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The Role of Eigenvalues in Linear Feature

Selection Thaory

D. R. Brown and M. J. 0'Malley

Dapartment of Mathematics, University of Houston

Houston, Texas 77004

Introduction. Recent statistical work in feature selection for the muitivariate
normal pattern recognition problem has concentrated on linearly transforming
pattern classes so that the transformed pattern classes are equivalently distin-
guishable. Since, in general, this is not possible, techniques have been
doveloped to preserve the distinction of the transformed pattern classes using
varijous measures of distinction. These measures of pattern class distinction
are most often treated as eigenvalue problems ((31, {2], [5}, [6], [7], [9],
(131, (141, (15]). 1In this paper we consider a particular measure of pattern
class distinction called the average interclass divergence,.or more simply,
divergence, ((1], 2}, (41, (61, L71, (8], [9}, [10), [11]), where divergence

will be the pairwise average of the expected interclass divergence derived from

Hajek's two-class divergence as defined, for example, in {9].
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It nhas bLeen shown in 4] that there always exicks a k X n real malrix
B such that the transformation determined by B maximizes divergence in
k-dimensional space, and, in fact, that 8 can be written in the form
(IK{Z)H, whera U 4s an orthogonal n x n matrix. We will investigate the
role of the eigenvalues of U 1in such problems, and give an example demon-
strating that the divergence measure of pattern class distinction does pot
depend on these eigenvalues (Theorem 7).

Our example is derived from the family of examples constructed in [3].
This special class of examples permits analytical calculation of divergence,
a task ordinarily eschewed as unrealistic, and yields a precise expression
for divergence. The reader is caution~d, however, not to confuse the numerical -
simplicity of this example with impracticality, since, mathematically, the
failure of the eigenvalues of U to affect divergence in the restricted case
erases any hope that they might be meaningful in an arbitrary case, however

applied.

1. Special divergence formulas. Let Q],...,nm and Hyoe ool be the

covariance matrices and means for m classes, where for each 1 =1,...,m,

2 is an n x n positive definite matrix and My is a column n vector.

Let
5, = £} (Q, *‘ﬁ--ﬁT- ), where &.., = U, - |,

1 J=1 ) iitij " ] i J ;

j#i

Then, assuming equal a priari probabilities, the average interclass divergence

for these m classes is given by _ ¥



n - .
D=1 tr(igl 91] Si) -~ m{m - 1)n (1)

while, if B 1is a k X n matrix, the B~average interclass divergence is

0y = % tr( g, (b2, 87)71(8s, 87)) - Lm(m - 1)k (2)

where tr represents the trace function,

Moreover, as ohserved in [31, if

- . oapl =
F = (B vy BB = I

T

and {BTB)§21.=91.(B B, i=1,....m ,

k

where Ik is the k % k identity matrix and Mkn is the set of all Kk xn

real matrices, then, for any B edf . (2) may be rewritten as

Ty < ymlm - 1)k (3)

D, = % tr(B(,

i1 T

1=

B

For the remainder of the paper we assume that each Qi is a diagonal

matrix of the form: *i » where Xs is a positive real number,
In-l
- . mo - i
and ue = b forall 9,j. Under these restrictions, .k, 2.7 5. 1sa
) . X
diagonal matrix of the form ( oI j , where
n-1
m 1, M
X = 1§] ;f-(jg] xj) and p =m{m - 1}. It follows from (1) that the
oY
J#i

average interclass divergence for the m classes is given by
D = 4(x - p) (4)

As observed in the introduction, in seeking to maximize the B-average

interclass divergence Dp, 1L suffices to consider those k x n matrices of



the form (Iklz)U , where U is an n »n orthogonal matrix. In the sequel,
we shall always assume that B is of this form. For

¥ ., and hence B e Cf

when considering DB’

any such k X n matrix B, it is obvious that BB =1

k
if and only if (BTB)Qi = ﬂi(BTB) for i =1,....m. We will derive necessary
and sufficient conditions in order that B ¢ Kf {(Theorem 2), but first we
calculate DB in the case that formula (3) is valid. Rerall that all means
are hereafter considered edual and all covariance matrices diagonal of the

form stated above.

Theorem 1. Let B = (I [Z} , where U= (uij) is an n x n orthogonal

matrix, and suppose D_, is given as in (3} above. Then

B

2

k 2
Dy = (4Ey ujy)D (5)

Proof: Since tr{XY) = tr{Y¥X) whenever both products are defined, we have

moo_ .
in this case Dp = % tr(BTB(igl 91] Si)) -Lpk . If U is written in

block form, U = (2 g) , where A is Kk xk , then
T, AT . ' )
T, T T Ala a'c . mo )
BB =U(1.1z2) (I 12U = . Since .E, &, S. = ( ) =
kI kl CTA CTC ig1 " i ,‘\ p[n_.l
X M X
(p ' . . P
p: I =p I , where M s the k x k matrix I )
\ n-1 n-k k-1
m T T mno .
then B'B(.Z, a0 5.) = p. |~ ACl | Therefore, tr(B'B(.%, o7 S.)) =
=17 T T T £ Nt T
: C'AM C'C
T Toy oo % 2, Kk 20 0 k2
p{tr(A"A) + tr(C'C)) = P((J-Z.I uj1)p gt (jél “jq) q=E+] (j§1 ujq))
k ? n k 2 . . ni k 2 _
(jg} uj])x + p(q§2 (j§1 ujq))’ Since U {s ovthogonal, &, (j§1 qu)
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k
jl) = | - jgl “§1 , S0 that DB = 45((

¢ty brng

(1 -u

J=1

==

YR S O
(jg] UJ])( 3 ) (J.] UJ"I)D .

Our next result gives necessary and sufficient conditions in order that
B = (IkIZ)U eéf . While the proof is rather tedious, these conditions are

particularly easy to apply and hence useful in seeking axamples.

Theorem 2. Let B = (IP|Z)U , where U = (u..) 1is an n »* n orthogonal matrix.

X
If, for each i =1,...,m, Qi = ( ! 1 ) , then:
n-1

(vy dif X5 ® 7 for all i, then B é,;

<
(2) if x; # 1 for at least one 1, then Be { if and only if

ko 2 2 .
j§1 uj] =1 or jZ] gy = 0.

Proof: If X5 = 1, then 2 = In and (BTB)Qi = Qi(BTB) for any k xn
matrix B. Thus, if X; = 1 for all i, then Be ¢3 for any k x n matrix

of the form (IkIZ)U. We suppose that X # 1 for at least one 4. As in the

_ A C
proof of Theorem 1, we decompose U into the block form (E F} , SO
. ATa Alc o
that B'B = CTA CTC , where A dis again k x k. For a fixed i such

G,
that X5 F 1, write Qi in block form 1 I ) , Where Gi is the
' ' n-k

X ATag, ATC
, i T . i .
k x k matrix . Then (B B)Qi = T T , while
[ C'AG;, C'C,

T . AT
Qi(BTB) = GiA A bin C) . Thus, BTB commutes with Qi if and only if
c’a  ¢T¢
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6,ATA and (2) c'hg, = ¢"A . Wewrite ATA and C'A in block

(1) ATAGi

N
form: ATA = (h E ) . CTA = (g g} , where L and P are 1 x 1.
. . . i Lx; M
Since A'A is symmetric, N =M. Therefore, A AGi = k T )
Mx, W/,
i

T xbooxi T T
and GiA A= T . Thus A AG, = G.A'A if and only if M = x:M

and similarly, cTAG1

CTA if and only if Pxi = P and in = R, Since
1 “jk+1uj%\

1 Yintn )

i
| [{ng g

'1 = L3
l (J

[ 110 bl | [ o

p J
1 ujTUjk) and (R) =
J

1 uj]ujz,..., j

follows that Mxi =M, Px; = P, and in =R if and only if

-

il8 Y150 7 3

Ho-1=

X for q = 2,...,n. Thus, since X # 1, we have

1 Y51%q

Qi(BTB) if and only if |

Hee

that (B'B)Qi 1 Y514 * 0 for q=2,...,n.

iq
Since the above argument is valid for any Qi for which X # 1, and since

BTB commules with Qi for any 1 for which X5 = 1, it follows that

K
Bef ifandonly if )

u,.uu, =0 for q=2,...,n. We next show that

1731 g
2 ko 2
= . -, = 0.
5E1 Y4 1 or 351 Us
e U : ! :
. LU= L hoouu U
Since is orthogonal, .Z, Ust¥iq = 581 Y51Y5q J§k+] U514q

Neviz

k
j§] u 0 for q=2,...,n if and only if

i1Y%3q ~
=0 for
q=2,...,n, while 1 =

n
then ”jl =0 for J=%k+1,...,n, and L

k
q=2y...,n. If 2 ui =0, then usq = 0 for j=1,...,k and,

obviously 14 uj]”jq = 0



k
Conversely, suppose thatk jxl ”j]“Jq =0 for q=2....,0 IT
Mg 5 vee T Uy T 0, then j§1 “j] = 0 and the proof is complete. Otherwise,
Tet U be the first non-zero element in the first coluwmm of U, where

k
rs2k. Then 0= ,E. u,,u,

J¥1 731 3q ) rlurq + j=b+1 ujlujq y S0 that

I X =
Urq- ’G‘;T (j=¥] U..U 0’

i1 jq) for q = 2,...,n. Thus, if Uppppeee

U
2 _ Kk 2
il T g Y5

+

then “rq =0 for q=2,...,n and it follows that 1 = u

Suppose Ui #0 where r <w<=Fk . Since u =0, then

n
1t ¥ q§2 quurq

substituting for u q =2, we have

rq’
k n
)
i

* - -] t; =
41 Uilg) T Uty Y G e Ui {gle Ygtyy) T 0 (6)

“r1“w1 0= ? wq(u j= U

. , : . n -
Since U 1is orthogonal, then for j # w, (%2 quujq = '“w]“j] and for

n n
= 32 It follows that

2
qk2 ”wqujq = of2 Yuq

=1 - Uy -

] = X 7 u, ) =
J =, j=§+1 ”jl(qéz Ywq" jq

w] j= %+1 (- u ) Uy o and, substituting in (6), we have

- K 2 vy . (ol - P
0+ G g (0G0 # (G000 = 0 Haltiplying by ugy, e have
2 k2 _ kK 2 _ . .
uq U, + PR 1) = uw](j;r uiy - 1) = 0. Since u,#0, itnow
follows that 1= § W2 = 5 42

We note that, if there exists at least one Rj which is not the identity
matrix In , then the proof of Theorem 2 shows that BTB commutes with all
Qi's if and only if BTB commutes with Qj' Moreover, in this case, the

elements of {i are precisely those B = (Ik|Z)U for which the first column of



U is of the form N or 0
u Uy,
Oklj ke1]
0 / Un-l /
Hence, by Theorem 1, if B e C: , then DB =0 or DB =0 . (Note that
if Qi = In for a1l i, then D=0 .)
We close this szction with a definition. If V denotes the set of all
Y k
n » n orthogonal matrices, let ?l = {U = (Uij) eV j§1 ug] =1 or 0}.

o

Thus, if there exists Qj # 1, . then B= ([k|Z)U r (. if and only if
Ue 4£ .

2. Eigenvalues of U . tet U= (u,.) bean nx%xn orthogonal matrix.

1]
As is well known, (121 , the eigenvalues of U 1ie on the unit

circle in the complex plane and non-real eigenvalues occur in conjugate

pairs. Thus, if U has a real eigenvalue , then x= #1, and, if

p=a+bi, b# 0 is an eigenvalue of U, then p=a - bi is also an eigen-

value of U . Clearly, det U= +1 . Moreover, if 1 has multiplicity p as
i - i ici ] .+b.., = .‘q. b. 0

an eigenvalue of U, -1 muitiplicity m, and {aj * byisa, b31}3=] ( j £ 0)

are the remaining eigenvalues of U, then U is similar to a block diagonal

orthogonal matrix pUP!  of the form:

pUP”! = 1 _ s (7)



where 1 appears on the diagonal p times, -1 appears me times, and each
{a, b, .
Ay = k:bJ J isa 2 %2 o-thogonal matrix with eigepvalues a; + bsi

a, = bj1. Furthermore, the order in which the Aj's, 1's, and -1's appear
on the diagonal can be chanyed to any desired oirder by a similarity transformation.
Thus. any two orthogonal n % n matrices with the same set of eigenvalues are

similar, Finally, we observe that if U is a 2 x 2 orthogonal matrix, then

U= ¢ dl) or U= | ¢ d} whare c2 + d2 =1,
d ~c| \Td c!

Let B = (Ik|Z)U G c;. For the remainder of the paper we will be concerned
with determining what role, if any, the eigenvalues of U play in determining

DB . If {A],...,An] is a set of n not necessarily distinct complex numbers

for which there exists an n x n orthogonal matrix U with eigervalues

Apr-eesdy s then we will say that {A},...,A ) is a (*) set . We note that

i
if 1= {A],...,An} is a set of n not necessarily distinct complex numbers

n

such that T 1s closed under conjugation and every element of T has modulus 1,
then T s a (*) set . Throughout the following, we assume that 1 <k < n,
where k and n are positive integerc, and we assume that at least one

covariance matrix Qi 7 In .

Proposition 3. Let {x],...,an} be a (*) set. Then there exists an orthogonal
matrix U with eigenvalues Ays...sA, such that B = ([kIZ)U £ éf and D =D

if and only if one of the following conditions holds:

{i) A is real for some i .

(ii) k=22 and no A\; is real .

Sampe e T e ke e
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Proof: Observe that if at least one Aj is real, say A] , then by (7)
there exists a block diagonal orthogonal matrix U of the form U = ('\1 ) ,
C

where C s an {n- 1) % {n - 1) block diagonal orthogonal matrix with

2 2

. \ . k
eigenvalues Az,...,kn . Thus, if U= (uij) , then j§1 ”?I = uj} = A1 = 1,

so that B = (Ik]Z)U € ﬁ? and D, =D (Theorem 2). If no A, is real, then

B J
n is even, and by (7) there exists a block diagonal orthogonal matrix U with
eigenvalues A1,...,An such that U = A] , where each Aj is
n
2
a. b,
a 2 %2 matrix of the form ( Jdood + by # 0. Thus, the first
a '
column of U s b , and hence, if k =2, then B = (I_'Z)l € é?
- _I k
0
0
and DB =D .

Conversely, suppose that k = 1. If there exists an orthogonal matrix U

with eigenvalues J\],...,An such that B = (IkIZ_)U £ ﬁ , then U eﬁg. Thus,

0
0 ¢
0

if Dy = D, then U is of the form /a 0...0 , Where a = +1 and

C isan (n-1) x (n~ 1} orthogonal matrix. Therefore, a is an eigenvalue

of U and Ai = a 1is real for some 1.

T —
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It is natural to consider the analoyous condition bp = 0. That is,
given a (*) set {A],...,ln}, does there exist an orthogonal matrix U with

these eigenvalues such that 0 = (IkIZ}U C ;’ .and DB = 0 7 The answer, as in

the preceding case, is no in general, but it is true in some important cases.

Proposition 4. Let T

[A],...,An} be a (*) set. If either

(i) 1 and ~TeT, or;
(i) i and ~ieT,

then there exists an orthogonal matrix U with eigenvalues {A1,...,An] such

that B = (Ikll)“ *1; and Dy =0,

B

Proof. tet A, and A, denote the pair 1, -1 or i, -1, let H be any

(n-2) % {n~2) orthogonal matrix with eigenvalues Agreveah, » and et
0 1z b]
U= Z K Z , where Z denotes an (n - 2) row or column vector

of zeros, and if {Aj, Az} = {1, -1}, then b] = b2 =1, and if

{}v], Az} = {]', 'i} s then b-l = ], b2 = ".I .
Clearly, U is an orthogonal matrix. Moreover, the eigenvaiues of U
. _ 2 -
are {A],-..,An} » since de-t(xIn -U) = (x° - b1b2) det(xIn_2 H) and

hence the roots of det{xln - U)

it

0 are the roots of det(xI _, - H) = 0,
together with the roots of x2 - b]b2 = . Since the roots of the former

equation are the eigenvalues of H, its suffices to show that Al and kz

are the roots of xz - b]b = 0. This follows immediately from the relationship

g =
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defined between the values of A] and Az and the choices of b1 and h2 .
Thus, since we assume Kk < n, then Theorem 2 implies that U e “i , S0

that B = (IkIZ)U E Z: , and, by Theorem 1, D 0.

B

Our next result shows that, if n = 3, then Proposition 4 does not
lcharacteriza those (*) sets T for which there exists an orthogonal matrix
U with set of eigenvalues T such that B = (Ik[Z)U sg and DB =0 . We
will obtain a partial extension of this result to arbitrary n and we will

make strong use of the extension in our main result, Theorem 7.

Lemma 5. let n =3, k=2, and suppose that {h], Ays A3} is a (*) set,

1]

where A] a + bi, Az = a - bi.

(1) If Ay = 1, then there exists a 3 x 3 orthogonal matrix
U with eigenvalues A], Az, A3 such that U e éf_ and DB = 0,
B = (Ik|Z)U, if and only if a, the real part of A, and X,

is less than or equal to zero;

(2} if A, = -1, then there exists a 3 x 3 orthogonal matrix U
with eigenvalues Ao Ags Ag such that U € Ai and Dp =0,
B = (Ik]Z)U , if and only if a, the real part of A, and 1, ,

is greater than or equal to zero.

Proof. Observe that if Uc J is such that Dy = 0, where B = (I |Z)U,

0

then by Theorems 1 and 2, U is of the form (0 A ) , where
' v o

v=+] and A isa 2x2 orthogonal matrix. Moreover, if U has eigenvalues
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A], Az. Ay .+ then det(U) = AdoAg . Thus, if Ay =1, then det(U) = 1,
and if AB = -1, then det{U) = -1 . We consider the case Ay = 1, the
case A3 = -1 being similar.
If v=1, then A is of the form (_; g) . Then det(xi3 - U) =
3 2

2

Thus, there exists U with eigenvalues A 2 1 if and only if there exists

12

a real number d, |d] €1, such that

_ T
) (8)
since 1dl 51, then “Ulso | and thus, if U exists, then a = 0.
Conversely, if a s 0, then d = -(1+2a) satisfies both equations in (8)
and |d] =1, If v=-1, then A= (g _g) , and the eigenvalues of

(d-1) * iy 3+2d-d°
2
shows that there exists U with eigenvalues Ao Az, 1 if and only if a = O.

U are 1,

An argument similar to the preceding one

Corollary 6. Let n and k be positive integers, 1 ¢ k < n, and suppose

that T = {A1,...,An} is a (*) set.

(1) If 1eT and if there exists a + bi € T, with a < 0, then there
exists an n X n orthogonal matrix U with eigenvalues T such

., _
that U e {i and DB = 0, where B = (IkIZ)U.

(2) If -1e¢ T and if there exists a + bi e T, with a = 0, then
there exists an r x n orthogonal matrix U with eigenvalues T

such that U ¢ 4f and Dy = 0, where B = (Ik|Z)U .

x7 4 ox® - dx -~ 1, so that the eigenvalues of U are 1, _-(I+d).i iJ-ﬁ-Ed-dz .

S Y S

B e
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0 ¢ d
Proof. By Lemma 5 and its proof, if a £ 0, then A= 0 ~d c\) ,
1T 0 0
. ‘ /
where d = -(1 + 2a), is an orthogonal matrix with eigenvalues 1, a *+ bi
Thus, if U is the n % n block diagonal matrix (? ﬁ) , where H

is an {n - ") x (n - 3) orthogonal matrix with eigenvalues T\{1, a * bi} ,

then U 1is an orthogonal matrix with eigenvalues the elements of T. Therefore,

if U s the nxn matrix obtained from U by interchanging the third and

ntﬁ rows and columns of U , fhen U s orthogonal, and, since U 1is similar

to U, the eigenvalues of U arc also the elements of T. Finally, since

the first column of U is ? , we have Ue i , and, by Theorems 1

0
1

and 2, Dy =0, where B = (Ik|Z)U and k « n . The proof of (2) is

similar.

We make a few additional observations before stating our main result.

Let U be an n % n orthogonal matrix with eigenvalues A1 ) {aj + bji]g=2 )

where bj may be zero., Since tr{U) 1is the sum of the eigenvalues of U,

it follows that if A] =1 and a.j >0 for j=2,...,n, then

tr(U) = 1+ 5, a5 > 41, while if Xy = -1 and az <0 for j=2,....n

n
then tr({U) = -1 + j§2 a -1 . Also, if A is orthogonal and det(A) = -1,

j ‘\
then -1 s an eigenvalue of A. This follows immediate1y from the fact that
det{(A) is the product of the eigenvalues of A , repeated to their respective
muitiplicities. Finally, if A is orthogonal, n x n, and n 1is even, then

det(A) = -1 implies that both -1 and 1 are eigenvalues of A.
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Theorem 7. Let n and k be positive integers, 1= k «n, Tlet U be

an n % n orthogonal matrix, and let B = (IkIZ)U be such that DB = D,
e In,_.'l Z - — —
If U= U and if B = (1k|2)u , then B=18, so
7 -1

that Dﬁ =Dp = 0. Either U or U 4s similar to an n ¥ n orthogonal

: !
matrix U € tl such that DB1 =0, where B, = (Ik|Z)U1.

Proof. Note that the matrix U differs from U only in that the last row of
U is the negative of the last row of U . Clearly, since k < n, we have

= B,

-

How suppose that n s even. If det{U) = -1, then 1 and -1 are
eigenvalues of U and thus, by Proposition 4, there exists an orthogonal

-~

matrix Uy similar to U such that By = (I, |Z)U; e { and Dg, = 0+ If
det{U) = 1, then det{(U) = -1, and the above argument applied to U yields
the same conclusion.

Suppose that n s odd. Then U must have at least one real zigenvalue,
Ao If x=1 and if U has another eigenvalue a + bi, a =0, then the
conclusion follows from (1) of Corollary 6. Similarly, if A = -1 and if U
has another eigenvalue a + bi, a = 0, then the conclusion follows from (2)
of Corollary 6. Suppose now that X =1 1is an eigenvalue of U and that
a >0 for all other cigenvalues a *+ bi of U. Then det(U) =1 and
tr(U) > 1. Since det{) = -1, it fullows that -1 1is an eigenvalue of U,
and, since tr{U} can differ from tr(U) by at most 2, we have that
tr(U) > -1 . Thus, U must have an eigenvalue of the form c¢ + di, wnere

¢ > 0, and hence, by (2) of Corollary 6, there exists an orthogonal matrix
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. inpd a U . = -
fé Uy, » simi'ar to U, such that B (IkIZ)UI c C' and DB] 0. The
case ip which X = -1 s an eigenvalue of U and that a < 0 for all other

eigenvalues a + bi of U is handled in a similar manner, and we omit the

proof.

g 3. Conclusion. This paper provides an example to show that, even under

extremely strong conditions, the eigenvalues of U do not affe t the value

of divergence D(I 1Z)u in the space of reduced dimension.
k
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