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SECTION 1

INTRODUCTION

1.1 INTRODUCTION

Data collected by the Scanning Laser Doppler Velocimeter System	 .-. A

(SLDVS) has been analyzed to determine the feasibility of the SLDVS

for monitoring aircraft wake vortices in an airport environment.

Additionally, some data collected on atmospheric vortices at a test

site near Phoenix, Arizona has been analyzed. The test of this

system began at Marshall Space Flight Center in Huntsville, Alabama

in the Spring of 1974. After the tests at MSFC, there were two test

periods at Kennedy International Airport in New York, in the Fall of

1974 and the Spring of 1975. The atmospheric vortex data was collected

at the Gila River Indian Reservation, south of Phoenix, Arizona, in

August of 1975.

Over 1600 landings were monitored at Kennedy International Air-

port and by the end of the test period 95% of the runs with large

aircraft were producing usable results in real time. The transport

was determined in real time and post-analysis using algorithms which

performed centroids on the highest amplitude in the thresholded

spectrum. Making use of other parameters of the spectrum, vortex

flow fields were studied along with the time histories of peak

velocities and amplitudes.

The post-analysis of the data was accomplished with a CDC-6700

computer using several programs developed for LDV data analysis. These

programs were also used as diagnostic aids during the early tests of

the system. In this way, the LDV data analysis program aided in

locating problems, in developing the real time algorithm, and in

processing the data for more detailed information than could be ob-

tained in real time.
E

Additionally, a statistical analysis was performed on a sample

k
	 of the real time data to determine the system performance as a function

1-1
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of different aircraft and atmospheric parameters. It was determined

that the real time algorithm was capable of measuring vortex centers to

at least ±10 feet. Other studies of the real time data were undertaken

to verify the correctness of the spectral parameters used in the

real time analysis and to determine optimum parameter selection for

performance of the algorithm.

In the early part of the program, simulations were performed

to determine the best algorithm and parameters as well as to study

the practical limits to location accuracy.

Modifications were made to the data processing algorithm to

adapt it to data from atmospheric vortices, such as dust devils,

and data from the Gila River Indian Reservation test site was pro-

cessed. This analysis showed not only that the system was success-

ful in detecting and tracking dust devils and measuring their flow

fields, but also that a frequecy translator installed in the system

could produce data showing the sense of the velocity, making the

velocity field measurements easier to interpret.

The results of this program have been presented in three interim

reports. The first interim report dated 16 December 1974 covers the

testing at Marshall Space Flight Center and the early part of the

Kennedy International Airport tests in the Fall of 1974. (1 ' The second

interim report dated 3 November 1975 includes all of the work done

during both test periods at Kennedy International Airport, including

a statistical analysis of a selected portion of the data and a pre-

liminary system redesign.(2)
 The third interim report, dated A March

1976, deals exclusively with the dust devil data t 3) After a short
description of the system and the data processing methods, it con-

sists of a data presentation of selected velocity and amplitude

profiles along with dust devil transport, peak velocity and back-

scatter time histories and sample circulation calculations.

The remainder of Section 1 presents a synopsis of the program

since its beginning including brief discussions of vortices and the

1-2
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opetation of the SLDV. The later sections describe the work performed

since the last interim report.	 Section 2 shows typical vortex

time histories, including horizontal and vertical transport, as well

as time histories of peak velocities and amplitudes. Section 3 des-

cribes the results of the effective circulation calculation and

shows a number of examples. The evidence of multiple vortices in

the aircraft wake observed during this data analysis is summarized

in Section 4. A summary of the system performance is included in

Section 5.

1.2 SYNOPSIS

1.2.1 AIRCRAFT WAKE VORTICES

The simplest form of an aircraft wake consists of a pair of

counterrotating vortices, as shown in Figure 1-1. One vortex is shed

from each wing and, according to theory, the vortex centers are

separated by 7/4 times the wingspan. The direction of rotation is

that which produces a downward velocity component between the

vortices. According to the theory of line vortices, in the absence

of any wind or other influence, the transport of the vortex center

is determined by the induced velocity of the remaining vortex.

If the pair is close to the ground, the interaction becomes

more complicated due to the boundary condition of zero vertical

velocity component at the ground. This condition may be handled by

the introduction of reflections of the two vortices about the ground.

These reflections or images, under the ground, combined with the

actual vortices, satisfy the boundary condition and provide a simple

means of determining vortex transport. The transport velocity of

each vortex center is the vector sum of the induced velocity from

the remaining vortices. Finally, the effect of wind may be con-

sidered by adding the local wind vector to the induced velocities.

The predicted transport for a vortex pair is, initially, descent and

horizontal motion with the ambient: ,rind. At lower altitudes, the

descent rate is reduced and the roi l ices begin to separate, while

the center of the pair continue..: to ,Hove with the wind. Finally,

t.. -
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the vortices are predicted to separate at a speed equal to twice the

intial descent rate at a constant altitude of half the initial

separation.

Thus, the aircraft wake presents a potentially hazardous sit-

uation to another aircraft encountering it. The situation is partic-

ularly severe on landing when aircraft are required to fly along the

same flight path approaching the runway. The severity of the situa-

tion is determined by the size and weight of the generating and en-

countering aircraft and by meteorological conditions, including es-

pecially the ambient wind which influences transport and decay of the

wake. The problem of wake vortices has thus led to separation require-

ments which decrease the capacity of larger airports. Since the

transport and decay of vortices are influenced by many factors, separ-

ations are required at all times large enough to allow for the rare

cases when the wake decays slowly and remain near the landing corridor.

A vortex sensing system would permit measurements to be made to deter-

mine optimal separation standards as well as to determine the effec-

tiveness of vortex abatement techniques.

1.2.2 THE LASER DOPPLER SYSTEM

The Scanning Laser Doppler Velocimeter (SLDV) is ideally suited

for this application. It combines the excellent angular resolution

of a focussed laser beam with the accurate velocity measurement

ability of the Doppler technique. The SLDV measures the line-of-

siqht velocity component of aerosols naturally suspended in the

atmosphere by determining the frequency shift of laser radiation

backscattered from these aerosols. The vortex core, loosely defined

as the cylinder on which the vortex velocity is a maximum, presents

two regions of high line-of-sight velocity to a system scanning

a plane perpendicular to the line along the center of the vortex.

Vortex location may readily be accomplished by locating these

areas.

1-5
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Operation of a laser Doppler velocimeter may be understood with

the aid of Figure 1-2. A laser beam is transmitted through an inter-

ferometer which passes most of the energy to the target and diverts

a small amount to the detector as shown in Figure 1-2a. The trans-

mitted beam is usually passed through a telescope to the target which

in the present case consists of naturally suspended aerosols in the

atmosphere. Some of the transmitted energy is backscattered by the
	 a. 1

target particles and enters the detector by the path shown in Figure

1-2b. This returning energy has been shifted in frequency by an

amount proportional to the component of particle velocity parallel

to the direction of propagation according to the Doppler principle.

Figure 1-3 shows the geometry of the laser system and target velocity

vector relationship. Only the velocity component parallel to the

propagation direction contributes to the Doppler shift.

Thus, there are two beams falling on the detector with two

different frequencies as shown in Figure 1-4; a large reference beam

at the optical frequency fo , and the smaller signal beam at the new

frequency f  + f  where f  is the Doppler shift frequency. When

these beams are added, the resulting beam contains a contribution
at the difference of these frequencies.

The difference, of course,is the Doppler frequency and may be

related to the target velocity.

The power at each frequency is a measure of the product of the

backscatter coefficient of the target particles which are moving at

that frequency and the system response at that range and frequency.

The system response is designed to be independent of frequency over

large bandwidth. The response as a function of range may be controlled

by focussing at a particular range so that the system response peak.,

sharply at that range.

The system used a stable CO 2 laser beam expanded and focussed

by a twelve-inch telescope. Range resolution was obtained by the

focussing of the optical system. The range of focus was varied

by movement of the telescope secondary and the elevation angle was

1-6
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a) Paths of Transmitted Beam.

b) Paths of Transmitted and Received Beams.

Figure 1-2. Laser Doppler Velocimeter Transmission
and Reception.

1-7
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varied by means of a movable mirror reflecting the transmitted beam.

By executing a fast range scan and a slow angle scan, the system

scanned a vertical plane as shown in Figure 1-5. A spectral analysis

of the heterodyne signal indicated the velocity of each volume of air.

The processor thresholded the data, determining significant parameters

of the spectrum and output them to the computer. The raw data, giving
	 .-. I

a complete description of the spectrum, was recorded in pulse code

modulation (PCM) format on a high speed tape for later, more detailed

analysis.

A block diagram of the system is shown in Figure 1-6. Laser

radiation is separated by the interferometer into a reference or

local oscillator (LO) beam of a few milliwatts and a transmitted

beam of more than 10 watts. Optionally, a frequency translator is

used to offset the LO frequency. The transmitted beam is passed

through a telescope and scanning mirror to the target, reflected

back through the telescope and superimposed on the LO in the interfer-

ometer. The combined signal is incident on an Hg:Cd:Te detector

cooled to liquid nitrogen temperature (77K). The resulting electronic

signal is processed by the signal processor to produce spectrum

outputs to a high speed tape recorder and thresholded data to a

minicomputer for real time analysis. The data presented in this

report is from the high speed tapes.

An overall diagram of the SLDVS is shown in Figure 1-7. The

system is mounted in an instrument van which is rigidly supported

on a platform on the ground. The optical system is in the rear of

the van with processing electronics, display and tape recorder in

the middle, and computer in the front. The upper right corner of

the figure shows a simple output. The X and Y coordinates are

shown as functions of time on separate graphs. Additional outputs

are available including Y as a function of X, tabular data, and

diagnostic outputs. Furthermore, tape recordings are made of the

complete spectrum every integration time for more detailed analysis.

1-10
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1.2.3 DUST DEVILS

Dust_ Devils are naturally occurring atmospheric vortices

common in deserts, such as those in the southwestern United States.

They vary in diameter from a few meters to tens of meters, and in

altitude from 30 to several hundred meters. They are most frequently

seen on hot, cloudless days in the early afternoon when the ground

temperature is highest. The peak velocities vary from about 3 to

15 meters per second and the direction of rotation is apparently random.

The principle reason for measuring dust devils with the SLDV is to

determine the feasibility of using the system for measuring tornado-

like flows.

The system is configured in a similar way to the vortex detection

configuration with the addition of an azimuth scan. Thus, scanning

in azimuth, the dust devil detection problem becomes almost identical

to that of wake vortices. A typical scan configuration at Gila

River Indian Reservation is shown in Figure 1-8.

1.2.4 DATA ANALYSIS

The data analysis served a number of purposes. It was used

for diagnostic purposes, algorithm development, and vortex flow field

analysis. Also, the programs were modified to analyze the dust devil

data. The main program used in the data analysis was the LDV data

processing algorithm which performs thresholding on each spectrum,

locates vortices using a centroid on the highest amplitude in the

spectrum and produces data files for use in flaw field analysis.

The program used velocity and amplitude thresholds to remove

noise and low velocities as shown in Figure 1-9. The following

parameters were defined in the spectrum as shown:

I pk ,	 the highest amplitude in the thresholded spectrum,

•max' the velocity associated with Ipk,

Vpk ,	 the highest velocity above the amplitude threshold,

S,	 the integrated signal, and

N	 the width of the thresholded spectrum.

1-14
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A new spectrum was obtained during each integration time (typically

2 msec for vortex studies and 8 msec for dust devils). Along with

the above parameters, the range, angle, x and y coordinates, time, and

a frame number were recorded.

For each scan, the maximum values of upk' umax' Ipk , and S, and

the average value of S were recorded. Also, location of the vortices

was performed using an iterated centroid method. The location of one

vortex was determined by locating the highest I pk , considering all of

the points falling within a correlation circle of specified radius of

this point, and calculating the centroid, weighted with the amplitude

above the threshold. A similar procedure was used to determine if a

second vortex was present using the highest Ipie outside of the cor-

relation circle defined for the first one, as the center for a new

correlation circle. Points occuring in both circles were considered

to be associated with both vortices for purposes of the centroid.

Th.3 locations thus determined were used as centers for new centroids.

If a majority of the points in either vortex was in the overlap region,

the point which initiated the location of the second was deleted and

the iteration procedure was begun again. The X and Y locations of

each center were printed out after each stage of the iteration.

A number of other programs were used to translate tapes to

CDC-6700 format, to print and plot the raw data, to analyze cali-

bration runs, and to analyze vortex and dust devil flow fields.

Initially the data analysis effort concentrated on diagnostic

applications such as evaluating signal-to-noise ratios and range

resolution. Problems were located with the range scanners using

raw data from both vans. The system was evaluated by testing it on

the flow field from an aircraft engine to determine system performance

and to evaluate algorithms for flow field location. Preliminary tests

1-17
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were performed on aircraft vortices from a B-720 and B-737. From

these, algorithm modifications were suggested for both real time

and post analysis. At the same time, a simulation was used

to evaluate potential algorithm improvements. During the tests at

Kennedy International Airport, several runs were evaluated in post

analysis and the quality of the real time data was studied. Suggested

parameters for the algorithm were tested and modified leading to

reliable real time vortex location. Also, the accuracy of the real

time data was checked against the high speed data tapes and some

minor problems were located and corrected.

Later during the Kennedy International Airport tests, a series

of high altitude flybys using a C-880 was evaluated in real time.

It was determined that the system could detect and track vortices

at ranges up to 1500 feet. During the entire period, evaluations

of system, operator, and algorithm performance were made. A program

to determine effective circulation of vortices was developed, and

tested. This program produced good results after the initial 10 or

15 seconds. The failure during the early part of the run was

attributed to Multiple vortices which are significant in a landing

configuration. Spectra were used to determine the presence of

multiple vortices and it was suggested that a wide spectrum with

multiple peaks might be an indication of the presence of multiple

vortices.

During the dust devil tests, real time data was evaluated and

several runs with and without the frequency translator were processed.

It was determined that in post-analysis, good transport rnd velocity

profiles could be obtained.

In summary, the SLDV has been shown to be reliable in detecting,

tracking, and monitoring aircraft wake vortices and naturally occurring

vortices of widely differing sizes, backscatter coefficients, and

velocities. The detection and tracking functions are now possible

in real time, while the detailed velocity profile monitoring require

more data and presently should be performed in post-analysis using

the PCM data.

... 7
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SECTION 2

VORTEX TIME HISTORIES

2.1 INTRODUCTION

The LDV data processing algorithm produces time histories of

vortex parameters including x and y coordinates of centers, velocity

profiles, scatter plots, maximum values of spectral parameters and

other data for vortex analysis. These may be used to produce trans-

port plots, backscatter and peak velocity time histories and vortex

flow field studies. This section describes the algorithm briefly

and shows results obtained on several runs.

2.2 DATA PROCESSING ALGORITHM

The LDV data processing algorithm performs the functions of

vortex location and generation of data for additional analysis. The

vortex location is established using the triplet I pk algorithm des-

cribed in the Interim Reports (4) dated 16 December 1974 and 3 November

1975. (5) In essence, the location is determined by locating centroids

of Ipk , The algorithm also obtains the highest Vpl; , V max , Ipk , and

integrated signal and the average signal in ea ph .can, and provides

time histories of these. Additionally, scatter plots are generated

for Vpk , V max , I pk , and the integrated signal. Finally, a velocity

vs. angle plot is constructed for each vortex in each scan, for use

in determining the flow field parameters.

2.3 RESULTS

Several runs have been analyzed using the LDV Data Processing

Algorithm. Transport results are generally in good agreement with

those obtained in real time as expected. A sample of the vortex

transport results is shown in Figure 2-1. The numbers represent

scan numbers and show the locations of vortices over the first 20

seconds of the run. The aircraft was a DC-10 and the tower was

reporting winds of 7 knots at 350 0 resulting in a cross-wind of

2-1
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7.6 ft/sec away from Van I. This run will be discussed in greater

detail later by comparing the transport to the wind measured from a

meteorological tower. In Figure 2-2, a composite of two data tapes

shows 40 seconds of data on a B-747 vortex in a light wind. Some

evidence of a shear and the effect of ground interaction are clearly

evident. A similar composite for a DC-8 in a moderate crosswind is

shown in Figure 2-3. This shows both vortices being transported

toward the van, apparently due to the crosswind which was determined

from tower data as 17 ft/sec.

The change of spectral parameters with time is also of interest.

Generally, the highest Vpk and Vmax per scan are nearly equai and

vary during the run from about 15 m/sec (50 cells or 50 ft/sec) down

to the threshold at about .3 ft/sec2 . Sometimes Ipk also shows a re-

duction during the run corresponding to 10 dB or more over the dur-

ation of the run. In other cases this is less apparent, and in at

least one case, a growth in Ipk can be seen. Figure 2-4 shows the

results for a B-747 in a moderate wind while Figure 2-5 is for a

DC-9 in a high wind. It is interesting to note the similarity of the

Vpk and Vmax time histories from very different aircraft. The Ipk

time histories are very different, and may reflect the different

amount of exhaust from these aircraft. The DC-9 having only 2 small
engines may contribute little enough to I pk so that ambient atmospheric

effects are significant. On most runs, the Vpk, Vmax behaviors are

similar to those shown and in most cases, some overall decrease in

Ipk can be seen.

2.4 TRANSPORT VS. WIND COMPARISON

The transport was compared to the components of the wind

velocity for four runs. The wind velocity components were measured

by sensors mounted on meteorological tower 1, located between the

middle marker and runway 22L -4R. Run 2011 (Day 126) shows a DC-8
vortex pair being horizontally transported toward Van 1 at about

17 ft/sec. The measured crosswind components were 13.09 ± 1.26 ft/sec

at 40 ft altitude and 11.42.± 1.63 ft/sec at 20 ft. Additionally,

2-3
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there was a 3.3 and 3.5 ft/sec tailwind at the two altitudes and a

.44 ft/sec upward component at 40 feet. The vortex was observed

until it left the scan plane at about 60 feet altitude. The cross-

wind velocity values and vortex transport are consistent with a

slight shear in the form of a slightly increasing crosswind with

increasing altitude.

Run 1031 (Day 127) shows a vortex pair from an L-1011 being

transported at about -10 ft/sec per second. After 15 seconds, one

vortex left the scan plane. The other continued to fall and changed

its velocity until it was traveling in the opposite direction at an

altitude of about 40 feet. After that it rose in altitude and

returned to its original transport for the rest of the 75 seconds for

which it was observed. The measured crosswind was -6.00 ft/sec at

40 ft. altitude and -.66 ft/sec at 20 ft. This run shows evidence of

a shear going from -10 ft/sec at 150 ft. to 0 at the ground. The

wind velocity may reverse near the minimum altitude of the vortex

or the reversal of transport velocity may be due to the induced

velocity caused by ground effect. A headwind of 12 to 13 ft/sec

was observed on this run.

Run 1051 (Day 127) was a DC-10 aircraft landing in a 10 to 11

ft/sec headwind. The horizontal transport velocity of this vortex

pair was nearly uniform at approximately -5.7 ft/sec down to an

altitude of about 50 ft., in agreement with the crosswind velocity

at 40 ft. The crosswind at 20 ft. was -7.8 ft/sec.

Run 1055 (Day 127) wa y another DC-10 landing in a 12 ft/sec head-

wind. The vortex horizontal transport was fairly uniform at about

-12.5 ft/sec down to an altitude of 75 ft. The crosswind was -7.21

ft/sec at 40 ft. and almost 0 at 20 ft.

It is difficult to make a quantitative estimate of the correla-

tion between vortex transport and wind data since the wind data is

taken from a 40 foot tower while the vortices are seldom at that low

an altitude. Furthermore, when the vortices descend to 40 or 50 feet,

the effect of ground interaction becomes significant. The assumption
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that the vortex transports with the local near wind does lead to

realistic profiles of a wind shear. Vortex transport and anemometer

data are summarized in Figure 2-6.

2.5 CONCLUSIONS

The study of vortex time histories has produced a number of

results. First, it led to improvements in the real time data pro-

cessing. Later, whether real time analysis was producing good re-

sults, the emphasis of post-analysis shifted to obtaining more de-

tails concerning the vortices and the system. In particular, sub-

routines were included to process the data to aid in flow field

studies and spectral parameter time histories.

The peak velocity vs. time behavior is very repeatable, even

for different aircraft,with typical peak velocities in the neighbor-

hood of 15 m/sec. at the beginning of a run. Transport data are in

good agreement with those obtained in real time and reflect the

velocity of the local wind and induced velocities from the inter-

action of the vortices and the ground.
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SECTION 3

EFFECTIVE CIRCULATION CALCULATIONS

3.1 INTRODUCTION

The effective circulation of a vortex is defined in terms of

the circulation of a model vortex. The model postulates that the

circulation is constant and that the rolling moment on a hypothetical

following aircraft of wingspan b is equal to Tb/27.

The actual data is processed to determine the rolling moment M as

a function of b. This function usually curves upward from the origin

into a linear region followed by a saturation outside the region of the

vortex. The effective circulation is defined as 27 times the slope

db in the linear region. Using this method, twelve runs have been
processed to determine the effective circulation as a function of

time for each of the vortices. Unexpectedly high values of circula-

tion are obtained in the early scans of most runs and it is postulated

that these are due to the presence of multiple vortices.

In this section, the methods of calculating effective circula-

tion are described, followed by a few examples and a summary of the

results.

3.2 METHODS OF CALCULATION

The effective circulation of a vortex may be calculated from

the LDV data in one of three ways. All approaches make use of plots

of the peak velocity vs. angle These plots are restricted to in-

clude the vortex of interest by including only data collected with

ranges within 10 meters of the vortex range. Thus, two velocity

vs. angle plots are generated for each scan (if two vortices are

present). Each plot contains data from a 20 meter range bin cen-

tered at the vortex range as shown in Figure 3-1. The highes^ vel-

ocity in the spectrum at each point is assuied to be the velocity

of the vortex along the given line-of-sight.

Since no frequency translation was used in collecting the data,

it was necessary to locate the center of the vortex in angle and
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assume that a sign change occurred at this point. The center was

located by finding two angles having high velocities and having a

relative minimum velocity between them. The two peaks were assumed

to correspond to the two sides of the core while the null was iden-

tified as the angular location of the vortex center.

The easiest circulation estimate is obtained by selecting a

point on the velocity vs. angle plot, determining its radial dis-

tance from the center (using the angles and range),and calculating

r = 27Vr

where	 r is the radial distance to the vortex center

V is the peak velocity at that point

This method has the advantage of being easy and the disadvantage of

using very little of the data. Furthermore, it is not necessarily

related to any wake effects which would be experienced by an en-

countering aircraft.

The second approach is a least square fit to an assumed vortex

model with variable parameters. Measured data is used to obtain the

best values for these parameters, and then the model may be used to

calculate the circulation. This method makes use of more of the

data, but, again, does not necessarily relate to the effect on an

encountering aircraft, since the calculated circulation is dependent

on the model chosen.

The third approach, the rolling moment method, makes use of all

the data and produces a circulation estimate which is significant to

the encountering aircraft. The procedure is to calculate the rolling

moment on a hypothetical aircraft of wingspan b, using the LDV data:

/2

f

b

 b V.r dr
/2

M =
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This quantity, in the constant circulation model of a vortex, is

proportional to the wingspan in such a way that the circulation is

I'	 2 Tr 
db

For an actual vortex, this equation will not hold for all values of

b. However, it is possible to determine an effective circulation

by applying this equation in a region where the M vs. b curve is

linear. This method has produced good results in moderate crosswinds

for vortices at least 10 to 15 seconds old.

3.3 BESULTS

The effective circulation calculation has been performed using

the rolling moment method on wake vortices from a variety of air-

craft types in different wind conditions. The calculation has been

performed on each vortex for every scan in several runs, to produce

a time history of effective circulation for each vortex. An example

for a B-747 is shown in Figure 3-2.

The B-747 results indicate that reasonable values are obtained

after 10 seconds in both low and moderate crosswinds. Most of the

results for run 1019, on day 115, are tower than the expected

values and the results of the other B-747 runs. This may be due to

the use of too high an amplitude threshold. A few scans produced

reasonable results and these are in good agreement with the results

from van 2. Both runs 2011 (day 118) and 2019 (day 115) produced

high effective circulation in the first few scans. The L-1011 re-

sults show similar behavior with circulation somewhat high in the

first few scans. The DC-8 results in low to moderate crosswinds

also behave in a similar fashion, while the high crosswind run has

an effective circulation which is too high throughout most of the

run. This may be due to changes in the vortex velocity due to the

wind, which do not cancel out, because of the folding of the LDV

spectrum about zero.
3-3



RAYTHEON COMPANY RAYTHEON
E Q U I P M E N T	 O 1 V I S 1 O N

With three runs processed earlier, the overall result of the

effective circulation calculations include usable data on 10 out of

12 runs. There is considerable scatter in some of the data, but the

overall trends are readily apparent. It has been determined that

effective circulation calculations are relatively sensitive to the

amplitude threshold, and that the optimum threshold for these cal-

culations is not always the same as the optimum for vortex location.

3.4 CONCLUSIONS

The rolling moment method usually produces reasonable values of

effective circulation which may be used as a measure of vortex

strength. The calculations have been performed for every scan of

several runs lasting up to 60 seconds. The effects of low to moder-

ate crosswinds have been previously shown to be small, as have

errors in locating the vortex center. Any study of flaw field param-

eter would be simplified by the use of a frequency translator.

It has been determined that the effective circulation calcula-

tion is quite sensitive to the amplitude threshold and that the op-

timum threshold may be different for vortex location and effective
circulation calculation. For the latter, the threshold should be

as close to the noise floor as possible without causing a high false

alarm rate.

Finally, it has been observed that the effective circulation is

almost always too high during the first few scans. This is probably

due to the existence of multiple vortices which will be discussed in

the next section.
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SECTION 4

MULTIPLE VORTICES

4.1 INTRODUCTION

The study of multiple vortices has become of interest for a

number of reasons. First, experimental and theoretical studies have

been undertaken to determine if multiple vortices can be made to

interfere, producing a vortex system which decays more rapidly than

those in present aircraft wakes. Additionally, several phenomena

observed in the KIA data are difficult to interpret on the basis of

a simple vortex-pair model. In particular, excessive effective

circulations have usually been obtained during the first ten seconds

after vortex generation.

Work performed on the KIA data has indicated that multiple

vortices may be studied by using spectral analysis and velocity vs.

angle plots. Lifetimes of multiple vortex systems have been esti-

mated at 10 to 20 seconds based on observations of spectra, velocity

profiles, and effective circulation results. After this time, the

vortices apparently merge into a well defined vortex pair.

Multiple vortex study may yield a further understanding of the

seemingly erratic behavior of vortex system characteristics such as

transport and decay as well as providing means to develop methods

for reducing vortex lifetimes and strengths.

4.2 MODELS

The initial number and location of vortices in an aircraft wake

are strongly dependent on the type of aircraft and the flap setting.

In the cruise configuration, the flaps are fully retracted, resulting

in a smooth wing surface which generally produces only a pair of

counter-rotating wingtip vortices, separated by about 3/4 of the

wingspan. However, in the approach and landing configurations, the

flaps are extended, and vortices are generated wherever there is a

discontinuity in the wing surface; namely at all. flap edges and
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at the wing tip. For aircraft with segmented flaps, such as the

B-747, L-1011, DC-10, and B-727, as many as ten vortices may be

generated when the flaps are deployed. For these aircraft in the

landing configuration, the strongest vortices arise at the outer

edges of the outer flap segments, and the transport of a young vortex

system is most strongly dependent on that vortex pair.

For the aircraft investigated by Snedeker and Bilanin (1) , the

strongest vortex circulation strength and location are tabulated in

Table 4-1. These results lead to a straightforward calculation of

TABLE 4-1

Multiple Vortex Data
for Landing Configuration

Aircraft

Number of
Vortices
Per Wing

Strongest
Vortex
Location (a)

Vortex
Circulation
Strength

Calculated
Descent
Rate(b)

Next Highest
Circulat^yo
Strength lc

B-747 5 68 ft. 4663 ft2 /sec 5.5	 ft 2 sec .6875

L-1011 4 60	 ft. 2912 ft 2 /sec 3.9 ft2/sec .7977

DC-10	 I 3 58	 ft. 2514 ft 2 /sec 3.4 ft27sec .5740

B-727 4 41	 ft. 2261	 ft ` /sec 4.4 ft2/sec .7939

(a) Strongest vortex generated at outside of outside flap in all
cases. Location is from aircraft centerline.

(b) Based on strongest vortex only.

(c) Expressed as a fraction of strongest vortex circulation.

(1) Richard S. Snedeker and Alan J. Bilanin "Analysis of 'he Vortex
Wakes of the Boeing 727, Lockheed L-1011, McDonnell -u,jlas
DC-10, and Boeing 747 Aircraft", Final Report dated u-Iy 1975
(Contract #DOT-TSC 645)
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the descent rate, if only the two outboard flap vortices are

considered:

dx	 F
dt	 2- b'

where

is the circulation strength and

b' is the separation between the two vortices.

In addition, the second-strongest vortex was found, and the ratio

of its circulation strength to that of the strongest is included.

This provides a measure of the error introduced by considering only

outboard flap vortices.

When the SLDV system scans through a complicated multiple

vortex system, the result will be an increase in the complexity

of both the spectra and velocity profiles. For a system without

a frequency offset, these will be further complicated by the folding

of the spectra. With the range resolution possible at reasonable

ranges, the focal volume of the SLDV must include several vortices,

which may be expected to result in an increase in the width of the

spectrum and the appearance of multiple peaks. The interpretation of

these behaviors is complicated by spatial variations in the back-

scatter coefficient.

It is generally believed that after a period of time, vortex

merging takes place and reduces the complicated vortex system to a

simple pair of counter-rotating vortices. Observation of experimental

data for multiple vortex effects should thus be concentrated on the

first 10 seconds after generation. Finally, it should be noted

that, for large aircraft, the effect of ground interaction may be

significant.

4.3 EXPERIMENTAL RESULTS

4.3.1 INTRODUCTION

The presence of multiple vortices in young aircraft wakes is

r^
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indicated by several experimental results. These include changes

in the spectral characteristics and velocity profiles, as well as

effects on the descent rates and effective circulation calculations.

Some of these results have other potential explanations in addition

to multiple vortices, but the combination of all the results indi-

cates strongly that multiple vortices are significant during the

first 10 to 20 seconds after aircraft penetration.

4.3.2 SPECTRA

The spectral characteristics of an aircraft wake change with

time. The spectra of young wakes typically contain high velocities,

have wide bandwidths and often exhibit multiple peaks with deep

nulls between them. The spectrum is clearly that of a complicated

velocity and/or backscatter coefficient distribution rather than

that of a simple vortex in a uniform atmosphere. Typical peak

velocities are on the order of 15 m/sec. Often significant signals

are obtained at all velocities between 2 to 5 m/sec and 15 m/sec

resulting in a signal bandwidth of close to 3 MHz.

These spectra typically have a number of peaks and valleys

indicating that there is significant backscatter from several regions

of different velocities. This may arise in one of two ways. First,

for a single vortex, locally high concentration of particulate in

small regions may be moved about by the vortex flow field. Their

velocity -omponents would differ because of their different locations

within the vortex. If this is the case, the ratio between peaks and

nulls should be equal to the ratio of maximum to minimum backscatter

coefficient along the line of sight. This has been measured to be

as high as 18 dB (day 115, run 2019, frame 5918), which seems ex-

cessive, based on this explanation. The other possibility is that

the velocity component along the line of sight undergoes irregular

changes as would be the case if the line of sight penetrated several

vortices.
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As the wake ages, a number of changes occur in the spectra.

Most notably, the peak velocity falls, more or less smoothly by about

2 to 3 meters per second in 20 seconds, and continues to fall through-

out the life of the wake. The peak velocity usually falls below a

threshold of 5 m/sec about 60 to 90 seconds after vortex generation.

Typical vortex spectra are shown in Figure 4-1. These were obtained

with the wake of a B-747 in a wind reported to be from 20 0 at 5 knots.

Samples of a young wake spectrum immediately after generation and an

older wake (about 20 seconds later) are shown. The characteristic

broadening, high peak velocity and multiple peaks are clearly evident

in the young wake spectra, while these phenomena are greatly reduced

after 20 seconds.

4.3.3 MULTIPLE VORTEX VELOCITY PROFILES

Evidence of multiple vortices is also apparent on some

occasions in plots of the vortex velocity component as functions of

angle. A detailed analysis of the multiple vortex problem is not

possible with this data, due to the low angular data density avail-

able. The finger density in a typical finger scan is approximately

one point per degree. For a B-747 aircraft approaching the runway

at 50 meters altitude, a typical scan pattern is shown in Figure 4-2.

Measuring Vpk , the highest velocity component along the line of

sight, approximately 8 independent values may be obtained over an

area corresponding to one wing. These will obviously not be sufficient

to determine the locations and velocity flow fields of five vortices.

However, it should be apparent whether or not the velocity profile is

more complicated than that of a single vortex.

A sequence of several velocity profiles is shown in Figures 4-

through 4-	 These show Vpk as a function of angle for data points

having ranges within ten meters of the vortex range as determined by

the vortex location algorithm. It may be seen that considerable

structure exists in the early profiles. The details of this

structure may not be readily related to the model vortices, since

the evolution of the multiple vortex model results in a revolution
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Figure 4-1. Typical Vortex Spectra.
Top: Young Vortex System
Bottom: Twenty Seconds Later
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of some of the vortices about others. Thus, the exact angular pro-

file depends on the exact time after generation and on details of

the vortex flow field for the specific aircraft. Furthermore, it is

not unreasonable to expect that the vortex locations change signi-

ficantly during a scan, resulting in size and location errors. The

detection of multiple vortices from velocity profiles would be aided

considerably by using data from an arescan performed at'the correct

range. The practical limits on mirror speed will probably preclude

the possibility of "freezing" the motion of a multiple vortex system,

but high data density and more sophisticated processing could result

in a significant improvement over the data presently available.

4.3.4 POTENTIAL EFFECTS OF MULTIPLE VORTICES ON VORTEX TIME
HISTORIES

Three effects of multiple vortices may have impact on the vortex

time histories. First, effective circulation and rolling moment calcu-

lations may result in erratic, excessively high answers since the meas-

ured velcoties are being treated incorectly. Secondly, the descent rate

may be altered by the complicated interaction of a multiple vortex sys-

tem. Finally, some transport fluctuations may occur.

The effective circulation has been determined by considering the

functional dependence of the rolling moment induced on an hypothetical

following aircraft: on the windspan of that aircraft. Since the

velocity information does not contain sense, it is necessary to make

assumptions regarding the flow field. A single vortex is assumed

and the sense of the velocity is assumed to change sign at the

location of the best null in the velocity profile, which should

correspond to the center of the vortex. For a more complicated

system, there may be several changes in the sens?of the velocity.

Failure to consider these will always result in a rolling moment

which is too high. It is also possible that at some time, the

vortices within the range sampae of interest will be aligned along

the line of sight. In this case, for a measurement of V pk , a

masking of the weaker vortices by the stronger ones will occur.
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Then the rolling moment and effective circulation will be reduced;

possibly to the values corresponding to the strongest vortex in the

range sample. These phenomena can result in fluctuations in the

calculated effective circulation, with a strong tendency toward high

values. In fact, this has been observed in most of the runs which

have been processed. The effective circulation generally returns

closer to anticipated values after about 10 to 15 seconds. This may

be considered as an estimate of the length of time over which multi-

ple vortices are significant.

Descent rates measured during tests at Kennedy International

Airport indicate that vortices fall at a slower rate than predicted

by simple theories. The effect of multiple vortex transport is

difficult and has not been considered in detail. The simplest

assumption is that the wake descent is dominated by the action of

the strongest vortex pair; namely, the outboard flap vortices. A

comparison of these calculations with experimental averages is

shown in Table 4-2. It should be noted that the descent rates

have not been corrected for the headwind velocity, which tends

TABLE 4-2

DESCENT RATE COMPARISON

Aircraft Calculef-pa Experimental

B-747 5.5 ft/sec 5.4 ft/sec

DC-10 and L-1011 3.6	 (average) 4.5

B-727 4.4 5.3

to increase them. While the agreement is not excellent, it is

better than that with the simpler, wingtip vortex theory. It is

anticipated that interaction with the inboard flap vortices would

improve the model.
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Finally, revolution of the vortices about each other may lead

to changes in the path length, along the line-of-sight, over which

the velocity component corresponds to a given filter. This will in-

troduce fluctuations into the spectral characteristics including I Pk,

on which the location algorithm is based. These fluctuations may

lead to location errors. It is anticipated that these errors should

be small, since the fluctuations should be small, but the result

could be a fluctuation in vortex range, as has been observed occasion-

ally in the data.

4.4 CONCLUSIONS

The presence of multiple vortices in the KIA data is indicated

by spectral analysis, velocity profiles, effective circulation cal-

culations and descent rates. The most promising means of studying

multiple vortices is an arescan with high angular data density and

a short scan time. Using the existing data, the best approach would

be a detailed spectral analysis considering the ratios of peaks and

valleys in the spectra. This could yield some size and peak velocity

data which would be compared to simple models. Evaluation of descent

rates could also be useful if the models were processed to determine

theoretical descent rates for comparison.
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SECTION 5

SYSTEM PERFORMANCE

The SLDV system performance has been excellently for de-

tection of wake vortices in an airport environment, and atmospheric

vortices such as dust devils. Detailed descriptions of system per-

formance at each stage of the test period are given in each of the

interim reports. This section presents a short summary of the re-

sults obtained in detail in those reports.

After some initial hardware problems were resolved in the pre-

liminary tests at Marshall Space Flight Center and some software

improvements and parameter optimization in the early tests at Kennedy

International Airport, the system was proven reliable for detecting

and tracking vortices in real time as well as for providing flow

field data for later analysis. Vortex location accuracy was approx-

imately 20% of the range resolution. This resulted in the ability

to track vortices near the landing path with a 10 foot accuracy.

Signal-to-noise ratios for atmospheric wind and aircraft wakes

varied from 20 dB to more than 30 dB, the change apparently caused

by changes in particulate distribution. The system range resolution

was found to agree with theoretical calculations, based on data from

hard target (sandpaper disc) measurements. The range resolution at

the target location, 170 meters from the van, was anticipated to be

19 meters, and on several occasions, values of less than 20 meters were

obtained. It was observed that there was a tendency for the range

calibration to change with time, so occasional checks and corrections

are required for measurements requiring great accuracy in range

location.

The use of a frequency translator has been demonstrated to be

valuable in measurement of dust devils, although the particular one

used apparently introduces a loss in signal-to-noise ratio. A fre-

quency offset would significantly improve the usefulness of the system

for multiple vortex studies since it would resolve some of the flow

field ambiguities existing in the present system.
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Three bad runs were processed to determine the problems asso-

ciated with them. One Day 115, Run 2028 was a DC-9 and 2034 was a

B-727. On Day 118, Run 2006 was a B-727. Both runs on Day 115

produced tracks for only a single vortex, while on Day 118, two

vortices were detected but there was a large amount of scatter in

location. It should be noted that bad runs comprise less than 10%

of all. runs and less than 4% of those with lare aircraft.

Evaluation of all three runs indicates that the spectra do not

contain high amplitudes at high velocities. Run 2006 is especially

interesting since the data from Van 1 indicates that the high vel-

ocity regions were in the scan area of both systems. Furthermore,

in Runs 1004 and 2004, both vans produced good data on a B-727. The

lack of high -elocity components in the spectra indicates that the

failure was not related to the processor, its settings, the software,

or the parameters used in the algorithm. The only likely problem

is that of alignment, although no notation was made in the log book

concerning changes in alignment after any of these runs.

It is interesting to point out that although the spectzal

characteristics of these runs are very similar, the results are

quite different. In the two runs on Day 115, the thresholds were

sufficiently high to remove most of the data, leaving only a single

vortex track. On Day 118, the spectrum was frequently above threshold,

yielding several points for the processing algorithm. However, the

choice of points to initiate the centroid algorithm was strongly

influenced by noise. This is partly the result of the higher wind

velocity on Day 118, which allowed more spectra to satisfy the

velocity threshold.

These problems could probably be reduced by more careful moni-

toring of alignment of the laser and the optical system. In a more

advanced system it might be possible to direct the scanner to a hard

target between runs and allow the computer to recheck the range cali-
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bration and SNR. In this way, degradations of the system due to

alignment and other changes could be observed and corrected more

quickly.

In summary, the system has been shown to be feasible for

studying two phenomena with similar flow fields but very different

backscatter coefficients and system requirements. Location accuracy

of .2 range resolution elements is possible in real time, along with

limited flow field information. In post analysis, a significant amour,

of flow field data is available which can be used to aid in the

understanding of aircraft wake and naturally generated vortices.
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SECTION 6

CONCLUSIONS

It has been shown that the Scanning Laser Doppler Velocimeter

System is capable of detecting, locating, and tracking aircraft

wake vortices in real time in an airport environment, and of detecting

naturally occurring atmospheric vortices, such as dust devils. Over

1600 aircraft landings were monitored at Kennedy International Airport

and near the end of the test period, over 95% of those runs involving

larger aircraft produced usable results. Additionally, vortex flow

field information has been obLained in a later analysis using the

high speed tape data. Vortex velocity profiles, peak tangential

velocities, and effective circulations have been calculated from

this data. The real time location accuracy has been established at

approximately 10 feet in range. This indicates that the vortex lo-

cation algorithm is capable of locating an aircraft vortex to within

approximately one-fifth of the system range resolution.

Approximately 80 dust devils were observed at the test site

at Gila River Indian Reservation, south of Pheonix, Arizona and a

number of these were analyzed in detail. The location accuracy was

estimated to be approximately one-half the range resolution in these

tests. The fact that the accuracy obtainable in location of aircraft

wake vortices is not attainable for dust devils,is probably Ilue to

fluctuations in the backscatter coefficient of the dust devil. Thus,

measurements of dust devils requiring accurate range location should

be made with two systems and location determined by triangulation.

Also, in the dust devil measurements, a frequency translator

was tested, and it was shown that the translator enables the system

to determine the sense of the velocity. This is a substantial aid

in analyzing complicated flow patterns,such as multiple vortices or

multiple dust devils. The frequency translator made it possible to

determine the direction of rotation of the dust devils and both
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cyclonic and anti-cyclonic dust devils were observed.

In both the vortex and dust devil measurements, transport was

generally shown to be as predicted theoretically and tracks were

obtained within the anticipated range resolution accuracy.

The descent rates of aircraft vortices generally were measured

to be considerably lower than those anticipated on the basis of a

simple theory of wing tip vortices. Additionally, effective cir-

culation measurements during the first fifteen seconds of a run

were generally too high. These phenome-a are probably associated

with multiple vortices from the flaps, wing tips, and tail of the

aircraft. Observations of vortex spectra indicate a more complicated

spectral pattern in the early portion of a run. These facts suggest

that at generation, the aircraft wake consists of a compli(-ated

multiple vortex pattern which, after approximately 10 to 1	 econds,

rolls up into a single vortex pair.

A preliminary system re-design has been completed to design a

smaller, more operational. wake vortex detection system, and improved

operating techniques have been established for o ptimizing the de-

tection of both aircraft vortices and dust devils.

In sum-nary, the Scanning Laser Doppler Velocimeter System has

been shown to be an effective instrument for measuring aircraft

wake vortices and naturally occurring atmospheric vortices, such as

dust devils.
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