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I. SUMMARY

The objective of this program was to optimize the NASA lib-11
composition, an alloy originally developed as a conventional wrought
material, and to determine the feasibility for producing the alloy using
powder metallurgy techniques. The program was divided into two tasks.
Task I involved a preliminary evaluation of compositions directed towards
eliminating thermal instability characteristics of the wrought alloy. In
Task II, further compositional and powder processing variations were
evaluated.

The four Task I compositions were prepared by melting and
atomization, hot isostatic pressing (HIP), cross rolling and heat treat-
ment. Several HIP parameters were identified which can materially affect
the hot workability of the HIP preforms during cross rolling. These
included the degree of hot degassing,and temperature measurement and
control during the HIP cycle. Results indicate a need for hot degassing
at 540°C (1000°F) until nil outgassing is attained. HIP temperature/time
parameters were determined to be 1245°C (2275°F) for six hours with
insulated thermocouples placed directly on the load. Disks representing
the Task I compositions were successfully fabricated when proper HIP
parameters were employed for consolidation. Heat treatment cycles optimum
for wrought material were found to be unacceptable for the powder alloys.
Difficulties were encountered in obtaining the desired degree of grain
boundary precipitation during aging of powder metallurgy product. As a
result, none of the Task I compositions produced by powder metallurgy
techniques were comparable with the mechanical properties of wrought material.

In Task II, three compositions were melted and atomized, con-
solidated by HIP and then processed to disks. Hot versus cold loading/
unloading during HIP was found to have little effect on mechanical properties
or microstructure. However, cross rolling temperature was found to have a
significant effect on the response of the alloys to grain coarsening during
solution treatment. A higher cross rolling temperature was found to yield
coarser grain sizes than a lower temperature, especially for the low carbon
compositions. Problems were experienced with excessive grain boundary
precipitation during aging of the powder metallurgy product. The fine,
dense carbide dispersion, typical of powder alloys, rendered solutioned
carbon a ready access for grain boundary precipitation. The grain boundary
carbides had an adverse effect on rupture strength. As a result, a
procedure involving slow cooling from the solution treatment temperature
was developed. The slow cooling permitted the carbon in solution to
precipitate at higher temperatures as more stable MC carbides, and resulted
in less carbon being available for precipitation during aging at lower
temperatures. Significant improvements in rupture strength for all Task II
compositions were observed with the slow cool heat treatment. Intermediate
temperature yield strength decreased slightly. While the alloys evaluated
in Task II were not susceptible to the formation of TCP (topologically
close-packed) phases during an accelerated thermal exposure at 870°C
(1600°F) for 1500 hours, tensile and stress rupture properties decreased



duo to the decomposition of MC carbides and formation of MgC in grain
boundaries at the exposure temperature. Since the exposure temperature
is well above the service temperature of 760°C (1400°F) for the alloy,
one may question the validity of this "accelerated" exposure test.



IT. INTRODUCTION

Since the discovery of jet engines, a continuing emphasis has
been placed on increasing the thrust potential of aircraft to permit
increased speeds and/or payloads. One method for achieving these increases
has been through improved engine and airframe design. Considerable effort
has been expended and major improvements have been achieved in these areas
over the years; efforts are continuing. However, another method for
increasing thrust which has not been as widely explored is the development
of improved materials. If new materials could be developed which would
exhibit the properties characteristics of today's materials at higher
operating temperatures, the maximum engine operating temperatures could
be increased and corresponding thrust improvements could be realized.

Superalloy improvements to date have primarily been achieved
through increased alloy contents in nickel-base alloys. Trends toward
increasing strength by precipitation hardening (gamma prime) resulted
in high aluminum and titanium contents in current alloys. Also, solid
solution strengthening was accomplished by increasing conventional
alloying elements such as molybdenum, columbium, and tungsten. These
have been supplemented by additions of more unique strengthening elements
such as tantalum, vanadium, hafnium and rhenium. While the desired
improvements in strength have been realized, they have carried various
deficiencies with them. Among the most significant are severe segregation
and poor hot workability.

Within the past several years, powder metallurgy concepts have
been called upon to alleviate these deficiencies. Instead of casting
large ingots of these highly-alloyed compositions with severe segregation,
powder metallurgy utilizes principles of molten metal atomization to cast
spherical particles less than 30 micrometers (0.010 inch) in diameter.
Each particle represents the composition of the master heat; and, regard-
less of the complexity of the alloy, segregation effects are rendered
negligible.

NASA IIb-11 represents one of the most promising experimental
alloy compositions currently under development. The alloy was initially
developed as a conventional wrought alloy under two NASA contracts con-
ducted by Universal-Cyclops Specialty Steel Division, Cyclops Corporation.^1'2^
The wrought composition displayed 760°C (1400"F) strength and stress rupture
properties considerably higher than any known alloy either commercially
available or under development. However, the material is very difficult
to hot work in the cast form such that the wrought approach may not be
commercially feasible for large production quantities of the alloy. In
addition, previous studies indicated the alloy was susceptible to
instability after extended exposure at elevated temperatures^). However,
this work also indicated the instability problem might be solved through
minor chemistry modifications.

This program was initiated to determine the feasibility for pro-
ducing NASA IIb-11 using powder metallurgy techniques. In addition, efforts



to eliminate the thermal instability of the alloy were included via
modifications to the standard analysis. The program was organized to
permit preliminary alloy screening studies, while establishing the
feasibility for producing the alloy using a powder metallurgy approach.
Secondary alloy screening and investigation of selected powder metallurgy
consolidation parameters were incorporated into the final phase of the
program.



IJJ. PROCEDURE

A. Task I - Evaluation of Alloys - Group J

2. Alloy Selection

Recent development studies conducted by NASA and Universal-Cyclops
on contract NAS3-14309 had shown NASA IIb-11 to exhibit the best combination
of 760°C (1400°F) tensile and stress rupture properties of any currently
available or developmental alloy.(2) However, the alloy was produced using
conventional cast and wrought techniques in experimental quantities. It
was determined that a powder metallurgy approach would be necessary to
produce production quantities of the alloy due to its high alloy content
and resultant difficulty to hot work in the as-cast condition. In addition,
the previous study revealed that the alloy was thermally unstable as
evaluated, and recommended guidelines for improving this condition using
chemistry modifications.

Guidelines for the chemistry modifications were based on a study
which revealed NASA IIb-11 to be susceptible to the formation of a
tungsten-rich mu-phase after long time exposure [i.e., 1500 hours at
870°C (1600°F)]. The effect of thermal exposure on the tensile properties
of 17 alloy compositions within the NASA lib alloy system is illustrated
in Figure 1. This effect was determined by comparing ultimate tensile
strength before and after exposure, and calculating a percent loss of
ultimate strength for each composition. The compositions were subjected
to electron vacancy calculations (Nv) using the method developed by
Woodyatt and others.(̂ ) The percent loss in room temperature ultimate
tensile strength versus Ny is plotted in Figure 1 for all 17 compositions.
Using a ten percent loss of ultimate tensile strength as the maximum allow-
able loss for stable compositions, thermal stability limits within the alloy
system were defined. As illustrated, compositions with Nv numbers below 2.18
would be predicted stable; the range greater than 2.18 and less than 2.22 was
uncertain; and, greater than 2.22 would indicate instability.

The four alloy compositions chosen for study in Task I are listed
in Table 1. The NASA IIb-11 composition developed as a cast and wrought
alloy in the previous study(2)f was included as a control composition in
Task I, in spite of its higher Nv number of 2.22, and its tendency towards
thermal instability. Some consideration was given to the theory that the
alloy might not be unstable if produced by the less segregation prone
powder metallurgy techniques. The second composition, NASA Ilb-llS, was
modified with only slight decreases in tungsten from 7.5 to 7.0 percent,
aluminum from 4.5 to 4.3 percent, and vanadium from 0.5 to 0.4 percent.
These modifications were made primarily to effect a decrease in the Nv
number into the predicted stable range below 2.18. Task I modifications
NASA Ilb-llA and Ilb-llB were designed to investigate the effect of carbon
and hafnium variations on the mechanical properties of NASA IIb-11. This
approach was taken based on work conducted by Miner(̂ ) which was in progress.



Both a low carbon-high hafnium composition (Ilb-llA) and a high carbon-
high hafnium composition (Ilb-llB) were formulated. Reductions in tungsten,
aluminum, and vanadium were implemented at the same levels as the NASA
Ilb-llS composition, with the exception of NASA Ilb-llA which required a
further reduction in tungsten from 7.0 to 6.0 percent to maintain an
acceptable Nv number. The Nv numbers for NASA IIb-11, Ilb-llS, Ilb-llA,
and Ilb-llB aim analyses were 2.22, 2.15, 2.13, and 2.14, respectively.

2. Series I Evaluation

a. Materials

Virgin raw materials were used for all heats melted to minimize
the level of impurity elements and their potential effects on resultant
properties. A minimum purity level of 99.9 percent was specified for all
alloying elements.

b. Melting and Atomization

The four Task I compositions were vacuum induction melted in
57 kilogram (125 Ib) heat quantities, and directly argon atomized into
powder. The powder was collected, screened in air to -60, +325 mesh and
blended.

c. Chemical Analysis

A sample for chemical analyses was taken from the vacuum
induction furnace immediately prior to atomization. The samples were
sectioned to provide a solid for x-ray spectrographic analysis, and lathe
turned to provide chips for wet chemical analysis. Carbon, boron, hafnium,
and zirconium were analyzed using wet techniques, while the balance of the
elements were analyzed using x-ray spectrographic procedures.

d. Processing

(1) First Trial

(a) Hot Isostatic Pressing (HIP)

Approximately 40 kilograms (90 Ib) of powder repre-
senting each of the four Task I compositions was forwarded to Battelle
Memorial Institute in Columbus, Ohio for canning, evacuation, and HIP.
Cylindrical containers were fabricated by Battelle to inside dimensions of
16 centimeters (6.3 in) in diameter by 15 centimeters (6.0 in) thick. The
containers were prepared from 2.4 millimeter (0.095 in) thick 1008 steel.
Outgassing stems of a heavier wall mild steel tubing were welded into the
center of the upper lids of the containers. The container components were
welded with the exception of the upper lid, and thoroughly cleaned. Powder
was loaded after cleaning and lids were welded in an argon atmosphere.
Approximately 18 kilograms (40 lb)_ of powder was loaded into each container.



The loaded containers were transferred to a heat
treatment furnace and the stems were attached to a vacuum system. Prior
to initiating heat, a vacuum of 0.1 Pa (1 x 10~^mm of mercury) was
attained. The containers were heated to 480°C (900°F) over a ten hour
period and were held at 480°C (900°F) for one hour. The containers were
cooled to 315°F (600°F) and a vacuum of 1.0 Pa (8 x 10~3mm of mercury)
was achieved prior to sealing the degassing stems. All containers were
leak checked prior to initiating the HIP cycle.

The containers were loaded by stacking into the
autoclave and unshielded thermocouples were placed at the top and bottom
container in the vessel (T/C-1 and T/C-2). Thermocouples were also placed
90° from the above thermocouples at the mid-point of the load and 15
centimeters (6 in) below the load; these were designated T/C-5 and T/C-6,
respectively. Pressing was accomplished by subjecting the load to maximum
temperature/pressure parameters of 1150°C (2100°F) and 100 MPa (15 ksi)
for three hours.

(b) Cross Rolling

The HIP preforms consolidated at Battelle were prepared
for cross rolling by machining, sectioning and recanning. The HIP cans
were removed by lathe turning, as was a slightly porous surface layer;
previous experience has indicated workability problems can result if this
layer is not removed prior to subsequent hot working. After turning the
outside diameter, the billets were each sectioned in half and all faces
were turned parallel. The dimensions of all eight preforms prior to canning
were 13 centimeters (5 in) in diameter by 6 centimeters (2.375 in) thick.
The preforms were placed into sections of mild steel tubing cut to the
same thickness with an inside diameter of 13 centimeters (5 in) and a wall
thickness of 2.5 centimeters (1.0 in). Cover plates of UT HX, a nickel
base solid solution hardened alloy, were TIG welded to the mild steel as
shown in Figure 2 using UT HX filler wire.

The eight canned preforms were forwarded to Universal-
Cyclops' Pittsburgh Plant for cross rolling. The preforms were soaked at
1065°C (1950°F) for four hours prior to rolling. Rolling was conducted
using ten single passes with reheating at 1065°C (1950°F) after each pass.
Rolling reductions were initiated with light five percent passes and
reductions were gradually increased to ten percent. The actual ten pass
sequence was five, five, seven, seven, nine, nine, nine, nine, ten and
ten percent. The cans were indexed 90° after each pass to maintain the
circular configuration of the preforms. The total material reduction was
56.7 percent from 6 centimeters (2.375 in) thick to 2.6 centimeters (1.028 in)
thick.

(c) Evaluations

After cross rolling, the eight canned preforms were
decanned and seven of the eight disks revealed severe cracking. Th<? poor
workability experience necessitated additional evaluations to determine the



cause for the severe cracking. Samples representing the two NASA lib-1IB
disks were analyzed for argon, hydrogen, oxygen and nitrogen. Although
these disks were sectioned from the same preform, one cracked severely
while the other displayed no cracking In addition, material representing
each of the four alloy compositions was analyzed for tramp elements including
manganese, silicon, sulfur and phosphorus. The possibility of trace element
contamination was also explored with a sample of NASA IIb-11 submitted for
analysis by mass spectrographic techniques for nearly 70 elements.
Finally, samples of the fractured areas were examined using a scanning
electron microscope (SEM).

(2) Second Trial

(a) Hot Isostatic Pressing

Using remaining powder available from initial melting
and atomization, additional HIP trials were conducted at Industrial Materials
Technology (IMT) in Woburn , Massachusetts. Approximately 6.8 kilograms
(15 Ib) of powder representing each of the four compositions was canned in
one master can. A section of 6.4 millimeter (0.25 in) wall tubing ap-
proximately 30.5 centimeters (12 in) high with an 18 centimeter (7 in)
inside diameter was used. Mild steel spacers 1.25 centimeters (0.5 in)
thick were used as tops and bottoms and to separate the four compositions.
The spacers were 16.5 centimeters (6.5 in) in diameter, and mild steel
powder was used to fill the annular ring between the outside diameter of
the spacers and the can wall. The container was pumped cold to a vacuum
of 0.001 Pa (1 x 10-5mm) and heated slowly to 650°C (1200°F), maintaining
high vacuum. The can was held until no outgassing was observed, which in
this case was 24 hours. After sealing, the can was placed in an autoclave
and subjected to maximum HIP parameters of 1200°C (2200°F) and 103 MPa
(15 ksi) using a three hour hold at maximum conditions. The control thermo-
couple was placed at the top of the can and was insulated and shielded using
refractory grouting.

(b) Cross Rolling

The HIP preform resulting from the IMT cycle was
sectioned, machined and recanned in preparation for cross-rolling. Sufficient
material was removed to insure no contamination from the mild steel sep-
araters or powder. The pieces were machined to sizes of 13 centimeters
(5.2 in) diameter by 3.8 centimeters (1.5 in) thick prior to canning.
Canning was conducted following procedures described in the previous section.
Cross rolling was also conducted according to temperatures and reduction per-
centages outlined in a previous section. Again, the total material reduction
was 56.7 percent.

(c) Evaluations

After cross rolling, the four disks were dec^nned.
The pieces were cracked so severely that testing could not be performed.



3. Series II - Evaluation

a. Melting and Atomization

The four Task I compositions were rental ted to provide powder
for a repeat of the Task I trials. The compositions were melted and atomized
in 45 kilogram (100 Ib) heat quantities. The powder was collected,
screened in air to -60, +325 mesh and blended.

b. Chemical Analysis

The sample for chemical analysis was taken from the vacuum
induction furnace immediately prior to atomization. Analytical techniques
were as previously described.

c. Processing

(1) Hot Isostatic Pressing

Material representing each of the four compositions was
loaded into cans with inside dimensions of approximately 16.5 centimeters
(6.5 in) diameter by 13 centimeters (5 in) thick. The containers were
fabricated by IMT. The cans were hot degassed as previously described at
650°C (1200°F) and then subjected to HIP at maximum temperature/pressure
parameters of 1230°C (2250°F) and 103 MPa (15 ksi). The hold time at
maximum conditions was six hours.

(2) Cross Rolling

The Series II HIP preforms consolidated at IMT were
sectioned and machined in preparation for cross rolling. Two pieces were
prepared representing each composition with approximate dimensions of
13.8 centimeters (5.45 in) in diameter by 4.5 centimeters (1.75.in) thick.
Canning was conducted as described previously, and illustrated in Figure 2.
The eight preforms were rolled from 1065°C (1950°F) using the same pre-
heating time and reduction sequence as described previously. The ten
single passes resulted in a total material reduction of 56.7 percent.

(3) Structural Examinations

After cross rolling, one preform representing each com-
position was sectioned to provide micro samples from edge, mid-radius and
center locations. Samples for light microscopy were mounted, polished and
etched using one or more of the following etches to provide the desired
structural features:

(a) 60 percent water
15 percent sulfuric acid
15 percent hydrofluoric acid
9 percent nitric acid
1 percent hydrogen peroxide



(b) 85 percent water
14 percent hydrochloric acid
1 percent hydrogen peroxide

(c) 33 percent nitric acid
33 percent acetic acid
33 percent citric acid
1 percent hydrofluoric acid

d. Heat Treatment Evaluation

(1) Selection of Optimum Treatment

The optimum heat treatment determined for the wrought
version of NASA IIb-11 was as follows: 1220°C (2225°F)/2 hours/RAC +
870°C (1600°F)/16 hours/RAC + 760°C (1400°F)/16 hours/AC<2). This
represents a three stage heat treatment involving full solution treat-
ment, intermediate aging and final aging, respectively. Rapid air cooling
(RAC) was accomplished by forced air blower. Using the above as a guide-
line, the objective of this evaluation was to determine the optimum heat
treatment for powder NASA IIb-11 variations. Thirteen samples were
sectioned from disks representing each of the four compositions. Eight
full solution heat treatment variations involving temperature and time
were evaluated for each composition as follows:

Full Solution Treatments (FST)

[]] 1220°C (2225°F)/2 hours/RAC
[2] 1220°C (2225°F)/60 hours/RAC
[3] 1230°C (2250°F)/2 hours/RAC
[4] 1230°C (2250°F)/4 hours/RAC
[5] 1230°C (2250°F)/24 hours/RAC
[6] 1245°C (2275°F)/2 hours/RAC
[7] 1260°C (2300°F)/2 hours/RAC
[8] 1260°C (2300°F)/6 hours/RAC

Based on examination by optical microscopy, an optimum full solution treat-
ment was to be chosen for each composition based primarily on achieving a
grain size in the desired range of ASTM 4 to 5.

Four intermediate aging variations involving temperature
and time were also evaluated in combination with the chosen optimum full
solution treatment for each composition as follows:

Intermediate Aging Treatments (IA)

[1J FST + 870°C (1600°F)/16 hours/RAC
[2] FST + 900"C (1650°F)/16 hours/RAC
[3] FST + 1040°C (1900°F)/2 hours/RAC
[4] FST + 1065°C (1950°F)/2 hours/RAC

Based on optical microscopy examination, an optimum intermediate aging
treatment was selected for each composition based on an arbitrarily desired
degree of gamma prime and grain boundary carbide precipitation.
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Prior studies had conclusively shown that a final aging
treatment of 760°C (1400°F)/16 hours/AC was optimum and this treatment, was
employed for each composition after the optimum full solution and inter-
mediate aging treatments had been selected.

(2) Structural Examinations

All thirteen heat treatment variations for each composition
were characterized by optical microscopy examination. In addition, electron
microscopy and x-ray phase analysis were used to further characterize the
fully heat treated samples from each composition. Samples were prepared
for electron microscopy by mechanically polishing through 600 grit silicon
carbide abrasives, followed by electrolytic polishing in a solution of
perchloric acid in alcohol. A variety of etching solutions similar to
those described in a previous section were employed to accentuate the
desired structural characteristics. The polished and etched specimens
were single-stage replicated using a one percent solution of parlodion
in isoamylacetate. Shadowing was performed with chromium at various angles
of deposition. Photographs were taken at various magnifications; however,
all were photographically enlarged to twice the indicated microscope
magnification (i.e., 3000X to 6000X).

As-heat treated samples were prepared for x-ray analysis
by machining to a standard size, electrolytically cleaning in a ten percent
solution of hydrochloric acid in methanol for ten minutes, rinsing, and
electrolytically digesting in a solution of the same mixture for 30 minutes
at a current density of approximately 0.04 A/crn̂  (0.25 A/in?). This
extraction procedure is designed to dissolve the matrix selectively while
permitting intermetallic phases to remain unattached and collect in the
bottom of the container. The extracted residues were cleaned in methanol,
dried, mounted on glass slides and subjected to x-ray diffraction analysis.
The resulting patterns were compared with standard RSTM reference cards to
identify phases present.

e. Mechanical Testing

Specimens for mechanical testing were sectioned from each of
the disks by abrasive cutting, rough machining, heat treating, and finish
machining and polishing to the prescribed dimensions. All specimens
conformed to ASTM specifications.

(1) Tensile Tests

Tensile tests were performed in duplicate on .material
representing each 'composition at room temperature, 650°C (1200°F) , 760°C
(1400°F) and 870°C (1600°F). All tests were conducted on a 225 kilonewton
(50,000 pound) unit. The specimens were pulled at a nominal strain rate
of 0.005 minute~l up to the yield point, where the rate was increased to
0.05 minute'1. The 0.2 percent yield point was measured using a
deflectometer.
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(2) Stress Rupture Tests

Duplicate stress rupture tests were conducted for each
composition at three conditions including 650°C/1210 MPa (1200°F/175 ksi),
760°C/620 MPa (1400°F/90 ksi) and 870°C/380 MPa (1600°F/55 ksi). All
tests were conducted on lever arm testing machines with furnaces controlled
to +_ 3°C (5°F) . Rupture life was measured from the time of application of
the load (approximately 15 minutes after temperature equalization).

(3) Creep Tests

Duplicate creep tests were conducted on material repre-
senting each composition at conditions of 760°C/620 MPa (1400°F/90 ksi).
Furnace and loading conditions were as described above for stress rupture
tests. The time to 0.2 percent creep was measured using an extensometer.

f. Thermal Stability Evaluations

(1) Thermal Cycle

Specimens representing each of the four Task I - Series II
compositions heat treated per experimentally determined results were exposed
for 1500 hours at 870°C (1600°F). These specimens included two tensile and
two stress rupture blanks along with samples for structural examination.
All material was enclosed in a protective package during the exposure to
prevent excessive oxidation or external contamination.

(2) Mechanical Testing

After exposure at 870°C (1600°F), the tensile and stress
rupture specimen blanks were finish machined and polished to size. Duplicate
specimens were tested in tension at 760°C (1400°F) and in stress rupture
at 760°C/620 MPa (1400°F/90 ksi) . Direct comparison with as-heat treated
results established the effect of the exposure on these property
characteristics.

(3) Structural Examinations

Samples from each composition after exposure were examined
using optical and electron microscopy and x-ray phase analysis procedures
as described in a previous section. Again, direct comparison with as-heat
treated specimens established the effect of the exposure on structural
characteristics.

g. I^nsity Measurements

As-rollod specimens representing each of tie four Serie ; JJ
compositions were subjected to density measurement usi ig water displace-
ment procedures.
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h. Data Analysis

Prior to proceeding into Task II of the contract, Task I
mechanical property data and structural examinations were reviewed in
detail with the objective of selecting one of the Task I compositions
for more detailed study in Task II. However, since results for the best
Task I alloy were not favorable as compared with the originally developed
wrought version of the alloy, additional compositional screening studies
were performed in Task II.

B. Task II - Evaluation of Alloys - Group II

1. Alloy Selection

Chemistry modifications for Task II alloys were formulated based
on Task I results combined with input'from previous programŝ 2'̂ l Due
to problems in achieving adequate grain growth in the Task I compositions,
lower carbon levels of 0.055 and 0.095 percent were selected for Task II
compositions. Hafnium was also evaluated at levels of 0.7 and 1.3
percent, which permitted evaluation of interactions: high carbon-high
hafnium, low carbon-high hafnium, and low carbon-low hafnium. Several
other chemistry modifications common to Task II alloys were made to
maintain Nv numbers below the 2.18 limit. Due to the decreased avail-
ability of carbon compared with the base Task I composition, carbide
forming elements such as tantalum and tungsten were reduced from 7.0 to
6.6 percent and from 7.5 to 7.1 percent, respectively. In addition,
chromium was reduced from 9.0 to 8.5 percent, also in the interest of
maintaining low Nv levels. Aluminum and vanadium were raised slightly
to levels of the original NASA IIb-11 composition. The three Task II
alloys were also melted to lower boron and zirconium levels than the
original composition. Boron was lowered from 0.02 to 0.01 and zirconium
from 0.1 to 0.05 percent; original levels were believed too high for
alloys of this type. The Nv numbers for the Task II alloys identified as
Ilb-llC, Ilb-llD and Ilb-llE were 2.14, 2.16 and 2.13, respectively. The
compositions formulated for evaluation in Task II of this program are
listed in Table 1 along with the Task I compositions.

2. Melting and Atomization

The three Task II alloys were melted and atomized to powder using
procedures previously described for the Task I materials. NASA Ilb-llC
was melted as one 90 kilogram (200 Ib) heat while alloys Ilb-llD and
Ilb-llE were each melted as 35 kilogram (75 Ib) heats.

3. Chemical Analysis

Solid specimens for chemical analysis were taken representing
each heat immediately prior to atomization. Analysis techniques were as
previously described.
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4. Processing

a. Hot Isostatic Pressing

A total of five cans, three representing Ilb-llC and one each
representing Ilb-llD and Ilb-llE, were prepared for hot isostatic pressing.
All canning, evaluation and pressing was conducted by Federal-Mogul
Corporation, Detroit, Michigan. The can inside dimensions were approxi-
mately 15 centimeters (6 in) in diameter by 15 centimeters (6 in) high.
The powders were loaded into the cans, evacuated by heating to 425°C
(800°F) until desired vacuum levels and leak rates were achieved, then
sealed. One can representing each of the three compositions was subjected
to pretreatment at 980°C (1800°F), loaded hot into the autoclave, and pressed
at conditions of 1245°C (2275°F) and 100 MPa (15 ksi) for four hours.
After depressurization of the vessel, the three cans were removed hot at
1070°C (1950°F) and air cooled.

The two additional cans representing Ilb-llC were subjected
to varying loading and pretreatment cycles to evaluate the effect of these
variables on the same composition. As opposed to the initial Ilb-llC can
which was pretreated and hot loaded and unloaded, the second can was also
pretreated at 980°C (1800°F) for two hours, but was cold unloaded (i.e.,
allowed to cool slowly in the autoclave). The third can was hot loaded
and unloaded similar to the first, but was given no pretreatment. All
five cans were pressed at the same temperature, pressure and time con-
ditions. A listing of the consolidation handling variables is presented
in Table 2, along with identity designations (C, Cl, C2, D and E) for
each of the five preforms.

b. Preliminary Rolling Studies

The five Federal-Mogul hot isostatically pressed preforms were
machined for can removal to sizes of approximately 13 centimeters (5 in)
in diameter and 13 centimeters (5 in) thick. One slice approximately 2
centimeters (0.75 in) thick was sectioned from each preform. The
slices were further sectioned to yield four 2.5 centimeter (1 in)
square pieces. These pieces were canned and variously cross rolled by
four different procedures as follows:

[1] Standard pass reductions from 1065°C (1950°F) with
single passes between reheats.

[2] 1245°C(2275°F)/2 hours/RAC + [1J above.
[3] Standard pass reductions from 1065°C (1950°F) with double

passes between reheats.
[4] Standard pass reductions from 1120°C (2050°F) with single

passes between reheats.

In each case the standard reduction sequences were five, five, seven,
seven, nine, nine, nine, nine, ten and ten percent for a total of 55.7
percent.
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The four rolled specimens from each of the five preforms were
each solution treated at two temperatures: 1230°C (2250°F) and 1245°C
(2275°F)/2 hours/RAC. A total of forty specimens were examined by
optical microscopy to determine the effect of the rolling cycle variations
on response to grain growth during heat treatment. The objective was to
obtain grain sizes in the range of ASTM 4 to 5 after heat treatment of
hot rolled material. Based on these evaluations, an optimum rolling
sequence was determined for each of the five preforms.

c. Cross Rolling

One mult approximately 13 centimeters (5 in) in diameter by 5
centimeters (2 in) thick was sectioned from each of the five preforms and
was canned as previously described in preparation for cross rolling. The
canned preforms were hot rolled per selected procedures determined from
the preliminary studies described above.

5. Heat Treatment Evaluation

a. Mechanical Property Survey

Eight heat treatment cycles were formulated for evaluation
based on previous experience, and as mechanical property results were
obtained. Mechanical test specimens and micro samples were sectioned
from cross rolled disk material representing the five preforms. Material
heat treated using the various cycles was tensile tested at 540°C (1000"F)
and 760°C (1400°F), and stress rupture tested at 760°C/690 MPa (1400°F/
100 ksi) and 815°C/485 MPa (1500°F/70 ksi). Approximately eighteen
mechanical test specimens were evaluated at combinations of the above
test conditions for each of the five preforms. Based on the mechanical
test data, an optimum heat treatment cycle was selected for each of the
five composition/consolidation combinations.

b. Structural Examinations

The best heat treatment selected for each of the preforms was
further characterized by optical and electron microscopy and x-ray phase
analyses. Procedures for these studies were detailed in a previous
section of this report.

6. Mechanical Property Evaluation

Mechanical testing was conducted on each of the five composition/
consolidation combinations after hot rolling to disks. Specimen blanks
were sectioned from the cross rolled disks and heat treated by the nest
method determined from the heat treatment evaluation.

a. Tensile Tests

Duplicate tensile tests were conducted on as-heat treated
material at room temperature, 540°C (1000°F), 650°C (1200°F), 760°C
(1400°F) and 815°C (1500°F) .
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b. Stress Rupture Tests

Duplicate stress rupture tests were conducted on each as-heat
treated disk at 650°C/1103 MPa (1200°F/160 ksi), 760°C/690 MPa (1400°F/
100 ksi), 815°C/483 MPa (1500"F/70 ksi), and 870°C/345 MPa (1600°F/50 ksi).

7. Thermal Stability Evaluation

a. Thermal Cycle

Cross rolled disk product in the as-heat treated condition
representing each of the five composition/consolidation combinations was
subjected to a thermal exposure at 870°C (1600°F) for 1500 hours. Two
tensile and two stress rupture blanks, in addition to material for structural
examination, were exposed as indicated.

b. Mechanical Testing

Following the 1500 hour exposure at 870°C (1600°F), specimens
were finish machined and duplicate tests were conducted in tension at
760°C (1400°F) and in stress rupture at 760°C/690 MPa (1400"F/100 ksi).
Comparison of these data with corresponding as-heat treated property levels
permitted determination of the direct effect of the exposure on 760"C
(1400°F) properties.

c. Structural Examinations

Exposed material representing cross rolled product from each
of the five composition/consolidation combinations was characterized by
optical and electron microscopy and x-ray phase analysis. Procedures for
this examination have been detailed previously.

8. Density Measurements

Density measurements were obtained on cross rolled product repre-
senting each of the composition/consolidation combinations. Measurements
were taken using the water displacement method.
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IV. RESULTS AND DISCUSSION

A. Task I - Evaluation of Alloys - Group I

1. Series J

a. Melting and Atomization

Melting and atomization of the four Task I - Series I
compositions yielded approximately 40 kilograms (90 Ibs.) of -60,
+325 mesh powder from each heat after screening. A typical sieve
analysis for these heats is listed in Table 3.

b. Chemical Analysis

Aim and actual chemical analyses for the four Task I -
Series I heats are presented in Table 4. Actual analyses were within
acceptable weight percent deviation ranges.

c. Processing

(1) First Trial

Canning, evacuation and hot isostatic pressing
procedures were reported to proceed without difficulty by Battelle.
The hot isostatic pressing temperatures and pressures are presented
in Table 5 as a function of time. A total of approximately nine hours
in the autoclave was required to accomplish the objective of a three
hour cycle at 1150"C (2100°F) and 100 MPa (15 ksi). The appearance
of the consolidated billets is illustrated in Figure 3.

After hot isostatic pressing, two preforms representing
each composition were cross rolled a total of 56.7 percent using
identical rolling temperatures and reductions for each preform.
After decanning, it was observed that seven of the eight disks
cracked catastrophically. Only one disk representing the Ilb-llB
composition did not experience cracking. The two cross rolled Ilb-
11B disks are shown in Figure 4. AS cross rolling temperatures and
reductions were identical for the two disks, cracking was believed
to be related to inconsistencies in the original hot isostatically
pressed preform.

Evaluations were conducted to establish the cause
for the hot workability failures. Chemical analysis results are shown
in Table 6 for several tramp elements and gas content. The four heats
were all observed to contain acceptable levels of manganese, silicon,
sulfur and phosphorus. No variations were observed which could be
attributed to the workability failures. Analyses for argon, oxygen,
hydrogen and nitrogen revealed gas contents slightly higher for the
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Ilb-llB disk which cracked, as compared to the disk which rolled well.
However, the variations were slight and all levels were within
generally acceptable limits. Detailed mass spectrographic analyses
also failed to reveal trace element contamination which could be
attributable to the failures.

Examination of fracture surfaces using scanning
electron microscopy showed cracking associated with original powder
particle boundaries, indicating inadequate compaction during the
HIP cycle. This effect is illustrated in Figure 5. Information
available at this time permitted no direct conclusion whether the
inadequate compaction occured as a result of consolidation temperature,
improper degassing, or a combination of both.

(2) Second Trial

These trials were conducted using powder remaining
from the original Task I - Series I heats. Hot isostatic pressing
temperature was increased to 1200°C (2200°F) with pressure remaining
the same at 100 MPA (15 ksi) . The canning, degassing and pressing
were conducted by Industrial Materials Technology (IMT) with no reported
difficulty. A difference in pressing temperature monitoring procedure
was noted between Battelle and IMT. The latter source shields and
insulates thermocouples on a piece in the load, while the former do3s
not. IMT reports that unshielded thermocouples indicate temperature
as much as one to two hours sooner due to direct radiant exposure to the
heating elements.

The preforms from the 1200°C (2200°F) pressing at
IMT were canned and rolled with unsatisfactory results. Cracking
occurred in all five disks, although the degree of cracking was
substantially less than experienced in the first trial. Because of
the workability improvement observed by increasing the hot isostatic
pressing temperature from 1150°C (2100°F) to 1200°C (2200°F) , it wa.i
concluded the poor workability experienced in the Task I - Series I
trials was due primarily to inadequate pressing temperature. A
decision was made to remelt the Task I heats and reevaluats utilizing
an increased compaction temperature during the consolidation cycle.

2. Series II

a. Melting and Atomization

Ksmelting of the four Tas: I compositions produced 32
kilograms (70 Ibs) of -60, +325 mesh :xjwdt r from each heat. A siev"
analysis simi 'ar to that listed in Table . was obtained.

b. C lemical Analysis

Aim and actual chemical .malyzes for the f"ur Task I -
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Series II heats are presented in Table 7. All values were within
acceptable limits, although the hafnium in Ilb-llA at 1.65 percent
was lower than the desired 2.0 percent.

c. Processing

(1) Hot Isostatic Pressing

Canning, evacuation, and hot isostatic pressing was
conducted by IMT with no report of difficulty. Parameters of 1230°C
(2250°F) and 100 MPa (15 ksi) for six hours were achieved as requested.
This represented an increase in temperature and time from the previous
trial parameters of 1200°C (2200°F) for two hours in an effort to
effect better bonding of the powder particles.

(2) Cross Rolling

Two pieces from each of the four preforms were roiled
using Task I - Series I temperatures and reductions. The workability
of all eight disks was excellent as illustrated in Figure 6.

(3) Structural Examinations

Examination of optical micrographs representing the
edge, mid-radius and center locations of an as-rolled disk from each
composition revealed good microstructural uniformity. No variations
in carbide or gamma prime distribution were observed in any of the
disks as a function of location.

d. Heat Treatment Evaluations

(1) Selection of Optimum Treatment

The effect of full solution treatments varying
temperature and time on the ASTM grain size of material from each
composition is illustrated in Table 8. Regardless of temperature
or time, all grain size value's were finer than ASTM 5. These results
are significantly different from those observed on conventionally
produced wrought material where a grain size of ASTM 4.5 was
attainable by solution treatment at 1230°C (2250°F)/4 hours/RAC.
The difference is attributed to the uniform fine dispersion of
carbides in all four powder alloys, which served to inhibit grain
boundary migration and growth. This is contrasted to random larger
carbide particles in wrought product, which do not approach the number
of particles per unit area in powder product. Based on the heat treat
survey, full solution treatments chosen for each alloy were as follows:
1230°C (2250°F)/4 hours/RAC for alloys IIb-11 and lib-US, 1220°C
(2225°F)/60 hours/RAC for Ilb-llA, and 1245°C (2275°F)/2 hours/RAC for
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Ilb-llB. These treatments were selected to yield the maximum grain
sizes attainable for each alloy with no evidence of incipient melting.
It should be noted that 1260°C (2300°F) solution treatments resulted
in some evidence of melting for all alloys but ASTM grain sizes
were not measurably coarsened.

The intermediate aging treatment selected for all
four alloys was 1040°C (1900°F)/2 hours/RAC. The 870° and 900°C
(1600° and 1650°F) intermediate treatments resulted in excessive
grain boundary carbide precipitation for all four compositions. The
1040° and 1065°C (1900° and 1950°F) treatments were observed to
yield slightly coarser gamma prime particle distributions in each
of the alloys. The degree of coarsening, however, was less significant
at 1040°C (1900°F). The selected treatment varied considerably from
the 870°C (1600°F)/16 hour/RAC treatment designed for wrought product.
As was the case for the full solution treatment, significant structural
variations were observed between powder and wrought material.

As previously noted, a final aging treatment of
760°C (1400°F)/16 hours/AC was chosen for each composition based
on previous studies.

(2) Structural Examinations

Optical micrographs illustrating each alloy heat
treated by the selected method are shown in Figure 7. Corresponding
electron micrographs are illustrated in Figures 8, 9, 10, and 11 for
alloys IIb-11, Ilb-llS, Ilb-llA and Ilb-llB, respectively. Structures
for IIb-11 and Ilb-llS were very similar with duplex grain sizes . n
the ASTM 5 to 7 size range. Grain sizes for both Ilb-llA and lib- 11B
were finer in the ASTM 6 to 7 range,with grain growth inhibited
in Ilb-llA by random primary gamma prime pools and in Ilb-llB by <i
heavy distribution of fine carbides. All compositions displayed J<oth
first and second generation gamma prime. As noted previously, the
low carbon - high hafnium Ilb-llA displayed a distribution of primary
gamma prime pools at grain boundary triple points Gamma prime
size was generally finer for IIb-11 and Ilb-llS as compared with
coarser distributions in the other two alloys. Additionally, some
evidence of thermally induced porosity (TIP) was observed in all
the alloys, but was most prevalent in Ilb-llA (see Figure 7). Til'
is usually attributed to either excessive argon entrapment in coai se,
hollow powder particles or to inadequate hot evacuation prior to
consolidation. However, in these instances, the TIP is almost
entirely concentrated in grain boundary areas as opposed to withii
grains; and, therefore, appears to have resulted from inadequate
evacuation.
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The results of extraction and X-ray phase analysis
are listed in Table 9 for as-heat treated material representing each
composition. All four compositions contained MC-type carbides, with
the largest concentration predictably in the high carbon Ilb-llB
composition. The only as-heat treated alloy containing another minor
constituent was Ilb-llS, which contained a small concentration of
M C-type carbides. The gamma prime constituent is present in all compo-
sitions, but is not listed in Table 9 because the 10 percent hydro-
chloric acid in methanol solution used in the extraction dissolves
this intermetallic compound.

e. Mechanical Testing

(1) Tensile Tests

Tensile properties for the four compositions in the
as-heat treated condition are summarized in Tables 10, 11, 12 and 13
and are illustrated in Figure 12. Powder metallurgy NASA IIb-11
and Ilb-llB display similar tensile strength and ductility with
NASA Ilb-llS slightly lower in both strength and ductility. NASA Ilb-
11A is the weakest of the four compositions and shows significant
decreases in both strength and ductility at elevated temperatures.

Also illustrated in Figure 12 are comparison points
for conventionally produced wrought NASA IIb-11. While ultimate
tensile strength values for the powder alloys IIb-11, Ilb-llS and
Ilb-llB are higher than the wrought material at room temperature,
the powder alloys were all weaker than wrought NASA IIb-11 at 760"C
(1400°F) . The powder alloys also showed less than half the tensi..e
ductility of the wrought material at that same temperature.

(2) Stress and Creep Rupture Tests

Stress and creep rupture data for the four powder
compositions are summarized in Tables 14, 15, 16 and 17. The
NASA IIb-11 properties were the best of the four powder alloys
evaluated. However, the 760°C/620 MPa (1400°F/90 ksi) rupture
life of the best powder alloy was approximately one-fifth the
500 hour life displayed by wrought material of the same composition.

f. Thermal Stability Evaluations

(1) Mechanical Testing

. Tensile and stress rupture data at 760°C (1400°F}

for the Task I - Series II compositions in the heat treated and ĥ .at
treated plus exposed conditions are summarized in Tables 18 and 1 ',
respectively. Tensile and yield strength values decreased as a
result of the exposure by approximately 10 to 15 percent for
compositions IIb-11, Ilb-llS and Ilb-llB; tensile ductility value:
also decreased for these compositions. Strength and ductility va ues
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for Ilb-llA were increased after the exposure; however, values in
the heat treated condition were substantially lower than the other
three alloys. This behavior was apparently due to the extremely
brittle characteristics of this composition, which prevented the inherent
strength from being measured.

Stress rupture life values decreased after exposure
to approximately 60, 25 and 60 percent of the as-heat treated
values for IIb-11, Ilb-llS and Ilb-llB, respectively. Ilb-llA
life increased slightly as a result of the exposure. The values,
however, were significantly lower than those displayed for the other
three compositions again probably for the same reason as noted above.
Rupture ductilities were not appreciably affected as a result of the
exposure for IIb-11, Ilb-llS or Ilb-llA; however, values for Ilb-llB
were decreased.

(2) Structural Examinations

Optical micrographs illustrating the appearance of
the four compositions after exposure are presented in Figure 13.
Electron micrographs are shown in Figures 14, 15, 16 and 17. All
the compositions were observed to display gamma prime coarsening
with some evidence of agglomeration. Coarsening was more significant
for alloys Ilb-llA and Ilb-llB. Also, the exposure resulted in
increased degrees of grain boundary carbide precipitation in thre<?
of the alloys. Only Ilb-llA did not experience grain boundary
precipitation; the primary gamma prime pools observed in the as-heat
treated microstructure of this alloy remained after exposure. A
needle-like phase was observed in the IIb-11 microstructure.

Results of X-ray phase analyses after exposure
are presented in Table 9 with results for as-heat treated materia'..
These findings were in agreement with trends observed in the micro-

structure and discussed above. Increased amounts of MgC grain boundary
carbides were identified in all of the alloys as a result of the exposure.
This was generally accomplished by the decomposition of MC carbides. The
needle-like phase observed in the IIb-11 microstructure was found to be a
tungsten-rich mu phase (M?Mg-type). Several unidentified lines ma /
indicate the presence of mu phase in Ilb-llB, although the low int ?nsity
of the lines did not permit positive identification.

g. Density Measurements

Density measurements for the four Task I - Series II alloys are
listed in Table 20. Values were essentially the same at 8.71 g/cn 3

(0.314 lbs/jn3) for IIb-11 and Ilb-llS, vhile the increased hafniun in
Ilb-llA and Ilb-lli- resulted in density increases to 8.74 and 8.76 g/cm3

(0.315 and 0.316 lbs/in3), respectively.
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/]. Data Ana I iy.'? /.q

A review of the data generated in Task I indicated that none
of the four compositions displayed properties which justified scale-up
and detailed study in Task II. Both tensile and stress rupture properties
were substantially lower than those characteristic of wrought material in
the previous study. As a result, a decision was made to modify the
original plan and evaluate additional compositional changes in Task II
alloys. Since fine grain size was a primary reason for the failure to
achieve desired properties, processing variables were incorporated in
an effort to attain coarser grain sizes in Task II alloys.

B. Task II - Evaluation of Alloys - Group II

1. Melting and Atomization

Melting and atomization of the three Task II compositions yielded
approximately 60 kilograms (130 Ibs) of useable powder for Ilb-llC and
25 kilograms (55 Ibs) each for Ilb-llD and Ilb-llE. Sieve analyses for
the three heats screened to -60, +325 mesh were similar to the analysis
presented in Table 3.

2. Chemical Analysis

Aim and actual chemical analyses for the three Task II heats are
illustrated in Table 21. Results for all heats were well within desired
ranges, especially for the variable elements carbon and hafnium.

3. Processing

a. Hot Isostatic Pressing

Five preforms including three of the Ilb-llC composition and
one each representing Ilb-llD and Ilb-llE were obtained after canning, hot
evacuation and hot isostatic pressing by Federal-Mogul. Variations which
included hot and cold unloading as well as a high temperature HIP pre-
treatment as outlined in Table 2 were accomplished as requested. The
appearance of the as-pressed preforms is illustrated in Figure 18.

b. Preliminary Rolling Studies

Four practices were formulated with the objective of
improving the response of the materials to grain coarsening during
subsequent solution treatments. Practice [1] represented the standard
ten single pass sequence from a 1065°C (1950°F) rolling temperature.
Practice [2] employed a 1245°C (2275°F) pretreatment prior to rolling
as in [1] in an effort to coarsen grain size prior to rolling. Practice
13] was formulated as a slight variation from [1] with double passes per
reheat in an attempt to generate more strain in the cross rolled material.
It was theorized that this strain might accentuate the reactions during
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subsequent solution treatment and effect increased grain growth. Practice
[4] was also similar to [1], although rolling was conducted from 1120°C
(2050°F) to effect more solutioning and less grain refinement during
rolling.

The effect of the four preliminary rolling practices on hot
workability is illustrated in Figure 19 for each of the samples rolled
from the five preforms. Practices [1], [3], and [4] all displayed
satisfactory workability. Some edge cracking appeared on random pieces,
but this condition was attributed to premature deterioration of the
protective can. Practice [2] resulted in very poor hot workability for
all five preforms. This was due to the effect of the high degree of
solutioning at 1245°C (2275°F) followed by rapid cooling. This practice
permitted large amounts of gamma prime to be solutioned and held in
solution by rapid cooling. The amount of gamma prime remaining in
solution was excessive for these highly-alloyed compositions. No
definite trends were derived regarding comparison workability of the
five preforms using a given practice.

The effect of solutioning treatments on ASTM grain size
for preforms cross rolled using the four preliminary practices is
illustrated in Table 22. These results indicate practice [4] with
a 1245°C (2275°F) solution treatment yielded the largest grain sizes.
While the effect was only slight for composition Ilb-llC preforms
(Cf Cl and C2) , compositions Ilb-llD and Ilb-llE attained target g^ain
sizes in the ASTM 4 to 5 range. The grain coarsening tendencies ± ~>r
the latter two compositions is probably due to their lower carbon Contents
at 0.055 percent compared with 0.095 percent for Ilb-llC. No significant
effects on grain sizes were apparent regarding single versus doubl?
passes per reheat from 1065°C (1950°F), and no effects were observable
among the three Ilb-llC preform variations. The 1245°C (2275°F)
solutioning treatment generally resulted in more appreciable grain
growth than the 1230°C (2250°F) treatment, although the effects were
most significant for the low carbon compositions.

Based on a combination of workability and response to
solution treatment, practice [4] involving rolling from 1120°C (2050°F)
was chosen as the optimum cross rolling practice for each preform
variation.

c. Cross Rolling

The appearance of disks representing each of the five -reform
variations sifter cross rollinc; and decanning is illustrated in Fig re 20.
The workability of all disks nas rated excellent; no cracking was 'bserved
on any of the diskr*.
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4, Heat Treatment Evaluation

a. Mechanical Property Survey

The eight heat treatment cycles evaluated for each disk are
listed in Table 23. Mechanical property data obtained en each of the
five cross rolled disks heat treated by these various cycles are summarized
in Tables 24 through 28. Initial trials for treatments [A] and [B] versus
[C] and [D] showed the 870°C (1600°F) intermediate aging treatment to be
superior to the 1040°C (1900°F) age for 760°C (1400°F) stress rupture
properties. More detailed evaluation of the 870°C (1600°F) aging with
1230°C (2250°F) and 1245°C (2275°F) solution treatments ([A] versus [B])
indicated that 760°C (1400°F) stress rupture life values were substantially
lower than desired, regardless of solution treatment temperature. Values
were in the 25 hour range for the high carbon preforms (C, Cl and C2),
while the lower carbon preforms (D and E) displayed higher life values,
but only in the 70 hour range. Based on optical microscopy examination,
it was determined that excessive grain boundary carbide precipitation
was occurring during the 870°C (1600°F) age. Therefore, four additional
cycles were formulated in an effort to minimize this condition by
elimination [E], modification to a 955°C (1750°F) age [F], or varying
cooling rates from the solution temperature prior to the 870"C (1600°F)
age [G and H]. The latter two cycles were formulated to effect more
stable MC carbide precipitation at higher temperatures during the slower
furnace cools, thus leaving less carbon in solution and available for
precipitation during aging.

Results for cycles [E] and [F] were again less than desired;
however cycles [G] and [H] resulted in substantial 815°C (1500°F)
rupture life increases for all five preforms. Tensile strength values
at 540°C (1000°F) were approximately 5 percent lower than values achieved
with direct rapid air cooling from solution treatment temperatures; however,
tensile and stress rupture ductility values were increased, especially
for preforms D and E. Based on significantly higher rupture life and
ductility in spite of slightly lower yield strength, cycle [G] was chosen
as the optimum treatment for all five preforms.

b. Structural Examinations

The microstructures of the three preforms prepared from
Ilb-llC (C, Cl and C2) were essentially the same after heat treatment.
Optical micrographs representing preforms of each composition are il-
lustrated in Figure 21. Electron micrographs for corresponding as-heat
treated compositions are shown in Figure 22. After treatment [G], the
microstructures displayed unique coarse gamma prime distributed within
grains, and also oriented as discrete precipitates along grain
boundaries. Carbide distribution appeared to be primarily a random
dispersion of fine particles, with no evidence of significant graii
boundary precipitation in any of the preforms. Grain size measurements
corresponded reasonably well with preliminary rolling study result?
with high carbon preforms C, Cl and C2 measuring in the ASTM 6 range and
low carbon preforms D and E in the ASTM 4 to"5 range. Some degree of TIP
was detected in all preforms, after heat treatment, but was most severe in
preform D.
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X-Ray phase analysis results for as-heat treated Task II
disks are summarized in Table 29. Again, results for all three Ilb-llC
preforms (C, Cl and C2) were similar. In fact, the phases present after
cycle [G] heat treatment were basically the same and in the same
quantities for all five preforms. In all cases, the primary constituent
was MC carbide; much lesser quantities of MgC and ̂ jCg carbides were also
present for each preform. These results indicate the objective of heat
treatment cycle [G] to permit precipitation of more stable MC carbides
during slow cooling was achieved. For each preform, the lesser amounts
of carbon available in solution after slow cooling resulted in only
minor quantities of the grain boundary carbides precipitating during
aging.

5. Mechanical Property Evaluation

a. Tensile Tests

Tensile test results for the five Task II cross rolled disks
are presented in Tables 30 through 34. As results for the three Ilb-llC
disks were similar, data for disks from preforms C, D and E representing
each of the three compositions are illustrated graphically in Figure 23.
These data show that alloy Ilb-llC displays slightly higher ultimate
and yield strength values than Ilb-llD and Ilb-llE, although the
variations appear to be of little significance. In respect to tensile
ductility, Ilb-llE values were the highest of the three compositions,
especially in the 760° to 815°C (1400° to 1500°F) range.

Comparison points for the wrought IIb-11 composition at:
room temperature and 760°C (1400°F) are also shown on Figure 23.
These points indicate similar strength when comparing wrought material
with the powder alloys. However, the yield strength of the wrought
material was higher than the powder alloys at both room temperatura and
at 760°C (1400°F). The Ilb-llE composition displayed significantly
higher elongation values than the wrought material at room tempera-ure
and 760°C (1400°F).

b. Stress Rupture

Stress rupture data for the five Task II cross rolled :1isks
are summarized in Tables 35 through 39 and are illustrated in Figu'~e 24.
Results for the three Ilb-llC preforms were similar, and only the lisk
from preform C was included for comparison with disks from preform; D
and E in Figure 24. These data show Ilb-llE displaying the best r ipture
strength of the three Task II alloys. Differences among the alloys were
less significant at low temperature/high stress parameters, but became
more substantial at high temperature/low stress parameters. For example,
average 870cC/345 MPa (1600°F/50 ksi) rupture life values for Ilb-llC,
Ilb-llD and Ilb-lli: were 6, 26 and 67 hours, respectively. Rupture
ductility values for compositions Ilb-llD and Ilb-llE were similar, and
were higher than those displayed by Ilb-llC.
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Comparison of rupture strength between the best of the powder
alloys, Ilb-llE, and wrought IIb-11 indicated the wrought material was
slightly stronger than the Ilb-llE. Based on estimates from the parameter
curves, this difference would be 170 versus 140 hours for wrought IIb-11
and Ilb-llE, respectively, at 760°C/690 MPa (1400°F/100 ksi). At
conditions of 760°C/620 MPa (1400°F/90 ksi), rupture life values would
be approximately 500 and 425 hours for wrought IIb-11 and Ilb-llE,
respectively. Rupture ductility for the powder Ilb-llE was better than
wrought IIb-11 at 760°C (1400°F).

6. Thermal Stability Evaluation

a. Mechanical Testing

Results of 760°C (1400°F) tensile tests before and after
exposure at 870°C (1600°F)/1500 hours are summarized in Table 40 for the
Task II compositions. Material from the three Ilb-llC disks and
composition Ilb-llD experienced ultimate tensile and yield strength
losses of about 25 percent, while strength losses for Ilb-llE were less
severe in the 15 percent range. Ductilities for all compositions
decreased by at least 50 percent.

Stress rupture results before and after exposure are presented
in Table 41. These data show rupture life values decreasing approximately
90 percent after exposure for all three compositions. Rupture ductility
values for the three Ilb-llC cross rolled disks were not substantially
affected, while values for Ilb-llD were decreased and Ilb-llE increased
somewhat as a result of the exposure.

b. Structural Examinations

As was the case prior to exposure, optical and electron
micrographs for the three Ilb-llC cross rolled disks displayed similar
structures. Optical micrographs are presented in Figure 25 and electron
micrographs in Figure 26 for material obtained from preforms C, D and E
representing the three Task II compositions after exposure. The most
apparent changes, compared with as-heat treated structures (see Figures
21 and 22), include the presence of nearly continuous grain boundary
carbides in addition to coarsening and agglomeration of gamma prime in
all three compositions. Gamma prime particles have become more rounded
as opposed to the angular precipitates in as-heat treated materials; and
the fine, second generation gamma prime precipitates have agglomerated
and are no longer visible after exposure.

The results of x-ray phase analyses for the five cross rolled
disks before and after exposure are presented in Table 29. Each of the
disks experienced decomposition of their primary constituent, MC, in all
cases resulting in the formation of significant amounts of MgC and lesser
amounts of Af2jCg in the grain boundaries. The three Ilb-llC preforms and
Ilb-llD also formed minor amounts of M?Mg-tupe mu phase. No mu phase was
detected in Ilb-llE.
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These results, in combination with mechanical testing results
for exposed materials, pose a question regarding the validity of the
"accelerated" 870°C (1600°F) thermal exposure. This treatment was
formulated in the past for wrought materials to obtain some measure
of the materials' stability after long-time service, while the materials
will be in service in the 760°C (1400°F) range, 870°C (1600°F) was used
to "accelerate" the exposure so a measure could be obtained after 1500
hours. This procedure was acceptable for wrought materials where
carbide morphology was substantially different than for powder materials.
Wrought techniques resulted in random,large carbide particles distributed
throughout the matrix of the alloys. The number of carbides per unit
area was significantly less than for powder alloys, which display a
uniform,dense dispersion of extremely fine carbides, with a much higher
number of carbides per unit area. It is well recognized that the
decomposition of MC carbides into less stable grain boundary AfgC and
M23C6 carbides will occur to a much greater degree at 870°C (1600°F)
than 760°C (1400°F). While the accelerated treatment in wrought alloys
resulted in MC decomposition, formation of the less stable carbides was
primarily localized near random, large MC particles which were decomposing.
In the case of powder alloys, decomposition of the fine dispersion of MC
carbides results in the formation of grain boundary carbides uniformly
throughout the microstructures. As a result, exposure at 760°C (1400°F)
for 10,000 hours might be far less damaging than exposure at 870°C
(1600°F) for 1500 hours, due to the increased stability of the MC carbides
at the lower temperature.

7. Density Measurements

The results of density measurements on disks representing the
five Task II preforms are listed in Table 42. Values for the three
Ilb-llC compositions and Ilb-llE were 8.75 g/cm3 (0.316 Ibs/in3) ,
Ilb-llD density was slightly higher at 8.79 g/cm3 (0.317 lbs/in3).
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V. SUMMARY OF RESULTS

The objective of this program was to optimize the NASA IIb-11
composition, an alloy originally developed as a conventional cast and
wrought material, for thermal stability and to determine the feasibility
for producing the alloy using powder metallurgical techniques. The
results of the program are presented below:

1. The best composition developed was low carbon-low hafnium
Ilb-llE. The alloy composition includes 0.06 C, 8.5 Cr,
9.0 Co, 2.0 Mo, 7.1 W, 6.6 Ta, 4.5 Al, 0.75 Ti, 0.5 V,
0.7 flf, 0.01 B, 0.05 Zr and balance Ni. The alloy attained
760°C (1400°F) mechanical property levels comparable with
conventional cast and wrought IIb-11, although properties
were reduced after a 870°C (1600°F) exposure for 1500 hours.

2. HIP loading/unloading variables including hot and cold trans-
fer had no significant effects on the mechanical properties
or microstructure.

3. Cross rolling from 1120°C (2050°F) rather than 1065°C
(1950°F) resulted in improved response to grain growth
during the solution heat treatment. A lower rolling
temperature of 1065°C (1950°F) is used for the wrought
version of these alloys.

4. The best heat treatment for wrought material was undesirable
for powder material.. This treatment employed a rapid air
cool after the solution treatment which held carbon in solution
and effected excessive grain boundary carbide precipitation
during aging treatments.

5. Slow cooling from solution treatments resulted in substantial
improvements in rupture strength and tensile and rupture
ductility for the powder alloys; yield strength decreased
slightly. The delayed cooling may have promoted pre-
cipitation of stable MC carbides at higher temperatures;
consequently, less carbon was available in solution for
continuous precipitation in grain boundaries during aging.

6. The low carbon (0.055 percent) alloys Ilb-llD and Ilb-llE
exhibited better grain coarsening response during solution
treatment than the high carbon (0.095 percent) lib-J1C.

29



VI. CONCLUDING REMARKS

The combination of tensile and stress rupture strength and
ductility of NASA Ilb-llE suggests potential for advanced powder metallurgy
disks operating in the 760°C (1400°F) range. Although the present study
explored only a few combinations of cross rolling parameters and heat
treatment cycles, the 760°C (1400°F) rupture strength of NASA Ilb-l.E is
higher than any commercial or experimental powder metallurgy alloy reported
in the literature. The alloy is not susceptible to TCP (topologica.'ly
close-packed) phase formation after thermal exposure at 870°C (1600"F)
for 1500 hours. However, mechanical properties are lowered due to an
excessive formation of grain boundary carbides. Further modifications
to the heat treatment may permit increased strength, particularly y:eld
strength, without adversely affecting rupture characteristics. Studies
are also recommended to determine the validity of the "accelerated" 870°C
(1600°F) treatment for alloys of this type designed for service at '60°C
(1400°F).

The results of this program demonstrate the importance c-f
determining optimum parameters for the hot isostatic pressing (HIP)
temperature and hot evacuation procedures prior to HIP. It was
experienced that both poor hot workability and adverse structural e: fects
can result in alloys of this type if minimum HIP temperatures and
holding times are not attained.
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TABLE 1

Summary of Selected Compositions for Task I and Task II Evaluations

Alloy Chemical Composition (Weight Percent) For:
Identification C Cr Co Mo W Ta Al Ti V Hf B Zr Ni Nv

Task I Compositions:

NASA

NASA

NASA

NASA

Task II

NASA

NASA

NASA

lib- 11

lib- 1 IS

Ilb-llA

Ilb-llB

Compos i ti ons :

lib- 11C

Ilb-llD

lib- HE

0.130

0.130

0,080

0:200

1

01095

01055

0.055

9.0 9.0 2.0 7.5 7.0 4.5 0.75 0.5 1.0 0.02 0.10 Balance

9.0 9.0 2.0 7.0 7.0 4.3 0.75 0.4 1.0 0.02 0.10 Balance

9.0 9.0 2.0 6.0 7.0 4.3 0.75 0.4 2.0 0.02 0.10 Balance

9.0 9.0 2.0 7.0 7.0 4.3 0.75 0.4 2.0 0.02 0.10 Balance

8.5 9.0 2.0 7.1 6.6 4.5 0.75 0.5 1.3 0.01 0.05 Balance

8.5 9.0 2.0 7.1 6.6 4.5 0.75 0.5 1.3 0.01 0.05 Balance

8.5 9.0 2.0 7.1 6.6 4.5 0.75 0.5 0.7 0.01 0.05 Balance

2.22

2.12

2.14

2.14

2.15

2.17

2.13



TABLE 2

Task II HIP Handling Variables

VARIABLES
Preform Code Alloy Designation HIP Pretreatment HIP Loading/Unloading

C Ilb-llC 980°C (1800°F)/2 hours HOT

Cl lib-11C 980°C (1800°F)/2 hours COLD

C2 lib-11C NONE HOT

D Ilb-llD 980°C (1800°F)/2 hours HOT

E Ilb-llE 980°C (1800°F)/2 hours HOT

*HIP Cycle for all preforms: 1245°C (2275°F) and 100 MPa (15 ksi) for four hours.



TABLE 3

Typical Sieve Analysis For Argon Atomized Powder Heats

SIEVE SIZE % OF TOTAL BLEND

+ 80 13
- 80 +100 14
-100 +140 21
-140 +200 24
-200 +325 27



TABLE 4

Aim and Actual Chemical Analyses For Task I-Series I Powder Heats

Heat Identification

NASA IIb-11 (Aim)
KR 234

NASA lib-US (Aim)
KR 235

NASA Ilb-llA (Aim)
KR 236

NASA Ilb-llB (Aim)
KR 237

Chemical Composition (Weight Percent) For:
Cr Co Mo Ta Al Ti Hf B Zr Ni

0.13 9.00 9.00 2.00 7.50 7.00 4.50 0.75 0.50 1.00 0.02 0.10 Balance
0.13 9.00 9.00 1.91 7.64 7.01 4.58 0.70 0.47 0.97 0.02 0.10 Balance 38 ppm

0.13 9.00 9.00 2.00 7.00 7.00 4.30 0.75 0.40 1.00 0.02 0.10 Balance
0.12 9.03 9.07 1.92 7.12 6.98 4.27 0.70 0.39 0.97 0.02 0.11 Balance 38 ppm

0.08 9.00 9.00 2.00 6.00 7.00 4.30 0.75 0.40 2.00 0.02 0.10 Balance
0.08 9.09 9.18 1.96 6.30 7.18 4.25 0.74 0.40 1.95 0.02 0.11 Balance 59 ppm

0.20 9.00 9.00 2.00 7.00 7.00 4.30 0.75 0.40 2.00 0.02 0.10 Balance
0.19 9.00 9.06 2.03 6.98 7.20 4.40 0.70 0.39 1.96 0.02 0.11 Balance 71 ppm

90

CJJ Jrt



TABLE 5

Task I - Series I Hot Isostatic Pressing Cycle

Temperature (°C) at Location:
TIME (hours)

START
1
3
4
5
6
6.15
7.15
8.15
9.15

T/C-1

._

—600
800
910

1152
1153
1150
1149
1145

T/C-2

~23
— 200
596
805
890

1152
1150
1149
1148
1149

T/C-5

__

—597
810
926

1056
1154
1150
1147
1144

T/C-6

__

—
638
810
921

1052
1150
1150
1147
1150

Pressure (MPa)

2
2
2
12
46
101
103
103
103
103

(a)

(b)
(c)

(d)

(a) Started pressure with compressors.
(b) Compressors turned off.
(c) Initiation of three hour cycle.
(d) Heat turned off and gas slowly reclaimed overnight.

^Thermocouple location key:

T/C-1, top of load
T/C-2, bottom of load
T/C-5, middle of load
T/C-6, 15 cm below load



TABLE 6

Tramp Element and Gas Contents For Various Cross Rolled Disks

Compos it ion (wt.%) for : Gas Content (ppm)
Ar O H Ni Designation

lib- 11
lib- 1 IS
Ilb-llA
Ilb-llB

Ilb-llB
Ilb-llB

Heat Number

KR234
KR235
KR236
KR237

KR237
KR237

Disk Condition

Cracked
Cracked
Cracked
Cracked

OK
Cracked

Mn

<0.01
<0.01
<0.01
<0.01

Si

0.14
0.14
0.14
0.14

S

0.002
0.002
0.003
0.003

P

<0.002
<0.002
<0.002
<0.002

0.64 44 1.5 24
0.75 56 1.9 47



TABLE 7

Aim and Actual Chemical Analyses For Task I - Series II Powder Heats

Heat Identification

NASA lib-11 (Aim)
KR 264

Chemical Composition (Weight Percent) For;

Cr Co Ta Al Ti V Hf B Zr O, Ni

0.13 9.00 9.00 2.00 7.50 7.00 4.50 0.75 0.50 1.00 0.02 0.100 Balance
0.13 9.04 9.20 1.94 7.52 7.05 4.54 0.73 0.47 1.03 0.02 0.091 43 ppm Balance

NASA Ilb-llS (Aim) 0.13
KR 290 0.12

9.00 9.00 2.00 7.00 7.00 4.30 0.75 0.40 1.00 0.02 0.100 Balance
9.00 9.05 1.95 7.02 7.04 4.28 0.68 0.39 0.98 0.02 0.100 59 ppm Balance

NASA Ilb-llA (Aim) 0.06 9.00
KR 266 0.09 8.99

9.00 2.00 6.00 7.00 4.30 0.75 0.40 2.00 0.02 0.100 Balance
9.20 1.92 5.95 6.95 4.30 0.72 0.39 1.65 0.02 0.082 52 ppm Balance

NASA Hb-llB (Aim) 0,20
KR 267 o.20

9.00 9.00 2.00 7.00 7.00 4.30 0.75 0.40 2.00 0.02 0.100 Balance
9.04 9.20 1.93 7.01 7.10 4.46 0.72 0.37 1.97 0.02 0.100 48 ppm Balance



TABLE 8

Effect of Full Solution Heat Treatment on Grain Size of Task I - Series II Alloys

ASTM Grain Size for Composition:
Treatment

1220°C
1220°C
1230°C
1230°C
1230°C
1245°C
1260°C
1260°C

(2225°F)/2 hours/RAC
(2225°F)/60 hours/RAC
(2250°F)/2 hours/RAC
(2250°F)/4 hours/RAC
(22 50 °F/ 24 hours/RAC
(2275°F)/2 hours/RAC
(2300°F)/2 hours/RAC
(2300°F)/6 hours/RAC

lib- 11

7
6.5

50%5,50%7
80%5,20%7

6
50%5,50%7
50*5,50*7
50%5,50%7

lib- 1 IS

7
6.5

50%5,50%7
70%5,30%7

6
6

70%5,30%7
70%5,30%6

Ilb-llA

7
6.5
6.5
6
6
6
6

70%5.5,30%7

Ilb-llB

7
7
7
7
7
7
7.5
7



TABLE 9

Results of X-Ray Phase Analyses For Task I - Series II Alloys
in the Heat Treated and Heat Treated Plus Exposed Condition

Relative Concentration**
of Phases Present: _

Alloy Designation Material Condition* MC MgC_ Mu

lib- 11 H/T M
IIb-11 H / T + Exposed W W W

lib- US H/T M W
lib- US H/T + Exposed W M

Ilb-llA H/T M
Ilb-llA H/T + Exposed W W

Ilb-llB H/T S
lib- 1 IB H/T + Exposed S W VW?

* S represents Strong; M, Moderate; W, Weal; and V, Very.

** H/T indicates Heat Treated (detail below); Exposed indicates 870°C (1600°F)/
1500 hours.

1, 1230°C (2250°F)/4 hours/RAC + 1040°C (1900°F)/2 hours/RAC + 760°C (1400°F)/16 hours/AC.
Ilb-llS, 1230°C (2250°F)/4 hours/RAC + 1040°C (1900°F)/2 hours/RAC + 760°C (1400°F)/16 hours/AC.
Ilb-llA, 1220°C (2225°F)/60 hours/RAC + 1040°C (1900°F)/2 hours/RAC + 760°C (1400°F)/16 hours/AC.
Ilb-llB, 1245°C (2275°F)/2 hours/RAC + 1040°C (1900°F)/2 hours/RAC + 760°C (1400°F)/16 hours/AC.



TABLE 10

Tensile Properties For As-Heat Treated NASA IIb-11

Test
Temperature
°C °F

21
21

650
650

760
760

870
870

70
70

1200
1200

1400
1400

1600
1600

Ultimate Tensile
Strength

MPa ksi

1585
1516

1467
1446

1255
1276

710
876

229.8
219.9

212.7
209.7

181.9
184.7

102.7
126.8

0.2% Yield
Strength

MPa ksi

1234
1193

1124
1117

1083
1096

696
710

179.2
172.9

163.2
161.7

157.1
159.3

100.8
102.9

Elongation

(*)

11.2
10.2

5.7
7.3

5.0
5.2

*
*

Reduction of
Area (%)

13.1
13.4

13.6
12.7

10.7
10.2

*
*

* Broke in shoulder.



TABLE 11

Tensile Properties For As-Heat Treated NASA lib-1 IS

Test
Temperature
Q C* ° F

21
21

650
650

760
760

870
870

70
70

1200
1200

1400
1400

1600
1600

Ultimate Tensile
Strength

MPa ksi

1517
1441

1338
1379

1338
1055

669
855

219.9
208.8

194.2
199.9

164.6
152.9

96.7
124.2

0.2% Yield
Strength

MPa ksi

1155
1117

1096
1076

1083
1014

669
687

167.5
162.6

159.2
155.6

157.0
146.7

96.7
98.6

Elongation
(*)

11.4
9.5

5.4
6.9

2.0
1.1

1.1
1.9

Reduction of
Area (%)

17.2
9.6

11.5
11.2

2.5
1.3

3.0
4.0



TABLE 12

Tensile Properties For As-Heat Treated NASA Ilb-llA

Test
Temperature
°C °F

21
21

650
650

760
760

870
870

70
70

1200
1200

1400
1400

1600
1600

Ultimate Tensile
Strength

MPa ksi

1414
1372

655
1023

600
517

290
428

205.0
198.7

95.1
148.4

87.1
74.5

42.4
62.3

0.2% Yield
Strength

MPa ksi

1080
1076

655
1023

600
517

290
428

156.7
155.8

95.1
148.4

87.1
74.5

42.4
62.3

Elongation
(%)

9.3
9.3

0.4
0.5

*
*

*
*

Reduction of
Area (%}

12.6
11.7

0.0
3.1

*
*

__*
— *

*Broke in shoulder.



TABLE 13

Tensile Properties For As-Heat Treated NASA Ilb-llB

Test
Temperature
(°C) (°F)

21
21

650
650

760
760

870
870

70
70

1200
1200

1400
1400

1600
1600

Ultimate Tensile
Strength

MPa ksi

1572
1593

1441
1462

1186
1193

821
807

228.4
230.6

209.2
212.4

171.6
172.8

119.4
117.5

0.2% Yield
Strength

MPa ksi

1200
1179

1103
1207

1076
1052

659
659

173.7
171.3

160.4
174.6

156.4
152.6

95.5
95.4

Elongation
(*)

11.3
12.0

5.0
6.9

1.1
3.9

1.3
1.9

Reduction of
Area (%)

14.0
16.2

7.3
8.0

5.4
9.7

0.9
3.2



TABLE 14

Creep and Stress Rupture Properties For As-Heat Treated NASA IIb-11

Test
Conditions

C°/MPa °F/ksi

650/1210
650/1210

760/620
760/620

870/380
870/380

760/620
760/620

1200/175
1200/175

1400/90
1400/90

1600/55
1600/55

1400/90
1400/90

Rupture Life
(Hours)

5.8
5.8

103.5
171.1

6.7
6.3

-

Time To
0.2% Creep Elongation
(Hours) (%)

3.1
2.4

1.6
1.9

0.6
0.5

62.0
23.6

Reduction of
Area (%)

3.9
6.3

1.5
2.7

2.1
0.8

-



TABLE 15

Creep and Stress Rupture Properties For As-Heat Treated NASA Ilb-llS

Test
Conditions

"C/MPa °F/ksi

650/1210
650/1210

760/620
760/620

870/380
870/380

760/620
760/620

1200/175
1200/175

1400/90
1400/90

1600/55
1600/55

1400/90
1400/90

Rupture Life
(Hours)

0.6
0.5

1.2
77.7

10.6
11.0

-

Time To
0.2% Creep Elongation
(Hours) (%)

3.2
2.9

0.8
2.0

1.0
0.8

19.5
16.0

Reduction of
Area (%)

9.1
7.9

-*

4.2

1.5
0.7

-

*Broke in shoulder.



TABLE 16

Creep and Stress Rupture Properties For As-Heat Treated NASA Ilb-llA

rest
Conditions

°C/MPa "F/ksi

650/1210
650/1210

760/620
760/620

870/380
870/380

760/620
760/620

1200/175
1200/175

1400/90
1400/90

1600/55
1600/55

1400/90
1400/90

Rupture Life
(Hours)

0
0

0
0

0
0

-

Time To
0.2% Creep Elongation Reduction of
(Hours) (%) Area (%)

_ _ _

2.0 0.6
0.2 1.0

0.1 1.0
1.0 0.8

0 - -
0 - -



TABLE 17

Creep and Stress Rupture Properties For As-Heat Treated NASA Ilb-llB

Test ' Time To
Conditions Rupture Life 0.2% Creep Elongation Reduction of

J'C/AfPa °F/ksi (Hours) (Hours) (%) Area (%)

2.4 5.5
2.5 4.8

3.0 5.5
3.8 3.8

1.9 2.4
2.0 1.2

650/1210
650/1210

760/620
760/620

870/380
870/380

1200/175
1200/175

1400/90
1400/90

1600/55
1600/55

2.5
3.2

44.9
140.9

4.1
4.1



TABLE 18

Effect of Thermal Exposure on the 760°C (1400°F) Tensile Properties of the Task I-Series II Alloys

HEAT TREATED (H/T) H/T PLUS EXPOSED
Alloy

Designation

lib- 11
lib- 11

lib- US
lib- 1 IS

Ilb-llA
Ilb-llA

Ilb-llB
Ilb-llB

UTS
MPa

1255
1276

1338
1055

600
517

1186
1193

ksi

182
185

165
153

87
75

172
173

0.2%
MPa

1083
1096

1083
1014

600
517

1076
1052

Y.S.
ksi

157
159

157
147

87
75

156
153

Elongation

5.0
5.2

2.0
1.1

_**
_**

1.1
3.9

Reduction

10.7
10.2

2.5
1.3

_**
_**

5.4
9.7

UTS
MPa

1186
1165

1138
_*

1048
1048

1110
972

ksi

172
169

165
_*

152
152

161
141

0.2%
MPa

979
965

896

841
848

945
917

Y.S.
ksi

142
140

130
_*

122
123

137
133

Elongation

1.6
3.0

0.9
_ *

1.8
1.4

1.5
1.0

Reduction

2.8
4.7

6.6
-*

2.8
9.9

3.8
1.5

*Broke on loading.
**Broke on shoulder.



TABLE 19

Effect of Thermal Exposure on the 760°C/620 MPa (1400°F/90 ksi)
Rupture Properties of the Task I - Series II Alloys

Alloy Designation

NASA lib-11
NASA lib-11

NASA lib-1IS
NASA lib-115

NASA Ilb-llA
NASA Ilb-llA

o NASA Ilb-llB
NASA lib-11B

HEAT
Rupture Life

(Hours)

104
171

1
78

0
0

45
141

TREATED (H/T)
Elongation

(*)

1.6
1.9

0.8*
2.0

1.0
0.2

3.0
3.8

Reduction

(*)

1.5
2.7

_*

4.2

0.6
1.0

5.5
3.8

H/T
Rupture Life

(Hours)

57
54

73
44

3
8

27
36

PLUS EXPOSED
Elongation

(*)

2.3
2.0

2.6
2.0

0.8
1.3

1.5
2.2

Reduction

(*)

3.3
2.6

3.8
2.4

3.5
4.1

1.3
2.4

*Broke in shoulder.



TABLE 20

Density Measurements for the Task I - Series II Alloys

Density
Alloy Designation g /cmj Ibs./in.

NASA IIb-11 8.71 0.314
NASA Ilb-llS 8.71 0.314
NASA Ilb-llA 8.74 0.315
NASA Ilb-llB 8.76 0.316



TABLE 21

Aim and Actual Chemical Analyses For Task II Powder Heats

Designation

Ilb-llC (AIM)
KR322

Ilb-llD
KR323

lib- HE
KR324

(AIM)

(AIM)

C

0.095
0.090

0.055
0.052

0.055
0.055

Cr

8.50
8.48

8.50
8.46

8.50
8.55

Co

9.00
9.15

9.00
9.05

9.00
9.05

Mo

2.00
1.92

2.00
1.87

2.00
1.90

W

7.10
7.19

7.10
7.14

7.10
7.14

Ta

6.60
6.55

6.60
6.45

6.60
6.37

Al

4.50
4.55

4.50
4.43

4.50
4.45

Ti

0.75
0.71

0.75
0.73

0.75
0.72

Hf

1.30
1.29

1.30
1.24

0.70
0.70

V

0.50
0.50

0.50
0.50

0.50
0.51

B

0.010
0.012

0.010
0.012

0.010
0.013

Zr

0.050
0.069

0.050
0.062

0.050
0.043

°2 Ni

Balance
70 ppm Balance

Balance
60 ppm Balance

Balance
50 ppm Balance



TABLE 22

Effect of Task II Preliminary Rolling Practices on Grain
Size After Solution Heat Treatment

Rolling
Practice*

[1]

[2]

[3]

[4]

Solution
Treatment**

A
B

A

A
B

A
B

C

7
7

7
7-1/2

7
6-1/2

HIP
Cl

7
7

- W O R

7
7

7-1/2
7

CYCLE VARIATION ***
C2

6-1/2
6-1/2

K A B I L I

6
6

7
6-1/2

D

6-1/2
6

7
5-1/2

7
4

E

6-1/2
6

6
6

6
5

*Rolling Practice Key

[1] Standard pass reductions from 1065°C (1950°F) with single passes
between reheats.

[2] 1245°C (2275°F)/2 hrs./RAC + [1] above.
[3] Standard pass reductions from 1065°C (1950"F) with double passes

between reheats.
[4] Standard pass reductions from 1120°C (2050°F) with single passes

between reheats.

**Solution Treatment Key

A 1230°C (2250°F)/2 hrs./RAC.
B 1245°C (2275°F)/2 hrs./RAC.

*** See Table 2



TABLE 23

Summary of Heat Treatment Cycles for Task II Heat Treatment Evaluation

Cycle
Identification ' C Y C L E

[A] 1230°C (2250°F)/2 hrs/RAC + 870°C (1600°F)/16 hrs/RAC + 760°C (1400°F)/16 hrs/AC.

[B] 1245"C (2275°F)/2 hrs/RAC + 870°C (1600°F)/16 hrs/RAC + 760°C (1400°F)/16 hrs/AC.

[C] 1230°C (2250°F)/2 hrs/RAC + 1040°C (1900"F)/2 hrs/RAC + 760°C (1400°F)/16 hrs/AC.

[D] 1245°C (2275°F)/2 hrs/RAC + 1040°C (1900°F)/2 hrs/RAC + 760°C (1400°F)/16 hrs/AC.

[E] 1230°C (2250°F)/2 hrs/RAC + 760°C (1400°F)/64 hrs/AC.

1245°C (2275°F)/2 hrs/RAC + 955°C (1750°F)/4 hrs/RAC + 760°C (1400°F)/16 hrs/AC.

[G] 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/16 hrs/RAC +
760°C (1400°F)/16 hrs/AC.

[H] 1245°C (2275°F)/2 hrs/Fast FC to 1095°C (2000°F)/RAC + 870°C (1600°F)/16 hrs/RAC +
760°C (1400°F)/16 hrs/AC.



TABLE 24

Results of Task II Heat Treatment Evaluation for NASA lib-HC-Preform C

Test Conditions**

T: 540°C(1000°F)
T: 540°C(1000°F)
T: 540°C(1000°F) .

T: 760°C(1400°F)
T: 760°C(1400°F)
T: 760°C(1400°F)
T: 760°C(1400°F)

S/R: 760°C/690MPa(1400°F/100ksi)
S/R: 760°C/690MPa (1400°F/100ksi)
S/R: 760°C/690MPa (1400°F/100ksi)
S/R: 760°C/690MPa (1400°F/100ksi)
S/R: 760°C/690MPa (1400°F/100ksi)
S/R: 760°C/690MPa (1400°F/100ksi)

S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R : 81 5 °C/485MPa (1 500 °F/70ksi )
S/R: 815°C/485MPa(1500°F/70ksi)
S/R : 81 5 °C/485MPa (1 500 °F/70ksi )

Rupture Life
(Hours)

26
21
11
17
7
1

14
13
16
6
34
28

U.T.S. 0.2% Y.S.
MPa ksi MPa ksi

1496 217 1186 172
1434 208 1172 170
1462 212 1103 160

1324 192 1124 163
1317 191 1124 163
1269 184 1069 155
1234 179 1096 159

Heat Treatment
Cycle*

A
B
G

A
A
B
B

A
A

C
D

A
B
E
F
G
H

*See Table 23 for listing.

**T indicates tensile; S/R, stress rupture.

Elongation
(*)

9.1
10.7
11.4

5.2
9.3
7.7
2.3

2.0
3.2
3.0
1.8
1.4
2.0

0.7
,4
,9

0.7
2.0
1.4

R of A

(*)

14.0
11.0
11.7

13.8
15.4
12.3
7.3

4.7
3.6
4.7
5.4
6.8

1.6
3.2
1.8
4.3
2.7
2.4



TABLE 25

Results of Task II Heat Treatment Evaluation for NASA Ilb-llC-Preform Cl

Heat Treatment
Cycle*

A
B
G

A
A
B

Ox
B

A
B
B

A
B
E
F
G
H

Test Conditions**

T: 540°C(1000°F)
T: 540°C(1000°F)
T: 540°C(1000°F)

T: 760°C(1400°F)
T: 760°C(1400°F)
T: 760°C(1400°F)
T: 760°C(1400°F)

S/R: 760°C/690MPa(1400°F/100ksi)
S/R: 760°C/690MPa (1400°F/100ksi)
S/R: 760°C/690MPa(1400°F/100ksi)
S/R: 760°C/690MPa (1400°F/100ksi)

S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(2500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)

Rupture Life
(Hours)

30
29
25
19

14
13
17
4
20
24

U.T.S. 0.2% Y.S.
MPa ksi MPa ksi

1496 217 1117 162
1420 206 1110 161
1448 210 1083 157

1262 183 1103 160
1276 185 1089 158
1296 188 1110 161
1200 174 1124 163

Elongation

9.3
9.8
11.4

6.4
5.2
5.2
4.5

1.
3.
1.6
2.3

0.2
1.4

1.1
2.0
3.2

R of A
(*)

13.8
13.3
13.8

11.8
10.7
7.0
8.3

5.4
3.8
4.3
4.7

0
0

1.7
5.0
2.8

*See Table 23 for listing.

**T indicates tensile; S/R, stress rupture.



TABLE 26

Results of Task II Heat Treatment Evaluation for NASA Ilb-llC-Preform C2

Heat Treatment
Cycle*

A
B
G

A
A
B
B

A
A
B
B

A
B
E
F
G
H

Test Conditions**

T: 540°C(1000°F)
T: 540°C(1000°F)
T: 540°C(1000°F)

T: 760°C(1400°F)
T: 760°C(1400°F)
T: 760°C(1400°F)
T: 760°C(1400°F)

3/R: 760°C/690MPa(1400°F/100ksi)
S/R: 760°C/690MPa(1400°F/100ksi)
S/R: 760°C/690MPa(1400"F/lOOksi)
S/R: 760°C/690MPa(1400°F/100ksi)

S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)

Rupture Life
(Hours)

33
33
27
25

19
14
24
9
30
35

U.T.
MPa

1469
1407
1441

1317
1317
1317
1310

S
ksi

213
204
209

191
191
191
190

0.2%
MPa

1145
1055
1089

1117
1131
1165
1138

Y.S.
ksi

166
153
158

162
164
169
165

Elongation
(*)

10.0
8.9
11.1

6.4
5.7
2.7
4.5

3.0
3.4
2.5
2.5

0.9
2.7
0.9
0.5
2.3
2.3

R of A
(%)

16.5
13.8
16.8

14.0
9.2
5.7
4.0

4.0
5.7
4.5
4.1

1.9
2.1
0.8
1.2
3.4
3.3

*See Table 23 for listing.
**T indicates tensile; S/R stress rupture.



TABLE 27

Results of Task II Heat Treatment Evaluation for NASA Ilb-llD-Preform D

Test Conditions**

T: 540°C (1000°F)
T: 540°C (1000°F)
T: 540 °C (1000°F)

T: 760°C (1400°F)
T: 760°C (1400°F)
T: 760 °C (1400"F)
T: 760°C (1400°F)
T: 760°C (1400°F)
T: 760°C (1400°F)

S/R: 760°C/690MPa (1400°F/100ksi)
S/R: 760°C/690MPa(1400°F/100ksi)
S/R: 760"C/690MPa (1400°F/100ksi)
S/R: 760 °C/690MPa (1400 °F/100ksi)

S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R : 81 5 °C/485MPa (1 500 °F/70ksi )
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)

Rupture Life
(Hours)

79
78
96
60

23
39
39
8
79
67

U.T.S. 0.2% Y.S.
MPa ksi MPa ksi

1503 218 1138 165
1427 207 1131 164
1413 205 1062 154

1276 185 1062 154
1276 185 1083 157
1303 189 1110 161
1289 187 1089 158
1214 176 1117 162
1220 177 1076 156

Heat Treatment
Cycle*

A
B
G

A
A
B
B
F
G

A
A
B
B

A
B
E
F
G
H

*See Table 23 for listing.

**T indicates tensile; S/R, stress rupture.

Elongation
(*)

11.4
9.1
10.7

9.1
8.9
7.3
6.8
2.7
14.3

4.5
3.4
2.5
3.2

2.3
4.3
0.7
0.9
3.6
2.3

R of A

(*)

11.6
15.5
18.2

13.3
11.6
10.6
10.4
5.1
19.3

6.3
4.4
3.4
5.3

1.3
0.8
0.8
0.6
3.7
4.0



TABLE 28

Results of Task II Heat Treatment Evaluation for NASA IIb-1IE-Preform E

Heat Treatment
Cycle*

A
B
G

A
A
B
B
H

A
A
B
B

A
B
E
F
G
H

Test Conditions**

T: 540°C(1000°F)
T: 540°C(1000°F)
T: 540°C(1000°F)

T: 760°C(1400"F)
T: 760°C(1400°F)
T: 760°C(1400°F)
T: 760°C(1400°F)
T: 760°C(1400°F)

S/R: 760°C/690MPa (1400°F/100ksi)
S/R: 760°C/690MPa (1400°F/100ksi)
S/R : 760 °C/690MPa (1 400 °F/1 OOksi )
S/R: 760°C/690MPa (1400°F/100ksi)

S/R: 815°C/485MPa(1500°F/70ksi)
S/R : 81 5 °C/485MPa (1 500 °F/70ksi )
S/R: 815°C/485MPa(1500°F/70ksi)
S/R : 81 5 °C/4 85MPa (1 500 °F/70ksi )
S/R: 815°C/485MPa(1500°F/70ksi)
S/R: 815°C/485MPa(1500°F/70ksi)

Rupture Life
(Hours)

77
55
55
59

39
42
11
53
76
62

U.T.S. 0.2% y.S.
MPa ksi MPa ksi

1372 199 1117 162
1338 194 1110 161
1358 197 1069 155

1269 184 1096 159
1289 187 1089 158
1310 190 1131 164
1289 187 1069 155
1234 179 1000 145

Elongation
(*)

8.6
6.4
11.8

6.6
10.9
8.9
13.6
16.4

2.7
2.5
3.6
3.0

1.1
1.4
0.9
2.5
3.2
3.6

R of A
(*)

15.5
10.9
19.0

11.0
17.9
11.
18.

.5

.2
24.0

5.2
5.8
4.5
2.8

1.4
2.4
2.0
2.0
4.3
4.2

*See Table 23 for listing.

**T indicates tensile; S/R, stress rupture.



TABLE 29

Results of X-Ray Phase Analyses for Task II Disks in the
Heat Treated and Heat Treated Plus Exposed Condition

Alloy
Designation

lib- 11C
Ilb-llC

Ilb-llC
lib- 11C

Ilb-llC
lib- 11C

Ilb-llD
Ilb-llD

Ilb-llE
lib- HE

Preform
Identity

C
C

Cl
Cl

C2
C2

D
D

E
E

Material Condition**

H/T
H/T + Exposed

H/T
H/T + Exposed

H/T
H/T + Exposed

H/T
H/T + Exposed

H/T
H/T + Exposed

Relative
MC

VS
S

VS
S

VS
S

VS
S

VS
S

Concen t rat ion*
MfiC

W
S

W
S

W
S

W
S

W
S

of Phases
M_23C£

VW
W

VW
W

VW
W

vw
W

vw
W

Present
Mu

W

W

W

W

*S represents Strong; M, Moderate; W, Weak; and V, Very

**H/T indicates Heat Treated (detail below); Exposed indicates 870°C (1600°F)/1500 hours.

All Alloys: 1245°C (2275°F)/2 hours/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/16 hours/RAC +
760°C (1400°F)/16 hours/AC.



TABLE 30

Tensile Properties of NASA Ilb-llC Disk Fabricated From HIP Preform C

Test Temperature Ultimate Tensile Strength
MPa ksi

0.2% Yield Strength
MPa ksi

Elongation Reduction Of
Area (%)

21
21

540
540

650
650

760
760

815
815

70
70

1000
1000

1200
1200

1400
1400

1500
1500

1477
1449

1460
1463

1447
1429

1204
1235

1022
1088

214.2
210.1

211.8
212.4

209.9
207.3

174.6
179.1

148.2
157.9

1102
1108

1069
1104

1085
1074

1035
1124

976
936

159.8
160.7

155.0
160.3

157.3
155.8

150.1
163.0

141.6
135.7

10.7
10.0

11.4
11.4

12.7
10.7

6.4
7.7

4.5
6.4

14.3
15.1

18.0
11.7

17.7
15.9

12.5
8.6

9.1
6.3

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/16 hrs/RAC +
760°C (1400"F)/16 hrs/AC.



TABLE 31

Tensile Properties of NASA Ilb-llC Disk Fabricated From HIP Preform Cl

Test Temperature Ultimate Tensile Strength
MPa ksi

0.2% Yield Strength
MPa ksi

Elongation

21
21

540
540

650
650

760
760
760

815
815

70
70

1000
1000

1200
1200

1400
1400
1400

1500
1500

1482
1472

1463
1451

1440
1418

1234
1242
1201

1089
1092

215.0
213.5

212.2
210.4

208.9
205.7

178.9
180.1
174.2

157.9
158.4

1089
1064

1105
1079

1070
1071

1085
1079
1123

954
929

158.0
154.3

160.2
156.5

155.2
155.3

157.3
156.5
162.9

138.4
134.7

10.0
11.6

13.0
11.4

13.6
12.3

8.2
12.5
4.5

5.9
7.7

Reduction Of
Area (%)

14.3
15.0

16.7
13.8

17.4
16.0

10.3
16.6
8.3

8.3
11.1

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC
760°C (1400°F)/16 hrs/AC.

870°C (1600°F)/16 hrs/RAC +



TABLE 32

Tensile Properties of NASA Ilb-llC Disk Fabricated From HIP Preform C2

Test Temperature Ultimate Tensile Strength
MPa ksi

0.2% Yield Strength
MPa ksi

Elongation Reduction of
Area (%)

21
21

540
540

650
650

760
760

815
815

70
70

1000
1000

1200
1200

1400
1400

1500
1500

1538
1436

1429
1444

1404
1393

1219
1230

1075
1090

223.1
208.2

207.2
209.4

203.6
202.0

176.8
178.4

155.9
158.1

1088
1107

1086
1087

1012
1034

1045
1049

931
938

157.8
160.6

157.5
157.7

146.8
150.0

151.5
152.1

135.0
136.1

13.4
10.5

13.0
11.1

12.5
11.6

9.3
13.2

7.3
6.4

13.5
8.8

16.0
16.8

15.3
17.7

13.7
14.4

9.0
13.6

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/16 hrs/RAC +
760°C (1400°F)/16 hrs/AC.



TABLE 33

Tensile Properties of NASA Ilb-llD Disk Fabricated From HIP Preform D

Test Temperature
MPa

X

21
21

540
540

650
650

760
760
760

815
815

70
70

1000
1000

1200
1200

1400
1400
1400

1500
1500

1441
1481

1225
1415

1391
1369

1234
1223
1219

1105
1078

'trength
ksi

209.0
214.8

177.7
205.2

201.7
198.6

179.0
177.4
176.8

160.2
156.4

0.2% Yield
MPa

1067
1100

1054
1059

1058
1060

1025
1025
1074

971
945

Strength
ksi

154.7
159.5

152.8
153.6

153.5
153.8

148.7
148.7
155.7

140.9
137.1

Elongation
(*)

11.6
12.3

5.7
10.7

8.2
8.9

14.1
10.7
14.3

10.5
11.6

Reduction of
Area (%)

17.4
14.6

12.9
18.2

11.0
17.8

23.5
20.6
19.3

20.0
18.3

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/16 hrs/RAC +
760°C (1400°F)/16 hrs/AC.



TABLE 34

Tensile Properties of NASA Ilb-llE Disk Fabricated From HIP Preform E

Test

21
21

540
540

650
650

760
760

815
815

Temperature

70
70

1000
1000

1200
1200

1400
1400

1500
1500

Ultimate
MPa

1477
1491

1369
1359

1344
1323

1229
1233

1088
1096

Tensile Strength
ksi

214.4
216.4

198.8
197.2

195.0
192.0

178.4
179.0

157.9
159.1

0.2% Yield
MPa

1098
1091

1034
1071

1027
1002

1000
1045

954
972

Strength
ksi

159.3
158.3

150.0
155.4

149.0
145.5

145.2
151.6

138.4
141.1

Elongation

(*)

13.2
13.0

13.0
11.8

10.9
10.0

18.6
17.0

16.4
18.9

Reduction of
Area (%)

17.7
16.9

15.7
19.0

15.8
19.7

25.9
23.9

25.7
22.9

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/16 hrs/RAC +
760°C (1400°F)/16 hrs/AC.



TABLE 35

Stress Rupture Properties of NASA Ilb-llC Disk Fabricated From HIP Preform C

Test Conditions
°C/MPa

650/1103
650/1103

760/690
760/690

815/483
815/483

870/345
870/345

°F/ksi

1200/160
1200/160

1400/100
1400/100

1500/70
1500/70

1600/50
1600/50

Rupture Life
(Hours)

39.4
42.2

41.8
35.1

22.8
34.1

6.3
5.4

Elongation

5.9
8.0

1.1
1.4

1.1
2.0

0.9
1.1

Reduction of
Area (%)

9.8
14.6

5.5
6.0

5.3
2.7

2.2
3.8

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/16 hrs/
RAC + 760°C (1400°F)/16 hrs/AC.



TABLE 36

Stress Rupture Properties of NASA Ilb-llC Disk Fabricated From HIP Preform Cl

Test Conditions

"Nl

°C/MPa

650/1103
650/1103

760/690
760/690

815/483
815/483

870/345
870/345

°F/ksi

1200/160
1200/160

1400/100
1400/100

1500/70
1500/70

1600/50
1600/50

Rupture Life
(Hours)

44.0
38.4

30.1
43.0

28.6
19.5

7.7
7.3

Elongation
(*)

4.8
6.6

3.4
2.3

2.0
2.0

1.4
1.6

Reduction of
Area (%)

10.5
14.0

4.2
3.8

3.3
5.0

3.9
1.8

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/
16 hrs/RAC + 760°C (1400°F)/16 hrs/AC.



TABLE 37

Stress Rupture Properties of NASA Ilb-llC Disk Fabricated From HIP Preform C2

Test Conditions Rupture Life
°C/MPa

650/1103
650/1103

760/690
760/690

815/483
815/483

870/345
870/345

°F/ksi

1200/160
1200/160

1400/100
1400/100

1500/70
1500/70

1600/50
1600/50

(Hours)

28.8
25.1

50.2
50.4

26.0
30.2

6.7
5.8

Elongation
(*)

5.5
8.6

4.1
2.7

1.1
2.3

1.8
1.4

Reduction of
Area (%)

10.5
14.7

3.9
3.8

3.2
3.4

1.6
1.4

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/16 hrs/
RAC + 760"C (1400°F)/16 hrs/AC.



TABLE 38

Stress Rupture Properties of NASA Ilb-llD Disk Fabricated From HIP Preform D

Test Conditions Rupture Life Elongation Reduction of
Area (%)°C/MPa

650/1103
650/1103

760/690
760/690

815/483
815/483

870/345
870/345

"F/ksi

1200/160
1200/160

1400/100
1400/100

1500/70
1500/70

1600/50
1600/50

(Hours)

87.9
91.6

106.9
84.0

92.8
79.1

26.1
27.0

11.1 18.0
12.3 19.8

5.0 8.8
4.8 8.0

1.8 3.6
3.6 3.7

2.3 2.0
2.3 2.7

Heat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/
16 hrs/RAC + 760°C (1400°F)/16 hrs/AC.



TABLE 39

Stress Rupture Properties of NASA Ilb-llE Disk Fabricated From HIP Preform E

Test Conditions Rupture Life
"C/MPa

650/1103
650/1103

760/690
760/690

815/483
815/483

870/345
870/345

°F/ksi

1200/160
1200/160

1400/100
1400/100

1500/70
1500/70

1600/50
1600/50

(Hours)

59.1
67.7

138.9
136.2

99.6
75.9

86.3
48.8

Elongation
(%)

13.6
14.3

2.5
5.0

3.2

2.0
4.8

Reduction of
Area (%)

20.1
20.7

6.9
7.1

4.7
4.3

2.7
4.2

Beat Treatment: 1245°C (2275°F)/2 hrs/Slow FC to 1150°C (2100°F)/RAC + 870°C (1600°F)/
16 hrs/RAC + 760°C (1400°F)/16 hrs/AC.



TABLE 40

Effect of Thermal Exposure on the 760°C (1400°F) Tensile Properties of the Task II Compositions

HEAT TREATED (H/T) H/T PLUS EXPOSED
Alloy

Designation

lib- 11C
lib- 11C

Ilb-llC
Ilb-llC

Ilb-llC
Ilb-llC

Ilb-llD
Ilb-llD

lib- HE
Ilb-HE

Preform
Identity

C
C

Cl
Cl

C2
C2

D
D

E
E

UTS
MPa

1204
1234

1234
1242

1219
1230

1234
1223

1230
1234

ksi

175
179

179
180

177
178

179
177

178
179

0.2%
MPa

1035
1124

1085
1085

1049
1049

1025
1025

1000
1049

Y.S.
ksi

150
163

157
157

152
152

149
149

145
152

Elongation

6.4
7.7

8.2
12.5

9.3
13.2

14.1
20.7

25.6
27.0

Reduction

12.5
8.6

10.3
16.6

13.7
14.4

23.5
20.6

25.9
23.9

UTS
MPa

979
938

952
979

917
952

1020
1025

1035
1025

ksi

142
136

138
142

133
138

148
149

150
149

0.2%
MPa

779
772

793
772

738
745

745
745

821
869

Y.S.
ksi

113
112

115
112

107
108

108
108

119
126

Elongation

3.2
2.7

2.7
3.0

3.6
2.3

4.1
5.0

6.0
8.0

Reduction

6.0
3.8

4.2
6.0

7.0
2.9

11.8
9.7

13.2
11.2

-<J



TABLE 41

Effect of Thermal Exposure on the 760°C/690 MPa (1400°F/100 ksi)
Rupture Properties of the Task II Compositions

Alloy Designation

lib-11C
Ilb-llC

lib-11C
Ilb-llC

lib-11C
Ilb-llC

Ilb-llD
Ilb-llD

lib-HE
lib-HE

Preform
Identity

C
C

Cl
Cl

C2
C2

D
D

E
E

HEAT
Rupture Life

(Hours)

42
35

30
43

50
50

107
84

139
136

TREATED (H/T)
Elongation

r%;
1.1
1.4

3.4
2.3

4.1
2.7

5.0
4.8

2.5
5.0

Reduction
(*)

5.5
6.0

4.2
3.8

3.9
3.8

8.8
8.0

6.9
7.1

H/T
Rupture Life

(Hours)

6
5

5
4

3
8

6
10

13
17

PLUS EXPOSED
Elongation

(*)

1.8
1.8

2.5
2.7

2.0
1.6

2.3
3.6

4.8
7.3

Reduction
(%)

3.2
4.8

3.0
3.3

6.0
5.2

2.2
9.0

9.1
8.5



TABLE 42

Density Measurements for the Task II Compositions

Density

Alloy Designation

Ilb-llC

lib-11C

lib-11C

Ilb-llD

Preform Identity

C

Cl

C2

8.76

8.76

8.76

8.79

Ibs/in*

0.316

0.316

0.316

0.317

lib-HE 8.75 0.316
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Fig 8- ELECTRON MICROGRAPHS OF NASA HTb-l
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Mag. : 6000X
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Fig 9: ELECTRON MICROGRAPHS OF NASAJTb-I IS

IN AS-HEAT TREATED CONDITION

Mag : 6000X
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Fig. 10 : ELECTRON MICROGRAPHS OF NASA Eb-l IA
IN AS-HEAT TREATED CONDITION

Mag. : 6000X
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IN A3-HE AT TREATED CONDITION
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1I
C2

PRACTICE I: STANDARD PASS REDUCTIONS FROM 1065° C (I950°F) WITH

SINGLE PASSES BETWEEN REHEATS.

C2

PRACTICE 2: 1245° C (2275° F) /2 HOURS /RAC + (I) ABOVE.

Ci

PRACTICE 3: STANDARD PASS REDUCTIONS FROM 1065° C (I950°F) WITH

DOUBLE PASSES BETWEEN REHEATS.

PRACTICE 4: STANDARD PASS REDUCTION FROM II20°C (2050°F) WITH

SINGLE PASSES BETWEEN REHEATS.

Fig. 19 : EFFECT OF TASK U PRELIMINARY ROLLING PRACTICES ON
HOT WORKABILITY.
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FIG. 21 : OPTICAL MICROGRAPHS OF THREE

TASK E COMPOSITIONS AFTER HEAT

TREATMENT.
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