

FFBW (g) 70.5 + 0.6 163.9 + 5.6 129.9 + 3.2 
Total H20 (g) 54.9 4 0.4 122 + 4 98.4 + 2.4 
H20/FFBW (%) 77.6 + 0.4 73.9 + 0.5 75.5 + 0 4 

FF Muscle (g) 31.8 + 0.4 87 + 4 63.3 + 1.9 
FF Skin (g) 10.8 + 0.31 24.42 + 0.76 22.73 + 0.63 

FF Dry Bone (g) 3.59 + 0.04 8.46 + 0.27 6.66 + 0.20 

FF Liver (g) 4.25 + 0.1 7.64 + 0.39 5.69 + 0.24 
FF Gut (g) 2.84 + 0.14 4.64 + 0.16 4 37 + 0.25 
Fresh CNS (g) 1.69 + 0.02 2 1 + 0.03 1.93 + 0.04 

FF Heart (g) 0.46 + 0.02 0.85 + 0.04 0.59 + 0.03 

FF Kidneys (g) 0.89 + 0 03 . 1.5 + 0.05 1.13 + 0.04 

FF Lungs and Trachea (g) 0.98 + 0.02 1.93 + 0.i 1.53 + 0.09 
Fresh Adrenals (mg) 20 + 1 46 + 3 36 + 2 
FF Musc/FFBW (%) 45.2 + 0.5 52 9 + 1 1 48 5 + 0.6 

FF Skin/FFBW (%) 15.2 + 0.4 15 + 0.3 17.4 + 0.3 
FF Dry Bone/FFBW (%) 5.1 + 0.1 5.2 + 0.2 5.1 + 0 1 
FF Liver/FFBW (%) 6 + 0.1 4 7 + 0.2 4.4 + 0.1 
FF Gut/FFBW (%) 4 + 0.2 2.8 + 0.1 3.4 + 0.2 

FF Kidneys/FFBW (%) 1.25 + 0.04 0.91 + 0.02 0.86 + 0.02 
Fresh CNS/FFBW (%) 2.41 + 0.03 1.29 + 0.05 1.48 + 0.04 
FF Heart/FFBW (%) 0.65 + 0.02 0.51 + 0.02 0.45 + 0.02 

FF Lungs & Trach/FFBW (%) 1.37 + 0.03 1.18 + 0.05 1.17 + 0.05 
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Table 1. continued



Component 	 III-i G 111-4.15 G IV-I G 
N=6 N=6 N=6 

CLW (g) 	 231.3 + 8.2 209.8 + 7.2 267 + 4.5 

Total Body Fat (g) 36.47 + 2.27 13 22 + 1.05 48.64 + 6.36 

TBF/CLW (%) 15.7 + 0.6 6.3 + 0.5 18.1 + 2.1 

FFBW (g) 194.9 + 7.6 196.6 + 7.2 218.3 + 3.3 

Total H20 (g) 139.9 + 4.1 145.6 + 5.5 157 + 2.6 

H20/FFBW (%) 71.8 + 0.4 74.1 + 0 3 71.9 + 0.3 

FF Muscle (g) 108.9 + 5.5 100.5 + 4 126 6 + 3.6 

FF Skin (g) 27.12 + 0.9 34.62 + 1.58 30.94 + 0.5 

FF Dry Bone (g) 11.66 + 0.48 10.79 + 0 37 12.99 + 0.22 

FF Liver (g) 7.1 + 0.74 7.11 + 0.25 7 93 + 0.2 

FF Gut (g) 3.72 + 0 36 4.32 + 0.07 4.92 + 0.17 

Fresh CNS (g) 2.34 + 0.03 2.21 + 0.04 2 58 + 0.04 

FF Heart (g) 0.9 + 0.03 0.85 + 0 05 1 + 0.06 

FF Kidneys (g) 1.57 + 0.11 1.36 + 0.05 1.67 + 0.04 

FF Lungs & Trachea (g) 2.35 + 0.11 2.08 + 0.14 2.41 + 0.15 

Fresh Adrenals (mg) 55 + 2 50 + 4 53 + 2 

FF Musc/FFBW () 55.8 + 1.4 51.1 + 0.4 57.9 + 0.9 

FF Skin/FFBW (Q) 13.9 + 0.1 17 6 + 0.4 14.2 + 0 2 

FF Dry Bone/FFBW (%) 6 + 0.1 5.5 + 0.1 6 + 0.1 

FE Liver/FFBW (%) 3.9 + 0.1 3.6 + 0.1 3.6 + 0.1 

FF Gut/FFBW (%) 2.1 + 0.1 2.2 + 0.1 2.3 + 0.1 

FF Kidneys/FFBW (%) 0.8 + 0.04 0.69 + 0.02 0.77 + 0.02 

Fresh CNS/FFBW (%) 1.2 + 0 1.1 + 0 1.2 + 0 

FF Heart/FFBW (%) 0.45 + 0.01 0.41 + 0.03 0.45 + 0.03 

FF Lungs & Trach/FFBW (%) 1.2 + 0.05 1.05 + 0.05 1.10 + 0.08
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Table I continued



Component IV-4.15 G V-I G V-4.15 G 
N=6 N=8 N=8 

CLW (g) 208.8 + 8.1 305.9 + 9.5 209 + 4.2 

Total Body Fat (g) 12.78 + 1.64 56.1 + 7.18 11.62 + 1.14 

TBF/CLW (%) 6.1 + 0.6 18 + 1.8 5 + 0.5 

FFBW (g) 196.1 + 7.2 249.8 + 3.9 220 + 3 

Total H20 (g) 142.9 + 5 180.7 + 3.1 159.5 + 3.1 

H2 0/FFBW (%) 72.9 + 0.2 72.4 + 0.2 72.5 + 0.2 

FF Muscle (g) 108.3 + 3 1 154.4 + 2.6 128 + 2.7 

FF Skin (g) 32.77 + 1.14 36.6 + 1.43 36.54 + 1.09 

FF Dry Bone (g) 11.82 + 0.46 14.41 + 0.3 13.33 + 0.34 

FF Liver (g) 7.01 + 0.55 8.37 + 0.51 7.43 + 0.22 

-FF Gut (g) 4.37 + 0.24 5.01 + 0.27 5.26 + 0.17 

Fresh CNS (g) 2.34 + 0.06 2.64 + 0.03 2.55 + 0.06 

FF Heart (g) 0.92 + 0.06 1.07 + 0.04 0.94 + 0.08 

FF Kidneys (g) 1.48 + 0.03 1.94 + 0.07 1.66 + 0.05 

FF Lungs & Trachea (g) 2.37 + 0.12 2.6 + 0.1 2.8 + 0.18 

Fresh Adrenals (mg) 55 + 2 56 + 2 56 + 3 

FF Musc/FFBW () 55.2 + 0.9 61.8 + 0.6 58.2 + 0.7 

FF SkLn/FFBW (%) 16 7 + 0.4 14.7 + 0.5 16.6 + 0.4 

FF Dry Bone/FFBW (%) 6 + 0.1 5 + 0.1 6.1 + 0.1 

FF Liver/FFBW (%) 3.6 + 0.2 3.4 + 0.2 3.4 + 0.1 

FF Gut/FFBW (g) 2.2 + 0.1 2 + 0 2.4 + 0.1 

FF Kidneys/FFBW (g) 0.75 + 0.02 0 + 0.03 0 + 0.02 

Fresh CNS/FFBW (%) 2.0 + 0 1.1 + 0 1.1 + 0 

-FF Heart/FFBW (%) 0.47 + 0.02 0.43 + 0.02 0.43 + 0 02 

FF Lungs & Trach/FFBW (Z) 1 08 + 0.12 1.04 + 0.04 1.27 + 0.09 
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Table 1. continued



Component V-retired VI-I G yI-4.15 G 
to I G N=10 N=9 

N=8 

CLW (g) 299.1 + 6.8 331.3 + 14.2 253.3 + 6.9 

Total Body Fat (g) 52.88 + 4.07 74.99 + 10.16 18 86 + 1.75 

TBF/CLW (%) 17.6 + 1.1 22 + 2.2 7.4 + 0.6 

FFBW (g) 246.2 + 4.7 258.9 + 6.2 240.5 + 6 

Total H20 (g) 178.1 + 3 4 184.8 + 5 170.5 + 4.3 

H20/FFBW (%) 72.4 + 0.3 72.1 + 0.4 72.7 + 0 2 

FF Muscle (g) 147.8 + 3.5 156 + 4.5 135.4 + 4.2 

FF Skin (g) 35.84 + 0.89 35.16 + 0.67 38.93 + 1.16 

FF Dry Bone (g) 14.22 + 0.22 15.21 + 0.33 13.79 + 0 4 

FF Liver (g) 8.5 + 0.22 7.9 + 0.36 7.82 + 0.39 
FF Gut (g) 4.94 + 0.18 5.47 + 0.18 5 96 + 0.24 

Fresh CNS (g) 2.67 + 0.05 2.58 + 0.03 2.42 + 0.07 

FF Heart (g) 1.09 + 0.06 0.96 + 0.04 0.88 + 0.04 
FF Kidneys (g) 1.8 + 0.02 1.88 + 0.06 1.71 + 0.04 

FF Lungs & Trachea (g) 2.78 + 0.12 2.93 + 0.1 3.01 + 0.09 

Fresh Adrenals 59 + 2 54 + 3 65 + 3 

FF Musc/FFBW (%) 60 + 0.4 60.8 + 0.5 57.7 + 0.8 

FF Skin/FFBW (%) 14.6 + 0.2 13.7 + 0.2 16.6 + 0.3 

FF Dry Bone/FFBW (%) 5.8 + 0.1 6 + 0.1 5.9 + 0.2 

FF Liver/FFBW (%) 3.5 + 0.1 3.1 + 0.2 3.3 + 0 1 

FF Gut/FFBW (%) 2 + 0.1 2.1 + 0.1 2.6 + 0.1 

FF Kidneys/FFBW (%) 0.7 + 0.01 0.73 + 0.02 0.73 + 0.02 

Fresh CNS/FFBW (%) 1.1 + 0 1.0 + 0 1.1 + 0 

FF Heart/FFBW (%) 0.44 + 0 02 0.37 + 0.01 0.37 + 0.01 

FF Lungs & Trach/FFBW (%) 1.1 + 0 06 1.14 + 0.03 1.27 + 0.03 
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III. EXERCISE STUDIES



A. Exercise, Dietary Obesity and Growth


This paper was published in 1977. Besides making several contributions



to the basic physiology of rat growth and its regulation, it makes the following


general contributions which are useful in the context of NASA's program.


Growth in mass is one of the most fundamental and interesting properties of


life in general and if investigators are given an opportunity to study weight­

less small mammals, they will almost certainly choose growth as one of the


properties to be studied. This paper provides a previously lacking background


for interpreting rat growth as a function of a wide range of accelerations.


It characterizes early parabolic growth, late hyperbolic growth and late


rectilinear growth. It also suggests which individual body tissues and organs


are likely to respond to environmental stimuli such as acceleration and which


are not.
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Exercise, dietary obesity, and growth in the rat



G C PITTS AND L S BULL 
Departmentof Physiology, Unwersity of Virginia School of Medicine, 
Charlottesville,Virginia22901 

PirS, G C , Am L S BuLL Exercise, dzetary obesity, and 
growth in the rat Am J Physiol 232(1) R38-R44, 1977 or 
Am J Physiol Regulatory Integrative Comp Physiol 1(1) 
R38-R44, 1977-Four regimens high-fat diet, exercised (/), 
chow, exercised (Ti), high-fat, sedentary (III), and chow, se­
dentary (1) were initiated in 35-day-old male rats Growth 
was exponential in I and Ii and exponential progressing to 
rectilinear in II and IV The exponeatial model predicted the 
decreasing rank order in asymptotic weight to be Iml, Iv, ii 
Body composition data (9 components) showed rank order In 
masses of fat and the fat-free body mass compartment (FFBM) 
to be the same as for asymptotic live weight The rectilinear 
growth mode probably reflected fat accretion High-fat diet 
increased and treadmill exercise decreased FFBM, the latter 
being reversible These effects depended on regimen initiation 
by the 5-7th wk of age During growth, masses of H.0, mus­
cle, and skin increased as functions of body size, bone as a 
function of age, and heart, hver, gut, testes, and CNS were 
influenced by combinations of size, age, activity, and diet 
Growth in body size was expressed more precisely with FFBM, 
instead of live weight, as the index of size 

exercise, obesity, growth, body composition, body size, diet, 
body fat, fat-free tissues 

THE OBSERVATIONS THAT EXERCISE may increase or re­
duce body size, depending upon relative effects on body 
fat and skeletal nuscle (1, 12, 27), and that volitional 
hyperphagia of certain diets may increase body size (20, 
28) suggest that the body mass and composition of adult 
mammals may, in part, reflect their exercise and die­
tary regimens during growth The present study is ad­
dressed to the question how do endurance-type exercise 
and a igh-fat diet administered during growth influ­
ence body mass and composition of rats9 

Ideally, the question should be considered on several 
levels simultaneously On a very basic level it involves 
energy balance with changes in energy stored in bodily 
tissues Our two experimental variables, exercise and 
diet, probably exert their influence, at least in part, by 
altering the energy balance 

On another level, the question must be considered 
from the standpoint of physiological regulation The 
establishment of some regulatory mechanisms occurs at 
a relatively late age in the rat pup For example, it has 
been shown that control of energy ingestion is estab­
lished after weaning and then only progressively (9) 
Thus, changes in regimen which might have no effect on 
the adult, being compensated by regulatory mecha­
mnsms, could possibly exert an influence when initiated 
in the growing pup 

Finally, our approach through body composition anal­
ysis is critical Total body weight is a datum of limited 
value to us because it encompasses a group ofbeteroge­
neous tissues As a first approximation the gross body 
mass may be compartmented into fat, which is prmar­
ily stored energy, and the fat-free body mass (FFBM) 

with a variety of functions We have further subdivided 
the fat-free compartment and the overall approach has 
enabled us to discern relationships which are otherwise 
obscured 

METHODS 

Weanling male CFE rats from Carworth, 35 days old 
and weighing -100 g, were used They were individ­
ually caged in a room at 22 ± 1°C with 12 h of light (9 
P M to 9 AM ) and 12 h of darkness per day All experi­
mental activities occurred during their normal waking 
(dark) period by the light of a 15-W red bulb On day 1 
(35 days of age) six randomly chosen individuals were 
killed for body composition studies and the others were 
divided into four weight-matched groups of 25 ammals 
each group I - high-fat duet, exercised, groupI1 - chow, 

exercised, group III-hugh-fat diet, sedentary, and 
groupTV-chow, sedentary

At 141 days of age the exercise regimen was terim­
nated but the respective diets were continued Ten am­
mals from each group were killed at this time for body 
composition studies At 293 days of age, the experiment 
was terminated and all remaining animals were killed 
for body composition studies The period before termina­
tion of the exercise regimen is called the exercise period 
and that after termination, the recovery period 

Exercise was on a motor-driven treadmill (Warren E 
Collins, Braintree, Mass ) twice a day for 7 days a week 
Grade, speed, and duration of each session were in­
creased progressively with the capabilities of the grow-
Ing animals By the 33rd day (68 days of age) the subse­
quently constant conditions of 18 m/mil up a 14% grade 
for 30 min a session were attained A treadmill session 
raised rectal temperature (3-cm depth) an average of 
2 70C with no observable symptoms of fatigue Because 
in our experience rats will not voluntarily push them­
selves beyond mild physical exertion, it was necessary 
to use an electrical shocking device located at the rear of 
each compartment Animals that ran poorly due to sore 
feet or other reasons were eliminated The "sedentary" 
groups remained in small living cages (18 x 18 x 24 cm) 

The chow diet vas ground laboratory chow (Ralston 
Purina Co ) containing a gross protein minimum of 23% 
by weight and of fat, 4 5% The high-fat diet makes rats 
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obese or subobese (28) Its percentage composition by mate an asymptote m body weight Every other group,
weight was lard 60 00, casein 25 00, Osborn-Mendel including I and 11 during the recovery period, showed 
mineral mix 5 00, comprehensive vitamin mix 2 20, late growth in the rectilinear mode which rose above the 
normutntive fiber 2 00, liver powder 2 00, DL-inethio- predicted asymptote However, there is reason to be­
nine 0 25 and sucrose 3 55 The chow contained 4 3 kcal/ heve that the value for the asymptotic live weight (A) 
g and the high-fat diet 7 3 kcaljg Consumption was has physiological significance even if the trend of 
measured three times a week throughout the study and growth is diverted above or below it (3), and utilizing 
was estimated as weight loss of the individual food cups the data available before the diversion (as m Fig 2, rat 
corrected for spillage Bomb calonmetry of ingesta and 46) one can use Eq 1 to predict A with considerable 
excreta on eight rats during a preliminary metabolic precision Thus it is valid to conclude from Table 1 that 
trial established the absorbable energies at 3 34 ± 0 02 each group was significantly different from every other 
(standard error of 5 tnals) and 6 89 t-0 02 kcal/g for group with respect to A calculated from exercise-penod
chow and high-fat diet, respectively Using these values data In other words, every possible combination of the 
we converted all our values for food consumption to two levels of activity and the two levels of diet has the 
kcals absorbed potential for a different mature weight With respect to 

The animals were killed by decapitation, bled out, the rate of maturation (k) and the age at maturity (M),
sheared with ammal clippers as closely as possible, and every group was significantly different from every other 
the content of the GI tract was removed and weighed group with the exception of I vs II Thus, although
The corrected live mass was calculated as weight after these two exercising groups did not differ in rate or 
killing, plus weight of shed blood, less weight of fur and duration of growth, the asymptotic weights eventually 
gut content The carcass was then dissected into nine accumulated were significantly different 
components heart, liver, testes, gut, brain with spinal The special case of a group which had retired from the 
cord (CNS), skin, muscle, bone, and adrenals Each exercise regimen is represented by group hb in Table 1 
component was minced with scissors or ground and Upon retirement a new cycle of exponential growth 
stirred thoroughly The summed weights of these proc- occurred (as in rat 66, Fig 2), with an A value not 
essed components were within 2% of the corrected live significantly different from that for group IV which had 
mass Duplicate aliquots were freeze-dried to constant never exercised This suggests that the effect of the 
weight to obtain water content and extracted with pe- exercise regimen on mature body weight was com­
troleum ether (BP 30-60°C) by the Soxhlet apparatus to pletely reversible The same is probably true of groupI 
obtain fat content The word "fat" will refer to the fatty after retirement from the exercise regimen but this 
acid triglycerides (7) plus traces of other lipids extracta- could not be tested by this method 2 
ble by our methods I FFBM was calculated as corrected All testable groups showed late rectilinear growth 
live mass less weight of total extracted fat Further (Table 2) except those groups exercising (I and 1t before 
technical details have been presented elsewhere (21) day 141) Apparently, treadmill exercise prevented late 

- rectilinear growth 
RESULTS Summarizing the data on live weight, we have de-

Effects on body weight Figure 1 presents mean live scribed late growth as a self-inhibiting exponential 
body weight by groups at 2- to 4-day intervals during the function changing, in most groups, to a rectilinear in­
entire study The effects of the experimental variables crease in mass before the exponential asymptote is 
on weight are progressively evident after the 70th day of reached Only those groups actually on the treadmill 
life Obviously, exercise resulted in slower growth, and regimen showed a steady state of live weight near the 
the high-fat diet in faster growth Others have reported asymptotic value After retirement from the exercise 
similar effects of exercise (4, 27) and high-fat diet (28) regimen there was a complete reversal of the exercise 

The trends and potentials of the groups represented in effects and also late rectilinear growth appeared Fi-
Fig 1 have been evaluated by longitudinal analysis of nally, A was different for each possible combination of 
the growth of each individual, employing Eq 1 pre- the two levels of activity and the two levels of diet 
sented in Table 1 The equation constants were esti- Effects on rate of energy absorption During the last 
mated by the graphic method (3, p 524-543) with results 20 days of the exercise period, mean food consumption 
typified by Fig 2 In several groups, our results corrobo- (kcal absorbed per day ± SE) for groups I-IV, respec­
rate those of Laird (10) in that one or more phases of late tively were 72 ± 0 9,67 + 0 7,94 + 0 8,and 76 ± 0 4 
rectilinear growth (Table 2) prevented any apparent The Student t-test showed each group to be statistically 
approach to an asymptote In Fig 2, rat 66 (group I1) different (P < 0 01) from every other group Group 
shows two cycles of exponential growth, one during the energy absorption was in the same rank order as group 
exercise period and one during the recovery period Rat body weight (Fig 1) 
46 (group I1) shows exponential growth changing into 2 Because of irregularities (see DISCUSSION) in the growth curve of 
the first phase of rectilinear growth at about age 160 group I, neither the exponential nor the rectilinear model could 
days and the second phase at age 245 days adequately describe it during the recovery period Visual inspection 

In Fig I it can be seen that only those groups on the suggests that exponential growth was initiated and sustained for 
sIand ) appeared to approxi- only a few days immediately after termination of the exercise regi­

exercise regimen (groups Iamen An analysis of variance using growth (the last six successive 
weight values) vs group (I and III) yielded an F ratio for group

Adrenals and CNS were not extracted, being considered free of which was not significant (P > 0 05) This suggests thatI andJI had 
triglycendes merged into a single population with respect to body weight 
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:Iils - ­-600 (9 0oCOD" c 
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0 --- t GROUP II -CHOW EXERCISED 
Z * GROUP Ill - HIGH-FAT,SEDENTARY 
< 2O0O 0 GROUP N1- CHOW SEDENTARY 

AGE(days) 
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rio 1 Mean growth inbody weight by groups Standard errors throughday 286 when they approximated50g for group1fI,40 gforl 
were less than 10 g prior to day 141 and increased progressively and IV and 10 g for H 

ABLE 1 Means, standarderrors, and results of During-the 10-day period immnedhately following ter­
t-test on constants for exponential growth mmnation of exercise, the mean food consumption of 

IV26 49 I'5, 0 0181 10= 15 20 250groupI rose to 97 ±+1 8 kcal absorbed per day and that of 
Grou N A g -A, p8s M daWofag groupIlto 81 ± 17, both rises being statistically signifi­
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IV 25 o1i'' ... oo 0000' . 8 1 ,- REfects on body composztzon Our intent here is to49 008
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TABLE 2 Means, standarderrorsand results of 
t-tests on constantsfor rectilineargrowth 

Group 
jl 
lila 

b 

N tissvanol days 
9 185 to 291 

10 128 so156 
10 170o 232 

c 4 247tWo291 
11 144 t 291 

Rectilinear growth was described 

I g A, glay 
439± V v0 
514 ± IF -. I M 018-. 
54 =181 144 ±0 11,0­
654t44- 1 152 -0291' 
424 - -v 052 003''­

iw =I +kt (2) 
where W=bodyweightattimet,l isthe intercepton the ordmnatattan arbitraryt (column 
3), and k' 'athe slope In a given columan pair of values with the same digt intheir 
superscripts differ significantly as tested by Student t (29) P < 005 for pars with 

superscript 1 in columon 4 and superscripes I and 2i column 5 P < 001 for all other 
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the high-fat diet than in those on chow If adrenal wet 
weight reflects the seventy of environmental stresses, 
then our adrenal data suggest that treadmill exercise 
and the high-fat diet were comparably stressful Fi­

nally, 1130 as a percentage of FFBM has been included 
(Tables 3, 4, and 5) as an mdex of state of hydration and 
as an example of a parameter which is regulated with 
impressive precision It appears to be independent of 
regimen 

Table 5 presents the results of body composition stud­
ies on rats killed at the end of the recovery period (293 
days of age) Comparing this group with that killed at 

141 days of age (Table 3) by t analyses with P < 0 01 as 
superscripts The subcategones under group III md,cat separate periods of rectilinear the criterion for rejecting the null hypothesis, we found 
gowth evidences of growth in various individual components 
TABLE 3 Body composition by groups Body fat increased in all groups The FFBM showed 

d ccontinued growth in all groups except V In most 

_ (N_ _10 
Body Conp - When Hiled Group I Group I Group M 

_ 

Grow IV 
35 days old 141 day, old Wh nKilled _ = up) 

nenes (N = 6) High fat Chow Exer- High fat Chow Seden 

E.e.rwed Sedentary t-7 

1 body fat 59=07 46 a-S (55) 20 a 2 (32) 172 = 8(15) 56 =4(23) 
FFBM- 92 8= 07 299 = 11 (12 282 = 8(9) 375 a 6 (5) 343 = 4 (4) 
Skeletal 449 = 05 168 = 7 157 a 6 210 ±: 4 194 ± 3 

muscle 
Sin 16206 13 36 6 :i 492±10 471t09 
Dry skeleton 293=082 169±06 167±05 170±02 171±03 
Liver 553-±012 113=04 128±05 150-=03 155±t03 
Gut 549--±014 65=02 92±06 74=02 93±04

331 =005 347±009
102=007 318±014 300±018 

CNS' 163±t001 23=005 232=005 252=005 252±003 

Hear 07001 157 :008 135 ± 007 163 ±005 136 = 002 
Adrenals mg 0024±000 74±4 57=2 60=2 45 = 1 
HOIFFDM' 786=08 739=02 735=03 737±04 743:03 

% 
ar fat free 

Testes 

Umts are g except 
= SE All components below the frt 

Values are means 

wherenoted Valuesmparenthesesfareceiisnts ofvanation 'FF3M = fat free body 
mass CNS = brain plus spinal cord 

study The data in the succeeding columns of Table 3 on 
the four groups lulled at the end of the exercise period 
were analyzed as a 2 x 2 factorial design for analysis of 

variance (29) with tvo conditions of diet and two of 
activity The results of this analysis are presented in 
Table 4 The component most sensitive to the exper­

in­mental variables was fat, which was markedly 

creased by the high-fat diet and markedly reduced by 

treadmill exercise, with interaction between the two 

factors One aspect of this interaction is that the effect of 

exercise is much greater on rats eating the high-fat diet 
(Afat = 126 g) than on those eating chow (Afat = 36 g) 

Our rank order of fatness is identical with that reported 
by Bazzarre and Thye (2)using four similar groups but 
with spontaneous rather than forced exercise 

The data on the FFBM in Tables 3 and 4 show it to be 
significantly greater in the groups on high-fat diet than 
in those on chow and smaller in the exercised groups 
than the sedentary ones Both of these observations 
have been reported previously (23, 28) Individual com­
ponents of the FFBM which contributed to the activity 
effect included three of the largest skeletal muscle, skin 
and liver There were no statistically significant 
changes in skeleton Gut weight was not related to 
activity but was greater with chow than with the high­
fat diet, possibly a response to the abrasive components
of chow Weight of the CNS was less in exercised than in 
sedentary groups Hearts were larger in the groups on 

groups most of the individual components of the FFBM 
participated in this continued growth Two exceptions 

were CNS and testes, which showed no statistically 
significant changes in any group Finally the mass of 
the adrenals decreased in groups retired from exercise 
U and II) and increased in the two sedentary groups 

In the table there are no statistically significant dif-

TABLE 4 Fratosobtanedbyanalysisofvarante 

of body composition data on rats killed 
at end of exercise (Table 3) 

Main Effeas 
Body Components Interaction

Diet Activity 

I body fat 147 64* 195 93* 60 54"


FFBM 11 27* 83 91" 1 31
 

Skeletal muscle 6 85 58 25* 0 16


Skin 2 47 98 03* 013


000 0 46 009Dry skeleton 
158Liver 703 63 28

Gut 39 16 2 10 1 15 

Testes 0 01 6 60 2 15 
CNS 0 34 12 43* 0 47 
Heart 17 96* 031 0 27 
Adrenals, mg 44 19" 30 89* 0 05 
HO/FFBM, % 0 19 16 2 62 

In each case the degrees of freedom between levels ofa factor was 

1 and for error, 36 "P < 0 01 

TABLE 5 Body composition by groups 

Group I Group II Grouo III Group IV 
High fat Chow High fat Chow 

Exercsed Exercised Sedentary Sedentary 
N = 6 N =9 N = 4 N = 5 

Total body fat 229 23' (25) 75 = 4' (10) 264 ± 27- (20) 82 ± 12' (33) 

FFBM 432 a 11' (6) 398 = 7 (5) 429 ±22 (10) 377 : 25 (15) 
Skeletal muscle 226 ± 8' 208 ± 4 218 ± 11 201 ± 13 
sln 562 24 556-21 571±32 504±43 
Dry skeleton 20 2= 2 7' 217 =08 211 08 216 =09 

05 149 1 0 52 a 18Liver 14 8 =07 156 
Gut 83=024 127±061 89=08 93±18 

Testes 3 35 ± 0 16 331 ± 0 33 3 27 = 0 21 3 4 = 0 08 

CNS 244 010 233 :007 2580o10 2M:005 
1105 52 3 0ean 11 0 0 1OP 51 = 

Adrenals mg 60 we3 52 =3 80 = 8 51 -31 

n'o ,rrna % 73 4 05 732=03 72 0a 06 728 ± 05 

Valus.re means = sE Kats llled a the end of the rwovery period (293 days of age) 
All components except fat are fat free Units are g except where noted In any line pairs of 

values identified by superscrpt number are significantly different (P <001) according to 
the Student s t test Values in parentheses are coefficients of vanation N = 3 for this 

value 

http:Valus.re
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ferences between exercised and nonexercised groups 
Thus, those effects of exercise on body composition
which were seen at the end of the exercise period (Table 
3) had disappeared by the 293rd day of age, leaving
previously exercised groups and those which had never 
been exercised statistically alike in body composition 
The effects of diet which were statistically confirmed at 
141 days of age (Tables 3 and 4) were sustained through 
293 days of age (Table 5) 

The analyses of body composition provided in Tables 
3, 4, and 5 reveal changes in absolute mass but are 
incapable of delineating possible relationships between 
organ size and total body size These may usually be 
expressed as a power function (3, p 612-626) 

Y = aX 	 (3) 

where Y = organ size, X = body size (both in mass 
units) and a- and b are constants Such a relationship 
may be rectified by a double-log plot (Fig 3), frequently 
enabling one to distinguish organ growth related pn­
manly to body size from that related primarily to age 

Body size s appeared in Fig 3 to be the primary deter­
minant of mass in three components water, throughout 
the weight range studied, and muscle and skin, at least 
in the adult groups Skin growth was directly propor­
tional to growth in the fat-free compartment and growth 
in mass of water was nearly proportional (exponent ­
0 96), so that body water content may be conveniently 
expressed as a percentage (Tables 3 and 5) Age was the 
primary determinant of skeletal mass m the adult 
groups The other components (liver, gut, heart, testes, 
and CNS) showed influences of more than one factor 

Testes and CNS behaved similarly, increasing as a 
function of body size up to an abscissa value of approxi­
mately 2 54 (348 g), beyond which they appeared inde­
pendent of the experimental variables If there were 
reason to ignore the value for group 1, liver would be 
seen to behave similarly Gut mass responded to a com­
bination of diet and body size The mean heart mass in 
the exercised groups was appreciably above that in the 
sedentary groups at any given level of FFBM, an effect 
not evident in the mass data of Table 4 

In summary, the data on body composition suggested 
that exercise decreased the masses of both fat and the 
fat-free compartment below values for the sedentary 
groups, whereas the high-fat diet increased them above 
values for the chow groups The masses of individual 
components within the fat-free compartment were de­
termined primarily by body size but in some cases by 
activity mode, dietary mode, and age Thus, the masses 
of water, muscle, skin, gut, and heart were positive 
functions of FFBM The masses of liver, testes, and 
CNS appeared to be positive functions of FFBM up to 
-350 g above which they appear constant Exercise 
interacted with FFBM in determining mass of the 
heart Diet interacted with FFBM in determimng mass 
of the gut Finally, age by itself appeared to determine 
mass of the skeleton 

Because of the lability of the fat fraction of total body weight we 
prefer FFBM as a measure of "body size" 
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mean log FFBM Curves were drawn by visual inspection since 
distnbution of the data with respect to FFBM and age made statisti­
cal curve-fitting difficult Groups I-IV were killed at the end of the 
exercise period (141 days old) and groups I'-IV' at end of recovery 
period (293 days old) Values for b in Eq 3 are given above the lines 
We have not estnmated b for lines fixed by fewer than three data
points 

DISCUSSION 

The two major body compartments, the fat and the 
fat-free, present a sharp contrast in mass stability 
Within apparently homogeneous samples the interindi­
vidual variation in fat content and in the FFBM are 
qite different For example, in Tables 3 and 5 the group 
coefficients of variation for fat content are 3-5 times 
those for FFBM In the adult rat, feeding ad libitum, 
various changes, including seemingly trivial ones, will 
alter body fat content, whereas the FFBM is virtually 
imperturbable For example, fatness in the adult rat 
changed in response to forced treadmill-running (23), 
voluntary wheel-running (unpublished data), combina­
tions of forced exercise and force-feeding (25), surgical 
stress (26), changes in the daily light-darkness cycle (26) 
and fresh food daily versus a 3-day supply of food pro­
vided every third day (unpublished data), none of which 
altered the FFBM There is evidence for physiological 
regulation of the FFBM (24) Whether body fat content 
is regulated remains in contention (e g, 6)

The studies referred to above are uniformly cross­
sectional in their approach There is little information 
on which to base an opinion of the relative stability of 
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fat and the fat-free compartment dunng longitudinal 
studies However, most physicians vill agree that vis­
ually estimated fatness in climcally healthy patients 
evaluated at intervals may increase or decrease slowly 
or rapidly, and the changes in either direction may be 
sustained for penods of weeks or years These changes 
may be functions of various social factors (5) In any 
case, the variability of body fat content and the unpre­
dictability of its time course forces us to agree with 
others ('30) that it does not fit the usual concept of 
regulated growth 

It is helpful to apply these conclusions on relative 
stability to our results For example, late rectilinear 
growth seen in all our groups during the recovery period 
(Fig 1) is probably due largely to fat accretion Such 
accretion probably results from the participation of a 
constant number of units (adipocytes), which should 
provide a rectilinar increase in mass However, recall­
ing the documented instability ofbody-fat mass, it is not 
surprising to find that this late rectilinear accretion 
may be interrupted by dietary factors The breaks in the 
rectilinear growth mode (Fig 2 and Table 2, group II1) 
were associated with transient reductions in food con­
sumption and occurred when new lots of high-fat diet 
were opened, as though there were lot differences in 
palatability There is little reason to believe that FFBM 
would respond to such transient phenomena and strong 
reason to believe that body fat content would do so No 
such feeding response to lot or bag differences in the 
chow diet was observed 

The exercising groups (I and 17), while on the tread­
mill regimen, showed no rectilinear growth, all other 
groups did (Fig 1) The amount of treadmill running 
was 1 hr per day, a level at which rat food consumption 
equals expenditure, and below which consumption ex­
ceeds expenditure (13) Thus it appears highly probable 
that the absence of the rectilinear growth mode in exer­
cising groups reflected an absence of fat accretion 

The constants A and k in Eq 1 have been termed 
"intrinsic or genetic characteristics of the animal under 
given environmental conditions" (3, p 544) We suggest 
that the qualification "given environmental conditions" 
was necessary because A and k are estimated from 
values of live weight and hence reflect the lability to 
environmental factors of the body-fat compartment A 
and k calculated from growth of the fat-free compart­
ment would surely be less sensitive to environmental 
factors and hence a closer reflection of the genotype 
Unfortunately, current methods require killing small 
mammals to determine FFBM and consequently de­
prive us of longitudinal analysis as a tool 

Our original purpose m initiating the experimental 
regimens as early during growth as possible was to 
determine whether pertinent regulatory systems might 
be inadequate or undeveloped in the young rat, allowing 
some plasticity in mass growth of the fat-free compart­
ment, this proved to be the case We may now ask at 
what age the regulated level of FFBM is established
The high-fat diet initiated before weaning (11), a few 

days after weaning (20, 28) or at 5 wk of age (Tables 3 
and 4) produced larger FFBM's than in groups on chow 
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However, initiated at 21 (8)or 34 (20) weeks of age, the 
diet had no effect on the FFBM although it still acceler­
ated fat accretion Effective regulation must have been 
established between the 5th and the 21st wk of life 

Forced exercise initiated at weaning (27) reduced 
growth in several linear dimensions Begun at age 5 
(Tables 3and 4) or 7 wk (4), exercise reduced the FFBM 
However, when exercise was initiated at age 21 (23) or 
23 (19) wk, FFBM was unaffected 4In this case, effective 
regulation must have been established between the 7th 
and 21st wk of life 

The possibility remains that either activity or diet 
could have changed rate of maturation k without affect­
ing asymptotic weight A of the FFBM In this case, at 
some point after termination of our observations, the 
more slowly growing and more rapidly growing groups 
would have converged at the same A value With re­
spect to the high-fat diet, three published studies bear 
on this question By their 65th week of age slow-growing 
rat weanlings on chow had attained equality in grams of 
water, protein, and ash with a group on the high-fat diet 
(20) In another study of rats, the plane of nutrition 
during the suckling period was altered by adjusting 
htter size at birth The FFBM of the animals from large 
litters grew more slowly but, at the end of the study, 
was clearly converging on the mature level ofFFBM for 
rats from small litters (31, fig 13) The third study is not 
in agreement, reporting that the body protein content of 
rats on the high-fat diet for 65 wk was continuing to 
diverge from that ofanimals on a grain diet (28) Never­
theless we think it probable that either a plethora of 
milk during the suckling period or a high-fat diet initi­
ated by the 5th wk of life increases rate of growth m 
FFBM without changing A 

It is difficult to determine whether the exercise regi­
men, if continued beyond 141 days of age, would have 
influenced the asymptotic values for FFBM The A val­
ues predicted for live weights of groups I and II, if 
exercise had continued, were 406 and 360 g, respectively 
(Table 1) If the percentage of body fat found in the 
groups killed at the end of exercise (12 and 6%) had 
persisted, then the respective asymptotic FFBM's would 
have been approximately 357 g and 338 g These appear 
well below the final values obtained for the FFBM's of 
sedentary groups III and IV (Table 5), but with no 
expressions available for dispersion about the means, 
statistical significance cannot be assessed 

There is evidence that exercise can produce a smaller 
fat-free compartment in man too (12) On the other 
hand, physical training can cause an increase in FFBM 
in the young, growing human being (18) The latter is 
probably attributable to exercises of the overload type 
which produce muscular hypertrophy It is extremely 
difficult with the treadmill to achieve such overload 
exercise in the rat (25) 

The effects of exercise on several items in the energy 

By contrast, swimming as an exercie reduces FFBM when 
initiated as late as 5 (8) or 11 (17) me of age This difference from
treadmill results may be attributable to a more intense psychic 
stress and/or opportunities for very rapid thermal exchanges both 
during and after the swim 
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budget may explain why exercise reduced FFBM Exer- growth in mass of the fat-free compartment, late recti­
cise probably increased daily energy expenditure de- linear growth is probably attributable to fat accretion, 
spite some possible compensation (16), reduced food in- the observed influences on FFBM of exercise and high­
take (4, 13, 17, 23, 25), and raised the thermic response fat diet are obtained only if the regimen is started at or 
to food, thereby increasing energy lost as heat (15) before age 5-7 wk, there being no effect with a start at 
These factors could limnt storage of energy as tissues of 21 weeks of age or later, and the high-fat diet probably
growth Thus, exercise may compete with growth for increased rate of growth in FFBM without changing its 
calores asymptotic level 

It is of interest that Fig 3 reveals only two specific 
effects of the experimental variables on individual body The authors are indebted to Mr John H Key, Jr , Mr E Darrell 
components, 1 e , the effects of diet on gut, and activity Morgan, Miss Anna K King and Mr George T Tillman, Jr for 
on heart Figure 3 suggests that the statistically sigmfi- technical assistance We are particularly indebted to Dr A H 

Smith for suggestions on data analysiscant changes in other components seen in Table 4 are This study was supported by Contract NAS2-1554 between the 
not specific responses to the respective experimental National Aeronautics and Space Administration and the University 
variables but rather secondary responses to the changes of Virginia 
in FFBM which were evoked Present address of Dr L S Bull Dept of Animal Science, Urn­

verity of Kentucky, Lexington, Ky 40506In summary, our discussion suggests the following 
changes in mass of fat occurring dunng ontogeny are 
difficult to predict and detract from efforts to quantitate Received for publication 14 January 1976 
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B. Exercise and Body Composition


The following is a manuscript to be submitted to the Journal of
 


Applied Physiology. Besides making contributions to the basic physiology


of exercise in the rat, it makes the following general contributions which


are useful in the context of NASA's program. The body composition response


of the rat to three different exercise modes (forced swimming, forced


treadmill running and voluntary wheel running) is characterized These


modes will differ in their interactions with acceleration and in their


potential convenience and effectiveness as a conditioning regimen for


use during space flight. The response to exercise was found to be a


function of sex, age when the exercise regimen starts and duration of the
 


regimen. We suggest that the same variables will be important during


exposure to weightlessness with or without exercise. Finally, the paper


evaluates the role of psychic stress on the response to exercise and the



role of the same variable must be evaluated in the weightless rat.
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In our earlier studies of the exercising rat (Pitts; Pitts & Bull;


Pitts, Bull & Hollifield; Pitts, Bull & Wakefield, and unpublished) and


in the publications of other investigators we have noted data suggesting
 

that the body composition changes associated with exercise vary with the


nature of the regimen and the condition of the subjects. Our published


studies all involved forced treadmill running. Here we present results


obtained on rats given the opportunity for voluntary wheel-running and


we compare the results obtained with treadmills, running-wheels, and


forced swimming. We also consider the effects on body composition of


sex of the rats and their age when the regimen was initiated.



METHODS



Virgin female white rats of Sprague-Dawley origin were employed.


In each experiment they were randomly seggregated into an exercise group


allowed ad libitum access to running wheels propelled by the rat and a


control group which remained within 8 x 8 x 24 cm. living cages. All


animals were individually caged and given a ground chow diet (Ralston


Purina Co.) and water ad libitum. In some cases, as indicated, food


consumption was monitored by food cup weight. For the sedentary young


adult rat it was established that 3.34 + .02 kcals were absorbed from


each gram of chow which passed through the gut (Pitts and Bull), and


this value has been used to convert grams of chow ingested to kcals


absorbed.



The running wheels employed (Wahmann Mfg. Co.) were A,35 cm. in


diameter and were equipped with revolution counters and living cages


measuring 12 x 15 x 25 cm.



a 

Animal room temperature was regulated at 22 + I C and relative humidity
 

at 45-50%. Lights went off at 8AM and on at 8PM.



The rats were killed by decapitation, bled out, sheared as closely


as possible with clippers and the content of the gastrointestinal tract


was removed and weighed. Viscera and eviscerated carcass were separately


weighed and ground. Water was determined by freeze-drying and fat content


by Soxhlet extraction with petroleum ether (BP 30-600 C) on duplicate


aliquots of each, Body mass after sacrifice, plus mass of shed blood,


minus mass of fur and gut content minus the mass of extracted lipid yielded


the fat-free body mass (FFBM).



RESULTS



Exercise initiated at 25 days of age. (Expt. I). Growth in live mass,


energy absorption and activity are presented in Fig. 1. A composite model


of growth (Brody) treats early growth (below the point of inflection) as


parabolic,



W = Woekt (1)



where W is body mass, W. is mass when time (t) is 0 and k is the growth


constant. Late growth is treated as hyperbolic
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A-W = Be -t (2) 

where A is the asymptotic body mass, Z the maturation constant (i.e., the


rate at which W approaches A) and B is an integration constant. The


mathematical model for early growth fits the data satisfactorily (Fig. 1).


However, because of an unexplained flattening of the curves between 60


and 110 days of age the fit to late growth is poorer than can usually


be expected (e.g., Pitts & Bull).



The mean constants for each group are entered into the equations


in Fig. 1. The A values for exercised and sedentary groups respectively


(mean + SEM) are 250 ± 6 and 239 ± 5. According to the t test the differ­

ence between these two means is not statistically significant, implying


that at maturity the two groups would be statistically alike in live mass.



However, body composition analyses of the individuals sacrificed at


133 days of age (Table 1) reveal significant differences between the groups.


The exercised group had less fat and more FFBM than did the sedentary


controls. The opposite effects of exercise on the two major compartments,


fat decreasing and the FFBM increasing, is responsible for the closely


similar live masses in the two groups both in Table 1 and in the A values


calculated from equation (2).



It can be seen in Fig. 1 that after activity had reached a plateau at


15,000 revolutions per day, the mean group difference in energy absorbed



was A 25 kcals per day



Product-moment correlation coefficients were calculated for all combin­

ations of activity, food consumption, total body fat and FFBM. The only


significant correlation (P < .05) was that for the inverse relationship


between activity and FFBM.



Exercise initiated during late growth. (Expts II, III and IV)


Studies of the effects of wheel running on young adult female rats were


initiated at ages of 11 weeks for 31 days duration (Expt. IT), 16 weeks


for 91 days (Expt. III) and 19 weeks for 43 days (Expt. IV). In Expt. IV


body composition analyses were sacrificed in order to obtain in vivo data


during a recovery period. The in vivo results, which are presented in


Fig. 2, closely represent the results obtained in Expts. II and III also.



In Fig. 2 the exercise group shows changes in food consumption which


are followed by changes in body mass, both lagging behind changes in regimen.


On the 3rd and 4th day after running-wheels were made accessible food


consumption and body mass passed through minima followed by recovery within



30 days. The food consumption plateau reached was 15 kcal/day above the


sedentary group, a difference which probably approximates the energy cost


of running activity. When the running-wheels were removed, food consumption


required \,25 days to subside to a steady state. During this period of


overeating, exercise group body mass rose above, and then returned to, the


sedentary level.
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The body mass curves in Fig. 2 imply that if the wheel-running regimen


lasts as long as 30 days, an exercising group will return to the same level


as a sedentary group. However, in Expt. II during the last 10 days of the


31 day total duration the exercise group remained 5 to 10 g in body mass


below the sedentary group and in Expt. III during the last 56 days of the


91 day total the exercise group remained 5 to 8 g below the sedentary group.


These differences suggest that after recovery the live mass may still be


slightly below that of controls



After a period of learning, activity reached 4,000 revolutions/day.


This is much below the level attained in Expt. I (Fig. 1), probably because


the rats in Expt. I were introduced to wheel-running at a much earlier age.



Using the data in each experiment after steady states were attained, we


have made rough calculations of the energy cost of activity, obtaining
 

7.8 kcals/ 1000 revs/ kg body mass for Expt. I, 5.8 for Expt. II and 11.5


for Expt. IV. (Food consumption was not monitored in Expt. III.) Considering


the uncontrolled variables (e.g., the lack of data on energy storage as fat)


the range in values is not unreasonable.



The pertinent body composition data are presented in Table 1. Fat,


expressed either as grams or percentage was reduced by exercise. The


fat-free compartment (FFBM) did not respond to exercise in Expts. II and


III. The impressive constancy in water fraction of the fat-free compartment


suggests that state of hydration did not change much between groups. Finally,


the larger adrenal mass in the exercise groups suggests that even volitional


exercise may be accompanied by an increase in stress level



DISCUSSION



Our approach to the physiological effects of exercise involves in-vivo


measurements of body mass on one hand and body composition analyses on the
 

other. It is important to relate the two as far as possible.



Live body mass is a heterogeneous entity including fur, gut content,


fluid compartments and multiple live tissue components. We have found no


statistically significant differences between groups in mass of fur, mass


of gut content or body fraction of water and will now direct our attention


to two major compartments, fat and the FFBM.



The principal problem in interpreting live mass is indicated by Expt. 1


(Fig. 1) where two offsetting changes within the exercise group, a decrease


in fat and an increase in FFBM (Table 1), are not reflected in live mass


variety. Fat is primarily stored energy while the FFBM has a variet of
 

functions, and a change in live mass which comprises unknown contributions


from these two will yield limited information. However, with adequate


nutrition the fat-free compartment is very stable in the adult, resisting


perturbation by a great variety of factors, and shows a closely regulated


increase in mass during growth (Pmtts unpub.; Pitts & Bull). By contrast


the body fat content is highly labile, changing in response to nearly any


small change in regimen (Pitts unpub.; Pitts & Bull). In the discussion


which follows it will be seen that these characteristics assist us in





(46)


interpreting data on live mass.



Studies of both sexes of rats exercised by three exercise modes and


at a variety of ages are summarized in Tables 2,3 and 4. While these tables


are extensive and, we believe, representative of reported results, they may


not be exhaustive. Collectively the data are frustrating in that they show


several gaps which prevent firm conclusions on the effects,of any of the


experimental variables of particular interest to us. For example, there are


no body composition data on swimming females, none on wheel-running males


and none on immature treadmill-running females. The tentative generaliza­

tions which follow may have to be modified when these gaps are filled.



In Fig. 2 the principal body compartments show results typical of our


earlier observations (Pitts unpub.; Pitts & Bull). The labile fat compart­

ment (g or %), wherever measured, was reduced in exercising animals. By


contrast, the FFBM of the adult was protected from perturbation by either


the running wheel or treadmill mode Although live body mass can only reflect


the net result of changes in fat and the FFBM, these values where available


are included because of their potential usefulness where body composition


analyses were not performed.



There are some differences between the effects of the three exercise


modes. In adult rats, swimming was the only mode which altered (+) the


fat-free compartment. The effect of swimming on body composition in the


rat 12 weeks of age and younger is not documented. Wheel-running differed


from the other two modes in two respects. It alone increased rate of growth


of the FFBM (7 weeks of age or less), and while the wheel-running adult


shows a loss of live mass, the loss was completely, or almost completely


restored within 30 to 40 days of continued wheel-running. This loss and


recovery is documented by our Fig. 2 which is representative of results


obtained in Expts. II, III and IV. The changes involved are almost surely


restricted to the fat compartment



The age at which exercise was initiated was important, with 7 to 11


weeks of age appearing to be a critical period As we have pointed out


elsewhere (Pitts & Bull), the fat-free compartment is perturbable by


exercise regimens initiated earlier than this. But the FFBM was successfully


defended against regimens initiated later than this except in the case of


swimming.



Sex of the exercised rats also proved to be important. At all ages


females on a swimming regimen maintained their live mass whereas males lost


mass. This distinction made elsewhere (Oscai, Mole & Holloszy) is documented


more fully by Table 2. In contrast to the swimming data, adult females on


treadmill regimens lost live mass. This appears paradoxical since the


swimming regimens used were generally more arduous than the treadmill ones.



In conclusion, we suggest that the number of variables involved in most


studies of exercise in the rat, and probably other small mammals, has become


unwieldy. It would appear wise to evaluate fully the variables presently


involved before new ones are added.
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Fig. 1. 	 Growth, activity and food consumption in weanling rats permitted


voluntary running in a self-propelled activity wheel. (Expt. I.)
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Table 1. Effects of voluntary wbeel-running



exercise on body composition.



Group (N) Components (mean + SEM) 

Fat Fat FFBM H20/FFBM Adrenals 

(g) (M) (g) (%) (mg) 

Experiment I: Regimen initiated at 24 days of age, duration 110 days.



Exercise (6) 12 + 2* 5 + 1* 204 + 7* 72.1 + 0.3



Sedentary (10) 24 + 2 11 + 1 186 + 3 72.6 + 0.4



Experiment II: Regimen initiated at±ll weeks of age, duration 31 days.



Exercise (8) 20 + 2* 8 + 1* 226 + 5 73.6 + 0.2 70 + 3*



Sedentary (8) 41 + 2 15 + 1 224 + 5 73.7 + 0.2 58 + 4



Experiment III: Regimen initiated at 16 weeks of age, duration 91 days.



Exercise (8) 13 + 3* 5 + 1* 220 + 4 73.3 + 0.2 86 + 2*



Sedentary (8) 28 + 1 11 + 1 225 + 3 73.5 + 0.2 73 + 4



FFBM = the fat-free body mass



*Statistically significant (P<.05) difference between



groups according to the method of t.
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Fig. 2. 	 Body mass, activity and food consumption in adult rats permitted


voluntary running in a self-propelled activity wheel. (Expt. IV.)





-- 

--

(50)


Table 2. 	A summary of the effects of swimming on body size and composition



in the rat.
 


A. MALES


Live mass Fat Fat-free compartment 
 

1. Exercise initiated at 4 weeks of age.



-4I 	 I-­

2. Exercise initiated at 6 weeks of age.



I 
3. Exercise initiated at 10 weeks of age.



4. Exercise initiated at 12-16 weeks of aze.



1- 1 	 1 

5. Exercise initiated in the adult.
 


-' 

4 FFBM-I 
 

'V 4 204, protenj 
 

4 H 20, protezn4,

FFBM4-


-4, 
 

B. FEMALES


1. Exercise initiated at 6 weeks of age.



4FFBMI' 
 

2. Exercise initiated at 10 weeks of age.



---> I I 

3. Exercise initiated in the adult.



Adrenals 


I 

-[ 
 
I 

t 

f 

t 

t 

1' 
--> 

Reference



I Bloor, Pasyk & Leon 

I Oscai, Mole & Holloszy 

Oscai, Mole, Brei &


I Holloszy



Bloor, Pasyk & Leon 


Stevenson, Feleki, et. al.



Jones, Montoye, et. al.



Hanson, et. al. 


Oscai & Holloszy



Bloor, Pasyk & Leon



Ergnko, et. al. 


Tepperman & Pearlman



Oscai, Mole, Krusack & 

Holloszy * 


Oscai, Mole & Holloszy



Oscai, Mole & Holloszy



Arcos, et. al.



Crews & Aldinger
 


*For the exercise group the investigators selected 13 of the 18 exercised rats.



"Of the 18 swimmers,13 increased their food intake sufficiently to gain weight at


approximately the same rate as the sedentary animals with which they were paired."


This probably created a bias.
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Table 3. 	 A summary of the effects of forced treadmill running on body size



and composition in the rat.



A. MALES



Live mass Fat Fat-free compartment Adrenals Reference



1. Exercise initiated at 3-5 weeks of age.


j FFBM--> -> Parmzkova & Faltova 

$ 4 ' Pitts & Bull 

2. Exercise initiated at 6 weeks of age.



-$ 	 _1 Oscai, Mole, Brei & 

1 1Holloszy 

3. Exercise initiated at 7 weeks of age. 

I 4,1 FEM , lCrews, at. al. 

4. Exercise initiated in the adult.



4Stevenson, 	 Feleki, et. al. 

__ _ FFBM--> -- Parizkova & Stankova 

B. FEMALES



1. Exercise initiated in the adult. 

- _' FFBU--> Pitts, Bull & Wakefield 

SFFBM--> ' Unpublished 

4 	 4 FFBM-'> Pitts, Bull & Hollifield 

Mayer, et. al. 
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Table 4. 	 A summary of the effects of voluntary wheel running on body size and


composition in the rat.



A. MALES



Live mass Fat Fat-free compartment Adrenals Reference



1. Exercise initiated in the adult.



-- Tepperman & Pearlman



B. FEMALES



1. Exercise initiated at 24 days of age. 

---3 I FFBM T Table 1 

2. Exercise initiated at 7 weeks of 	 age.



-I 	 Lengtht -1 Ring, Bosch & Lo 

3. Exercise initiated at 11 weeks of age.



L*_ -- I--__FFBM-	 -Fjig. 2* 

4. Exercise initiated in the adult.­


4-	 FFBM--- Table 1



_--*- _ Fig. 2



-4 	 Tepperman & Pearlman



*Fig. 2 represents results obtained on one 11-week old group and two



adult groups.



**This symbol represents a fall in mass followed by a recovery.
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IV. EXERCISE COMBINED WITH ACCELERATION



A. Exercise during Chronic Acceleration.


Body composition analyses on the carcasses from this study were



completed very recently. Consequently, statistical and graphical


analyses have barely started and this must be regarded as a preliminary
 

presentation. Indeed, the entire study must be regarded as a preliminary


study because exercise during centrifugation had not been tried before


to our knowledge. In spite of careful planning and a large investment


of time, the study was less successful than expected in data yield and


more successful in revealing obstacles to be overcome in future experi­

ments.



The plan for the study is presented in the experimental protocol


which follows.
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EXERCISE DURING CENTRIFUGATION


Ames Research Center



July-August, 1975



Objectives:



1. 	 To evaluate the role of running activity in modifying the body-composition 
effects of centrifugation, thereby altering the rate of adaptation to A G. 

2. 	 To derive the quantitative relationships describing the body-composition


response:


a. 	 with G-load constant and activity varying.


b. 	 with activity statistically constant and G-load varying.



General Plan:
 


1. 	 Duration-tentatively 60 days depending upon dynamics of the observed changes


in body mass. 

2. 	 Acceleration levels - approximately 2.76 G and approximately 4.15 G depending


upon levels available in the repaired and recalibrated centrifuge.



3. 	 Experimental animals - Simonsen Sprague-Dawley rats, virgin females approxi­

mately 250 g. at start of centrifugation.



4. 	 Segregation into groups:
 


Group Regimen Number 	 Approx. Date


of Sacrifice



I 	 Sacrificed at start of centraf. 8 	 July 11


II Sedentary - 1 G 10 Aug. 8 or Sept. 8



"

III Exercised - 1 G 
 8 


IV Exercised - 2.76 G 8 "


V Exercised - 4.15 G a "



Data to be collected:



1. 	 Number of wheel revolutions - whenever possible.


2. 	 Body mass - daily for first week and twice weekly thereafter.
 

3. 	 Food consumption - daily for first week and twice weekly thereafter.


4. 	 Body composition - terminally.
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Results: Deaths during centrifugation have been very rare in my experience


(not counting deaths due to careless door closure by animal caretakers who


service the centrifuge cages.) However, the 5 deaths out of 16 centrifuged


rats which we encountered deserves analysis. These were distributed as
 

follows. 

G level 11.00 G 2.76 G ! 4.15 G 
Activity level I exercise sedentary exerc slednarlxereiselsedentary 

Deaths 0 of 8 0 of 8 1 of 8 10 of 8 3 of 8 i of 8 

Exercise appears more hazardous than the sedentary condition and higher


accelerations appear more hazardous than lower ones. There was an inter­

action between the two factors such that the greatest number of deaths


occurred in the group exercised at the highest G level. One mechanism


which was involved was as follows. At high G levels the rat cannot hold its


tail elevated in the usual running posture. Consequently, the tail dragged
 

and was occasionally skinned on the edge of the running wheel. If the area


skinned on the tail was large enough, the rat usually died a few days later.


It appears that this hazard can be greatly reduced by a simple alteration of
 

wheel design.



The in vivo results are summarized in Fig. 1. Note that the centrifuged


groups with the running wheel available lost masses comparable with those


reported in earlier studies for groups centrifuged without an opportunity


to run.
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Fig. 1. Body mass, activity and food consumption in rats permitted 

voluntary access to self-propelled running wheels during chronic



centrifugation.
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Sedentary rats at 1 G showed a near steady state in food intake.


However, either wheel-running at I G or the initiation of centrifugation


caused an abrupt reduction in food intake followed by a slow recovery to


and above the level of the I G sedentary group.



The activity levels for centrifuged groups were disappointing, the


highest mean value being 270 revs/day as compared to the highest mean


value of 11,700 revs/day for the group at I G. There is some doubt that


the level of wheel-running obtained was sufficient for a meaningful test


of exercise as an experimental variable. Daily activity varied among the


individuals of each group and we expect to analyze the individual data for


correlations among the parameters measured. Also, in future studies we


suggest allowing rats to go through a learning period in the running wheels


before centrifugation is initiated.



The body composition data by groups are presented in Table 1. The


following points should be observed. As has been demonstrated often before,


either exercise or centrifugation reduced body fatness (in g or %) and the


greatest reduction occurred in the exercised group at the highest G level.



With respect to the fat-free body mass (FFBM) it showed a rectilinear


relationship to G level in exercised rats just as it does in sedentary ones.


These data must be compared statistically with data previously obtained on


sedentary rats at 2.76 and 4.15 G in order to determine whether exercise


during centrifugation altered the acceleration effect.



Note that in the table only 3 individuals are listed as sedentary during


centrifugation. These were placed in running cages rendered stationary


after dead animals had been removed from them. Limited space on the centri­

fuge and reductions in our manpower prevented us from planning full-sized


sedentary groups on the centrifuge.
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Table 1. Body composition by groups (mean + SEM)



CLW Fat i 	 Fat FFBM Skinned Evise. Carc. Adrenals 

CLW? EF Mass H%2o



(g) (g) I 	 (g) (g) (g) '(mg) 

Before centrigugation or exercise - Day 0 (N=8) 

235+ 3 35+ 2 15+ 1 i 200 3 1 141+ 2 103± 2 58+ 2 

1 G sedentary - Day 31 (N=8) 

265+5 40+2 15+1 1 224+5 1 161+ 4 i 118+3 58+ 4 

1 G exercised - Day 31 (N=8) 

246 + 4 20+2 8+ 11 226+ 5 1 161+4 118+3 70-+-3 

2.76 G exercised,- Day 31 (N=7) 

224+ 6 14 + 1 6+1 1 210 + 6 I 149+5 i 109+4 62+4 

2.76 G sedentary - Day 17 (N=I) 

213 10 5 1202 I 146 I 107 I 62 

4.15 G exercised - Day 31 (N=5) 

211 + 10 7 + 2 3+ i 204 + 9 144+ 6 , 105+ 5 65 + 3 

4.15 G sedentary - Day 	 17 (N=2)



199 13 I6 186 131 95 83 

CLW = corrected live weight, FFBM = fat-free body mass.
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V. RESTRAINT STUDIES



Hypokinesia -simulates weightlessness in several respects.


Consequently, the members of the Animal Physiology Consortium (a group of


investigators representing diverse physiological disciplines of which


I am a member) are exploring the possibility that the rat rendered hypo­

kinetic by suspension in harness might constitute an adequate model on


which to collect background data in preparation for an eventual study of


the rat in earth orbit.



Besides the above application hypokinesia has special significance


for me because of my program of investigations in exercise physiology.


Hypokinesia represents the ultimately mild exercise regimen and should


be included in a program of study of exercise physiology.



While awaiting the avaiLbility of the rat harness being developed


by the Consortium for use by its members, I have completed a study of


the rat rendered hypokinesic by cage restraint.



The protocol for the study follows.
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Body Composition and Cage Restraint In the Rat



Objectives:



To determine whether the restraint resulting from continuous residence



in cages of very small volume has an effect on body composition of young



adult rats.



Animals:



Virgin female albino rats of Sprague-Dawley origin purchased from



Hilltop Lab Animals, Inc. Weight specified 200 - 210g. Received Wednesday,



June 30, 1976 at which time the mean weight was 191g.
 


Two groups:
 


Restrained - N = 12 - housed singly in cages 17 X 18 X 8 cm.



Unrestrained - N = 12 - housed singly in cages 45 X 23 X 20 cm.



Measurements: 

Total body mass at appropriate intervals (see Chronology) 

Terminal body composition: 

Chemical components - H20, fat, ash. Determined on each anatomical 

component.



Anatomical components -


Total muscle (by estimation from water)
 


Total bone (by difference, i.e., FF MS syst. - FF muscle)



Skin



Heart



CNS



Remaining viscera pooled.
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Chronology: 
 

Day 0 - 24 rats received in good condition.



Day 1 - weight and divide into 2 weight-adjusted groups.



Day 2 - weigh



Day 5 - weigh



Day 8 thru 61 - weigh twice a week.



Day 62 - Remove food at beginning of bight period.



Sacrifice all animals at end of light period.
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The effect on body mass of cage restraint for slightly more than


one month is presented in Fig. 1. The restrained rats (118 wks. old at


the start of the study) were kept in cages approximately 4 to 6 times


their body volume (judged by eye). The only point of interest in the


figure is that restraint did not change late growth from that of the


unrestrained group. Because restraint appeared to have no effect we


decided not to perform body composition analyses on the carcasses.



As has been shown in the reprint included under III.A and the


manuscript included under 11.B, the response of the rat to either an


exercise regimen or a high fat diet is determined by the animal's age.


For example, the FFBM is altered by either regimen initiated at 5-7 wks.


of age or earlier but is unchanged by the same regimen initiated at an


age older than the 5-7 wk. critical period. Consequently, we are repeating


the cage restraint study starting with rats 3-4 wks. of age. At this


writing the study is not yet completed, but it is already clear that the


restrained animals are smaller and are growing less rapidly. Body composition


studies will be carried out on these animals.
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Fig. 1. Effect of cage restraint on body mass in the rat.
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VI. PHYSIOLOGICAL REGULATION



A. Physiological Regulation and Energy Balance.


The following manuscript has been submitted for publication to the



American Journal of Physiology. Besides making several contributions to


basic physiology, it makes the following general contributions which are


useful in the context of NASA's programs. Some body components were


found to be vigorously defended against perturbation by environmental


factors while others changed readily. As a result of this manuscript


it has begun to be clear which body components are likely to change in


response to AG and which are not, even before the actual observations


are made. The results of this study together with that presented under


III.A give us a new confidence in predicting the results on body composition


of exposures to new acceleration environments.





(Submitted to Am. J. Physiol. on 12/5/76.)
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ABSTRACT



Mean body fat mass and fat-free body mass (FFBM) for 53 samples



of rats, 28 samples of human beings, 17 of mice and 16 of wild mammals
 


(all adults) were gleaned from the literature. These individually homo­


geneous samples collectively showed wide differences in experimental



variables. The criterion of regulation was a central tendency (bell­


shaped curve) as opposed to wide scatter. The frequency distribution for



FFBM was comparable to those for resting body temperature and systolic



blood pressure. However, the fatness data were widely scattered and



suggested that with selected regimens (all allowing feeding ad libitum)



one could produce a continuous spectrum in body fatness from the lean to



the obese. Because hypothalamic lesions produce animals which defend



specific levels of body fat which are either very high or very low while



the middle range is characterized by lability, an hypothesis of regulation



which is effective at the range extremes but less rigorous in the mid-range



is suggested. Advantages and complications of such an arrangement are



discussed.



Fat, the fat-free compartment, body composition.
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Numerous investigators from several different scientific disciplines



have studied the possibility that body energy balance is regulated. Some



of these efforts have been directed at the "regulation of body weight" or



the "setpoint of body weight" (12, 44, 72). Because total body mass is a



complex and, we believe, inappropriate entity from the standpoint of regu­


lation, we have directed attention to data on fat and the fat-free compartment



considered separately. Because there are difficulties in identifying and



characterizing regulatory phenomena we have made an effort at clarification



by redefining a few terms and concepts. We have applied these distinctions to



a reexamination of data in the literature previously unevaluated from the stand­


point of regulation I and we believe that the results have provided some new



perspectives.



MATERIALS



Our materials are largely in the form of sample means for body fat content



and the fat-free body mass (FFBM) obtained with standard body composition



techniques by indirect in viva methods on man and direct terminal methods on



other species. Most of these are from papers published by other investigators.



While each sample was homogeneous with respect to the experimental variables



of interest to the particular investigator, collectively the samples represent



a variety of experimental variables as well as unrecognized variables character­


istic of the particular laboratory environments. Because of the nearly universal
 


absence of data on individuals, the sample means were treated as data units. In



some cases the desired data were not provided by could be calculated by simple



arithmetic from other values which were provided.
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Our literature search was extensive but probably not exhaustive. All



of the discovered samples which met the following criteria were used.



1. 	 The subjects should be adults thereby ruling out growth as a variable



and eliminating immature animals in which control of food consumption



was not yet established (35). We have defined adult laboratory rats



as being 24 weeks of age or more, laboratory mice as being 12 weeks



of age or more, human beings as being 18 years of age or more and



wild mammals as meeting the published weight and dimension description



for adults of each species.



2. 	 They should be subsisting on a nutritionally balanced diet available



ad libitum



3. 	 They should have no recognized pathology.



4. 	 They should be intact prior to sacrifice. The sole exception was the



use (in Fig. 2) of rats with hypothalamic lesions.



5. 	 Each sample should supply values for both fat mass and the FFBM.2 A



comparison of these two components is important for our purposes and



this precaution insured that the sample means for the two compartments



represented the same constellation of known and unknown variables. Data



on fat3 and the fat-free compartment3 yield information about different



processes. Since body fat is primarily an energy store, in an adult



with a constant FFBM the mass of fat is a useful index of the net imbalance



between energy intake and expenditure summated over the period of study.



By contrast, the FFBM is responsible for virtually all of the processes



essential to daily living. We must keep in mind that the FFBM is not



a physiological entity but a collection of entities (muscle, skin, bone,



etc.) 	 which may be subject to independent control.
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The wild mammals used (61) are identified in Table 1. One sample was



available for each of the 16 species. The individuals were taken with snap



traps which killed at capture With the exception of the shrews these species



are all plant eaters and they were collected during the season when their



natural foods occurred in greatest abundance. In each case post-mortem
 


examination revealed a lean animal but with no suggestion of emaciation.



Thus, their dietary regimens were not restricted and may reasonably be termed



ad libitum.



Data from 25 published papers plus 2 unpublished ones from this labora­


tory are qualified by these criteria. These 27 papers provided the 114



separate statistical samples which are plotted one or more times in Figs. 1, 2,



and 3. Of these, 53 were samples of rats (5, 8, 28, 38, 43, 50, 54, 56, 58,



59, 66, 67, unpublished), 28 of men and women (6, 10, 11, 15, 16, 39, 51, 53,



71, 73, 74), 17 of mice (8, 34, unpublished) and 16 of wild mammals (61).



Sample size varied from 3 to 98 with most falling in the 5 to 10 range.



METHODS, DEFINITIONS AND CONCEPTS



There is a variety of anatomical, physiological and behavioral parameters



which are controlled primarily by the organism although they may respond to



environmental factors. Most of these controlled parameters may be adjusted



by the organism to levels anywhere within the viable range as is momentarily



appropriate in serving the economy of the body. Houever, a particular subset



of these parameters is controlled in a more rigorous manner so as to resist



or minimize displacement of its value from a narrow, presumably optimal,



range and this is designated "regulation" (14). This distinction is real,
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useful and biologically significant since it spotlights an important



difference between living and non-living systems Treatment of control



and regulation as synonyms will usually result in confusion.
 


Brobeck (14) pointed out that a regulated parameter is typically



coupled wLth one or more controlled parameters (effectors). As applied 

to energy balance: 

A B C 

Energy intake -- Energy storage - Energy loss 

Any constancy in B, assumed to be regulated, is made possible by control



of A and C which may vary as appropriate between lower and upper limits



of viability. If measured repeatedly under a variety of environmental



circumstances, the regulated term B will be found within one or a very



few narrow ranges which are frequently called regulatory set-points. The



existence of many such set-points is unlikely. Difficulties associated with



the set-point concept should be noted (22, 29).
 


The essence of regulation lies in its response to perturbation. A



change in A to (A +A A) or C to (C +AC) will dLsplace B to (B +AB). If



the system were in physicochemical equilibrium, (B +LAB) would be maintained



as long as (A +AA) or (C+AC) was sustained and would be restored to B only



when the former balance between A and C was restored. However, physico­


chemical equilibria are so infrequent in living organisms that they rarely



cause confusion in studies of regulation If B is indeed regulated, AB wilt



be promptly reduced even while the changed value in A or C is sustained. In



a slow response system one could observe the perturbed B value followed by a



return toward the regulated range. In this study such transients are noted
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only in the few cases where longitudinal data on individuals are examined.



The more numerous group means employed are believed to represent steady



state conditions because of the durations of the respective regimens.



They may nevertheless reflect the influence of regulatory systems when



judged by the following criterion.



Multiple measurements of an unregulated parameter made under a wide



variety of experimental conditions are likely to be widely distributed



throughout the available range However, if the parameter is regulated,



the values should show a central tendency (bell-shaped curve) about the



mean which should be close to the regulatory set-point. It is unlikely



that any factor other than regulation would yield a clear central tendency



from data involving a variety of exercise regimens, dietary regimens and



others. In other words, a very heterogeneous data sample will show wide



scatter unless regulatory mechanisms act to confine the parametric value



within a narrow range. While the criterion may be poorly suited for



absolute quantitative applications, it serves adequately in the compara­


tive uses to which we have put it. This criterion has been applied to the



study of the behavioral regulation of body temperature in desert reptiles



(68) and the regulation of gross chemical composition in rabbits (26).



. RESULTS



Fig. IA shows the frequency distribution of sample means for FFBM and



fat mass in our predominant species the rat. The curves for fat have '



maxima at approximately 60g but 12% of the values occur far to the right



in each sex. By contrast the curves for FFBM suggest bell-shaped distribu­


tions with some possible skewing.



In Fig. 1B the distribution of FFBM is placed on a common ordinate
 


with distributions for two parameters generally regarded as regulated, i.e. those
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for resting systolic blood pressure (37) and resting oral temperature (32)



both in young men. In comparing the curves two things should be kept in



mind. First, the curve for blood pressure as well as that for oral temper­


ature was obtained by plotting individual values from a relatively large



sample whereas the FFBM curve was obtained by plotting 26 sample means.



Second, the blood pressures and oral temperatures were measured under



standardized conditions whereas the sample means for FFBM represent varia­


tions in location, investigators, diet, amount and kind of exercise etc.



Certainly this comparison suggests that regulation may play a role in the



distribution of rat FFBM but in the case of body fat there is room for



considerable doubt.



Fig. 2 has fat as a percentage of total body mass on the abscissa.



It presents both sexes of rats, mice and human beings in a single plot,



thereby increasing the size of the total sample with no apparent loss in



the resolution of peaks. The combined curve shows a distribution which is



bimodal or possibly trimodal. It should be remembered that this curve repre­


sents the frequency of occurrence of these abscissa intergals in our data



but not necessarily their frequency of occurrence in the natural populations.



Unless it is possible to interpret the three peaks as different regulatory



set-points, this plot suggests more clearly than does Fig. 1 a deviation



from what is expected of regulated parameters.



In Fig. 2 note that all the samples with experimental or genetic obesity



were located above 40% fatness. However, 16 samples of "normal" animals



occurred in the same high range. This suggests that while hypothalamic



lesions and specific genes may facilitate the attainment of very high or
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very low levels of fatness, these extreme ranges are also available to



normal intact animals, an interpretation in accord with (45) but not (33).



In Fig. 3 are plotted frequency distributions in percentage body fat



for four subsamples:
 


A. 	 16 means, each for a different wild species as identified in Table 1



(61). Mode 2-6%.



B. 	 77 individual females of an inbred strain (MSD) of Sprague-Dawley



rats, born within a 15 day span, individually housed in a constant



(temperature, humidity, light, sound) environment (unpublished).



This sample represents our ultimate reduction of genetic and environ­


mental variability. Mode 8-12%.



C. 	 32 samples of random-bred laboratory rats fed on chow-type diets (38,



50, 54, 56, 57, 58, 59, unpublished). Mode 16-20%.



D. 	 17 samples of random-bred laboratory rats fed on high fat (40-60%) diets.



(28, 38, 54, 56, 59, 66, 67). Mode 36-48%.



The overlapping population ranges extend from nearly 0 to 56% fatness and



suggest the existence of a continuous spectrum.



DISCUSSION



The results on the fat-free compartment are relatively easy to interpret



and will be disposed of first. Within the scope of our limited criterion it



appears very likely that the FFBM is subject to regulation (Fig. IB) but



perhaps not as a unit. Its major components (e.g., skeletal muscle, bone)



may be regulated individually and the observed near-constancy of the whole



could be the result of these several interacting systems of regulation.



The near imperturbability (except by inanition) of the fat-free compartment
 


in the adult rat (28, 33, 54, 57 and Fig. 1) may suggest that it is qualitatively
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different from the control of body fatness. However, that it is perturbable



and behaves like various other regulated parameters is demonstrated by its



response to altered gravity simulated by chronic centrifugation (55, 58, 59).



The FFBM shows an inverse rectilinear relationship to simulated G force and the



effect is promptly and completely reversible upon returning to the original



level of acceleration. Furthermore, the adult rat being chronically centri­


fuged can approach its new lower set-point for FFBM from either above or below
 


(59). But the fact remains that the fat-free compartment shows an impressive



constancy under a variety of circumstances which result in altered fat mass



With respect to body fat content our results (Figs. 1, 2, and 3) do not
 


provide frequency distributions such as are expected with regulated parameters



but also do not exclude a regulatory interpretation. However, there are other



data which suggest regulation and we shall attempt to resolve the apparent



conflict.



The results reported in greatest abundance agree with ours presented



above in supporting the conclusion that body fat content is labile whether



expressed in mass units or in percentage. It changes in response to changes



in: age (36, 57), forced exercise (57), volitional exercise (unpublished),



combinations of exercise and/or force-feeding (60), surgical stress (62),



circannual rhythms (48, 49), circadian rhythms (62), environmental temperature



(7), chronic acceleration (58, 59), dietary composition (56), apparent palate­


bility of the diet (21, 33, 45) and social factors (23, 42). In our samples



the body fatness levels are nearly as numerous as the regimens employed.



Fig. 3 implies that by utilizing appropriate regimens and/or species, one could



produce a continuous spectrum of fatness from perhaps 2 to 60%.



While fatness undeniably responds to changes in regimen, a constant regimen



may not insure constant body fatness even in the long term. For example, annual



records of body mass were kept for 7 years on 24 healthy long-term prisoners





(75) 9



(24 - p. 20) during which time some individuals showed a net gain and others



a loss but there was no mean trend upward or downward. The constant regimen



made it highly probably that the observed changes in total mass reflected



changes in mass of fat primarily. If one assumes a mean group fatness of



20%, it may be calculated that the average individual altered his energy stored



as fat by approximately 50%.
4



Besides the extensive evidence of lability in body fatness there are



two lines of evidence which suggest regulation: first, the evidence for the



presence of central nervous mechanisms and effector mechanisms such as one



would expect to participate in a system of physiological regulation and,



second, the evidence that in some cases specific levels of body mass and/or



body fatness are defended.



The central mechanisms, termed hunger and satiety, have been studied
 


perhaps most effectively by experimental production of hypothalamic lesions.



They appear to have separate central representation with dynamic interaction



between the two (33) and are believed to represent a central integrating



function.



Among the effector mechanisms likely to participate in a regulation of



energy balance are ingestive behavior and the dissipation of energy as heat.



Ingestive behavior, when averaged for periods of a week or more, is usually



altered in a direction appropriate to the maintenance of energy balance (24­


p. 11). The other effector mechanism, the dissipation of excess energy as
 


heat, termed "luxuskonsumption," has been recently reviewed (24-p. 132).



Several studies now support the conclusions that prolonged hyperphagia and



hypophagia are associated with an increase and decrease respectively of energy



dissipated as heat (4, 40, 41, 63, 24- p. 134).
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'Central integrator and peripheral effector mechanisms like those



described appear to defend specific levels of body mass against perturba­


tion in rats made very fat or very lean by appropriate hypothalamic lesions



(21, 33). Body composition studies indicating that changes in mass of the
 


fat compartment are largely responsible for these changes in total mass



(33) suggest strongly that in these extremes of fatness there is regulation



of fat at specific levels.



Finally, there are infrequent data suggesting that individuals may



not be regulated or may break away from regulatory influences. In an



unpublished study of 8 female rats eating a chow diet ad libitum, when



first allowed ad libitum access to a vertical running wheel, 7 individuals



showed small reductions in food intake and body mass followed by recovery



to the previous levels within a very few days. By contrast, the eighth rat,



always appearing normal and well groomed, voluntarily fasted for the first



11 days of wheel running during which its body mass dropped to 190g (Fig. 4).



This nearly rectilinear drop is unlike a regulated approach to a set-point.



Upon reaching 190g the body mass turned sharply upward as though it had encountered



a limiting condition. It then approached a new steady state via an apparently



exponential curve such as is t:pical of "homing" in regulated parameters (70).



In another study (19) rats force-fed to approximately twice the control



level of body mass followed by ad libltum feeding, reduced their intakes until



their body mass approached control levels. However, one individual (their Fig. 6)



showed a response nearly identical with that presented in Fig. 4.



In a study of the control of food intake in 15 human subjects (69)



6 regulated effectively through a period of dietary dilution, 3 were questionable
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and 6 termed "nonregulators". The only nonregulator presented In detail



(their Fig. 2) showed a rectilinear weight loss throughout the 21 experimental



days. Observations like those in this and the two preceding paragraphs suggest



that regulation of body fatness is frequently not rigorous enough to suppress



non-regulatory responses in apparently normal individuals with intermediate



levels of fatness.



In spite of this scanty basis of facts an hypothesis of the physio­


logical mechanism involved is desireable because of its possible heuristic



effect. However, we should resist any temptation to explain the evidence



of lability in body fatness by assuming that the new values observed after



perturbations represent changes in set-point. By increasing the number of



assumed set-points at which the organism is equally fit for survival, one



must eventually render the concept of regulation meaningless and must concede



that regulation no longer supplies a need which cannot be filled by simple



control. The hypothesis which we favor is probably only one of several



which might serve at least as well. It is prompted by the followIng trends



in the data reviewed above:



a. 	 The abundant evidence of lability in body fat was obtained



on animals in de mid-range of body fatness.



b. 	 Individuals seen to drift across this mid-range and eventually



reach extremely low values responded as though regulatory forces



were evoked to move them back.



c. 	 The best evidence for rigorous defense of specific fatness levels



is seen in individuals with hypothalamic lesions where the absence



of adequate hunger or satiety pushes the individual against one
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or the other extreme level of fatness.



The above observations suggest that the system operates more effectively



at extreme values of fatness than in the mid-range. That regulation is



probably not absent from the mid-range is suggested by several lines of



evidence including the effective compensation for dietary dilution seen in



rats which are neither very fat or very lean (2). However, the evidence



for lability of fat mass in the mid-range suggests that there it is readily



suppressed or overridden by a variety of influences. But as fatness



approaches extreme values in either direction, effector mechanisms operating



to pull it back into the mid-range become increasingly evident.



The proposed mechanism could not be designated a "long-term" system



since the length of its time constant would not be a critical consideration.



Presumably, if the female rat represented in Fig. 4 had a very low body fat­


ness such as is seen in wild rodents (Table 1), she might have started her



decrease in body mass from a steady state value of 200g and one day later



the upward movement resembling regulation would have been initiated. Probably



the descriptive name "broad-band regulation" would be satisfactory.



Broad-band regulation has certain substantial advantages, for example,



it provides a simpler interpretation of age-associated changes in fatness.



Over a period of years individual fatness may creep up, down or stay nearly



the same (variations seen in most normal populations) and so long as the
 


changes remained within the broad band, they would not require a regulatory



explanation. Also this hypothesis frees body fatness to change in other



cases. For example, independent control of protein intake (20, 46, 52, 65)
 


would allow adjustments in body protein to proceed unimpaired by any resulting
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changes in fat mass. Changes in fatness (usually increases) required by



events in the life cycles of various species might be explained as controlled



changes within the broad band, for example, increases in fatness preparatory



for: hibernation, migration, a mating season (seals) or brooding season



(penguins) without feeding opportunitites, etc. Finally and incidentally,



it should be noted that changes in dietary palatability produce altered



intake of food, body mass, and probably body fatness which appear independent



of, 	 and additive with, even the extreme levels of fatness seen with lateral



or medial hypothalamic lesions (21, 64).



Some retrospective observations which have improved our perspective may



be helpful to others. For example, it appears probable that energy balance



comprises several distinguishable processes including the following:



a. 	 control of the release of chemical energy so that it matches



expenditure for an appropriate unit of time.



b. 	 control of the proportionate energy contributions from endogenous



stores of glycogen, fat and protein.



c. 	 adjustment of energy metabolism to changes in physiological condi­


tion, e.g., growth, gestation, lactation, egg-laying, inanition,



physical activity.



d. control of the mass of body fat.



It is unlikely that a single system could control or regulate all of these,



suggesting the probability that more than one regulatory system is involved.



Adolph's warning that the living organism is characterized by complex



interactions between multiple systems of regulation according to established



priorities (1) is highly pertinent in this case. A low priority on the



maintenance of constant fatness would mean that it would probably yield at



nearly every conflict with another system. Also, these multiple regulatory
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systems must frequently share elements. For example, feeding behavior as



an effector mechanism controlling the ingestion of calories, water, amino



acids, vitamins, minerals, electrolytes and others is shared by several



regulatory systems. The resulting necessity for interactions between the



systems must be a serious obstacle to the quantitative understanding of



feeding behavior.



Regulation of the mass of a body compartment must involve monitoring that



compartmental mass, either as the extensive property of weight("ponderostasis')



or as some intensive property (9) which is an index of mass or weight. Since



the weight of a constant body mass can be increased by chronic centrifugation



and decreased by insertion into earth orbit (weightlessness), these techniques



provide a test for the existence of ponderoceptors. If regulation of the



FFB or body fat is based upon ponderostasis, the regulatory response should



be a decrease in the compartmental mass during centrifugation and an increase



during weightlessness. Decreases occur in both components during centrifugation



but weightless astronauts and cosmonauts also showed decreases (55). Thus,



FFBM appears to pass through a maximum at terrestrial gravity and pondero­


static regulation is not supported by these results.



Alternatively, if the blood concentration (an intensive property) of



some metabolic substrate or product (for example) is a dependable index of the



mass of a regulated compartment, then that concentration might be the regulated



parameter (30). The problem then becomes the more familiar one of regulation



of a concentration in the body's internal environment. We have no name



exclusively for this class of regulations. Homeostasis, coined for physio­


logical usage, is now applied to the regulation of intensive properties in a



variety of systems, for example, ecosystems (47) and social systems (17).
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A unique term for the regulation of quality of the body's internal environment



could be "Bernardian regulation" in honor of the experimental physiologist



who did much of the early work upon it (3).
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FOOTNOTES



1. 	 Several other efforts to interpret existing data have been based on



the design of models for systems analysis (13, 18, 31).



2. 	 Note that measurements based on entities short of the total anliMal



(e.g., the eviscerated carcass) could not provide values for total



body fat or the total fat-free compartment.



3. 	 We prefer "fat", defined as the fatty acid esters of glycerol (27)



to the generic "lipid" which does not distinguish between storage



and structural moieties. In practice the FFBM presumably lacks



small amounts of structural lipids which are removed by the fat



extractives commonly used.



4. 	 The mean weight for each year could have been computed and the seven



values would show a 5 pound range. This constitutes "3% of total



body mass and might support the assumption that total body mass is



precisely regulated in the long term. The misleading character of



group 	 means used for this purpose has been pointed out (25).
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type diet, D - random-bred laboratory rats on a high-fat diet. The



bar graph for B is based on the frequency distribution of individuals.



In the other three groups it is based on the frequency distribution



of samples.
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Fig. 4. 	 Body mass, activity and food consumption on one female rat.


Activity mode was voluntary running in a vertical wheel.
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Table 1. Body Composition in Wild Mammals



from Reference (61. 

Means ± SD 
SpecLes Number 

Pat (g) Fat (%) FFBH (g) 

Shrew: 

Sorex cinereus 7 .16 ± .08 4.54 ± 1.92 3.56 ± 1.01 

Bats: 

Artibeus jamaicensis 14 3.79 :b 2.55 9.13 ± 5.78 36.18 ± 3.85 

At:ibeus lituratus 5 6.22 ± 2.37 9.56 ± 2.80 57.19 ± 6.39 

Phyllostomus discolor 7 2.38 ± 1.96 6.60 ±'4.87 32.20 ± 2.25 

Marmoset: 

Callithrix jacchus 4 8.77 4.40 176.2 

Chipmunk: 

Eutamias minimus 22 1.08 ± 0.63 1.86 ± 1.03 59.08 ±12.51 

Squirrels: 

Citellus undulatus 4 21 4.4 458 

Tamiasciurus hudsonicus 11 3.8 ± 2.4 1.97 ± 1.13 189.0 ± 18.9 

Mice: 

Peromyscus leucopus 9 .59 ± .14 3.41 ± .78 16.40 ±2.03 

Lemmus trmucronatus 5 .75 ± .38 1.86 40.87 ±15.88 

Clethrionomys rutilus 20 .72 ± .32 2.90 ± 1.40 24.55 ± 4.93 

Microtus pennsylvanicus 7 1.20 ± .47 3.76 ± 1.02 30.18 ± 5.89 

icrotus oeconomus 9 0.45 ± .01 2.08 ± .89 24.38 ± 7.07 

Microtus pinetorum 7 0.45 ± .22 2.36 z 1.21 18.96 ± 2.69 

Mus musculus 4 0.96 5.55 14.92 

Musk rat: 

Ondatra zibethica 8 86 ± 17 7.35 ± 1.41 1094 ± 114 
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VII. GENERAL CONCLUSIONS



The following conclusions are somewhat more general than the detailed


conclusions prompted by each reprint and manuscript presented above.



A. Acceleration


1. In a comparative study (mice, rats, monkeys, and men) at accelerations



ranging from 0 to 4.75 G the mass of the fat-free compartment appeared to pass


through a maximum at I G with lower values at both higher and lower G levels.



2. Nearly any change in chronic acceleration is followed by a reduction


in body fat content. However, the fat-free compartment appears to be


defended against perturbation at any one level of chronic acceleration.


Indeed, changing the level of chronic acceleration is the only method we


have found to change the fat-free body mass in the adult rat.



3. Growth with respect to both total body mass and the masses of indivi­

dual body components is normal at accelerations greater than I G. However,


the mature masses attained at G>1 are almost always lower than those attained


at I G.



4. Early retirement from chronic G's>l is followed by complete recovery


to the I G condition. The effects of late retirement on body components


are not known.



B. Exercise Studies.


1. Seven weeks of age appears to be a critical period in the life of



the albino rat. The exercise (and dietary) regimens which we have studied


are capable of perturbing the growth of the fat-free compartment when init­

iated at or before that age but have no effect when initiated after that age.



2. The body fat compartment is so labile and unpredictable that it inter­

feres with the quantitative characterization of rat growth. A quantitative


treatment of growth of the fat-free compartment would be much more significant


and useful.



3. The effects of exercise on body composition are a function of exercise


mode (swimming, treadmill, running-wheel), sex and age at which the regimen


is initiated.



4. The composite entity live body mass is of little help in evaluating


the response to exercise of individual body components, e.g., fat and the


fat-free compartment.



5. Voluntary wheel-running starting at or before 7 weeks of a e is the


only exercise mode which increases FFBM.
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C. Exercise Combned with Acceleration


1. Our preliminary study indicates that this combination is somewhat



hazardous and allowance for mortality must be made in experimental plans.



2. The amount of voluntary wheel-running done by centrifuged rats is


extremely low. This may be improved by letting rats become accustomed to


wheel running and selecting good runners before centrifugation begins.



D. Restraint Studies


1. Restraint should be included in any complete program for the study of



activity.



2. Early results on the effects of cage restraint upon weanlang rats appear


interesting and potentially informative.



E. Physiological Regulation


1. It has become clear that a knowledge of whether or not regulation is



involved will be of great help in studying physiological responses to AG.
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VIII. RECOMMENDATIONS



The following are recommendations for investigations which flow from


the results presented above and which we believe to be highly desirable.
 


A. Our preliminary study of exercise during centrifugation convinces us


that there is much to be gained in this line of research. We strongly urge


a study of body composition involving the following groups:


1. Sedentary -- 1 G


2. Wheel-running -- 1 G


3. Restrained -- I g 
4. Sedentary -- 2.76 G 
5. Wheel-running -- 2.76 G


6. Restrained -- 2.76 G



B. We think it urgent to study weightless rats for several reasons.


From the stand point of body composition effects it is highly desirable


to corroborate for a single species the principal finding of our compara­

tive study (II.A ). Does the rat (or man) actually pass through a maximum


of fat-free body mass at 1 G1 We could answer this for the rat is we added


data collected on weightless rats to those in hand on rats at 1, 2.76 and


4.15 G.



C. It is urgent to study stress in the rat. To what extent are the responses


to AG (as well as to exercise and restraint) simply non-specific responses


to stress ? A study of this sort should involve an endocrinologist exper­

ienced in adrenal studies.



D. Further studies should be made of the physiological regulation of the


fat-free body mass. It is difficult to propose an effective approach to


this topic at this stage of our knowledge. However, as a start it would be


desirable to use intermittent exposure to AG (e.g., alternation between 1 G


and 2.76 G for several cycles) and see whether the changes in FFBM which


appear to be regulatory wane or persist-undiminished.



E. Hypodynamia appears most promising, both as a model of weightlessness


and as a toollin basic research. Various types of hypodynamia, e.g. harness


restraint and cage restraint, should be studies comparatively.
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