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| SUMMARY

. In this work, the three dlmen51onal temperature dlatrlbutlong
in the cooled rotor of a radial inflow turbine is determined
numerlcally using the flnlte element method. Through this
approach, the compllcated geometrles of thé hot rotor and o
coolant.passage surfaces are handled easily, and the temperatures
are determined without loss of accuracy at these convective

-boundarles. bifferent coollng technlques with glven coolant

to prlmary flow ratios are 1nvest1gated, atid the correspondxng
rotor temperature fields are presented for comparison. ‘The data
obtained from the present analysis were found to be in agree-
ment w1th the available experlmental measurements.,

The present work can ea51ly be used in combination W1th a
finite element stress analysis, to investigate the thermal
stressés corresponding to the different cooling arrangements.
This can provide valuable information concerning the critical
locations of possible creep, rupture or fatigue, for a given
centrifugal, thermal and aerodynamic loading.
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INTRODUCTION -

The radial inflow turbines offer many advantages over axial

flow turbines in small gas turbine applications. Besides
operating at higher efficiency and yielding greater temperature
drop and pressure ratio péer stage, the radial inflow turbine

rotor can be cast at a relatively low cost. Further improvements _

in gas turbine engine efficiencies require increased gas
temperatures at the turbine inlet. As a result of metallurgical
limitations, higher gas stream temperatures can be permifted
without reducing the allowable stress levels through effective
cooling of the turbine rotor.

The various aspects of axial flow turbine cooling have
been thoroughly investigated and the different techniques
adequately developed. Several experimental and theoretical
studies dealing with axial flow turbine cooling c¢an be found
in the literature. The merits and limitations of the different
cooling technigues, namely convection, transpiration, and
film cooling are discussed in Reference [1]. Most internal
cooling systems have been designed using semi-empirical methods
to achieve the highest possible effectiveness. Reference [2]
presents a review of the present state of the art for the
internal cooling of turbine nozzles in aircraft applications.

Although radial turbine development, has progressed up to
the limits of stress operating conditions, its rotor cooling
did not achieve the high level of sophistication accomplished
in the axial turbines., As a matter of fact, until recently
very little research work has been reported dealing with
radial inflow turbine rotors. Branger [3] investigated
experimentally the effectiveness of veil cooling the hub side
of the rotor. He found that the cooling effectiveness was
larger at the rotor tip, and decreased as the cooling film is
heated and mixed with the hot turbine flow. Petrick and
Smith {4] measured the temperatures of a radial inflow turbine
rotor which was cooled from its backside. While veil and

€
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”experlmental studles, computatlonal methods can be developed ~£f;_

rotor- back51de coollng technlques are effectlvetfor the rotorfﬁ]f

‘Therefore, except‘for very hlghly conductlng rotor materlals,ajuj:acdg
_.jyonly 1nternar coollng can produce pronounced,reducthn 1n theff“'
blade temperatures as- reported in Reference [5]. 2 P

Due to. the hlgh cost and dlfflcultles assoc1ated w1th

to provrde valuable lnformatlon about the temperature and the;;f?:;f_u}
'“stress dlstrlbutlons resultlng from.the dlfferent coollng

tEChnquES. In the present study a numerlcal method 1s developed
to determlne the temperature fleld 1n the rotor of the radlal
1nflow turblne. The computatlons are based .on the use of the 7'
finite element method, with a variational statement of the _” '

three - dlmen51onal conductlon problem. The boundary“condltlons o
involved at the different external and 1nternal coollng '
are dlscussed. leferent coollng methods and coolant flow
rates are 1nvest1gated and the resultlng coollng effectlveness_ E

and temperature distributions are.reported.

ANALYSIS

The blade temperature distribution in axial flow turbines is

Idlsk they 1nduce llttle varlatlon ln the blade temperature.;_f@ﬂ:~~a%f

often predicted from two dlmenSLOnal computatlons at radlal statlons;_ .

Any radial variation in temperature accourits only‘for ‘the spanw1se
variation in the overall convective heat transfer coefficient
but not the spanwise conduction. In the case of radial inflow
turbines, a similar approach cannot be used due to its oompiex
geometry. The rotor temperature distribution must therefore be |
evaluated using three dimensional heat transfer aﬂal
In choosing a thermal analyzer for use in the case of the‘

radial inflow turbine rotor, several factors such as nodal point
placement, input efficiency, aocuracy; storage requirements,,
and computer time must be taken into consideration. Whlle the |
three dimensional finite difference thermal analyses are
basically first order accurate; the finite element.method“offere3

the advantage of the_oapability.of-alterimg,the?baeiofaequraey ;{;ﬁj,ec




of the method. The finite element method was used'ih this

_ study because of the advantages 1t offexrs in terms of 1nput

| efflclency and nodal po;nt.placement. Thls is partlcularly“"
important in the temperature computations of turbine rotors

" with internal cooling passages. - Furthermofe, the stress
analys;s of the turblne rotoxr u51ng any of the commerc1ally“
avallable finLte element programs, ‘can be greatly facmlltated by
u51ng a thermal analyzer such as’ the one presentea here.

In the fbllowmng, ‘the governing eqiiations are derived from

'varlatlonalgprlnclples.H'

AGovernlng Equatlons

The fleld equatlon,fOr the staady staue three dlmen51onal
heat cpnductlon problem in an isotropic medium can be expressed

as:
ve(kvT) + g = 0 (L)

where T is the temperature, k the coefficient of tﬁermal
conductivity, and g the heat generation rate per unit volume.
The boundary condltlons assoclated with the problem under

consideration are:
KVT - A+ R(T-T) = 0 on S (2)

and

kv » n+q = 0 on Sy (3)

In the above equations, h denctes the convective heat transfer
coefflclent on the surface Sh’ which convects heat to the flow
at teémperature T , and g is the specified Heat flux density on
the surface Sq The union of Shrand Sq forms the complete
surface boundary S, whose outward ncrmal unit vector is n.

The partial dlfferentlal equatlon (l) and its boundary
COndlulonS (2) and (3) can be cast in the fOllOWlnq variational

form according to References 16l and {71.
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- where the desired temperature field T(x,y,z)‘ minimizes.tbe”
'functlonal."I" over the domain of interest: '

Boundarz_Condltlons.

The formu1atlon of the governing equatlons has been kept

very general up till now. The surface lntegral was 1ntent10nallv

divided into two parts, one for the boun&ary surfaces over
which a known amount of heat flux is specified and the second

over the rest of the boundary surface convecting heat to a gas

of known temperature. In the following section, the conditions

associated with the dlfferent rotor boundarles will be discuss ed

and the empirical expressions for the main and cooclant con~
vactive heat transfer coefficients will alsc be given.

Due to its rotation, any circumferenti-l nohunifdrmity
in the flow conditions at inlet to the rotor will be relatively
averaged out, and therefore it was assumed that the inlet flow
is axisymmietric. The rotor shown in Figure 1 was divided into
a number of wedge sections egual to the number of blades. It
will be sufficient to determine the temperature in any one of
these sections since; with the assumption of axisymmetric
inlet and exit flow conditions, the temperature field will be
periocdi¢. One rotor section is shown in Pigure 2, with one
rotor blade at the middle. The heat transfer was assumed to be

, negllglble at the rlm. Wlth the small temperature differences
' between the blades pressure ata suction side, it is also

' reasonable to assume that thefheat exchange by conduction
;ohetweenetwbﬁadjaceﬁt_seetiqné,ﬁs'nEgiigible. Therefore, in the
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problem formulation (Eg. 4) the heat flux g was taken as zero
on the surface Sq consisting namely of the rim and the two sides
of the rotor section of Figure 2. The rest of the surfaces of
the rotor section will be subjected toc the hot gas fiow.

3

Main Stream Convection

The local convective heat transfer coefficiernt between the
blade and the main stream depends on.the blade shape, the gas
velocity and the position of the boundary layer transition point,
The highest heat transfer coefficient is found at the blade
leading edge, where the laminar boundary layer is thin, its
value is determined from the following formula for transverse
flow over cylinders [8].

0.4 R 0.5

Nu = 1.6l Pr e (6}

where Nu is the Nusselt number, Pr is the Prandtl number and
Re is the Revnolds number based on the relative free stream
velocity and the blade leading edge radius.

Ainley {[9] found that the mean heat transfer coefficients
of rotating turbine blades were much higher than those for the
eame blades in two dimensional cascades. This can be attributed
to the strond turbulence in the main flow of turbines. There-
fore, turbulent boundary laver formulation was used in the
present study for calculating the convective heat transfer
coefficient between the rotor and the hot gas, This will lead
to conservative qstimates of heat transfer coefficients, resulﬁing
in higher predicted metal temperatures, but will be used until
more knowledge of the flow behavior in the turbine rotor becomes
available. The following expression for the Nusselt numbex
was used throughout the course of this investigation:

Pr Re (Cf/2)0‘5

Nu = : (7)
(2/C;) 0" +5{ (Pr-1)+an[1+0.83 (Pr~1) ]}

Where the friction coefficient, Cer is evaluated using the
following empirical correlation for flat plate:




@
~ In the case of a cooled rotor, the rest of the,convectlve _1:J ]
“”boundary condltlons w;ll depend on’ the partlculakicoollng R
'arrangement undexr conslderatlon._ These will be dlscussed in:
_rtthe follow1ng sectlon deallnq w;th rotor coolrng.;;w,;utﬁ

Rotor Coolan°

Because of the hlgh»centrlfugalraeeelerationS‘erperieaéedf _
by the rotor blades, they are cosled to lower metal temperatures :

Whén“comparea'to~the7nozzle:blades}.VDue to thelr motlon‘ ~:ﬁ¢mg{'"'

relative to the hot gas however, the adlabatlc,wal1 tnmperatv*1~
recovered on the rotor surFaces wmlldbe lower, and furthermsre
any Higher temperatures in the gasesileaVLng the burner abova
the mean values will be averaged out c1rcumferent1ally
atwinlet.to.the*rbtor@-ucreep life,conslderatron.requ;reéfe”
an accurate determination of the,rotor‘temperature distri-
bution. | ' |

While several experlmental and theoretlcal lnvestlgatlons o
of turbine blade cooling c¢an be found in the literature, very
few investigators were concerned with radial inflow turbine
rotor. Experlmental 1nvest1gatlons of external rotor cool1ng
can be found in References [3] and [4] In the experlmental
stiidy of Branger [37, the hub side of the radial rotor was .
veil cooled. It was found that veil cooling is more effectlve
~ near the rotor tip before the cooling £ilm is heated and mixed
with +he hot stream. Petrlck and Smlth [4] measured the rotor
temperatures when its backside is externally cocled by
radially outward, radially inward flows and by normal impingement:
They found that the normal impingement resulted in the.higﬁest
cooling effectlveness whlle the radial inflow of coolant on the
rotor backside gave the poorest results.

While both rotor backalde and verl cooling are EffECthe
in cooling the rotor disk, they-lnduce little variation in the



blade temperatures for the metals normally used in rotor manu-
facturing. 'Therefbre, unless highly.cOnducting“rotor'materials
dre used, internal cooling passages in the rotor blades are
used to obtain. the desired blade temperature reduction. In
this study'the rotcr temperature dlstrlbutlon is determlned for

~ the dmfferent.coollng*technlques shown in Figuie 3. The first

three cenf;gu;atlons show different internal cooling arrange-
ments. The radial narrow holes provide the cooling-passagef
in 3A. In the,second arrangement 3B, which will be referred
to thereafter as the single path, the coolant is introduced

. near the hub from the rotor back51de, proceeds inside the blade
and is discharged at the rotor tip. The cooling configuration

C, will be referred as the double path. In this case the
coolant is 1ntroduced at the rotor end opposite itg backside,
cools the blade lnternally, turnlng around at the leading edge,

jshen is discharged at the blade suction side. One external
- % cooling scheme is also investigated, which is shown schematically

in Figure 3D. In the following sections, the coclant’
temperature computations and empirical expréssions used for
the coolant convective heat transfer coefficient will be
discussed.

Internal Cooling:

The f£low in the interrnal cooling passages is affected by
the centrifugal and the Coriolis forces. Miyazaki [10] found
that the secondary flow is especially suppressed when the cross-
sectional aspect ratios are further from unity. Under these
conditions, the Nusselt number was very c¢lose to that in
stationary straight pipes having the same hydraulic diameter.
The average Nusselt number for fully developed turbulent flow
at high temperatures and heat flux densities is expressed,
according to Reference [1ll1], as:

!
|
|
s

R i b .
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o

mu o= B2 o= 0.034(p/m %t 2%t Re® (x sr )08 (o)

where D is the hydraulic diameter, L the passage length, Tc_and
T, are the coolant and hot passage temperatures respectlvely._
Both Nusselt and Reynolds numbers are based.on the hydraullc
diameter, and the flow properties are referenced to T .

.External Cooling:

Petrick and Smith [4] experimentally investigated the radial
turblnexrotor backside cooling by air flow1ng parallel to the
disk in both radially inward and radially outward directions
as well as by air impinging perpendicular to the disk. They
found that the radially outward flow resulted in higher values
of convection heat transfer coefficients than the radially
inward flow. The coolant flow perpendicular to the disk
however, resulted in much higher values of convective heat
transfer coefficients compared to those values obtained with
flow arrangements parallel to the rotor backside. Thev also
used their experimental measurements to derive empirical
expressions for the convective heat transfer coefficient in
all -three cases. The experimental deta of this reference is so
scattered that the authors themselves recommended limiting
it application only to the range of the parameters in their
study.

Experimentally determined average Nusselt number for
radially outward flow on a rotating shrouded disk are reported
by Haynes and Owen [12]. The influence of the coolant flow
rate and the shroud and backside clearances were found to be
less pronounced at high rotational Reynolds numbers. The
Nusselt number would approach the free rotating disk wvalues
for the high spéeds and low coolant flow rates which are
involved in radial turbine applications.. The free disk
correlation was therefore used in the present study to deter—
mine the local Nusselt number vaxiation along the rotor backside
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with the cooling air flowing radially outward. Xreith et al.
[13] found that the critical Reynolds number of enclosed
rotating disks with source flows is lower than the free disk
values. Therefore, neglecting any small laminar core, that
can exist on the rotor backside, the local Nusselt number at
any radius r, was calculated using the following equation [14]:

_ 2 0.8
Na = g-r- = 0.0195 (¥ (10)

where w is the angular velocity of the rotor, and v is the
kinematic viscosity.

Coolant Temperature Computations:

The temperature of the cooling stream increases along its
flow path due to the heat exchange with the hot rotor. This
in turn affects the cooled surface temperature as well as the
convective heat transfer coefficient. The computations of the
rotor and coolant flow temperature distribution must therefore
be performed concurrently. The rotor temperature computations
are carried out using the finite element formulation of the
variational statement for the three dimensional conduction
problem. The cooling air temperature is evaluated in a
separate program in order to achieve the degired accuracy
without significantly increasing the storage requirements of
the conduction problem. >

A simple energy balance egquation was used to determine
the coolant temperature rise, ATC, over an incremental length,
AL, of the passage.

. P -
AT, = — R(T_ - T_)AL (11)

c
nC
P

where P is the perimeter of the cooling passage, and ﬁ, the
coclant flow rate. ‘

10
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The same procedure was followed in the rotor backside
coolant stream, to determine the variation in its temperature
over an increment of radius, Ar.

- 2mr _ _
ATC = T h(TS TC) Ar (12)

mC,
p

The convective heat transfer coefficients in the above equations
are evaluated by using equations (9) and (10) respectively.

Finite Element Representation:

The solution domain is discretized into a number of three
dimensional finite elements. The temperature variation within
each element T(e)(x,y,z), is generally represented by an
equation of the form [15]:

&) (x,y,2) = {(m¥t (i - (13)

Where ‘{N}t is the row vector of the interpolation functions
which depend on the nodal coordinates, and {T}(E} is the
column vector consisting of the nodal values of the temperature
assog¢iated with that element.

The inte;pmlation functiong N,, are chosen to satisfy
continuity requirements to ensure the convergence of the
solution. The integral over the whole domain in egquation (4)
can therefore be represented as the sum of the integrals over
all the elements:

=M
T = ez I(E) (14)
e=l

where M is the total number of elements in the sclution domain.
It is required to stationalize I(T) with respect to

all the nodal values of T in the solutiocn domain, however from

equation (14) we can write

11
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= 0 {15)
e=1

(e}

nodal values associated with the individual element (e).

where the variation of I is taken only with respect to the

This implies that:

a1 le)

BTi

= 0 i: 1, 2’ «es X (16)

where r is equal to the number of nodal temperatures per element.
It would therefore be necessary to derive only the single
element equation.

The simple four node tetrahedral elements, with linear
interpolation functions were used in this analysis. This
choice was dictated by computer storage considerations. In
spite of their simplicity, these elements are very versatile
however because of the ease with which they can be assembled
to f£it the complex three dimensional geometries with reasonable
fidelity. A comparison of these elements with other higher
representations [16], shows the improvement in accuracy
is not great. The derivation of the single element equation
for the particular finite element and interpolation function
used in this study is given in Appendix A. When these
equations for all the elements that constitute the rotor body
are assembled, a relation of the following form is obtained:

Xl {T} = (R} (17)

Where [K] is the global stiffness matrix, {T} is the column
vector of all the rotor nodal temperatures, and {R} is the
column vector of thermal loading. The finite element
representation of the rotor section, shown in Figure 2, using
the four node tetrahedral elements results in a set of linear
equations whose matrix of coefficients has a relati%ely narrow

12




band width. It is therefore adequate to solve these éguations
directly using an algorithm based on Choleski's deconposition
[171, forward réduction and backward substitution.

RESULTS AND DISCUSSION

Two previous studies involving external rotor backszde
cooling and internal blade cooling that could be used to verlfy

the results of this study were available in References {41 and [5].

Although rotor temperature measurements were reported in Reference
[3], the turbine geometry and flow data supplied in that

study was not sufficient to carry out any fléw or heat transfer
computations. It was therefore decided to carry out our
computations for a rotor and flow conditions similar to that
given in Reference [5] except for one difference. The rotor

disk was extended up to the blade tip to check the ability of

our proTram to handle such complicated three dimensional

geometry.

The rotor is made of IN10O, a nickel base high temperature
alloy, and its tip diameter is 8.2 inches. The hot gas inlet
total temperature is 2225°F at 67,000 rpm and a turbine flow
rate of 4.9 lb/sec. 1In all the cases investigated, the cooling
air total temperature at inlet was assumed to be 850°F. The
resulting temperature distributions are presented in the form
of plots of isothermal lines on the surfaces of the blade and
its associated hub section in Figures 4 through 9.

The temperature fields are presented for cooled as well
as for uncooled rotors. A schematic of the four different
cooling arrangements investigated is shown in Figure 3. The
computations were executed on an IBM 370 time sharing system.
The computation time depended on the number of nodal points
and on the particular internal cooling passage investigated,
which in turn affects the band width of the stiffness matrix.
For the simpler cases of solid rotor blades, the compgta: ﬁime
was 15 seconds. Aside from the uncooled rotor, ﬁhis'includeé

13
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the cases of external rotor backside cooling, and the first
internal cooling arrangement. With the very narrow cooling
passages of that cooling arrangement, heat sinks were
introduced to represent the amount ¢f heat absorbed by the
coolant in the elements which included any portions of the
passages. The discretization of these cases involved 256
nodal points, 675 finite elements. The number of nodal
points and elements were larger for the rotor with internal
cooling passage, in which the discretization involved the
modeling of the coolant passage., The case involving rotor
cooling through the single path shown in Figure 3 was
modeled using 300 nodal points, and 837 elements. Larger
number of nodes and elements, 380 and 1038 respectively;
were used in the more complex double path cooling resulting
in larger stiffness matrix band width and longer computational
time. Additional external convective surface elements and
larger stiffness matrix band widths, were naturally involwved
in the last two cases.

The temperature field in an uncooled rotor is shown in
Figure 4. The figure shows two views of the rotor section
as seen from the blade pressure and suction sides. Aas
expected, the highest temperatures are found near the rotor
tip, and decrease gradually towards the hub. Both centrifugal
and aerodynamic loading cause the highest stresses at the blade
sections near the hub. The relatively moderate radial
temperature gradients of Figure 4 are not expected to contribute
significantly to the stress field. Rotor cooling should be
expected to reduce the high temperatures of 1550°F near the
blade hub., If the radial temperature gradient resulting from
a particular cooling arrangement is considerably high, it can
augment the stresses produced by centrifugal and aerodynamic
loading. These two factors have to be taken into consideration
when the different cooling configurations are compared. The
losses incurred by the coolant injection after circulating
through the particular cooling path is ancther impoxtarnt factor
to be considered [18]. This however is beyond the scope of
this study.

14
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Figure 5 shows the isothermal lines for 1.5% internal
cooling through the single path in the rotor blades. It is
clear that even for this small amount of coolant mass flow,

a reduction in the temperatures of 100 to 130°F is achieved
'in the highly stressed blade regions near the hub. The

blade temperatures were computed for the same cooling
arrangement in Reference [5], and the resulting temperature
fields were given in Figures 81 and 82. When the blade
temperatures of Figure 5 are compared with the computed results
of Reference [5], lower blade temperatures can be observed

in the latter data. We must point out however that, the
blade temperatures of Reference [5] were first iterations,
calculated agssuming zeroc heat flux at the blade hub. It was
mentioned in that reference that the adiabatic blade end wall
can account for about 50°F in lower calculated temperatures
at the smaller radius hub sections.

The temperature field for 3% intermal blade cooling
through a double path is shown in Figure 6. In this arrange-—
ment, 0.5% cooling is discharged at the tip to avoid choking.
The computed rotor temperature field for this cooling arrange-
ment is shown in Figure 6., When the blade temperatures of this
figure were compared with those in Figures 89 and 90 of
Reference [5], it was found that they are in close agreement.
The results of the last reference for this cooling arrangement
were obtained after three iterations, to account for the
rotor blade end wall heating effect at the hub. It can be
seen from Figure 6 that the double path cooling arrangement
results in a considerable temperature reduction in the blades
highly stressed areas. This temperature reduction is achieved
however with large temperature gradients in the blade that
can produce considerable thermal stresses.

In the two internal cooling arrangements just described,
the lowest metal temperatures can be observed around the area
of the coolant introduction in the rotor section. That can
explain the considerable reduction in the blade highly stressed
regions in the case of a single path cooling even at the

15




relatively low coolant mass flow of 1.5%. With 3% double
path cooling, the temperature reduction was not great, since
the coolant is introduced at the opposite side of the rotor,
going through a longer path before reaching these regions.
In the third internal cooling arrangement investigated,

the coolant path consists of a number of holes drilled radially

in the rotor blade. The resulting temperature distribution
with 1.5% coolant is shown in Figure 7. It can be seen that
this arrangement with five cylindrical cooling passages of
0.06 inch diameter results in the maximum overall reduction
in the metal temperature, as well as in the lowest blade
temperature near the highly stressed regions. Although this
is desirable for better creep life, it is obvious that large
radial temperature gradients prevail along the rotor section.
Furthermore, large stress concentrations around the narrow
radial cooling passages are associated with this arrangement.
Additional results are shown in Figures 8 and 9, which
were obtained for 1.5% and 3% external rotor disk backside
cooling by radial outflow. It can be observed that the rotor
backside temperatures are almost invarient near the axis and
up to a radial distance grester than half the tip diameter,
then increases sharply towards the tip. The temperature
distribution of Figure 92 can be qualitatively compared with

the experimental data given in Reference [4] for the corresponding

cooling arrangement, Although the ratios of coolant to main

flow investigated experimentally in Reference [4] were generally

high, the temperature measurements at the lowest coolant mass

flow of 4% showed the same tendencies as our temperature field

computations.
The c¢ooling effectiveness was computed with 1.5% and 3%

cooling mass flow for the rotor disk external cooling arrange-—

ment. The effectiveness, n, was defined according to the
following expression:
Trn = Tro

n = -.-——_—..:—-——-
Trh II'c:
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Where T, and T, are the ro'tor_"temp"e‘ratur"e“e w:.thand w;thout
cooling, respectively. It can be seen from Figures 10 and 11
that, as expected, the maximum effectlveness occurs at the
point of impingement and decreases towards the rotor tlp.

By comparing Figures 10 and 11 with Flgures 8 and 9, 1t ms'”

séen that the efféctiveness curves are. very gimilar to the
isothermal curves. Therefore, it was unnecessary to present i
additional figures showing the effectiveness for the other _.'
cooling arrangements, since the inlet coolant temperature,?3~

Tc’ was kept the same in all the cases oon51dered ' |

the rotor backside cooling is more effective in. ooollng the
rotor disk, but leaves the blade temperatures practrcally _;‘
unaffected. Therefore, this coollng arrangement cannot be .
effective in reducing the blade temperatures except’ for hlghiy
conductive rotor materials. It is clear however that it is .
adVantageous from the stresses point of view since it mainly
results in axial temperature gradients. Usmng rotor baok51de
cooling in combination with internal cooling might therefors
offer some advantages. This can be especially true if the

internal cooling air is introduced at the rotor backside,_as in oo

the case of the single path. In this case, the 1nternal coollng
air will pass initially through a rotor section with reduced
temperatures caused by the rotor backside coollng. If_halfvof'vpu
a 3% coolant is used internally in & single path and the other
half externally on the rotor backside, for example, considerablyr,:
lower coolant temperatures can be expeoted in the internal

path near the highly stressed blade regions, just as- ‘the coolant
passage is enlarged. This combined cooling arrangement was
investigated and the resulting temperature-faeld ig shown in
Figure 12. It can be seen that such combination of 1ntexna1

and external cooling offer definite advantages,' bes:des the cons;~ i
derable temperature reduction in highly stressed regions near
the blade hub. The high radial temperature gradients in the .
blades that are present in the case of double path cooling
with 3% coolant are avoided here. The computed temperature

17
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prleld of. Flgure 12, shows. mostly temperature gradlents 1n the
h ax1al dlrectlon, W1th the,exceptlon of the retor dxsk near_
the tlp._- L ‘ IR i

- Although we did not,lntend to present a,thermal stress
,analyszs ln,thls work, some dlscu581on of the consequences of
:the temperature flelds on the rotor stress. dlstrlbutlon was

”5;:presented We would llke to emphaslze here agaln that the rotorwn
 “dimensions and flow ‘data were taken szmllar to Reference [5] g
" with the! exceptlon that here; the rotor disk. was: extended

riradlally outward up to the £ip. Although thls Wlll not
‘_affect the temperature fmeld,'lt wonld naturally result in a
dlfferent stress dlstrlbutlon than 1n Reference [5] Our ‘
computatlons showed that whlle 1nternal coollng results in
lower: blade temperatures, partloularly at. the hlghly stressed
reglons near the hub, it also results 1n,relatlvely hlgh
radial temperature gradlents._ Thls can augment the stresses
produced by the . centrlfugal forces. The rotor external
backside ‘cooling on the other hand causes mestly axial
temperature gradlents w1th,the exceptlon of the.rotor tip _
reglon where the centrlfugal loadlng 1tse1f is 1n51gn1f1cant.
 The comblnatlon,of the two coollng schemes, namely that on
fthe external rotor backslde and ln the lnternal single path
was found to result in the de51red,temperature reduction
w1thout the,unde51rable radlal temperature.gradlent.

The stress field produced by centrlfugal, thermal and
aerodynam1c<loadlngs ¢an be determined using one of the finite
élement stress: analy51s programs. The crltlcal locations of
possible creep, rupture or fatlgue can be determlned. Based on
such 1nformatlon, At can be seen- whether the external 1-'c:ator
backslde coollng w1th 1ts axlal temperature gradlent is
preferable.to the internal- coollng,'even if double the coolant
mass flow.15"neeaed-togachleve-the;sameumetalgtemperature.&x.
reduction around the hignly stressed blade regiOnss

: vlg? o
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CONCLUSIONS

A useful numerical technique has been developed to predict
the three dimensional temperature field in the cooled rotor of
& radial inflow turbine. It was found that the finite element
method 1s especially suitable for handling the complicated
surface boundaries encountered in the different cooling
arrangements. The calculated temperatures obtained using the
present method are in good agreement with other analytical
methods involving more tedious and time consuming computations.
The three dimensional temperature fields, calculated using the
present analysis were also found to agree with the awvailable
experimental measurements.
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LIST OF SYMBOLS

Skin friction coefficient
Specific heat (Btu/l1b°F)
Internal Cooling passage hydraulic diameter (£t)

A column vector representing the contribution of the
convecting element to its thermal loading, Eg. (A-26)

Heat generation rate per unit volume (Btu/ftshr)

A column vector representing the contribution of the
heat generation within an element to its thermal
loading, Eg. (a-16)

2

Convective heat transfer coefficient (Btu/ft hz°F)

A tensor representing the convecting elements
stiffness matrix, BEg. (A-26)

Coefficient of thermal conductivity (Btu/ft hr°¥)
Overall thermal stiffness matrix

A tensor representing the conducting elements
stiffness matrix, Eg. (A-16)

Cooling passage length

Total number of the finite slementsin the solution
domain

Coolant mass flow rate (lb/secg)

The column vector of the elements interpolation

functions

Nusselt number

Outward normal unit vector from the rotor surface
Coolant passage perimeter (ft)

Prandtl number

The column vector of a surface element thermal loading

due to a specified amount of heat flux.
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4
5

q Heat flux density (Btu/ft2 hr)

[R] Overall thermal load wvector

r Radial distance along the rotor disk (£t)
Re Reynolds number

S Rotor surface

s Finite element surface

T Temperature (°F)

{1} The column vector of nodal temperatures
v Overall volume

v Volume of finite element

A Surface area of finite element

v Kinematic viscosity (ftz/hr)

&0 Rotor angular wvelocity (radiance/hr)
Subscripts

cl Coolant flow

h Referring to surfaces exchanging heat with the hot

gas or coolant flow by convection

rJs Identify the wvarious components of vectors or tensors,

or nodes of a finite element

q Referring to surfaces on which heat flux is specified
including adiabatic surfaces

5 Rotor surface

o Flow conditions in hot gas or coolant flow
Superscripts

(e) Refers to a finite element

t Transpose of a tensor
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APPENDIX A

ELEMENTS EQUATION

In this appendix, the elements equation will be derived
for the simple four node tetrahedral element that was used in

this analysis. The condition to stationize, the functional I,
will be rewritten here for an element, as given by equation (16),
(e)
g—;—- = 0 i=1,2, «uox (a-1)
i
When evaluating the integral over an element, it is more
convenient to evaluate the different volume and surface
integrals separately as follows:
rle) o I, + I + Ig (A-2)
h g
where
(e) 2 (e) 2 (e} 2
_ 1 .. 3T 37T 3T - {e)
Iv = ¥ i [k(aX )+ k(ay )+ k{EE_“_) 2gT jdw
(A-3)
2
I, = % ; ner'e ar w{®)y g (a-4)
Sy o
A
1. = rqr® as (a-5)
q A

With the integrals in the above equations evaluated over the
element's volume, v, and its correspond.ng surface areas, A.
With the highest temperature derivative appearing under the
integral, being cf first order, the four node tetrahedral
elements with linear intexpolation functions, which are used
here, are the simélest elements satisfying the compatability
and the completeness regquirements. Substituting equation {(a-2)
into egquation (A-1), the elements equations can be written
generally as:
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+ +—.——E = 0 izl’ 2’ = a 4 (A-G)
i

where I_, Is ' IS are given by equations (A-3) to (a~5).
h q

In the following, the different volume and surface integrals

will be evaluated separately, with the temperature wariation

within the element, given by eguaticn (13) which is rewritten
here as

T(e)(x,y,z) = {N}T {7} (A-7)

Evaluation of the Volume Integral:

Using equation (A-3) we can write

3T (e) (e) {e)

(e)
v aT 2 aT aT ] aT
—_ = [ff [k ( Y+ k ( )
aTi v X 3Ti X 3y aTi 3y
{e) {e) {e)
AT 3 3T 8T - .
(A-8)

The derivatives in the above equation are evaluated with
respect to each and every node associated with the element (e}.
Generally, the four numbers assigned to the nodes of the
tetrahedral elements are arbiterary, however for simplicity,
and without loss of generaliity, the nodes are assigned the
numbers 1 to 4 in this derivation. The linear temperature
variation within the four node tetrahedral elements, can be
expressed as follows [8]:

T = N, T, i=1,2,3,4 (a=9)

With N, =

i 7 (ai + byx + c.y + diz) (a~10)
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where

X£ XE
1 .
Y5
By =t ¥
1 yz
x. 1
3
c; = %y 1
X, 1
5 ¥y
d; == 1% ¥
*o ¥y

and v is the volume of
k, 2 in a right handed

1 X
Vo= % 1 xj
1 X
1 X,

1 (A~11)

the tetrahedron defined by nodes i, j,
Cartesian coordinate systemn.

Yi 23

¥y %
(A~12)

¥y Zx

Yy 2y
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The other constants are obtained through cycle permutation of

the subscripts. It is possible to assume also a linear inter-
polation function for the heat source. This 1is not justified
however in our problem since the heat source term was introduced
to represent the heat absorption in a narrow cooling passage.
Therefore, assuming g to be constant in a particular element,
and subgtituting egquation (A-9) into (A-8) we can write:

3 t AN, t aN,

v N i aN i
% —a—i.: = [lk {B—}E {7} ET + k {_BY {7} —By
E
! t 5N,
3 aN i _ _
+ k {-B—Z- {T} ' g Ni]dv {a-13)

e T

The derivatives in the above integrations can be evaluated
using equation (A-10)

@
=
o

i _ i
ax v
Yy 6v
aN. di
= C v (A~14)

where b;, c; and d, are given by equation (A-11).

Substituting equation {A-14) into (A-13) we can write

3T
: ....2 — ] — " s o -
j aTi kij 1j' Gi L,] 1,2,3 and 4 (Aa-15)
| or
gl
{'él:p—v} = [k] {T]} - {G} (A-16)

Where [k] is a four by four matrix in wuich
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_ Kk -
kij = 375 (bibj + cicj + didj) (a-17)

and {G} is a column vector,

Gy = gv Ni (A-18)
Evaluation of the Surface Integrals:
Using equation (A-4), we can write
31
s (e)
b oo mel® Zpy 8T 4 (A-19)
97T, w’ 3T,
h A 1

The linear temperature wvariation throughout the three node
tetrahedral element is expressed as follows:

el - ot = T, i=1, 2,3 (A-20)

Therefore we can write

alg

h

aT,
1

£ (h 1NFE (T} - h TN, ds (a-21)
A

In performing the minimization, the convective heat transfer

coefficient h, and the flow temperature are considered as
invarients. Equation (A-21), thus involves integrals of terms
such as Ni and NiNj' over the area of the triangular element.

The values of such integrals are tabulated in wvarious references

{5, 6 and 157. A general proof of the values of such integrals
in one, two or three dimensional elements 1s given in Reference
{A=1}. According to that reference, we can write for our
surface elements:

/N
A

g 1
N. N. ds -2i8ivi 24 (A-22)

o
17273 {c+B+y+2) !
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Where A is the area of the triangular element. Using equation
(3a~20), we can write

A A
i, =1, 2 and 3 (a-23)
where
_ h A
His = 13 1773
= hs"'A i=73 (A-24)
and F; = hT % i=1, 2 and 3 (A=25)

Using Equation (A~-23) into equation (A-~21) we can write

= [H] {T} - {F} (A-26)

where [H] is a three by three sqguare matrix, whose elements are
given by equation (A-24), and {F} is a column vector whose
elements are given by equation (A-25). The remaining term,
BISh/BTi’ was similarly evaluated taking the heat flux to be

constant throughout the element, and using the linear
temperature variation of eguation (a-2Q0).

3Ly

B'I‘i

= {Q} = q % (1} (a-27)

where Q. = g % i=1, 2 and 3 (A~-28}
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The surface area A of any triangle can be calculated if the
three Cartesian coordinates of its vertices are known in a
frame of reference. It is egual to half the magnitude of
the vector resulting from the c¢ross product of the vectors
forming two sides of the triangle. The different surface
and volume integrals over an element are given by
equations (A-16), (A-26) and (a-27). If these equations
are substituted into equations (A-1) and (A~2). the element
equation can be expressed as:

1 ® o = qr3pl® (A-29)

which involves the contribution of the integral over the volume
of the tetrahedral element and the contribution of the proper
surface integral over its four triangular surfaces. In
egquation (A-29), [k](e) is the four by four element stiffness
matrix, {R}(e) is the column matrix representing the
thermal loading, and {T} the column matrix of the nodal
temperatures. The thermal loading includes the contribution of
the heat source (egquation A-16), the convecting surface £low
(equation A-26), and the specified heat flux g over an element
surface (equation A-27).

Reference

(=1} Eisenberg, M.A. and Malvern, L.E., "On Finite Element
Integration in Natural Coordinates," International
Journal of Numerical Methods in Engineeriag, Vol. 7,
No. 4, October 1975, pp. 574-575. '
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APPENDIX B

COMPUTER PROGRAM

The numerical solution to the resulting set of linear
simultaneous equations is obtained using the direct elimination
approach in the subroutine CHOLES. It is called through
the main program in which the computations of the stiffness
matrix coefficients and the thermal load vector are carried
out., This is accomplished through assembling the contribution
of all the volume elements and the surface elements to
equation (17). BAs explained in Appendix A, all the volume
elements contribute to the global stiffness matrix. Those
with heat sources or sinks contribute also to the thermal load
vector. The convective surface elements contribute to both the
overall stiffness matrix and the thermal load wvector. If the
heat flux is specified at some surface elements, they contribute
only to the thermal load vector.

Although the elements eguations were derived in Appendix A
for tetrahedral elements, for the purpose of data preparation,
the three dimensional body is discretized into pentahedral
elements. This simplifies and reduces the size of the input
data. Through computations in the main program each pentahedral
element is further discretized into three tetrahedral elements
as shown in Figure B. In the following, the program flow chart
will be given, followed by the definition of the program
symbols, a guide to input data preparation, then the program
listing with sample input and cutput data.
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THE VERTICES OF THE SHOWN PENTAHEDRAL ELEMENT
CAN BE FED IN THE PROGRAM INPUT AS:

Vi

FIGURE B, DIVISION OF A TYPICAL PENTAHEDRAL ELEMENT
INTO THREE TETRAHEDRAL ELEMENTS.
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Program Flow Chart:

Read input data
and echo print

Divide each pentahedral element into
three tetrahedral elements

ramrrrein s St et e s e

1. For each conducting element, compute stiffness
matrix (k] and add its contribution to array A.

2. For conducting elements with heat sources,
compute the thermal load vector {G} and add »
its contribution to array A. E

3. For each convecting surface element, compute :
stiffness matrix [H] and add its contribution i
to array A. %

4, For each convecting surface element, compute %
the thermal load vector {F} and add its con- :
tribution to array A. i

5. For each surface element with specified heat 4
flux, compute the thermal load vector {Q}
and add its contribution to axrray A.

Modify the array A for the nodes
with specified temperature.

Call Subroutine CHOLES to solve
the simultaneous equations.

Print output data
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ITOT

NSPEC

TRANS

X(I)
¥(I)
Z{I)

XA,KB,XC
KD,KE,KG

GEN

LA,LB,LC

PROGRAM SYMBOLS

Description

Total number of nodes in the finite element model, M.
Total number of pentahedral elements.

Total number of triangular elements on convective
surfaces.

-

Total number of triangular elements on the body
surface where heat flux is specified.

Total number of nodes where the temperature is
specified.
Half band width of the stiffness matrix.

Thermal conductivity of the body material, k.

Code number, IZ%Z, can be set equal to zero or unity.
In the first case, only the input data and the final
temperature distribution will be printed. In the
second, NT coefficients determined in intermediate
computations will also be printed.

A coordinate multiplication factor in case the
conversion of units is necessary.

An array of the nodes x-coordinates.
An array of the nodes y-coordinates.
An array of the nodes z=-coordinates.

Numbers assigned to the vertices of a typical
pentahedral element.

Rate of heat generated per unit volume within each
pentahedral element.

Numbers assigned to the vertices of a typical
triangular surface element.




TINF

HINF

FLUX
NUM
TEMP

T(I)

eiaatinalees =i R e e —— A = S e e - e e LR

The environment temperature of z surface elsment.

The convective heat transfer coefficient at a
surface element.

Specified heat flux at a surface element.
The node numbers, where the temperature is specified.
Specified temperature value.

2n array of the temperatures at all the body nodes.

The symbols of all program input data are explained above.

The temporary storage variables were not defined. The one
dimensional array A(I) is used to store the elements of the
stiffness matrix lower band kij (j > i}, followed by the
elements of the thermal load vector R; (L =1, ... M).
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Preparation of Input Data:

After the desired number of nodal points are placed through-
out the three dimensional body and on its surfaces, they are
designated the consecutive numbers between one and M. It is
desirable that the discretization process simulate as closely
as possible the original three dimensional body. The corners
and the locations where there are abrupt changes in geometry
or thermal boundary conditions, are obvious choices for nodal
placement. At the regions where high temperature gradients are
anticipated, finer discretization is employed.

Using the nodal points as vertices, the body is then
divided into a number of pentahedral elements. The six numbers
assigned to the vertices of each pentahedral element are
inputed in an order such that the first three define a
triangular base. The following three numbers define the
verticas of the other base taken in the same order as the
vertices of the first base (see Figure B). The coefficient
of thermal conductivity and also the rate of heat generation
(or absorption) if the element includes hr:at sources (or sinks)
are also inputs for pentahedral elements.

The body surface is also divided into triangular elements
using the surface nodal points., The input data of the surface
elements depend upon the boundary conditions. The numbers of
the nodes constituting each triangle are fed in the program
input for each surface element. The corresponding local wvalues
of the film coefficient, h, and the environmental temperature,
T, are specified for elements on convective boundaries. The
heat flux is an input for surface elements in the regicn of
specified heat flow.

If the temperature is known at any nodal points, the numbers
identifying such nodes and their specified temperatures are
also given in the input. The program input format is explained
in detail in the following section.
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TS e cauand Sl A

i

Type of Input

Control data

Control data

Material properties
& conversion factors

Geometrical

Topology and pro-
perties of conduct-
ing elements

Convecting elements
topology and
boundary conditions

Topology and bound-
ary conditions of
elements with speci-
fied heat flux

Specified tempera-
ture nodes

Input Data

MTOT, NTOT, LTOT
ITOT, NSPEC, NBW

IZ, NT
COND, TRANS
X(I)

¥ (I)
z(I)

IA, IB, IC. ID,
IE, IG, GEN

Laz., LBZ, LCZ,
TINF, HINF

LAAZ, LABZ,

LACZ, FLUX
NUM, TEMP
49

Format

(6I5)

(215)

(2F10.0)

(8 FL0.0)
( 8 Fl0.0)
(8 F10.0)

(65, F10.0)

(315, 2F10.0)

(315, Fl0.0)

(15, F10.0)

Number of
Cards

one

one

one

MTOT/8

MTOT/8
MTOT/8

NTOT

LTQT

ITOoT

NSPEC

|
!
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A FORTRAN COMPUTER PROGRAM
A e vie e e 2 o s i i ke e e i ke e e ol o ok ok

FOR SOLVING A THREE DIMENSIONAL HEAT TRANSFER PROBLEM
ek sk 3 ek AR K AR HOR AR Ao S e KoK 3 ek Ao ek okl Ak ek ek R Kk k

USING THE FINITE ELEMENT METHOD
Ak e e s ok ek o e ek ek e 3 oK ek e ek sk

n

DI MENS ION X(ZS&)oY[256)12{256139£4,4Jv5(414J;L(41'ML4)sQ(Q;@).V(4

Xoa)sWlas4)9AAGE+4)+sPC(4)+G(4)sCCLA)»SA{3,3)sH{3:3),A(9281)
CALL UNDFLW

IPRNT=6

READ{S»SO0 1L IMTOT s NTOTsLTOTITOT . NSPEC,NBW
READ (54,5101 )}1ZsNT

READ{S5 5201 )COND+ TRANS

MT={MT OQTRMBYW I MTOT—{{NBUR{NBY+1} } 2}

MT P=MT +1

MTF=MT+MTOT

NEWl=NBW+1

NBWP=NBW+2

MTOT =NO., OF NODES

NTOT =NOs 3JF THE 80DY PENTAHEDRAL ELEMENTS

LTOT =NO. OF THE SURFACE ELEMENTS OF CONVECTION

ITOT =NO. OF THE SPECIFIED HEAT FLUX SURFACE ELEMENTS
NSPEC=NO. OF THE SPECIFIED TEMPERATURE NODES

NBEw =HALF BAND WIDTH OF THE STIFFNESS MATRIX

1z =CODE NUMBER FOR PRINTING A DESIRED NUMBER OF THE ARRAY
{A) ELEMENTS AFTER EACH MAJOR STER({WHICH IS THE CASE IF

t[2* IS SET EQUAL TO UNLITY)

NT =DESIRED NUMBER OF THE ARRAY {A) ELEMENTS TO BE PRINTED

COND =BODY MATERTIAL THERMAL CONDUCTIVITY
TRANS=TRANSFORMATION FACTOR TO BE MULTIPLIED BY THE GIVEN
NODES COCRDIMATES TO TRANSFORM THEM INTO CENTIMETERS

THE ONE-DIMENSTONAL ARRAY {A) CONTAINS THE ELEMENTS OF THE
STIFFNESS MATRIX (S) LOWER BAND FOLLOWED BY THE ELEMENTS

OF THE ReHsSe VECTOR (C) IN THE SYSTEM OF EQUATIONS {A) (T)={(C)

WRITE( 6,6002)MTOT«NTOT L TOT,ITAOT o+ NSPECCOND,NBW,» IZ 3y TRANSMT

READ AND PRINT THE NODAL. COORDINATES
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19C2

Nnonoaoann

oo
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1122

2002

oo OO0 o0Oon

I T T TR STt

READ{5,5002){X(I)+I=1,.MTOT)
READ(S+5002)(Y(1),I=1,MTOT)
READ(S+5002){Z{1)+ I=1+MTOT)
DO 1491 I=1.MTOT
X{I}=TRANS*X{I)
Y{I)=TRANS*Y (L}
Z{I)=TRANS*Z{ L)

CONTINUE

WRITE{(6,6001)

DO 2 I=1,MTOT
WRITE(&+8303)L+X{I)Y(T)HZ(1)
CONTINUE

ASSIGN ZERO VALUES TO ALL THE ELEMENTS OF THE ARRAY{A)

DO 3 I=1,MTF

A{1)=0.0

CONTINUE

IFINTOT.EQe0) GO TO 14

THREE DIMENSTIONAL HEAT CONDUCTION CALCULATIONS
4 koK Kok ok 3k 3 sk 36 3 e Sk e e 3 ok sk sk ek 3ok sk Ak sk ok ook o oK o e ek ke e

WRITE{(6,8121)

Iw=0

GO Ta 1122

IW=Iw+1

IF{IW.EQ.NTOT) GO TO 1009

READ AND PRINT THE NUMBERS ASSIGNED TC THE PENTAHEDRAL ELEMENT
VERTICES AND THE RATE OF HEAT GENERATED IN IT

READ(S+5005)IA,IB+IC:IDs IEsIG,GEN
WRITE(6+6800) IA,IB,ICID+IELIG,GEN
IM=1

BREAK THE PENTAHEDRAL ELEMENT UP INTO THREE TETRAHEDRAL
ELEMENTS AND CONSIDER EACH ONE OF THEM SEPARATELY

NKA=IA
NKB=ID
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300

50
1054

1451

115"

10692

1361

1160
1279

1071

1172
1¢gn

1081

11a8n
1029

NKC=1IE
NKD=1G
GO TO 50
NKA=TLA
NKB=IB
NKC=1IE
NED=IG
GO TO SO
NKA=TA
NKEB=18
NKC=IC
NKD=1G

RE—-ARRANGE THE VERTICES NUMBERS OF THE TETRAHEDRAL ELEMENT IN

AN ASCENDING ORDER

IF{NKA~NKB) 1350,108%,1C051
JKI=NKA

JK2=NKB

GO TO 1150

JKI=NKB

JKZ2=NIKA
IF({NKC=NKD)1G00,10560,1061
JE3=NKC

JK4=NKD

GD TC 11860

JEKI=NKD

JKE4=NKC
IF{JUKIi=JK3}107D,1070,1071
KK1=JK1

KK2=JK2

KK3I=JK 3

KK4=JK &

GO To 1170

KK1=JK 3

KKa2=JK 4

KK3=JK1

KKa=3K2
IF{KK2=~KK4}1085,1080,1081
LK1=KK1

LKZ2=KKZ2

LK3I=KK3

LK 4=KK 4

GG TO 1180

LK1I=KK1

LKZ2=KK 4

LK3=xK 3

LK4=KK 2
IF(LK2-LK3}1J90+1090,1190
KA=LK1

KE=LK2
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KC=LK3
KD=LK4
GO TO 2104
1198 KA=LK1
KB=LK3
KC=LK2
Ko=LK4
2100 WRITE{5+18004)KA+KB+KCs KD

CALCULATE THE TETRAHEDRAL ELEMENT CONTRIBUTION MATRIXs(K)

OO0 n0

2003 P{ls1)=1 40
P{1l:2)=X(KA)
P{1,3)}=Y{(KA)
P{1+s4)=Z(KA)
P{2y1)=1.0
P{2,2)=X{(KBE}
P{2:3)=Y(KB)
P{2+4)=Z2(KB)
P{3+1) =140
Pt 3:2)=X(KC)
P{3:3})=Y(KC)
P{3+4)=2Z{KC)
P{4,1)=140
Pl4,2)=X (KD}
Pl 49 3)=Y (KD)
P{4,4)=Z(KD)
COF={P{2+2)%({{(P{3+3)%P{4,4)I=(P{ 394} *P(4+3)1)11-{P{3+2)%({P{2,3)%P(
Xas 43 )= (P{2+4)%¥P{ 443111V (P(4,2)1R({P(2:,31%P(3+4))={P{2:4)%P(3,3)1}))
COG={P(1,21%{(P{3:s3)%P{4,8))={P{3,4)1%P{4,3)1))31=-({PU3,22%{(P{1,3)%P(
X4 8))=(P Il 34} xP{4+3))) )+ (P42 (PU1+43)%P{3,4))-{(P11+48)%P{3+3))1))
COHE(P (1 +2)%{{P{2:3V %P (444))={P{2:s4)5P{433))111={P{2,2)%({P{1,3)xP{
Kb ab4) ) =(P{1+43%R(443)1) ) +{P(4,2){{P{1:+3)¥P(2+2))=({P[1:+4)%P(2,+3)1})))
COP={P(1+23%{{P{2+3)%P(344))~{P{2,41%P (3311 ))={P{2,2)%{ (P 1,3)%P{
34033 ={P(1+43%P(3:3MN)) 4IP3 2% {{P{ 1231 %P (2,4} )={P{1.,4)%P{2,43)))}
AD=COF-COG+COH~COP
VOL=(ABS(AD) ) /6.3
CT=VDOL *COND
i CTT=GEN/3s0
; CALL MINV(P!41AF!L’M}
S{141)=0.0
S(1:2) =040
S(1+3)=0.0
S{1+4)=0 .0
S5(2s1)=0.0
S(2+y2)1=140
S(2+3)=C.0
S(2+4)=0,0
S(3,1)=0 0
5(3:2)=0.0
S{3+3)=1.0

Ut
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OO0 0O0

8871

8872

9971

77658

7766

7768

9973

1929

3225

322¢&

S{3+4)=0.0

S{4+1)=0.0

S{4s2) =00

S{4s3)=0 9

S{4s4)=1 .0

CALL MPRD(S+P+Qe4 41439044}
CALL MTRA{PsV 43440}

CALL MPRD{VsQsWs4 4504044}
DO 104GC I=1+4

DD 2000 J=1l4

AA(I o J)=CTEW(I s+ J) >
CONTINUE

CONTINUE

e e o S B L e i e S NS

COMPUTE THE ORDERS OF THE ARRAY {A) ELEMENTS TO BE INFLUENCED
BY ADDING THE MATRIX {(K) TO THE ARRAY (A)

NQ=1

KN=KA

NSUM=0

Ga To 8872

NSUM=0Q
IFINQ.EQe2) KN=KB .
IF{NQsEQa3) KN=KC l‘
IF{NQ+EQs&4) KN=KD i
IF{NQ.EQe5S) GO TO 1929 :
DO 9371 J=1sKN i
NSUM=NSUM+J

CONTINUE

IDG=NSUM

IF(KN=NBWP} 7785,778668,7766
I=1IDG i
GO TO 9973 : _
NACC={

DO 77068 K=NEBWP KN
NACC=NACCHK~NIWP+1
CONTINUE

I=IDG-NACC
A(T)I=A{I)+AAING,NG)
NQ=NQ+ 1

GO TO 8871

ICODE=1

NU=KB

NV=KA

G0 To 3260

MU=KC

NV =KA

GN TO 3260

NU= T

NV =KB

GO TD 3260

i S T s s v
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3227 NU=KD
NV=KA
GO TO 3260
3228 NU=KD
NV=KB
GO TO 3260
3229 NU=KD
NV=KC
32566 LNUsNU-1
NADD=0
DO 3261 J=1,LNU
NADD=NADD+J
3261 CONTINUE
ND G=NA DD
IF (NU-NBWP)1980,1984,1981
1980 I=NDG+NV
GO TO 1982
1981 JACC=0
DO 1983 K=NBWP,;LNU
JACC=JACCHK~NBWP+1
1983 CONTINUE
I1=NDG-JACC
I= T1+NV-NU+NBWP-1
GO TO 1982
1984 I=NDG#HNV=1

1982 GO TO {(3262+3263+3264,3265,3266,3267),1C0ADE

OO0 n

3262 A{D)=A{L)+AA(2,1)
GO TO 3367

3263 AL D)=sA(I)+AA(3,1)
GO TO 3367

3264 A(TI=A(I)+AA(3,2)
GO To 3367

3265 A(ID)=A(I)+AAL& 1)
G0 Ta 3367

3266 A(IISA(II+AA(4,2)
GO To 3367

3267 ALI)=A{I}+AA(4G+3)

3367 ICODE=ICODE+1

ADD THE TETRAHEDRAL ELEMENT CONTRIBUTION MATRIX (K} TO THE
ARRAY (A) IN THE PROPER PLACES CALCULATED BEFORE

GO TO (9000+3225+32269 3227 +3228,:3229,8844) ,1CADE

OoOONOn0n

8844 XC=(X{KA)+X{KBI+XA{KCI+XIRD)I /440
YC={Y({KAI+YI{RKBY+Y{KCI+Y(KD)) 740
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COMPUTE THE TETRAHEDRAL ELEMENT COLUMN VECTOR {G) RESULTING
FROM THE HEAT GENERATED WITHIM THIS ELEMENT

REPRODUCILIY OF THE
ORIGRINAL PAGE 18 POOR
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ZC={Z{KAI+Z{KB)+Z(KC)+Z{KDI} /4« ]
PC{1)=140C i
PC(2)=XC
pCc{3)=YyC
PC(4)=2C
CALL MPRD{VsPC3Grlb 94300 1)
DO 9 I=1+4
CC{l)=CTT*G{I)

g CONTINUE
KAP=MT +K A
KBP=MT +KB
KCF=MT +KC
KD P=MT +KD
A{KAP)=A{KAP)+CC{1l)
Al KBPR)=A(KBP)+CC(2)
A(KCP)=A(KCP)+CC( 3}
A(KDP)=A(KDPY+CC{(4)

RETURN TO CUNSIDER ANCOTHER TETRAHEDRAL ELEMENT

OOonNnoOn

IM=IM+1
GO TO (9000:320+400,100)+1IM
1789 IF(IZ.EQ.Q) GG TO 14

PRINT PORTION OF THE ARRAY (A)} AFTER CONSIDERING ALL THE BODY %r
ELEMENTS :

aoonoOnNnn

WRITE(646009)
DO 12 [=1«NT
WRITE(6+60C6)TI4A(T)

12 CONTINUE

14 IF{LTGT.EQ.0) GO TO 23

HEAT CONVECTION BOUNDARY CONDITION
ek A ek e e e o ook ok ol e ok ik K e e ook sk ok ok ok ok

aNaNsNeEa s N2 KL

WRITE{©,6009)
4019 DO 15 K=1,.LTOT

READ THE NUMBERS ASSIGNED TO THE CONVECTIVE TRIANGULAR ELEMENT
VERTICES AND THE VALUES OF BOTH THE ENVIRCONMENT TEMPERATURE
AND THE HEAT TRANSFER COEFFICIENT

c
Cc
c
c
c
c
C
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aao0nn

4012

4613

4G 14
4015

4016

4017

4018

4019

f020

4921

READ{S+5006)LAZsLBZHLCZ, TINFsHINF

RE-ARRANGE THE NUMBERS IN AN ASCENDING ORDER

IF(LAZ=-LBZ) 4012,4012+4013
LAI=LAZ

LBi=LBZ

L.Cl=LCZ

GO TO 4014

LAI=LBZ

LB1=LAZ

LCi=l.CZ

IF{LALI-LCLl) 4015+4015+4016
LAZ=LAL

LB2=LB1

LC2=LC1

GO TG 4017

LLAZ2=LC1

LB2=LB1

LC2=L Al

IF{LB2-L.C2) 4018,4018,4019
LA=LAZ

LB=LB2

LC=LC2

GO TO 4020

LA=LAZ

LB=LC2

Lc=LB2
WRITE(6+6010)LAsLBLCsTINFSsHINF

COMPUTE THE CONTRIBUTION MATRIX (H) OF THE CONVECTIVE ELEMENT

ALA={(YILB)Y=Y(LA) I *{Z(LC)~-ZILAY )} ~(YILC)=Y(LA}}*(Z{LB)~Z{LA))})
ALB={ { XILB)~X{LAF ) *(Z(LCI=Z{LA) ) ={X{LC)=X{LA)}*{Z{LB}-Z(LA)))
ALC={ U X{LBI=XCILA) ) R {YILC)=Y{LA) i —{X{LCI=X(LA) ) *{Y{LB)=Y(LA)}})

ZLA=(ABS (ALA)) ¥%2.0
ZLB=( ABS{(ALB) ) ¥%2.1%
ZLC={ABS(ALC) ) #*%2.D
AREA=0 «S*{ { ZLA+ZLB+HZI_CHF* ¥ 45)
SA(ls1)=2.0
SA{1:2)=1le0
SA{1s3}=1a.0
SA{2+1)=10
SA{2,2)=2.0
SA{(2:3)=1.0
SA{3s1)=1.0
SA{3,2)=1.0
SA(3+43)=2.0

CINF=({ AREA®HINF}/12..%
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17
186

N

OO n0On0n

411¢

4111

4112

4113

aila

4115

4117

4400

4591

4502

4401

4403

4405

DO 16 I=1.3

DO 17 J=1.3

H{Is J)=CINF%*SA{TI.4+J)
CONTINUE

CONTINUE

CALCULATE THE DORDES 0OF THE ARRAY
CONVECTIVE ELEMENT CONTRIBUTFE

NO1=1

KN1=LA

NS UM=0

GO TO 4111

NSUM=0

IF(NQL «EQe2) KN1=LB
IF{NQLl +sEGQs 3} KNI=LC
IF{NQl «sEQe4} GO 1 44090
D0 4112 J=1sKN]
NSUM=NSUM+J
CONTINUE

IDGl=NSUM
IF(KN1=NBWP) 4113,4114,4114
I=1DG?

GO TO 4117

NACL1=D

DO 4115 J=NBWP,KN1
NACI=NAC I+ J=NBWP+1
CONTINUE

I=IDG1 —-NAC]
A{I)=A{I)+H{NQI+NQI)
NQ1=NQl+1

GO TO 4110

ICCDLl=1

NU1=LB

NV I=ILA

GO TO 4401

hUl=LC

NV 1=LA

GO TO 4401

NU1=LC

NVi1=LB

LNUI=NUL -1

NAD1=0

DO 4402 J=1.,LNUI
NADLI=NAD1+J
CONTINUE

NDGl=NAD1
IF{NUL~NBWP} 4473,4404,4405
I=NDGL +NV1

GN TG 4447

JACL =0
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4417
46301

44C2

46732
4904
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DO 4406 J=NBWP,LNU1
JACI=JACI+J-NBWP+1
CONTINUE
J1=NDG1l-JAC1
I=J1+NVI=NUl+NBWP=1
GO TQ 44G7
I=NDG1+NVi-1

ADD THE CONTRIBUTION 0OF THE CONVECTIVE ELEMENT TO THE PROPER
ELEMENTS QF THE ARRAY (A}

GO TO (4601,4602,4503), C0OD1
ACT)I=A(TI)+H{2,1)

GO TO 4904

ACTI=ALTI)+H(3,1)

GO TO 4904

ACII=ACI)+H{3.2)

ICCDL=ICOD1+1

GO TO(S000.4301+4502,46035),1C0D1

COMPUTE THE CONTRIBUTICN VECTOR (F) OF THE CONVECTIVE ELEMENT

DINF={HINF*TINF*AREA)/3.C
LASSLA+MT
1.BS=LB+MT
LCS=LC+MT

ADD {Ff} TO THE ARRAY (A) IN THE PROPER PLACES

A{LAS ) =A(LAS)+DINF
A(LBS) =A(LBS)+DINF
A{LCS)=A(LCS)+DINF
CONTINUE

IF(IZ.EQeQ) GO TQ 23
WRITE(6.6011)

00 21 I=1.NT
WRITE( G+ 6012} 1:A(1)

21 CONTINUE

23

IFUITOT.EGeD) GO TO 29

SPECIFIED HEAT FLUX BOUNDARY CONDITION
2k kA sk o3k 3¢ sk o e o ke ke ek kol ook o ke e ofeoke sk e sk ok Sk ek

REPRODUCIBILITY OF THH
OTRGINAL PAGE IS FOOR
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WRITE(6+46015)
DO 24 K=1,IT0T

READ THE NJUMBERS ASSIGNED TO THE SPECIFIED HEAT FLUX TRIANGULAR
ELEMENT AND THE SPECIFIED VALUE OF THE HEAT FLUX AT THAT

ELEMENT

READ(S »5007ILAAZSLABZ,LACZLFLUX

RE~-ARRANGE THE VERTICES NUMBERS IN AN ASCENDING ORDER

IF{(LAAZ=-LABZ)9012,9012,9013
LAAL=LAAZ

LAB1={L ABZ

LACI=LACZ

GO TO 9C 14

LAAI=LABZ

LAB1=tLAAZ

LACI=LACZ
IF{LAAL=-LACL)ISN15,9015,5016
LAAZ2=L AAL

LAB2=LAB1

LACZ=LACL

GO TO 9017

LAA2=LAC1

LABR2=I_AB1

LAC2=LAAL
IF{LAB2-LAC2)9018,9018,9019
LAA=LAAZ

LAB=LAB2

LAC=LACZ

GO TO 9020

LAA=LAAZ2

LAB=ILLAC2

LAC=LAB2

WRITE(6+6016)LAALARBWLAC ,FLUX

COMPUTE THE ELEMENT CONTRIBUTION VECTOR (Q)

BLA=(( Y{LAB)=Y(LAA))*(Z(LAC)=Z(LAA) I =-(YI{LAC)-Y(LAAY}*(Z(LABI~Z(LAA

XI)yRE2 .0

BLB=( { X(LAB)=X{LAAIIR(Z(LAC)=Z{LAA}I=(X{LAC)=X(LAA) )} *(Z{LAB)=Z(LAA

X)) 1%*%2 .0

BLC=((X{LAB) =X (LAA Y IR (Y (LACY=Y{LAA) I—(X(LAC)=X(LAA) ) *[Y{LAB)=Y(LLAA

X)) Prk2 0

AREA=D + S *%( ( BLA+BLB+BLC}*%*3.5)

FIX=(AREA®FLUX}/3.0
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24

28
29

2450

2451

LAI=LAA+MT

1.8 1=LAB+MT
LCI=LACHMT

AlLAL) =A{LAL)+FIX
A(LB1)=A{LB1)+FIX
A(LCL)Y=A{LCL)+FIX
CONTINUE

IF(IZ.EQ.D) GO TO 29
WRITE(6+6017)

DO 28 I=1sNT
WRITE{(H5+6018i1.A(I}
CONTINUE
IF(NSPEC.EQs0) GO TO 43

SPECIFIED TEMPERATURE BOUNDARY CONDITION
A A o ok i e o SRRk ol 3 e e e die e 3 ok s ok e e sk R e A o ok ek ko

WRITE{6,6019)
DO 30 I=1.NSPEC

READ AND PRINT THE NODE NUMBER AND ITS SPECIFIED TEMPERATURE
VAL UE

READ{S5+5008)NUM, TEMP .
WRITE(Ss6020 INUMs TEMP

MOD IFY THE ARRAY (A) BY SUBSTITUTING THE SPECIFIED TEMPERATURE
VALUE IN THE RESULTING SET OF SIMULTANEOUS EQUATIONS

ITM=NUM~=1

IP=NUM+1

NUMLI=NUMEMT

IPI=MT+IP

IF{NUMaEQel) A{NUM]I=1.4
A{NUML )=TEMP

LSUM=0

DO 2458 J=1.NUM

LSUM=L SUM+J

CONTINUE

LDG=LSUM

IFINUMGERQ:1} GO TO 2457
IF{NUM~NBWL1) 2451,2451.2452
A(LDG) =140

LD GM=LDG—=NUM+1

GO TO 2454
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2452

2453

2454

2456

2455

2555
2556

2457

64861

85462
3020

Tiio
7010

2458

ISsumM=g

DO 2453 J=NBWP e NUM
[SUM=] SUM+J=-NB WP+

CONT INUE

LDG=tDG=ISUM

A{LDG)=1 3

LDGM=L DG—-NBW

GO TO 2455

MT2=MT+IM

DO 2456 J=MTP,MT2
K=J=-MTP+LDGM

AlNI=A(J )=(TEMP*A(K)}
A(K)=0 40

CONTINUVUE

GO TO 25546

MPLC=M TP+NUM=NBWL
MT2=MT+1IM

DO 2555 J=MPLC.MT2
K=Jd=MPI_C+LDGM
A(J)=A(J)=(TEMP*A{K]))
ALK)=0 «0

CONTINUE

IF(NUMEQ.MTCT) GO TQ 38
JUD=MT OT =NUM
IF(JUDLLT«.NBW) GO TO 6560
IF{NUM~=NBWL1) 2457:+2458,2458
NUMZ2 =NBWI1—-NUM

I3=LDG

RO 6481 K=1.NUM2
I3=I 3+ NUM+K=-1

I4=NUM1+K
A(I4)=A( L4 )~(TEMP*A{I3))
A(13)=0.0

CONTINUE

1J=14

IFINUM.EQel) GO TO 3020
DO 6462 K=l,.IM

I3=I3+NBwW

I4=1J+K
A{I4)=A( 14 )-(TEMP*A(I3))
A(I3)=0.0

CONT INUE

PO 701C J=MTP«MTF
WRITE(G6+7T110}J2AC0J)
FORMAT {4 Xy I3+44X3E12.5)
CONTINUE

GO Ta 3¢

I6=LDG

DO 5463 K=1.,NBW
[6=16+NBW

I7=NUM1+K
ALI7)=A(1I7)—-{TEMP*A{I&))
Al 16)=0.0
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6463 CONTINUE
GO Ta 30

£560 18=L.DG
DO 65061 K=1,JUD
IS=I8+NBW
I9=NUM1+K
ACI9)=A(IS)-(TEMP*A{LA))
A(I8)=Cae0

5561 CONTINUE

30 CONTINUE

IF({IZ.EQ.0) GO TO 43
WRITE( 6+1985)
DO 1986 I=1.NT
WRITE( 641987} 1 ,A{T1)

1586 CONTINUE

SOLVE THE FINAL SET OF SIMULTAMEDOUS EQUATIONS
43 CALL CHOLES(A+MTOT»NBWL1 +0s1s IPRNT,.E9007T)
PRINT THE TEMPERATURE VALUES AT ALL THE BODY NODES

WRITE( 64+6023)

DO 45 I=MTP,MTF

J=I=MT

WRITE{6,6024)J,A(1}
45 CONTINUE

5001 FORMAT(&15)

5171 FORMAT(21I5)

5201 FORMAT(2F100}

5002 FORMAT(8F10.0)

SHCS FORMAT{6154,F10.0)

S0C S FORMAT(3I15+:F1Qe0)

SN27 FORMATI(3IS.:FlC.0)

508 FORMAT{IS,F10.0)

6002 FORMAT{SSXs"MTOT=" 4 I3/SEX+*NTOT=" 4 I3/55X 2 LTAT=" 41 3/55X,'ITOT=",1

X3/55Xy "NSPEC=* ,I3/55X s "COND=?»F 5« 2/55X s * NEBW=2,I3/55Xs¥I1Z2=%4I1/55X
Xe? TRANSS® 4F10.5///45X3"SIZE OF THE STIFFNESS MATRIX=',186)

6CG7F1 FORMATI1H1//50Xe"NODAL PCINTS COOQRDINATESY/30X«*NODE NOL® 13X, *X
FTalSX Y1, 15X 02V /)

GO3 FORMAT(3Z2X+13+10XsF1l0a8+s5XeF104495X:F10e4)

171 FORMAT {1HI /43X, 'THREE DIMENSIONAL HEAT CONDUCTION CALCULATIONS'/4
KAX et 2 445{°%8) /43K % °4406{7%x2}//01X,"INPUT DATAT/S1Xs* Y,10{T%¥)/
LV

680C FUORMATI30X+6(4X+I3)»4XsF1lQe4)

6074 FORMAT{8I1X+4({4X,13))

60CS FORMAT(1H1//54X,*PORTION OF THE ARRAY (A)*/28Xs'AFTER ADDING THE C

XONTRIBUTION OF THE CONDUCTIVE FINITE ELEMENTSt//)
60N 6 FORMAT(S4XsI5+4X+E103)

&
)
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6079 FORMAT{1HL/S53X»*HEAT CONVECTION BOUNDARY CONDITION®/49X.¢ ',
K34{ %25/ /61Xa*INPUT DATAR/BIXa?t *,10(2 %" }//)

6019 FORMAT (45X +3{4X+13)36XsFEaly4XsF5el)

6011 FORMAT(1H1//54X,*PORTION OF THE ARRAY (A)'/28X,*AFTER ADDING THE C
XONTRIBUT ION OF THE CONVEGTIVE FINITE ELEMENTS'//)

BN 12 FORMAT(54XsI5+4X+E10a3)

6015 FORMATU{IM1/47X.*SPECIFIED HEAT FLUX BOUNDARY CONDITICN®/47Xs® *,3
XBEORT ) /47X 1 1 ,38L V%) //761 X" INPUT DATA? /61 Ks" T510(0%*)//)

6016 FORMAT (S0X+3{4X2I3)s6XsF5e1)

6017 FORMAT(1H1//54X,*PORTION OF THE ARRAY (A)*f/33X,'AFTER ADDING THE C

= XONTRIBUTION OF THE SPECIFIED HEAT FLUX ELEMENTS®'//}

N 6018 FORMAT{54X+I3:,4XsE10a3)

6019 FORMAT(1H1//30X, "INPUT DATA FOR THE SPECIFIED TEMPERATURE NODES'//
X )

. 6020 FORMAT(S0X+13,4XsF641)

. 1985 FORMAT (1HL1//54X,*PORTION OF THE ARRAY (A)*/41X,*AFTER INTRODUCING
XTHE SPECIFIED NODAL TEMPERATURES?'//)

1987 FORMAT({S56X,I5,E12,5)

6023 FORMAT (1H1/51Xs *FINAL TEMPERATURE DISTRIBUTION®/SNX.® *,30{ %)/
X50Xe® €,30(%%?) //52XsINODE NUMBER! 45X * TEMPERATURE ' /51X, ® %,11 (%%
X}edXe® " ,11{0%3)/) ’

6024 FORMAT(55Xs[S5311XsF1246)

9naa sTOP

END

T L pr e e e e
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SUBRUOUTINE CHOLES(BsNsMMoIBsNT s IPRNT, %)
REAL*¥8 S1.7T1
DIMENS ION B{1)

{B) IS THE ARRAY CONTAINING THE ELEMENTS OF THE LOWER HALF BAND
OF THE STIFFNESS MATRIX (S)
N =NQO« OF THE UNKNOWN NODAL TEMPERATURES
MM =HALF BAND WIDTH OF THE STIFFNESS MATRIX +1
v S1»T1 ARE TEMPORARY DCUBLE PRECESION VARIABLES

GO0ONO000n0n

MUD = MM-1

NS = MUD*MM/2
NM = N*MM=NS
IF{NT=1)30.+30.,31

BEGIN CHOLESKY ALGORXRITHM FOR FACTORING THE MATRIX

N ONn

30 DD 20 J = 1N
IF(J=MUD) lsl1ls2
2 IN =J=-MuUbD
t= IN +{J=MM}%®MUD +NS
ca 1O 7
T IN= 1
L= IN +{J=-1)%J/2
7 IF {(J -N+#MUD)103,103,125
105 M5 =N
GO TO 104
123 M5 = J+MUD
164 S1 0«0
J1 = J=-1 .
J2 = J+1
IF(J1)444,3
300 2 K = INsJI

TL = B{(L)

S1 =S1 + T1l¥*x2
6 L=L +1
4 T1=B{L)

IF{T1=S1 .LT.0.) GO TGO 100
Tl =DSQRT{(Tl - S1)
B{L} = T1
IF{(J=N)19:20,20

19 DO 18 1= J2 +M5
SUM = 0.0
IF{I-MUD)6EB+68:71

71 IN = I-MUD
LL = IN + 4ZI-HM)}RMUD +NS
GO 7O 5

&8 IN =1
L = IN + {I=-1)*%I r2
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i
3
P

o000 n

s NsNaNa Nl

17
18
217
a

22

21

27

g5
41
42
45

43

IF(J1}1B8418,8

IF(IN —J1) 83,53,18

DO 17 K = INsJ1l

LM = L+K-J

SUM = SUM + B(LL)*B{LM)
LL = LL +1

B{LL) = {B{LL)=-SUM}) /B(L)
CONTINUE

NR = IB +1

BEGIN FORWARD SUBSTITUTION

NB =NM +1

DO 85 K =1.NR

B(NB) =B(NB)/B(1)

DO 60 I = 2N

IF (I -=MUD) 21s21,22
IN = [ —MM

KS = INk MUD +NS

MS =MUD

GO 70O 27

IN =0

M5 = [~1

KS = MS*®]I /2

SUM = Q.0

DO &1 J= [ ,.M5

JR = J+IN

L = JR +KS

JR JR + NB - 1

SUM = SUM +BI(L) *B{JR)

ID =1 + KS

B(JR+1) = (3(JR¥1) =SUM)/B(ID)
NB = NB +N

BEGIN BACKWARD SUBSTITUTION

T, =M o+ N

B 79 K = lsNR

B{NB) = BI{NB} /BINM)
DO 80 II = 24N

I = N -II +1
IF(I-MUD )41 +41 4,95

ID =T +{(I~-MM}x MUD +NS
GO TO 42

ID =I +{I=-1)}*%] /2
IF(I-N+MM) 43:43445

M5 =TI-1
GO TO 76
M& = MUD
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7& SUM =340
CO 81 J =1,M9D
Je = I +Jd
IF{(JR-MUD) 98,98,99
99 L = I +{JR=-MM)*MUD+NS
GO TO 82
28 L = I +{JR-1)*JR/2
82 JR=NB-=N+JR
81 SUM =SUM + B{(L)*B(JR)
JR =NB =N +I
8¢ B{JR)= (S8(JR)=-5UM) /B(ID)}
75 NB =NB +N
RFETURN
172 WRITE(IPRNTs931)
91 FORMAT(1H1,* THE MATREX IS NOT POSITIVE DEFINITE IN THIS PRCHBLEM *
X)
RETURNI
END
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