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1. INTRODUCTION

The Ames Research Center of NASA is engaged in an effort
to enhance its understanding of the behavior of turbulent
boundary layers and to improve its ability to predict their
effect on bodies in supersonic flow. As a part of this effort,
it has entered into a contract with A.R.A.P. Under this con-
tract, A.R.A.P. has delivered to ARC a computer program, GIC,
which is capable of computing the properties of a compressible
turbulent boundary layer on a rotating axisymmetric cone-
cylinder body, according to the principles of invariant
modeling. The program, which was delivered at the beginning
of 1976, is to be extended during the current year to include:
the calculation of the turbulence scale by a differential
equation.

In the meantime, GYC has been in operation on the ARC
CDC-7600 computer and has undergone several corrections and
improvements as a result of the experience gained with it
there and at A.R.A.P. However, so far there has been lacking
a comprehensive document giving the theoretical basis for the
program and the method of implementation, as well as infor-
mation on its operation. This paper is intended to fulfill
this need, but in a tentative way. When an extended version
of the program is delivered in a few months, it is hoped that
a report describing it — an improved version of this — will
be included. The anticipated improvements will be generated
largely by the reactions to this paper.

Section 2 is a concise review of the means used to derive
the equations. The models used are listed but not justified.
_Some background on the models can be found in Reference 1 for
the models that apply to incompressible flows, and in Refer-

ence 2 for others.



In Sectlion 3, the numerical method used To solve the
equations is set forth. Some extra computations are described
in Section 4, while the means for controlling the finite-
difference mesh are reported in Section 5.

Sections 2 through 5 are essentially free of program
considerations, which are covered in Sections 6 and 7. Section
6 describes GYC as a whole and then considers in more or less
detail the main sections of the program. The part concerned
with the numerical integration of the eguations is given the
most attention. External aspects of the program operation
are described in Section 7. The paper 1s brought to a close
with a few remarks in Section 8.

The full equations under consideration are set forth in
appendices. An extensive glossary of Fortran names and Fortran-

like names is included as Appendix F.



2. ANALYSIS

The basic equations used in this study are the follé@ing:

Continuity

Pe + (pug)’l =0
Momentum
where

N AE R I
Ti ]165- u’i) + 1 61“,2

Enthalpy Version of Energy

L _ 2 m_ 2 £
phy + puw'h p = py ¥ WP o+ Tpu (kT’£)=

The thermodynamic relations of a '"calorically perfect" gas are

used

p = pRT

h=1¢.T

P

where R and cp are constants.

Writing the dependent variables in these equations as the
sum of mean and fluctuating parts (p = p + p' , for example),
we can deduce equations for the mean quantities and for the
second-order correlations of the fluctuations by protracted
manipulations. Two assumptions are made immediately:

1) Fourth-order correlations are neglected.

2) Third-order correlations involving u , u¥ , or k

are neglected.



The resulting equations for a steady mean flow are displayed
in Appendix A.

Fluctuations in the transport parameters are handled by

assuming
u' = pgpT’ My = upT'y
WET = ugm PR
kt = kT k:i = kTT:i

where the subscript T denotes a derivative with respect to
temperature evaluated at T

The models used to close the equations are given in
Appendix B. As in previous A.R.A.P. models, these are
invariant under coordinate and Galilean transformations and,
of course, are dimensionally consistent. The goal of sim-
plicity has been sacrifiéed to some extent in favor of
generality. An obvious feature of these models is that many
of them are expressed in terms of quantities that are them-
selves modeled. This results in some of the parameters
(coefficients) appearing only in products with other parameters
in the applications. (This is exemplified by the models for
ETETE and ETETE where the substitution has already been
carried out.) Thus some of the parameters are redundant, but
they are left that way for the sake of flexibility in case it

is found necessary to modify them in the future.

Three- or four-character names, suitable for direct use
in Fortran, have been chosen for the modeling parameters
except for a , b, and B , 1in the velocity-dissipation
model, which are left in that form out of nostalgia.

It will be seen later that all of the terms containing
models for correlations involving the divergence of the velocity



fluctuations, u'ﬁ , drop out. For thilis reason, the following
parameters do noé appear in the final equations: BDV, VB3, WMD,
WWU2, WWD1, WWD2, WWH2, and WWR2, In addition, terms involving
PMH, PMR, PTHM, and PTUM do not occur in the final set. Of the
remaining 38 independent parameters, about a quarter are set

to zero until better information on them is available, and the
majority of the others are evaluated by analogy. Thus 0.1 has
been found a good value for VUU in constant density tests; VRU,
VUH, VRR, VRH, and VHH don't occur in constant-density modeling
but, by analogy, 0.1 is used for all of them, until better infor-
mation is available.

So far the equations have been written using mechanical
units for heat guantities. In order to introduce additional
flexibility, a conversion factor is introduced, allowing arbi-
trary units for heat. This factor is

GMOMS = 1/J

where J 1is the mechanical equivalent of heat. For example,

if English units are used with heat measured in Btu, GMOMS =
0.001285 Btu/ft-1b (= 1/(778 ft-1b/Btu)). If mechanical units
are used for heat, GMOMS =1 . It is often desirable to make
the equations nondimensional. If this is done using u,, and
h,, as reference values for velocity and enthalpy per unit mass,

the nondimensional version of GMOMS is

uﬁ ui 2
GMOMS ., = GMOMS k., = T = (v - DM

(Hence the name GMOMS - Gamma Minus One M, Squared.)

The equations with the models substituted are exhibited in
Appendix C. Here the notation is that devised for input to
TENSR, A.R.A.P.'s software for the expansion of tensor equations.
This notation is like Fortran in several respects. Thus,
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variable names may consist of more than one character; multipli-
cation is always made explicit with a #% ; multiplication and
division proceed from left to right so that A/B/C#¥D 1s to be
evaluated as ((A/B)/C)#D = (A%D)/(B#C) . On the other hand,
superscripts and subscripts are represented in a manner com-—
pletely different from the Fortran representation of subsecripts.
Superscripts are preceded by " ; subscripts by ' . Super-
scripts and subscripts consist of a single letter or digit only;
two or more together represent separate indices. The metric
tensor i1s denoted by @ ; the Kronecker delta by & . Covar-
ilant differentiation is denoted by a , preceding an index;

and "contravariant differentiation" (that is, covariant differ-
entiation with the index raised) by ! preceding an index.

All these forms are illustrafted in Appendix E.

The Glossary (Appendix F) gives the meaning of the wvariable
names used. Thus, for RS, US, and :-RU in the first equation of
Appendix C, we find p , u , and p'u' respectively. With
the help of Appendix E, we see that the first equation of Appen-
dix C is a transcription of the first equation in Appendix A,
as it should be since there are no terms needing modeling.
Proceeding thus step by step, the formidable expressions of
Appendix C can gradually be seen to make sense.

A cross-section of the axisymmetric coordinate system 1is
shown in the sketch on the following page.
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The coordinates of the point P are x+ = x = 0Q
x° =y =PQ , x3 = ¢ = the azimuthal angle. The half angle
of the cone, &, , and the "origin radius," r, , are
parameters of the system. The coordinates x and y are
related to the cylindrical coordinates &£ = SR and r = PR

by -

ket
i

cos 0,x - sin 0O,y

r =1r, + sin 8,x + cos 0,y

It is understood that y = 0 always represents the cone sur-
face. The location of the origin in the x direction is quite
arbitrary and hence, in general, the value of r, 1is arbitrary.
The exception is the limiting case of a cylindrical surface
(ec =0 or 6, = 180°) for which r, represents the radius

c
of the cylinder.

Note that for 6, in the second and third quadrants, the
flowfield (for which y > 0) is on the inside of a conical
surface.



It is convenient to have the equations apply also for a
Cartesian coordinate system (x,y,z). To accomplish this,
another parameter is defined by

1. axisymmetric

DIMFL =
0. Cartesian
Now let
S = DIMPL% sin 90
C = DIMFL#%* cos GC
R = DIMFL¥r_  + Sx + Cy + 1. - DIMFL

0
Then the metric tensor can be written

100
g15 =| 01 02
00R

The nonvanishing Christoffel symbols of the second kind are

433 = S
$§3 = -CR
$3, = 335 = S/R
$§2 = $33 = C/R

These apply for both Cartesian coordinates and the axisymmetric
coordinates of the sketch.



Note that
r axisymmetric

1. Cartesian

s0 that it not only has different meaning but even different
dimensions in the two cases.

The next stage of the analysis was carried out by TENSRH,
A.R.A.P.'s software for the expansion of tensor expressions.
The following information was supplied to TENSR:

1) The values of the mebtric tensor and the Christoffel
symbols of the second kind in terms of R , 3 , and
C , as given above,

2) The information that terms involving derivatives with
respect to x3 (¢) are zero, since the flow is
assumed To be axisymmetric.

3) The substitutions required so the output involving
the mean velocity could be expressed in terms of the
physical components, u, v , and Ww (or US ,

VS , and WS ), instead of the covariant and contra-
variant components, and similarly for correlations
involving u' .

4) The equations of Appendix C.

The output for the whole set of 18 equations consisted of
9843 terms. This number is somewhat deceptive, since TENSR is
naive algebraically and does not combine like terms.

These equations were submitted to more A.R.A.P. software
known as TATTR. The first stage of TATTR does combine terms
and reduced the 18 equations to a total of only (!) 4348 terms.

The main function of TATTR is to drop terms according to
order-of-magnitude assumptions. Its operation in this case can
be described as follows.



The equations were interpreted to be written in non-
dimensional form. The (nondimensional) boundary-layer
thickness was assumed to have a small value, & . The mean
quantities and the radius, R , were assumed to be of order
one except for the normal component of the velocity, v (VS) ,
which was taken to be of order ¢ . Derivatives with respect
to x and y were assumed to be of order one and 6‘1 s
respectively. The transport coefficlents u , u* , and k
were assumed to be of order §2 . All of the above corresponds
to standard boundary layer assumptions. In addition, correla-
tions involving a velocity fluctuation were taken tc be of
order 61/2 and those involving p' or h' of order 61/3
for each such appearance. {(For example, wWu' , W' v' , p'w’l
and h'h' (UU , UV
§ , 6, 65/6, and 62/3 , respectively.) The scale length
A was assumed to be of order 54/3 . Finally, GMOMS , which,
as has been seen, is (y - 1)M§ when the eqguations are inter-
preted nondimensionally, was taken to be of order 6'1/3
All quantities not mentioned, including the modeling- parameters,
were assumed to be of order one. These ratios were arrived at
after some trial and error, using Cartesian coordinates. They
were chosen so as to insure the retention of terms known to be
important, while allowing the elimination of terms known to be
unimportant.

2
, RW , and HH ) were assigned orders

TATTR computed the exponent, T , representing the order
of magnitude GT , for each term of each equation, given the
information in the paragraph above concerning the factors that
can appear. For example, the continuity equation was analyzed
as follows (where :1 and :2 stand for partial differentiation

with respect to xl and to x° ).

10



T

(RS2US):1 0

+ (RS%VS):2 0

+ S#RS/R#US 0

+ C#RS/R#VS 1
+ (RU):1 5/6
+ (RV):2 -1/6
+ S/R#RU 5/6
+ C/R%RV 5/6

= 0

The final stage of TATTR dropped terms for which the value
of T 1is greater tﬁan a maximum appropriate for the particular
equation. In the case of the continuity equation, the cutorff
value 1is zero, so the final form is

(RS#US):1 + (RS#VS):2 + S#RS/R%US + (RV):2 = 0
or

33 57 Ss= STET) =
(pu), + (pv)y, + gou + (p'vi)y, =0

The whole set of equations was reduced from 4348 terms to
529 terms by the final stage of TATTR. The second component
(normal to the surface) of the momentum equation reduced to

-C#RS/R#WS#WS
+ (RS®VV):2
= ~(P3):2 -1

The values of T indicate that, according to TATTR, the
remaining terms are seriously out of balance. But it is well
known in boundary-layer theory, though not to TATTR, that the
derivative of pressure in the normal direction is not large
like other normal derivatives; (PS):2 1is really of order one
(50) , not 61 . Therefore, the terms containing (PS):2 in

11



the other equations were dropped manually if the T wvalue for
that term was within one of the cutoff value for the equation.
In this way, 63 terms were dropped leaving 466 in the 18 equa-
tions. Two of the final equations have been presented above.
The others, which have been slightly edited manually, are pre-
sented in Appendix D. (The reason for the organization of the
equations into "passes" is given in the next section.)

As has been indicated, the criteria used to drop terms
were arrived at pragmatically. This can be defended on the
basis that (1)} the process is more systematic than that hereto-
fore used for modeled equations for compressible turbulent flow
and (2) the results are not sensitive to the details of the
assumptions used — e.g., it makes little difference whether p!
is assumed to be of order 61/3 or order 61/2 . Nevertheless,
it would be wvaluable to find a rational basis for completely
specifying the criteria. Such a basis should take into account
the fact that the balance of terms differs markedly in different
parts of the boundary layer.

Some features of the final set of equations should be
noted. (1) 211 terms involving models for u:% correlations,
as noted above, have dropped out. This is a result, of course,
not only of the criteria used, but also of the particular models
used for such correlations. (2) All terms involving the second
coefficient of viscosity, u¥* , have dropped out. (For the
most part, these are terms that also involve u;% ) (3) If S
and C are both zero (as they are if DIMFL = 0), the equations
consisting of the remaining terms are each homogeneous in R .
This fact (which is true of the equations before terms are
dropped) shows that the change in dimensionality of R as
DIMFL changes from one to zero does not violate any principles.

A new equation

BLAM = GYCS3Z

12



has been added to the set and included in Appendix D. 1Ifs
presence here is merely symbolic. BLAM (A) is evaluated as
a known function of y and the gross features of the flow,
quantified by input parameters (the scale parameters). It is
included here and in the program as a pseudo-unknown, satis-
fying a "differential" equation of zero order which becomes
a "difference" eguation of zero order. The reason for this
treatment is that it is intended to introduce a true differ-
ential equation for A and incorporate its solution in the
program in the near future. The program modification will be
much simplified by having A already treated as an unknown.

The sixteen differentlial equations of Appendix D are
parabolic in the sense that they have first-order derivatives
with respect to x and second-order derivatives (as well as
first-order) with respect to y . Thus x 1is the time-like
variable and y 1is the space-like variable. The dependent
variables determined by the equations are referred to as para-
bolic variables.

The boundary conditions needed for this set consist of
the initial conditions, the wall conditions, and the free-
stream conditions. The initial conditions consist of profiles
of the parabolic wvariables, that is, their values as functions
of y at the x station where computation is to start. The
wall conditions on all the turbulence correlations and on u
are that they are zero there. The wall condition on w is
that it is equal to the lateral velocity of the cone surface,
that is, the product of the angular velocity and the local
cone radius. The wall condition on h is either its value at
the wall or the value of its gradient (a measure of the heat
flux) at the wall., Either of these may be functions of x

The free-stream conditions, or "edge conditions," are that
the parabolic variables approach given values asymptotically.
For the turbulence correlations and for w , +the given values
are constant in x , but for u and h +they may be functions

13



of x . In practice the concept "approach asymptotically" is
handled as follows. At the largest value of y currently used
in the computation, the boundary condition %% = 0 , where f
stands for any of the unknowns, is used in solving the equatlons.
The resulting value of f at that y 1s compared with the
given value and if they agree within a specified tolerance, the
given value is substituted for the calculated value (for the
sake of uniformity and neatness) and the solution continues.

If the tolerance is not satisfied, for any of the parabolic
variables, the maximum value of y 1is increased by adding

another point, and the process 1s repeated.

These boundary conditions are not the most general that
can be posed for the system of equations; rather they are the
conditions provided for in the GYC program.

14



3. NUMERICAL METHOD

A finite-difference mesh is introduced in the x , ¥
plane as shown in the sketch.

Y
j+1
]
§=1
/ /
n-| n X

The time-like variable, x , 1s indexed by n and the space-
like variable, y , by J . The spacing is not uniform in
either direction; furthermore, the spacing in the y direction
is a@justed as the solution proceeds in the x direction, as
described in Section 5.

At the beginning of each x step, the values of the
dependent variables are known at x = xp.7 for all yj
Derivatives with respect to x are approximated by
n n-1
£, - f.

J

£y = gy ' (1)

where

H
(a1
}

j= f(}‘n,yj)

15



Ax = xn - Xn—l

For derivatives wlth respect to y , some additional notation

is convenient: .

+ - 95 7Yy

he = ¥i41 ~ Y50
h-
H =
+ T Bh,
H = .
- T En,
n-1 n-1
Bi41 T &
G, (g) = 55—
P
-1 n-1
g? + g5 ]
Then we have
n n n n
g o=m (% . - Y +u (2 - 5 ) 2
g = Be(fer - f5) v (S - £5 (2)
n Il n n
= LS 1 _ gt
(gfy)y ¢, (e) (f.JH. fa) G—(g)(f;} J—l) (3)

If g dis constant, equation (3) can be written

2 n _oeny 2 n _ on
Tyy BB @5+l fj) h_hy Gﬁ fi-l) )

16



One way of arriving at equations (2) and (4) is by passing a
parabola through the three points (yj-l’ f?_1>, (yj, f?),
(yj+1, f?+l) and evaluating its derivatives at yj .  Egquation
(3) is an obvious generalization of equation (4) except that g
is evaluated at x, 7 instead of at x, . This is done to
linearize the numerical procedure since g , in general, depends
on the unknowns. The other nonlinear terms in Appendix D are
handled similarly; that is, in any product, at most one factor

is evaluated at x,, while the rest of the term is evaluated at

X This artifice has been successfully used in similar

eguitions for several years at A.R.,A.P. Of course, it is neces-
sary to keep Ax small enough so that the changes in the depend-
ent variables are small in each step. The linearized system is
in the form referred to in the literature as the (complete, or
fully) implicit method for the numerical solution of parabolic

differential equations.

For terms of the form pvf equation (2) is optionally

y 2
replaced by an upwind differenciqg formulation, described in

Note 4 of the Glossary (Appendix F).

The eguations are coupled, but the finite-difference
versions can be decoupled to any extent desired by the same
device that is used to make them linear. That is, terms or
factors which are unknowns if evaluated at zxp ‘become known if
evaluated at x,_7 . Further, if some unknowns are solved for
before others, they become known at both x, ; and x, for
the later solutions. If m eqguations are solved at once, at
each point of the flowfield a matrix of size m + m must be
inverted and two matrix multiplications of m « m matrices
must be performed. Since these procedures reguire of the order
of m3 operations each, there is strong motivation for keeping
m down. On the other hand, experience at A.R.A.P. has shown
that some equations are better solved together in order to have

stability and well behaved solutions with reasonable step sizes.

17



) For GYC, these considerations have led to the division of
the solution process, for each step in x , into six passes.
In the first pass, w and v'w' are determined so m = 2

In the rest of the passes m=3 : u, uv' , and u'w' are
determined in the second; ufu' , viv' , and Ww'w' in the
third; h , h'v' , and h'h' in the fourth; p'u’ , p'v' ,
and p'w' in the fifth; and h'u' , h'w' , and A in the
last.

In each pass, the m unknowns are thought of as forming
a vector, o5 > of m elements at each Y3 (for x = xp )
Thus in the first pass

- h
b, = i
J ey 3
VW 3
in the second
- n
s
n
= Ty 1 .
¢j utvt s
ulwll:l
J

ete.,

Then the finite-difference equations can be written

+ Bj¢j + Cj¢j+1 = dj (5)

A5%5-1
where Aj 5 Bj , and Cj are square mabtrices of order m
and dj is a vector of dimension m . The elements are known
functions of the dependent variables at x4 (and in a few
instances at x, for variables determined on previous passes),
the independent variables, and, through equations (1)-(4), the

mesh spacing.

18



Equation (5) applies for 2 £ jJ £J -1 where J = JTOP
is the index for the largest y 1in use and j = 1 corresponds .
to the wall (yy = 0) . The finite-difference version of the
edge boundary condition, that the derivative with respect to ¥y
be zero for each variable, can be expressed as

1 - by =0 (6)
The wall boundary conditions can be written
o7 = 4y (7)

except when h is involved and its gradient at the wall is
specified.

When the gradient of h at the wall is specified, the
boundary condition is handled this way. It is required that
there be no blowing so both components of the mean velocity,
as well as all correlations, are zero at the wall. Then, on
the wall the differential equation for h (the first equation
of the fourth pass) reduces to

ali e @i (2) s (Es
0 uEJ_y + (Rw)y(R)y] + (Cp hy)y

assuming mechanical units so GMOMS = 1 . The condition on
the gradient is written

where g 1s the specified value. These two equations are
written in finite difference form using three points, the wall,
¥9 = 0 , the first point off the wall, y, , and a "phaptom"
point, y4 , 1inside the wall. (Extrapolation is used to
evaluate "known" quantities at the phantom point.) Thus there

R, no .

are two equations involving the unknowns h¥ 1 5

0 2

19



Eliminating hg between these equations leaves one equation
which can be written

1+ Bhy =y (8)

ah
where o , B , and vy depend on the known variables and the
mesh spacing at the wall.

In any case, we conclude from equations (7) and (8) that
the wall boundary conditions for a pass can be writften

Bydy + Cydp = 0y (9)
where B1 is diagonal and Cl is zero except in the fourth
pass when the gradient of h 1is specified, in which case the
upper left element of Cy 1s the B of equation (8) and the
rest of C1 is zero.

Similarly, equation (6) can be written

+ B = d (10)

Apby_q t Byéy = d;

where Ay 1s tThe unit matrix, By 1s the negative of the unit
matrix, and 4y 1is zero. ‘

Equations (5), (9), and (10) can be written

B & A1 \ 4
Ay By Gy 5 d,
A3 B3z Cg 11 %3 d3

Ay 1 Byo1 Cyo1] V51 dy_y

Ay Bg o5 dy

20



or

M& = D

where M 1is a tridiagonal matrix of order J , each element
of which is an m « m matrix, and & and D are vectors of
dimension J , each element of which is a vector of dimension

m .

This set is solved by a standard algorithm for tridiagonal
systems. The process consists of two parts called the upsweep
and the downsweep. In the upsweep the values of auxiliary
matrices, T[; , and auxiliary vectors, Ej , are computed by

j
-1
Iy = By7Gy
1
¢; = By dy
r, = (B. — A.T. )’lc. =2, 3, «uu, J-1 (11)
j IR R T Y

I
il

- -1 . .
3 (Bj - Ajrj“1> (dj - Aj¢j_1) §=2, 3, ceus J (12)

In the downsweep the solution is obtained by
b5 = b5

¢j = ¢j - rj¢j+l d = J'la J*2> + o0y 1 (13)
( Ay and Cj do not appear in the sys%em. If we define

Ay = Cy = 0 , equations (11) and (12) can be used for j =1, 2,
.e., J 3 equation (13) can be used for j =J, J-1, ..., 1 ;
and the special equations for j =1 and j = J are not

needed.)

21



As mentioned in the previoﬁs section, the edge boundary
condition is really asymptotic. The imposition of equation (6)
or (10) at Yy 1is only tentative. Af the end of the upsweep,
the values of by = $J are compared with the known free-stream
values. If they are not equal within specified tolerances, . J
is increased by one; the already known solutions are suitably
extrapolated; Aj 5 Bj s Cj , and dj for J = JO s the
0ld value of J , are recomputed using expressions valid for
J < Jd , the upsweep is redone for j = JO and done for J = J
and the test is repeated. When the tolerances are satisfied,
the given free-stream values are substituted for the computed
values at J (from which they differ by less than the toler-

ances) and the downsweep is performed.

Consider a regime where w = 0 , the turbulence is negli-
gible, and y derivatives are negligible. The equations for

+

the means reduce to

puu, = -p

(14)

X

puh, = up, (15)
(taking GMOMS = 1 ). If the edge conditions on u , h , and
P satisfy these relations ( 5 being determined by the equation
of state), this handling of the free-stream boundary conditions
works well. Otherwise, an unreasonable number of points may be
added, satisfying finite~difference versions of equations (14)
and (15) at the added points while trying to match conflicting
given edge values. In this case, it is probably not right to
assume y derivatives are negligible; but if they are not, it
isn't clear how the edge of the calculation field should be
determined.

If there is free-stream turbulence, another situation
arises. Consider the simplest case with w = 0 , the other
mean quantities constant, y derivatives negligible, and
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u‘lu‘j = 6§q2/3

Then it is found that g° is governed by

-—-{2Y _ 2u pgh\ 2
pu(q) “———-a+b-:—q
x A2( u)

That is, dissipation will make free-stream turbulence decréase
downstream unless A + «» , according to the equations being
used. There is no provision in the program as it stands for

the turbulence-level edge condition to vary with x 80 exces-
sive points will be added if free-stream turbulence is specified
unless A is made to increase for large y . The scale param-
eters which control the calculation of A allow for such
increase.

Excessive adding of polnts at the edge can always be
avoided by increasing the tolerance used to check the matching
of edge conditions for the variables giving trouble. This may
give results of questionable validity.

There are three dependent variables that are not deter-
mined from parabolic equations. These are p , p , and V

The mean pressure is calculated at x = during the down-

Xn
sweep of the first pass from the normal momentum equation
displayed in Section 2. The integration starts with a given
edge value of p (which may be a function of x )} and proceeds
inward to the wall. The mean density is calculated at x = Xn
during the downsweep of the fourth pass from the mean equation
of state, which can be written

cpp

R(h - A'h'/h)

o =

The normal component of the mean velocity is calculated at
X = Xn after the completion of all the passes, using the

k3
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continuity equation which is also displayed in Section 2. The
integration starts with a given wall value of v (which may

be a function of x ) and proceeds outward to the edge. Trape-
zoidal integration is used for both p and ¥

Another quantity, namely ﬁx , 18 grouped with P, D,
and v . Since its value for the current step is not available
in the first pass, its value saved from the previous step is
used there. The contribution of the terms in which it appears
is expected to be small, so tThe error involved in lagging it
this way should also be small. The value from the current step
is set aside for use in the next step as part of the downsweep
of the second pass.
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4, AUXILTARY COMPUTATIONS

Some functionals of the dependent wvariables are calcu-
lated at the completion of each x step (as well as during the
initialization stage). These calculations serve three main
purposes: (1) they provide output which helps the user interpret
the results of the program, (2) they provide data used in deter-
mining the finite-difference mesh for the next step, and (3)
they provide data on which the calculation of the local value
of A dis based. In the last case, the process 1s not really
auxiliary since A 1is basic to the modeling and strongly influ-

ences the course of the sclution.

Many of the calculations are repeated for each of the
parabolic variables. To avoid long descriptions, such proce-
dures are set forth here as if there were only one independent
variable, named F .

These quantities include: (1) the "max" which is the maxi-
mum over of ]FI at  x, (2) the value of y at which
the max occurs, (3) the "global max" which is fthe maximum over

y; and x (up to the current x, ) of |F| , (4} the "max

n
change" which is the maximum over ¥j of

[P (20575) = B (no1s75)]

(5) the integral (according to the trapezoidal rule)

Iy
I(F) =f |F|dy
8]

(6) the "integral spread" which is I(F) divided by the max of
¥, and (7) the "percent spread" which is the value of y for
which F is a designated fraction of its max.
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In addition, 699 » which is the value of y for -which
u  1is 99 percent of its free-stream value, is found. A typ-
ical 1e§gth, Ly » 1s defined as a linear combination of 699
and the percent spread of one of the parabolic variables. The
coefficients are inputs as is the choice of which percent
spread to use. )

The calculation of A , the turbulence scale, is given by

A; = min (th,AO + diy)

‘- Ay ¥ S 8gg
A+ ag(y - S99) Y > 8gq
The quantities ¢ , dy » 45 , and A, are input parameters.
For normal values of these constants, A equals A, at the
wall and increases with slope d; until it reaches the value
chy . It stays at that value the rest of the way out if dg

ls zero. Otherwise, 1t starts increasing again at y = 699
with slope do . The parameter A, is made greater than zero
to simulate wall roughness. The parameter dg is made greater
than zero to allow for free-stream turbulence without dissi-
pation there, as mentioned in Section 3. Otherwise,. both A
and d, are normally zero.

The rest of the auxiliary calculations are done to provide
informative output only. They have no effect on the course of
the program. The output labels and definitions are:

momentum thickness
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"displacement thickness
YJ =
DELTA%® = 1 - p—u dy
o Pele

SHAPE = DELTA¥/THETA

shape factor

kinematic displacement thickness

Yy .
1l - T dy
o e
— 3U
TAUW IEJ 8_3?:]

local skin friction coefficient

DTI*

wall shear

It

y=0

_ 1L 2
CF = TAUW/(Epeue)

_[g
°p

wall heat flux

QWALL

|

total Stanton number

il

STANT QWALL[[p oUe (hw - b -
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Reynclds numbers

peue
RETHETA = THETA
e
u
REXW = XW —E
ue
laminar stress
TAULAM = ; oY
3y
total stress
TAUTOT = ﬁgﬁ-— pu'v'
oy
total heat flux
QroT = - £ 3B 4 SETET
cp 3y

The integrals are done by the trapezoidal rule. The derivatives
are evaluated by equation (2) of Section 3 except at the wall
where a two—-point formulation is used. In this regard it should
be pointed out that the ﬁ2 term in the formula for QWALL is
superfluous as a derivative (since u = 0 at the wall, the
derivative of its square is zero there), but in finite-difference
terms the form given can be shown to be more accurate, at least

if w=0 and v =0 at the wall.

None of the calculations in this group take into account
the possible effects of nonzero w . Modifications or addi-
tional calculations to show such effects could easily be intro-
duced into the program.

28



5. CONTROL OF THE MESH
In order fo provide reasonable accuracy without excessive
computing; the mesh is modified by the program as the run pro-
gresses. Parameters supplied by the user allow him to control
the balance beftween accuracy and computing time.

The value of Ax for the first step of a run is supplied
as an input. ‘Thereafter, a new Ax is computed before each x
step. To do this, tentative values of the step size are com-
puted for each of the 17 parabolic variables (that is, the
variables determined by parabolic equations), and the smallest
of these is selected. Each tentative value is determined by
mulrtiplying the previous Ax by the ratio of a criterion estab-
lished for the particular variable to the max change of that
variable for the previous step. The criterion is a nominal
change that can be specified either as an absolute quantity or
as some factor times the global max of the wvariable with an
optional lower limit. The new Ax , tThe minimum of the tenta-
tive values, is then modified if necessary so that it doesn't
exceed either a specified factor times the old Ax or a speci-
fied AXpysyx - On the other hand, if the new Ax 1is less than
a specified fraction of the old, "backup" occurs. That is, some
éhange generated by the previous step is considered unacceptably
large so the results of the solution for conditions at Xn
just computed are discarded, and a smaller step from the con-
ditions at x,. 7 1s tried, using The new smaller Ax . A
minimum Ax may also be specifiied. If AxXx Dbecomes less than
the minimum, the run is halted.

A further complication results from the existence of so-
called time breaks. These are values of x at which the user
requires output. In order to avoid an abnormally small Ax as
the last step to such a point, the program looks several steps
ahead and modifies the Ax found by the process described above,
if need be.
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The initial distribution of points in the y (normal)
direction is part of the input of the initial conditions.
Before the first and before each succeeding =x step, a complex
process 1s used to monitor and, i1f indicated, fo adjust the
spacing of points in the y direction. The basic idea is to
examine each set of three adjacent points, yj-1 ., ¥ » ¥j+1 -
If, for all the dependent variables, the values for those
points fall almost on a straight line, the mid-point can be
dropped. On the other hand, if, for at least one of the depend-
ent variables, there 1is an excessive departure from a straight
1ine, a point should be inserted in one of the subintervals
yj—l s yj or yj s yj+l , or in each. (These notions are
made quantitative by comparing a nondimensional measure of the
departure from a straight line, for each dependent variable,
with input parameters. The measure is the absolute value of
the second derivative, as given by equation (4), divided by the
global max and multiplied by the square of the length of the
appropriate interwval.) However, it is also required that the
ratio of the lengths of adjacent intervals be less than a speci-
fied value. This requirement can prevent a point from being
dropped, that otherwise would be, but does not prevent an inser-
tion. Instead, insertions are made in other intervals until the
ratio requirement is satisfied everywhere.

There are also means of specifying maximum and minimum
interval lengths. The maximum prevents the dropping-of a point
which would cause it to be exceeded. If the insertion of a
point creates an interval length smaller than the minimum, a
warning message is printed.

Furthermore, if the insertion of points would make J = JTOP
bigger than its upper limit, JMAX (an input) , the user has
the option of allowing the relaxation of the criteria governing
the dropping and inserftion of polnts. If the relaxation is not
allowed or is unsuccessful in keeping J £ JMaX » fthe run halts.
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When a point is inserted, it is not necessarily put at
the mid-point of the interval. Rather it is weighted toward
the point with the largest (in absolute value) normalized second
derivative cdnsidering all the dependent wvariables. The restric-
tion on ratioc between the lengthpg of adjacent intervals is
observed, of course.

The values of the dependent variables that are assumed for
an inserted point are obtained by linear interpolation. This
seems like an anticlimax, but it is the only simple scheme that
has been found here that does not lead to undesirable results
in some cases.
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6. PROGRAM STRUCTURE

The principles of invariant modeling have been applied at
A.R.A.P. to several different types of turbulent flows that can
be described by parabolic eguations. The technique developed
for solving those problems has been used for the GYC program;
and, to a large extent, the actual subprograms have been carried
over, with varying amounts of modification.

What has been referred to as the GYC program is actually
a main program, GYCON, and a number of subprograms. GYCON
itself is quite simple. Basically, it consists of a call to
GYCIN, which handles input and initialization, followed by a
loop consisting of calls to: (1)} GYCAL, which hahdles the
auxiliary computations, the determination of the new Ax , and
output; (2) GYCAA, which handles the distribution of the points
y5 3 (3) GYCSS, which does the actual solution for one x
step; and (4) GYCRV, which determines v . The call to GYCRV
is followed by a return to the call to GYCAA. This basic flow
of the program is modified by certain special conditions; for
example, if backup is required (see Section 5), the call %o
GYCAA is skipped. When the run is halted, GYCIN is called -
again. Depending on the input cards supplied, this can result
in a restart of the same run, the start of a new run, or job
termination.

Before describing the operation of the principal sub-
programs mentioned above, an aspect of data handling should be
mentioned. Some of the other programs from which this one
evolved needed more data storage during the solution process
than was available in core (especially when the A.R.A.P. com-
puter had only 8,192 words of 16 bits each in core). Such
programs used external (disk) storage; and the GYC program,
although contained entirely in core, mimics that arrangement by
keeping a good part of the working data in a two-dimensional
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array called STOR. The elements of STOR are never addressed
directly; instead, parts of STOR are copied to and from other
arrays in core, much as if STOR were an external device.

STOR consists of 52 elements for each Jj , that is, for
each normal mesh point. The first element is the value of V5
itself. The next 17 elements are the old values of the para-
bolic variables, that is, the values evaluated at (x,_; » yj)
in the order they are listed in Table 5. Then come the old

values of p, p, Vv, and u The following 17 elements

x -
are used for the new values of‘the parabolic variables and also
for the values of Ej s in the notation of equation (12),
while generating the new values. The next four elements are
the new values of p , p , Vv , and u, . The rest of the
52 elements are used to hold the matrix Pj
The copying or moving in and out of STOR is done by a
subprogram, SFVMV. With parameters A, B, and N, SFVMV is

equivalent to the simple DO loop:

DO 8 I =1,N
8 B(I) = A(T)

It exists as a subroutlne because it is used so often; at A.R.A.P.
it is implemented in firmware to speed its operation. A com—
panion subprogram, SFVFL, fills N elements of the vector B

with the value of the variable A
A, B, and N.

, When the parameters are

Of the principal subprograms, GYCIN is the most straight-
forward. It initializes certain quantities, it reads the first
data card, it calls GYCRI %o read the rest of the data cards if
the first card indicates that there are more, it calls GYCIC %o
do more initialization if a new run is being started, and
finally it ecalls GYCPI fto print the title pages of the output.
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GYCAL first calls GYCQD and GYCAQ which do the auxiliary
computations described in Section U4 and which also compute the
new Ax as described in the first part of Section 5, except
for the modification due to time breaks which is done by a call
to GYCTB., The bulk of GYCAL is concerned with calls to GYCOL
and GYCOT if the wvarious criteria so indicate. GYCOI produces
a minor prin@out, whereas GYCOT produces a major printout
ineluding tables of the dependent wvariables as functions of ¥

GYCAA is the most complex of the subprograms. It is also
the least changed from versions in use for other problems. Its
function is to monitor and, if indicated, to adjust the spacing
of points in the y direction, as described in Section 5.
Suffice it %fo say that it works as advertised.

GYCSS, together with its subprograms, forms the heart of
the system. I¥ performs the upsweep and the downsweep, repeating
the process for each of the passes described in Section 3. Since
three-point differencing is used in the y direction, a section
of COMMON is used for values of wvariables at j-1 , that is,
variable names ending with the letters M and I (compare the
sketches at the beginning of Section 3 and the beginning of the
Glossary, Appendix F); another section of COMMON is used for
values of variables at j , with names ending with the letters
Z and J ;3 and a third section is used for values of variables

at Jj+1 , with names ending with the letters P and K .

As j 1is incremented at the beginning of a stage of the
upsweep of a typical pass, the values in the Z-J section are
shifted to the M-I section, and those of the P-K section to the
7-J section. Then GYCFP moves to the P-K section from STOR the
values that are available there and calculates the values of
others. Obviously, special provisions are made for j = 1
The values of the elements of Aj; , Bj , Cj , and dj are
calculated by the subroutines GYCBI (for j =1 ), GYCMC (for
2 <3 <J-1), and GYCBO (for j = J ). After making some
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calculations common to all passes, GYCMC in turn calls separate
subroutines for each pass. (Due to some confusion in the early
stages of the development, the subprogram for the first pass is
named GYCP2 and that for the second pass is named GYCPl.) It
is in these pass subprograms that the actual equations being
solved (Appendix D) make themselves felt. They were au@omati—
cally generated, for the most part, by DIFFR, another A.R.A.P,
software package.

DIFFR took the equations of Appendix D, one pass at a time,
along with some information about which symbols to treat as
unknowns, as known variables, or as constants, and generated
i G
and dj . These statements, after some mincr manual editing,

Fortran statements evaluating the elements of Aj , B

constitute the bulk of the pass subprograms.

Returning to the description of a stage of the upsweep,

Fj and 5j {(equations (11) and (12) of Section 3) are evalu-
ated using the special matrix subroutines GYCMP and GYCMI.
Finally Fj and $j are moved to STOR, and J 1is incremented
again.

The handling of the free-stream boundary conditions has
already been described. When they are satisfied, the downsweep
according to equation (13) of Section 3 is trivial. It is
slightly complicated in the first, second, and fourth passes by
the incorporation of the calculation of p , uy , and p ,

respectively.

There are several other subprograms which have not been
mentioned here. All are included in the Glossary (Appendix F)
with brief descriptions. At the beginning of the listing of
each subprogram are comments giving another view of 1ts role.

Three ficticious subprograms are included in the Glossary,
and places for calls to them are suggested by comments in the
program. These provide for the possibility that it may be
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desirable to create files in external storage for later plotting.
Two types of files are anticipated. One, the "running file,"
would be of quantities that depend on x only, such as skin
friction and momentum thickness. The other, the "profile file,™
would be of quantities that are functions of both x and ¥y ,
such as any of the dependent variables. The three subprograms
are GYCPS which would initiate both files, GYCRF which would
write to the running file, and GYCPF which would write %o the

profile file.
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7. INPUT AND OUTPUT

Table 1 lists the variables read on each input card along
with the format for each. Definitions of the variables are
included in the Glossary (Appendix F).

There must be at least two and no more than two hundred"
Cards 16.n (see Table 2). They produce an internal table
specifying the velocity, enthalpy, and pressure at the edge of
the boundary layer and the wall blowing velocity and either
the enthalpy or enthalpy gradient (heat transfer) at the wall,
all as functions of downstream distance x . The program uses
linear interpolation in this table. For values of x outside
the range- of the table, it extrapolates using the first two or
last two entries. The input wvalues of x must be in ascending
order. The end of the table is flagged by a nonincreasing
value for x or by n reaching 200. In the former case, the
values on the terminating card are not used. If all three
quantities are constant with x , only two cards, including
the terminating card, need be used; the program will automati-
cally generate another point to store in its table for inter-
polation. As noted at the foot of Table 2, h, and— p, need
not be input. (An exception occurs for Pe When GMOMS = 0
In this case, the values supplied for p, will be used whether
pogitive, zero, or negative.) When the program needs them at
a particular x , the interpolated values from the Internal
table are first determined. If these are zero (or negative),
values computed from the homentropic relations for a perfect gas
are substituted. (If the inputs HSTAG = hg and PSTAG = pg
are not needed for these calculations, they are not used at all.)

There must be at least five and no more than JMAX Cards
31.] (see Table 3). The values of y must be in ascending
order. The end of the set is flagged by a nonincreasing value
of y or by Jj reaching JMAX. In the former case, the values
on the terminating card are not used.
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Provision is made for specifying the initial profile of A
on Cards 31.j. This is intended chiefly for use when A 1is
solved for by a differential equation in the future. If zero
is supplied for & , the wvalues will be determined in the usual
way from the scale parameters (see Note 1 of the Glossary,
Appendix F). .

Cards 32 and 33.J are not read at all if the flag terminating
the set of Cards 31.j is negative. The corresponding dependent
variables (see Table 4) are initialized to zero for all values
oﬁ y in that case. If the flag terminating Cards 31.j is zero
or positive, then Cards 32 and 33.j are read. The end of the
set is flagged by the first value of ¥ scaled by GV(1l) which
fails to equal the corresponding value of Y scaled by FV(1)
in Cards 31.j, taken in order, or by J reaching the total
number of cards in that set. In the former case, the corre-
sponding dependent variables are initialized to zero for the
remaining values of ¥y

As indicated in Tables 2, 3, and Y4, the card sets designated
16.n, 31.j, and 33.j are multiplied, or scaled, by elements of
the vectors EV, FV, and GV, respectively. It is recommended
that the beginner set all values of fthese vectors equal to one
and forget them until a need is felt for them. Two typical
situations where they would be useful are: (1) The initial con-
ditions are supplied as a function of y in, say, inches,
and it is desired to use feet in the program. Then FV(1) (and
GV(1l) if needed) could be set at .0833333 and y wvalues in
inches punched in Cards 31.J (and 33.j if needed). (2} After
one run starting with a certain level of turbulence, it is
decided to make another under the same conditions except that
the initial turbulence level is different, or zero. Then it 1is
only necessary to change one card to prepare the input to the

new run.,
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Input may be in.any consistent system of units; outputs
will be the same units. Nondimensional inputs may be used,
producing nondimensional output, but they must be consistent.
For example, if BLAMO is made nondimensional with respect to
a reference length, L, , then all other input lengths (DELTI,
DTMAX, etc.) must be supplied as ratios to L. and all output
lengths (X, Y, R, etc.) will be referred to L, . The intro-
duction to the Glossary contains additional information on

dimensions and nondimensionalization.

A deck for one job might be set up as follows:

Card 1 with INFLG = 1

Cards 2-31.J, input for first run

Card 1 with INFLG = 2

Cards 2-29, restart input for first rﬁn
Card 1 with INFLG = 1

Cards 2-31.j, input for second run

Card 1 with INFLG = 0

This assumes a negative flag terminating the profile input is
Iincluded in Cards 31.j. 'The above Job, then, consists of two
completely separate runs, the first being restarted after its
first halt. The restart could be used to introduce a different
cone angle, for example. If a run which halts on an error
condition is set up for a restart, the restart probably won't
be what's intended but the error condition is 1likely to recur
soon. On the other hand, it's possible to design the changes
introduced on restart precisely to overcome an anticipated error
condition. See Note 7 of the Glossary (Appendix F) for some
specific information on restarts.

Notes 5 and 6 of the Glossary contain information on inputs
for special modes of operation.
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Output consists of title pages, minor printouts, and major
printouts. The title pages display the information input on
Cards 1-29, for the most part in the same order. The labels
are included in the Glossary, but one item near the top of the
second title page is not labeled. Normally this is F but if
the option of zeroing out correlations involving p' and h!
has been selected, a T appears there.

A minor printout gives basic information on the progress
of the run and includes most of the auxiliary quantities described
in Seetion 4. Two unlabeled items appear in the top line. On
the left, there appears the name of the parabolic variable for
which the smallest tentative Ax for the next step was computed,
as described in Section 5. The letter Y appears there if such
a calculation has not just been made, e.g., at the‘start of a
run. On the right, there appears the name of a variable which
did not satisfy its edge tolerance until a point was added, as
‘described in Section 3. It is not necessarily the only such
variable. If no points have been added at the cuter edge since
the last minor printout, the letter Y appears there.

A major printout consists of a minor printout plus profiles
of the dependent variables and of the auxiliary quantities which
are functions of ¥

A minor printout occurs alone only if NSTEP is .a multiple
of NIOLP. A major printout occurs: (1) if NSTEP is a multiple
of NFOLP, (2) at time breaks (TBRKV), (3) if the maximum or the
percent spread has changed by more than PCFMX or PCHSP times
the value at the last major printout, (4) if NSTEP reaches
NSTMX, or (5) if an error condition occurs. If NFOLP is one
(a major printout at every step is specified), two extras are.
included: (1) profiles are printed after points have been
inserted in or deleted from the y mesh by GYCAA and (2) a
major printout shows the discarded results generated before
each backup.
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A run halts when the_ absolute value of a negative time

break is reached, when NSTEP reaches NSTMX, or when an error
condition occurs.

Error conditions produce messages indicating the nature

of the problem. A.R.A.P. should be consulted if a cure doesn't
suggest itself.
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8. FINAL REMARKS

Along with the GYC program, an "SSF! listing of it was
delivered to ARC. The SSF listing (named after the A.R.A.P.
program that produced it) is an alphabetical index of variable
names and subprogram names, locating every reference to each
by subprogram and position within it, and printing the lines
80 located. Since GYC makes much use of COMMON, the SSF
listing is a valuable aid in tracing the modification and
uses of variables.

Anyone who wants to understand the details of the oper-
ation of GYC must turn to the program listings. Considerable
effort has been expended (with varying degrees of success) to
reduce clutter and to make the listings readable. With rare
exceptions, the program flow is from top tc bottom. Statement
numbers appear in order according to an obvious .scheme. DO
loops are indented and occasionally indentation is used to
set off other statements. Natural breaks in the program are
signalled by blank lines. (Rows of asterisks or other symbols
are not used. It has been realized for several hundred years
that decorated pages are not easy to read, attractive though
they may be.) ’

With the descriptions of Section 6 as a start and with
the aid of the SSF listing, those familiar with Fortran should
be able to determine what is golng on throughout GYC.
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-,m -m \—~— -2 —-m T _%_Q, ¢ g0
ul -+ uag)u ui + u,gu, u ui + U u,z uiu’ +

T1: 12 > t.,1 Ti-1 23
k’gT u! + T’gk ui + T’guik +
- 3 9,) - ( [ 2)
T4t 3 1 1 1470 2 | I |
u(h u.’z + h u,ig + U,R h LY + h u’:.L +

h'u*! + ﬁmmiuﬁtht + TEhte'lE, o+ pEhtu'®
2
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552(5757) ot (Eu'zh‘h' + ﬁgp'h'h') - (p'u'g) h'h!' +
/s % 5%
+ 2p'h'ﬁ25 ot 25h u'gh' + 2h p'u'gh' =
s PP g
= 2h'p! + 26%h'p', + 2p hrut® 4 2nrurtpr, +
t iy SR L&
——, 48 -4 L [ ) m
3 1 T2 1 1 1 1
+ Z(uum + uu’m + u u,m + U u,m h u,g +
.-k k [ ~=L ( m m)
* 4 1 T 1 1 + t L ] t .|..
+ 2(u 1,1’k i u,k) h u,l 2uu,m h Uy + h ubg
-4 [/—-.m -1 ) -2 -m " -2 m
+ ] Tht IRt > Tyq1 +
2u’m(ug + uag w'ht + 2u’2u’mu h' + 2u uagh u’m
£ 2knree ¥ 4 ok prreed 4 oo o 4 2T nke ot
> % > % > Py
e - %
tiq1 LT LS Py tagt - t, 1 ) tiy! 4
pu%? ui),l + (pp u'u up'p'u ),R (p u ’Rp u
-8~ g L ~- [ ——
1nt 1t + FTR T 1 +
+ p'p' u Ui g +p'u; u Py pruUT puy o +outtug )
+ plptulgﬁ_ + ptut™ul! p =
i,2 i 7,8
= ~-p'p'. - ppusiu'y - 2p(u ptul + ptulu’ ) - ot ptptul +
,1 i, A s N i

- - Q - - 2
+ + . 1 T > ( . + _)’ t 1
(ui,z u%,l)p H + ul,£ u£,1 e+

- .zt =1 %1 .1 - m - m
+ 4 ptu¥! + 4 _u*lpl + uwpturmi + “%ipru‘m
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APPENDIX B.- THE MODELS

).

- 1931 NIRRT
VUUqA((uiuj),k -+ (ujuk

Ty3t33 1 = tiyt
ujusuy ),1 * (ukui
'ulp'! = —VRUqA ( ‘u!) 4 ( 'ui) :
uiuiP d ( P L S DA
tuih' = -V (Brup)  + (v7uy)
ulth UHqA( h u1~,3 h uJ Ji
ITI:_'V'R (1!)'
u;p'e RRghA (p'p A
T Al T o= _ Tt
uip h VRHgA (p h ),i
Thiht = _ 114t
ulh'h VHHG A (h h )’i
— u"q'ul
150, = 2 LJigr o+ jeish 1171 + _
EH 2 ujul + b v Buiuj (1 B)gij 3
w2 (BHU 4 gy RO e
i il A2 AR i
wrefor = [ARU o pey 89 S
i Nl A2 Al i
ptofyr o (AHE L oppg pa)
sT AZ A
T'I‘Q'- 14491 = p‘Q’
ulu = . ulu where w, = -BDV 2=
iv,2 271 A o~
Yp
h'u‘z = ﬁgh’u'z
¥
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hiua!
i

»d

i

i,J n,m

ﬂzp'u'g

2
1 1 1
VBSwgp uiu

N =

o=

el

roj-
T
c
s
Cty we
=

nof =

WMH

WMR

(gjkuiu:z gikuju:i)
%gij(h'u'g),z: "3 e ghtuy
%:gla(p'u' ),2: ¥ % gijp‘u:
e ]+ § e
.uﬁ - %-gnmuiuj +
- % gljuéué % glggnmqg]



(swove/3) (T - § 0%

11m lnz ,Q, R;
uiu' Ty (q/A) {WWUl(uiu' lﬂ + WHU2 uju! }

41,0 J‘Q’
m.n ,% _ k L k .2
u'_ututy = A) [ WW ( ! ) ul
nm g (a/n) [ D1l({u u'y )k + WWD2 u’kusg}

— r
nte Murt = (g/h) WWHl(h'u'l) o T WWH2 h'u'i ]
3

3n Jm L >
n
0 u:iu'm = (q/7) WWRl(p'u’z)’g + WWR2 p‘u'ﬁ}
3 L 2
Tt = 2P ~m 1,11 _ﬁ
pluy pA PMUu,n uiu’m + PMU2 u u ,m
p'ht = pA°|PMHE™ n'w!D ¢ PMHZ h'u'pu ]
> 3>
L
- 2F ~m
p'p' = pAS|PMRGT. p'u'? + PMR2 p u' ]
,n By
. _ = 2_ n m .n
tul! . = ph~ PGUu u! ,u'’ + PGU2 u! .u'u!
P Llad p i Rl l,J L, P ul,,]u,l’lu_,m:l

L]

Tht., = PGE Tyl + am. Tt "' ty; 11
p o1 p[%GHlu h u1 WGHEU,l h U + WGHBui m htu }-+

+ PCH2¥WWGH %% hty!

p'p'. = PGRB{WGRlﬁmm p'ul + wGR2ﬁmi p'u' + WGR3U; _ p‘u'mi]+
] 2 ;-]

+ PGR2#WWGR 7% p'ul
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- -
t ! — 1 1 1
uip! + Q' ulp', = PTUM ((a;b ), + B (up )’2)

hipy * aghlplz = prEM ((h'p')y * 52(5757)’2)
p'h' = -h'h' B/h
p'pt = —p'h' p/h
F@Z:O
)

hiu! p:£ = (0

The following constraints apply:

i
o

3*WGHL + WGH2 + WGH3

3*WGR1 + WGR2 + WGR3

I
[
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APPENDIX C.~ THE EQUATIONS AFTER MODELING

i MEAN CONTINUITY

(RS+US"L) s + RUMLeL = ¢

u MEAN MOMENTUM

RS¥USH_*USTT+L + RUVL%US*T,L
+ GRSHUUMLEYT 4+ USYLxRU'IT),L
VRUR{QL*(RU*TIL + RU"LI)) oL
w PS5yl + (EFRURUSTIIL + EMU*USHL.I) sl
+ FMUT*WMTH{TUTIIL + TUML,I)L
- 2/3FEMUTH(WMTHTUMMYM - BDGP«TUUMEPS M) I
+ (EMSxUSMN M + EMST*BUEP*xTUMM*PS M) (1

11 |

" MEAN ENTHALPY

RS®EUSTML_*HS+L + RUBL*kHS+L + {RS*HU"L + US"TL%RH}.L
= YRH%x(GL*RH L)L
= GMOMS*( USUL*PSL
+ (RS*BLAMABL AM*( PMUxUSY"MeN%( 1/72%UUNMLRKNM
- 174 (AN M*¥UUMLKIK = EUPL'MxUUITNK,K)
+ 1/72% (EWNTM*BRGP*UUYLK#PS+K ~ Z"L'MxBNGP*UUMYNK*PS+K) )
+ PMU2%U/BLAMx(WWULRUUYKL K + WWU2*3DGPxUUNKL*PS K] })sL
- RS*BLAM*BLAM®{ PGURUSYMyN&(WMDk{ (BDOGPxUUMNL*PS+L) oM
- 1/73%E"N*M* (BDGP*UUYKL*PS4 L) +K )
+ 1/3%xE"N'"M*BDGP xBUGP*UU"KL*PS yK%PS,L)
+ PGUZ2*Q/BLAMR{HWDL*{BDGPxUUYKL%PS+K) 4L
+ WWO2xBDGP+BOGPxUU"KL*PS+K%kPSyL) )
+ {(EMUR(US'MIL + USHL M)
¢ EMUTx{ WMTEL{TU'MIL + TUTL WM - 2/3%Z00LtMeTUMKK)
+ 2/3%ZVLvMABDGPxTUPK*PS K )y %USYM,L
+ (EMS*USYK (K + EMST*BDGP*TU"KxPS K %US"L L
+ EVU*A/BLAM/3LAMRUUMLL + B/BLAMRRS*Q*xJUNL YL
+ EMUR(UUY_M,LM =~ 2%{BDEP*UUCML*PS L) M
+ BLGPxBUGP+UUMML%PS«M*%PS,L)
4+ EMUTH(USTLIM + USYMeL )R {WMTR{TUTL M = 1/3%87L"METUYN+N)
+ L/3EZML My BOGP*TUMNKPS+N)
+ FMSxBOGP*BDOSPHUUNMMLFPS +M¥PSy L
+ EMST*US"MMxBOGPRTU"L*PS, L }
+ (CAPxHS L}IL + 1/2*%CAYT*TTL L
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H uu

REFUSHL_%UUTTJy L = (VUUXROL*(UUTTJIL + UUYL*J+T + UUNLY[4J)
+ VRU»QL*USULA(RU'I+J + RU'JLIN),L
= RUWL L*xUU'LJ + RUTIHUSHL2USYJ,L + RUTJkUSTTL*USYI L
+ RS&(UUPLYT&US' YL + UUMLTUKUS*I L)
= VRU*QLx(US*J, 1 *(RU'IIL + RUWL4I) + USTI,L¥(RU'JIL + RU"LyJ))
= = RE«BLAMABLAMY (FMUsUS My Nk 1/72%UJUTNe [ oM
- I/8%{&WMIMRUUYLYIWL « At TMxUUMLN L)
+ L/2%(EUNTM*BOGP*UUNLYIxPS+L = a'IM*xBOGP*UUNLN%PS L) }
+ PMU2*Q/BLAM* (WWULxUUSL*T L + WWU2*BIGP«UUMLYI®PS,.L)) Yaud
- RS*kBLAM+BLAMK (PMUxUSHM ¢ N* ¢ 1/72%UUNNY Je M
- 1/ ("N MEUUNML* sl - At JIMxUUDLNyE)
+ 1/25 (SN M*BOGPXUUPLYJ%PSyL = QA'JM*BDGP*UUVLN*PSL) )}
+ PMU2XQ/BLAM* (WWULxUUML S L + WWU2%BOGP*UUML ' J%PS,L}} )Wl
+ RS*( PGUxWGUKUSUM Nx{@"MJUxUUMN'T + @ MI«UU"NTY
- 2/3XENITMAUUT T = 2/3%Q'TJRUUMN'M 4+ 2/9%at TSN MRUUMLYL)
~ O/BLAMR(UUPIJ - 1/3%Q*TJxUUNLL) )
+ (FMUxUUYIJ )L
- 2%xEMU*A/BLAM/BLAM*UUTTJ
- oxB/BLAM%RS#2% (BETAxUU'IJ + OMBET*a'IJ/3xulnl L)
+ {EMU + EMS)%( (BDGP*UUYLY'I*PS,L)+J + (BDGP*UUL*JxPSL} 1
- WMDx({BUGP*UUNL*IxPS L) ed + (BOGP*xUUNLYJI*PS,L) I
- 2/3%g " [J+ (BOGP*UUUWLK%:FSyL) 1K)
+ 2/3%A T JxBOGP*BOGPxUUMLK*PS+L%FPS+K )
+ FMUSLF( L/72%0U"L T ed = 1/74% (&L vJkUUMMIT M - VT JxUUTLM M)
+ 1/2%(EML YU+ BOGPRUUNM TIPS M « AtTJ#BDGPxUUNLM%XPS M)
+ 1/72x0ULYJoI = 1/ (EulPIxPUIMMT Y, M - 3°TIJxUUTLM M)
+ 1/72%x(E"L V' 1XBOGPHUUNMYJFPS M =~ A'IJ*BORGPxUUMLM*PS M) )
+ CMUTx{ {(US*I.L + USTL.I}x(TU'JIL
- WMTH{TUYJIL =~ 1/3&XM0LYJIkTUNMM)
- 1/3%EUL Y UxBOGPRTUNMM%xPS M)
+ (UStU,L + US'L,.)%(TU'TIL
w WMTHRITUTIIL = 1/3%&90L'IxTUMMM)
- 1/73FZPLYI%BUGP*TUYMXkPS M)
+ TU'J*(US*T,LIL + USYL«IILY + TU'IR(US'J.LIL + US'LyJIL)Y )
+ FMSTH( USUM Mk({TUYI W + TU eI = WMT*(TU'I+d + TU'JNI
> 2/3xATUxTUMLWL) + 2/3%'1UxBDGP*TUMLxPS,L)
+ TUPJRUSYM  MT 4+ TUYI*USYM,MJ )
+ FMSI48DGPxUUMM Y JxPSM + EMS  JxBDGPAxUUNM I*kPS M

QRIGINAL ACE T
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# HU

RS*US"L*HU'I.L - {(VUH*RAL*x{HU'I!{ + HUYL+I) + VRH*QL*US"L*KH+I},L
~ RUNL ¢L*HUL + RUTI*USHL*HS+L + RH*USVPL*US'I.L
+ RS* (UUPLYIxHS,L + USTrI LxHUYL)
- VRU*GL*(RU'I!IL + RUML II*HSsL =~ VRH*QL*RHIL*US*IsL
= GMOMS*({ PTUMKUS"L* (  RS*RLAM*BLAV*{(PMUxUSHTM N¥1/2%UUNNIT M
- 1/4%PMUR{USHM, M¥JUNKIT (K = US*I NxkUUNWNKK)
+ 1/72%PMUk {USHM «MxBOGP*kUURKIT+PS K
- USt] N*¥BDGP*UUNTKN*PS+K) )
+ PMUZ*ROLA (WAULUUMK* T +K + WWU2%BDGP*UU'K*IkPS.K) )L
+ UUYL'IxFSeL )
= { RS*xBLAM*BLAM* {PMH*USYMeN®{ WMH%(HU"MN.M
- L/3%UNTMRHUTL L) + L/3%ZWNFMx30GPXHUYL*PSyL )
+ PMH2%Q/BLAM* (WWHL#HUML L + WWH2%x3DGP+HUYL%xPSsL}) )41
+ PGH*RSx (WGHL1*USHUM MxHU'T + WGH2oxUSHMyI£HUM
+ WGH3I*kUST*1oM*HUMMY + PGH2¥WWGHxRS*xQ/BLAMxHUI
+ GMOMS*( (EMU*{US*MIL + USHp My + EMUT/CP*( WHMTx(HUTMIL
+ HUYM M = 2/3%3"L'MxHU"K,K)
+ 2/3%ZVL'M*BOGP*HUK%xPS K D) (1/2xUUMMTI.L
- L/70k(ZUMYLRkUUNNYT N - R*TLUUYTHMN,N)
+ 1/72%{AMMIL*BOGP*UUYNYI*%PS N - G*IL*BOGPKUUMNRPSIN) )
+ (EMS*USHR1« + EMST/CFxBDGP#*HUNMR*PS K) xBDEP*UUNL*I*PS5WL
+ FMURUSuL Mx{1/2%(UUYILIM + UUNM'ILL)
- 1/78% (244" MILKUUNKIT 4K = ZuMtIUUNK'LeK ~ @tIL*UUNKMK)
+ 1/72% (2% A"M'L*BDGPAUUNK Y IxPSe¥K = 2"M*IxBOGPRUUPK*LAkPS K
- a'ILxBOGP¥UUNMKM*PS K1) )
+ EMUT/CP*USUL ¢M*{USTLIM + US"MLI*HU'T
+ EMST/CP*USUL,LkUSPMyMkHU'T + EMSxUSYL+L%kBDGP*UUMMTIxPSs % )
+ (CAP*HU'I L)L - CAP*HUDMF+HUT'Y
- (CAP*(WMT*{HUYIIL ~ 1/3®%&"L*IxHU"K,K)
+ 1/3%kXN_*1*x3ADGP*HUNK*PSeK)Y Yol
+ CAYV/CP/CPH+ {{hUtI*HS+L)IL ~ HS.Lx( WwMT*(HU'IIL
- 1/3%EPLVIRHUYKKY) + 1/73%3UL*I%RDGPkHUTK*PSWK 1))
+ EfMYR{WMH4(HU"I4L - 1/73%@"ILxHUMKK)
+ 1/3*%30' IL*BDOPxHUMK%PS K} 1L
-~ EPURHUDMFxHU®'1 + 1/2%(EMU + EMS)I*k(8DGP*HUYK%xPS1K) I
+ EMUsLE(WMHR{HUYIIL + HU"LeXI =~ 2/3xkZ"LYIxHUYK.K)
+ D/8*%E&VL ' I*#BDGP*HUYK*PS«K)
+ EMUT/CPx((US*I+L + US*L I}*1/2%xHHIL
+ (US*I L + USTLI)IL%HH)
+ EMST/CPx{USHM M%1/2%xHHyI + USYM,MI%HH)
+ EMS e I*BOGP*HUNM%xPS« M
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H HH

RS*USHL*HHsL = VHH#*{RQL*HH.L)IL = RUYL+L*HH
+ 2%RH*USTLAHS1L + 2%RS#HS,L¥HUIL - 2xVRHXQL*HSL*RHIL
= 2AGMOMS*( PTHM%USYL* ( RS«BLAMABLAM*(PMH*USTMoNkx( WMH*
(HUYN M « 1/3%&UN"MxHUYK KD
4+ 1/3%&"N'N*BOGPxHUNK#PSK
+ PMH2#Q/BLAMK( WWHLI*HU"K.K + WWH2*BUOGPxHU"K*PS+K 1) )L
+ PSeL¥HU"L
+ (EMUx( USTMIL + USHL M )
+ EMUT*{ WHMTH(TUTMIL + TUL.M = 2/3%&TLIMkTUNK K}
+ 2/73%ELTHxBOGPATUYK*PS 1K )}k (WMH*( dAUMM.L
- 1/3%E"MTLAHUYNGN } + 1/3%&"M*'LxBDGP*HUMN*PS )
+ (EMS%US"K1K + EMSTxBDGP*TUMK*PS 1K) *BDGPkHUML*PS, L
+ EMURUSHL oM {WiMH%[ HU'LIM + HUMM.L = 2/73%E"MILAHU"KK )
+ 2/3%xZ8ML*BOGPxHUNK%PS 1K)
+ EMUT/CPAUSHL M (UStLIM + US"M.L)*xHH
+ EMST/CP*USHL JLkUSIMyMkHH + EMS*USHL+L*x3DGP*HUMM*PS M )
+ (CAP*HH,L}IL - 2¥CAP¥HHDMFxHH
+ CAYT/CP/CP*(2%HS L1L¥HH + HSsLxHHIL)

# RU

RS*USYL*RU'I,L = (VRUAROL*{RU'IIL + RU"L.I)
+ VRR*GL*USUWLHRR+I}eL - RUYMLL*xRU'T
+ RR#US"L*US'1 L + USYLkRS«+L¥RU']T
+ RS¥US'ILxRUPL + RS*RSLxuU" L]
- YRR*OL*RRIL*US*T L ~ VRU*GL*¥RS,Lk(RUPIIL + RUML,1)
= = {RS*BLAM*BLAM* (PMR*x (WMR%x(USHM, N*kRUMN+H) = 1L/3%USUM,y M*xRUPL+L)
+ 1/73%US"M,M*3DGP*RUML*PS,L)
+ PMR2«Q/BLAM* {WWRL1xRUMLyL + WWR2x3DGP*RUVL*kPSsL) )}l
+ PGR*ARSk (WGRL*USTMMxRU'I + WGR2AUSHMI*RUTM
+ WGR3xUS'LM*kRUMM) + PGR2*WWGR*RS*Q/BLAMKRUYI
~ RS*RS*xBDGRP*¥UUYLYIXPS.L ~ 2xRS*¥USYL  LL*¥RUI
+ 2xVEBSXVRU*ROL+3DGP#PS+Lx(RU*IIL + RU"LI)
+ VRR*QL*USHL L%RR I
+ EMUR(WMR*(RU*I+L ~ 1/3%x@'IL%RUMKK)
+ 1/3%2'IL*BDGP*RUMA*PS+K) 1L - EMUxRUDMF*RU'I
+ 1/72%(EMU + EMS) % (BOGP*RUML¥PS L) I
+ EMULLR{WMR*(RUYIIL + RUML I= 2/3%EV"LTI*RUMKK)
+ 2/5% &MV I*BDGP*RUMKXPS+K)
+ EMUTR((US*I.L + UStL 1) *1/2%RTIL + (US'I.L + US'L D) EL*RTY
+ EMST*(USHMMx1/2%RT,1 + USrMeMI*RT)
+ ErS+I*%BDGP*RUBHRPS M
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APPENDIX D.~ THE FINAL EQUATIONS

H FIRST PASS

RSUS*(R*xWS) 1
+ RSYSx{R%xWS)1i2
+ Rux{RxWS):2
+ (RS¥R®VW) 2
= (FMUX(R*®xWS)12)1:2

RSUS*(RxYW) i1
+ RSVS*x(R*YUW)iz2

2xrxRSkWWxWS

2x {VUUXRQL*(R¥yW)12)3:2

Ry2xR*VYHW

USxRU*x(RxWs) 11

VSRV (RxWS) 12

C+WSkRWHWS

RS*xUV* {RxWS) 311

RS*VVk{R*xWS) 12

RS«R*VW*YS32
2RYRU*QLRRY 2% (R¥WS) ;2
= ~1/43*%PMUXRAR*YV2KX (RELS*(L/R*¥WS)1:12):2
1 /74*PMUXRBLS*WSR2x (R*R* (VV) 12122
(PMU2#WWUL*RAL ¥ {RxVW)I2):2
pGU*WGUXRS*R«R*¥UVk {1 /RxWS) 11
PLUXWEURRS*R*¥R¥VVx {1 /RxW3)t2
1/34S*¥PGUXKGURSUSxV U
SHPGUXWGU xRS+ UV WS
CxPGU*WGEU*RS xVV kWS
1/73¥PEUXWEURRS*YS2%R* VI
CPGURWGURS «*WSxWW

2 /3¥PEURWEURRS*USLRR* VW
ROOL*RxVw

(EMU*(R®VW)12)t2

¥ AXENMU/BLAM/BLAMKR%VY
oxB*BETAXROCL®R* Vil

1/7U*EMUX (Revi) 12

(1 -~ WHMT/3)*xEMUT*TV2%(R*WS) 32
EMUT*TV*{ [R¥WS}i2)t2

1+ + + 9+ 4+ 4
T T T

+ 1

++ 4+

18
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H SECOND PaSS

RSUSx(US) 11
* + RSVSx(US):2
= SkRS/R*WS%kWS
+ Ryx(US):2
+ (RS*UV)I:2
= -DPDX
+ (EMUX(US):2)22

RSUS*k (V)]
+ RSYSx(UV):2

2xS*RS/REWS®YY

2% xRS /RxWS*UW

2 (VUUXRGLx(UY) 12082

RVaxUV

C/R*xWS*WS*xRU

US«RV*x(US}:1

VSxRV*(US});:2

S/R+WS*kWSkRV

RSxy52xUyY

RE*xUS1*Uy

RSxVV*(US)i2
2xYRU*QLXRYZx(US)Y12
= w1 /4 kPMURVY SR (RILS%x(US)12)2
w L/4*%PMUXRBLS*US2k((VV)Ii2)t2
(PMU2*WHUL*RAL*(UY)i2)22
173*%PGU*WEUXRS®kYS2*JV
CAPGUXWGEU#RS /R%xWSxUW
1/73*kPEURYEU*RSFUS1*UY
PEU*WGU*RSxVYYx(US) 22

Gk PLU*WEURRS /RExWS kW
2/3%xS¥PGUXWEU*RS/R¥USxUY
RGOL=UY

(EMU%s{UV)23:2
oxn*EMU/BLAM/BLAMRUY
2xR*BETA+RGOL*UY
1/0%ERU2%{UY) 32

(1 = WMT/3)xEMUT*TV2*({US) 2
FMUT®*TVx((US) 12012

[ N |

P+ 4+ 4+ o+

NN Y S N B . R |

+ + 41

ROSUS* (RxUW) 1
+ RSYS*k{R*xUW)s2
- 2%5xRSEWSHWW
- {(VUulRRALX{R*xUk)12):2
- RysxR*xUW

CRIGNAL PAGETS T
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P4+ o+

t + 4+ + +

u
v
R
R
S
R
R
R
R
v
v

-

I T T S S A s

1, +

+ o+

SxRUxRWS1

S*¥RU*RWS2

*JS*xRW* (US) 11

*VOkRWk(US) 2

*WSHWESRRW

SxUUXRWS1

SxUVxRWS2

SxR*US1*xUlY

S¥ReVW*x(US):p

RU*xQL*xRWS2%(Ry):2

RUHQL*US2* (RxRW) 2

PGUXWGUXRS*WSRI*R¥R*xUU
PGUkWGUxRS %W SR2%¥RxR*UY
1 /3*S¥PEUXYGUXRSUS®UN
SHPGURWGEUXRI +WS*xUL
CxPGUXWEU*RS xWSxUy
1/3%POUXWGUXRS*US L xR *xUW
PGUXWEUXRS*S2%kR*VW
S*PGUXWGU*RS ¥ WSkLW
2/3¥PEUXYGU*RS*VS2kR ¥ Y
RAOL*xR*l
(EMU¥(R:xUW):s2) 22

2 AXEMU/BLAM/BLAM*R%UNW
2%R*BETA¥RQQL*R*UY

{1 = WMTI4EMUT*RTW2%(US) 2
(1 =~ WMT)I*EMUT*RWS2%(TU) 12

FMUT*R+TWx( (US)i12):2
FMUT*TUXRWS22
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# THIRD PASS

RSUSx(UU) 11

RsuysSx(UU):2

44 S+RS/RxWSHUW Y

(VIIU*RAL* {UUyz12})22

RvoxUU

2xUS*RU*US1

2%yS*RU*US2

2%S /R*WSkWS*RU

2xrSs*UsS1xUU

2xRSxUS2*xUvd
2xyRUXQLRUS2R(RU) 2
= A/9%xPGU*WGUxRS*US1xUU

+ 4/3¥POURWEUxRSHUS2*UV Y

-~ o S*¥PGUXWGU*RS/RxWS*UWJ
- u/9¥PGUXNGUxRS+VSo*uU

- u/9%S¥PGUXWGU*RS/R4USxUU
- 4/9%PGUXWGEUXRE#VS2%VY

- 2/3%PGU*WGU*RS*WSRIkRxUWJ
2/3%PEUXWGUXRS*WSR2*R%xYWwdJ
4 /9kSHPGURWGURRS/R*US*UWW
2 /9¥PGURWEUFRS*¥US1®VYV
5/9%PEUXJGU*RS¥US1 UMW
0 /9¥PGUXYGUXRS¥ VS 2% Wi
2 /9%S*¥PGUXWGU*RS/R®US%VY
o /3%ROOL*+UV
1 /3%REBOL*VY
1/3%RA0OL*WNW
(EMUk(UUYI2y22
ox AXEMU/BLAM/BLAMAUY
2xA*BETA*REOL*UU
2/3*%B*0OMBET*RA0OL*UL
2/3*%B¥OMBET+RQCL%VV
2/3*%B¥OMBETRA0OL* Wy
1/2*%EMU2x{yy)s2
okl = WMT)yxEMUT=®=US2%(TU):2
2xEMUTxTU*US22,

+

1+ 1+ 4+

1

+ + + &

I+ o+ 4+

[}

+ + + 1

RSUS*x(vv):l
+ RSYSx(VWV)se
- 4x*%RS/R*WSkYW )
- Fx(yUULRaLx{vv)i2):2
- RV2aVvV
- 2% /R¥WS*WS*RY
+ 2¥I8kVS2%VV
= -o%(PMU2*WHWULRRAL*(VV)2)3:2
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+ nsa¥pPGU*GURSFYVS2xVY

- oaC*PGUXWEUXRS/R¥WSKkVWJ
- 4 /9%PGUKWGUXRSHUSI®VY

- 4 79%S*¥PGURYWGURRS/R*¥USHVY
- 4 /0%pGUXKWGEUXRSTUST*UU

- 0/3%PGU*WGEUXRSTUS2%UVY

5 73%PGUKWGUXRS¥WSR1 #R*UkJ
5 /3*kPGURKGUXRS*¥WSR2*R* Vi
4 /9xS¥PGUWGU*RS/REUSKUW
2 /G%PEUX qGUXRI*US1*WW

2 /9¥PGUxwGU*RS+VS2¥UU

5> /9%PGURwEURRS VS 2¥Wh

5 /9%S*¥PGU*WGU*RS/R¥USxUU
2 3*RAOL VY

1 /3¥*RU0L*UU

1/3%REOL*WHW

(EMUx(UV) 212

sx AXEMU/ZBLAM/BLAMRVY
o%R¥BETA*RQOL*VY

- 2/3%xB¥OMBET*RE0OL*UU

- 5/3xB¥0OMBET#RA0L*KVY

- o/3%B¥0OM3ETHRAOL*xWY

+ rFMmyu2x(vviie

L+ + + ¢+ + + + 0 § 1

RSUSk(rxR*xWW)I3 1

+ RSYS#(R¥R¥WW):2

(VUU*ROL* {R¥RxWW) 12032

Ry z*R*R¥WH

2 RxUSYRWARWS1
2¥r+xVSKkRWAKRWS2

2¥RS+R¥RWSI*UWUY

2xnS¥R&«kRHS 2% VWU

2xyRUFQL*RwS2x (R¥RW) 2
= 4 73%PGU*WGU*RS*¥WSR1¥R¥R*R+UWJ
u/3*PGUXWGEU+RSxWSR2¥R¥R*R*¥ VU
B/9kS*¥PGU*WGU*RS*R xSk WY
ok SKPGUk A GUXRSKRANUSHUWJ
oxCAPGUX U RS*R¥WS*VWJ
u/9*PGU*NGU*RS*USL*R*R*ww
4 /9*PEUXWGEUXRS*VE2¥R*R*WY
4y 79*PCUXWGUXRS*USI*R*R*¥UU
0 /3%PbUXWGUxRSH*US2*R*R*UV
4 /9*PEUXWEU*RS*YS2*R¥R*¥VV
9/9*PGU*mGU*RS*USI*R*R*VV
a2 794%PGUXWGEUXRS*VS2*R*¥R*UU
9/9*S*PGU*HGU*RS*R*US*UU
2 /9kS*PGURG UXRSKR*USHVY
5 /3%RO0OL*ReR +WW

Y 4+

U+ o+ o+

11

1+ 4+ 41
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t o+ + 4

+ + + 1

1/3*%RAOL*RxR xUU
1/3%#RUOL*RxkR*VV

(EMU* (R¥*R*WW)32)32

>k AxEMU/BLAM/BLAM®R%R%xWW
sxBBETA*RGOLER®R ¥ WY

o /75%B*OMBET*RQAOL*R*R*UU
2/3%B*0OMBET+#RGOL¥RER*VVY
2 /3%kB*¥OMBETxRADL*R¥R*EWW
1/72xEMU2¥RxR&(VV) 12

o% {1 = WMTI%FMUT*RWS2%x (RxTW) 2
>xFMUT*RxTWxRWS22
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H

FOURTH PASS

KSUSH (HS) :1

+
+
+

RSYS*x{HS):2

RVx{HS) 12

{RS%kHV):2

GMOMSxUSxPPDX
GMOMS*EMURUS2*USJ2
GMOMS*EMUXRWS2%xWSRJ2
A*GMOMS*EMU/BELAM/BLAM%GRJ
BxGMOMS*RAUL*AQJ

(CAPx{HS)2):12

+ + + + +

RSUS*{HV) {1

+

1+ 4+ + 1

R
2
2
R
J
v
C
R
R
2

-
-—

T B TR B IR T T T N S S S S S S S RS

SVSx{HV):2
*CH+RS/RxWS*HW
¥ (YUH*RQL* (HV):2):2
VaxHVY
S*RVk(HS) 11
SkrVx{HSY 2
FR¥WS*WS«HH
Sxyvx(HS):2
SxkySaxHV
FYRUXQL*RYy2*¥(HE) 12
GMOMS*xUV«DPDX
GMOMS*VVYxDFPFDY
(PMH2*kWWHI*ROL%x(HV}z:2)}:2
PGH*WGHT *RS*xUSL*HV
PGH*WEOH1L #KS*VS2%HVY
S*PGH¥WEH1ARS/R¥xUS*HV
PGH*WGH2 xRS*xUS2%xHU
PEHxWOEH2*KS*xVS2%xHY
PEHEWGH2 xR S*xWSR2kR*HW
C*PGH*WGH24RS /R *xWSkHW
PGH*WGH3I kRS*YS2+«HV
C*PGH*WCH3 RS /R¥xWSxHW
PGH2*WWGEH*RAOL *HVY
3/2*%GMOMS*EMUAUS2xUYJ2
A/4%kGMOMS*EMURRWS2¥YWRJ2
3/4RGMOMSKkEMU*WSR2%RVWJI2
GrMOMS*EMUT/CPAUS2%USJ2%HY
GMOMS*EMUT/CPA*WSR2%RWSJU2%HY
(1 = 2*xWMT/3)+{CAPx({HV)2):2
CAP*HUDMF=xHV
CAYT/CP/CP¥ (HV%x(HS)12)12
2/3%CAYT/CP/ZCPRHS2*MTx(HV) 1 2
2/3¥EMUx (WMH+ (HV ) 22):12
EMUxHUDMF*xHVY
4 /73*%EMUzxWMH* (HY) 12

IN.
RSUS*(HH) 21 oF POO%L PAGE 1g
+ RSVS*(HH):2 WALy

-

Vv

AH* (RAL*x(HH) :2) 12

- RY2%HH 62



+ 2x*US*xRH*(}iS) i1

+ 24VSkRH*{HS):2

+ 2%RSxk({HS) :2%HY

- Z2¥YRH*xQL*HS2*(RH):2

= 24GMOMS*DPOX*HU
2xGMOMS*xDPUY RV
YxGMOMSHEMUUS2*xWMHx (HU} 2
2YGMOMSHEMURRWS 2k WMH* (L /R*HW ) § 2
2% GMOMS*EMURWSR2*kWMH* (RxHW) 12
2xGMOMS*EMUT /CP*US2%USJ2*HH
¥ GMOMS+EMUT/CPxWSR2¥RWSJ2%HH
{CcAP%(HH):2) 12

2xCAPXHHDMF xHH
2H*CAYT/CP/CPX*HHx{ (HS):2):2
CAYT/CP/CP*¥HS2% (HH})Y 12

+ + 1 4+ 4+ + + + + +



t FIFTH PASS

RSUSx{RUIIL

RSWS*k(RU) 12
2+S+RS/R*WSKkRY
(VaU*RAL*(RU}22)32
Rvo2#RU

US*RR*US1

VSxRR*US2

S/R*WSkWS*RR

US«RS1*HU

VSxRS2*RU

3xRS*US1*RU

RSx11S52*RY

RS*RS2*UVY
VRR*RL*RR2%US2’
VRU*QL*RS2* (RU) 2
= PRR*WGR1%RS*Li51*RU
PGR*WERI*RS*xyS2%RU
S*PGR*¥WGRL1*RS/R*¥US*RU
PGR*WER2xRS*UUS1*RU
PGR*WER2*RS*¥WSR1*%R*RKW
§xPEGR¥*WER2¥RS/RXxWS*RHW
PGR*WGER34RS*US1*RU
DGR*WERAkRS*US2%kRY
SkPER¥WERI*RS/R¥WSkRW
PER2AWWGR*¥RGOL*RU
2%xRS*VS24RU
2% S*RS/R*xUS%RU
EMUX (WMR* (RU) :2) 3.2
FMU%RUDMF *RU
FMU2xWMR* (RU)Y 2
1 /72*%EMUT*US2%(RT) 2
FMUT*US22%RT

+

I

1+ 4+ + + + 1 + + 1

TR T T SRR i i e

o+ 1+

RSUSk(RV)IL
+ RSySx{RV):2
o 290 *RS/R%US*RY
- 2% (VRUXRGL+{RV}II2)}:2
Rv2#RV
C/7n*WS*xWS%RR
US*RS1%RY
VS+xRS2*%RY
Ay RSkVS2HRY
KRSk g2*xVy
2¥YRUXQL*RS2%(RV) 32
= —(PMR2*WWRL*RAL*®{RV):2):2

|
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PGR*WGRI*RS*US1%RY
PGR*WLR1 %R yYS2*RV
S¥POR*WER1 %P S/R*US®kRV
PGR*xWGR2%RS*US2*RU
PGR*WGEGR2*¥RS*yS2¥RVY
PGR*WEGRZ2A*RE¥ WSR2ZKkR*kRW
rxPGR*WER2*PS/RxWS*xRW
PERAkWURI¥RS®YS2%RY
C*PGR*WGR3*RS/RxWS*RW
PER2*WWGRkROOL*RY
2%xRS*US1+RV

>+ SkRS/R+USHRV
S>/3%EMUR (WMR%(RV}z2)1i2
FMUxRUDMF %RV

4 /73%EMU2¥WMR*(RV) 12

1 4+ 1+ 4 + + + + + +

+ 1 4+ 3

RSUS*k (R*¥RW) 1

+ RSVYSx{R*RW) 2

+ 2xSxRSUSkRW

{VRU*RAL*x (RxRW)112)12

RyoxR%RW

US¥RR*¥RWSY

VSxRR*¥RWS2
USkRS1*HK*RuW
VS*RS2*R%xRw
RS¥*RWS1*RU

RSLRHUS2RRY
RSxRS2*R*VHu
VRR+QL*RR2¥RWS2
VRIIQL*RS2% (R4RW) 2
= PGRAkWGR1I¥RS*|;S1*R*RW
+ PGR*WOGRIsRS*xySZ¥RxRuW
S¥PHER*WGR1%RSUS®RW
S*PGR*WGR2*¥R S*WS*RU
r*POR¥YWGEGR2¥RS*xWSkRY
S¥PER*WER2%xF SUS*RY
PGR¥WERZ+#RSxRWS1+RU
PER*¥WOERIRRSxIWS2%RY
S*PER*WER3XPSUS*kRIW
SxPLR¥WGER3IKkRS*¥WSkRLU
r*PEGR*WYGR3I*RS*kWS*kRV
PGR2*¥UWWGR*¥RCOL*R*Ru
o#RE*USIAR*RW
oxRS*VS2%xR xR W
FMUx {WMRx(R¥RWY 2} 12
FMURRUDMF xR+RW
FrU2kWMR* (K+RW) $2
1/72*¥ENUT*RIWS2% (RT) 2
FMUT*RWS22%RT

[ T I

+

t %+ + + + 1

+

4+ + U+
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H SIXTH PASS
RSUS*{HU) 1

+ RSysS*x{HU):2

24SHRS/REWSkHUW

(VUH*ROL*(liy) 2112

RV2x{U

USxpU={HS):1

VSxRUk(HS) 12

USxRH*US1

VSxRH*US2

S/R*WS*WSxRH

RS#UV*k{H3):2

RE*US1*HU

RS*ySa2*xHVy

VRUxQL*RUz2*HSJ2
VRH*QL*RH2*xUSJ2
= GMOMSxUUxOPDX
GMOMSxUV.DPDY
PEH*WGH1+RS*xUS L *HU
PGHxWGH1%xRS*kVS2xHU
S*PGH*WGHL*RS/R*xUS*xHU
PGH*WGH2*RS*US1%®HU
PEH*WOH2 ¥xRS*xWSRL*R*HW
S*¥PGH*wEH2*RS /RxWS*kHwW
PGH*WGHRkRSxS1kHU
PGH*WGH3AxRS*US2%kHVJ
S*kPCHkWGHI*RS/REWSkHW
PGH2 *JWEH*xRAOL *x1HU
GMOMSREMUFUS2*UUJ2
1/72%GMOMS*EMUXRWS2.WR U2
1/2%GMOMS*EMUKUS2®*VYJ2
1/72*GMOMS*EMU*WSR2¥RUWI2
GMOMS*EMUT/CPxUS2%USJ2%HY
GMOMS*xEMUT/CP+¥WSR2*¥RWSJ2*HU
{CAPx(HU):2):2
CAP*HUDME*xHU
(WMT*CAPx(HUY;2) 2
CAYT/CP/CP*¥(HU*{HS):2):2
CAYT/CP/CHP*HS2¥WMT* (HU) 2
EMU*{WMHA(HU) 1 2):2
EMUxHUDMF xHU
Eru2*WMH*(RY) 2
1/72%EMUT/CP*US2%{HHY 1 2
EMUT/CPxUSZ22%HH

1

I + + 4+t + 4+ 4+ + 11

1

1+ ++++++ 4+ +++++++++

+ + 4+ 1+ 1+ 1

RSUS* (R*xHW) 1
+ RSys*(RxHy):2
- (VUHXREGL*(R¥xHW):2):2
RVoxR*HW
REUSHRWR{HS) 1
R¥yYS*kRWx{HS} 12
US¥RH*RWS]
VSkRH*RWS2 8RIG1NAI} PAGE 1§
RS*R*VW* (HS):2 66 F POOR QUALITY
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+ +

BLA

M

R
"
v
v

t 4+ 4+ + +

t o+ + + + 1

1+ 4+ 4+ + 4+ + + 1

PR B 2 B

S*xRWS1xHY
SkRWS2*xHYJ
RU*QL*RRw2*xHSJ2
RH*QL*RH2*RWS.J2
GMOMS*R*UWxDPOX
GMOMS*RxVW¥DPDY
PGH*WGH1ARS*US LR *xHW
PGH+WEH1 #R5*%xVS2*RkxHY
S*PGH*kWGEH1I*RSUSKkHW
S¥POH*WGH2*RE*WS*HU
CH*PGH¥WEH2*RS*xWS*kHV Y
S*¥PGH*WGH2*RSUS*HW
PGH*WEHZ*RSxRWS1%HU
PEH*WGEHI*KS®¥RWS2%xHV J
S*PGH*WEHS¥RSUSKHW
S*PGH*WEHI¥RS*UWS*kHU
CHPGH*UGHSFRSAWS*HV Y
PCH2*¥WWGH*RAOL*R*xHW
GMOMS*EMUxUS2+%RUWJ2
1L/72%GMOMS*EMUKRWS2xWWJ2
1/72%GMOMS*EMUKXWSESR2*¥R*R*VVJ2
1/2%GMOMS*EMU*WSR2*¥RWRJ2
GMOMS*EMUT/CP*US2%USJ2%xRxHY
GMOMS*EMUT /CP*WSR2%RWSJ2*R«HW
(CAP*x(R¥HW):2):2

CAP*HUDMF *RxHW
(WMTH*CAP®R(Rxi{W) 2132
CAYT/CP/CP*(RxHWx(HS) 2} 2
CAYT/CP/CPXHS2¥WMTX* (R&kHW) 2
EMUX{WMHRx(R*¥HW) t2) 12
EMUFHUDMF®R%HW

LMU2*WMH* (ReHW) 22
1/2%¥EMUT/CP*RWS2%k(HH) 2
EMUT/CPxRWS22+HH

= GYCSZ

ORIGINAD PAGH B
OF POOR QU.
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APPENDIX E.-~ TENSR NOTATION EXAMPLES

3y 1s used as a separator in these examples.

Common Notation TENSR Notation

Scalars

A ¢ t2 50V A 3 PHI ; TIMEZ ; NU

Covariant Vectors

Ai 5 ¢r H Vu A'T ; PHI'R ; V'A
Contravariant Vectors
Al ; ¢I‘ ; VOL A"I : PHI"R 3 V“A
Variousg Tensors
Aij A"IJT or AVIMWT
A, . A'TT or A'I'J
1]
1 .
A AiJ A"I'T 3 A'INT
ijm
Za CAPSIG"IJMTKM
km
Covariant Derivative
¢’i PHI,T
Partial Derivative
9 _ PHI:T
i
ax
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Common Notation TENSR Notation

Metric (or Fundamental) Tensor

13
815 3 B @'IJ ; @"IJ
Kronecker ‘Delta

i i

8§, =g U"I'T = @"I'J

i~ 8

§.. 3 619 §1IJ 3 &YIJ

1J

Covariant Derivative with Index Raised
(or "Contravariant Derivative')

g, = ¢t = 9,7 @"IN*PHI ,M = PHI!T
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APPENDIX F.- GLOSSARY

This glossary includes:

1) The mnames of the variables appearing in the tensor
equations of Appendix C and in the final equations
of Appendix D.
2) The names of all the subprograms of the GYC system.
3} The Fortran names of all the input wvariables.
4) The Fortran names of some of the important variables
of the programs.
5) The labels used on the program output.
Many of the entries fit in several of the above categories.
In the list, several of the names end with _ . This is
used to indicafte that the name may appear with any of the
following appearing in place of : M, Z, P, I, J, K, 1, 2,
J2, 22, or none of them. The letters refer to the six-point

finite-difference mesh used in the main solution process as

indicated in the sketch.

y
=

SP +—— —Jf I

DSP . s
sz+—4

DSM
SM -t M )

~| Ax=DELT} v = TIME
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The values denoted by names ending in M, Z, and P, at the
old x , are known. Those ending in I, J, and K may be known
or unknown depending on the stage of the computation., The
suffix 1 1indicates the f{irst derivative with respect to x
between Z and J, 2 the first derivative with respect to ¥
at 2, Jd2 +the first derivative with respect to y at J, and
22 the second derivative with respect to y at Z. A4 name
that has a different meaning without any such suffix is listed
both with and without _ , e.g., S8 . On the other hand, a
variable that carries the same basic meaning without a suffix
is listed once. For example, HH appears as such in Appendices
C and D, and as an input variable, as well as in the form HHM ,
HHZ , ebtec. 1In any case it signifies h'h' , so it appears in
the 1list only as HH__ .

The column labeled Dimensions gives the dimensions of the
quantity in terms of a density, D , a wvelocity, V , a length,
L, , a temperature, ¢ , ‘and an enthalpy per unit mass, H .

(If mechanical units are used for heat, then H = V2 . The sub-
stitutions D = ML™3 and V = LTl will transform this set

into a more familiar one.) Absence of any indication means the
quantity is nondimensional. The symbol W means the elements

of the vector have the same dimensions as The corresponding
elements of the vector XV as given in Table 5. The combination
W,N used with EPSBV and EPSTV means W if the element is input
as a positive number and nondimensional if it is input as a
negative number. Finally, X indicates some other mixture of
dimensions for different elements.

At the end of several of the definitions there are expres-
sions in square brackets. These are evaluations in terms of
Mach number, Reynolds number, eftc. of the variables when they
are interpreted as nondimensional quantities under the following

conditions:
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1)

2}

The nondimensionalization is done with respect to a
length, L, ,

velocity, temperature, T, , and enthalpy

Pr Ups

per unit mass, h that all refer to the same con-

T s
dition or point in the flow.

The reference state for the transport coefficients is

that same condition, i.e., Trf = Tr

An example of how they are derived is given for the case of
GMOMS in Section 2.

Notes to the Glossary appear at the end.

and with respect to a reference density,

Name Dimensions Definiftion

A Modeling parameter, a . See Note 2.

AHH Modeling parameter. See Note 2.

AHU Modeling parameter. See Note 2.

AMAT X Matrix A (Section 3).

ARU Modeling parameter. See Note 2.

AV W Vectors of the unknowns at the new x
AVM, AVZ, and AVP would more logically
be called XVI, XVJ, and XVK.

B Modeling parameter, b See Note 2.

BDGP 1/(DV®)  —BDV/(yD)

BDV Modeling parameter. See Note 2.

BETA Modeling parameter, B . See Note 2.

BHH Modeling parameter. See Note 2.

BHU Modeling parameter. See Note 2. .

T2



Name Dimensions Definition

BLAM _ L Turbulence scale length. See Tables 3
and 5 and Note 1.

BLAMO L Scale parameter. See Note 1.

BMAT X Matrix B (Section 3).

BREAK L TBREV

POINTS
BRU Modeling parameter. See Note 2.
" BUFAC Maximum ratio by which EPSTV criteria
: may be exceeded without causing backup.

C DIMFL# cos 6,

CAP DVL k/cp ’

CAY DHVL/® Heat conductivity, k .

CAYRF DHVL./6 Reference value of k : its value at
TMRF. See Note 3.
[1/(RerPr)]

CAYT DHVL/6°  Derivative of k with respect to

' temperature.
Cr Skin friction coefficient.
CHANGE PER W,N EPSTV
STEP

CLAMB Scale parameter. See Note 1.

CMAT X Matrix C (Section 3).

CMNTS Up to 76 characters of comments to be
printed on the title pages.

CONGL Cone half-angle, ec s 1n degrees.
See Note 5.

cP H/® Specific heat at constant pressure,
Cp assumed constant.
1.1
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Name Dimensions

CSUTH 6
DELT L
DELTA* L
DELTT L
DIMFL
DIN
DH/DY H/L
DLTY9 L
DOUT

. DPDX DVe /L,
DPDY DV2 /L,
DSM L
DSP T
DST L
DTFMX
DTT# L
DTMAX L
DTMIN L

Definition

Constant in the viscosity law. See
Note 3.

Step size in the =x direction, Ax
Displacement thickness.
Input wvalue of DELT. See Note 7.

Important: see Note 5.

Dimension flag. A value of zero signi-
Ties flat-plate mode; a value of one
signifies axisymmetric mode. Any other
input vadue 1s converted to one.

Séale parameter. See Note 1.

The wall value of %%-.

Value of y for which u is 99 percent
of its free stream value.

Scale parameter. See Note 1.

Partial derivative of p with respect
to x

Partial derivative of p with respect
to ¥

SZ - SM

i

h_  (Section 3).

SP ~ SZ = h+ (Section 3).

SP ~ 8M = hy (Section 3).

i

Maximum ratio by which Ax may increase
from one step to the next.

Velocity thickness.
Maximum AXx

Minimum Ax .

U



Name Dimensions
DU/DX V/L
DVEC X
DZEMN
DZPMK
DZRMX
ECMN
ECMNT
ECMX
ECMXT
EDGE W,N

TOLERANCE

EDGEV W
EMS DVL
EMST DVL/0
EMU DVL
EMURFE DVL
EMUT DVL/8
EPSBV W,N

Definition

ﬁx

Vector D (Section 3).
DZFMN+*TYPL is the minimum Ay
DZFMX#TYPL is the maximum Ay .

Maximum ratio of two adjacent values
of Ay .

Govetrns dropping of points from the
profile.

Initial value of ECMN at each step.
Governs adding points in the profile.
Initial value of ECMXI at each step.
EPSBV

Free stream values of dependent
variables.

Second coefficient of viscosity, u¥

Derivative of u* with respect to
temperature.

TMirst coefficient of wviscosity, W

Reference value of u : 1its value at
TMRF. See Note 3.
[1/Rer]

Derivative of u with respect to
temperature.

The solution is extended in the radial
direction until the difference between
the calculated value of each parabolic
variable and its asymptotic value.is

less than EPSBV(I) or -EPSBV(I)%GMAXV(I),
whichever ig positive.
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Name Dimensions Definition

EPSNV W When ABS(GMAXV(I)) is less than
ABS(EPSNV(I)), the corresponding
variable is not checked in the deter-
mination of DELT, nor in considering
where o insert or drop points, nor
in checking the outer boundary con-
ditions if EPSBV(I) is negative.
Furthermore, in the determination of
Ax , if EPSNV(I) is negative, the
change in the corresponding wvariable
is compared with the larger of
-EPSNV(I) and the criterion derived
from EPSTV(I).

EPSTV W,N Ax is controlled by attempting to
keep the change, TCMXV(I), in each of
the parabolic variables (in the axial
direction) below EPSTV(I) or -EPSTV¥
GMAXV(I), whichever is positive. ‘

EV See Table 2.

EXPMU Exponent in the viscosity law. See
Note 3.

FACQ9 See Note 1.

FCMX Maximum factor by which ECMNI and

ECMXI may be increased through repeated
applications of FCURI.

FCURI Factor by which ECMN and ECMX are
increased when JMAX impedes adding
points in the profile.

FHM 1/L -H_ (Section 3).

¥HP 1/L H+ (Seetion 3).

FHZ 1/L H_ - H_ (Section 3f.

FINTV L Spreads of the dependént variables

based on their integrals {(output label:
INT SPREAD).
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Name

FMAXV

¥UP

FUPV

BV

FZMXV

GLOBAL MAX
GMAT

GMAXV

GMOMS

GV
GYCAA

GYCAL

GYCAQ

GYCBI

GYCBO

Dimensions

W

H/V?

Definition

Maxima over y of the dependent
variables (output label: MAXIMUM).

Upwind differencing parameter. See
Note 4.

Upwind differencing parameter. See
Note 4.

See Table 3.

Locations of the maxima (output label:
Y AT MAX).

GMAXV
Matrix T (Section 3).

Maxima over y and x of the dependent
variables (output label: GLOBAL MAX).

Important: see Note 6.
The reciprocal of the mechanical
equivalent of heat.

[:(Y—l)Mg]
See Table 4.

Subroutine which adjusts the spacing of
points in the y direction.

Subroutine which controls output and
auxiliary computations.

Subroutine which computes spreads and
the next step sige and whiech initialigzes
for the next step.

Subroutine which implements the wall
boundary conditions.

Subroutine which implements the outer
boundary conditions.

77



Name

GYCCHM
GYCCP

GYCDZ
GYCEW
GYCFP

GYCIC
GYCIN
GYCTIP
GYCLI
GYCMC
GYCMT

GYCMP

GYCNS

Dimensions

Definiticn

COMMON file.

Subroutine which calculates the pressure
distribution and the density distri-
bution when they need to be determined
separately.

Subroutine which determines the position
in y of a new point which is %o be
inserted.

Subroutine which interpolates to deter-
mine values of the specified free-stream
variables at the current x .

Subroutine which transfers from STOR,
or calculates, the values in the section
of COMMON from QP to USK1.

Subroutine which handles some of the
initialigation for a new run.

Subroutine which controls start or
restart procedures.

Subroutine which determines values of
the dependent variables at a point
inserted in the profile.

Subroutine for linear interpolation.

Subroutine which controls the compu-
tation of AMAT, BMAT, CMAT, and DVEC.

Subroutine which inverts 2 - 2 and

3 - 3 matrices.

Subroutine which computes a matrix
product and optionally subtracts the
product from a third matrix.

Subroutine which flags certain unlikely
errors.
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Name

GYCOI

GYCON
GYCOT

GYCPF

" GYCPI

GYCPS

GYCP1
GYCP2
GYCP3
GYCPY
GYCP5
GYCP6

GYCQD

GYCRI

GYCRF

GYCRV

Dimensions

Definition

Subroutine which produces a minor
printout and the first part of a
major printout.

Main program of the GYC system.
Subroutine which produces the three
profile tables of a major printout
and also prints any error messages.
Ficticious subroutine which would
write to a file for later plotting
of profiles.

Subroutine which prints the first two
pages of a new or restarted run.

Ficticious subroutine which would set
up plot files.

Subroutine to GYCMC for the second pass.
Subroutine to GYCMC for the first pass.
Subroutine to GYCMC for the third pass.
Subroutine to GYCMC for the fourth pass.
Subroutine to GYCMC for the fifth pass.
subroutine to GYCMC for the sixth ﬁass.

i
Subroutine which calculates various
integrals and determiries maxima.

Subroutine which reads all but the first
input card.

Ficticious subroutine which would write
to a file for later plotting of "running
variables" as a function of x .

Subroutine which determines the normal
component of the mean velocity.
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Name

GYCSC

GYCSS

GYCSZ

GYCTB

GYCTC

HE
HG
HH
HHDMF
HS

HSTAG

HSW

HU
HUDMF

HV

Dimenslions

L

H/L

1/1.2

H,H/L

BV
1/1.2

HV

Definition

Function which determines the value of
the turbulent scale. See Note 1.

Subroutine which controls the main
scolution.process.

GYCSC(SZ)

Subroutine which makes a final adjust-
ment to the step size, Ax , if needed
to hit a break point.

Subroutine which evaluates k and
and their derivatives with respect to
temperature. See Note 3.

R . See Tables 3 and 5.
Free—-stream value of h . See Table 2.

Ey at the wall.

h'h' ., See Tables U and 5.
(AHH + BHH*REL)/BLAMZ/BLAMZ
h . See Table 5.

The stagnation enthalpy is ABS(HSTAG).
A positive value indicates that the
wall value of the mean enthalpy is
specified on Cards 16.n. A negative
value indicates that the wall value of
the gradient of the mean enthalpy is
specified on Cards 16.n.

“1 2
[i + ¥§—-Mé}

The wall value of h or of %Q-. See
Table 2. ¥
h'u' . See Tables U and 5.

(AHU + BHU#REL)/BLAMZ/BLAMZ

hiv' . See Tables 4 and 5.
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Name Dimensions

HW HV

—

INFLG

INT SPREAD L
TIOFAC

ITEST

JMAX

JMXMX

JTOP

LAST DX L

LBURF

LDELT

LDETZ

LFOLF

Definition

h'w' . See Tables 4 and 5.
Index almost always used to range over
the dependent variables.

1 flags a new run (all cards are read);
2 flags a restart with changes (Cards 1
through 29 are read); 0 flags end of
job. See Note T.

" FINTV

Scale parameter. See Note 1.

Index of wvariable to which PCEFMX and
PCFSP apply.

Index used to range across the profile.
Jd=1 corresponds to the wall; J=JTOP
corresponds to the edge of the boundary
layer (free stream).

Maximum number of points to be allowed
across the profile, i.e., the upper
limit on JTOP.

Maximum permissible wvalue of JMAX.

Current number of points across the
profile.

Ax  for the step just completed.

True indicates that the step is to be
tried again with a smaller Ax

True indicates that Ax
its minimum.

is less than

True indicates that GYCMI has tried to
invert a singular, or nearly singular,
matrix.

True indicates that full output is to
ocecur.
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Name

3

LFOPF

LHMWK

LIOLF
LIOPF

LJMXA

LNWPG

LPKR¥

"LPOSV
LDPFF

LRHOF

LRORG
LRPFF

LRSTF

Dimensions

Definition

True indicates that outpuf to a profile
plot file would occur.

True indicates that the wall value of
enthalpy is specified; false that its
gradient is specified.

True indicates that a minor printout is
to occur.

True indicates that output to a running
plot file would occur.

True indicates that more than JMAX
points are needed to satisfy the curva-
ture requirements.

True indicates that the next. printout
should start on a new page.

True indicates that more than JMAX
points are needed to satisfy the outer
boundary conditions.

True indicates a non-negative dependent
variable.

True would indicate that a profile file
was full.

True indicates-a problem in the calcu-

lation of p : either ht'2 2 B2 or
too many iterations in GYCCP.

‘True indicates that points have been

added or deleted in the current step.

True would indicate that a running file
was full. :

True indicates that a restart is in
progress.
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Name Dimensions

LSTFL
LTRNF
LZHFF

LZHRP

MAX CHANGE W
MAXIMUM W
NEXT DX L
NFOLP

NFOPF

NIOLP

NIOPP

NOISE W
THRESHOLD

NPASS

NRUN

NSKIP
NSTEP

NSTMX

Definition

True indicates that a new run is
starting.

True indicates that the_ run is termi-
nating.

True indicates that
YMAX.

¥ has reached

True indicates that correlations
involving p!' and h' are to be set
to zero.

TCMXV

FMAXV

Ax for the next step.

Steps between major printouts.

Steps between fictitious writes to a
profile plot file.

Steps between minor printouts.

Steps between fictiftious writes to a
running plot file.

EPSNV

Number of the pass through the procedure
of GYCSS.

Run number,.

BLYAA is skipped for the first NSKIP
steps whether starting or restarting.

Number of the current step in the x
direction.

The run is halted if the number of steps
reaches NSTMX. See Note 7.
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Name Dimensions

NSVRT

NVARP

NVART

NWQRD

NWSAV
NWSGM
NWSRD

NWVEC

OFAC
OMBET

OUTPUT
CONTROLS

P DV 2

PCFMX

PCFSP

PCTMV

Definition

NVART plus one for the dependent vari-
able y (8); 22.

Number of parabolic wvariables:; 17.

Total number of dependent variables
saved for the o0ld and the new value of
x ;3 21. ’

Number of words in COMMON representing
the M-I, the Z-J, or the P-K conditions;
59.

Total number of variables saved; 43.
NWSAV plus the size of GMAT; 52.
NWSAV; 43.

Number of unknowns in a pass; 2 in the
first pass, 3 in the others.

Scale parameter. See Note 1.
1 - BETA.

Parameters input on Card 17.

p . See Note 6.

If FMAXV(ITEST) has changed more than
PCFMX times the wvalue it had the last
time both BLYOT and BLYPF were called,
a call to each is forced.

If ZPSM(ITEST) has changed more than
PCHSP times the value it had the last
time both BLYOT and BLYPF were called,
a call to each is forced.

ZPSM(I) is the largest value of
for which XV(I) = PCTMV(I)*FMAXV(I).

-
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Name Dimensions Definition

PCT SPREAD L ZPSM
PE DV2 Free-stream value of p . See Table 2
and Note 7.
PGH Modeling parameter. See Note 2.
"PGH? . Modeling parameter. See Note 2.
PGR ’ Modeling parameter. See Note 2.
PGR2 Modeling parameter. See Note 2.
PGU Modeiing parameter. See Note 21
PGU2 Modeling parameter. See Note 2.
PMH Modeling parameter. See Note 2.
PMH2 Modeling parameter. See Note 2.
PMR Modeling parameter. See Note 2.
PMR2 Modeling parameter. See Note 2.
PMU Modeling parameter. See Note 2.
PMUZ2 Modeling parameter. See Note 2.
PS DV2 D . See Note 6.
PSTAG Important: see Note 6.
DV2 The stagnation pressure is ABS(PSTAG).

A positive value indicates a normal
run; a negative value indicates that
all correlations involving p' and h'
are zeroed out at each step. (This is
intended as a debugging device.)

[(1 ¢ L MI%)Y/(Y-l)/(YME,)]

PTHM Modeling parameter. See Note 2.

PTS JTOP
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Name

PTUM

QL
QQ
QQJ
QTOT

QWALL

RBLS_
RDT
REL

RETHETA

REXW

RGAS

RH
RHO
RNOSE

ROTAT

Dimensions

V2/8

DH

V/L

Definition

Modeling parameter. See Note 2.

q = '\/u'u' + vivh + wiw!
gh

Uuz + VVZ + WWZ

UlJ + VVJ + WWJ

Total heat transfer rate in the ¥y
direction.

Heat transfer rate out of the wall.

Distance to the axis of the cone.
See Note 5.

paA/n

Reynolds number based on momentum
thickness.

Reynolds number based on wetted length.

Important: see Note 6.
Gas constant.

/()

———

pThT
o
Origin radius, ry - See Note 5.

Important: see Note 5.
Rate of rotation of the cone in radians
per unit time.
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Name Dimensions Definition

RQL DVL pgh

RQOL DV/L pa/A

RR_ D2 FTp’

RRW2 D2V/L (PpTwT)y

RS D o

RSUS DV RS%US

RSVS DV RS#VS

RT Do pTTT

RTW?2 DVe/L (BTTET)y

RU DV pu' . See Tables 4 and 5.

RUDMF 1/12 (ARU + BRU%REL)/BLAMZ/BLAMZ

RUN NRUN

RUWJ 2 V2 (RITWT), at the new value of x .
RV DV o'vT , See Tables 4 and 5.

RVWJI2 ye (R¥TW')y at the new value of X .
RW DV pTw? . See Tables U and 5.

RWRJ2 V21, (R2ﬁTﬁT)y at the new value of x .
RWS_ DV Rw

S ‘ DIMFL® sin 8,

S L Normal independent wvariable, ¥y .
SEVFL Subroutine which fills a vector.
SEFVMV Subroutine which moves the contents of

one vector to another.
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Name Dimensions

SHAPE

SHM 1/L2
SHP 1/L°
SPREAD

PARAMETER

SPRO L
STANT

STEP

STOR X
TAUTAM DV2
TAUTOT DVe
TAUW DV2
TBRKYV I,
TCMXV W
THETA L
TIME L
THMRF 0

Definition

Displacement thickness divided by
momentum thickness.:

. 1/@1JHJ (Section 3).

l/(h+ht) (Section 3).

PCTMV

ZPSM(IOFAC). See Note 1.

Stanton number.
NSTEP

Storage array mimicking an external
device.

Laminar stress.
Total stress.
Wall stress.

Time break vector. When TIME reaches
the absolute value of one of the ele-
ments of TBRKV, calls to GYCOT and
GYCPF are forced. If the element is
negative, the run is halted. See
Note T.

Maxima over y of the changes in the
dependent variables during the last
step (output label: MAX CHANGE).

Momentum thickness.

Streamwise independent variable, X
See Note T.

%

Reference temperature for ©u and k .
See Note 3. .

[1.]
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Name

TT
TU
v
TW

TYPL

UE
us
uu
uv
uw

UWRJ2

VARNM
VBS
VHH
VRH
VRR
VRU
V3

VSwW

Dimensions

‘62
Ve

Ve
Ve

7T
T’
Tiy'
Tiw’

Typical

Definition

length. See Note 1.

W . See Tables 3 and 5.

Free-stream value of u .

u . See
utu'
utv' .
utw' .

Table 5.

See Table 2.

See Tables 3 and 5.

See Tables 3 and 5.

See Tables 4 and 5.

(u‘w'/R)y at the new value of x .

v . See

Vector of wvariable names.

Modeling
Modeling
Modeling
Modeling
Modeling
v

The wall

Modeling

89

Table 3.

parameter.
parameter.
parameter,
parameter.

parameter.

See
See
See
See

See

value of v .

parameter.

See

Note 2.
Note 2.
Note é.
Note 2.

Note 2.

See Table 2.

Note 2.



Name Dimensions Definition

vuu Modeling parameter. See Note 2.

VvV _ Ve vivt . See Tables 3 and 5.

VW _ V2 v’ See Tables 4 and 5.

VWRJI2 V2 /1.2 (?TWT/R)y at the new value of x .

W v W See Tables 3 and 5.

WGHL Modeling parameter computed from
constraint. See Note 2.

WGH?2 Modeling parameter. See Note 2.

WGH3 Modeling parameter. See Note 2.

WGR1 Modeling parameter computed from
constraint. See Note 2.

WGR2 Modeling parameter. See Note 2.

WGR3 Modeling parameter. See Note 2.

WGU Modeling parameter. See Note 2.

WﬁD Modeling parameter. See Note 2.

WMH Modeling parameter. See Note 2.

WMR Modeling parameter. See Note 2.

WMT Modeling parameter. See Note 2.

WS \ W . See Table 5.

WSR_ v/L w/R

WW_ Ve Ww' . See Tables 3 and 5.

WWD1 Modeling parameter. See Note 2.

WWD2 Modeling parameter. See Note 2.
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Name

WWGH
WWGR
WWGU
WWH1
WWH2
-WWRl
WWR2
WWU1L
WWU2

XSTRT
XV

XW

XWET

Y AT MAX

YMAX

ZPSM

Dimensions

=

(v v v R e

Definition

Modeling parameter. See Note 2.
Modeling parameter. See Note 2.
Modeling parameter. See Note 2.
Modeling parameter. See Note 2.
Modeling parameter. See Note 2.
Modeling parameter. See Note 2.
Modeling parameter. See Note 2.
Modeling parameter. See Note 2.
Modeling parameter. See Note 2.
X . See Table 2.

Initial wvalue of XWET. See Note 7.

Vectors of the unknowns at the old

Compare AV.

Wetted length.

See Table 5.

Wetted length (output label:

¥y . See Tables 3 and 4.

FZMXV

The maximum value of y to which the
solution may spread.

XW).

Spreads of the dependent variables
based on PCTMV (output label:

SPREAD).
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Note 1.

The turbulence scale A that enters in many of the models
is compubted as follows. First, a typical length is computed
from

TYPL = FAC99%DLT99 + OFAC*ZPSM(IOQOFAC)

where DLT99 is the wvalue of y where u is 99 percent of the
free-stream value; ZPSM is the vector of spreads of the depend-
ent variables based on PCTMV; and FAC99, OFAC, and IOFAC are
inputs. (ZPSM(IOFAC) is included  in the output with the label
SPRO.)

The value of A 1is made equal tTo BLAMO at the wall. This
parameter is ordinarily zero but may be-made positive to simu-
late roughness. Off the wall, A increases with siope DIN
until it reaches a maximum of CLAMB*TYPL. For y > DLT99, A
increases again with slope DOUT. This parameter is ordinarily
-Zero but should be positive if there is free-stream turbulence.

A1l the parameters determining A are nondimensional
except BLAMO.

Note 2.

The modeling parameters are defined by their appearance in

the models, as given in Appendix B. They are all nondimensional.

Two of them, WGH1 and WGR1l, are not input; instead, they are
computed from the constraints given at the end of Appendix B.
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Note 3.

The viscosity is determined from

W
T 1 + C/Trf
pf 1 + C/T

L urf(‘l‘
where 1une = EMURF |, Tpp = TMRF , w = EXPMU , and C
With w = 1/2 , this is the Sutherland relation. With C = 0
it is the power-law relation. With both w =0 and C
it gives constant

I
-
o
-
|
s

Il
o
»

The heat conductivity is determined from

E:k _.}..‘l.......

Since Cp. is constant, this is equivalent fo assuming that the

Prandtl number 1s constant.

Note 4.

Upwind differencing is suppressed when FUP = 0 , used
when TFUP = 1 . 1In this case, the coefficient, pv , 1is
evaluated as (1 - FUPV) times the central-point wvalue and FUPV
times the upwind-point value. If FUP = 0 , the value of
PUPV is immaterial. Values of FUP other than 0 and 1 produce
a mixture of standard and upwind differencing.

Note 5.

. If the dimension flag, DIMFL, is input as zero, the program
operates in flat-plate mode., In this casge, RNOSE and CONGL are

not used and the following acquire different meanings:
R (Dimensionless) is the number 1.

ROTAT (Dimension: V) is the sideslip velcocity of the surface.
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Thus, the value of w at the surface is
ROTATR

(where R 1is evaluated at the surface) for either value of
DIMEL.

Note 6.

If GMOMS is input as zero, the program operates in Mach
number zero mode. In this case, the following acguire different

meanings:

GMOMS (Dimensionless) is the number O.‘ The units for
expressing heat quantities may still be chosen at will.
A conversion factor between mechanical and heat units is
not needed in this case.

P, PE, and PS_ (Dimensions: DVZ2) all represent pressure
differences instead of absolute pressures. The datum for
zero values for the outputs is whatever is used for the
input (PE). If the free-~gtream value 1is constant, it

would ordinarily‘be input as zero, and the output pressures
would represent departures therefrom. If PE is input as
the absolute free-stream pressure, the output pressures

are absolute too.

PSTAG (Dimensionless) is one of the numbers +1 . This is
used only to flag runs for which correlations involving
pt and h' are to be zeroed out.

RGAS (Dimension: D) is the density corresponding to HSTAG.
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Note T.

On restart (INFLG = 2) two inputs, DELTI and XSTRT, are
ignored if input as zero; the current wvalues of DELT and XWET
in the halted run are used instead. On the other hand, the
input values will be used if they are not zero. The input
value of TIME (x) is always used, so if it is desired to have
it run continuously the final value from the halted run must
be supplied as input. The time break values, TBRKV, are
interpreted in terms of TIME, so they may need to be altered
on restart. If the run was halted by the use of a negative
time break, that should probably be changed for resgtart. If
the run was halted by NSTMX, that should be changed for restart.

95



Card 1
Card 2
Card 3
Card 4
Card 5
Card 6
Card T
Card 8
Card 9
Card 10
Card 11
Card 12
Card 13
Card 14
Card 15
Cards 16.n

Card 17

Card 18
Card 19

Card 20

Card 21

C 22—

Table 1, Input Cards

INFLG, NSKIP (11,3%X,I4)
CMNTS, NRUN (1944 ,TH)
DIMFL, RNOSE, CONGL, ROTAT, TIME (5F8.0)
RGAS, CP, HSTAG, PSTAG, GMOMS, XSTRT (6F8.0)
TMRF, EMURF, CAYRF, CSUTH, EXPMU (5F8.0)
CLAMB, DIN, DOUT, BLAMO, FAC99, OFAC, IOFAC
(6F8.0,IL)
A, B, BETA (3F8.0)
AHH, AHU, ARU, BHH, BHU, BRU (6¥8.0)
VUU, VUH, VHH, VRU, VRH, VRR (6F8.0)
PMU, PMU2, PMH2, PMR2, PTHM, PTUM (6F8.0)
PGH, PGH2, PGR,-PGR2, PGU, PGU2 (6F8.0)
WGU, WMH, WMR, WMT (4F8.0)
WGH2, WGH3, WGR2, WGR3 (478.0)
WWUL, WWRL, WWHL, WWGU, WWGR, WWGH (6F8.0)
EV (6F8.0)
X, UE, HE, PE, VSW, HSW (6F8.0)
NIOLP, NIOPP, NFOLP, NFOPP, PCFMX, PCFSP, ITEST
(414,2F8.0,1h)
TBRKV (10F8.0)
NSTMX, JMAX, YMAX, FUP, FUPV (2I4,3F8.0)
ECMNI, ECMXI, FCURI, FCMX, DZFMN, DZFMX, DZRMX
(7F6.0)
DELTTI, DTMIN, DTMAX, DTFMX, BUFAC (5F8.0)
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Table 1.

Cards 22/23 PCTMV
Cards 24/25 EPSTV
Cards 26/27 EPSBV
Cards 28/29 EPSNV

Card 30 V

Cards 31.j Y, U, V, W, H, UU, VV, WW, UV, BLAM

Card 32 Gv

Cards 33.j Y, UW, VW, HU, HV, HW, RU, RV, RW, HH

Input Cards {(Continued)
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Table 2. Edge Values and Wall Values

Name Multiplied By Gives Dimensions
X EV(1) x (L)
UE EV(2) ug (V)
HE EV(3) hg (H)
PE EV(4) D, (DV?)
VSW EV(5) v, (V)
-
by (H)
Hsw EV(6) <
%%) (H/L)
g W
. s cr g 1.2
If he is input as zero, it is calculated from he = hS - Et%
where h, 1is the stagnation enthalpy.

If GMOMS > 0 and pg 1is input as zero, it is calculated from
Pe = Ps(he/hS)Y/(Y‘l) where pg is the stagnation pressure.
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Table 3. Initial Conditions, First Set

Name Multiplied By Gives Dimensions
Y FV(1) y (L)
U FV(2) a ()
v FV(3) v (V)
W FV(H) W (V)
H FV(5) h (H)
U FV(6) TRTE (V%)
vV FV(T) TV (v2)
W FV(8) Wt (v2)
uv FV(9) T (v2)
BLAM FV(10) A (L)

Table 4, Initial Conditions, Second Set

Nane Multiplied By Gives Dimensions
Y GV(1) v (L)
uwW . GV(2) utw’ (V)
VW GV(3) Tl (v2)
HU Gv(d) htut (8V)
HV GV(5) h'v’ (HV)
HW GV(6) hiw? (HV)
RU GV(T7) pru’ (DV)
RV Gv(8) piv’ (DV)
RW av(9) T (DV)
HH GV(10) EThY (H?)
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Table 5. Dependent Variables

Name . Dimensions OQutput Label Meaning

WS = XV(1) (V) W S W

VW = XV(2) (v2) Vi T
US = XV(3) (V) U u

UV = XV(4) (V%) UV RET
UW = XV(5) (V%) uw T
UU. = XV(6) (Ve) Uy o
VW o= XV(7) (v°) vV k2
WW o= XV(8) (V%) W W
HS = XV(9) (H) H h

HV = XV(10) (HV) . HV hiv'
HH = XV(11) (1) HH RTRY
RU = XV(12) ~ (DV) RU p'u’
RV = XV(13) (DV) RV pIv?
RW = XV(14) (DV) RW Nk
HU = XV(15) (HV) HU htut
HW = XV(16) (HV) HW A
BLAM = XV(17) (L) BLAM A
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