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The Rule of Eigenvalues in Linear Feature

Selection Theory

D. R. Brown and M. J. O'Malley

Department of Mathematics, University of Houston

Houston, Texas 77004

Introduction. Recent statistical work in feature selection for the multivariate

normal pattern recognition problem has concentrated on linearly transforming

pattern classes so that the transformed pattern classes are equivalently distin-

guishable. Since, in general, this is not possible, techniques have been

developed to preserve the distinction of the transformed pattern classes using

various measures of distinction. These measures of pattern class distinction

are most often treated as eigenvalue problems ([1], [21, 151, [61, [71, [91,

[131, [141, [151). In this paper we consider a particular measure of pattern

class distinction called the average interclass divergence, or more simply,

divergence, ([11, [21, (4), [6], [71, [81, [9], [10], [111), where divergence

will be the pairwise average of the expected interclass divergence derived from

Hajek's two-class divergence as defined, for example, in (9).
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! It has been shown in	 14I	 that	 there always exirts a	 k x n	 real matrix {

Il	 su:h that the transformation determined by 	 D	 maximizes divergence in ^l

k-dimensional	 space, and,	 in fact,	 that	 U	 can be written in the form

(1, 11 01,	 where	 U	 is an orthogonal	 n x n	 matrix.	 we will	 investigate the

role of the eigenvalues of	 U	 in such problems,	 and give an example demon-

sLrating that the divergence measure of pattern class distinction does not

depend on	 these eigenvalues	 (Theorem 7).

Our example is derived from the family of examples constructed in [3].

This special	 class of examples permits analytical	 calculation of divergence,

a task ordinarily eschewed as unrealistic, and yields a precise expression

for divergence.	 The reader is cautioned, however, not to confuse the numerical

I simplicity of this example with impracticality,	 since, mathematically,	 the

I
failure of the eigenvalues of	 U	 to affect divergence in the restricted case

erases any hope that they might be meaningful	 in an arbitrary case, however

applied.

1.	 Special	 divergence	 formulas.	 Let	 ST1,...,S^m	 andu1 ,...,Nm	be the

covariance matrices and means 	 for	 m	 classes, where for each	 i	 =	 1,...,m,

tt i	is	 an	 n x n	 positive definite matrix and 	
lii	

is	 a column	 n	 vector.

Let

Si = L'^(Q	 + d i ^d^^	 ),	 where	 d id = U i	 - h^=1

j¢i
n

Then, assuming equal	 a rp iori	 probabilities,	 the average interclass divergence

' for these	 m	 classes is given by i

F
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D = '2 tr(iFl	 Qi 1 	 S i )	 -'.m(m -	 1)n (1)

while,	 if	 B	 is a	 k x n	 matrix,	 the	 B-average interclass divergence is

DB = ''-s tr( i L 1	(Bal i	BT ) -1 (BS i	 BT ))	 -	 m(m -	 1)k (2)

where	 tr	 represents the trace function.

Moreover, as ohserved	 in	 [31,	 if

(B	 - 'BB 	 =	 I k	and	 (BT OR	 = Q	 (BTB ),	 i	 =	 1,...,m}<n'

where	
I 
	 is the	 k x k	 identity matrix and	 M

kn	
is	 the set of all	 k x n

real	 matrices,	 then,	 for any	 B c (','	 (2)	 may be rewritten as

DB = sz tr(B(imE	
0'1	

S i ) BT )	 - 15 m(m -	 1)k (3)

For the remainder of the paper we assume that each 	
Q 
	 is a diagonal.

matrix of the form:	 Xi

^

where	 x	 is a positivei real	 number,

In-1

and	 u i	 = uj	 for all	 i,j.	 Under these restrictions, 	 iEl	
Q S i	 is	 a

diagonal matrix of the form	 ( 
X

pIn-1
where

X =	
i i i	 'X	

( j E 1	 x j )	 and	 p = m(m - 1).	 It follows from	 (1) that the

jai

average interclass divergence for the	 in 	 is given by

D = 4(x	 -	 P) (4)

As observed in	 the introduction,	 in seeking to maximize the B-average

interclass divergence 	 DB ,	 iL suffices to consider those	 k x n	 matrices of

1'
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the form (I k IZ)U , where U is an n x it orthogonal matrix. In the sequel,

when ronsideriag D B , we shall always assume that B is of this form. For

any such k x n matrix B, it is obvious that BBT = I  , and hence B e

if and only if (BTB)D i = Qi (BTB) for i = 1,...,m. We will derive necessary

and sufficient conditions in order that B c ( (Theorem 2), but first we

calculate D 	 in the case that formula (3) is valid. Rerall that all means

are hereafter considered equal and all covariance matrices diagonal of the

form stated above.

Theorem_1. Let B = (I k IZ)d , where U = (u ij ) is an n x n orthogonal

matrix, and suppose D 	 is given as in (3) above. Then

DB = ( i E l U. )D
	

(5)

Proo f : Since tr(XY) = tr(YX) whenever both products are defined, we have

T	 a'	 -1
in this case	 D B = ;i tr(B Q(

i T l ^i S
i )) - '•z pk	 If U is written in

block form,	 U =	A 
1 )
	 where A is k x k, then

(E F

m	 -1 i x
Since i E 1 Q	 S i - PI

n-1

x

P	 I	 l	 = p	 1	
, where M is the k x k matrix 	

P I

' P

	

n-ll	 (	 n-k	 k-1

T	 1°	 -1	 A AM A	 TTTC 1	Therefore,	 tr(BQ(.E S -1 S.))then Q Q( i=l SI i S i ) 
= P. ^CTAM CT C I	 -1	 i	 i

p(tr ( A
T
All) + tr(CTC)) = P((jEI "J
	

11

ill q}2 (jFl uJq) + q

= 
+1 (j-1 ujq))

k	 2	 n	 k	 2	 n	 k	 2
( j E 1 ujl )x + p( g E2 ( j E1 ujq )). Since U is o rthogonal,	 q E2 ( j E 1 ujq)

c

B 
T 
B = UT (I 1Z) T (I ^Z)U -_
	 A 

T 
A A 

T 
C

k	 k 	 C T A C T C
x	 M
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k	 2k	 2	 k	 2	 k	 2	 1
jE, ( 1 - uj1 ) = k - jX1 uji , so that % = 'Z(( jE u jI )x + P( h - j=I 

u.	 - z pk

( j I u^I)( x^ ) = ( j kI u^ I )U .

Our next result gives necessary and sufficient conditions in order that

B = (I k jZ)U e r . While the proof is rather tedious, these conditions are

particularly easy to apply and hence useful in seeking examples.

Theorem 2. Let B = (I V IZ)U	 where U = (u ij ) is an n x n orthogonal matrix.

If, for each	 i = 1;...,m, SZ.	
(xi 

In-1	
,	 then:

^  

(1) if xi = 1	 for all	 i,	 then B c^

(2) if x i ¢ 1 for at leastone i, then B e (G	 if and only if

u
jl
2 = 1 or	 F: u2 = 0.

j-1 	 j-1 J1

Proof: If x i = I , then Q  = I n and (BTB)Q i = !? i (BTB) for any k x n

matrix B. Thus, if x i = 1 for all i, then B e 	 for any k x n matrix

of the form (I k IZ)U. We suppose that x i ¢ 1 for at least one i. As in the

proof of Theorem 1, we decompose U into the block form 	
rA C1

so`E F) 
( ATTA )

that BTBCA 
ATC
CTC /I	 where A is again k x k. For a fixed i such

.

that x i ¢ 1, write St i in block form	 \G ^ I	 )	
, where G i is the

n-k

Xi	 T	
ATAGi ATC

, while

C 
n i ( BTB ) =

Ik I	 CAGi CC,

C

G 
i 
A T A GiATC !

CTA	 CTC

k x k matrix	

1	

. Then (B B)Q, =	 T	 T
r

Thus, BT 	 commutes with Q i if and only if

}
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(1)	 ATAGi = Gi ATA and	 (2)
CT 
AG= C 

T 
A We write	 ATA	 and	 CT 	 in block

form:	 ATA =
CIS
	 M)	

C 
T 
A =	

1p	 SN
where	 L	 and	 P	 are	 1 x 1	 .

Since	 ATA	 is symmetric,	 N = MT .	 Therefore,
Lx.	 M

ATAG i =	 T^ wrl	 x i

T
and	 G i A A =

xit.	 xiM
T

T
Thus	 A AG i

T
= G i A A	 if and	 only	 if	 td =	 xiI.1

M	 W

and similarly, CTAG i = C 
T 
A if and only if Pxi	= P	 and	 Rx i	= R.	 Since

k k (p i

k
1 uJk+lu 

14 =	 ( j E l	 ujl u j2 ,...,	j E l	 ujljk )u	 and	 IR)
k	 u.'u.	

it

j= 1 Jn J1

follows that 14x  = M, Px i = P, and Rx i = R if and only if

x i ( j E l ujl ujq = jE ujl ujq for q = 2,...,n. Thus, since x i i 1, we have

that	 (6 1 1i)S2 = SZ([iT	
k

i	 i B) if and only if jN1 u jl ujq = 0 for q = 2,...,n.

Since the above argument is vdlid for any 0 i for which xi ¢ 1, and since

BTB commutes with Q	 for any i for which x i = 1, it follows that

k
B e	 if and only if j E 1 

Ill jl ujq = 0 for q = 2,...,n. We next show that

E ujl ujq = 0 for q = 2,...,n if and only if j El u^ l = 1 or jEl Upj l 	
= 0.

n	 k	 n
Since U is orthogonal, 	 E u. u. = E u. u. + E,	 u. u	 = 0 for

j=1	 J l J9	 j= 1 	 J 1 J q	 j-V.+1	 J1 Jq

q = 2,...,n, while 1 = jEl ujl = 
jEl u jl	 + jEk+1 U.	 T

hus, if j E l U. = 1,

then up = 0 for j = k + 1,...,n, , and j E1 u jl ujq = i Ei u jl ujq = 0 for

k
q = 2,...,n.	 If A ujl = 0	 then up = 0 for j = 1,...,k and,

obviously j k l ujl ujq = 0 for q = 2,...,n.
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k
Conversely, suppose that ..11 u jl u jrl = 0 for q = ?,...,n.	 if

u ll =	 = u
kl = 0, then j 3a u^ l = 0 and the proof is complete. Otherwise,

let url be the first non-zero cloment in the first column of U, where

r e k. Then 0 = j=1 JE u.1J
u.q = url urq + J = 1̂,+l uj1J

u.q
	

so that

	

-1	 k
u rq = url (j=r+l ujl ujq ) for q = 2,...,n. Thus, if ur•fll"",ui,l - 0'

k
then u rq = 0 for q = 2,...,n and it follows that 1 = u 

2
rl 

= j1 
2

}. ujl
n

Suppose uvrl ¢ 0 where r < w . V	 Since 
u rl uwl + q".2 u

rrq u rq = 0	 then

substituting for u rq , q >. 2, we have

i

urluwl + qE2 uwq(11	 j °rfl
 u J1 j(I = urlur1l + 

(ire,) j_k
+1 uj1 ( q -2 u r•

,
q ujq ) = 0

i

d	
Since U is orthogonal, then for j / w, qn 2 u r^qujq = - L1 wl uJ1 and for

n	 n	 2	 2	 k	 n
j = w, qE2 uwq ujq = q _L' 2 uwq = 1 - uwl	 It follows that 

j = ^+l ujl ( gj2 uwqujq)

k
I	 u (•_	 (-u2 )) + u	 , and, substituting in (6), we have

	

V11J-+1	 jl	 t•^1

k
uwl (u rl + (url)(j=+1(-u^l)) + 

(ir̂ l )) = 0	 Multiplying by u rl , we have

u(u	 + -r+1 u21 -
	 wl('1) - uL r u 2 1 - 1) = 0. Since 

u ril ¢ 0
	 it now

wl rl j = 	 J	 J-	 j
follows that 1 = j ar ^ l 	u= j >1 ^u	 l .

We note that, if there exists at least one Q 	 which is not the identity

matrix I n , then the proof of Theorem 2 shows that 
OTO 

commnutes with all

n i 's if and only if 
4TQ 

computes with 2j . Moreover, in this case, the

elements of ^ are precisely those D = (I k IZ)U for which the first column of

(6)

r

G
i
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U is of the form	 u11	 or	 ; 0

u kl,	 uk+ll

)

0	
`unl

Nance, by Theorem 1, if D e . , then D D = D or 0B = 0	 (Note that

if Et  = I n for all i, then D = 0 .)

We close this ss-ction with a definition. If V denotes the set of all

n y n orthogonal matrices, let 	 _ {U = (u ij ) c. V	 j E l u^ l = 1 or 0).

Thus, if there exists 4j ¢ I n	then B = (I k 1Z)U r ( ;	 if and only if

U F

7.	 Ei2envalues o f 	 U	 Let	 U =	 (u ij )	 be an n x n orthogonal matrix.

As	 is well	 known,	 (12]	 the eigenvalues of U lie on the unit

circle	 in the complex plane and non-real 	 eigenvalues occur in conjugate

pairs.	 Thus,	 if	 U	 has a real	 eigenvalue	 a, then a = f ,	 and,	 if

u = a + bi,	 b # 0	 is an eigenvalue of	 U,	 then N = a - bi is also an eigen-

value of	 U	 Clearly,	 det U = +1	 Moreover, if 1	 has multiplicity	 p	 as

an eigenvalue of	 U,	 -1	 multiplicity	 m,	 and [aj + bj i,a j - bj i)q =I	(bj	# 0)

are the remaining eigenvalues of	 U,	 then	 U is	 similar to a block diagonal

orthogonal matrix	 PUP- '	 of the form:

/ Al

A9I

PUP - '	 =	 1 (7)

ti:,
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where 1 appears on the diagonal p times, -1 appears m . times, and each

	

/ a.	 b•
A.	 Jl b	

aJ	

is a 2 x 2 o^thogonal matrix with eigen values aj + bji

	

J	 J1

bj i. Furthermore, the order in which the A.'s, 1's, and -1's appear
i

on the diagonal can be changed to any desired order by a similarity transformation.

Thus. any two orthogonal n x n matrices with the same set of eigenvalues are
i,

similar. Finally, we observe that if U is a 2 x 2 orthogonal matrix, then
i

, i 	 U =	 c	
d	

or U =	
c	 d1	

where c2 + d 2 = 1
_	

.
(d	 c	 d	 c.

Let B = (I k ll_)U c k' . For the remainder of the paper we will be concerned

with determining what role, if any, the eigenvalues of U play in determining

DU 	If 
(X l " " 

'an) is a set of n not necessarily distinct complex numbers

for which there exists an n x n orthogonal matrix U with eigenvalues

	

n	
then we will say that (a l , ... ,a,I ) is a (*) set . We note that

if T = 
{
^1"' 'fin) is a set of n not necessarily distinct complex numbers

such that T is closed under conjugation and every element of T has modulus 1,

then T is a (*) set	 Throughout the following, we assume that 1 e k < n,

where k and n are positive integer:, and we assume that at least one

covariance matrix Q  ¢ I n .

Proposition 3. Let {al,,,,,an} be a (*) set. Then there exists an orthogonal

matrix U with eigenvalues a l , ... ,arI such that 6 = (I k Il.)U c 
r 

and D  = D

if and only if one of the following conditions holds:

( i )	 X  is real for noire i

	

(ii)	 k a 2 and no 1i is real

^j

i
a

y
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Proof: Observe that if at least one. A
i
 is real, say 1 1 , then by (7)

there exists a block diagonal orthogonal matrix U of the form U = C a1 C/1

where C is an (n - 1) x (n - 1) block diagonal orthogonal matrix with

eigenvalues a 2 ,...>1n	 Thus, if U = (u
ij

) , then j
E 1 uj1
=	 uj1 = X^ = 11

so that 6 = (I k 1Z)U e	 and D6 = D (Theorem 2). If no X^ is real, then

n is even, and by (7) there exists a block diagonal orthogonal matrix U with

eigenvalues a 1 , ... ,a n such that U =	
Al	

where each Aj is

A
n
2

a	 b
a 2 x 2 matrix of the form	 i	 j	 bj ¢ 0 . Thus, the first

(-b^
	 a^

column of U .s	
-b	

andand hence, if k a 2, then Q = (I k !z)U e
1

0

0

and De = D

Conversely, suppose that k = 1. If there exists an orthogonal matrix U

with eigenvalues a 1 >...,^ n such that 6 = (I k 1Z)U E	 then U c j . Thus,

if D =D, then U is of the form	
/a 0 ... 0	

where a = +1 and
0	

1^	

C	 —

C is an (n - 1) x (n - 1) orthogonal matrix. Therefore, a is an eigenvalue

of U and A. = a is real for some i.
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It is natural to consider the analogous condition 0 B = 0. That is,

given a (*) set 
(N 1 " " 

'fin), does there exist an orthogonal matrix U with

these eigenvalues such that B = (I k IZ)U r	 and DQ = 0 ? The answer, as in

the preceding case, is no in general, but it is true in some important cases.

Proposition 4. Let T = (al,...,Xn) be a N set. If either

(i) 1 and -1 e T , or;

(ii) i and -i c T ,

then there exists an orthogonal matrix U with eigenvalues (X 	
such

that D = (I k jZ)1! * to and % = 0 .

Proof. Let 1 1 and 12 denote the pair 1, -1 or i, -i, let H be any

(n - 2) x (n - 2) orthogonal matrix with eigenvalues a 3 ,...,^n , and let

	

0	 Z	 bl

U =

	

	 Z	 H	 Z	 where Z denotes an (n - 2) row or column vector

b2 Z 0 )

of zeros, and if (X II a2 } _ {1, -1), then b  = b 2 = 1 , and if

{X I , a2 } _ {i, -i}	 then b l = 1, b2 = -1

Clearly, U is an orthogonal matrix. Moreover, the eigenvalues of U

are 
{X 1 " " ,fi n ) , since det(xI n - U) _ (x 2 - b l b 2 ) det(xI n 2 - H) and

hence the roots of det;xI n - U) = 0 are the roots of det(xI n-2 - H) = 0,

together with the roots of x 2 - b
1
b2 = 0	 Since the roots of the former

equation are the eigenvalues of 11, its suffices to show that X 1 and a2

are the roots of x 2 - b 1 b2 = 0. This follows immediately from the relationship

5



3

12

defined between the values of 
X1 

and a2 and the choices of b 	 and b2 .

Thus, since we assume k < n, then Theorem 2 implies that U e ^ , so

that B = (I k ^Z)U a 7 , and, by Theorem 1, DB = 0.

Our next result shows that, if n = 3, then Proposition 4 does not

characterize those (*) sets T for which there exists an orthogonal matrix

U with set of eigenvalues T such that B = (I k IZ)U E	 and D  = 0 . We

will obtain a partial extension of this result to arbitrary n and we will

make strong use of the extension in our main result, Theorem 7.

Lemma 5. Let n = 3, k = 2, and suppose that 
(X I I X2 , 

X3} is a N set,

where ,1 I = a + bi, a 2 = a - bi.

(1) If a3 = 1, then there exists a 3 x 3 orthogonal matrix

U with eigenvalues a I , X2 , 
X3 such that U e j and DB = 0,

B = (I k IZ)U, if and only if a, the real part of a I and a2,

is less than or equal to zero;

(2) if A3 = -1 , then there exists a 3 x 3 orthogonal matrix U

with eigenvalues xi, 
X2 , 

X3 such that U e ,J and D  = 0,

B = (I k IZ)U	 if and only if a, the real part of a I and a2

is greater than or equal to zero.

Proof. Observe that if U c j is such that DB = 0 , where B = (Ik(Z)U,

then by Theorems 1 and 2, U is of the form
	 0 A `	 , where0	 1

vno

v = +1 and A is a 2 x 2 orthogonal matrix. Moreover, if U has eigenvalues
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X 1' X 2' X3	
then det(U) = X 1 \ 2X 3 . Thus, if X 3 = 1, then det(U) = 1,

and if X3 = -1, then det(U) = -1 	 We consider the case X 3 = 1, the

case X 3 = -1 being similar.

If v = 1, then A is of the form
(-d 
	

d) 	
Then det(xt 3 - U)

x 3 + 1x 2 - dx - 1, so that Lhe eigenvalues of U are 1, -(1+d) ± i^ 3-2d-d 2 .

Thus, there exists U with eigenvalues X 1 , X 2 , 1 if and only if there exists

a real number d, Idl < 1 , such that

a =	 12d_Z	 b = 1L3_2d'.:d?	 (8)

Since Idl s 1 , then - 2+d -- 0	 and thus, if U exists, then a s 0.

Conversely, if a s 0, then d = -(1+2a) satisfies both equations in (8)

and Idl < 1 . If v = -1 , then A =	
\d	 d^	

and the eigenvalues of

U are 1,	
d-1 ± i 1 3+2d-d 

2	
An argument similar to the preceding one

shows that there exists U with eigenvalues X 1 1 X 2 , 1 if and only if a s 0.

Corollary 6.	 Let n and k	 be positive	 integers, 1	 s k < n,	 and suppose

that	 T	 =	 {X1,...,Xn} is a N set.

(1) If l c T and if there exists a + bi e T, with a s 0, then there

exists an n x n orthogonal matrix U with eigenvalues T such

that U c4 and D4 = 0, where 6 = (IkIZ)U.

(2) If -1 c T and if there exists a + bi c T, with a t 0, then

there exists an r, x n orthogonal matrix U with eigenvalues T

such that U c I and D8 = 0, where 8 = (I k 1Z)ll .

i!
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0c d
Proof. By Lemma 5 and its proof, if a : 0, then A = 	 0 -d	 c
"	 1	 0	 0

where d = -(1 + 2a), is an orthogonal matrix with eigenva lees 1, a ± bi.

Thus, if U is the n x n block diagonal matrix	
\ A	 H )	

where H

is an (n - ") x (n - 3) orthogonal matrix with eigenvalues T\(1, a + bi)

then U is an orthogonal matrix with eigenvalues the elements of T. Therefore,

if U is the n x n matrix obtained from U by interchanging the third and

nth rows and columns of U	 then U is orthogonal, and, since U is similar

to U , the eigenvalues of U are also the elements of T. Finally, since

the first column of U is	 0	 we have U e	 and, by Theorems 1

011!
and 2, Da = 0 , where B = (I k I7)U and k	 n . The proof of (2) is

similar.

We make a few additional observations before stating our main result.

Let U be an n x n orthogonal matrix with eigenvalues a l , (a j + bji)j=2

where b 	 may be zero. Since tr(U) is the sum of the eigenvalues of U,

it follows that if a l = 1 and a  > 0 for j = 2,...,n	 then

n
tr(U) = 1 + n a. > +1 , while if a = -1 and a. < 0 for j = 2,...,nj-2 J	 1	 J

then tr(U) -	
n

-1 + j^2 aj < -1	 Also, if A is orthogonal and det(A)

then -1 is an eigenvalue of A. This follows immediately from the fact that

det(A) is the product of the eigenvalues of A 	 repeated to their respective

multiplicities. Finally, if A is orthogonal, n x n, and n is even, then

det(A) = -1 implies that both -1 and 1 are eigenvalues of A.
J^

.1i

.a
w
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Theorem 7. Let n and k be positive integers, 1 s k < n, let U be

an n x n orthogonal matrix, and let B = (I k lZ)U be such that D  = D.

If U =	 C I n-1	 Z 1 U	 and if 6 = ( I k lZ)U	 then D = D	 so

Z	 1

that D = DB = D. Either U or U is similar to an n x n orthogonal
matrix U 1 e	 such that DB = 0, where B l = (Ik1Z)Ul.

1

Proof. Note that the matrix U differs from U only in that the last row of

U is the negative if the last row of U 	 Clearly, since k < n, we have

D = B.

Plow t.•uppose that n is even. 	 If det(U) = -1, then 1 and -1 are

eigenvalues of U and thus, by Proposition A, there exists an orthogonal

matrix U 1 similar to U such that B 1 = (Ik1Z)UI 
E:

	 D 	 0	 If

det(U) = 1, then det(U) = -1, and the above argument applied to U yields

the same conclusion.

Suppose that n is odd. Then U must have at least one real eigenvalue,

X	 If a •= 1 and if U has another eigenvalue a + bi, a s 0, then the

conclusion follows from (1) of Corollary 6. Similarly, if a = -1 and if U

has another eigenvalue a + bi, a a 0 , then the conclusion follows from (2)

of Corollary 6. Suppose now that a = 1 is an eigenvalue of U and that

a > 0 for all other eigenvalues a + bi of U. Then det(U) = 1 and

tr(U) > 1. Since det(II) = -1, it fellows that -1 is an eigenvalue of U,

and, since tr(U) can differ from tr(U) by at most 2, we have that

tr(U) > -1 . Thus, U must have an eigenvalue of the form c + di, where

c > 0, and hence, by (2) of Corollary 6, there exists an orthogonal matrix

a
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i

rI

Ul	 similar to U	 such that R 1 = (I k 1Z)U I c	 and DB = 0	 The
1

case in 1-,nich a = -1 is an eigenvalue of U and that a : 0 for all other

eigenvalues a + bi of U is handled in a similar manner, and we omit the

proof.

3. Conclusion. This paper provides an example to show that, even under

extremely strong conditions, the eigenvalues of U do not affe°t the value

of divergence D(I1Z)U in the space of reduced dimension.
k
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