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A Stochastic Approximation Algorithm for i

Estimating Mixture Proportions

by
James Sparra

1. Summary. A stochastic approximation algorithm for estimating the proportions ;

in a mixture of normal densities is presented. The algorithm is shown tao con-

verge to the true proportions in the case of a mixture of two normal densities.
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2, Introductlon, Let A= {a# R 1oy > 0 and &Y

1= 1,...,m let Wy be an element of R and Ei be a positive definite

= 1}. Tor each 1,

real symmetric n ¥ n matrix. Let X be a random variable with values in R

and with density function.

m
p(d,x) = i£1 aipi(x)’ for x & R"
where @ € A and
om0/ 2pe =L/2 1. Tl -1, oy
py(x) = @M 7 E | Texpl- S0 )T (- )))

for each 4 = 1,...,m.

We assume that O is not known but that My and Zi are knqwn for
i=1,...,m. An algorithm for estimating o will be presented in part 3 of %
this paper and in part 4 the algorithm will be shown to converge to & in mean _ i

square and with probability 1 in the case where m = 2. i



3. The Algorithm. Let {xk}:;n be a .equence of observations on X. Let
ntl

a° € A, Tor n>0 define n hy
n
ap, (%)
an+1 = - e o - idin ), i
1 i n' i y mix.)
P

where

m n
P (%) = yEyoyp, (x)

o

and {ck}k“o is a sequence of positive numbers such that

[+-] o 2

50 ¢ = «w  and §0 ¢ ¢ o,

We note that cach iterate is in A and that, since X is a random variable,

each iterate may itself be considered a random variable.

4., Convergence of the Algorithm.

2

Theorem: If @ e R then the algorithm described in part 3 converges to 2

in mean square and with probability 1.

Proof: We refer the reader to the algorithm described in [1,pp. 332-333] and
to the proof of convergence given in [1,pp. 350-352]. The applicability of the

theorem given there is clear if we let f£(o) = E(Za), for eacl: o e A, where

o, (pyo X0

2y =8y = F0X



In order to show convergence we must show that conditions (Al)-(A3) in

(1,pp. 332-333] are satisfied. Iirst we note that

f(a) = (a] = algl (al) y u‘z - C‘zgz (az))

where

Py (x)
B0 = Jap o F Grapr, 0 Patddx
Rn

and

P, (x)
g2(a2) = (l—az)pl(x) + uzpz(x) pa(x)dx.
R0

Further, we note that

2

a'y (@) [ by (K [py () = py ()17
1

3 N pa(X)dX >0
do Rn[alpl(X) + (l-al)pz(x)}

and

= spa(x)dx >0,
do? 3 o

a’g, (@) f P, [P, (0) - p (017
2

R



Now, g](al) = 1 and gl(l) =1, S0, since By has positive second derivative
~
we have that gl(al) <1 1if al € (&l,l) and gl(al) » 1 if o € (0,al).
Similarly, gz(fiz) =1 and g,(1) =1 and gy(a,) & 1 if o) € (4,,1)
~
and gz(az) >1 1if o, £ (O,az).

We now show that (Al)=(A3) arc satisfled: let o € A, Then

(A1) E(@) = 0 4iff g(ay) =1=gy(a,) iffas= a.
(AZ) (a_a)Tf(a) = (al-&\l) (ql“algl(aj}) + (az_az) (az = azgz(az)‘)'

oy B -
if Ql 7 Oy then gl(al) <l and (al ulgl(al)) > 0. Then also

4, < G, and gz(uz) > 1l and (uz—azgz(azJ) ¢ 0. Thus, 1if

Y
1”2 %
(-8 F(a) > 0. Thus, A2 is satisfied in any closed, convex

o then (u—a)Tf(a) > 0. Similarly, 1f o < 61 then

subset of A.

(A3)
2 2 2 uipi(x) aipi(x) 2
E(||2a|, ) = k) @y -2 ./”-—EETET - py(x)dx + E*-EE?ET—) . Pa(X)dx)
R" R"

Now, we note that each term Iin the ith summand, i = 1,2, is

less than 1 so that there is an h > 0 such that E( [Za||2) <h

for all o £ A and A3 is satisfied,
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