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A Stochastic Approximation Algorithm for

Estimating Mixture Proportions

by

James Sparra

1. Summary. A stochastic approximation algorithm for estimating the proportions

I n a mixture of normal densities is presented. The algorithm is shown to con-

verge to the true proportions in the case of a mixture of two normal densities.

m
2. Introduction. Let A = {a Rm :ai > 0 andii ai = 1). For each i,

i = 1,...,m, let ui be an element of R  and T  
be a positive definite

real symmetric n x n matrix. Let X be a random variable with values in Rn

and with density function.

m

p {a , x) = irl aipi
(x). for x e Ra

where a E A and

Pi (x) = (2R)
-n/2 IE i j -1/2

eXp{- 2{ x-ui ) TEi 1(x_Pi))

ti
for each i = 1,...,m.

We assume that a is not known but that 
p  

and E  are known for
Yi

i = 1,...,m. An algorithm for estimating a will be presented in part 3 of

this paper and in part 4 the algorithm will be shown to converge to a in mean 	 ?
w

z	 square and with probability l in the case where m = 2.
f
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3. The Algorithm. Let (x1c)k=o 
be a .equence of observations on X. Let

ex° a A. For n ,' 0 define 
an+1 by

9

1-;

)

an+1 = an _ c (
,,,n - a

L P i(xn))

i	 L	 n z	 4xn)

where

M
pan(xn ) = iElalpi(xn)

and 
{ek)k=o 

is a sequence of positive numbers such that

W 2
Oo c

k = m and 
k£o 

ck < .

We note that each iterate is in A and that, since X is a random variable,

each iterate may itself be considered a random variable.

4. Conver gence of the Algorithm.

Theorem: If a e R2 then the algorithm described in part 3 converges to a

in mean square and with probability 1.

Proof: We refer the reader to the algorithm described in [l,pp. 332-3331 and

to the proof of convergence given in [l.,pp. 350-352). The applicability of the

theorem given there is clear if we let f(a) = B(Z a), for each a e A, where

ai (pi o X)

(Za)ipa o X

f
t

f ;
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pa(x)dx > 0.

3

In order to show convergence we must show that conditions (Al)-(A3) in

[1,pp. 332-3331 are satisfied. First we note that

f(a) = (a ]. - a1 91 (aI ), a2 - a282(a2))

where

P1 (x)
g1(al) =	 alPi(x) + (1-al)P2(x) pa(x)dx

R 

and

P2 ('C)
g2(a2)	 (1-a2)Pl(x) + a2 p 2 (x)	

Pa(x)dx.

Rn

Further, we note that

d291(al)

	
f[a

Pl (x)[P1 (x) - P 2 (x)l 2
 3pa(x)dx > 0

dal
2
	nlPl(x) + (1-al)P2(x)l

R

d2g 2 (a2)P2 (x)(P 2 (x) - Pl(x)l2

dal	 [(1-a2)Pl(x) + a2P2(x))

R 
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Now, gl (al )	 1 and gl (l) = 1. So, since gl has positive second derivative

we have that gl (cc l ) < i if al e tai l) and yl (al ) J 1 1f al c (0,al).

Similarly, g
2 (a2 ) = 1 and g2 (1) = 1 and g2 (a2 ) < 1 if a2 e (a2,1)

turd82 (a2) > 1 if a2 e (0'C^4

We now show that (Al)-(A3) arc satisfied,. ].at a e A. Then

(Al) f(a) = 0 iff g l (al ) = 1 = g2 (a2) if  a = a.

(A2) (a a) rf(a) _ (a1-al)(al-algl(aI)) + (a2 a2)(a2 - 
a2g2(a2)).

If t;l > al then gl (al) 41 and (al-alg l (al )) > 0. Then also

a2 < a2 and 92 (a2 ) > 1 and (a2-a2 g2 (a2 )) < 0. Thus, if

al > al then (a-a) 1 f(a) > 0. Similarly, if al < al then

(a-&) ff(a) > 0. Thus, A2 is satisfied in any closed, convex

subset of A.

(A3)

alp (x)	 a.p.(x) 2

E (1 1 7a11 2) 	 iEl (ai - 2	
iPia(x) 

• pa(x)dx i J 1 p M )	 pa(x)dx)
it 	 R 

Now, we note that each term in the ith summand, i = 1,2, is

,less than 1 so that there is an h > 0 such that E(117 a 11 2 ) < h

for all a e A and A3 is satisfied.
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