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SUMMARY

in this work, the three dimensional temperature distribution
in the: cooled rotor of a radial inflow turbine is determined
numerically using the finite element method. Through this
approach, the complicated geometries of the hot rotor and
coolant passage surfaces are handled.easily, and the temperatures
are determned.without loss of accuracy at these convective

.boundaries. Different cooling techniques with given coolant.
to primary flow ratios are investigated, and the corresponding
rotor temperature fields are presented for comparison. The data
obtained from the present analysis were found" to be in agree-
ment with.the available experimental measurements.

The present work can easily be used in combination with a
finite element stress analysis, to investigate the thermal
stresses corresponding to the different cooling arrangements.
This can provide valuable information concerning the critical

locations of possible creep, rupture or fatigue, for a given

centrifugal, thermal and aerodynamic loading.
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flow turbines in small gas turbine applications. Besides
operating at higher efficiency and yielding greater temperature
drop and pressure ratio per stage, the radial inflow turbine
rotor can be cast at a relatively low cost. Further improvements

in gas turbine engine efficiencies require increased gas

temperatures at the turbine inlet. As a result of metallurgical
limitations, higher gas stream temperatures can be permitted
without reducing the allowable stress levels through effective

cooling of the turbine rotor.

The various aspects of axial flow turbine cooling have
been thoroughly investigated and the different techniques
adequately developed. Several experimental and theoretical

studies dealing with axial flow turbine cooling can be found

in the literature. The merits and limitations of the different

cooling techniques, namely convection, transpiration, and

film cooling are discussed in Reference [1]. Most internal

cooling systems have been designed using semi-empirical methods

to achieve the highest possible effectiveness. Reference [2]

presents a review of the present state of the art for the

internal cooling of turbine nozzles in aircraft applications.

Although radial turbine development, has progressed up to

the limits of stress operating conditions, its rotor cooling

did not achieve the high level of sophistication accomplished

in the axial turbines. As a matter of fact, until recently

very lithe research work has been reported dealing with

radial inflow turbine rotors. Branger [3] investigated

experimentally the effectiveness of veil cooling the hub side

of the rotor. He found that the cooling effectiveness was

larger at the rotor tip, and decreased as the cooling film is

heated and mixed with the hot turbine flow. Petrick and

Smith [4] measured the temperatures of a radial inflow turbine

rotor which was cooled from its backside. While veil and

V
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ANALYSIS

The blade temperature distribution in axial flow turbines is
often predicted from two dimensional computations at radial stations.:
Any radial variation in temperature accounts only for the spanwise
variation in the overall convective heat transfer coefficient
but not the spanwise conduction.	 In the case of radial inflow' P

turbines, a similar approach cannot be used due to its complex
geometry.	 The rotor temperature distribution must therefore be
evaluated using three dimensional heat transfer analysis.

in choosing a thermal analyzer for -use in the case of the
radial inflow turbine rotor, several factors such as nodal .po'iit
placement, input efficiency, accuracy; storage requirements,
and computer time must be taken into Consideration.	 While the
three dimensional finite difference therMal analyses are
basically first order accurate, the finite element method offers
the advantage of the capability of altering the basic accuracy x

3



The field equation for the steady state three dimensional

heat conduction problem in an isotropic medium can be expressed

as

0 • (koT) + g = 0
	

(1)

where T is the temperature, k the coefficient of thermal

conductivity, and g the heat generation rate per unit volume.
The boundary conditions associated with the problem under

consideration are:

kOT • n + h(T T.) = 0	 on Sh	 (2)

and

kvT • n + q = 0	 on Sq	 (3)

In the above equations, h deno-as the Convective heat transfer

coefficient on the surface 5h , which convects heat to the flow

at temperature T', and q is the specified. heat flux density on.
cc

the surface Sq. The union of Sh and S  forms the complete_
surface boundary.S, whose outward normal unit vector is n.

The partial differential equation (1) and its boundary

conditions' (2) and (3) can be cast in the follo^aang variational

form according to References [6;7 and t7l

4
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where the desired temperature-fleld T(x,y.z).. minimizes. the..

functional "T" over the domain of interest:

T)	 0	 (5);

Boundary Conditions:
.^. .

r

The formulation of the governing equations has been kept

very general up till now.	 The surface integral was intentionally

divided into two parts, one for the boundary surfaces over

which a known amount of heat flux is specified and the second

over the rest of the boundary surface convecting heat toa gas

of known temperature.	 in the following section, the conditions

associated with the different rotor boundaries will be discussed

and the empirical expressions for the main and coolant con-

vective heat transfer coefficients will also be given.

Due to its rotation, any circumferent-1 nonuniformi.ty
3	 in the flow conditions at inlet to the rotor will be relatively ^>

averaged out, and therefore it was assumed that the inlet flow
1s axisymmetric. 	 The rotor shown in Figure 1 was divided in to
a number of wedge sections e qual to the number of blades. 	 it
will be sufficient to determine the temperature in any one of

_	 these se_ ctions singe, with the assumption of axisyxttttmetric l

inlet and exit flow conditions, the temperature field will be

periodic.	 One rotor section is shown in Figure 2, with one

rotor blade at the middle. 	 The heat transfer was assumed to be
j	 negligible at the rim...	 With the small temperature differences

between, the blades pressure	 suction side, It is also
reasonable to assume that the heat exchange by conduction

between.two.adjacen-t sections Y.s negligible.	 Therefore, in the

5
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problem formulation (Ea. 4) the heat flux q was taken as zero
f	 on the surface Sq consisting namely of the rim and the two sides

of the rotor section of Figure 2. The rest of the surfaces of

the rotor section will be subjected to the hot gas flow.

Main Stream Convection

The local convective heat transfer coefficient between the
blade and the main strewn depends on the blade shape, the gas
velocity and the position of the boundary layer transition point,

The highest heat transfer coefficient is found at the blade

leading edge, where the laminar boundary layer is thin, its

value is determined from the following formula for transverse

flow over cylinders [8].

Nu = 1.61 Pr 0.4 Re 0.5	 (6)

where Nu is the Nusselt number, Pr is the Prandtl number and.

Re is the Reynolds number based on the relative free stream
velocity and the blade leading edge radius.

Ainley [9] found that the mean heat transfer coefficients

of rotating turbine blades were much higher than those for the

same blades in two dimensional cascades. This can be attributed

to the strong turbulence in the main flow of turbines. There-

fore, turbulent boundary layer formulation was used in the

present study for calculating the convective heat transfer

coefficient between the rotor and the hot gas. This will lead

to conservative estimates of heat transfer coefficients, resulting

in higher predicted metal temperatures, but will be used until
more knowledge of the flow behavior in the turbine rotor becomes

available. The following expression for the Nusselt number

was used throughout the course of this investigation;

Pr Re (Cf/2)0.5
Nu =

	

	 -----

	

(7)
(2/C f ) 

0.5+5 { (Pr-1) +Qn [ l+0.8 3 (Pr-•1) ] }

Where the friction coefficient, C f , is evaluated using the

following empirical correlation for flat plate:

6
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blade temperatures for the metals normally used in rotor manu-
facturing. Therefore, unless highly conducting rotor materials
are used-,- internal cooling passages in the rotor blades are
used to obtain: the. desired . blade temperature reduction. In
this study the rotor temperature distribution is determined for
the different cooling techniques shown in Figu^_,a 3. The first 	 Y

three configurations: show` different internal. Cool.i.ng arrange.-
meets. The radial narrow holes provide the cooling passage.
in 3A. In the second. arrangement 3B ; which will be referred
to thereafter as the single path, the coolant is introduced`.
near the hub from the rotor backside, proceeds inside the blade
and is discharged at the : rotor. tip. The cooling configuration
C, Will be referred as the double path. In this case the
coolant is introduced at the rotor end oppoeite its backside,
cools the blade internally, turning around at the leading edge,
then is discharged at the blade suction side. One external

4 cooling scheme is also investigated, which is shown schematically
in Figure 3D. In the following sections, the coolant
temperature computations and empirical expressions used for
the coolant convective heat transfer coefficient will be

F
	

discussed.

Internal Cooling

The flow in the internal cooling passages is affected by
the centrifugal and the Coriolis forces. Miyazaki [10] found
that the secondary flow is especially suppressed when the cross-
sectional aspect ratios are further from unity. Under these
conditions, the Nusselt number was very close to that in
stationary straight pipes having the same hydraulic diameter.
The average Nus.selt number for fully developed turbulent flow
at high temperatures and heat flux densities is expressed,
according to Reference t111, as:

8



Nu -- kD — 0.034 (1)/L) 0.1 Pr0 " Re". o (Tc/TS) U. o
(9)

15

" A

where D is the hydraulic diameter, L the passage length, T  and

Ts, are the coolant and hot passage temperatures. respectively.

Both Nusselt and Reynolds numbers are based on the hydraulic

diameter, and the flow properties are referenced to Ts.

External Cooling:.

Petrick and Smith [4] experimentally investigated the radial
turbine rotor backside cooling by air flowing parall.el . to the

disk in both radially inward and radially outward directions

as well as by air impinging perpendicular to the disk. They

found that the radially outward flow resulted in higher values

of convection heat transfer coefficients than the radially

inward flow. The coolant flow perpendicular to -the disk

however, resulted in much higher values of convective heat

transfer coefficients compared to those values obtained with

flow arrangements parallel to ,the rotor backside. Thev also

used their experimental measurements to derive empirical
expressions for the convective heat transfer coefficient in

all-three cases. The experimental data of this reference is so

scattered that the authors themselves recommended limiting

it application only to the range of the parameters in their

study.

Experimentally determined average Nusselt number for
radially outward flow on a rotating shrouded disk are reported.

by Haynes and Owen [12] The influence of the coolant flow

rate and the shroud and backside clearances were found to be
Jess pronounced at high rotational Reynolds numbers. The
Nusselt number would approach the free rotating disk values

for the high speeds and low coolant flow rates which are
involved in radial turbine applications.. The free disk
correlation was therefore used in the present study to deter-
mine the local Nusselt number variation along the rotor backside

9
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0.8

x = 0.0195 ( y ) (10)

i	 with the cooling air flowing radially outward. Kreith et al.
II	 [131 found that the critical Reynolds number of enclosed

rotating disks with source flows is lower than the free disk

values. Therefore, neglecting any small laminar core, that

i	 can exist on the rotor backside., the local Nusselt number at
i 3

any radius r, was calculated using the following equation [14]:

j	
Nu =

where w is the angular velocity of the rotor, and v is the

kinematic viscosity.
i

A Coolant Temperature CoMEutations:

The temperature of the cooling stream increases along its

flow path due to the heat exchange with the hot rotor. This

in turn affects the cooled surface temperature as well as the

convective heat transfer coefficient. The computations of the
F	 rotor and coolant flow temperature distribution must therefore

be performed concurrently. The rotor temperature computations

are carried out using the finite element formulation of the

variational statement for the three dimensional conduction

problem. The cooling air temperature is evaluated in a

separate program in order to achieve the desired accuracy

without significantly increasing the storage requirements of

the conduction problem.

A simple energy balance equation was used to determine

the coolant temperature rise,, ATc , over an incremental length,

AL, of the passage.

AT 	 -_ P	 h(Ts - Tc)AL
mC

P

where P is the perimeter of the cooling passage, and m, the

coolant flow rate.

(11)

4.

1

i	 ^^
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The same procedure was followed in the rotor backside

coolant stream, to determine the variation in its temperature

over an increment of radius, Or.

ATC _ 2zrr 
h(Ts - T c ) Ar	 (12)

mep

The convective heat transfer coefficients in the above equations

are evaluated by using equations (9) and (10) respectively.

Finite Element Representation:

The solution domain is discretized into a number of three

dimensional finite elements. The temperature variation within

each element T(e)(x,y,z), is generally represented by an

equation of the form [151:

T(e) (x ,Y, z ) = {NI t. {T} (e)
	

(13)

Where ' fN}t is the row vector of the interpolation functions

which depend on ' the nodal coordinates, and {T} (e) is the

column vector consisting of the nodal values of the temperature

associated wi,h that element.

The interpolation functions N i , are chosen to satisfy

continuity requirements to ensure the convergence of the

solution. The integral over the whole domain in equation (4)

can therefore be represented as the sum of the integrals over

all the elements:

e= MI =	 I	 1(e)	 (14)
e-1

where M is the total number of elements in the solution domain.

It is required to stationalize 1(T) with respect to

all the nodal values of T in the solution domain, however from

equation (14) we can write

l	

'.

^j	 11
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8	 _	 1	 61 (e) = 0	 (la?

e=1
A

where the variation of I (e) is taken only with respect to the
nodal values associated with the individual element (e)•
This implies that:

aI
(e)

BT 	 0	
i 
W 1 1 2, ... r	 (16)

where r is equal to the number of nodal temperatures per element.

#	 It would therefore be necessary to derive only the single

element equation.

,k

The simple four node tetrahedral elements, with linear

interpolation functions were used in this analysis. This
t

choice was dictated by computer storage considerations. in

spite of their simplicity, these elements are very versatile

however because of the ease with which they can be assembled

to fit the complex three dimensional geometries with reasonable

fidelity. A comparison of these elements with other higher

representations [16], shows the improvement in accuracy

is not great. The derivation of the single element equation

for the particular finite element and interpolation function

used in this study is given in Appendix A. When these

equations for all the elements that constitute the rotor body

j	 are assembled, a relation of the following form is obtained:

[K] {T} = {R}	 (17)

Where [K1 is the global stiffness matrix, {T} is the column

vector of all the rotor nodal temperatures, and {RI is the

column vector of thermal loading. The finite element

representation of the rotor section, shown in Figure 2, using
the four node tetrahedral elements results in a set of linear

equations whose matrix of coefficients has a relatively narrow

W

i
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band width. it is therefore adequate to solve these equations

Two previous studies involving external rotor backside
cooling and internal blade cooling that could be used to verify
the results of this study were available in References [41 and [5].
Although rotor temperature measurements were reported in Reference
[3], the turbine geometry and flow data supplied in that
study was not sufficient to carry out any flow or heat transfer
computations. It was therefore decided to carry out our
computations for a rotor and flow conditions similar to that

given in Reference [5] except for one difference. The rotor

disk was extended up to the blade tip to check the ability of
our pro;ram to handle such complicated three dimensional

geometry.

The rotor is made of IN100, a nickel base high temperature

alloy, and its tip diameter is 8.2 inches. The hot gas inlet
total temperature is 2225°F at 67,000 rpm and a turbine flow
rate of 4.9 lb/sec. In all the cases investigated, the cooling
air total temperature at inlet was assumed to be 850°F. The

resulting temperature distributions are presented in the form.
of plots of isothermal lines on the surfaces of the blade and

its associated hub section in Figures 4 through 9.
The temperature fields are presented for cooled as well

as for uncooled rotors. A schematic of the four different
cooling arrangements investigated is shown in Figure 3. The
computations were executed on an IBM 370 time sharing system.

The computation time depended on the number of nodal points
and on the particular internal cooling passage investigatea,
which in turn affects the band w3ldth of the stiffness matrix.
For the simpler cases of solid rotor blades, the computer time
was 15 seconds. Aside from the uncooled rotor, this includes

13



the cases of external rotor backside cooling, and the first

internal cooling arrangement.	 With the very narrow cooling a

passages	 g arrangement,asses es of that ccolin 	 arran ement	 heat sink s were
introduced to represent the amount of heat absorbed by the

coolant in the elements which included any portions of the J

passages.	 The diScretization of these cases involved 256 w	 a

nodal points, 675 finite elements. 	 The number of nodal

points and elements were larger for the rotor with internal a

cooling passage, in which the discreti.z ation involved the

modeling of the coolant passage. 	 The case involving rotor

cooling through the single path shown in Figure 3 was

modeled using 300 nodal points, and 831 elements.	 Larger
z	 number of nodes and elements, 380 and 1038 respectively,

were used in the more complex double path cooling resulting

in larger stiffness matrix band width and longer computational

i	 time.	 Additional external convective surface elements and

`	 larger stiffness matrix band widths, were naturally involved

in the last two cases.

The temperature field in an uncooled rotor is shown in
F

Figure 4.	 The figure shows two views of the rotor section

as seen from the blade pressure and suction sides. 	 As

expected, the highest temperatures are found near the rotor V.
tip, and decrease gradually towards the hub.	 Both centrifugal

and aerodynamic loading cause the highest stresses at the blade

sections near the hub.	 The relatively moderate radial

temperaturek^	 p rature gradients- of Figure 4 are not expected to contribute
ITT	 significantly to the stress field. 	 Rotor cooling should be -

expected to reduce the high temperatures of 1550°F near the

blade hub.	 If the radial, temperaturep	 gradient resulting from

a particular cooling arrangement is considerably high, it can

augment the stresses produced by centrifugal and aerodynamic

loading.	 These two factors have to be taken into con-i.deration -

f	 when the different cooling configurations are compared. 	 The
i

losses incurred by the coolant injection after circulating

through the particular cooling path is another important factor

to be considered 1181.	 This however is beyond the scope ofl	 Y	 A

this study.
t#

14
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Figure 5 shows the isothermal lines for 1.5% internal

cooling through the single . path in the rotor blades. it is

clear that even for this small amount of coolant mass flow,

a reduction in the temperatures of 100 to 150°F is achieved

in the highly stressed blade regions near the hub. The

blade temperatures were computed for the same cooling

arrangement in Reference 151, and the resulting temperature

fields were given in Figures 81 and 82. When the blade

temperatures of Figure 5 are compared with the computed results

of Reference [5], lower blade temperatures can be observed

in the latter data. We must point out however that, the

blade temperatures of Deference 151 were first iterations,

calculated assuming zero heat flux at the blade hub. It was

mentioned in that reference that the adiabatic blade end wall

can account for about 50°F in lower calculated temperatures

at the smaller radius hub sections.

The temperature field for 3% internal blade cooling

through a double path is shown in Figure 6. In this arrange-
ment, 0.5% cooling is discharged at the tip to avoid choking.

The computed rotor temperature field for this cooling arrange-

ment is shown in Figure 6. When the blade temperatures of this

figure were compared with those in Figures 89 and 90 of

}	 Reference 15], it was found that they are in close agreement.

The results of the last reference for this cooling arrangement

were obtained after three iterations, to account for the

rotor blade end wall heating effect at the hub. It can be

seen from Figure 6 that the double path cooling arrangement

results in a considerable temperature reduction in the blades

highly stressed areas. This temperature reduction is achieved

however with large temperature gradients in the blade that

can produce considerable thermal stresses.

In the two internal cooling arrangements just described,

i	 the lowest metal temperatures can be observed around the area

of the coolant introduction in the rotor section. That can

explain the considerable reduction in the blade highly stressed

regions in the case of a single path cooling even at the

15



79

relatively low coolant mass flow of 1.5%. With 3% double	 ^E
path cooling, the temperature reduction was not great, since

the coolant is introduced at the opposite side of the rotor,

going through a longer path before reaching these regions..

In the third internal cooling arrangement investigated,

the coolant path consists of a number of holes drilled radially

in the rotor blade. 	 The resulting temperature distribution

with 1.5% coolant is shown in Figure 7. 	 It can be seen that

this arrangement with five cylindrical cooling passages of

4.06 inch diameter results in the maximum overall reduction
'	 y

in the metal temperature, as well as in the lowest blade .!s

temperature near the highly stressed regions. 	 Although this ;! s

is desirable for better creep life, it is obvious that large

radial temperature gradients prevail along the rotor section. tii
Furthermore, large stress concentrations around the narrow

radial cooling passages are associated with this arrangement.

Additional results are shown in Figures 8 and 9, which

were obtained for 1 . 5% and 3% external rotor disk backside

cooling by radial outflow. It can be observed that the rotor

backside temperatures are almost invarient near the axis and

up to a radial distance greater than half the tip diameter,

then increases sharply towards the tip. The temperature

distribution of Figure 9 can be qualitatively compared with

the experimental data given in Reference [ 41 for the corresponding

cooling arrangement. Although the ratios of coolant to main

flow investigated experimentally in Reference [4] were generally

high, the temperature measurements at the lowest coolant mass

flow of 4% showed the same tendencies as our temperature field

computations.

The cooling effectiveness was computed with 1.5% and 3%

cooling mass flow for the rotor disk external cooling arrange-

ment. The effectiveness, n, was defined according to the

following expression:

Trh Trc
n - Trh T 

16



cooling, respectively.	 It can be seen from Figures: 10 ,and 11
that, as expected, the maximum effectiveness occurs . at the

`	 point of impingement and decreases towards the rotor tip.
By comparing Figures 10 and 11 with Figures` 8" and 

9" 
it ' 14

Been that the effectiveness curves are very similar. to : . th6
isothermal curves.	 Therefore, it was unnecessary to present, I
additional figures showing the effectiveness for the other
cooling arrangements, since the inlet coolant temperature,
TG , was kept the same in all the cases considered.

If Figures 8, 9 and 4 are compared, it can'  be; een°that
the rotor backside cooling is more effective"in_.cooling the

rotor disk, but leaves the blade temperatures practically
unaffected.	 Therefore, this cooling arrangement cannot be
effective in reducing the blade temperatures " except"for highly

r

conductive rotor materials.	 It is clear however that it is....
advantageous from the stresses point of view sixce.it  mainly.
results in axial temperature gradients.	 Using rotor backside
cooling in combination with internal cooling might therefore
offer some advantages.	 This can be especially true if the:

n

internal cooling air is introduced at the rotor backside, as in
the case of the single path.	 In this case, the. internal cooling l'air will pass initially through a rotor section with reduced
temperatures caused by the rotor backside cooling 	 if half of

a 3% coolant is used internally in a single path and the other

half externally on the rotor backside, for exampler considerably
lower coolant temperatures can be expected in the internal

.a

path near the highly stressed blade regions, just as thecoolant
passage is enlarged.	 This combined cooling arrangement was`
investigated and the resulting temperature field is''shown in
Figure 12.	 It can be seen that such combination of internal.

and external cooling offer definite advantages,	 besides the consi-

derable temperature reduction in highly stressed regions near

the blade hub.	 The high radial temperature gradients in the....

blades that are present in the case of double path cooling

with 3% coolant are avoided here. 	 The computed temperature



f
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field : . . of..Fi.gure..12, shows mostly temperature_ gradients in. the

z	 axial direction, with the exception of-the rotor disk near:i
the tip.

t	 Although we .. did not intend to: present a .therrRal stress
analysis-in this work, sortie discussion ,of the consequences of

temperature.fields on the rotor stress distribution was.the
T.

presented:.	 We would like to emphas ize here . again that the rotor M
dimensions and flow data were taken similar' to Reference [57'
with ,the exception that here, the `rotor' disk was extended

radially outward up to the tip. 	 Although this will not ^3

affect the temperature field, it would naturally.result in a r

different stress distribution than in. Reference [ 52.	 Dur
computations showed that while internal cooling results in

lower blade temperatures, particularly. at : the highly stressed
3

}regions near._the.hub, it also results in relatively high

L	 radial temperature gradients. - Thiscan augment the-stresses -

proftoed.by the. centrifugal forces.. 	 The rotor external

backside cooling on the other hand causes mostly axial
temperature gradients vi 	the:. exception of the rotor tip

region where the centrifugal .loading itself is insignificant.
The combination of the two cooling schemes, namely that on
the external rotor backside and in the:internal single path,

was found to result in the desired temperature reduction
i	 without the undesirable radial temperature gradient. ,

The stress field produced by centrifugal, thermal and
s

aerodynamic loadings can be determined using one of the finite

}	 element stress analysis programs.	 The critical locations of

possible creep, rupture or fatigue can. be determined.	 Based on

such information,, • it can be. seen whether . the external ra..or
;.l	

t	 a;
	

t	
,

backside cooling with its axia tempera ure gra Zen a
preferable to the internal cooling, even if double the coolant

mass flow Is needed, to . achieve the same metal .temperature

reduction around the highly stressed blade _regions.

-	 r,



CONCLUSIONS

A useful numerical technique has been developed to predict

x the three dimensional temperature field in the cooled rotor of

a radial inflow turbine. It was found that the finite element
method is especially suitable for handling the complicated

surface boundaries encountered in the different cooling
arrangements. The calculated temperatures obtained using the
present method are in good agreement with other analytical
methods involving more tedious and time consuming computations.
The three dimensional temperature fields, calculated using the
present analysis were also found to agree with the available

experimental measurements.

F
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LIST OF SYMBOLS

Cf Skin friction coefficient'

Cp Specific heat (Btu/lb °F)

D Internal Cooling passage hydraulic diameter (ft) `-}
s;

{F} A column vector representing the contribution of the

convecting element to its thermal. loading, Eq. 	 (A-26)

1 g Heat generation rate per unit volume (Btu/ft.hr )

{G^ A column vector representing the contribution of the i

r eheat generation within an element to its thermal f

t! loading, Eq.	 (A-16)

z 'i h Convective heat transfer coefficient (Btu/ft2hr°F)

[H] A tensor representing the convecting elements f'
stiffness matrix, Eq.	 (A-26)

k Coefficient of thermal conductivity (Btu/ft hr F) '3
F

[K] Overall thermal stiffness matrix

[k]	 A tensor representing the conducting elements

stiffness matrix,. Eq. (A-16)

L	 Cooling passage length

M

	

	 Total number of the finite elements in the solution

domain

m	 Coolant mass flaw rate (lb/sec)

{NT	 The column vector of the elements interpolation

functions

Nu	 Nussel.t number

TI	 Outward normal unit vector from the rotor surface

p	 Coolant passage perimeter (ft)

Pr	 Prandtl number

{Q?	 The column vector of a surface element thermal loading

due to a specified amount 
of 

heat flux.

22



q	 Heat flux density (Btu/ft2 hr)

[R]	 Overall thermal load vector

r	 Radial distance along the rotor dish. (ft)

Re	 Reynolds number

S	 Rotor surface

s	 Finite element surface

T	 Temperature ( °F)

{TJ	 The column vector of nodal temperatures

V	 Overall volume

v	 Volume of finite element

4	 Surface area of finite element

v	 Kinematic viscosity (ft 2/hr)

w	 Rotor angular velocity (radiance/hr)

Subscripts

c	 coolant flow

h

	

	 Referring to surfaces exchanging heat with. the hot

gas or coolant flour by convection

i,j,	 Identify the various components of vectors or tensors,
k,k	 or nodes of a finite element

q	 Referring to surfaces on which heat flux is specified

including adiabatic surfaces

S	 Rotor surface

Co	 Flow conditions in hot gas or coolant flow

Superscripts
	

1
}

(e)	 Refers to a finite element 	
3-r.

t	 Transpose of a tensor

i
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A.APENDIX. A

ELEMENTS EQUATION

in this appendix, the elements equation will be derived

for the simple four node tetrahedral element that was used in

this analysis. The condition to stationize, the functional T,

will be rewritten here for an element, as given by equation (16),

aI(e)
aT,	 = 0	 i = I t 2,, ... r	 (A-Z)

When evaluating the integral over an element, it is more

convenient to evaluate the different volume and surface

integrals separately as follows:

I (a) = IV + I5 + is
h	 q

where

(A-2)

l	 3T (e) 2	 aT (e) 2	 OT (e) 2	 (e)
Iv =	 ! [kk(ax	 ) + k(

@Y 	 } + k(az	 }	 2gT	 3dv
v

(A-3)

Is = I t h (T (e) 2 -- 2T^T (e) ) ds	 (A-4)
h

is = I q T (e) ds	 (A-5)
q	 A

With the integrals in the above equations evaluated over the

i	 element ' s volume, v, and its correspond. ' ng surface areas, A.

With the highest temperature derivative appearing under the

integral, being of first order, the four node tetrahedral

elements with linear interpolation functions, which are used

here, are the simplest elements satisfying the compatability

and the aompletene,s requirements. Substituting equation (A-2)

into equation (A-1), the elements equations can be written

generally as:

i
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T = Ni Ti	 i = 1,2,3,4

With	 Ni = 6;^ (ai + bix + ciy + diz)

-
C	

"^

DI	 aI5	
aIs

v + aT. h + a T•q 	 1, 2, ... 4m'a .^ (A-6)

where. Iv, IS , Is are given by equations (A-3) to (A-5).
h	 q

In the following, the different volume and surface integrals

will be evaluated separately, with the temperature variation

within the element, given by equation (13) which is rewritten

here as

T(e)(x,y,z) = (N} t (T}	 (A-7)

Evaluation_ of the Volume Integral:

Using equation (A-3) we can write

aIv DT (e) a	 a T (e)	 a T (e) a	 a T (e)
BT r 

of Ek 
ax	 aTi ( ax	 )^' 

k 
By	 —Ti ( ay	 }

+ k az	 aT. ( aa	 )- g aT. 
Idv	 i = 1,2,3,4

z	 z
(A-^}

The derivatives in the above equation are evaluated with

respect to each and every node associated with the element (e).

Generally, the four numbers assigned to the nodes of the

tetrahedral elements are arbiterary, however for simplicity,

and without loss of generality, the nodes are assigned the

numbers 1 to 4 in this derivation. The linear temperature

variation within the four node tetrahedral elements, can be

expressed as follows i81:

37



t
i

3

i
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f

i

i

i

i!

where

11	 yj

b 	 yk

1	 yg

xj	1

ci - -- xk 	1

xQ 1

x7	 y3

di = - xk yk

x 	 yj^

and v is the volume of

k, Q in a right handed

1	 xi

v -	 1	 xj

1	 x.r

1	 x 

z 

z 

z^

zj

z 

z^

1

1

the tetrahedron defined by nodes i, j,

Cartesian coordinate system.

yi z 

yj	zj

(A-12)
yk z 

yQ	z 

x3	
Yj
	

z 3

ai --	 xk yk zk

xk	 x Jz	 x 9
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aNi	di

a 	
- 

6v (A-14)

The other constants are obtained through cycle permutation of

the subscripts. It is possible to assume also a linear inter-

polation functionfor the heat source. This is not justified

however in our problem since the heat source term was introduced

to represent the heat absorption in a narrow cooling passage.

Therefore, assuming g to be constant in a particular element,

and substituting equation (A-9) into (A-8) we can write:

D 
	 t	 3N.	 t	 aN.
V = t [k dN} {T^	 3- + k {'NI {T}	 ^.

aTi 	ax	 ax	 By	 ay

am t	 DN.
+ k { az} {9?1 az^ - g NiI dv (A-13)

The derivatives in the above integrations can be evaluated

using equation (A-10}

aNi 	 bi

ax	 6v

aNi 	 ci

oy - 6v

where bi , ci and di are given by equation (A-11).

Substituting equation (A-14) into (A-I3) we can write

aT

aTv = kij Tj - Gi ' 	i.,j = 1,2,3 and 4	 (A-15)
i

.. 

J

or

az
{--.!I _ [k] {T} - {G}	 (A-16)

i Where [k] is a four by four matrix in which

39
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i

k.	 --ij k	 (bb.	 + c.c.36v	 i	 z3 + d.d.) (A--17)3 i3

and	 {G} is a column vector,

G1 	- g v Ni (A-18)	 1	 :`-

{

Evaluation of the Surface integrals:

Using equation (A-4), we can write
x

a ^s
(e)

aT,h =	 I	
(h T(e)	 r T.) ds (A-19)i A

aT,̂
.

The linear temperature variation throughout the three node

tetrahedral element is expressed as follows:

T (e) = M t {T} = N i T i	 i = 1 1 2 1 3	 (A-20)

Therefore we can write

a1s

DTl h - f (h {N} t {T} - h T. )Ni ds	 (A- 21)

In performing the minimization, the convective heat transfer

coefficient h, and the flow temperature are considered as

invarients. Equation (A-21), thus involves integrals of terms

such as Ni and NiNj , over the area of the triangular element..

The values of such integrals are tabulated in various references

[5, 5 and 151. A general proof of the values of such integrals

in one, two or three dimensional elements is given in Reference

[A-1]. According to that reference, we can write for our

surface elements:

a	 Y	 a! 5!^yd
A 
N1 N2 N3 

ds 
(a+5+^y+2 d 2A
	 (A-22)

A
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H^ 7	124	 i

= h6 
d	

i = j	 (A-24)

	

and Fi 	 = h T. 3	 i = 1, 2 and 3	 (A--25)

Using Equation (A-23) into equation? (A--21) we can write

B=sh 
= IHl {T} - $ F}3T.I

where [H] is a three by three s quare matrix, whose elements are

given by equation (A-24), and {F} is a column vector whose

elements are given by equation (A-25). The remaining term,
Dis 

h 
/BTi , was similarly evaluated taking the heat flux to be

constant throughout the element, and using the linear

temperature variation of equation (A-24).

91s

BT	
_ {Q} = q	 {1}i (A-27)

where	 Qi a q 3
	 i -- 1, 2 and 3

	
(A-28)

,a
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The surface area A of any triangle Can be calculated if the

three Cartesian coordinates of its vertices are known in a

frame of reference. it is equal to half the magnitude of

the vector resulting from the cross product of the vectors

forming two sides of the triangle. The different surface

and volume integrals over an element are given by	 J

equations (A-16), (A-26) and (A-27). If these equations
9

are substituted into equations (A-1) and (A-2), the element 	 .

equation can be expressed as;

[k] (e) {T} = {R1 (e)	 (A-29)

which involves the contribution of the integral over the volume

of the tetrahedral element and the contribution of the proper

surface integral over its four triangular surfaces. in

equation (A-29), [k] (e) is the four by four element stiffness

matrix,	 {R1 (e) is the column matrix representing the

thermal loading,and {T1 the column matrix of the nodal

temperatures. The thermal loading includes the contribution of

the heat source (equation A-16), the convecting surface flow
(equation A-26), and the specified heat flux q over an element

surface (equation A-27).

Reference

(A-1) Eisenberg, M.A. and Malvern, L.E., 01 On Finite Element

Integration in Natural Coordinates," International

journal of Numerical Methods in Engineering, Vol. 71

No. 4, October 1975, pp. 574-575.



APPENDIX B

tv

COMPUTER PROGRAM

The numerical solution to the resulting set of linear

simultaneous equations is obtained using the direct elimination

approach in the subroutine CHOLES. It is called through

the main program in which the computations of the stiffness

matrix coefficients and the thermal load vector are carried

out. This is accomplished through assembling the contribution

of all the volume elements and the surface elements to

equation (17). As explained in Appendix A, all the volume

elements contribute to the global stiffness matrix. Those

with heat sources or sinks contribute also to the thermal load

vector. The convective surface elements contribute to both the
overall stiffness matrix and the thermal load vector. if the

heat flux is specified at some surface elements, they contribute

only to the thermal load vector.

Although the elements equations were derived in Appendix A

for tetrahedral elements, for the purpose of data preparation,
the three dimensional body is discretized into pentahedral

elements. This simplifies and reduces the size of 4L-.-he input

data. Through computations in the main program each pentahedral

element is further discretized into three tetrahedral elements

as shown in Figure B. in the following, the program flow chart

will be given, followed by the definition of the program

symbols, a guide to input data preparation ? then :he program

listing with sample input and output data.
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Program Flow Chart:

Print output data

S
45

ti

1

i

i

=AE

i

IS
7f

Ji

} -3
•	 i

Divide each pentahedral element into
three tetrahedral elements

1. For each conducting element, compute stiffness
matrix [k] and add its contribution to array A.

2. For conducting elements with heat sources,
compute the thermal load vector {G} and add
its contribution to array A.

3. For each convecting surface element, compute
stiffness matrix [H] and add its contribution
to array A.

4. For each convecting surface element, compute
the thermal load vector {F} and add its con-
tribution to array A.

T—	 -
5. For each surface element with specified heat

flux, compute the thermal load erector {QI
and add its contribution to array A.

Modify the array A for the nodes
with specified temperature.

Call Subroutine CHOLES to solve
the simultaneous equations.



PROGRAM SYMBOLS

S of

MTOT

NTOT

LTOT

1TOT

NSPEC

NEW

COND

1Z, NT

TRANS

Description

Total number of nodes in the finite element model, M.

Total number of pentahedral elements.

Total number of triangular elements on convective

surfaces.
Total number of triangular elements on the body

surface where heat flux is specified.

Total number of nodes where the temperature is

specified.

Half band width of the stiffness matrix.

Thermal conductivity of the body material, k.

Code number, TZ, can be set equal to zero or unity.

In the first case, only the input data and the final

temperature distribution will be printed. in the

second, NT coefficients determined in intermediate

computations will also be printed.
A coordinate multiplication factor in case the

conversion of units is necessary.

An array of the nodes x-coordinates.

An array of the nodes y--coordinates.

Aii array of the nodes z-coordinates.

Numbers assigned to the vertices of a typical

pentahedral element.

Rate of heat generated per unit volume within each
pentahedral element.

Numbers assigned to the vertices of a typical

triangular surface element.

X(1)

Y (I)

Z (1)
F	 .

KA,KS,KC
KD,KE,KG

GEN
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TINF	 The environment temperature of a surface element.

HINF

	

	 The convective heat transfer coefficient at a

surface element.

FLUX	 Specified heat flux at a surface element.

NUM	 The node numbers, where the temperature is specified.

TEMP	 Specified temperature value.

T(I)	 An array of the temperatures at all the body nodes.

The symbols of all program input data are explained above.
The temporary storage variables were not defined. The one

dimensional array A(I) is used to store the elements of the
stiffness matrix lower band Kid (i } .i), Followed by the
elements of the thermal load vector Ri (i = 1, ... M).
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Preparation of Input Data:

After the desired number of nodal points are placed through-

out the three dimensional body and on its surfaces, they are

designated the consecutive numbers between one and M. It is

desirable that the discretization process simulate as closely

as possible the original three dimensional body. The corners

and the locations where there are abrupt changes in geometry

or thermal boundary conditions, are obvious choices for nodal

placement. At the regions where high temperature gradients are

anticipated, finer discretization is employed.

Using the nodal points as vertices, the body is then

divided into a number of pentahedral elements. The six numbers

assigned to the vertices of each pentahedra) element are

inputed in an order such that the first three define a

triangular base. The following three numbers define the

vertices of the other base taken in the same order as the

vertices of the first base (see Figure S). The coefficient

of thermal conductivity and also the rate of heat generation

(or absorption) if the element includes .~n^:at sources (or sinks)
are also inputs for pentahedral elements.

The body surface is also divided into triangular elements

using the surface nodal points. The input data of the surface

elements depend upon the boundary conditions. The numbers of

the nodes constituting each triangle are fed in the program

input for each surface element. The corresponding local values

of the film coefficient, h, and the environmental temperature,

T., are specified for elements on convective boundaries. She

heat flux is an input for surface elements in the region of

specified heat flow.

If the temperature is knourn at any nodal points, the numbers

identifying such nodes and their specified temperatures are

also given in the input. The program input format is explained

in detail in the following section.
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Control data MTOT, NTOT, LTOT
ITOT, NSPEC, NBW

Control data I.Z, NT

Material properties COND, TRANS
& conversion factors

Geometrical X(I)

Y(I)
Z(I)

Topology and pro- IA..	 IB.	 IC.	 ID:
perties of conduct- IE, IG, GEN
ing elements

Convecting elements LAZ., LBZ, LCZ,
topology and TINF, HIND'
boundary conditions

Topology and bound-- LAAZ, LABZ,
ary conditions of LACZ, FLUX
elements with speci-
fied heat flux

Specified tempera- NUM, TEMP
ture nodes

Type of Input	 Input Data Format

(615).

(2.15)

(2F10.0)

( 8 F10.0)

( 8 F10.0)

( 8 F10.0)

(615: F10-0)

(3I5, 2F10.0)

(315, F10.0)

(15, F10.0)

Number of
Cards

one	 -

one

one

MTOT/8

MTOT/8

MTOT/8

NTOT

LTOT

ITOT

NSPEC
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C
C
C

C	 A FORTRAN. COMPUTER PROGRAM
C	 is ^c^kxc^k^r#^k^k#pink##^k,Mnlc^k^r^k^k*^kk^c

C
C	 FOR SOLVING A THREE DIMENSIONAL HEAT TRANSFER PROBLEM
C}e^ie^k*##^k#^Ic^e^lc^c^ir*^Ir####^c*?k^k^leak*#^c#^k###**^ie^k5k#k.k:^k^c.k#c^c
C
C	 USING THE FINITE ELEMENT METHOD
C	 * ** ^c * **#^ # ** *** ** #C# ^4c##c*.^lrlcgcnk:^e^Er

C
C

I	 C
DIMENSION X(256),Y(256),Z(256)sP(4s4.),S(4:4)sL(4).,M!.4),Q(494).,V(4

X,4),W(4,4)rAA(.4,4).PC(4) vG(4),CC(4)sSA(.3,3).,H(3,3),A(928I)
CALL. UNDFLW
IPRNT=6
READ( 5,5001 )MTOT, NTOT,LTCTsITQT, NSPEC, NSW
READ (5,5101 )IZsNT
READ(5,5201)COND,TRANS
MT=(=%4 TOrt*p)B'4)+MTOT—(;NBt"*(NBLI+I) );2a
MT P=MT+1
MTF=MT+MTOT
NBWI=NSW+1
NB WP=N BW+Z

C
C
C
C	 MTOT =N q . OF NODES

[	 C	 NTOT =NO. OF THE BODY PENTAHEDRAL ELEMENTS
C	 LTaT =NO. OF THE SURFACE ELEMENTS OF CONVECTION
c	 ITQT =NO. OF THE SPECIFIED HEAT FLUX SURFACE ELEMENTS
C	 NSPEC=ND.. OF THE SPECIFIED TEMPERATURE NODES
C	 NbW =HALF BAND WIDTH OF THE STIFFNESS MATRIX
C	 IZ	 =CODE NUMBER FOR PRINTING A DESIRED NUMBER OF THE ARRAY
C	 (A) ELEMENTS AFTER EACH MAJOR STEP(WHICH IS THE CASE IF
C	 'IZI IS SET EQUAL TO UNITY)
C	 NT	 DESIRED NUMBER OF THE ARRAY (A) ELEMENTS TO BE PRINTED
C	 COND =BODY MATERIAL THERMAL CONDUCTIVITY
C	 TRANS=TRANSFORMATION FACTOR TO BE MULTIPLIED BY THE GIVEN
C	 NODES COORDINATES TO TRANSFORM THEM INTO CENTIMETERS
C
C	 THE ONE—DIMENSIONAL ARRAY (A) CONTAINS THE ELEMENTS OF THE
C	 STIFFNESS 'MATRIX (S) LOWER BAND FOLLOWED BY THE ELEMENTS
C	 OF THE R.H.S. VECTOR (C) IN THE SYSTEM OF EQUATIONS (A)(T)=(C)

f	 C
f	 C

t	
C

WRITE( 6,6002)MTOT,NTOT,LTOT,ITOT,NSPEC,C CND,NBW,IZsTRANS,MT
C

C
C	 READ AND PRINT THE NODAL COORDINATES
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C
C
30na READ(5,5002)(X(I),I=1sMTOT)

READ (5,5002)(Y( I), I=1,MTi3T)
READ (5 950GZ)(Z( I ),p I=19MT q T)
DO 1001 I=1',MTOT
X( I)=TRANS*X( I )
Y( I)=TRANS*Y(I.)
Z( I)=TRANS*Z( I )

100 I CONTINUE
WRITE(596001)
DO 2 1 =1 ,MTOT
WRITE(5,6003)I9X(I),Y(I),Z(I)

2 CONTINUE
C
C
C	 ASSIGN ZERO VALUES TO ALL THE ELEMENTS OF THE ARRAY(A)
C
C

10C2 DO 3 I=1 ,MTF
A( I)=0.0

3	 CONTINUE
IF(NTOT.Efl.0) GO TO 14

C
C
c
C	 THREE DIMENSIONAL HEAT CONDUCTION CALCULATIONS
c^k*^K^K******^S## *^c *******yk********#**^k*#!c***
C
C
C

WRITE( 696101)
I W =0
GO TO 1122

I ro IW lw+1
IF(I W, EQ.NTOT) GO TO 1009

C
C
C	 READ AND PRINT THE NUMBERS ASSIGNED TO THE PENTAHEDRAL ELEMENT
C	 VERTICES AND THE RATE: OF HEAT GENERATED IN IT
C
C

1122 READC595005)IA,IF3sICsIDsIEsIG,GEN
WRITE(6,6800) IA,IB,IC,ID,IE,IG,GEN

200 2 IM=1
C
C
C	 BREAK THE PENTAHEDRAL ELEMENT UP INTO THREE TETRAHEDRAL
C	 ELEMENTS AND CONSIDER EACH ONE OF THEM SEPARATELY
C
C

NKA=IA
NKFl=ID
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NKD=IG
GO TO 50

300 NKA=IA
NKB=IB
NKC=IE
NKD=IG
G4 TO 50

404 NKA=IA
NKB=IB

_	 NKC=IC
NKD=IG

C
i	 C

C	 RE—ARRANGE THE VERTICES NUMBERS OF THE TETRAHEDRAL ELEMENT IN
C	 AN ASCENDING ORDER
C
C

50	 IE(NKA--NKB) 105091050#1051
105 13 JK 1=NK A

JK2=NKB
GO TO 1150

1051 JKI=NK B
JK 2 =NK A

115 M.  IF(NKC — NKD) 1060, 106L1, 1061
1064 JK3=NKC

JK 4=NKD
GO TO 1160

1061 JK3=NKD
JK4=NKC

1160 IF(JK1—JK3) 1070 9 1 070, 1071
1071 KKI=JKI

KK2=JK2
KK3=JK3
KK4=JK4
GO TO 1170

1471 KKI=JK3
KK2=JK4
KK3=JK1
KK4=JK2

1174 IF(KK2 —KK4) 108(3, 1080, 1081
1080 LKI=KKI

LK 2=KK 2
LK3=KK3

4

LK 4=KK 4
GO TO 1 180

1081 LK 1=KK I
LK2=KK4
LK 3=KK 3
LK 4=KK 2

118n IF (LK2 —L K3 ) 13 Gil , 10 90', 119 0
1090 KA=LK1

K5 -LK2
RrP^^` or THE

^} t E	 pk
Is 'PW

t>
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KC=LK3
KD-LK4
GO TO 2100

1190 KA=LK1
KB =LK3
KC=LK2
KD=LK4

2100 WRITE(6,4004)KA,KB,KC,KD
C
C
C	 CALCULATE THE TE'T'RAHEDRAL ELEMENT CONTRIBUTION MATRIX,(K)
C
C

2f?^3 P( 1sI}=1eU
P( 1.2)=X(KA)
P(193)=Y(KA)
P( 194) =Z(KA)
P(2,1)=1.0
P(292)=X(KB)
P(2,3)=Y(KB)
P( ?,4)=Z(KB)
P(3*1)=1.0
P( 3*2)=X(KC)
P(393)=Y(KC)
P(394)=Z(KC)
P( 4 9 1) =1 .0
P(492)=XWD)
P( 493)=Y(KD)
P( 494)=Z(KD)
COF=(P(292)*((P(3,3)*P(4,4))-(P{3,4)*P(493))})-(P(3,2)*((P(2,3)*P(

X494)) - ( P( 294)*P(4,3))))+(P(492)*((P(293)*P(3,4))-(P(294)*P(3,3))))
COG={P( 192)*(( P(3,3) *P( 494))-(P(3,4)*P(493))))-(P(3,2)*t(P(193)*P(

X4,4) )-(P(1 94)*P(493) ) ) )+(P(4 9 2 )*( (P( 1,3) *P(3,4) )-(P( 19 4) *P 3 9 3) ) ) )
COH=(P(1,2)*((P(Z,3)*P(4,4)1-(P(2,4)*P(493))))-(P(292)*((P{193)*P(

X4,4) )-(P(1 94)*P(4, 3) ) ) ) +(P(4,2)*( (P( 1,3) *P(2,4) )-(P( 1,4)*P( 293) ) ) )
COP=(P(1,2)*((P(293)*P( 394))-{ P(Z94)*P(3,3))))--(P( 292)*((P( 193)*P(

X3,4))-(P(194)*P(393)}))+(P(392)*((P( 193)*P(2,4)1-{P(1,4)*P{293))11
AD=COF-CUG+CDH--COP
VOL=(AB6 (AD) 1!0.0
CT=VOL *COND
CT T=G E iii/ 3 . Q
CALL_ MINV(P94,AF,L9M)
S( 11 1 )=O .0
S( 192)=0.0
S(1%3)=o.o
S( 1,4)=0.0
S(2,1)=0.0
S(292)=1.0
S( 293) =C.0
5(2,4)=0 r0
S(3.1)=0.0
S( 392)=O mG
S( 39 3) =1 90
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S( 3s4) =0 .0
S (491)-O.O
s( 492)=0.0
S( 41p3) =0 *0
S( 494) =1 .0
CALL MPRD(S,a,Q,4,4,:}„),4)
CALL MTRA(P.V s4s4v0 )
CALL MPRD(VsQ9Wip4.4,0r0v4)
DO 1000 I=1.4
DO 2000 J=1.4
AA(I.J)=CT*W(19J)	 r

207^ CONTINUE
IC")0 CONTINUE

C
C

{

7 ^:

3 v

i

I

I;
C	 COMPUTE THE ORDERS OF THE ARRAY (A) ELEMENTS TD BE INFLUENCED
C	 BY ADDING THE MATRIX (K) TO THE ARRAY (A)
c
C

NQ=1
KN=KA
NS UM= 0
GO TO 8872

8871 NSUM=O
IF(NQ.EQ.2) KN=KB
IF(NQ.EQ.3) KN=KC
IF(NQ.EQ.4) K,IN=KD
IF(NQ9EQ.5) GO TO 1929

8872 DO 9971 J=1#KN
NSUM=NSUM+J

9971 CONTINUE
IDG=NSUM
IF (KN—NBWP) 7765.7766, 7766

7765 I.= IDG
GO TO 9973

7766 NACC=O
DO 7768 K=NBWP s KN
NACC=NACC+K—NBWP+1

7768 CONTINUE
I= IDG — NACC

9973 A(I)=A(I)+AA(NQsNQ)
NQ=NQ+ 1
GO TO 8871

1929 ICODE = 1
NU=KB
NV=KA
GO TO 3260

3225 NU=KC
NV =KA
GO TO 3260

322 6 N' J =KC
NV =KB

GO TO 3260
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3227 NU=KD
NV=KA
GO TO 3260

3228 NU=KD
NV=KB
GO TO 3260

3229 NU=KD
NV=KC

3260 LNU-NU-1
NA DD =0
DO 32.61 J=19LNU
NADD=NADD+J

3261 CONTINUE
ND G=NA DD
IF (NU — NBWP) 198(3, 1984, 1981

1980 I =NDG+NV
GO TO 1982

1981 JA CC=O
DO 1983 K=NBWP,LNU
JACC=J ACC+ K—{NBWP +1

1983 CONTInsUE
II=NDG—JACC
I= Ii+NV— NU+NBWP-1
GO TO 1982

19841 I= ND G+ NV-1
1982 GO TO (3262.3263,3264,3265,3266,3267),1CODE

C
C

c

I

.r
9•`

i,	 a

{

C	 ADD THE TETRAHEDRAL ELEMENT CONTRIBUTION MATRIX ( K) TO THE
C	 ARRAY ( A) IN THE PROPER PLACES CALCULATED BEFOPE
C
C
3262 A(I)=A(I)+AA(2,1)

GO TO 3367
3263 A( I)=A (I)+AA(3, 1 )

GO TO 3367
3264 A( I) =A (I )+AA(3, 2]

GO TO 3367
3265 A(1)=A(I)+AA(4,1)

GO TO 33 67
3266 A( 1) =A (I )+AA(4,2)

GO TO 3367
3267 A( 1) =A ( I )+AA( 4, 3)
3367 ICODE= ICODE+1

GO TO (9000#3225,3226,3227s3228,3229,8844),ICODE
C
C
C	 COMPUTE THE TETRAHEDRAL ELEMENT COLUMN VECTOR ( G) RESULTING
C	 FROM THE HEAT GENERATED WITHIN THIS ELEMENT
C
C
8844 XC=(X(KA)+X(K8)+X(KC)+X(KD))/4.0

YC=(Y(KAI+Y(KB)+YCKC)+Y(KD) )/4.0

55	 IEPRODTje. ` 1,11-Y OF THE
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`.	 ZC=(Z( KA )+Z(KB)+Z(KC)+Z(KD))l4.0
PC(1)=1.G
PC(2)=XC
PC (3) =YC
PC(4)=ZC
CALL MPRD(V*PC*G*4s4+G+G91)
DO 9 1=1,14
CC (I)=CTT*G(I )

9 CONTINUE
KA P=MT +K A
KBP=MT+KB
KC P=MT+KG
KD P=MT+KD
A(KAP)=A(KAP)+CC(1)
A(KBP)=A(KBP)+CC(2)
A(KCP)=A(KCP)+CC(3)
A(KDP)=A(KDP)+CC(4)

C
C
C	 RETURN TO CONSIDER ANOTHER TETRAHEDRAL ELEMENT
C
C

IM=IM+1
GO TO (9000 s300 * 400 9 100 â s IM

10f9 IF'(IZ.EQ.4) GO TO 14
C
C
C	 PRINT PORTION OF THE ARRAY (A) AFTER CONSIDERING ALL THE BODY
C	 ELEMENTS
C
C

WR ITE(6s 5005 )
DO 12 I=I%NT
WRITE( 6 * 6006) I sA( I)

12 CONTINUE
14 IF (LTGT. Efl.0) GO TO 23

C
C
C
C	 HEAT CONVECTION BOUNDARY CONDITION
C	 ^k^k ^k^k #*###^k^kokk# ikskak#^ * ^c#cole^c$c*

C
C
C

WR ITE(6s 6009 )
4014 DO 15 K=i *LTOT

C
C
C	 READ THE NUMBERS ASSIGNED TO THE CONVECTIVE TRIANGULAR ELEMENT
C	 VERTICES AND THE VALUES OF BOTH THE ENVIRGNMFNT TEMPERATURE
C	 AND THE HEAT TRANSFER? COEFFICIENT
C
C



READ( 5sSOO6)LAZsLBZsL.CZ 9 TINF9HINF
C
C
C	 RE—ARRANGE THE NUMBERS IN AN ASCENDING ORDER
C
C

IF (LAZ —L• BZ) 40 12 s 40 129 4013
4012 LA 1=LA Z

LB I=LB Z
LC 1=LC Z
GO TO 4014

4013 LA 1=LB Z
LB 1=LA Z
LC 1=LC Z

40'14 IF(LAI —LCl) 4? 15 9 4-0159 40 16
4015 LA 2=LA 1

LB 2=LB 1
LC2 =LC 1
GO TO 4017

4316 LA2=LC1
LB Z=LB 1
LC2=LA 1

4017 IF(L62 —LC2) 40189401894019
4018 LA =LA 2

LB=LBZ
LC=LC2
GO TO 4020

4019 LA=LA2
LB =LC 2
LC-LB2

4n20 WRITE(69601D)LAsLB9LC.TINFsHINF
C
C
C	 COMPUTE THE CONTRIBUTION MATRIX (H) OF THE CONVECTIVE ELEMENT
C
C
4021 ALA=((Y(LB)— Y( LA))*(Z(LC)—Z(LA))—(Y(LC)—Y(LA))*(Z(LB)—Z(LA)))

ALB=((X(LB)--X(LA))*(Z(LC)—Z(LA))—(X(LC)—X(LA))*(Z(LS)—Z(LA)) )
ALC=((X(LB)—X(1_A))*(Y(LC)—Y(LA))—(X(LC)—X(LA))*(Y(LB)—Y(LA) ))
ZLA=(ASS(ALA))**2.D
ZLB=(ABS(AL5))**2.0
ZLC=(ABS(ALC))**2.0
AREA=0 .5 * ( (ZLA+ZLf3+ZLC) * *O 05)
SA(1,1)=Ze0
SA(1 a2)=140
SA(1*3)=1-G
SA (29 1 )= 1.0
SA(292)=2.13
SA(293)=1.0
SA (3, 1)=1. 0
SA(392) =1.G
SA(3s3)=2.0
CINF=(A€2EA*HINF)/12.0

1

1
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it

i;

00 16 I=193
DO 17 J=1.3
H( I,J)=CINF*SA{I.J)

17 CONTINUE
16 CONTINUE

C
C
C	 CALCULATE THE ORDES OF THE ARRAY (A) ELEMENTS TO WHICH THE
C	 CONVECTIVE ELEMENT CONTRIBUTE
C

C
NQ 1= 1

KN 1=LA
NS UM=O
GO TO 41 11

411 0 NSUM=O
IF(NQ1.EQ.2) KN1 =LB
IF (NQ1 .EQo 3) KN1=LC
IF (NQ1 .EQ.4) G0 1	 4400

4111 DO 4112 J=i ,KN1
NSUtA =NSU M+J

4I 12 CONTINUE
IDGI=NSUM

IF(KNI —NBWP) 4113#4114,4114
4113 I= I D GI

GO TO 4117
&114  NA C 1=0

00 4115 J=NBWP,KN1
NI A CI=N AC  I+J—NBWP+1

4115 CONTINUE
I= IDG1 —NACI

4117 A(I)=A(I)+H(NQlsNQ1)
NQ1=NQ 1+1
GO TO 4110

44 r'f' ICCD1=1
NU1=LB
NV I=LA

GO TO 4401

45 031 NU1=LC

NV 1=LA
GO TO 4401

4.502 NU 1=LC

NV1=LB
440 I LNUI =NU i —1

NA D i =0

DO 4402 J=1 . LNU 1
NADI =NAD1+J

44!'2 CONTINUE
ND GI =N AD 1
IF(NUI--NSWP) 4^40394404,4405

44"1 3 I=NDGI+NV1	 H "
GO TO 4407

4405 JA C1 =0	 i

_d
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r

00 440 6 J=I\iBWP ,, L,NU1
JAC1=J AC 1+J—NBWP+1

4406 CJNTINUE
J  =NDG 1—JAC1
I=JI+NV1—NUI+NBWP-1
GO TO 4407

4404 I=NDGI+NV1-1
C
C
C	 ADO THE CONTRIBUTION OF THE CONVECTIVE ELEMENT TO THE PROPER
C	 ELEMENTS OF THE ARRAY (A)
C
C
4417 GO TO (460194602s4603),ICOD1
4671 A(I)=A(I)+H(2,1)

GO TO 4904
46('2 A(I)=A(I)+H(3e1)

GO TO 4904
46 113 A(I)=A(I)+H(3:2)
4904 ICCD1= ICOD 1+1

GO T0( 9000 +45J 1 X4502.4605) %ICOD1
C
C
C	 COMPUTE THE CONTRIBUTION VECTOR (F) OF THE CONVECTIVE ELEMENT
C
C

4 605 DINT=(HINF*TINF*AREA)/3.0
LA S=LA+M T
L.BS=LB+MT
LC —S--LC +M T

C
C
C	 ADD f F) TO THE ARRAY (A) IN THE PROPER PLACES
C
C

A( LAS)=A (LAS) }DINF
A (LBS)=A(LBS)+DINF
A(LCS) =A(LCS)+DINF

15 CONTINUE
IF (I Z. EQ.0) GO TO 23

WRITE (6.60 1 1 )
DO 21 I=1.NT
VT Q LTE( 6swv 12)I tA(T s

21 CONTINUE
23 IF(ITOT.EQ.0) GO TO 29

C
C
C
C	 SPECIFIED HEAT FLUX BOUNDARY CONDITION
C	 §^ ^k * * # # # # * # * # # s1c }c # :ic *	 k ^ca}c jc ^e is ^cc # : ilc ^c# ak k
C
C
C

R 44PR,COTWOMMITY OF TE14
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C	 READ THE N+JMBERS ASSIGNED TO THE SPECIFIED HEAT FLUX TRIANGULAR
C	 ELEMENT AND THE SPECIFIED VALUE OF THE HEAT FLUX AT THAT
C	 ELEMENT
C
C

READ(5,SOO7 )LAAZ,LABZ*LACZ*FLUX
CC

C	 RE-ARRANGE THE VERTICES NUMBERS IN AN ASCENDING ORDER
C
C

IF (LAA Z-LABZ) 90 12 * 90 12, 9013
9012 LAAI=LAAZ

LAB.I=LABZ
LACI=LACZ
GO TO 90 14

9C13 LAAI=LAB Z
LA81 =LAAZ
LACI=LACZ

9014 IF(LAA1-LAC1)9015 * 90 15, 9016
9015 LAAZ=LAAI

LA82=LABZ
LACZ=LAC 1
GO TO 9017

916 LAA2=LACI
LA 82=L AS I

LAC2,=-LAA 1
90.17 IF (LABZ-LAC2)901 B * 9018, 9(319
9018 LAA=LAA2

LAB= LAB 2
LAC-LAC2
GO TO 9020

9019 LAA= LAA2
LA E=LAC2
LAC=LA B2

902f: WPITE( 6 * 6016)LAA 9 LA89LAC 9 FLU X
C
C
C	 COMPUTE THE ELEMENT CONTRIBUTION VECTOR (Q)
C
C

BLA=( ( Y(LAB)--Y(LAA ) )*(Z(LAC)-Z(LAA) )-(Y( LAC) -Y(LAA) )*(Z(LAB)--Z(LAA
X)) )**2_0

BLB= ((X(LAB)-X(LAA))*(Z(LAC)-Z(LAA) )-(X(LAC)-X(LAA))*(Z(LAB)-Z(LAA
X)))**2.0

BLC=((X(LAB)-X(LAA))*(Y( LAC) -Y(LAA))- (X(LAC)-X(LAA)1 (Y(LAB)--Y(LAA
X)) )**2.O

AREA=O , a*( (BLA+BLB+BLC)**O.S)
FIX=(AREA*FLUX)/3.0



LA I =LA A+MT
LB 1=LA B+ MT
LC 1=LAC+ MT
A(LA1)=A(LA1)+FIX
A(LB1)=A(L81)+FIX
A(LC1)=A(LC1)+FIX

24 CONTINUE
IF(IZ.EQ.0) GO TO 29
WRITE(6,6017)
DO 28 I=1, NT
WRITE( 696018)1 , A ( I)

28 CONTINUE
29 IF (NSP EC .EQ.0) GO TO 43

C
C
C
C	 SPECIFIED TEMPERATURE BOUNDARY CONDITION

C
C
C

WRITE( 6, 6719 )
DO 30 I= I, NSPEC

C
C
C	 READ AND PRINT THE NODE NUMBER AND ITS SPECIFIED TEMPERATURE

C	 VALUE
C
C

READ{ 5,5008)NUM, TEMP
WRITE(6,6020 )NUM, TEMP

C
C
C
	 MODIFY THE ARRAY (A) BY SUBSTITU T ING THE SPECIFIED TEMPERATURE

C
	

VALUE IN THE RESULTING SET OF SIMULTANEOUS EQUATIONS
C
C

IM=NUM-1
IP=NUM+l
NUMI=NUM+MT
IP 1=MT+I P
IF(NUM * EQ.l) A(Nl1M)=1.r
A( NUM1 )=TEMP
LS UM=O
DO 2450 J=1,NUM
LSUM =LSUM+J

2450 CONTINUE
LD G=LSUM
IF(NUMzEQcll GO TO 2457
IF(NUM —NBW1) 24519245122452

2451 A(LDG) =I .G
LDGM=LDG—NUM+1
GO TO 2454
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2452 ISUM=O
DO 2453 J=NBWP,NUM
ISUM=ISUM+J-NSWP+1

2453 CONTINUE
LD G=LD G- ISUM
A(LDG)=190
LD GM=L DG-NH W
GO TO 2455

2454 MT2=MT+I M
DO 2456 J=MTP, MT2
K=J-t4TP+LDGM
A( J)=A (J )- ( TEMP*A(K) )
A(K)=0*0

2456 CONTINUE
GO TO 2556

2455 MPLC=MTP+NUM-NHW1
MT2=MT+IM
DO 2555 J•-MPLC, MT2
K=J-MPLC+LDGM
A( J)=A (J )-(TEMP*A( K) )
A(K)=D.O

2555 CONTINUE
2556 IF(NUM.EQ * MTOT) GO TO 30

JUD=MT OT-OVUM
IF(JUD.LT.NBW) GO TO 6560
IF (NUM-NBW 1) 2457, 2458, 2.458

2457 NUM2=NBWI-NUM
I3,LDG
00 6461 K=1,;NUM2
I3=I3+NUM+K-1
I4=NUM 1+K
A( 14) =A( 14)-(TEMP*A(I3) )
A( I3) =Q. O

6461 CONTINUE
IJ=I4
IF (NUM.EQ. 1) GO TO 3020
DO 6462 K=1, IM
i3=I3+NBW
I4=i J+K
A( I4) =A( 14)-(TEMP *A(I3) )
A( I3)=0.a

5462 CONTINUE
3020 DO 7010 J=MTP, MTF

WRITE( 697110)J,A(J)
7110 FOPMAT(4X,i394X,E12.5)
7010 CONTINUE

GO TO 30
2458 I6=LDG

DO 5463 K=1 , NBW
r6=I6+NBW
I7=NUM 1+K
A( I7)=A( I7)-{TEMP*A(I6) )
A( I6)=0.0

i
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6463 CONTINUE
GO TO .30

65.60 18=LDG
DO 6561 K=I,JUD
I8=I8+NElW
19=NUM 1+K
A( I9)=A-( 19) — (TEMP*Ai(I8) )
A( I8) =0, 0

6561 CONTINUE
30 CONTINUE

IF (I Z EQ sO) GO TO 43
WR ITE( 6s 1985)
DO 1986 1=19 NT
WRITE( 6s 1987) 1 9A(I )

1986 CONTINUE
C
C
C	 SOLVE THE FINAL SET OF SIMULTAMEOUS EQUATIONS
C
C

43 CALL CHOLES(A9MTC)T,NBW1909.191PRNT*S900ral)
C
C
C_	 PRINT THE TEMPERATURE VALUES AT ALL THE BODY NODES
C
C

WR ITE( 6, 6023)
DO 45 I=MTP9MTF
J=I—MT
WRITE( 696024)J 9A( I)

45 CONTINUE
54 1?1 FORMAT(6I5)
51^1 FORdAT(2I5)
5201 FORMAT (2F10 aD }
5042 FORMAT(8FlGw0)
5 r'C5 FORMAT (615,Fl0 s0 )
5006 FORMAT(3I5,F10o0)
S4)7 FORMAT(3159F10e0)
50 !̂ 8 FO&MAT(I5sFl0s0)
6002 FORMAT(55X9'M.TOT=' s I3/55Xs'NTOT='s13/55X,'LTOT=',I3/55X,* IT OT= 's I

X3/55X9'NSPEC=',I3/55X,'COND='sF5a2/55Xs'NBW=2913/55Xs'IZ=**11/55X
X9'TRANS='9F10.5///45X9'SIZE OF THE STIFFNESS MATRIX=0916)

6C'll FORMAT( IH1//53X9'NODAL POINTS COORDINATES'/30X9'NODE NO.1913X9'X
)L ' 915X,'Y',15X9'Z'//)

60'0,3 FORMAT [32X,Y391ON9F10a8v5X9F10.4r5X9Fl0a4)
6111 FORMAT (1H1/43X9'THREE DIMENSIONAL HEAT CONDUCTION CALCULATIONS'/4

X3y„e e s46( c * c )/43Xv 2 °s46.( 9 * e )//61Xs'INP'UT DATA'/61X9'
X/)

6840 FORMAT[30Xs6(4X9I3),4XsF10.4)
60pp_ FORMAT (81Xs4(4X1I3) )
6005 P0RMAT(lH1//54Xs 1 ° n?RTI ON OF THE ARRAY (A )' /28X,' AFTER ADDING THE C

Xf]NTRIBUTION OF THE CONDUCTIVE FINITE ELEMENTS'//)
60'16 FORMAT(54X9I594X,El.0*3)
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60,11 9. FORMAT i1H1/5D.X,.'HEAT CONVECTION BOUNDARY CONDITION°/49X9 
X3'4a'*°i//6!Xs. = INPUT DATA • /61X, 0 	 • 9100 • *' }//)

6010 FORMAT (45X93(4X•I3)s6X,FE.1,4X9FSo1)
6011 FORMAT(lHl//54X9' PORTION OF THE ARRAY (A )' /28X,' AFTER ADDING THE C

XONTRIBUTION OF THE CONVECTIVE FINITE ELEMENTS'//)
6012 FORMAT(54XsI5+4X,El0v,3)
6015 FORMAT(LH1/47X9 1 SPECIFLED HEAT FLUX BOUNDARY CONDITION•/47X,' 	 09.3

i X-8('*-' )./47X.'	 1 r38(**'1 . //61.X9:'l I.NPUT DATA • /6.1XP'	 • ,!C(' * " )//)
6016 FORMAT (50X93(4X,.I3)96X9 FS * 1)
6017 FORMAT(1H1//54X9'PORTION OF THE ARRAY (A)'/33 X9 + AFTER ADDING THE C

XONTRIBUTION OF THE SPE{:IFIED HEAT FLUX ELEMENTS'//)
6018 FORMAT(54X.,.I394X,El0@3)
6019 FORMAT(1H1//30}X9 4 INPUT DATA FOR THE SPECIFIED TEMPERATURE NODES'//

X)I 6320 FORMAT(54X9I3,4X9F6.1)
1985 FORMAT (1H1//54Xr'PORTION OF THE ARRAY (A)'/41X9*AFTER INTRODUCING A

XTHE SPECIFIED NODAL TEMPERATURES'//) 1
1987 FORMAT(56X9I5,E12,5).
6023 FORMAT(1H1/51Xs'FINAL TEMPERATURE DISTRIBUTION'/50Xo' 	 '930('*,)/

5550 X,'	 ' 9 30(. 1: ** ) //5.2X9:' NODE	 NUMBER' ,BX.9' TEMPERATURE'/51X~ 0	 ". 11 (' ^k'
X} . .4X9'	 • ,11(' * • )/)

6024 FORMAT (55X,15,1lXsF12-m6)
9000 STOP r

END
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SUBROUTINE CHOLES (89 N,MM,IB,NT,IPRNT9*)
REAL*8 S1,T1Y	
DIMENSION B(1)

C
C
C	 (8) IS THE ARRAY CONTAINING THE ELEMENTS OF THE LOWER HALF BAND
C	 OF THE STIFFNESS MATRIX (S)
C	 N =NO. OF THE UNKNOWN NODAL TEMPERATURES

C	 MM =HALF BAND WIDTH OF THE STIFFNESS MATRIX +1
C	 S19T1 ARE TEMPORARY DCUBL E PRECESION VARIABLES
C
C

MU D = M414-1

NS = MUD*MM/2
NM = N *M M-NS

IF(NT-1)30,30931
C
C
C	 BEGIN CHOLESKY ALGORITHM FOR. FACTORING THE MATRIX
C
C

30 DO 20 J = 1 : N
IF(J--MUD) 1,192

2 IN =J-MUD
L= IN +( J-MM) *MUD +NS
GO TO 7	 7

1 IN== 1
L= IN +(J-1)*J/2

T IF (J -N+MUD) 1039 103, 1 0'5
1 ^ 5 M5 =N

GO TO 104
1" 3 M5 = J +MUD
104 S1 = 0.0

J1 = J-1
J2 = J +1
IF(J1)494,3

3 DO 1^ K = IN,J1
TI = B(L)
Si =S1 + T1**2

6 L=L +1
4 T1=B(L)

IF (TI -S1 PLT.0 9) GO TO 100
T1 =DSQRT(T1 - S1 )
B(L) = TI
IF (J-N) 19920 92,0

19 DO 18 I= J2 *M5
SUM = 040	 }
IF(I-MUD)68,68,71

71 IN	 I-MUD
LL = IN + !I-;-M)*MUD +NS
GO TO 5

68 IN = 1
LL = IN + (1-1)*I /2
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it

53 Dq 17 K = I N, J 1
LM = L+K--.i
SUM = SUM + 6(LL)*6(LM)

17 LL = LL +1
18 B(LL) = (S(LL)-SUM) /B(L)
20 CONTINUE
31 NR = I B +1

C
C
C	 BEGIN FORWARD SUBSTITUTION
r
C

N8 =NAM +1

DO 65 K =1,NR
B(NB) =B(NS)/B(1)
DO 60 I = 2,N
IF (I -MUD) 21,21,22

22 IN = I -MM
KS = IN* MUD +NS
MS =MUD
GO TO 27

21 IN = 0
M5 = I-1
KS = iMS* I /2

27 SLIM = 0.0
DO 61 J= I , M5
JR = J +I N
L = JR +KS
JR = JR + NS - 1

61 SUM = SUM +B(L) *B(JR)
ID = I + KS

60 B(JR+1) _ (t3(JR+1) -SUM)/B(ID)
65 NS = N8 +N

C
C
C	 BF'GIN BACKWARD SUBSTITUTION
C
C

J M + N
00 75 K = 19NR
B(NB) = B(NB) /B(NM)
DO 80 II = 29N
I = N -I I +1
IF (I--BAUD )41, 41 , 95

95 ID =I' +( I-MM) * MUD +NS
Gq TO 42

41 ID =I +(I-1)*I /2
42 IF([ -N+MM) 43943,45
45 M5 =II-1

Gq TO 76

4:3 M5 = MUD

3 ^.

I_

i
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At kjH — muu) ` t5o Zot 9 v

r
99 L = I +( JR — M,4i) *MUD+NS

GEC TO 82
98 L = I +(JR- 1)*JR/2
82 JR=NB — N+JR
81 SUN =SUM + B(L)*B(JR)

JR =N8 —N +I
BG B(JR)= (t3(JR) — SU-M) /B(ID)
75 NS =N8 +N

RETURN
I t'^ WRITE( IPRNTs90 1 )
901 FORMAT(IH1•' THE MATREX IS NOT POSITIVE DEFINITE IN THIS PRCBLEM 4

X)
RETURN 1
END
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