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. CONCLUSIONS AND OBSERVATIONE

A specific first-order phase locked loop has been modeled as a first~order Markov
process and the appropriate analysis carried out to determine the steady-state probabilities
of the loop's phase states, the standard deviation of the loop's output phase and the mean
time to lock for some known initial phase offset., The comparison of these values for a
particular loop configuration with values obtained by simulation of the loop indicate that
the proposed model is valid. The state diagram itself is not limited to the case of in-
dependent input samples but the analysis would have to be carried out for an nth order
Markov process if the samples are not statistically independent.

The model as presented is limited to a first-order phase locked loop by the fact
that the state diagram allows transitions only to adjacent states. If the state diagram
allowed transitions to states other than only the adjacent states then a second-order loop
results. However, the transition probabilities must be such that the matrix of transition
probabilities is stochastic if the analyfic techniques described in the pravious sections
are fo be of value,

il, INTRODUCTION

Digital phase locked loops are of particular interest because of the inherent ease
with which they can be designed and constructed. However, litile is known about the
output phase charmcrerlshcs of DPLL's when the input signal is corrupted by noise. In
[11, o class of DPLL's was subjected to a noise analysis but simplifying assumptions made
|lm|i' the usefulness of the results fo small values of phase error only, In [2] and [3],
specific DPLL configurations were analyzed utilizing random-walk techniques, A DPLL
is described in the following that achieves the same statistical curve characteristics but
less physical complexity than that described in [3].

The following deals with a specific first-order DPLL configuration and utilizes the
theory of first order Markov prrocesses in the analysis, The specific loop configuration
used is that of the Ohio University MAPLL [4] with the exception that the loop is ussumed
to operate continuously instead of in a gated manner. The main thrust of this paper is to
present a method of analysis for this loop configuration (end many similar loop configurations)
and not necessarily in provide a detailed design for any particular DPLL application. As
an example of the usefulness of the approach, results are provided for a DPLL whose cut~
put phase is quantized fo 32 distinct values. Results are also provided for a DPLL simulation

as. a check on the correciness of the analytic method.

Il.  MARKOV CHAIN MODEL FOR A DPLL

- Consider the first-order digital phase locked loop of F;gune 1. For this loop, the
reference clock is the same Frequency as the incoming signal s(t} and can take on N
distinct phases defined between 0 and 2r. These values are spaced 21/N radians apart.
The operation of the phase detector is to sample the incoming signal at o time coincident
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with the positive going zero crossing of the reference clock and provide an output based
en the sign of the sampled value. See Figure 2, If the sample value of the incoming signal
is less than zera, the phase detector provides an increment output and if the sample value
is greater than zero, a decrement output, Assume thot the divide-by M ond the divide~by
N counters are initially zero and th:: random noise is zero and the incoming signal phase
lags the reference clock phase.  The sampled value then is less than zero so that the
phase detector output causes the divide-by M counter to increment one count. Since

the value of the divide-by N counter does not change, the next sample will also be

less than zero again causing the divide-by M counter to increment one count. This con-
finues until the divide-by M counter overflows and thus increments the divide-by N
counter by one count which in turn retards the phase of the reference clock by 2m/N
radians. The divide-by N counter is thus successively incremented until the reference
clock phase lags the incoming signal phase af which time the phase defector samples

are now positive causing the divide-by M counter to decrement one count for each such
sample taken. The loop then is in lock and the reference clock phase is equal to the
incoming signal phase within the quantization error.

From the preceding, it is obvious that to change the phase of the reference clock
it is necessary for the divide~-by M counter to cycle through its M distinct states to either
an overflow or underflow condition. Thus while the phase output takes on N distinct
states, the loop itself has MxN distinct states. A state diagram for the loop is given in
Figure 3 where the p.'s and the q.'s are the probabilities associated with the indicated
state changes. More will be said about these values in o moment. Several things are
worth noting about this state diagram. First, for any present state, when a new sample
is taken a new state will result; and second, the new state will always be "adjacent" to
the previous siate. Also, for a given reference clock state the transitions occur uniformly
with time but, following a transition from one reference clock state to another, the
time interval to the next sample is either longer or shorter than the time interval between
the previous two samples depending on whether the reference clock phase was advanced
or retarded as it passed from the previous reference clock state to the present reference
clock state, '

Assume that the input fo the DPLL is
s (1) =s(r) *n(t)

= Accos(u R +u) + x{fcos wcr+ y{t)sin Wt

where A _is the carrier amplitude and x(t) and y(t) are zero mean independent gaussian
distributSd random pracesses of bandwidth B and variance o, =g <= o%, That is, the
_input to the DPLL is some signal plus narrowband noise. The Ian{' can also be written
in the form: - o ' :

N = o : oo E H
sr(l) X (t)cosmcf. y¥(t)sin W t
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where

x' () = x(t) + A _cos
y'(£) = y(t) -+ ACSE“ t

The positive going zero crossing is always assumed to be the correct phase of the signal s(t).
That is, the reference clock is always assumed to be in phase lock with the signal s(t), and
the error signal generated by the phase detector is used to tell the loop differently, There-
fore, the loop always assumes the samples of the incoming signal occur at:

ucfl.=(l+2i)1r/2 i=0,1,2,...
so that
cosw +=0
c
sinwt=1
c
giving

sr(r) = y(t) + Acsin )

where ¢ is the phase difference between s(t) and the reference clock. Note that as the
loop approaches lock, @ approaches 0. Also, the reference clock can take on only N

distinct values so that 4§ too can take on only N distinct valves y;, i=1,2, .. ., N.

From earlier y(t) is a gaussian distributed random process so ’rhoi‘ the probability density

function for s (t) is: :

1 1 (Y + ACSEn '}’i )2
p(s ) = e ? ' 3
' v 211-0‘2 a

From the state diagram of Figure 3, ‘the p.'s are the probcbl lity that the samp[ed value of
5 (f) is less than zero and can be found from:

o]
=S [:)(sl,!tlii')dsr

-0

: o _[—S-—23

= S e *? dy
Vo2 - ' :

= probability that sr(t) <




Also,

q.

|=I-pi

= probability that s‘_(t) >0

If the samples are independent and the non-uniform sampiing interval is ignored,
then the DPLL given by the state diagram of Figure 3 can be approximated by a Markov
chain. Define ajj as the probability that the loop is in state sjj. Then the system of
equations describing the loop probabilities are given as:
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Cr,
EPl [al = [al

where P is called the matrix of transition probabilities. The non-trivial solution to this
system of homogeneous, linear equations is the one that satisfies:

N M
L I a,, =1
i=1, i=1 'l

and, from the characteristics of Morkov chains, represents the steady-state probabiiities
for the loop states. That is, at any given instunt of time the probability of observing the
loop in state s;; ij i is given by ajj+ The steady-state probabilities for the reference clock
states, S;, are given by:

a,, i:'-}, 2, t.."\!

Once the steady-state reference clock state probabilities are known, it is possible to find
the variance of the reference clock phase from:

N 2
op = L S [n/N)+2i)]

where it has been assumed that the phase of the incoming signal s(t) is 7 radians.

Another quantity useful for the evaluation of a DPLL is the mean time to lock-up
for some initial phase oFFsei' To evaluate this, the Markov chain approximation is again
used, Let p;; be the i i1 element of [Pland renumber the loop states 5 by consecutively
numbered subscripts as:

S..=5§

119
5127 %
SNM T (N*M)

Then if the system sta rg in state s;, the waiting time up to the first passage through state
s: has a distribution R0/, That is, fl(n) is the probability that starting in state s, r the First
occurrence of state sI I|s at time n. ' The values of f(r"') can be found from:

£1) o
i "By



and

¢n) = (n) n gn-k) p( )
1| Pii k =1 1| ij
(kY. ..th k . . .
where p;:/ is the I} element of P". The mean time to the first occurrence of s, if the
inii‘iql state is 5, then is: !

s ]
H ii = L nf(.r})

n=1 M

For the dimension of the square matrix P on the order of 500X500 (for instance
N = 64 and M= 8) the determination of the elements of pk directly is time consuming even
when implemented for computer solution. Therefore, alternate methods to determine p <)
‘are desired. One method of solution is to form a generating function as outlined by
Feller [51, While this method results i - a function that allows the evaluation of p(k)
as a function of k, it involves the solution of two sets of nxn simu ltaneous equations
and the determination of the roois of a n'™* order polynomial. Another method of solution
would be fo find the eigenvalues and eigenvectors of matrix P and convert it to Jordan
canonical form by similarity transforms, Then the higher powers of the Jordan canonical
form matrix could be eosily found with p k) dr-f(rermmed from the inverse transform, Note,
it is not required to find all the elements 'st PX,  This method is atiractive from the stand-
point that literature concerning the deh:.rmmahon of eigenvalues and eigenvectors is
readily available.

A more direct method for finding the mean time to the occurrence of 5 given present
state s; is suggested by Feller [5] and derived by Cessna and Levy [3]. Asin [3], let 1 (|)
be the expected value of time to reach minimum phase error when the initial state is
state i. Then TO(I) satisfies the following difference equation:

T = TG + p(i)T (1-1) +q(i)*T (i+1)

with boundary conditions T_{0) = 0 and T(i) the expected duration of state i. For the State
diagram of Figure 3, T(i) = . Thus, a set of non-homogeneous linear simultaneous equations
has been defined, ’rhe solution of which is readily found.

IV, APPLICATION OF THE MARKOV CHAIN MODEL

The steady-state probabilities for different values of M and N were found by a
successive approximation algorithm in a computer program. An envelope of the steady~
state probabilities for N = 32 and M = 4 is shown in Figure 4 for signal~to-noise ratios
of 0 dB and =20 dB. Notice that af the decreased signal-to-noise ratio the density
function’s peak is down and the function has“flattened out” considerably. This is
expected since the noise has become more significant making the steady-state probabiiities
more nearly equal.,
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Once the steady-stute probabilities are determined the phase variance (er standard
deviation) can be easily calculated, For N =32 or2 M =4, 8, and 16, the phase standard
deviation versus signa|-to-noise ratio wore calculaied. The results are plotted in Figure 5,
‘Note, these curves are plofted for noise-to-signal ratios. For low values of noise~to-signal
ratio, the curves are asymptolic to a value fixed by N, the quantization level of the reference
clock phase. For high values of noise~- c—annc:l ratio the curves are asymplotic to the standard
deviation of a uniform phase distribution, Tais is caused by the flattening of the phase
density function as the noise~to-signal ratio increases. Simulation results for N =32,

M = 4 are also provided in Figure 5. These show close agreement to the theoretical
resuits. ‘

The mean time to loop lock-up in terms of the number of samples required was

determined by solving the difference equation given previously. The values of M and
N were fixed to 4 and 32, respectively, so that the loop had 128 states and the incoming
signal phase was assumed to be x radians so that loop lock oceurred in either states sgg
ors, .. The boundary conditions for the difference equations then are T (64) and T_(65)
equals zero. This set of difference equations was solved by a successiveoopproximarion
technique for different values of signal~to-noizg ratio and the resulis are plotted in Figure
6. As expected for a given initial phase offset, the mean number of sampies required to
achieve phase lock increases as signal-fo-noise ratio decreases. Notice that for a 20 dB
signal-to-noise ratio that the expected time to lock is very nearly that of the noiseless
case. Thatis, for the maximum error between the input phase and the DPLL, the DPLL
would have to step through &3 transitions fo reach the lock state and Figure 6 indicates
that for 20,0 dB the expected number of samples required is 64.2. Figure 7 is a similar

plot except that the signal-to~-noise ratio was held constant and the value of M was set
ro both 4 and 8, From this plot, for a fixed signal-to-noise ratic and a fixed phase
offset, {he mean time to lock increases as the number of states increases. Simulation
resulfs are also provided in Figure 6 for M =4, N =32, The mean time to lock for
~ the simulation shows close agreement with the theoretical results,
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