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ABSTRACT
 

Recent experiments involving liquid jets exhausting into a
 

vacuum have led to significant conclusions regarding techniques for
 

detumbling and despinning disabled spacecraft during retrieval oper

ations. A fine water spray directed toward a tumbling or spinning
 

object may quickly form ice over its surface. The added mass of
 

water will absorb angular momentum and slow the vehicle. As this ice
 

sublimes it carries momentum away with it. Thus, a complete detumble
 

or despin is possible by simply spraying water at a disabled vehicle.
 

Experiments were conducted in a ground based vacuum chamber to deter

mine physical properties of water-ice in a space-like environment.
 

Additional ices, alcohol and ammonia, were also studied. An analytical
 

analysis based on the conservation of angular momentum, resulted in
 

despin performance parameters, i.e., total water mass requirements
 

and despin times. The despin and retrieval of a disabled spacecraft
 

was considered to illustrate a potential application of the water
 

spray technique.
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CHAPTER I
 

INTRODUCTION
 

With the advent of the space shuttle era retrieval of disabled
 

spacecraft will become possible. Prior to any attempted retrieval,
 

however, vehicle angular momentum must be nullified. A disabled
 

spacecraft's angular momentum takes the form of either spinning or
 

tumbling motion. This motion may be the result of a wildly firing
 

thruster, collision with another vehicle, or loss of attitude control.
 

Hard docking by a manned retrieval craft is not possible because of
 

the hazardous environment to which the crew would be exposed. Fur

thermore, devices which might be used for capturing objects are not
 

capable of grabbing something which is spinning or tumbling. There
 

have been numerous techniques and hardware proposed to passivate, i.e
 

detumble or despin, a disabled vehicle. However, all of these devices
 

represent complicated systems and are expensive and massive. A new
 

technique involving liquid sprays has been conceived and appears to
 

offer lower complexity, cost and mass.
 

1.1 Historical Development
 

Development of the water spray technique (WST) for space
 

retrieval operations has arisen out of a need for a simple and inex

pensive means of eliminating a disabled spacecraft's angular momentum.
 

Additional design criteria are listed in Table I.
 

Early passivation schemes have included mechanical devices,
 

nets, cables and rockets (1). Mechanical devices employ a synchro

nized, rotating, docking mechanism. Nets are envisioned as catching
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Table I
 

Design Criteria for a Satellite Passivation Scheme (2)
 

1. Low development costs
 

2. Low recurring costs
 

3. Available for operation at short notice
 

4. Within shuttle orbiter payload capability
 

5. Applicable to a wide range of vehicle sizes
 

6. Should not damage tumbling spacecraft
 

7. Operated easily without specialized crew
 

8. High reliability
 

9. Should pose no hazard to the retrieval spacecraft
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and entangling the tumbling spacecraft, arresting its motion by the
 

net's attachment to the rescue vehicle or by rockets of varying so

phistication. Cables are shot out toward the tumbling spacecraft,
 

"harpooning" it, wrapping themselves around it, or otherwise offering
 

a means of providing a torque. Finally, rockets may be attached to
 

the disabled vehicle to provide a detumbling or despinning torque.
 

Each of these schemes have their drawbacks which do not satisfy the
 

design criteria.
 

Recent proposals have included the use of water jets to
 

provide an external torque to a tumbling or spinning spacecraft (3).
 

The concept involves impinging momentum to eliminate angular momen

tum. Here again, a complex system is required since proper aiming
 

and sequencing of the impinging water jet is necessary for a suc

cessful detumble. It was out of experimental investigation of this
 

latter scheme that the WST was conceived.
 

Liquid jet experiments were carried out to investigate the
 

properties of jets impinging upon surfaces in vacuum. During some
 

of these experiments it was realized that water jets tend to form
 

ice on an object downstream. This experimental accident led
 

M.H. Kaplan, at The Pennsylvania State University, to the concept of
 

using the ice advantageously (4).
 

1.2 Water Spray Technique
 

A new technique for eliminating angular momentum involves the
 

use of liquids, such as water, in a spray technique. The idea is to
 

spray water at a tumbling or spinning object such that the water tends
 

to accumulate on the target and form ice as illustrated in Figure 1.
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This formation of ice tends to absorb angular momentum. The concept
 

has the obvious advantages of bypassing any hard docking requirements
 

and being simple in application. Very little hardware or logic is
 

required. The shuttle crew simply points a nozzle at an object, turns
 

on a valve and waits for the object to despin or detumble. When a low
 

enough angular rate is observed of the object, the shuttle manipulator
 

can then capture it and place it in the shuttle or carry out the
 

prescribed refurbishment.
 

1.3 Purpose and Objectives
 

It is the purpose of this investigation to examine the WST.
 

A series of experiments have been conducted to determine physical
 

properties of water sprays exhausting into a vacuum. A computer model
 

is built which together with the experimental results, yields satellite
 

despin performance parameters. To demonstrate an application of the
 

WST, the selection and retrieval of an actual disabled spacecraft is
 

considered.
 



CHAPTER II
 

PREVIOUS INVESTIGATIONS
 

The use of water sprays as a technique to eliminate angular
 

momentum was first introduced at the 27th Congress of the International
 

Astronautical Federation (5). A review of related work has revealed
 

that the use of water sprays, as opposed to water jets, is a new and
 

original technique for eliminating spacecraft angular momentum.
 

Other investigators have done experiments and analytical work
 

related to sublimation rates of various substances in space. However,
 

very few quantitative analyses have been performed dealing with the
 

sublimation of ice in a hard vacuum. Two investigations were found
 

to be related to this work. One is analytical and the other experi

mental.
 

Watson (6) performed analyses on various ices in heliocentric
 

orbits. A simple energy balance was constructed across the surface
 

of the ice from which the particle's lifetime was calculated as a func

tion of its distance from the sun. Ices considered included water,
 

ammonia, carbon dioxide and methane. The results are tabulated in
 

Table II and indicate that water-ice has the longest lifetime while
 

ammonia-ice sublimes about three times as fast. Carbon dioxide-ice
 

and methane-ice sublime at a rate twelve times faster than water-ice.
 

These results were obtained assuming that the ice particles were in
 

circular heliocentric orbits at a distance of one astronomical unit
 

from the sun. Effects related to the presence of the earth were not
 

considered which resulted in lower energy absorbtion and sublimation
 

rates and longer lifetimes of the ice spheres.
 



Table II
 

The Stability of 1 km Ice Spheres in Circular Heliocentric
 

Orbits at a Solar Distance of One Astronomcal Unit
 

Ice Lifetime (years)
 

Water 530
 

Ammonia 167
 

Carbon Dioxide 42
 

Methane 42
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By applying optical techniques to normal releases of water
 

into space during Apollo lunar missions, Sharma (7) has determined
 

size histories of nicron size ice particles. This experiment deter

mined that the radius of a particle of water-ice in a near earth
 

orbit (650 km altitude) will decrease by a factor of li/e in 1100
 

seconds, i.e., exponential folding time of 1100 seconds. For parti

cles located at distances greater than 10 earth radii, where the
 

equilibrium temperatures of the water-ice are so low that emission of
 

radiation dominates sublimation and particle lifetimes increase con

siderably, the exponential folding time is l.Ox l0s seconds. These
 

results are listed in Table III. Since the shuttle will operate in
 

a near earth environment and since the experimental results were from
 

direct observation, an exponential folding time of 1100 seconds has
 

been used in the analytical development of the WST.
 

Table III
 

Water-Ice Exponential Folding Times (7)
 

Cislunar Space Near Earth (650 km Altitude)
 

e-Folding Time e-Folding Time Uncertainty Range
 
(see) (see) (see)
 

s
I x l0 ,, 1100 1200 - 200 
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CHAPTER III
 

EXPERIMENTS
 

Experiments were conducted to determine physical properties of
 

water sprays in a space-like environment. Additive and dispersion
 

effects were also considered. The results, although basically qual

itative, support the conclusions of Watson (6) and Sharma (7).
 

3.1 Purpose and Objectives
 

A series of experiments were conducted in a small vacuum
 

chamber to determine the physical properties of water sprays in a
 

space-like environment. Physical properties of interest included the
 

accumulation and sublimation rates of water-ice as well as the effect
 

of ice layer thickness on sublimation rates. Several additional
 

parameters were studied and include:
 

1. 	Dispersion effects, i.e., the ratio of impact cross
sectional area to nozzle cross-sectional area.
 

2. 	The effects of ammonia and alcohol as additives on the
 
physical properties of the water spray.
 

3.2 Apparatus
 

The water spray experiments were conducted in a small vacuum
 

facility at The Pennsylvania State University. The facility consisted
 

of four main elements: chamber, pumps, pressure sensors and test
 

stand.
 

The vacuum chamber used was a stainless steel cylindrical
 

structure with a diameter of 0.97 m and length of 2.11 m, enclosing
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a volume of 1.56 m 3. It was equipped with three plexiglas viewing
 

ports as well as a stainless steel end plate through which all elec

trical, mechanical and fluidic interfaces were made. The chamber was
 

evacuated continuously by a 41 cm ringjet'booster pump and a Stokes
 

412H mechanical vacuum pump. This combination of pumps is capable of
 

4
producing pressures on the order of 10- torr.
 

Two types of pressure sensors were employed during the course
 

of the experiments. The first was a Philips Gauge. This type of
 

pressure sensor measures the ionization p6tential between a pair of
 

electrodes, converting this into a pressure reading. The second type
 

of pressure sensor used was a MKS Baratron. This device measured
 

pressure directly, i.e., force per unit area.
 

The test stand mounted inside the chamber included a nozzle,
 

impact plate and reference grid as illustrated in Figure 2. A stain

-2 
less steel circular tube with inside diameter, d = 5.54x 10 cm, was
 

used as a nozzle. The nozzle end was cut perpendicular to the tube's
 

3 2
axis of symmetry with a cross-sectional area of 2.41x 10- cm . Water
 

was supplied to the nozzle from a reservoir open to atmospheric pres

sure. The impact plate consisted of a rigid aluminum plate also
 

positioned perpendicular to the nozzle's axis of symmetry. The plate
 

was mounted on a moveable base which could be located a distance 1,
 

from 5.0 cm to 16.0 cm downstream of the nozzle. Aligned parallel to
 

the nozzle's axis of symmetry, was the reference grid, an aluminum
 

plate with a 0.64 cm grid etched on its surface.
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Figure 2. Experimental Test Stand
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3.3 Procedure
 

In order to satisfy experimental purpose and objectives,
 

numerous runs were made using water and concentrations of ammonia and
 

alcohol. A typical run could be divided intd four phases: pump down,
 

ice accumulation, ice sublimation and pump up. Initially the vacuum
 

chamber was at atmospheric pressure. Once the chamber was properly
 

sealed, the mechanical and diffusion pumps were used to produce the
 

vacuum. After several hours, the pressure in the chamber had reached
 

4
a sufficiently low value, on the order of 10- torr. At this time a
 

valve was quickly opened and closed allowing less than 0.005 liters of
 

water to flow from the reservoir through the nozzle, impinging upon
 

the impact plate as illustrated in Figure 3. Upon impact the water
 

immediately froze, forming a thin layer of ice. As sublimation
 

took place, the nass of the ice was recorded as a function of time.
 

With the sublimation complete, nitrogen was pumped into the chamber
 

to return it to atmospheric pressure. Also shown in Figure 3 is the
 

scattered spray due to nozzle end effects. This phenomenon will be
 

discussed further in the proceeding section.
 

3.4 	 Results
 

Significant results were obtained for water exhausting into
 

a vacuum. As water was injected into the chamber, it immediately
 

froze due to the cooling which accompanies rapid expansion. The
 

resulting stream of tiny ice particles impinged upon the inpact
 

plate forming a thin layer of ice. Accompanying this ice formation
 

was a temporary pressure increase of approximately three orders of mag

nitude. This increase was due to the limited chamber volume and
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Water Spray 

, Scattered 
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Figure 3. Experimental Ice Formation
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pumping capacity, and was sufficient to cause a phase change in the
 

accumulating ice. Initially, the accumulating ice was a rime ice,
 

i.e., frosty and opaque. As the pressure increased this turned to a
 

clear ice, i.e., smooth and translucent. After accumulation was com

plete the incoming water was shut off. Within 240 seconds the pressure
 

had returned to its low value and the ice had reverted back to its
 

rime phase. Photographs typical of water-ice accumulating and sub

limating are presented in Figure 4. The pressure increase experienced
 

in the laboratory facility should not adversly effect the operational
 

application of the WST in space.
 

As the water was injected into the chamber it separated into
 

two sprays- primary and scattered. It is believed that the scattered
 

spray was due to nozzle end effects which may be eliminated through
 

proper nozzle design. This spray resulted in a thin layer of ice
 

forming on the impact plate. In contrast, the primary spray resulted
 

in a thicker layer of ice being formed For an i/d of 269, the ratio
 

of impact cross-sectional area to nozzle cross-sectional area was 530.
 

On the average, it took 2700 seconds for 0.002 kg of water-ice
 

to sublime. However, several factors influenced the sublimation rate.
 

The thinner the initial layer of ice the quicker it sublimed. This
 

is seen in that the thin layer of ice due to the scattered spray
 

sublimed faster than did the thicker layer from the primary spray.
 

In addition, ice layers with larger surface areas also sublimed faster.
 

The background pressure also effected the sublimation in that the
 

higher the pressure the lower the sublimation rate. The effects of
 

all these factors suggest that the sublimation rate is not a constant
 

but varies with layer thickness, surface area, background pressure
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Figure 4. Photographs Typical of Water-Ice Accumulating and Sublimating.
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and temperature.
 

Additional tests were conducted using 50% and 33% concentra

tions of ammonia hydroxide in water as the working fluid Problems
 

were encountered with these tests, however, as the ammonia hydroxide
 

reacted with the copper tubing which connected the reservoir to the
 

nozzle. The resulting copper ammonia ion contaminated the solution,
 

tinting it blue. Upon release into the chamber the solution froze
 

with a translucent slushy appearance. Again, as the pressure was
 

reduced a phase change occurred, changing the clear ice to rime ice.
 

As sublimation took place, cubic millimeter size particles of ice
 

seemed to explode from the surface of the nain ice formation and
 

cling to the insides of the vacuum chamber. This might be explained
 

by the paramagnetism of the copper ammonia ion. Consequently, the
 

sublimation rate was not observable.
 

Tests were also conducted using various concentrations of
 

methanol in water, as illustrated in Figure 5. A 100% concentration
 

of methanol was exhausted into the chamber, evaporating as fast as it
 

was pumped in; no ice was formed. At a concentration of 50% the spray
 

formed liquid drops on the impact plate which froze after 37 seconds.
 

Similar results were obtained using a 33% concentration. At this
 

concentration liquid drops formed which took 120 seconds to freeze
 

In both cases it took approximately 900 seconds for the small drops to
 

sublime. At 20% and 10% concentrations, the spray formed a slush upon
 

contact with the impact plate. After 1500 seconds the slush had soli

dified, turning into an opaque rime ice. At a concentration of 10% it
 

took 1050 seconds for 0.002 kg of ice to sublime.
 

Although only qualitative in nature, these results compare
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is
 

favorably with previous investigations. The sublimation rate deter

mined for water is supportive of the 1100 second exponential folding
 

time observed by Sharma (7). The effect of additives, such as ammonia
 

and alcohol, is to increase the sublimation rate as observed by Watson
 

(6).
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CHAPTER IV
 

ANALYSES
 

The analyses of the WST were divided into two parts. First to
 

be considered were the equations of motion for a vehicle being despun
 

or detumbled via the WST. Secondly, these equations of motion were
 

programmed on a digital computer to simulate the despin operation.
 

Results of the analyses are presented and include water mass require

ments, despin times and despin profiles.
 

4.1 	Equations of Motion
 

The equations of motion for a spacecraft being detumbled or
 

despun by means of the WST, were derived using both a control volume
 

analysis and an angular momentum balance. A rigorous derivation of
 

the equations of motion following the control volume analysis of
 

Grubin (8), resulted in a set of first order nonlinear differential
 

equations coupled in 0. These equationswere most general and applied
 

to any arbitrary vehicle with arbitrary components of angular velocity.
 

However, included in the resulting equations were integrations over
 

the tumbling vehicle's surface which, except in the case of simple
 

geometries, would have been difficult to solve and provided very little
 

insight into the problem. For these reasons, the control volume ap

proach was excluded from further consideration.
 

In order to provide more physical insight into the problem,
 

an angular momentum balance was performed (9). The water spray was
 

assumed to possess low momentum, imparting negligible torque to the
 

spinning vehicle. Furthermore, it was assumed that sublimation
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occurred radially such that the net torque was negligible. An addi

tional simplification was to assume that a spacecraft's complex geome

try may be represented by an equivalent cylindrical body. The
 

equivalent cylindrical body has the same moment of inertia about the
 

spin axis and same surface area as the original spacecraft. Figure 6
 

illustrates the angular momentum balance model in which a low momentum
 

water spray impinges upon the circumference of a cylinder spinning
 

about its axis of symmetery. A thin ice layer forms over its surface
 

which sublimes, carrying away momentum with it. The momentum balance
 

between the vehicle's angular momentum h and the ice's momentum h
V w 

can be written in differential form as
 

-dh = dh (1)
 

The vehicle's angular momentum is expressed as
 

h = I t (2) 

where I is the vehicle's moment of inertia about the axis of rotation
 

and m is its corresponding angular velocity. Assuming I to be constant
 

and differentiating
 

dh = 1dm (3) 
v 

For the water making up the thin ice layer illustrated in Figure 6,
 

its angular momentum may be expressed in differential form as
 

2
dh = r w dm (4)

w 

with r being the perpendicular distance from the axis of rotation to
 

the ice with mass m. Substitution of equations (3) and (4) into (1)
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yields the differential form of the angular momentum balance
 

-I dw = r2 w dm (5)
 

Integrating
 

-I Ln i = r2 M (6)

Wi
 

where w- and wf are the initial and final spin rates respectively.

1 f 

Solving for m
 

- -nLI =m (7)

2 
 1
r
 

This equation expresses the mass of water required to stick to the
 

vehicle as a function of its initial and final spin rates. Note that
 

the minus sign insures that w if Only a
wll always be less than wi. 


fraction of the water being sprayed from the retrieval craft actually
 

sticks to the spinning vehicle. Thus, the total water mass sprayed
 

Mt may be expressed as
 

m = k mt (8)
 

where k is a coefficient of accumulation, i.e., the ratio of total
 

water mass sprayed to that which sticks to the target, with values
 

0 < k < l (9) 

Obviously the crew of the shuttle must wait until the ice sublimes
 

in order to actually capture the object. Using an average value
 

for the sublimation rate V, the time t for the ice with surface
 

area a to sublime is
 

t =Vm-- (10)Va
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4.2 Computer Simulation
 

A computer program was written to simulate the WST in opera

tion. The program consisted of modeling the angular momentum balance
 

developed in the previous section on an IBM 370/168 digital computer.
 

It has been assumed that each satellite had an initial spin rate of
 

30 rpm and its inertia can be estimated from its mass. It was also
 

assumed that the flow rate of water to the object was equal to the
 

sublimation rate. The final spin rate was choosen to be 0.6 rpm, a
 

98% reduction in angular momentum. The program calculated total water
 

mass requirements and despin times as a function of satellite mass
 

and coefficient of accumulation Typical despin profiles for a 200 kg 

satellite were also calculated. The complete results are presented 

in the following section. 

4.3 Results
 

Satellite despin performance parameters have resulted from
 

the computer simulated water spray retrieval operation. Of primary
 

interest were the total water mass requirements for a complete despin.
 

Figure 7 is a graph of total water mass requirements as a function of
 

satellite mass and coefficient of accumulation. Assuming a realistic
 

value for k to be between 0.05 and 0.5, for a spacecraft up to about
 

800 kg the amount of water required to despin it is well within the
 

shuttle payload capabilities outlined in Appendix A. These water mass
 

requirements are of the same order of magnitude as those estimated for
 

the water jet technique (2).
 

An additional consideration is the time required to despin an
 

object. Obviously the crew of the shuttle must wait until the water
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sublimes in order to actually capture an object. This is why the
 

sublimation rates are critical with regard to this technique. Figure 8
 

summarizes the results of calculations of despin times Sublimation
 

rates used are discussed in the preceeding chapter. Assuming a coef

ficent of accumulation between 0.05 and 0.5, the despin time required
 

for satellites up to 800 kg mass ranges from a few minutes to about
 

two hours.
 

Figure 9 shows some typical despin profiles for different
 

coefficients of accumulation. In all cases the despin profile is expon

ential. This particular figure is for a satellite of 200 kg mass.
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CHAPTER V 

EXAMPLE APPLICATION: OSO - 5 RETRIEVAL 

As an example of a potential application of the WST, the
 

retrieval of a disabled satellite was considered. Included in this
 

example application were four areas of investigation: satellite
 

selection, passivation, capture and stowage. For the satellite selec

ted, despin times and total water mass requirements were computed.
 

Conceptual designs of the spray, capture and stowage mechanism have
 

also been included.
 

5.1 Satellite Selection
 

Prior to the selection of a satellite to be despun and re

trieved, a selection criteria was established. The particular sat

ellite selected had to be:
 

1. 	A U.S. satellite, preferably of NASA origin.
 

2. 	Compatible with size and mass limitations for shuttle
 
payload.
 

3. 	Its orbit must be reachable by the shuttle.
 

Applying these criteria to a survey of satellites presently in orbit,
 

a selection was made.
 

The shuttle retrieval envelope is illustrated in Figure 10.
 

This figure depicts a summary of shuttle orbit capabilities with
 

respect to semimajor axis, inclination and deliverable payload. It
 

also illustrates the effect of launch site and the use of orbital
 

maneuvering subsystem (OMS) kits on the attainable orbits. Additional
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shuttle orbit and payload capabilities are presented in Appendix A.
 

In addition to shuttle capabilities, Figure 10 shows a complete set of
 

satellites which are reachable by the shuttle. These consist of
 

spacecraft launched up to June 30, 1976 and include U.S. and foreign
 

spacecraft. For a detailed listing of each individual satellite and
 

its orbital parameters, refer to Appendix B.
 

A final list of candidate satellites was obtained by elimin

ating those satellites within the shuttle retrieval envelope which are
 

too large or massive to be retrieved. In addition, only those sat

ellites with inclination between 32.0 and 57.0 degrees, i.e., within
 

the proposed inclination range for the first six shuttle orbital
 

flight tests (12), were considered, Table IV lists the resulting
 

candidate satellites; Figure 10 shows their positions. Of these, OSO- 5
 

Orbiting Solar Observatory, was selected on the rationale that it pre

sents a fairly severe combination of the individual conditions which
 

make retrieval difficult- weight, size and spin rate There are
 

heavier, larger, or faster spinning candidate satellites, but an
 

example based on OSO- 5 will be illustrative of the problems associated
 

with the middle range of each of these conditions.
 

The OSO- 5 is the fifth in a series of eight scientific
 

satellites designed as a vehicle for experiments which collect solar
 

and celestial navigation data. It was manufactured by Ball Brothers
 

Research Corporation, Boulder, Colorado for NASA's Goddard Space
 

Flight Center and launched on 22 January 1969 from Kennedy Space
 

Center. It contains eight primary scientific instruments furnished by
 

U.S. government agencies, and U.S., British and French universities
 

it was successfully operated until 1974, when it was placed in a safe,
 



Table IV
 

Candidate Satellites for Despin and Retrieval
 

Launch Semimajor Inclination Mass Diameter Width Initial Spin Rate
 
Name Date Axis (km) (deg) (kg) (W) () (rpm)
 

Tiros 2 Nov 60 7038 48.5 126 -- a -- a 10
 

OSO I Mar 62 6901 32.8 208 2.34 0.94 30
 

OSO 2 Feb 65 6939 32.8 247 2.34 0.94 
 30
 

OSO 3 Mar 67 6890 32.8 284 2.57 0.79 30
 

OSO 4 Oct 67 6897 32.9 271 2.57 0 94 30
 

OSO 5 Jan 69 6908 32.9 291 2.34 0.97 30-40
 

OSO 6 Aug 69 6865 32.9 290 2.34 0.94 30-40
 

PAC 1 Aug 69 6736 32.9 120 1.35 4 88 --a
 

EXPLORER 44 Jul 71 6879 51.0 
 118 0.76 0.58 60
 

TETR 4 Sep 71 6795 33.0 20 0.30 0.30 --a
 

OSO 8 Jun 75 
 6924 32.9 1066 3.07 2.11 6
 

a 
Data not available.
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stowed mode of operation.
 

The OSO- 5 has a diameter of 1.12 m and height of 0.97 m,
 

as shown in Figure 11. In the launch condition, the arms were folded
 

alongside the third stage of the launch vehicle. Total launch weight
 

was 291 kg. Additional mass and inertia properties are given in
 

Table V.
 

The spacecraft consisted of two main structural sections:
 

the rotating wheel, and the solar-oriented sail The wheel consists
 

of nine wedge-shaped compartments arranged around the central hub and
 

azimuth shaft assembly. Four of the compartments housed the wheel
 

control electronics Attached to three compartments are the extendible
 

arms supporting the spin control gas bottles and reaction jets. These
 

arms are released from the stowed state during the launch sequence
 

and moved upward into the plane of the wheel, thereby increasing its
 

effective diameter and spin moment of inertia. The wheel and sail are
 

connected by the azimuth shaft assembly, which includes appropriate
 

bearings and azimuth shaft, and allows the pointed instruments to be
 

pointed toward the sun.
 

When operational, the sail structure maintained a fixed
 

inertial attitude and the wheel structure rotated at between 27 and
 

39.6 rpm. In its nonoperating mode, however, both parts rapidly
 

equalize their rates due to bearing friction. Calculations show that
 

the current angular rate is approximately 25 rpm.
 

5.2 Satellite Passivation
 

The elimination of OSO- 5 angular momentum was considered
 

as an example application of the WST. Figure 12 illustrates the
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Figure 11. OSO- 5 Overall Dimensions (13)
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Table V
 

0S0- 5 Mass and Inertia Properties
 

Measured or
 
Properties Calculated Values
 

Launch Mass (kg) 291 

Spin Moment of 18.70 Arms Down 

Inertia- Wheel 
(N-m-s2) 24.61 Arms Up 

Spin Moment of 21.67 Arms Down 
Inertia - Wheel 
and Sail (Nom's2 ) 27.59 Arms Up 

Average Transverse 17.70 Arms Down 
Moment of Inertia 
(N-m's2) 18.13 Arms Up 

Ratio of Spin MOI 
to Transverse MO 1.36 Arms Up 
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scheme used for this operation. Water is sprayed from the shuttle
 

retrieval craft, impinging upon OSO- 5, quickly freezing, forming a
 

thin layer of ice over portions of its surface. In this design the
 

nozzle, water and associated hardware are located in the shuttle
 

payload bay. One possible spray system is shown in Figure 13, mounted
 

on an orbital flight test pallet. This system consists of two spherl

cal water storage tanks with 500 kg capacity each. The tanks are lined
 

with flexible rubber bladders. When pressurized by the small nitrogen
 

tank, water is forced to the nozzle where it is then sprayed. The
 

nozzle is pointed via controlled inputs from the shuttle observation
 

deck, making an extravehicular activity (EVA) unnecessary. Low power
 

heaters may be incorporated into the nozzle design to prevent freezing
 

and eventual blocking of the nozzle.
 

The equations of motion developed previously were used to
 

simulate the despin of OSO- 5 via the WST. Using the mass and inertia
 

properties listed in Table V, and assuming an initial spin rate of
 

25 rpm, total water mass requirements and despin times were calculated.
 

The results of these calculations are graphed in Figures 14 and 15 for
 

various values of k. For a k value of 0.50, the total water mass
 

necessary to eliminate 98% of the angular momentum is less than 700 kg
 

The associated despin time is on the order of 700 seconds.
 

5.3 Satellite Capture
 

Having despun OSO- 5, the capture sequence begins. As
 

illustrated in Figure 12, the actual capture of OSO- 5 is performed
 

using the remote manipulator system (PMS) with a jaw-type end effector.
 

Recieving controlled inputs from the shuttle observation deck, the RMS
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moves the mechanical jaws into position about one of the OS0- 5 arms.
 

The jaws close, capturing the spacecraft in its grip. The RMS then
 

returns to the shuttle bay with the satellite for stowage and return.
 

5.4 Satellite Stowage
 

The stowage df OSO- 5 in the shuttle bay is illustrated in 

Figure 16. This scheme employs a specially designed hydraulic grap

pler which holds the spacecraft securely in place through reentry and 

landing. The conceptual design of this grappling mechanism is illus

trated in Figure 17. In use, the PIS positions OSO- 5 such that its 

attachment fitting, i.e., the mount which originally attached the
 

spacecraft to the launch vehicle, is positioned within the hooks of
 

the hydraulic grappler. Once in place, a signal is automatically
 

fed back to the control logic which pressurizes the grappler mechanism
 

causing it to contract, locking tightly around the attachment fitting.
 

This stowage operation is controlled from the shuttle observation
 

deck, making an EVA unnecessary.
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CHAPTER VI
 

CONCLUSIONS
 

A new and safe technique for eliminating angular momentum of
 

disabled spacecraft has been presented here. This would appear to be
 

an ideal method of despLnning because the required logic is extremely
 

simple and there are no safety hazards involved. Furthermore, the
 

working part of the system has essentially no cost and is expendable
 

and need not be brought back to earth.
 

Experimental results have indicated that the accumulation and
 

sublimation of ices in a space-like environment is compatible with the
 

total concept of the water spray retrieval operation. The results show
 

that water freezes almost immediately upon exhausting into a vacuum, and
 

sublimes slower than other ices tested. The effects of additives like
 

alcohol is to increase the sublimation rate which results in a faster
 

retrieval operation. In addition, the proper concentration of alcohol
 

in water can delay freezing of the mixture until it contacts the
 

spinning vehicle. Several factors were seen as effecting the sublima

tion rate: ice layer thickness, surface area, background pressure and
 

temperature. The results also show that proper nozzle design must be
 

considered to keep dispersion at a minimum
 

Based on the assumptions and calculations made in this inves

tigation, it would appear that most old spacecraft in orbits reachable
 

by the space shuttles can be retrieved if spinning, through the use of
 

the WST. During the operational application of this technique, it may
 

be required for the crew to wait up to two hours in order to actually
 

capture the object. This is not seen as a major deterrent in its
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application. Furthermore, the associated masses of water which must
 

be carried into orbit are relatively low compared to the maximum
 

capability of the space shuttle.
 

Further testing and analyses are required before operational
 

use and investments are made for development. These tests should
 

include actual orbital flights which are now under consideration.
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APPENDIX A
 

SPACE SHUTTLE PAYLOAD CAPABILITY
 

The space shuttle payload delivery capabilities are outlined
 

in the following figures. Figures 18 and 19 graph payload mass
 

as a function of circular orbital altitude for Kennedy Space Center
 

(KSC) and Vandenberg Air Force Base (VAFB) launches respectively.
 

The addition of orbital maneuvering subsystems (OMS) kits is also
 

shown. Figure 20 graphs payload mass versus orbit inclination.
 

Again, the effects of additional OMS kits are included. For the
 

purpose of constructing these figures, both delivery and rendezvous
 

maneuvers have been included in computing payload masses.
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APPENDIX B
 

SATELLITES WITHIN THE SHUTTLE -RETRIEVALENVELOPE
 

Orbital data is tabulated for those satellites within the
 

shuttle retrieval envelope given in Figure 10. Table VI includes
 

U.S. satellites while Table VII includes foreign satellites Satellite
 

name, international designation, period and inclination are listed.
 

These tables have been constructed from data compiled by NASA (11).
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Table VI
 

U.S. Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 
Name Designation (min) (deg) 

Explorer 7 1959 IOTA 1 100.6 50.3 

Tiros 1 1960 BETA 2 99.0 48.3 

Transit 2A 1960 ETA 1 101.4 66.6 

GREB 1960 ETA 2 101.3 66.6 

Tiros 2 1960 PI 1 97.9 48.5 

Explorer 11 1961 NU 1 107.1 28.8 

Transit 4A 1961 OMICRON 1 103.7 66.8 

INJUN SR3 1961 OMICRON 2 103.7 66.8 

Tiros 3 1961 RHO 1 100.3 47.8 

Transit 4B 1961 A ETA 1 105.7 32.4 

TRAAC 1961 A ETA 2 105.7 32.4 

Tiros 4 1962 BETA 1 100.2 48.2 

OSO 1 1962 ZETA 1 95.1 32 8 

Tiros 5 1962 A ALPHA 1 100.2 58.0 

Tiros 6 1962 A PSI 1 98.5 58.3 

ANNA lB 1962 B MU 1 107.8 50.1 

Explorer 16 1962 B CHI 1 104.3 52.0 

Transit 5A 1962 B PSI 1 98.3 90.6 

Tiros 7 63024 A 97.0 58.2 

Research Satellite 63026 A 99.5 49.7 
for Geophysics 

Centaur 2 63047 A 107.0 30.3 

Tiros 8 63054 A 99.2 58 4 
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Table VI (continued)
 

U.S. Satellites Within the Shuttle Retrieval Envelope (11)
 

-International Period Inclination 
Name Designation (min) (deg) 

Gravity Gradient 1 64001 B 103.3 69.9 

EGRS 64001 C 103.4 69.8 

Solarad 64001 D 103.4 69.9 

Explorer 20 64051 A 103.8 79.8 

Explorer 22 64064 A 104.6 79.6 

Explorer 23 64074 A 97.6 51.9 

OSO 2 65007 A 95.9 32.8 

Pegasus 1 65009 A 93.8 31 7 

GREB 65016 A 103.4 70.0 

Gravity Gradient 2 65016 B 103.4 70 0 

Gravity Gradient 3 65016 C 103.4 70.0 

Solarad 65016 D 103.4 70.0 

EGRS 3 65016 E 103.4 70.0 

Oscar 3 65016 F 103.3 70.0 

Surcal 65016 G 101,9 70.0 

Dodechedron 65016 H 103.4 70.0 

Explorer 27 65032 A 107.8 41.1 

Pegasus 2 65039 A 95.2 31.7 

Tiros 10 65051 A 100.5 98.1 

OGO 2 65081 A 100.5 87.3 

Explorer 30 65093 A 100.6 59.7 

ESSA 1 66008 A 101.1 97.8 

OAO 1 66031 A 100.8 35.0 
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Table VI (continued)
 

U.S. Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 
Name Designation (min) (deg) 

Ovi-10 66111 B 98.5 93.4 

OSO 3 67020 A 94.8 32.8 

Gravity Gradient 4 67053 C 103.3 69.9 

Gravity Gradient 5 67053 D 103.3 69 9 

OVl-12 67072 D 94.4 101.6 

OSO 4 67100 A 95.0 32.9 

Explorer 37 68017 A 97.8 59.3 

TETR 2 68100 B 95.0 32.8 

OAO-A2 68110 A 100.2 34.9 

OSO 5 69006 A 95.2 32.9 

OO 6 69051 A 96.8 81.9 

OSO 6 69068 A 94.4 32.9 

PAC 1 69068 B 91.7 32.9 

Explorer 44 71058 A 94.6 51.0 

OV1-21 71067 B 100.9 87.6 

TETR 4 71083 B 92.9 33.0 

Explorer 46 72061 A 97.1 37.6 

Copernicus 72065 A 99.6 35.0 

Triac O-IX 72069 A 100.6 90.0 

Skylab 1 73027 A 93.0 50.0 

Explorer 51 73101 A 90.2 67.9 

OSO 8 75057 A 95 6 32.9 

TIP 2 75099 A 98.8 90.3 
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Table VII
 

Foreign Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 
Name Designation (mim) (deg) 

Alouette 1 1962 B ALPHA 1 105.4 80.4 

Polyot 1 63043 A 98.7 58.8 

Cosmos 58 65014 A 96.3 65.0 

Cosmos 72 65053 B 94.1 56.0 

Cosmos 74 65053 D 94.6 56.0 

Cosmos 75 65053 E 94.7 56.0 

FR-I 65101 A 99.7 75.8 

Cosmos 100 65106 A 97.3 65.0 

Cosmos 103 65112 A 96.4 56.0 

Cosmos 108 66038 A 96.5 65.0 

Cosmos 122 66057 A 96.5 64.9 

Diademe 1 67011 A 103.7 39.9 

Cosmos 144 67018 A 96.1 81.1 

Cosmos 151 67027 A 96.7 56.0 

Cosmos 156 67039 A 96.4 81.1 

Cosmos 158 67045 A 100.4 74.0 

Cosmos 184 67102 A 96.6 81.1 

Cosmos 189 67108 A 93.0 73.9 

Cosmos 192 67116 A 99.7 74.0 

Cosmos 198 67127 A 103.4 65.1 

Cosmos 206 68019 A 96.5 81.2
 

Cosmos 209 68023 A 103.1 65.3
 

Cosmos 220 68040 A 98.9 74 0
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TableVil (continued)
 

Foreign Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 

Name Designation (min) (deg) 

Cosmos 226 68049 A 96.3 81.1 

Cosmos 236 68097 A 96.5 56.0 

Cosmos 248 68090 A 93.6 62.2 

Cosmos 250 68095 A 92.5 73.9 

Cosmos 269 69021 A 93.3 74.0 

Meteor 1 69029 A 97.7 81.1 

Cosmos 292 69070 A 99.8 74.0 

Meteor 2 69084 A 97.4 81.2 

Cosmos 304 69091 A 99.8 74.0 

Cosmos 315 69107 A 93.8 74.0 

Meteor 3 70019 A 95.8 81.1 

Cosmos 330 70024 A 94.1 74.0 

Cosmos 332 70028 A 99.9 74.0 

Meteor 4 70037 A 97.9 81.2 

Meteor 5 70047 A 102.0 81.2 

Cosmos 358 70064 A 94.9 74.0 

Cosmos 367 70079 A 104.5 65.2 

Cosmos 371 70083 A 99.8 73.9 

Meteor 6 70085 A 97.3 81.2 

Cosmos 372 70086 A 100.7 74.0 

Cosmos 373 70087 A 93.8 62.8 

Cosmos 381 70102 A 104.8 74.0 

Cosmos 385 70108 A 104.7 74.0 
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Table VII (continued)
 

Foreign Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 

Name Designation (min) (deg) 

Cosmos 387 70111 A 94.6 73.9 

Cosmos 389 70113 A 97.9 81.1 

Meteor 7 71003 A 97.4 81.2 

Cosmos 394 71010 A 96.4 65.8 

Tansei 71011 A 106.0 29.6 

Cosmos 395 71013 A 94.8 74.0 

Cosmos 400 71020 A 104.9 65.8 

Cosmos 402 71025 A 104.9 64.9 

Tournesol 71030 A 95.4 46.3 

Meteor 8 71031 A 96.9 81.2 

Cosmos 407 71035 A 100.9 74.0 

Cosmos 422 71046 A 105.0 74.0 

Cosmos 425 71050 A 94.6 74.0 

Meteor 9 71059 A 97.1 81.1 

EOLE 1 71071 A 100.6 50.1 

Cosmos 436 71074 A 94.6 74 0 

Cosmos 437 71075 A 94.8 74.0 

Prespero 71093 A 106.3 82.0 

Cosmos 460 71103 A 94.7 73.9 

Cosmos 461 71105 A 93.7 69.2 

Ariel 4 71109 A 94.1 82.9 

Cosmos 465 71111 A 104.8 74.0 

Cosmos 468 71114 A 100.7 74.0 
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TableVIl (continued)
 

Foreign Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 
Name Designation (min) (deg) 

Cosmos 469 71117 A 104.7 64 4 

Meteor 10 71120 A 102.6 81.2 

Cosmos 475 72009 A 104.7 74.0 

Cosmos 476 72011 A 97.1 81.2 

TD-lA 72014 A 95.0 97.5 

Cosmos 479 72017 A 94.7 74.0 

Meteor 11 72022 A 102.5 81.2 

Cosmos 489 72035 A 104.7 74.0 

Cosmos 494 72043 A 100.7 74.0 

Meteor 12 72049 A 102.8 81.2 

Cosmos 500 72053 A 94.8 74.0 

Cosmos 514 72062 A 104.3 82.9 

Cosmos 516 72066 A 104.5 64.8 

Cosmos 521 72074 A 104.9 65.8 

Meteor 13 72085 A 102.5 81.2 

Cosmos 536 72088 A 94.9 74.0 

Cosmos 540 72104 A 100.7 74.0 

Cosmos 542 72106 A 96.2 81.2 

Cosmos 544 73003 A 94.9 74.0 

Cosmos 546 73005 A 96.5 50.6 

Cosmos 549 73010 A 94.9 74.0
 

Meteor 14 73015 A 102.5 81.2
 

Meteor 15 73034 A 102.4 81.2
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Table VII(continued)
 

Foreign Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 
Name Designation (min) (deg) 

Cosmos 574 73042 A 105.0 82.9 

Cosmos 582 73060 A 95.0 74 0 

Cosmos 586 73065 A 104.8 82.9 

Cosmos 604 73080 A 97.1 81.2 

Intercosmos 10 73082 A 95.2 73.9 

Cosmos 610 73093 A 95.0 74.0 

Cosmos 614 73098 A 100.6 74.0 

Cosmos 626 73108 A 104.0 65.4 

Cosmos 627 73109 A 105.0 82.9 

Cosmos 628 74001 A 104.8 82.9 

Cosmos 631 74005 A 95.1 74.0 

Meteor 16 74011 A 102.1 81.2 

UK-X4 74013 A 101.1 97.8 

Cosmos 648 74024 H 102.5 81.2 

Cosmos 651 74029 A 103.4 64.9 

Cosmos 654 74032 A 104.4 64.9 

Intercosmos 11 74034 A 94.5 50 5 

Cosmos 655 74035 A 95.1 74.0 

Cosmos 661 74045 A 95.0 74.0 

Cosmos 662 74047 A 90.5 70.8 

Cosmos 663 74048 A 104.8 82.9 

Meteor 18 74052 A 103.0 81.2 

Cosmos 673 74066 A 97.0 81.2 
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TableVII (continued)
 

Foreign Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 
Name Designation (min) (deg) 

ANS 74070 A 94.9 98.0 

Cosmos 676 74071 A 100.9 74.0 

Cosmos 687 74076 A 93.0 73 9 

Cosmos 689 74079 A 105.0 82.9 

Meteor 19 74083 A 102.4 81.1 

Meteor 20 74099 A 102.3 81.2 

Cosmos 698 74100 A 95.2 74.0 

Cosmos 700 74105 A 104.7 82.9 

Salyut 4 74104 A 90.9 51.5 

Cosmos 699 74103 A 92.6 65.0 

Cosmos 707 75008 A 95.0 74.0 

Starlette 75010 A 104.1 49.8 

Intercosmos 13 75022 A 103.9 82.9 

Meteor 21 75023 A 102.5 81.2 

Cosmos 723 75024 A 103.7 64.7 

Cosmos 724 75025 A 103.0 65.5 

Cosmos 726 75028 A 104.6 82.9 

Ariabat 75033 A 96.4 50.6 

Cosmos 729 75034 A 104.9 82.9 

Castor 75039 B 99.0 29.9 

Cosmos 744 75056 A 97.0 81.2 

Cosmos 749 75062 A 95.1 74.0 

Meteor 2 75064 A 102.4 81.2 
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Table VII (continued)
 

Foreign Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 
Name Designation (mmn) (deg) 

Cosmos 750 75067 A 93.9 71.0 

Cosmos 752 75069 A 94.5 65.8 

Cosmos 755 75074 A 104.9 82.9 

Cosmos 756 75076 A 97 2 81.2 

KIKU 75082 A 105.9 46.9 

Meteor 22 75087 A 102.3 81.2 

D2-B 75092 A 96.8 37.1 

Cosmos 773 75094 A 100.8 74.0 

Cosmos 778 75103 A 104.8 82.9 

Cosmos 781 75109 A 95.1 74.0 

Cosmos 783 75112 A 100.9 74.0 

Intercosmos 14 75115 A 105.1 73.9 

Cosmos 785 75116 A 104.2 65.0 

Meteor 23 75124 A 102.3 81.2 

Cosmos 787 76001 A 95.2 74.0 

Cosmos 789 76005 A 104.9 82.9 

Cosmos 790 76007 A 95.2 74.0 

Cosmos 800 76011 A 105.0 82.9 

Cosmos 801 76012 A 94.7 70.9 

Cosmos 803 76014 A 96.3 65.8 

UME 76019 A 105.1 69.6
 

Cosmos 808 76024 A 97.0 81.2
 

Cosmos 812 76031 A 95.1 74.0
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TableVII (continued)
 

Foreign Satellites Within the Shuttle Retrieval Envelope (11)
 

International Period Inclination 
Name Designation (min) (deg) 

Meteor 24 76032 A 102.2 81.2 

Cosmos 816 76037 A 94.5 65.8 

Meteor 25 76043 A 102.3 81.2 

Cosmos 818 76044 A 91.8 71.0 

Cosmos 822 76049 A 94.4 74.0 

Cosmos 823 76051 A 104.9 82.9 

Intercosmos 15 76056 A 94.6 74.0 

Salyut 5 76057 A 89.2 51.5 

Cosmos 834 76058 A 88.9 81.3 

Cosmos 835 76060 A 100.9 74.0 

Cosmos 836 76061 A 89.4 65.0 


