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STUDY OF PHOTON CORRELATION TECHNIQUES

FOR PROCESSING OF
LASER VELOCIMETER SIGNALS

By William T. Mayo, Jr.

Summary

The objective of this contract was to provide the theory
and system design for a new type of photon-counting processor
for low-level Dual Scatter laser velocimeter (LV) signals which
would be capable of both the first-order measurements of mean-
flow and turbulence-intensity and also the second order time
statistics: cross-correlation, auto-correlation, and related

spectra.

This report provides a general Poisson process model for
low-level LV signals and noise which is valid from the photon-
resolved regime all the way to the limiting case of non-station-
ary Gaussian noise. Computer simulation algorithms and higher
order statistical moment analysis of Poisson processes have
been derived and applied to the analysis of photon correlation
techniques. A Dual Correlate and Subtract frequency discrimina-
tor technique is postulated and analyzed. Expectation analysis
indicates that the objective measurements are feasible. Error
analysis for the mean-flow case indicates that practical
transonic wind tunnel measurements are possible with 100-1000
times less light than is required for burst-counter processors.
A system design for a new high-speed photon processor for LV
signals is provided.
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INTRODUCTION

The Problem

Classical laser velocimeter (LV) electronic Signél pro-
cessing techniques are sometimes inadequate for detection of
liéﬁt scattered by small scattering particles which are required
for following fluid motions. In other situations detection of
larger scattering particles is difficult due to limited system
sensitivity. Photon countlng technlques offer 1mproved system
sens1t1v1ty by a110w1ng ve1001ty measurements to be made even
when there are insufficient signal photons available to define
the classical scattering signal. Such techniques are thus appli-
cable when the presently used classical burst-counter and fre-
quency tracker-techniques are not.

The general objective of this contract was to provide the
system design for a new type of photon-counting processor for
low-1level Dual Scatter LV signals which would be capable of both
the first-order measurements of mean-flow and turbulence-inten-
sity and also the second order time statistics: cross correla-
tion, auto-correlation, and related spectra. This was to be
accomplished by extending the preliminary feasibility analysis
developed under a brief NASA Langley sponsored study* in early
1974. 1In addition to theory, the system design would incorporate
judgement based on experience in the experimental hardware devel-
opment [1) of a related, but simpler, photon-counting processing
system designed and constructed for the U.S.A.F. Arnold Engi-

neering Development Center to measure mean-flow velocities.

*x -

The final report for that study (Contract NAS1-13140)
was informal and not disseminated. This report contains
revised versions of all the necessary mathematics.
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Background

Signal modeling.- Earlier modeling efforts have treated
LV signals for which the noise could be considered as additive
independent, stationary, and Gaussian [2,3,4,5]. This is the

limiting case of stationary Poisson shot noise which occurs for
visible light photodetection when a steady light source such

as a heterodyne reference beam [2] or high background light
level [3] dominates the signal. In a recent simulation of low-
level dual scatter signals, the accuracy of the noise model was
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Figure 1. Triply Stochastic Nature of Low-Level
LV Signals: Turbulence, Bursts, and
Photo electron Pulses.
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extended by treating it as a nonstationary Gaussian process

whose variance is proportional to the incident optical power.

When we discuss ''noise' in LV signal detection we are
usually referring to the variation of the electronically
detected signal with respect to a scaled version of the classi-
cal optical (power) signal incident on the PMT. 1In a general
analysis the classical LV signals are also random processes due
to the random amplitudes and the arrival times of the signal
bursts. Mayo [2] and Adrian [7] have treated these signals as
a Poisson process for steady flow, and Durrani [4] and George
[8] have treated them for the turbulent flow case as Gaussian in
the 1limit of high particle number density. A new book by Snyder
[9] treats generalized Poisson processes in great detail.
Papoulis [10] provides a good introductory treatment. Snyder
treats '""doubly stochastic Poisson processes.'" These are inhomo-
geneous (nonstationary) Poisson processes for which the rate
function is a random process. Such a description is appropriate
either for the classical LV signal bursts with the random turbu-
lent flow affecting the rate of burst occurrence or for the
single photoelectron pulses from the PMT with the random classi-
cal bursts as the rate function. Clearly, when taken from the
turbulence to the photo-electron pulses, a dual-scatter LV signal
is a "triply stochastic'' filtered Poisson process [l11]. This

three level nature of the signals is illustrated by Figure 1.

Classical signals and burst counters. Presently accepted

burst-counter and frequency-tracker LV processors were developed
by analogy with wide-band frequency modulation (FM) and radar
receivers. For FM and radar applications frequency detection
(zero-crossing) circuits generally require about 10 db signal
power to noise power ratio within the bandwidth of the system

filters. The signals in such cases are continuous and the noise

—
Modified version of noise model described in [6].




is stationary and Gaussian. Comments by several speakeré at
fhe 1975 Minnesota LDA Symposium indicated that they had
experimentally determined that their burst counter LV signal"
procéssors failed'sigﬁificantly when the signal‘pOWer to noise
power ratio (during a burst) was less than 10 db.. This 10 db’
condition occurs when there are approximately 10 or more phofo—
electron pulses per electronic response time The This response
time is rise time or pulse width in the case of low-pass fil-
ter. We have also defined this signal level as the lowest
value of the '"Gaussian" signal regime wherein the photomulti-
plier current can be modeled as the classical signal plus non-
stationary Gaussian noise; (although neither Snyder [9] or
Papoulis [10] give any helpful rules as to when this asymptotic
approximation is valid). For lower signal power the signals

must be treated as Poisson.

Photon resolved signals and photon counting.- A radicaliy

different approach to LV signal detection has been taken by
Pike, Oliver, Jakeman, and others. Photon counting techniques
were developed for use with low-level photon resolved signals.
The summary results of several years of development of the
single-clipping real-time photon correlator were described by
Oliver and Jakeman in a recent book [12]. Dr. Pike described
the application of photon-correlation to the processing of LV
signals at the 1972 Purdue conference [13]. The presentation
was apparently not received well by many attendees from the
United States and little has been done in this country with the
development of photon counting techniques until recently.
Increased interest was shown by attendees of the 1974 Purdue

Conference.

One reason that the single-clipping correlator has been
slow to acceptance in this country is that the original theory
for its use was based on the assumption of many scatterers in
the probe-volume with the central limit theorem invoked to
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render the statistics of the scattered electric fields Gaussian.
Since this assumption is known not to predominate in many appli-
cations of fringe-type LV systems in air, none of the first
theory for a single-clipping correlator was directly applicable.
Aﬂpther problemwith the existing commercial correlators for
high—speed air flow besides speed (minimum time resolution of
50 nsec) is the lack of any straightfdrward way to extend the
concept to the determination of flow time statistics such as
correlations and power spectra. The system proposed in this
report addresses this latter deficiency as-well.as“eliminating
the problems of inferpretation of single—ciipping by using full
mﬁltiplicationt

Several recent references provide additional wvaluable
background information on photon correlation. Durrani and
Greated [14] provide a derivation of the expected value of a
photon correlation from single particle (Poisson) signals.
Birch et al. [15] have made experimentdi measurements in turbu-
lent jet flows with skewed probability density functions.
Abbiss et al. [16] also provide an analysis which shows that in
some cases the Fourier transform of the correlogram may be
interpreted as the probability density of the fluid velocity
component.* Durrani and Greated [17] have investigated the use
of some of the newer spectral estimation techniques which allow
greater resolution from the limited number of data points in a
typical correlogram. Finally, the reader should be aware that a
new photon correlator instrument has been developed which was
déscribed by.C. Fog [18] but the minimum time resolution inter-
val is 160 nsec which is rather slow for high speed wind tunnel
applications. (It was used for atmospheric studies.)

%
We do not believe this will be a good approximation in
many practical cases. This is discussed in a later section.



Burst rate/amplitude distributions.-~ The statistical dis-

tribution of the classical burst amplitudes and the rate of
occurrence versus amplitude are very significant in the charac-
terization of'any LV signal processor. It is generally accepted,
for example, that the optimum rate of occurrence of bursts for

a burst counter is less than the'inverse burst duration (non-
overlapping bursts.) It is also generally known that the error
check circuits cause a burst counter to emphasize larger ampli-
tude (good signal to noise ratio) signals. On the other hand,.

a photon counting processor must emphasize the lower amplitude
signals in a distribution; the higher amplitude signals would
produce only a single threshold crossing and otherwise be
neglected by the system. It is therefore not possible to compare
two different types of signal processors without knowing the sig-
nal amplitude distributions and the processor behavior as a
function of burst amplitude and other factors. Finally, in

order to relate processor behavior to a specified particle size
distribution, one must first relate the particle size distribu-
tion to the .burst amplitude distributions and then do all the

other things already discussed.

During the initial phases of our recent work for the USAF
Arnold Center we addressed such questions as are suggested by
the above statements both with theoretical models and with
experimental measurements of burst rate/amplitude distributions
for natural_laboratory (unfiltered and unseeded) air. The reader
is referred to the final report [1l] for details. The following

is one of the concluding paragraphs of that report:

The statistical distribution of the amplitudes and
rates of occurrence of classical bursts has been shown
to be central in the problem of specifying or predicting
the data rates and errors from any type of LV signal
processor. Differential and cumulative rate/amplitude
distributions have been formulated and analyzed theo-
retically and have been measured experimentally for an
argon backscatter LV system. The results indicate that,
for the data obtained, the smaller aerosols contribute



more to the photon correlation accumulator than the
larger ones. For the data measured, there would
have been available less than 300 signals per second
adequate in magnitude to produce burst counter data
from scatterers larger than 0.7 um in diameter
while there would have been over 100,000 signals per
second producing photon resolved signals from 0.2 -
0.3 um diameter particles.

Scope

In what follqws we first develop general Poisson models
for LV signals which include the non-stationary Poisson‘occur—
rence of photo-electron pulses and the random amplitude effects
of both the photomultiplier tube and the particle scattering
cross sections. Formulas are provided for conditional and
unconditional moments including mean, variance, auto-covariance,
and higher moments (Appendix A). These formulas are for signal
current, but they become valid for photon counting by a suit-.
able choice of the PMT output filter impulse response function.

The next section evaluates the theoretical expressions
for a specific Gaussian burst LV waveform model. These results
are used to obtain the expected value of a photon correlation
estimate. In addition a Dual Correlate and Subtract estimator

which behaves as a statistical frequency discriminator is postu-~
lated and analyzed. The following section is devoted to statis-
tical error analysis of the mean flow estimation technique using
the Dual Correlate approach. The section after that shows that
the statistical frequency discriminator may be applied to the
estimation of turbulence correlations even though the time hist-
ory of the velocity fluctuations is not available except as a

noisy randomly sampled waveform.

The results of the theoretical considerations and the exper-
ience we have had previously with the AEDC [1l] hardware study
were utilized in a system design which is provided in Appendix

D. Appendix C is a derivation needed in the section on variabil-
ity errors. Appendix B provides the theory and an example pro-

gram for correct Poisson simulation of low-level LV signals for
evaluation of electronic processor models.
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LIST OF SYMBOLS

bandwidth
autocovariance of i(t)
electronic charge
frequency

mean Doppler frequency

optical probe volume response function; pedaétal
function, peak amplitude normalized to unity

random single~photoelectron charge gain

Planck's constant

impulse response of PMT and succeeding filters
Fourier transform of h(t)

counting index

photocurrent at anode or succeeding filter output
optical intensity

counting index

counting index

time varying statistical mean current <i(t)>
nknk—p - nknk-q or other function of n,

photon correlation sum at delay PAT

accumulation of (pAt,qAt) for Dual Correlate Mode
photoelectron count in interval (tl,tz)

photon count in At interval about kAT

number of time increments At (T = NAT)

number of fringes in the transmitter defined l/e2

probe volume

total number of AT intervals in advanced concept
operation

integer delay number in photon correlation;

largest delay number in dual correlate and subtract

constant optical background power
optical power incident on photocathode
integer value of delay




T, location of the nearest approcach of scatterer to

J center of probe volume
R éonstant rate of signal bursts
R(t) instantaneous rate of signal bursts
RA(T) autocorrelation of A(t) =<A(t)A(t+1)>
s(t) a generalized Poisson shot noise signal (Appendix A)
t : time
ti instants of photoelectron emission
T total data collection time
Tln ' inverse of mean Doppler frequency l/fm
u(t) time varying velocity component
U(t) total velocity component
U mean velocity component
V(t) vector velocity
LS l/e2 intensity radius at beam waist
z(t) Poisson impulse process
GREEK
o integration dummy variable; also 1/e half-width
of burst
B integration dummy variable
S(t) Dirac delta or unit impulse function
At simulation time resolution interval
At photon processor counting interval
AT accumulation interval for second level correlation
€ error
A(t) time varying mean rate of photoelectron pulses
A(t) = nP(t)/hv
Xb steady background photoelectron rate
Aj peak photoelectron rate (pedastal) from the jth
scatterer
ko optical wavelength
ls mean signal photoelectron rate # <kj>
n product of photocathode quantum efficiency .and

dynode collection efficiency



optical frequency
fractional turbulence intensity ou/u ® ow/wm

rms deviation of the radian Doppler frequencies
from scatterers

time varying variance of i(t): <(i(t) - <i(t)>)2>
delay variable |
rise time or pulse width of low pass h(t)
occurrence time for jth signal burst

beam intersection angle; spherical declination
angle from direction of incident light

polar angle

Poisson parameter

Fourier transform variable or radian frequency
random frequency of jth burst

mean of random variable wj (Zﬂfm)

Special Notation

<x>

f(t)*g(t)

A

10

(o]
statistical expectation of x = [ xp_ (x)dx
~ OO
[o o]

convolution: [ f(a)g(t-a)do

- 00

denotes an estimate of a statistical average
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STATISTICAL THEORY OF DUAL SCATTER SIGNALS

Poisson Models

- The Signal Current.- The signal current from a photomulti-

plier tube (PMT) is modeled as'inhombgeneous filtered Poisson
random process (see Appendix A and also reference [19]) given by

=]

i(t) = J eg;h(t-t,) (1)

—o

random time of the ith photoelectron

where +t.
i

e = electronic charge )
g4 = random charge gain of PMT
h(t) = impulse response of PMT/filter system

The system response h(t) is obtained as a convolution of the PMT
impulse respounse hp(t), the transmission line impulse response

ht(t)’ and the linear filter impulse response hf(t)
h(t) = hp(t)*ht(t)*hf(t) (2)
where the asterisk denotes the convolution integral:

f(t)*g(t) = [ f(a)g(t-a)da (3)

- OO

The superposition assumes operation in the linear range of the
PMT electron multiplier. The use of the function hp(t) assumes
that all single photo-electron pulses have the same shape except

for amplitude. This neglects minor random shape variation.

The quantity which relates i(t) to the classical optical
power is the statistical mean rate A(t) of occurrence of the

randomly occurring photoelectron pulses. Thus

A(t) = DBLE) (4)

11



product of cathode quantum efficiency and the

where n =
dynode collection efficiency
hv = Photon energy o '
- P(t) = Classical optical power, including background

light and a constant component for dark current.

The effects of dark current are included by adding an
equivalent power Pd' The model could be made more.éxact by addf
ing a separate dark pulse summation with a separate distribution
of amplitudes which are distribufed somewhat differently than
g5 but this distinction will not often_be required in LV appli-

cations.

The previous material includes little which restricts it
to LV signals. We now consider the form of A(t) which is also .

treated as a filtered Poisson process.

Superposition of classical single burst signals.- Rigorous

electromagnetic theory analysis of the scattered fields from
more than one scatterer in the probe volume shows [20] mixing
terms in P(t), the classical power incident on the PMT. However,
in typical dual-scatter systems, the diffraction limited spot
size of the collecting lens is much smaller than the probe vol-
ume; conservation of energy arguments show that in such cases

the number of scatterers in the probe volume may be much greater
than unity with statistically negligible coherent mixing, regard-
less of the quality of the collecting lens [2]. This is signif-
icant even for LV systems which only trigger on isolated large
signal bursts because we must also include in the model the
effects of smaller scatterers which may exist at higher number
density. We will take the position that at the PMT the classi-
cal power P(t) is the superposition of the backgrouhd light

power and the power from individual scatterers without coherent
mixing cross terms. This will be acceptable so long as the aver-
age number of scatterers in one diffraction limited resolution

cell of the receiver is less than unity.

12



A second consideration concerns the background light.
Even when we neglect coherent mixing of signals, there are fluc-
tuations in the classical background power. Bertolotti [21]
provides a review of these effects. Broadband background sources
can be largely suppressed by the use of narrowband spatial and
wave-length filters, but not always adequately enough for meas-
urements from small scatterersp If fhe’background is modulated
(foi example fluorescent lights) the mean value signal is easily
rembved by electronic filters,.but'the non-stationary noise is
not. When the broadband background is '"steady" there are actu-
ally significant classical fluctuations at rates up to the opti-
cal bandwidth. Bertolotti shows that when the optical filter
bandwidth is much greater than the PMT electronic bandwidth, the
photoelectron statistics behave as though the classical fluctua-
tions did not exist (they are averaged out). Laser light scat-
tered from windows is not broadband and may exhibit undesirable
fluctuations. This background should be minimized, and its
effects studied further.

The random process A(t).- With cognizance of the preceding

discussion, we model P(t) as the summation of a constant back-

ground Pb which includes broadband, laser, and dark current
sources and an inhomogeneous filtered Poisson signal process.
M.—.—pt=[x+m}\ft_ 7?]_1.12 5
where Tj = occurrence time of jth scatterer reaching Fj’
Aj = random peak amplitude parameter,
V:j = vector velocity of the jth scatterer,
fj = location of nearest approach of the scatterer

trajectory to the center of the probe volume, and
f(t,V,?) = normalized optical system response function.

The notation in equation (5) ekplicitly shows that in general

the shape of a burst (including sigﬁal period, signal envelope,

13



and pedestal) is a function of the scatterer vector velocity and
trajectory location. The response also has random Aj amplitude
which depends on both trajectory and particle scattering cross
"section. 1In general the set of instants Tj are independent
Poisson random events whose instantaneous rate, R(t), is statis-
tically correlated with the velocity véctor.

Discussion of the model.- Equation (5) is cast in a gen-

eral form which obscures certain details with generality. First
it assumes that the velocity of a scatterer remains constant
while in the probe volume with a value V(Tj,?j). The extended
theory of filtered Poisson processes is sufficiently general to
encompass the fact that the functional form of the optical
response function f£(t,V,Tr) depends on two vector random varia-
bles.* However, Snyder [9] assumes that the vector random
parameters are independent. We are not certain at the present
time what the statistical dependence of the rate function R(t)
on the velocity V(t) may imply, but no serious consequences will

result with low turbulence flow.

Conditional Signal Statistics of the Photocurrent

At times the models for the systems analysis problem may
be simplified until analytical methods are applicable. 1In these
cases the use of conditional statistics will usually simplify
the analysis. Papoulis [10] discusses the use of conditional
statistics at length. We utilize this technique at length in a
later section. Basically for a multilevel random process the
technique consists of assuming the higher level random processes
are known and deterministic, evaluating conditional expectations
assuming the higher level processes, then evaluating the expec-
tation of the result with respect to the higher level processes.
First we will consider statistics of i(t) assuming the classical

optical signal A(t) is known.

*Elemehtary shot noise theory is restricted to an-i&pﬁisgm
response function which is constant in shape.

14



Instantaneous mean, variance, autocovariance.- The result

in Appendix A may be applied to determine the instantaneous mean,
variance and auto-covariance of the signal. These are given in
terms of the function A(t). The results are as follow:

m (t) = <i(t)> = e<g,>A(t)*h(t) (6)
o2 6) = <ae) - ace)»® = P ity (1)

e?<g’> [ A(a)h(ty - a)h(t, - a)da

where < > denotes statistical expectation and where the asterisk
again denotes the convolution integral. These results include
the specification that hp(t), the impulse response of the PMT

anode, have unit weight, i.e.,

[o o]

f h (t)dt = 1 (9)

in order to maintain conservation of charge. The functions
ht(t) and hf(t) may include amplification or loss factors and

need not have unity weight.

Conditional noise and SNR.- The concept of signal-to-noise

ratio arose in communications theory when the '"'noise' was an
additive stationary Gaussian random process totally character-
ized by a mean, mean-square deviation (variance), and a power
spectral density. The ratio of the peak or average signal to

the rms noise was a useful measure. The preceding equations
show the mean-square deviation (variance) to be an instantaneous
time function which is related to the classical signal. Observa-

tion of real LV signals on an oscilloscope display or computer -
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simulations such as that shown in Figure 2 show that the concept
of signal-to-noise-ratio is not an adequate figure of merit
without careful specification.

For an example SNR definition, we consider a low-pass PMT
impulse response as a rectangular function:

h(t) = ;1; Rect (t/T,) " (10)

where

Rect (t) =1, |t| <0.5 (11)

o, |t] > 0.5

If we now also assume that Th << qn where qm is the signal

Note: absolute magnitude
of noise greatest
at signal peak
where the ''signal-
to-noise ratio'" is
maximum N

y
A g . . L M\AAAN\AL,C

Figure 2. Computer Simulation of LV Signal
using Algorithms similar to Appendix
B. (By J. F. Meyers NASA Langley.)
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period of interest, then we could obtain an instantaneous SNR
from equations (6) and (7) as

sNR(t) = m2 (£)/02 (t) = <@>P(t)/wd At/ (12)

— 75— A(t)Th

where the quantity <gi>2/<giz> is typically between 0.5* and
1.0 with magnitude depending on the relative variance of the
PMT single photoelectron pulse gain. For an ideal tube the
quantity A(t)Th would be the instantaneous SNR. This is not
useful since it is a time function instead of a number.

As an alternative, we may take the local time average of
the SNR given by (12) over a single cycle near the peak of the
pedastal. This would give, for an ideal PMT,

~

SN AT (13)

Ryvpeak = *j™n

where Aj is the peak value of the pedastal of the jth signal
burst, if we assume sparse non-overlapping bursts. We observe
that equations (6) through (8) are valid when h(t) is a bandpass
function, but (13) is then meaningless unless we redefine Th
for a bandpass h(t). Also we note that this definition would
be necessary for meaningful use with a burst-counter processor,
since it is the bandpass filtered AC signal to wide-band noise

power that is significant in that case.

Signal Regimes.- The idealized quantity SNRavpeak given

in equation (13) as XjTh is at least a useful quantity in defin-
ing a classification system of signal regimes for a low-pass

*Typical rms values are 0.707 or greater ([22], page 66).
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filtered signal. The following definitions of a photon-resolved,
a photon-limited, and a Gaussian signal regime have been some-
what arbitrarily* identified:

The signal is photon resolved if ATh << 1. In this case
the probability of two or more photoelectron events occurring .

within the response time T, is small. Its appearance is that

of individual pulses whichhvary in height due to the randomness
of g; - Photon counting methods are appropriate. The condi-
tional mean value of i(t) is still proportional to A(t), but
there is no visible resemblance to A(t). This condition is

illustrated by the extreme right hand portion of Figure 2.

For ATh >> 1, the signal i(t) is asymptotically a nonsta-
tionary Gaussian Process. In this case the first and higher
order probability density functions for i(t) at any set of
instants (tl,tz,...) may be determined immediately by plugging
the mean, variance and auto-covariance from the preceding equa-
tions into well known Gaussian formulas. Under these same con-
ditions the signal display appears to the eye as a classical
signal mi(t) plus Gaussian noise. This condition is approached
by peak of the trace in Figure 2. The major difference between
this case and that of classical communications theory problems
is that the o value for the noise is signal (time) and system
dependent. Usually, signals in the Gaussian regime are suitable
for processing by classical methods (burst counter and/or

tracker).

The photon limited regime is that for which ATh is within
an order of magnitude of unity. No mathematical simplifications
are possible. Visually the signal appears as shown in all but
the lowest portions of Figure 2. The upper limits of photon

b 3
See Papoulis [10] page 571. No specific l1limit on the
magnitude of AT, is given. We define the photon limited regime

as 0.1 < Arh < 10.
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counting techniques and the lower limits of conventional tech-

niques both fall in this range.

As we have illustrated, the signal classification may
apply to different portions of the same waveform. We may also
use the classification with respect to the peak pedastal value
AjTh: to classify signal bursts. Under this type of classifi-
cation, Figure 2 illustrates a photon-limited burst whose peak
average SNR is less than 10. Additional bandpass filtering

would increase 1, and place the central portion of the burst in

h
Figure 2 in the Gaussian regime. This would not be possible

with a significantly weaker signal.

Unconditional Statistics

Long time mean, variance, autocovariance.- Equations (6) -

(8) include the assumed deterministic classical signal A(t) which
is proportional to instantaneous optical power. When we wish
later to evaluate the long-time average result which accumulates
during a photon counting experiment, it will be necessary to
treat A(t) as an ergodic random process with long-time average

equal to the unconditioned statistical mean:
A(t)> = A (14)
We also make use of the autocorrelation of A(t):
A(EIA(t +T)> = Ry (T) (15)

Now from equation (6) taking the expectation with respect to
A(t) gives the average current as
[ee]

<i> = e<g,><A> f h(t)dt (16)

- =00
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where the integral is unity unless h(t) includes preamplifi-
cation or attenuation external to-the PMT. 1In order to deter-—
mine the long time variance Gi? we do not get the correct =
answer by taking the expectation of ciz(t) given by equation”
(7). Rather, one determines the conditional value of <iz(t55-
by adding the square of (6) to (7). The expectation with
‘respect to A(t) follows; finally, the square of equation (16)

is subtracted from the unconditional expectation of iz(t). When
all these steps are completed, and similar ones for the uncondi-
tional autocovariance, we obtain:

2} o2}

02 = ?l<g,>? [ Ry(@)fy(a)da+ 2> I n2(a)da (17)
- <gi>2<A>2 (f h(a)da)zl
C. (1) = e?[<g.>?R, (T)*£f, (1) + <g.2><A>f, (1) (18)
it i> By h i h
- g >2 a2 n(erda)?
Where
£,.(1) = { h(o)h(a+1)do (19)

i

The second term in the expression for Cii(T) vanishes for T
greater than the impulse response time for the PMT and filter
combination; the last term is the square of the mean; the first
term is the correlation of A(t) smoothed by the correlation of
h(t) with itself.

Ideal photon correlation.- An idealized photon correlator

counts all photoelectron emission events during successive uni-

formly spaced clock periods of duration At. The number sequence
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{nk} which results is algebraically manipulated to yield the

summation of terms nknk+p' In evaluating the expected value

of the result of accumulating such a sum we encounter the need

to evaluate the quantities <nk>'and.<nk4- nk+p>' These expec-
tations may be evaluated using equations (16) - (19) by assuming
h(t) = Rect(t/AT) L (20)
gy = 1l/e

where Rect(t) was defined in‘equation (11) and
[h(t)dt = At _ (21)
With these assumptions, i(t) is equal to the number of photo-

electron events in the interval (t - At/2, t+ At/2) and the

formulas reduce to

4> = <n, > = <A>At ’ (22)
var n,_ = 612 = <nk2> —<nk>2 = AT f_: R, (@) A(F-)do (23)
+ <A>AT-<A>2AT2
<a.n, . > = C,.(pAt) + <i>2 (24)
kK k+p ii
= ATRA(T)*A(T/AT)|T=pAT,p#O

where the correlation integral of equation (19) produces a tri-

angular function, i.e.

[ Rect (32) Rect(%Zh)da = AtA(T/AT) (25)
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where -

1 - |t|/at, |t] < Ar _ (26)

CA(T/AT)
=0 , |t] > AT

We observe that the generally accepted result that the photon
correlation is shaped like the correlation of the classical
signal is true subject to the jump discontinuity at zero delay
and subject to the triangular weighting function which behaves
as a low-pass filter with respect to the details of RA(T)'

When At is much smaller than a characteristic signal per-
iod, then equations (23) and (24) simplify:

_ 2
<nknk+§> = AT RA(pAT), p #0 (27)
= 412 B, (0) + <A>A1, p=0
var n, = 0;2 = <A>AT + Arz (<A2> - <A>2) (28)
i.e.,
var n, = <n,> + Arz var A (29)
k k

This last result, which we obtain as a special case, has also
been given by Bertolotti [21]. It provides a way to measure the
variance of the classical signal even with photon resolved sig-

nals if a long sequence of n, values are available.

PHOTON COUNTING PROCESSORS FOR MEAN
FLOW AND TURBULENCE INTENSITY

In this section we provide an idealized theoretical basis
for the use of photon correlation and a new type of photon
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counting technique, "dual-correlate-and-subtract,'" and show how
they may be used for mean-flow and turbulence intensity measure-
ments. Extensions to higher order statistics are discussed in a
later section. Error analysis of the processors described in
this section is presented in the next section.

Specific Signal Model

The form of equation (5) is quite general. In most prac-
tical systems, the function f(t,Vj,Fj) which desc?ibes the opti-
cal response with respect to particle position and velocity is
complicated when the effects of limiting pinhole apertures and
variable duration due to high turbulence are included. For the
present we assume a simplified low turbulence model which assumes
a burst with perfect contrast and constant shape:

= - + . - T.
A(t) xb+21jf(t Tj)[l cos wJ(t "I.'J)] (30)
where Aj = random burst pedastal amplitude
Ab = constant background rate,

f(t) = low-pass pulse waveform with peak equal unity,
= occurrence time for jth burst,
w. = radian frequency proportional to one velocity
J component of the jth particle
We may write equation (30) as the sum of a constant, Xb’ a low-
pass process, Azp(t), (the pedastals), and a bandpass process
lbp(t). Then

A(t) = Ab + Azp(t) + Xbp(t) (31)

We assume that there are several fringes in the probe volume so
that the spectra of Azp(t) and Abp(t) are non-overlapping. Thus
kbp(t) is a zero-mean process, and Azp(t) and Abp(t) are uncor-
related. We obtain

23



Ry (1) = A(t)>% + €y, (T) + Cyp (1) (32)
We now use the low turbulence assumption and further assume
that the scatterers are uniformly dispersed in space so that,
R(t), the rate of burst arrivals is a constant R. The results
of Appendix A can be applied to derive expressions for the
three terms in equation (32), the result is

oo

A(E)> = A+ R<>\J.> [ f£(t)dt (33)
Cygp(T) = R<X§> f_w £(t) £(t+7)dt (34)
Cypp(T) = R<x§> 2 <cos wt> [ E(E)E(t+71)dE (35)

= 0O

where the expectation of the <cos wt> term is with respect to
the random variable wj. The derivation requires that we expand
the product of cosines with the sum and difference formula and
approximate the integral of the product of a low-pass term and

a bandpass term as zero.

We now assume that the turbulence is Gaussian with mean
radian frequency W and rms deviation S Then by direct appli-

cation of the definition of expectation we obtain®

0 1 —(w—wm)z/ZUZ
<cos wt> = [ ——— e cos wT dw (36)
© /21 O
w
-0 T2/2
= e cos w T

*In general <cos wTt> is simply related to the statistical
characteristic function for the random variable w. since this
function is defined as a Fourier transform of therrobability
density function [10].

24




A simplified expression for the autocorrelation of the classical
signal is thus

L]

Ry(T) = (A, + RAy> / £(t)dt)2 (37)
5 1 -dirz/z @
+ R<AJ. (1 +5e cos wm'r)f f(t)f(t+T)dt

This result shows that regardless of the shape of the envelope
function f£f(t), the autocorrelation function has a consinusoidal
variation at the mean signal frequency and a Gaussian envelope
decay factor due to turbulence intensity.

If we now assume that the classical bursts are Gaussian
shaped (TEM00 beams without aperture effects), then we have

2, 2
£(t) = et /0 (38)

where o is the 1/e half width of the envelope and obtain
(=)

[ f(t)dt =v/7 a (39)

-0

.} 2 9
[ £(OE(t+ 1At =‘/1‘;ae‘T /2a

-Q0

The final simplified expressions for the first two moments of
A(t) are

<A> = A(t)> = A, + R<Aj> YT oo (40)

12/2

’ —12/2a2
RA(T) = <A> 4—R<A >ysa(l + 5 e cos me)e (41)

EMU‘

where low percent turbulence has been assumed and
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X = background count rate,
= scatterer arrival rate,

Xj = random'pedastal height from jth scatterer,

" a = 1/e half burst duration,

O = rms deviation of radian frequency due to turbulence,
Wy = mean radian frequency (cw/wm << 1), and

T = delay variable of autocorrelation.

The shapes of typical correlation functions for zero tur-
bulence andzlo% turbulence are illustrated in Figure 3.

Idealized Photon Correlation of LV Signals

The number n, is the number of photo-electron emission
events in the interval which extends *At/2 from the
instant kArT. An idealized photon correlator produces and
sums delayed products from the uniformly spaced sequence {nk}.
We assume the total number of products accumulated is N. The
accumulator produces a sum ﬁp at the delay value pATt given by

N
Mp = k£1 nknk+p (42)
The ideal photon correlator would simultaneously accumulate Nﬁk
defined by

(43)

The unconditional expected value of these sums is obtained from
equations (22) and (27) after interchanging expectation and sum-

mation as

A
=
v

"

P N<nknk+p>

NAT?R, (pAT), p # O (44)

NI<A>AT + ATZR)\(O)], p=0
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Figure 3. Autocorrelation Functions of Classical
' Burst Signals.
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<Nn, > = N<>AtT o © (45)

By combining equations (40) - (45), we may obtain an esti-
mator for the autocorrelation of A(t), i.e., '

. iy 1Y * '
R, (pAT) = = i nn_ ., p#FO (46)

A AT®N  AT2N k=1 K K*P o -
R, (pAt) = —1 - (B - NA. ), p=0

A ATZN P k

L
= n,(n,-1), p=0
AtPN k=1 KK

This estimator includes the zero delay value, which is usually
omitted, by making use of the separate mean count computation.
The same mean count estimate n, may be used to estimate the long

delay level

<nk/m:>2 = A(t)>2 = R, (=) (47)

Interpretation of an autocorrelation estimate computed
according to equation (46) involves, first, the use of an ana-
lytical model such as equation (41); second, a parameter extrac-
tion procedure, such as a mean square error minimizing curve fit
algorithm; third, a correction for any statistical bias errors;
and fourth, a variability error criterion which assures that
sufficient data is accumulated. We have provided a procedure
and an example model for the first step. The bias and varia-
bility errors are discussed in a later section. We have not
considered the optimization of the second step although one
method is discussed below. Some literature [15,16,171 is begin-

ning to appear, but further effort is needed.
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At the Denmark LDA conference in the summer of 1975,
Abiss et al. [16] described a "new" interpretation of a photon
correlellogram as the Fourier transform of the velocity proba-
bility density function. This "breakthrough" allows the meas-
urement of the probability density of the velocity field by
digital Fourier transform of the correlation results under the
condition that the pedastal and fringe envelope correlations
are nearly constant over the range of delays for which the sin-
usoidal correlation is appreciable. This result is equivalent®
to the interpretation of spectrum analyser displays (connected
directly to the photo-detector) years ago as the probability
density of the velocity field. The restriction is equivalent
to requiring many fringes in the probe volume so that the transit-
time spectral broadening is small. Our equation (35) shows the
relationship between the probability density function of the
velocity (frequency) samples and the correlation. The expres-
sion <cos wt> is the cosine Fourier transform of the probability
density for wj. When there are many fringes in the probe volume
the envelope correlation term is a broad pulse which is essen-
tially constant over the extent of <cos wt>. In that case, the
transform of the correlation is actually inverting the statis-
tical characteristic function to produce a scaled probability
density.

The unfortunate truth remains that in most practical LV
problems, the probe volume and spatial frequency of the fringes
must be small with the result that we rarely have the luxury
of having many fringes in the probe volume. For the realistic
case, then, we find the spectrum to be the convolution of the
velocity probability density function and the transform of the
envelope correlation, and care is required in interpretation.

*

At least in theory: the photon correlator is much more
efficient at low signal levels than any swept frequency spectrum
analyser could be.

29



A Photon Counting Frequency Discriminator

This section describes the basis for a statistical mean
frequency discriminator for photon resolved LV signals. We-
begin wifh a historical description of the motivating logic
which may offer insight to others for more advanced development.

Autocorrelation Frequency Discrimination.- It is well

known that the autocorrelation function of a zero-mean narrow-
band random process is cosinusoidal with frequency equal to

the mean frequency of the narrow-~band process and envelope

which is the autocorrelation of the amplitude and phase envelope
of the process. For example, if the two-sided power Sx(f) of

a random process x(t) is

Sx(f) = A(f-—fm) + A(f-+fm) (48)

Where A(f) is an even pulse-shaped function and fm is a center
frequency much greater than the frequency width of A(f), then

Rx(T) = 2Ra(r) cos ZﬂfmT (49)

Where A(f) is the Fourier transform of Ra(T). Now we note that

for small perturbations of the argument ZWTfm about the point
T = 3/4 fm (50)

the value of RX(T) varies in proportion to the perturbation of
either 1 or fm. Thus, if T is selected to satisfy equation
(50), then the statistical autocorrelation function would serve
instantaneously* as a frequency discriminator for small deviations

*

This is significant in later sections even though the
statistical autocorrelation function cannot be experimentally
observed.
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of fm‘ If the random process were ergodic, then the_same
results would apply to time-average autocorrelations when the
averaging time was long compared with the coherence time of the
process. These principles may be extended to a random process
which is the sum of a harrow—band_process and a low-pass pro-
cess by firét filtering the process with a high-pass filter to
remove thé ﬁqn—zerq mean 10wfpass process.

- Application to photon resolved signals.- In the case of

photon~resolved LV signals, the classical signal random process

-ds not necessarily recoverable from the sparse single photon

events, but we have already shown that the autocorrelation
functioh may be approximated by the expected value of a photon
correlation operation on the photon events. The original con-
cept was thus to devise a high-pass digital filter which would
be applied to the count sequence {nk} to remove the effects of
background light and low-pass pedastal from the statistical
average <nk> while leaving the bandpass information signal
information. This filter would be followed by a digital corre-
lation (delayed product summation) at the delay value given by
equation (50). Since the digital electronics had to be very
fast, only simple digital filters could be considered. The
simplest one that we thought of was to delay the sequence {nk}
by one-half period of the signal and subtract. This operation
cancels the low-frequency portions of the expected value of

n, and adds the sinusoidal portions in phase. ‘Such a delay and
subtract filter would produce

(51)
Where the counting interval At must be adjusted to satisfy

adt = 1/(2f )" | (52)
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with q an even integer. After this was done one would accumu-
late lag products of m; with delay pAT equal to three quarters
of a signal period p = 3q/2. This approach leads one to form

the summation ﬁ'pq given by

+ 2n

Mpq = L " Pk ptkq k'k-p ~ "k"k-p-q (53)

The previous results for photon correlation are applicable for
pq’
The details are omitted here and included for the simpler dual-

the determination of the expected value of the quantity M

correlate approach described below, but Figure 4 is a simplified
discriminator characteristic for the expected value of the
result. It is provided for comparison with Figure 5 which is
described in detail below.

After all of the above reasoning, it occurred to us that
another approach (we thought) consisted of performing the delay
and subtract filtering operation on the correlation estimate
after it was made rather than on the high-speed signal sequence
{nk}. Reference to Figure 3 shows that a one-half-period shift
and subtract of the typical LV correlation will approximately
cancel the low-pass portion of the autocorrelation. The results
of this approach provide an approximate discriminator response
as shown in Figure 5 with less high-speed data arithmetic
required. This "dual correlate and subtract" approach also
leads to larger frequency range for the discriminator function,
and thus has been chosen for development. Hindsight has now
shown us that by algebraic rearrangement this approach is most
economically implemented with high-speed delay and subtract
filter prior to multiplication. This technique may be shown
to be just another implementation of the original filter and
correlate concept.
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‘Dual correlate and subtract.- We will let the quantity

M be defined as follows

Pa
= m (54)
pa k=l. k
( ? ) ( ? )
= ) nn - n, n
k=1 £ ¥P/  \k=1 K E-q
where
m = nk(nk—p - nk-q) (55)

It is straight forward to show that, except for a few end
terms,AMpq isAmathematically identical to.the qugntity ﬁbF-ﬁq“
where Mp and Mq are defined by equation (42). It_is for this
reason that we will lable the approach as the '"Dual Correlate
and Subtract' technique even though the delay values are nega-
tive instead of positive.* We now demonstrate that the expected
value of ﬁpq behaves as a frequency discriminator asvillustrated
in Figure 5 under conditions which we will identify. The
adjustment of the system clock period At leads to a null in the
expected accumulator value. Measurement of At provides a direct
measure of the mean signal frequency as we shall now shoW'With

our simplified signal models.

From equation (44) we obtain the expected value of the
estimator as

'<ﬁpq> = NATZ[RA(DAT) - RX(qAT)] (56)

The complete expression is obtained for our simplified signal

x*
The negative delay implementation was more suitable for
the hardware design.

34




model by using equation (41) in its entirety. Here we assume
that pAt and gAt are both small compared with o so that the
pedastal terms cancel as well as the steady term. This leaves

o ~ 2 2,1 '
<Mpq> = NAT R<Aj> EAJ; o . (57)
1 1 2 2 1.1 2 2
- p) (a2+0m)(pAT) . - E(a_z.*.cw)(qAT)
e coSs wmpAT-e coswquT
Now we require that
p = 3q (58)

and observe the behavior of equation (57) near the values of
At specified by letting gqAtT be one quarter of the signal per-
iod where both cosine terms will vanish.

gAt = 2n/4wm = Tm/4 (59)

The shape of the term in braces is plotted in Figure 5
under the assumption of many fringes in the probe volume
(a large) and low turbulence (Gw small). Thus the quantity
plotted is simply

[cos 3gAT w, — cos qAT mm] (60)

Figure 5 illustrates the expected behavior of the accumulator

sum for changes in the mean signal frequency W - If the sys-

tem clock frequency is changed to change At, then the response
is the product of Arz and the curve shown in the figure. The

shape of the curve is affected but the zero crossing locations
are-not.
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Selection of delay constants.- The theory does not

uniquely specify the relationship of At (the above system clock
period) to Tm the signal period because q is not specified.
For a given value of signal period, Tm’ the largest possible
value of AT for an acceptable null is when g = 1 and

At = Tm/4. This produces the least variability error (as we
will show) and the most bias error due to time smear (the tri-
angular weighting function in equation (24). The value q =1
also allows the highest signal frequencies to be measured for
a given maximum system clock frequency. The bias errors can
be reduced at the expense of increased variability error and
reduced maximum signal frequency by using g = 2, At = Tm/8.

In order to facilitate experimental research, our design for a
research 'instrument allows selection of p and q over a wide
range.

STATISTICAL ERROR ANALYSIS

Introduction

The two principle types of error which arise in statis-
tical measurements are bias error and variability error. Bias
error is a term which refers to the difference between the
statistical expectation of the measurement system output and
the desired average value being measured. The variability
error is the rms value of the random deviation of a specific
experimental result from the statistically expected value. For
ergodic random processes, the variability error converges to
zero in the limit of infinitely long data collection time; but
it converges to an acceptable level (which must be defined in
the measurement objectives) within a finite measurement time.
The bias error cannot be removed by further averaging but it
can often be removed by analytical compensation or by experi-
mental calibration when it is small compared with the desired
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quantity. In general, analysis of both types of errors is
required in any statistical measurement.

There are three different methods for evaluation of the
statistical errors of a measurement system; these are: analysis,
simulation, and experiment. Appendix A provides theory for the
highér order moments of inhomogeneous Poisson processes which
wé have expanded for application to the demonstration of con-
cepts in the previous sections and analysis of errors in this
section. The study of the theory of Poisson'processes has also
provided the concepts necessary for digital simulation of the
LV signals'and their detection by photon counting systems.

The concepts and a FORTRAN computer program which we have
developed for this simulation are provided in Appendix B. The
simulation provides a method of investigating such nonlinear
effects as processor dead time and counter saturation which we
have not yet been able to do with analysis.

Bias Errors

The sources of bias errors which have been studied in
the measurement of mean flow are as follows: fringe number,

turbulence intensity, time smear, and dead time.

Fringe number and turbulence intensity.- When the number

of fringes N in the probe volume is small, subtraction™ of
RX(T = 3Tm/4) - RA(T = Tm/4) is slightly negative instead of
zero. The error becomes significant only for small values of
Nf.. The signal frequency estimate using the zero criterion
will be too small. We have computed the error in percent in
the following manner.

Let RX(BqAT) - RA(qAT) A Y(qAt). PFor large number of

* _
This error pertains to the dual correlate and subtract
technique. '
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: T
fringes (N-+«) then ¥(qAt) = O when AT = 7? where Tm is the

mean signal period. When N<, then
N BngTm/4) - RA(Tm/4) = Ae = Y(At = Tm/4) <0 (61)

' ' A Ae
The correct value of gAt for Y(gAt) = O is qAtT = Th/4+ﬂﬁ?ﬁ77nff
: _ n

and the fraétiéhal error £ in accepting Y(gAT) = 0 as indica-
tion that gAT = Tm/4 is approximately

4y (T, /4)

= 5o (62)
T 0 (T /5

We have evaluated e for various levels of p = rms turbulence/
mean vélocity and for Nf = number of static optical fringes in
1/e2 signal width. ' '

The result of the parametric computations are presented
in two forms in Figures 6 and 7. From the results we conclude
that the bias error is not very sensitive to turbulence
intensity at the levels sthn. A first order correction inde-
pendent of turbulence is thus possible. A second order correc-
tion is possible with only very imprecise estimates of turbu-
lence intensity.

Time smear error and correction techniques.- The photons

represented by the count-nk at time kAt were in fact smeared
in occurrence time over the range [(k-1/2)At, (k+1/2)AT].

The effect of this is usually neglected by assuming At is small
compared with any significant variations in the classical sig-
nal. This is never true in the most difficult experimental
cases where the electronic speed limitations force At to be an
appreciable function of the signal period Tm’ The result pro-

vided in equation (24) for photon correlation included the time
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smear effect in the triangular function A which convolves with
the autocorrelation of the classical signal. After equation
(26) the triangular function was treated as a delta function,
i.e., in the limit of small Art,:

ﬁ ACT/AT) + 8(T) (63)

and equation (27) results from the convolution.

* we note

Now, if we do not make the limit assumption,
that the effects of the triangle function are easily displayed

in the frequency domain: From Bracewell [24] we have the rela-

tionship
f: & Mr/an)e 2™ = sine? (zar) (64)
where
sinc (for) = Si0 TIAT (65)

This Fourier transform relationship is illustrated in Figure 8.
The convolution theorem of Fourier transform theory assures us
that in the frequency domain, the effect of the convolution in
equation (24) is a product. In other words, the frequency
spectrum associated with the signal correlation by Fourier
transform is attenuated by a low-pass filter whose form is

sine (fAt). This function is plotted in Figure 8c. As the
figure shows, there is little attenuation when fmAT==AT/Tm==l/16,
i.e., when the clock period is 1/16 of the signal period. For

*The effect of time discretization is a sincz(f) type of
low-pass filter. This is similar to a result in our previous
work of determing turbulence power spectra from randomly tried
samples [23].
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very low turbulence and a large number of fringes Nf, the
signal spectrum would be small in width and At could be made
as large as Tm/2.* However, for values of At > Tm/8 Wé see
that a correction of the velocity probability density function
could'be useful for all but very small turbulence levels.

Such a correction would be effected by multiplying the trans-
form of the correlation estimate by 1/sinc2 (Atf) prior to

final data interpretation.

Dead time effects.- No physically realizable photo-

detector and electronic counter combination can be constructed
without some dead time; i.e., a period of time following a
threshold crossing by the analog photodetector voltage wave-
form during which no additional crossing events will be
counted. This dead time is typically 10 nsec for commercial
photon discriminator circuits at the time of this writing.
There is no fundamental reason why this cannot be reduced to
less than 5nsec with the fastest photomultiplier tubes and
counting circuits now available. We will also distinguish two
other types of counting dead time. The first of these is
"pulse pile up" in which the photodetector analog waveform
remains above the threshold level due to there being more than
one photoelectron event within the pulse response time of the
photo detector. There is also a brief interval during the
periodic counting interval during which the counter is being

reset and is not available. This is true even when two counters

are used alternately, since a small guard interval is required
to keep both counters from counting the same event. Practical
dead intervals T, may be on the order of 2nsec or less.

*

This limit could be actually exceeded because the
sampling theorem really refers to bandwidth, not maximum fre-
quency; however, the attenuation would then be severe.
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The counter dead interval"cr will be considered first
since it is the simplest. To first order it can be neglected,
but correction in the formulas is simple. It is only neces-
sary to replace AT by AT—Tr in the theoretical formulas where
the At refers to the counting width. The amount of delay
remains equal to some integer multiple of At. As a simple
example the mean value of n
AA(t)>AT.

Kk becomes <A(t)>(AT—Tr) instead of

The effects of pulse pile up are least known for the
photon-limited signal cases. For higher photon rates the PMT
analog waveform will generally remain above the photon counting
threshold and so produce no counting effects. The pulse pile
up effects can be studied with the present signal simulation
program (see Appendix B) when a more complete processor simu-
lation subroutine is completed in the future. At present the
photon processor simulation is idealized so that discretized
photoelectron event times are used directly without synthesis
of the PMT anode waveform and a threshold crossing circuit

model.

The effects of discriminator dead-time effects have been
presented analytically by Jakeman* for the case of Gaussian
optical electric field statistics. We have not yet extended
the theory to the single-particle LV signal situation (non-
Gaussian field statistics) and can offer no improvement analyti-
cally here over Jakeman's results. However, we dispute Jakeman's
conclusion® that in préctice dead time errors are not a serious l
limitation of photon correlation. The seriousness of the
effect is demonstrated below using the computer simulation pro-

gram provided in Appendix B.

We have simulated a wind tunnel instrumentation
example with the constants given in Table 1. The results are

*Page 116, [12].
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-Prbgram

Theory o
Symbol Name Value Description’
T TTOT 10" 3sec Total time limit
MNTOT 3x 10° Photoelectron limit
Iny KMAX 480 Number of At's per burst
<Aj> AFAC 107/sec Mean peak pedastal rate
HIGH 10 Max Aj = High-<lj>
LOW 0.1 Min Aj = Low-<Aj>
IR2 4 Xj = AFAC (not random)
1/R B 5x10°° Mean time between bursts
THEORY TRUE Logical: Selects ideal
processor
MAXC 103 Maximum count of processor
(high to avoid limitation
here)
o2 D 8x 10 'sec 1/e2 half width of bursts
CON 3 D CON = Total burst width
AME 1.0 Burst modulation index
fm FO 6.25x 10 Hz Signal frequency
At /At ITAU 4 Ratio of processor resolu-
tion to simulation resolu-
tion
1P 20 Maximum correlation delay
WAVE TRUE Logical: True=Bursts present
Xb= CONST FALSE Background: True=>\b present
Td/At DEAD 0,1,2,3,4 Dead time in At units
At DT 5 nsec Simulation resolution
interval
AT DT*ITAU 20 nsec Processor resolution
; interval
ONE FALSE Logical: Time=Dual Correlate
TABLE 1. PARAMETER SELECTIONS FOR DEAD TIME SIMULATION.
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plotted in Figure 9. For comparison, the figure also shows
the theoretical expected value of the accumulator sums as
predicted by the following equations. We use the values in
Table 1 with equations (40), (41) and (44) to obtain the

mean level <A(t)> as-

S &A> = 2,005 x 106 photoelectrons/sec (66)
2
_ T
NP 1 2(5.66 x 10~ /)2
<Mp>= 80.4 + 283.6 (1-+§ coszﬂfmr)e g (67)

where

—
Il

(pAT) = p(20x10_9 sec)

6.25 x 10° Hz

T
m

From Figure 9 it is clear that for dead times which are an
appreciable fraction of the clock interval, there will be dis-
tortion of the correlation functions. This does not appear to

be a problem for At = Tm/8 except at the first delay valve and a
general amplitude reduction but further study is needed. The dead
time effect is seen to seriously affect the first delay; this
will seriously affect the dual correlate approach if A1 = Tm/4.

Variability Error

In this section we derive formulas for the fractional rms
error of a mean flow measurement with a dual correlate and sub-
tract system in terms of the mean photon rate and the system
response (integration) time. We assume that the accumulator
sum is zero after summing for total time T. This implies that
the clock frequency is in error by an amount required to cancel
a random (fihite time) variability error in the accumulator sum.
These compensating errors are assumed small so that a perturba-

tion may be used.
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An error € in the accumulator sum is equivalent to an
error €n in the estimation of one quarter of the mean signal
obtained by dividing by the slope of the discriminator function
A(T)

ep = €,/A' (T /4) (68)

where A(t) is an abbreviation for <ﬁpq> given earlier in equa-
tion (56) and (57). The fractional error ¢ in estimating the
period Tm is thus

EA/A'(Tm/4) ;. 4€A
Ta/% T A" (T_/4)

e = (69)

This is the same form as equation (62) with the only difference
being the type of error. We proceed by obtaining a simplified

expression for A(Tm/4) by neglecting the Gaussian exponentials

in equation“(57); Evaluation of the derivatives gives

2_ 4w v

5 Q - (70)

A'(T,/4) = NAT"RAT> T V2

The quantity €, is the rms deviation of the accumulator value

A
Mpq after data collection time T. The evaluation of this
quantity is discussed in Appendix C and the result for cases
where the steady background light is larger than the signal is

obtained.* For this case we have

= VON
EA 2N AbAT (71)

When these results are combined we have the fractional error

in the velocity estimate given by

*This is simpler to evaluate than the low background
case and gives a bound on the time required to produce a given
error in cases where the background is less.
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22
g€ = — D (72)

oY TAT R<A?>m/?

where
A,. = background photoelectron rate >> signal rate
= burst 1/e half width

<A;> = mean square peak pedastal burst amplitude
(photoelectron rate)

R = rate of occurrence of bursts
T = total time = NAT

ADVANCED PHOTON PROCESSOR FOR
TURBULENCE TIME STATISTICS

Introduction

fn this section we propose and analyse a photon-processing
scheme for estimation of the temporal autocorrelation of the
time varying velocity fluctuations. Part of the basis for this
is the fact that the frequency discriminator characteristic of
Figure 5 applies not only to the long time average of the dual
correlate and subtract sum Mpq but also instantaneously in a
conditional statistical sense. We may therefore tune At to the
value which centers the long-term average at the zero of the
frequency characteristic and then obtain short periodically
occurring accumulations of Mpq whose conditional expected
values follow the velocity deviation. Even when the photoelec-
tron rate is small, the correlation of the velocity fluctuations
may then be obtained by conventional digital correlation of

the sequence of short time ﬁpq’s.

We define here AT as a period greater than At, the
processor counting interval, and less than the significant
times of change of the turbulent fluctuations. The quantity

Mpqn is a sum over the interval [(n-1)AT < t < nAT} of My
defined in equation (55) as
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0, ); (73)

my = ooy gy = My g

i.e., ﬁpqn = ﬂpq over the nth AT interval. We will consider
an autocorrelation estimate of the ﬁpqn sequence:

‘ N, -1

A . 1 t ' ﬁ A

R (14T) = N -1 j;l pan'lpa(n+i) (74)

We will show that the expected value of this sequence contains
the shape of the turbulence autocorrelation function under
certain conditions. Further it appears that the magnitude of
the turbulence intensity may be obtained by a normalization
procedure which will be discussed.

Spectral Analysis of Randomly Sampled Signals

Continuous Functions.- In our previous development [23]

we showed that correlations and frequency power spectra can

be obtained from randomly timed discrete samples of a velocity
component u(t) where the sampling function z(t) is a uniform
Poisson impulse process. The same principles may be general-
ized to the present more complicated data processing problem.
First, let us assume that a continuous signal s(t) is available
such that

s(t) = x(t)p(t) (75)

p(t) = u(t)/T (76)
where u(t) is a zero-mean time-varying velocity component
deviation from the mean component U and the random process
x(t) is a filtered Poisson shot noise process (see Appendix A)
statistically independent of u(t):
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x(t) = ) b.f(t-1,) ' 77) -

Here f(t) is a low-pass impulse response function, the'TE'Sf
are random occurrence times which obey a stationary Poisson
law, and the bj's are equally-distributed statistically-
independent random amplitude variables. The functions are
illustrated in Figure 10. From the properties of Poissbn
processes we know that if f(t) is a positive function, then
RX(T) = <x(t)x(t+1)> is a positive function and, making use
of the independence assumption

<p(t)p(t +1)> (78)

RS(T)/RX(T)

R (1)

We observe that the zero value of Rp(T) is the normalized
mean-square turbulence intensity <p2>. Figure 10 illustrates
the fact that when the duration of the pedastal correlation is
small compared with the duration of the velocity correlation,
the value <p2> may be obtained approximately from Rp(T) where 1
is small but greater than the pedastal duration. If the turbu-
lence'intensity is obtained in some other manner, we may theo-
retically obtain the shape of Rp(T) even without obtaining
RX(T), except in the vicinity of T = 0, since RX(T) = constant

elsewhere.

We may extend the above reasoning to the situation where

two sets of processes are available

s1(t) = x,(£)p (Ty,t) (79)

so(t) = x,(t)py(r,,t)
So long as X4 and X, are independent of Py and Pgs then
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Rslz(i)“= <sl(t?sz(t+T)> . . (3Q) '

< (£)X5(E+1)><p, (T, t)p(Tgy, t+1)>
= Ry19(TIR;;5(T)

and the cross correlation Rﬁlz(T) may be obtained'by diVision

Ro1p(T) = Rgyp(T/Rygp(t) 1 T (8D

The frequency power spectra are Fourier transforms of the

correlation functions.

Sampled Data Estimates.- In the preceding, we assumed

s(t) and x(t) were continuous and computed statistical corre-
lation functions. We now suppose that real-valued discrete
samples Sn and Xn of s(t) and x(t) are taken at uniform inter-
vals AT which are small compared with the duration of the
random sampling pulse f(t) and correlation time of p(t). We
may form discrete estimates of RS(T) and Rx(T) at T = iAT by

computing a finite time average, for example

= I S8 (82)

ﬁs(iAT) =
t n=1

where NtAT is the accumulation time T and the expected value

is
<R (iAT)> = R(T = iAT) (83)

If such estimates are formed for Rx and Rs’ then we may form

an estimate for Rp(T) by division:

2 . A 5 . A .
Rp(lAT) = Rs(lAT)/Rx(lAT) (84)
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This procedure does not insure that_<Rp(iAT)> is an unbiased
estimate but it becomes one in the limit of sufficiently long
accumulation time when the numerator and denominator converge

to their respective expected values.

Conditional Expectation Again.- The problem is still

more complicatedf' Because we do not have the classical optical
signal A (t) available for direct observation, we cannot form
x(t) and s(t), .or even Xn and Sn' We will process the fast
photon-counting sequence n, to obtain discrete-valued sequences

Xn
proportional to_Xn and Sn.

M and Msn whose conditional expected values given A(t) are

We thus have an estimate ﬁs(iAT) defined not by equation
(82), but by

25 . _ _
CR (iAT) = =3 £ MsnMS(n+i) (85)

The expected value of the estimate is

<M <<Msn|>‘(t)><Ms(n+i)|>‘(t)>> (86)

>
snMs(n+i)

2
C <Sjsj+i

02RS (iAT)

where C2 is the proportionality constant. This result depends
on the fact that given A(t) the discrete random variables

Msn and MS(n+i)
sequence nk are conditionally independent. This follows from

the fact that n

formed from non overlapping portions of the

Kk is Poisson counting process.
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In equation (86) the notation <x|A> denotes'expected
value of x given A" and we made use of the fact that the uncon-
ditional expectation may be obtained in two steps: first, with

respect to x given A; then with respect to A.

Application to Photon Processing of
Turbulence Correlation

It remains for us to identify measurable quantities with

the properties attributed to MS and MXn above and to describe

n
a means of implementation.

Conditional frequency discriminator.- We now reconsider

the estimator ﬁpq defined in equations (54) and (55). We
restrict ourselves to the signal model given in equations (30)
and (38) with® A
i.e., a<<1/R. This is the "low density" shot noise case dis-
cussed by Papoulis [10], page 574. For '"low density' shot

= 0 and with rarely overlapping bursts;

noise we may use the approximation that [10] if

s(t) = Zh(t - 1) (87)

then
s?(t) = 2h%(t - 1)) (88)

with these constraints we obtain

<n

knk_plx(t)> = ATZACt)A(E - pAT) (89)

oo

= AT2 Z A.zfz(t - 1.){1 + cos w.(t-1.)
j=moo J J J J

+ cos wj(t-rj-pAT)-F% COS(ijt-ijTj'-pijT)

1
+ 5 cos pijT}

= - - i
The XA,, = 0 assumption does not affect the result due to
the subtraction.
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In equation (89) the product of cosine terms has been expanded
as sum and difference frequency terms, and the delay pAt has
been neglected in the envelope function f(t). With m, defined
by equation (55) we may determine <mk|A(t)> ffom two sets of
terms like that in (89). We then determine <Mpqn> as

~ nL
M |A(t)> = ) <m, |A(t)> (90)
pan k=(n-1)L &
nAT o
~ AT f z 9 o
2 (n-1)AT j=dwlj f (t-—rj)[cos pmjAT

- cos qijT] + [Band pass termd} dt
where
L = AT/AT (91)

In the right hand side of this equation the sum is replaced by
a time integral which it approximates. Since AT is long com-
pared with the Doppler period, the bandpass terms average to a
small value; however, since AT was assumed short compared with
the burst envelope duration, the integral does not smooth the
first expression in the right hand side of (90). The result
is therefore

[oe]
~ ATAT 2 .2
<M > 8 A f9(t-1.)[cos pATtw. - cos gAtw.] (92
pan 2 J.=z_m g o 3t PATY; abte,l (92)
ATAT 2

= —5 A_zp(t)[cos PATw(t) - cos gqAtw(t)]

By proper selection of a high speed digital clock period,

At, the sequence M

pan approximates the sequence Msn described
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above for certain values of the integers p and q. For other
choices of p and q the sequence ﬁpdn
M__.
Xn

Thus, velocity correlations may be obtained by simul-
taneously duplicating the computations of (73) with two differ-

approximates the sequence

ent sets of integers p and q, and then proceeding with soft-
ware processing of the two sequences Msn and Mxn' To show
this last link in the procedure we examine the cosine differ-
ence term in (92). For the Msnsequence we select p and q and
adjust the variable At to the conditions given previously for
the mean frequency discriminator in equations (58) and (59).

(P - Qught =7 (93)

pwmAr 3m/2

qwmAT = /2
Example selections for p, q and At are 3,1,Tm/4; 6,2,Tm/8;

12,4,Tm/16; where Tm = 2w/wm is inverse of the mean signal
frequency. Expansion of the bracketed cosine term in (92)

gives
TAW., 3ﬂij
[cos pAij - cos thwj] = ‘%1n(§6;l)4-s1n(zwm )] (94)
where we have used the substitutions
ij = wj - W (95)
-~ 3mAw,
37 .. j
cos |— (w +Aw.)] = sin( )
_Zwm m J Zwm
Qr nij
cos |5— (w_ + Aw.{l = —-sin( )
_Zwm m J Zwm
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Equation (94) was shown plottéd in Figure 5 since it is also
the approximate long-time average frequency transfer charac-
teristic for the mean flow measurement. The trigonometric
substitutions along with the small angle apprdximation sin 6 = 96
shpw that for small turbulence levels, equation (92) becomes

<M_ [A(t)> = ATATAzlp (t)mp(t) (96)

Where p(t) = ij/wm during non-zero portions of Azp(t)‘

'.Normalizing sequence.~ Under the same selection of At as
in (93) but with

Pw AT 27 ' (97)

]
5

qwmAT

a different effect is obtained. For example, if MSn is obtained

with p=3, g=1 and we let p=4, q=2 in computing Mxn’ the

result corresponding to (94) is

Aw . Aw
[cos pPATw. - cos gqATw.] = |cos n——l + cos(&r—41 (98)
J ' J “m Y

The small-angle approximation for the cosine function is unity,
so the result corresponding to (96) is

_ 2
<M, [A(t)> = ATATA 2p(t) (99)

When we note that ij/wm = uj/if and that the ATAT term cancels
by division, we see from equations (96), (99) and (86) that

the autocorrelation of M ndivided by the autocorrelation of Mx

produces approximately = <u(t)u(t4-r)>/52. Except for a fac-

tor of 02 = ﬂz, the result is normalized in such a manner that

n
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fractional mean-square turBulencé intensity is directly obtain-
able from the firSt.iag value df the final autocorrelation
estimate or a projection back to the zero delay value. (The
analysis we have presented is not valid for the zero delay
value without separate consideration. It is possible that cer-
tain effects will cancel and cause this to be a valid point
also.)

Practical considerations.- The approach outlined above

for normalization would require as much hardware to measure the
Mxn sequence as the Msn sequence. In addition, the small angle
approximation which was applied to (98) is not valid over a

very large range of velocity deviation. We have conceived two
other less expensive approaches. The first of these consists

of eliminating the second Mxn channel completely and relying on
the fact that the shape of the correlation Rp(T) is approximated

by correlating MS except in the vicinity of a burst duration

n
from the delay origin. If it were desirable to normalize the
function at the rest of the delay locations, we could evaluate
the required division constant as

ATZ A7 242 <A2£p(t)>2 = <R_(nAT)>, nAT >> a (100)

where we have already discussed a possible estimate for <A2(t)>
in equation (46). Either this estimator or the Mxn approach
described above could be computed with a single channel elec-
tronic system by electronically switching the delay variables
p and q and storing the {ﬁpqn} sequences in different portions
of a computer memory before computing the second level corre-
lations. Time sharing like this would not be as efficient in
possible cancellation of some of the statistical variability

error, but significant cost savings would result.
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DISCUSSION

System Design

We have provided a specification for an advanced computer
controlled photon counting processor in Appendix D. The design
allows the system to be operated as a dual-correlate and sub-
tract processor or sequentially as a correlator by time sharing
the multiplier. The system provides synchronous 3-bit X 3-bit
operations at up to 100 MHz. The desigh-uses-"slow” emitter
coupled logic (ECL) which is optimum for the speed range speci-
fied. The system may be operated as an advanced processor by
dumping the accumulator values to computer memory at rates -
limited only by the computer. The design allows two identical
units to be used together for either velocity cross-correlation
measurements or for simultaneous second-channel normalization.
An analog feedback loop is provided for automatic mean velocity
acquisition. In addition, the system can be used to measure any
type of multiple-interval photon statistics by selecting the
correlator clock period (continuously variable both manually and
electronically) and using the computer to sample the values of
n, stored in the delay line.

Sensitivity Comparison

There are four primary sources of variability error}
These are the random turbulent flow itself, the random occur-
rence times of the scattering particles, the random scattering
cross sections, and the random time of photon events. Photon
correlation methods are linear in the sense that the effects of
two siﬁultaneously occurring scatterers are added. This'is
beneficial in that it avoids the non-linear Zero-crossing cap-

ture effect of classical FM systems and thus the error pfbﬁlems
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of multiple scatters; it is not benefiqiai'in the sense that -
random amplitude effects will contributé to variability error,
but these distinctions have not been carefully analyzed. The
error versus data collection time trade-offs which result due
to the random occurrence times of scatterers and due to mini-
mum limits due to the turbulence itself have been previously
analyzed for burst counters. That result* may be expressed as-

<p2>

(%7 )
<2 R 2B

T =

(101)

where B is the equivalent power bandwidth of the turbulence,m 
R' is the mean rate of accepted signal bursts, and Sp2> and N
<€2> are the normalized mean-square turbulence intehsity and
mean-square estimate error, respectively:
2. _ <u2(t)>
PT> = ——— (102)

ﬁz

2> = :1ﬁ:§_§f§
U

this result indicates, for example, that for a turbulence equiva-
lent power bandwidth of 2KHz, 10% turbulence intensity, and 0.3%
desired rms error, the data collection time would be at least
0.28 seconds even if the continuous signal U(t) were available
for processing, and would be considerably longer if R’ Wére
less than 4000/sec. | .

In the following we examine the implications of equation -
(72) for transonic wind tunnel measurements. In order to include
the mean value of the signal bursts along with the assumed

*page 10, equation (2.14), reference [23].
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backgrbund light in equation (72) we use equation (40) for
<A(t)> and (72) becomes

2(A, + 1)
e ® bs (103)
o VTAT RS> /T
where the mean rate due to signal bursts is
Ag = R<xj> /T a (104)

which 1s less than the mean peak rate <Aj> when R is less than
the inverse of the effective burst width, v7 o. Now by defin-

ing the variance oxz of the pedastal peak rates Aj as
2 2 2
o = <A.> - <A.>
A J J

we may rearrange (103) as

€ = (105)

Although the parametric behavior of equation (105) is
intuitively acceptable in other ways, the presence of the term
[1+ 012/<Aj>2] in the denominator seems a little strange.
Increased variability of the scattering cross sections of the
particles would not intuitively decrease the mean~flow varia-
bility error. It is possible that this indicated behavior is
a consequence of ignoring the variability of the classical power
A(t) in equation (71) and has no physical reality. However,
there does not appear to be anything wrong with the derivation
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for the limiting case of high background light so the strange
resulf may be true. In any event, a conservative bound is
obtained by removing'the bracketed expression in the denomina-
tor to obtain an expressién_not requiring knowledge of GAZ:

A
Z[XS + ;] |
e = (106)
ﬂ<Aj> VTAT

If we evaluate equation (106) with the following assumed typical
conditions for a transonic wind tunnel measurement we obtain
a required data collection time of 0.5 seconds for a 1% rms

errorxr.
I ¢
A, = 10 (107)
_ 6
Ag = 10
7
<A.> = 10
J
AT = 1078

In this example, the mean signal photoelectron rate is ten
times less than the mean background photo-electron rate and
is equal to the average peak envelope rate. With this much
background light, the assumption of constant A(t) should be
valid with respect to the photon-fluctuation induced varia-
bility. The selection of mean peak rate at 107 means that
occurrences of photoelectron count rates greater than 108/sec
(the limit of current hardware state of the art) will be rare
and the effects of nonlinearity negligible). The selected
ratio of <Aj>/AS = 10 implies that the measurement volume is
only assumed to contain a scatterer 1/10 of the time on the

average.
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Even though dramatic improveménts over the previous exam-
ple situation may result from reduced background light, the
result still indicates that practical measurements may be
obtained with a peak signal photoelectron rate of 107 sec. In
order to compare this with the performance of a burst-counter
system, we must assume values for p, q and'fm, the Doppler fre-
quency. With p = 3, and q = 1.the Doppler frequency fm is
1/4At = 25 MHz. This would result from U = 304.8 m/sec with
an optical sensitivity of 82 kHz/m/sec. This peak photoelec-
tron rate assumed is thus 0.4 photoelectrons/cycle in the pres-

.'éﬁdg of 0.4 background photoelectrons/cycle. For comparison we

note tﬁat'étahdard optical noise formulas, given A(t) =

Aj(l + cos wmt) + A would result in peak SNR of

b,
22

_ j
SNR = IB(r, ¥ 7

(108)
b)

In our example, B = 25 MHz and Ab = 107; if we choose A, = 109,
a factor of 100 greater than in our example, then the SNR is

10 at the peak of the signal burst and 1.35 at the 1/e signal
envelope points. Since this example represents marginal or
inadequate SNR for burst counter operation we deduce that, even
with 100 times more scattered power, only the larger-than-aver-

age scatterers would contribute.

~ Under conditiéns of less background light, the burst-
counter analysié would not be improved; however, the photon
counting systém results are eXpedted to improve considerably.
Thus we concludé that mean-flow measurements with from 100-1000
times less optical power are feasible with the photon counting
system. - )
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Future Work

During this contract effort we have developed simulation
techniques which can be extended to be applicable to all types
of LV signal processors for any level signals. The program in
Appendix B bnly represents the beginning of how these techniques
can be exploited, and we did not have time under the present
contract to use that program except for check-out waveform simu-
lations and the dead-time example. Similarly, the highér order
moment equations developed in Appendix A have not been yet used
to extend the variability error analysis to include the low

background case.

A system such as that specified in Appendix D should be
constructed and tested. The results in this report indicate
that such a system would a low LV measurements to be performed
which are not now feasible. In addition, the system would be
a valuable research tool for many other fields of research
which require high-speed digital correlation or measurement of

photon interval statistics.

64



CONCLUSIONS

The most significant new results which this report provides
are itemized below:

® A general non-stationary Poisson process model for
dual scatter laser velocimeter (LV) signals and noise
valid from high level signals down through photon
resolved signals.

e Computer simulation algorithms valid over the entire
range of signal levels, which may be used to evaluate
any new type of LV signal processor.

® A description and statistical analysis of both con-
ventional photon correlation and Dual Correlate and
Subtract frequency discriminator technique for mean,
turbulence intensity and turbulence correlation
estimations from photon resolved signals.

® A system design for an advanced photon-counting
processor which implements both conventional photon
correlation (sequentially) and the Dual Correlate
concepts with time resolution to 10 nsec.
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APPENDIX A
FILTERED INHOMOGENEOUS POISSON PROCESSES

In this appendix we have used the material from Snyder's
book [9] to derive the higher order moments of a filtered
inhomogeneous Poisson prodéss up through order 4. We begin
with introductory material similar to that given by Papoulis.
[10].

Inhomogeneous Impulse Processes

The input to a random linear system is an inhomogeneous
Poisson impulse process z(t) given by ' ’ :
. [e+]

z(t) = ) §(t-1y) © (A1)

-— 0

where {Ti} is the set of random occurrence times, A(f)'is thel
instantaneous statistical mean value of z(t), (and also the
mean rate of éccurrenée of the ti's), and 6(t) isfthe'dirac
delta function. The random yariables T, are independent of
each other statistically and obey the inhomogeneous counting
law, i.e., the probabiiity of n=k occurrences in the interval

(tl,tz) is

—u k
P{n(t,,t,) = k} = e | (A2)
where
ty
p = [ A(t)dt (A3)
ty

The quantity ¢ is also the mean and variance of the random var-
iable n(tl,tz).
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The Response of a Random Linear System-Campbell's Theorem

The output of the random linear system s(t) is the super-
position of the response h(t - Ty ?i) to each input impulse:

o
s(t) = ;o h(t - 1;, ¥,) (A4)
where'{Yi} is a set of identically distributed independent
vector random variables. The random variable Y affects the
shape and amplitude of the response function h(t,?). In the
case of the PMT signal it may take the form of a single scalar
amplitude variable. 1In the case of the classical optical sig-
nal from turbulent flow both a random amplitude parameter and
one or more random shape parameters due to velocity magnitude,
direction, and probe volume translational entrance location may
be required. The theory should be applicable so long as the

set of multidimensional random variables ?i is independent of
the set of occurrence times {ti}. The generalized Campbell's
theorem results for the instantaneous statistical mean, variance,
and auto-covariance of s(t) are given below, they apply regard-
less of whether individual pulses are resolved or not.

[o0]

<s(t)> = [ A(t)<h(t-T1,Y)>dt (A5)
o2(t) =<s®(t)> - <s()>? = [ Aa(my<wP(t-1,T)>dr  (46)
cov[s(tl)s(tz)] = <s(t1)s(t2)>-<s(t1)><s(t2)> (A7)

o0

f A(T)<h(t, - r,?)h(tz - 17,Y)>dT

oo

where <> denotes expectation with respect to Y inside the
integral signs. For a causal signal such as that from the PMT
where h(t) is zero for t > 0, then the upper limits of
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integration may be replaced by t or the minimum of tl and t2'
in equation (A7). For the transient case where the impulse
signal z(t) is applied at t = O, the lower limits of integra-
tion may be replaced by O.

Higher Order Moments

Summary of statistics.- Given-a filtered, inhomogeneous,

compound Poisson process:

s(t) = ] h(t,t;Y,) ~ (A8)

- 00
where t;are random occurrence times which occur with intensity
A(t), and where Yi are vector random variables which are sta-

tistically independent and identically distributed, we obtain

the following result. The cumulants are:

y(ty) = ng = fmx(r.)<h(t1,r;?) > drt (A9)
Y15(t1ty) = Hyp = [ A1) bty TiDh(t,y, 1:T)>dr

Y123(t1:t2,83) = [ A1) <h(ty, ;L T3 T)h(ty, T;¥)>dt

oo}

Y1934(t1 tostg ty) = fwA(T)<h(t1,T;Y)h(t2,T;Y)
h(t3,T;Y)h(t4,T;Y)> drt

The formulas which relate the cumulants to the moments

are as follows:

1. <s(t1)> =ny <Y (A10)

2. <s(ty)s(ty)> = uyy * nyngy

where Hig = covariance = le
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3.  s(t))s(ty)s(tz)> = ¥y5g5 + Nylgg * Molqg

+n

* Nglig 1M2"3

4.  <s(ty)s(ty)s(ty)s(ty)> = Yygg4 ¥ NyNgNaN,
t NyYo34 ¥ Mo¥134 ¥ N3¥i24 * MgY123
* HigHgs * MigHoa T HigMes
+ 914ﬁé”3 * UygNgny * MygNgNy
T UggaNyng *lggNyng + HzeNy Ny

5

The derivation of the above formulas follows.

Derivation.- The derivation of the preceding formulas is

straightforward but tedious if we are given the joint charac-
teristic function

$(w) = <eja:§ > (A11)
where
6= (W), Wy, Wg, W) (A12)
and
s = [s(ty),s(ty),s(tg),s(ty)] (A13)

From Papoulis we know that
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<s(t1)s(t2s(t3)s(t4)> : (Al4)

1 a4¢(5)

= —= .
(3 3w13m28w33w4 =-0

and'similarly.for 6ther moments; i.e., we may obtain the moments
by determining the appropriate partial derivatives of the joint
characteristic function at w = 0 which is in turn a veétor

valued Fourier transform oi the joint probability function for

the random variables s(tl), s(tz), ete.

The theory of filtered Poisson processes provides us with

the joint characteristic function of the second kind, Y, where

Y(w) = 2n ¢ (w) (A15)

or

d(w) = eV (®) (A16)

We may therefore either write out ¢ (w) and evaluate the
derivatives directly or use the above equations to first
express the partial derivatives of ¢ (w) in terms of the par—
tial derivatives of Yy (w). We have taken the latter approach

using the chain rule. As an example

2 2
2 ¢ = 4. (O V oy _ 9y
= ¢ + ) (A17)
Bwlawz Bwlawz Bwl sz :

The rest of the derivatives are omitted here since they get
progressively more lengthy.

We now need only to evaluate the products of partial

derivatives we have obtained at w = 0. From the material given
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*
by Snyder we have

Y(w) = [ A(r) <IB@) _ 15 gr (A18)

- 00

where
B(w) = wlh(tl,T;?)+-w2h(t2,T;Y)4-.;.+.wnh(tn,r;?) -(419)

From the form of the expression for Y(w) it is clear that

E(G)I = | A(T)<ej0 -1>dt =0 ' (Azo)

w=0 -
therefore

¢ (w) =1 (A21)

w=0

It is not difficult to see that the form of the partial

derivatives is

n, — o R
2 o) | =" A <y, DN, ). el P0)at
wlawz 5=0 o i 2 _
_ w=0
(A22)

i.e., the partials of Y(w) at w = O are equal to the same order
cumulant except for the jn factor. With this formula we can
now go directly from the expression of the'partials of ¢ in
terms of the partials of ¢ to the desired higher order moments.
The result is that given in the summary.' If moments higher

*In Snyder's book, Random Point Processes, equation (4.15)
the lower 1limit of integration is to correspond to the begin- .
ning of the process. The upper limit is the minimum of the
times ti. This assumes that h(ti,T;Y) is a causal function.
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than the 4th are needed we would simply'apply the chain rule

to determine the higher derivative of ¢ in terms of those of

Y.

Moments of a Gaussian Random Process.- We have not yet

expanded all of the moments of a non-zero mean Gaussian

process for comparison. We observe, however, that the factori-

zation property of zero-mean Gaussian processes does not hold

for filtered Poisson process.

Otherwise there are great simi-

larities except for the cumulants as

Gaussian

K Xg> = Ujg * MyNg

for (ni = 0)

<x1x2x3> = 0
K XgX3Xy> T MygHgy * HygHgy
MRS VLY
(n # 0)
4 4 2 2 4

<x"> = 30~ + 60 n + n
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Poisson (A23)
<X.> =

1 N3

K3X9> T Ujg * Myng

<X1X9X3” = Yj93

K XgEgXy> = HygHgy * HigHoy
* UigHag t Y934

<x4> - 304 + 6n202 + n4

+ 4n | An3(t)at

+ [an?(e)at
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APPENDIX B

DIGITAL SIMULATION OF LOW LEVEL DUAL SCATTER
LV SIGNALS AND IDEALIZED PHOTON PROCESSORS

¥ This appendix provides theory and an example FORTRAN

- program for digital LV signal simulation. Background theory
and several more complicated Poisson impulse simulation algo-~-
rithms are discussed by R. H. Forrester, Jr. in a Masters Thesis
[25] performed under Don Snyder. The simpie approach taken
here is to discretize the possible occurrence times of photon
and classical burst signal events to uniformly spaced inter-
vals of length At, where At is less than any significant sys-
tem integration time. This discretization of time imposes
itself upon all temporal system parameters, such as processor
clock interval At and dead time T4’ which would be continuous

variables in the real situation.

Theory

Realization of inhomogeneous Poisson impulse processes.- A

sample function of an inhomogeneous Poisson impulse process is
specified by a set of event occurrence times {ti} as described
in Appendix A. The key procedure required for simulation of
LV signals is therefore the generation of a set'{ti} given a
specified rate intensity function A(t). This may be done by
first generating a homogeneous (stationary) process with unit
intensity A(t) = 1 and then mapping the realization times
through solution of an integral equation. Figure Bl illus-
trates the required mapping in a manner which helps provide
intuitive grasp for what follows.

Let us define the set of interarrival intervals'{wi}

between event occurrence times'{Ti} as
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Figure Bl. Transformation of Unit Intensity Process into
Inhomogeneous Process with Specified A(t).




(B1)

For a homogeneous Poisson impulse process with constant rate

intensity A(t) =21, it is nécessary and sufficient that {Wi}
be a set of statistically independent, identically distributed
exponential random variables with éommon probability density .
pw(w), given by | '

p, (W) = Ae”*¥ (B2)

We may therefore generate the set'{Ti} of occurrence times for

a realization of a constant intensity process as
i
T, = Z W, = T. + w, : (B3)

Commonly available subroutines* generate statistically
independent realizations Xy of a random variable x uniformly’
distributed on the interval (0,1). The exponential density
function is monotonic with an inverse function which is commonly
available (namely the natural logarithm function). It is
therefore straightforward to determine a transformation which
maps the realizations of the unit uniformly distributed varia-
ble to the desired exponentially distributed variable:

1

W, = > 1n(%) (B4)
1

In summary, generation of unit uniform random variables x;
which are then transformed by (B4) and used in (B3) produce a

* ' ' -

There is, however, a difference in the quality of these
subroutines; a survey paper by [26] may be consulted if the
validity or efficiency of a subroutine is in question.
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realization of a homogeneous impulse process with intensity
A. For our purposes, we set A =1 and proceed to the mapping.

step illustrated in Figure Bl.

In his recent book™ Sayder provides'guidance,_but leaves
it as a homework exercise to deduce the proof for a method of
rescaling the interarrival timeslof a unit intensity process
to obtain a realizafion of a specified inhomogeneous process.
The results are as follows: Let'{Ti} be the set of occurrence
times of a unit intensity process as illustrated in Figure Bl.
Let A(t) be the integral of the specified intensity function
A(t):

t
ACt) = [ A(a)da (B5)
o
This function is continuous and monotonically increasing and

therefore has an inverse function A_1 such that

-
I

ACty) (B6)

t. = AL,
1 1

) ' . (B7)

The set of times {ti} generated by applying equation (B7) to
the set {Ti} is the required realization of the inhomogeneous

process.

Algorithm for simulation of event times.- The subroutines

which generate uniform random variables Xy produce real numbers.
If the above equations are applied exactly, one would be forced
to digitally solve an integral equation, thus producing another
set of real numbers {ti}. One could carry the full resolution

*See Snyder [9] page 62,
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of the computer to the bitter end of the simulation. However,
at some point the use Qf digital filtering techniques to
simulate analog filter characteristics of real photomultiplier
tubes (PMT) and other electronic devices would become appro—
priate. At such a point, the simulated signal would have to
be ihterpolated and respecified on unifdrmly spaced increments
-with separation At. We may greatly simplify the required _ .
algorithms by rounding the set of occurrence times to the near-
est At interval and point. By 1ncorporat1ng this step d1rect1y
into the solution of the inverse function A~ (T ) we avoid
the problems of solving the 1ntegra1 equation exactly and sim-
plify that step as well. The entire procedure is thus simpli-
fied to the following.
1. Select a At small enough to provide adequate
accuracy for uniform sampling of A(t) and cal-

culating its integral by the trapazoidal rule
integration method. o

2. Beginning at Ty = to = 0, compute realizations

of T as discussed above.

3. Calculate the trapazoidal rule approximation

of A(kAt) for each integer value. O <k <k __.

4. Use conditional statements to test the latest
real value of Ty against the integral A(kAt)

as it is generated iteratively to determine a
histogram TC of the discretized occurrence
times at kAt. It is possible, in the simula-
tion, for more than one value of T to be
mapped to the discretized time kAt.

There are many ways that the fourth step could be implemented.
We have elected the following: If the value of s lies in the
range

o ALGr1)At] + AGkAt)
21y 2 3

A(kAt) + A[(k-1)At]
5 (B8)

where A(kAt) is the trapazoidal approximation of the integral,
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then an occurrence is added to the histogram value at k.

Inclusion of random amplitude effects.- When the point

event represents a photoelectron pulse or a classical LV sig-
nal burst, we may wish to assign the event an amplitude mark
(impulse weight). This may be done by separately generating
realizations of additional random variables according to
desired statistics and accumulating one each of these at TC
for each occurrence time. Note that it is not adequate to
simply multiply each value TC by a random variable, since in
some realizations more than one event contributes to the same

value of k.

The statistics of the pulse height distribution of a poor
(PMT) may be nearly Rayleigh, while the Gaussian density with
15-25% relative standard deviation may be adequate to model a
good PMT. Very little documentation exists concerning the
probability density of the classical signal bursts. This topic
is discussed and some data is presented in our recent AEDC
report [1]. Of the simplest densities an exponential density
or a Rayleigh density would be used to simulate amplitudes from
an unseeded flow. As we have shown it does not follow that
the amplitude probability density agrees in any recognizable way
with the particle size distribution; even monosized particles
may produce a very strange amplitude probability density [1].

When it is desirable to use Rayleigh or Gaussian random
variables the following procedure is recommended. Generation
of realizations of Rayleigh or Gaussian random variables may be
obtained by first generating uniformly distributed values on
the interval (0,1). Let x, and X

1 2
realizations. Then we obtain

be two such independent

1/2

R = (—202 1n x (B9)

1)

0 = 2ﬂx2 (B10O)
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where R is a realization of -a Rayleigh random variable with
parameter o, mean = ng , and probability density pR(R) given as
22 0 2 I
pp(R) = 55 e (B/29) p>o (B11)
g .
and 6 is a realization of a uniformly distributed random wvari-=.
able on the interval (0,2m). Multiplying (B9) by v 2/7w produces .
Rayleigh variables with mean =1. If Gaussian random variables:
are desired, the process is continued from (B9) without the

v2/m factor by converting to rectangular co-ordinates:

X

R cos 6 | (B12)
Y

R sin 6 (B13)

When this is done, X and Y are two independent realizations of

. . . . 2 .
a Gaussian random variable with zero mean and variance o, i.e.,

2 2
1 - 2
P (X) = —= e™¥ /27

(B14)
v 2m

and the same form for py(Y). The above procedure efficiently
produces exactly Gaussian random realizations as opposed to a
program such as GAUSS which sums 12 independent uniform random
variables to obtain approximately Gaussian variables by the
central limit theorem (Forrester [25]).

Example Simulation Program

We have included at the end of this appendix a copy of
the printout of a FORTRAN IV program which is illustrated in
flow form in Figure B2. The occurrence times of the classical
signal bursts are generated as a homogeneous Poisson process.
The amplitudes of the bursts may be either generated randomly
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Burst Width: D CON
Frequency FO
AME

Burst Amplitude
IR2,G2,AFAC, HIGH
LOW,WAVE=TRUE

]

Generate Occurrence
times mean
separation TB

Generate + sum
Classical signal

Background
CONST=TRUE

Unit Intensity
LY Emi

Integrate and
compare with Ty

L

Sum Histogram
at KDT

CONS

Dead time DEAD
counter limit MAXC

Ideal Photon Processor
(SUBROUTINE IDEAL)
THEORY=TRUE

max time TTOT

Random Pulse Gain
GE, IR1,G1

Sum Signal
thru filter H(t)
1Q

Simulated Signal
(SUBROUTINE SIGS)

max # of DT MNTOT

Accumulator Sum
full correlate
IP,NTOT,
ONE=FALSE

Simulated Signal
waveform plotted
PLOT=TRUE
output mode I0AUX

Accumulator Sum
dual correlate
MTOT,NTOT, IQA, IP
ONE=TRUEL, ITAU

¥rite Namelist:
actual total time TOTIME
mean photoelectron rate PERME
MTQT, NTOT
dual and/or full correlate
ONE=TRUE, FALSE
output mode IOUT

Figure B2. Flowchart Showing Namelist Variable
Names and Functions.



with exponential, Gaussian, or Rayleigh density with a speci-
fied mean, or they may be set equal to a constant. The pro-
gram computes the burst waveforms at each At and sums all that
are present to form a classical signal. This signal is inte-
grated in a trapazoidal fashion and compared with the occur-
rence times of a unit intensity homogeneous Poisson impulse
process simulated as described previously. If random amplitudes
have been assigned to the photoelectron pulses, these are gen-
erated and added to a histogram; otherwise 1l's are added to the
histogram.

The idealized photon processor portion of the program sums
the values of the histogram (with no random PMT pulse height
effects) over an interval At which is some selected integral
number ( ITAU) of At units in length. The sum is the photon
count sequence referred to in the text as {nk}. The ideal
processor then computes either the photon correlation for delay
values O-IP (ONE = false) or computes and sums the dual corre-
late and subtract terms (ONE = true).
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APPENDIX C

VARIANCE OF THE DUAL CORRELATE
AND SUBTRACT ESTIMATOR

In this appendix we wish to determine a formula for the
mean-square deviation of the estimate Mpq defined in the text
equation 556) at value of delay (near Tm/4 where the expected
value of Mpq is zero. It was our hope to do this for the
general signal model which we have presented. To complete such
a task requires the use of fourth-order moments of the classi-
cal signal process A(t), and it was for this reason that the
derivation in the last part of Appendix A was undertaken. We
did not have time during the contract period to evaluate and
use the fourth order moments of the general signal. For this
reason we have restricted this analysis to the case where
steady background light is the predominant source of variability
error. (Steady light adds variability error even though it '
cancels in the mean.) This simplifies the problem because of
the simplicity of the fourth order moment equations for steady
light (homogeneous Poisson counting process).

A *
We define Mpq here as

P

My = L my (C1)

m, = nknk+p - MyDyig

where the summations will all be from 1 to N unless otherwise
noted. We have

<mk> <nk><nk+p> - <nk><nk+q> (C2)

?1'2-'1{2=0

*This derivation was performed with plus signs in the
delay subscripts instead of minus signs. There is no differ-
ence in the results.
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where n = AAT = nAtP/hv. From (C2) we have

<> = ‘ (c3
Mpq' 0 (C3)

we wish to evaluate var (ﬁ )

A2 2 2
< > - < > = < >
pPq Mpq | ﬁpq Mpq

~2 — -
<Mpq> = XE<mimj> = J<m

2

s>+ ) ) <mm.> (C4)

izgg I

In (C4) the product of sums was expanded and the order of
expectation and summation interchanged. The 1 = j terms are
separated because they behave differently.

The terms in the first summation give

2, _ .. 22 2 2 2
<m; > = <nipi+p> - 2<nini+pni+q> + <nini+q> (C5)

2 2 2
<ni>[<ni+p> + <ni+q> - 2<ni+p><ni+q>]

(T + B2)(2(F + B2) - 282) = 282 +.928°

where the theory of homogeneous Poisson processes has allowed
the factorization due to independent of nonoverlapping count
intervals®™ and from which we know that

<n“> =n + 1 ~ (C6)

Next we must evaluate the i # j terms in (C4). There
are N2 — N such terms but many of them are zero. We have

b 4

At this point for the general nonsteady signal evaluate
<m. > with A(t) conditionally given and then evaluate fourth
order moments of the process A(t) which is also Poisson.
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<mimj> = <n (C7)

1M14pT3tp” T Pilieq"ygep”

-<n.n.,.. n.n.., >+ <np.n., n.n., >
PiPiapPit 4T T Pititg®i% g

When all the subscripts are unequal we obtain

myn> T -5 e T -0

We are restricted to i # j and p # @ # 0. If we examine the
matrix of products mimj, the only allowable products for which
some of the subscripts of n in (C7) are equal, excluding the
i=j case, are found on diagonals parallel to the i=j diagonal.
These diagonals are i = j * g, 1 = j *# p, and i = j £ (p-q).

We examine these diagonals separately: for i = j + g

<m.m.> = <n., n. n.n. > - <n., n. n.n., > C8
i D5+qj+q+p 30 5+p j+aj+2q" 3% 5+p (C8)
2 2
- <n. n. n.> + <., . n.>
jtai+a+tp j+qtj+2q™3
LT o @ aHEZ s @+ TR = 0

Similarly for i = j - q, 1 = jJ * p, the result is zero by sub-
traction. For the diagonals i = j * (p-q), however, we obtain
after substitution and evaluation

<mym,> = 53 (C9)

For large N we may neglect end effects and observe that there
are approximately 2N terms which result from these two diagonals.
We may now evaluate (C4) using (C5) and (C9) as

N(2)(F2 + §°) - 2NmS (C10)

]

2
<M >
Pq
_ _2__ 2_ A
= 2Nn~ = 2N(AAT)” = Var(fi, )

This is the desired result.
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APPENDIX D

SYSTEM DESIGN OF AN ADVANCED PHOTON COUNTING
PROCESSOR FOR LOW-LEVEL LDV SIGNALS

Introduction

A problem confronting us in the present design was one of
complexity and cost. A two channel duplication of the AEDC
processor [1] with the extra requirements of dual-channel
advanced-concept operation would have been prohibitively
expensive. To solve this problem we have made several sig-
nificant changes, some of which utilize the power of a high-

speed computer controller.

Design Approach for the Advanced Processor

Major cost savings are associated with exact duplication
of circuit layout. For this reason, the dual Qhannel system
is designed so that it may be operafed either as two com-
pletely separate identical units in one rack; or as two inde-
pendent units with synchronized data (for cross correlations)
or as a one channel system with a synchronous normalizing chan-
nel (same system clock and n, sequence but separate delays).
The counter/timer (C/T) functions needed for system control
were obtained in the AEDC system [1] from a $1500 laboratory
counter, selected because of the availability of options ($285)
for computer control and read. It is considerably less expen-
sive to include the C/T functions in the special-purpose hard-
ware to avoid both the cost of two units ($3570) and the asso-
ciated computer cables, I/O cards, etc. This puts an even more
stringent requirement on reducing complexity of other circuits
to give more room on the wire wrap panel (162-180 IC sockets’
unless multiple panels are used). The following system concepts

have been incorporated.
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1. Eliminate all front panel controls and displays.
The system thus utilizes the display and command
of the controlling mini-computer and cannot func-
tion separately. This saves LED driver integrated
circuits as well as the front panel itself.

2. Use a newer, lower cost voltage variable oscillator
for the system clock.

3. Replace the laboratory counter with ECL counter/
timer (C/T) circuits.

4. Use an external, separate heavy duty ECL power supply
(= 16 Amps) to save space in the system enclosure and
avoid a large heat source in the -enclosure.

5. Reduce the maximum count to 3 bits instead of 4
© (see following justification). This simplifies
all of the circuits and reduces package count.

6. Reduce the number of control and read data circuits.
(See following discussion-.)

7. Do not require the 3 bit counter to be selectively
saturable. Let it saturate at 7 (111).

8. Remove the single-clipper circuit and the associated
multiplexer.

9. Limit the accumulator to 15 bits + sign to be com-
patible with the 16 bit word of the computer. Read
the accumulator often enough to avoid overflow.

10. Replace the 4 bit subtractor with a 3 bit subtractor
adder. The add function could be used in one of the
normalization schemes.

11. Include an experimental analog servo loop for zero
adjusting the system clock to the proper multiple
of the mean signal frequency.

Reduction of Counter Bit Number

The maximum periodic rate of discriminator output pulses

is 120 MHz (dead time > 8nsec). The largest random rate is
usually less, say 70 MHz. In order for the count of 7 to be
executed therefore, we assume the count interval to be larger
than 0.1 usec (l/f0 > 0.4 or 0.8 usec depending on the delay
choices). Thus we may have the count exceeded for signal fre-
quency fo < 2.5 MHz or 1.25 MHz. We observe, however, that a
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count of 7 in a quarter of a cycle is a peak rate-of 14 elec-
trons/cycle. This is where the burst counter can become
useful. Thus a 3 bit counter is adequate because when larger
signals are present a burst counter processor should be used.
If the larger signals are unwanted because they occur from -
larger particles, then saturating the count at 7 will reduce
their effect in favor of smaller signals.

Read logic for photon statistics.- The 16 bit word length
and the high speed of the H.P. 2100 computer will allow Straight
forward READ circuitry. Each channel will have a 16 bit 1
latch copnected to the 15 bit plus sign_accumulator. In order

that the counter/timer and the multiple interval statistics
may be read, selectable steering gates will be used so that the
first 6 bits can be connected to the output of the multiplier.
Sequential numbers may then be read as follows:

1. Set maximum delay in A+B and set one side of multi-
‘plier to 1.

2. Run data and clock.
3. Stop clock.

4. Read multiplier out with commanded singlé clock
advance.

This will produce a string of more than 20 sequential numbers.
In order to read the C/T total (8 digits) 32 bits is required
(BCD code). This will be accomplished by sequentially reading
two 16 bit words time—multiplexed to the TTL output port.

Description of Circuits

This section describes the subsystem circuits and compo-
nents which comprise the dual channel photon processing system
one channel of which is shown in Figure Dl.

External subsystems.~ The external subsystems are the
following: '

1. Two photomultiplier tubés and associated hoﬁsings
and power supplies.
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Six precision 50 Q connecting cables.
&wo,preamps.

Two amplifier/discriminators.

One NIM bin (rack mounted).

. Two voltage controllable oscillators (1-200 MHz)

b S > S &) B 1 N IV T

Two rack-mountéd integrated circuit power supplies
and connecting cables.

8. A computer with two microcircuit I/0 cards (16 bits
in and 16 bits out for each with device command line
and device-ready flag line), and two 36 pair twisted
lead cables with connectors.

Three bit counter.- This is a dual section counter which

stops and holds the count of seven instead of turning over to
zero.and continuing. Two counter sections alternate so that one
may have data transferred and be reset while the other one is
counting. In order to avoid the possibility of counting a
border line event twice, a dead time between count intervals
approximately 2 nsec will be incorporated. The dead time
between input pulses (from the discriminator) will be < 10 nsec
with a design objective of 8 nsec. The alternate count inter-
vals will be equal (design objective). A control bit allows

the counter output to the delays to be set to zero (data gate).

Delay sections.- The two delay sections A and B are speci-
fied as A = {0,1,2,3,4,5,6,8,9,10,11,12} and B = {0,2,4,8}.
This set allows sequential autocorrelations with delays up to

20 in addition to the dual correlate and subtract and the

normalizing modes.

For dual channel operation with one channel normalizing,
a multiplexer is provided which allows the data from the other
channel counter to be selected as delay input. Since the sep-
arate channels are identical physically, each has an input and

an output to the other channel.
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Four control bits select the A delay. Two control bits
select the B delay. An additional bit selects the output of
the other data channel instead of the counter output of this
channel.

Adder/subtractor & mode selector.- In the AEDC unit an

option for subtracting a constant from each n

x Was included.
The purpose was to avoid overflowing the accumulator in auto-
correlate mode when a signal with large mean is encountered.
The ability of the computer for high-speed read to DMA

avoids the necessity of subtracting a constant, since the accu-
mulator may be read often to avoid overflow. The two control
bits allow selection of add, subtract, or add zero. The adder

subtractor‘output is four magnitude bits plus sign.

Multiplier.- The multiplier has seven bits plus sign out.

A control bit allows the undelayed path input to be set to 001

instead of nk.

Accumulator.- The accumulator has 15 bits plus a sign

bit. It can be reset by a single pulse. It will be implemented
in 2's complement; the computer software will convert to sign
and magnitude. The reset pulse must also transfer the accumu-

lator values to latches in the output port to the computer.

Counter/timer.- This section replaces the external counter/

timer used in the AEDC System. It consists of two 8-decade BCD
counters and associated input selectors and controls. Each
counter may select as input either the precision 1 MHz oscil-
lator, the system clock, or the second discriminator output
(external input). A fast prescaler selects divide by 1, 2, or
5 for counter #1. Counter #2 is multiplexed to the 16 bit out-
put port (lst 4 significant decades and 2nd 4 significant
decades separately selectable.) The first counter produces
output pulses at decade counter #1 selector. The package count
does not include multiplexing and read outputs for counter #2.
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A gate generator b1o9k does .the following: It produces
the pulsé which is applied to the accumulator and the computer
flag; it programably reads and resets the C/T; and it produces
a gate pulse between two successive counter #1 output pulses
for application to the counter #2 .control gates (counter #2
stops énd holds when gate goes back down). The programable
states include: a) read and reset counter #2 at the entry of
the control word (CW) and:at_each output pulse from counter #1
(PFC); b) read and reset counter #2 CW but not PFC; c) read
and reset counter #2 at PFC but not at CW; d) do not read and
reset counter #2 at either PFC or CW. (This allows, by software,
for counting the photon rate over the duration of ah:autocorre—
lation sequence and then stopping at the end of a nﬁmber of

smaller intervals.)

The control bits needed for the C/T are as'follows:
Three bits are used to select which of 3'inputs goes to each
of the two decade counters. (Assumes both will not have same'
input.) Three bits will select the decade output of the decade
scaler (counter #l1). Two more bits select the prescale divisor
(1, 2, 5). Three bits have been allowed for the four read/
reset states (2 bits) and an extra control bit (spare). Finally,
there is one bit which alloWs application of the control gates '
from the other C/T to the accumulator read/reset line instead
of this channel's C/T. (This is for cross correlation with

synchronous accumulator read/reset.)

System clock.- The system clock accepté a périodip wave

form with 1 positive-going transition per cycle) and shapes this
into a periodic pulse train at the ECL voltage levels. It |
includes buffer gates for proper fan out (5 packages). It
includes controls which allow the clock to be stopped cleanly
and a one-shot clock pulse generator which can be activated

by computer instruction. This feature allows sequential n,
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values to be read out of the system for multiple interval
statistics. The control bits are one for on/off and one for
single pulse. There is also an ungated clock line which is
used as an input to the C/T. There is a control bit which
allows the other system clock to be selected (when the other
channel data is used, for examplé).

Output port.- Each channel has one 16 bit TTL compatible

output port and a 1 bit flag pulse line. The output port
includes a multiplexer (two 16 bit sections of the C/T, the 16
bit accumulator output and a 7 bit output from the multiplier),
a 16 bit latch, and ECL to TTL voltage level translators.

The output multiplexer reQuires 2 bits of control to seiect.
one of 4 outputs.

At the present time it is not clear which of the following
approaches could be utilized: a) all ECL construction with
only 17 bits of ECL/TTL translator as the output; b) a separate
panel section of TTL circuitry which includes most of the C/T
and the output latches for the output port. The b) approach
would require less expensive IC's and less power for part of
the system. However, the cost of a separéte panel and the

panel interconnections may make a) preferable.

Oscillator control.- This subsystem provides automatic

fine tuning of the variable system clock for the determination
of the mean velocity. The mean value of the multiplier output
is negative while the clock frequency is too high. Thus the
intent here is to use fast digital/analog conversion and
analog integration with controllable.reset, integration, and
hold states to provide a cbntrol voltage to the external volt-
age controllable oscillator. Two control bits are required.

This feature is a research item. It may later prove more
advisable to use the D/A converter with a portion of the
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computer control word bits so that the mean velocity selection

becomes a software task.

Input port.- All machine control is accomplished by 30

bits of information and the time at which certain of the bits
are changed. These bits are latched into the processor input
port 15 at a time by a single line command pulse from the com-
puter. All time-critical bits of control are included in con-
trol word 0. (One of the sixteen bits from the computer is
the address of the control word O or 1.) Table D1 provides a
tentative assignment of control bits. The bit number refers

to the power of 2 in standard binary format.

Package count.- An integrated circuit package count esti-
mate of 147 IC's made for one of the two identical channels.
The estimate assumes the use of a panel with 162 sockets and

design for each subcircuit with the same approach previously
developed for the AEDC unit. This leaves 15 spare sockets for
flexibility in design and/or additions. A slightly improved
approach has also been identified which uses 2 bit arithmetic
logic units (ALU) instead of 4 bit ALU's to reduce circuit
speed limitations. This approach would actually produce more
useable sockets because the panel would have 180 standard
sockets instead of 150 plus 12 4 bit ALU sockets.
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Bit

OO UMW HO

10

R

——

Address Zero

Function Bit
Clock Gate 0
Clock One Shot 1
3-Bit Counter Gate 2

3
4
A Delay 5
6
B Delay g
Multiplier 9
10
Output Port Multiplex 11
12
Accumulator Reset Control 13

14

TABLE D1. CONTROL

L e T

TR A

Function
C/T Input Selection

C/T Decade Select for Counter #1

C/T Prescale Select

e a——— ———

Adder/Subtractor

Accumulator Control from Cross Channel
n_ from Cross Channel
c¥ock from Cross Channel

} Oscillator Control State

WORD FORMAT
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