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ABSTRACT



A condenser microphone AM carrier system, which has been developed to



measure pressure fluctuations at elevated temperatures, consists of the following



components a condenser microphone designed for operation at elevated



temperatures, existing carrier electronics developed under two previous research



grants but adapted to meet present requirements, a 6 m (20 ft) cable operating



as a half-wavelength transmission line between the microphone and carrier



electronics, and a voltage-controlled oscillator used in a feedback loop for



automatic tuning control Both theoretical and practical aspects of the



development program are considered



Specifications achieved with a prototype system are the following



maximum operating temperature (continuous duty) >4270C, harmonic distortion



at 170 dB SPL = 1 4 percent, noise floor (22.4 Hz to 22 4 kHz) = 105 dB,



frequency response (±2 dB) = 20 Hz to 10 kHz, thermal shock, <2 dB change in



sensitivity during cooling at rate of 1620 C/min; vibration sensitivity



<0 5 N/m2/g The three predominant effects of temperature changes are changes



in the membrane-backplate gap, membrane tension, and air viscosity The



microphone is designed so that changes in gap and membrane tension tend to



have compensating effects upon the microphone sensitivity
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A-HIGH-TEMPERATURE WIDEBAND PRESSURE TRANSDUCER



By



Allan J. Zuckerwar
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I. INTRODUCTION



A. Statement of the Problem



The "powered-lift" concept in STOL aircraft design entails the impingement



of a jet exhaust upon structural surfaces of the aircraft either by (1) upper



surface blowing or (2) externally blown flaps. The interaction of the exhaust



stream with the wing and flaps enhances lift, but the associated turbulence
 


simultaneously produces pressure fluctuations with undesirable side effects.



acoustic fatigue of the structure and deteriorating ride quality. A study of



these effects is contingent upon the availability of a transducer which is



capable of measuring the pressure fluctuations right within the jet exhaust.



Presently available commercial transducers are of limited applicability to



these studies because of their inability to withstand the high ambient
 


temperatures The purpose of the present research is to develop a dynamic



pressure transducer specifically for measurements within the high-temperature



environment of a jet exhaust.



A typical experimental arrangement to study pressure fluctuations on



externally blown flaps is shown in figure 1 The transducers are flush mounted



in selected locations on the wing and flaps for the purpose of obtaining the



spatial distribution of fluctuating pressure levels. 

The specifications on such a transducer are quite severe in view of 

several requirements peculiar to this particular application first, the 

transducer must operate continuously at temperatures up to 427C (8000F), and 

even higher for future experiments, secondly, it must be insensitive to the 

vibrations of the panel on which it is mounted, thirdly, It must operate 

through rapid changes in temperature ("thermal shock"), finally, it must have 

1 	 Research Associate Professor of Physics, Department of Physics and Geophysical 

Sciences, Old Dominion University, Norfolk, Virginia 23508 



a smooth, plane exterior surface for flush mounting in the test panels,



so as not to influence ambient aerodynamic conditions. A list of the most



essential specifications is given in table 1.



Table 1. Essential transducer specifications.



1. Dynamic range (re 2 x 10-5 N/m2) 110 to 180 dB 

2. Noise floor 100 dB 

3. Frequency response (± 1 dB) 5 Hz to 20 kHz 

4. Maximum operating temperature 
(continuous duty) 

4270C (8000F) 

5. Smooth exterior finish for flush mounting 
in panels 

6. Insensitivity to thermal shock 
[1670C (300 0F)/min over range 100 to 4270C] 

7. Maximum sensitivity to panel vibrations <0.6895 N/m2/g 
(0.0001 psi/g) 

From Specification No. 1-59-3821, April 24, 1973, NASA-Langley Research Center.



B. Past Work



Past efforts to measure the pressure fluctuations have centered about the



semiconductor pressure transducer manufactured by Kulite Semiconductor Products,


Inc. The Kulite transducer, utilizing the piezoresistive effect, has a maximum


temperature rating of 2600C (500*F). This limitation is inherent in the



nature of the transducer and rules out its use at the higher-temperature locations


on the wing and flaps, even though, for the most part, it otherwise meets



specifications It has been used successfully in tests where transducer



locations were restricted to low-temperature regions of the flaps, or where the


exhaust nozzle was modified to produce lower exhaust temperatures (ref 1)



An eddy-current transducer, developed at Kaman Sciences Corporation, is


capable of operating at the remarkably high temperature of 10930C (20000F), but



2 



at this writing is not available commercially and is not designed to meet the



present specifications regarding noise floor and frequency response (ref 2).



C Method of Solution



The response of each of the transducers described above depends upon a



material property--the piezoresistive coefficient and the electrical conductivity



(of the membrane) in the cases of the Kulite and Kaman units respectively. These



properties are sensitive not only to the temperature itself, but also to any



contamination or deterioration of the material which might result from



continuous duty at high temperature. For this reason it is advantageous to



consider a transducer whose operation is based primarily upon geometrical changes



and only to a lesser extent upon the properties of its constituent materials.



Such a transducer is the condenser microphone.



The electronic circuitry used with condenser microphones contains either
 


(1) a polarization voltage or (2) a carrier frequency. Ordinarily the sub


stantial part of the microphone electronics is located in a common housing



with the microphone cartridge in order to avoid loss of sensitivity due to



cable capacitance In the present application, however, such an arrangement is



not possible, for the hostile operational environment necessitates that the



microphone be separated from its supporting electronics by means of a cable



roughly 6 m (20 ft) in length The use of a polarization voltage, then,



is out of the question because of severe loading by the cable capacitance. In



a carrier system, on the other hand, the effect of cable capacitance can be



minimized by operation of the cable as a half-wavelength transmission line



This is the approach pursued in the present research.



D. Objectives of the Present Research



The objective of NASA Grant NSG 1039 is to modify an existing microphone



AM carrier system, developed under two previous NASA Contracts (refs. 3, 4), to



meet the specifications listed in table 1. By nature the research lends itself



to logical partition into three basic problems



(1) Design and construction of the condenser microphone The goal of this



phase of the research is to advance the currently inadequate theory of condenser



microphones to the point where the response of a particular design is readily
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predictable, aAd to utilize the theoretical results in the design and



construction of a prototype microphone.



(2)Design and fabrication of the high-temperature.cable There are two



major tasks associated with the cable-. Ca) to study the feasibility of



operating the cable as a half-wavelength transmission line, and (b)to


fabricate a cable capable of withstanding the severe environmental conditions



at the microphone.



(3)Modification of the existing carrier electronics. The specifications



of the existing AM carrier system, listed below in table 2, are seen to be



compatible with the requirements of the present application. The presence of


the cable necessitates two modifications (a)replacing the fixed-frequency



local oscillator by a variable-frequency external oscillator to extend the



tuning range of the converter, and (b)redesigning the automatic tuning control



system to accommodate wide variations in carrier frequency.



Table 2. Specifications of existing microphone carrier system.*



Microphone 

Cable 

12.7 mm (1/2 in.) 

2 conductor shielded 

Termination network None 

Carrier frequency 

Polarization voltage 

Frequency response ( 

Noise floor (22 4 Hz 

-3 dB) 

- 22.4 kHz) 

10 MHz 

None 

2 Hz - 20 kHz 

SdBx 

Dynamic range 72 dB 

* Developed under NASA Grant NGR 36-028-004 and NASA Contract NAS1-11707-29. 

Moreover, an attendant problem consists of devising the means of testing


the completed system against the specifications of table I at both room and



elevated temperatures.
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II THE MICROPHONE PROBLEM



A Description of Condenser Microphone Operation



Figure 2 shows a cross section of a conventional condenser microphone



Incident sound excites motion of the membrane, which compresses and expands



the air in the gap, and creates a "reaction pressure," which opposes the motion



of the membrane. The reaction pressure is partially relieved by the flow



of air through the openings in the backplate, and these determine the damping



of the coupled membrane-air system. The backplate may contain one or more



"rings" of holes and nearly always a slot around its periphery The prototype



cartridge used in the present research has a single ring of four evenly spaced



holes in the backplate, as shown in figure 3.



Even upon excitation at rather intense sound pressure levels, the



membrane displacement q remains small compared to the static gap distance h



Under this condition the variation in microphone capacitance (between the



membrane and backplate) is practically linear with membrane displacement



The function of the microphone supporting electronics is to produce an output



voltage proportional to the instantaneous variation in microphone capacitance,



and thus to the instantaneous membrane displacement and incident sound pressure



B. Theoretical Analysis



1 Past Work An extensive search of the literature has revealed that



a theoretical analysis describing the response of a condenser microphone in



terms of geometry, materials, and related physical properties is not yet



available The strong coupling between the motions of the membrane and



underlying air layer, together with the difficult and unusual boundary conditions



at the backplate, render the exact solution to the problem so complex as to be



of little use to the designer A firm theoretical basis for condenser micro


phone design was deemed essential for two reasons- (1) to eliminate time


consuming "trial and error" procedures as a means of obtaining satisfactory



design goals, and (2) to provide the capability of predicting microphone



behavior at elevated temperatures One of the objectives of the present



investigation is to overcome the theoretical difficulties through realistic,



physically sound assumptions, and ultimately to express the microphone
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sensitivity (m6mbrane displacement over incident acoustical sound pressure)



in terms of the parameters mentioned above.



Robey was the first to solve the related fluid dynamical problem (ref 5),



but an unrealistic microphone model makes his results of rimfted applicability



to actual microphone design. In two papers, Petritskaya (refs. 6, 7) gives an



exact solution to the coupled problem, even for the case of an arbitrary



arrangement of openings in the backplate,1 but his results are of such



complexity that he does not give the membrane eigenfunctions and only presents



numerical results for a particular microphone design. A numerical method by



Warren, Brzezinski, and Hamilton does not allow for an angular dependence



of the reaction pressure and is thus confined to cases where the backplate



openings are in the form of annular slots (ref. 8); again, their results are



presented only in numerical form for several particular microphone designs.



2. Derivation of the coupled fluid-membrane equations. To derive the



fluid dynamical equations we express the particle velocity v in terms of a



scalar potential and a vector potential ,



v = V + A (2-1a) 

and insert these into the Navier-Stokes, continuity, and state equations to



arrive at the following -2



V2* + k2 = 0 (2-1b)



V21 + L2 = 0 . (2-Ic) 

Equation (2-ic) is true if we impose the additional condition that X be



solenoidal



1 Provided the openings have small radial dimensions, e.g , holes or annular



slots



2 A list of symbols appears in part IIF Several symbols in equation (2-8),


taken from reference 6, are not used in the text and therefore do not appear


in the list
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V • = 0



We write the boundary conditions in terms of the radial and axial
 


components of particle velocity (see figures 2 and 3)



vr Cr = a) = vr(z = 0) = vr (z = h) = 0 (2-2a,b,c) 

V (z = 0) = ion(r,O) , vz (z = h) = f(r,6) (2-2d,e) 

The function f(r,S) , introduced by Petritskaya, describes the vertical 

component of the particle velocity at the backplate, and is shown at the bottom of 

figure 2. Each opening in the backplate is assigned a number k = 1, 2, . . ., q 

where q is the number of openings. The vertical velocity is zero on the 

solid region of the backplate, and is assumed equal to a constant fk over 

the area of the kth opening Each of the fkIs is an unknown to be determined 

by the boundary condition (2-2e). Petritskaya assumes that the velocity 

fk depends only upon the potential 6k at the kth opening.3 

f= P
fk - ZkSk
 (2-3)



Because 0k in turn, depends upon all the fkIs the latter are coupled



through a set of q simultaneous equations in q unknowns Equation (2-3)



neglects the fact that the volume velocities associated with the openings are



coupled in the backchamber Figure 4 shows an equivalent circuit of the back


plate and backchamber. As shown in Appendix A, solution to the circuit problem



yields the result



fk - sk t Y
f=P° E YkPZ (2-4)



where Y is an element of an acoustical admittance matrix



3 The acoustical impedance zk is the ratio of the acoustic pressure


=
Pk iWPoA to the volume velocity Uk = fksk
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Thus the fk'I are coupled below as well as above the backplate, for each



as before, still depends upon all the fk 's . Equation (2-4) will lead to a



more accurate prediction of the microphone response than equation (2-3).



The membrane equation contains two forcing terms, due to the incident



sound and the reaction pressure at the membrane respectively.



F2 F~0 p(r,8,O)
vzn(r,6) + Kn(r,@) T + T (2-5)



where the reaction pressure depends only upon the scalar potential.



p(r,e,0) = icPo(r,e,0) . (2-6) 

The membrane displacement must satisfy the following boundary conditions:



n(a,8) = 0 (2-7a) 

n(0,O) is finite (2-7b)



The solution to be presented here differs from that of Petritskaya in



three respects the boundary condition at the backplate employs the more exact



expression (2-4), and two key assumptions simplify the analysis to such an



extent as to allow a simple solution in closed form.



3 Solution to the coupled fluid-membrane equations. The solutions to



equations (2-1b) and (2-ic) are standard solutions to the Helmholz equation in



cylindrical coordinates. We need both the scalar and vector potential functions
 


to satisfy the boundary conditions (2-2). We shall restrict the analysis to



cases where symmetry in the 8-direction is even--a restriction which will



hardly affect the generality of our results. Petritskaya's solution for the



scalar potential function at the surface of the membrane (ref. 6) becomes
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t (r,O,0) - >1n 
m~= 

m ~= 

ifn,m 
fk k'n'm n'mskZWJflR r k 

k ~nl n~ka 

x Jn( n,mr) cos(nB) 
(2-8) 

T P 
n,m n,m 

where 

Tn,m = 27 fa n(r,e) JR n,mr) cos(ne) r dr d6 (2-9) 
0 0



and the remaining symbols in (2-8), defined in Petritskaya's paper, will 

appear later in simplified form. 4 According to equation (2-6) we need only the 

scalar potential to find the reaction pressure. 

If we attempt to solve the membrane equation (2-5) by expanding F° and 

O(r,6,O) in terms of the membrane eigenfunctions, then equations (2-5), (2-8),



and (2-9) lead to an infinite set of simultaneous equations in an infinite



number of unknowns. A "self-consistent" approach has been suggested to overcome



these difficulties (ref. 9) The analysis is based upon the following



simplifying assumptions



(a) The membrane displacement n is assumed independent of e The 

effect of local variations in reaction pressure due to the openings in the 

backplate is assumed to be smoothed out by the membrane tension This assumption 

leads to the removal of the index n in equation (2-8) and permits us to set 

n = 0 wherever it appears as a factor. 

sk


4 The factors F an~m ak where 

sin(k,mh) + yn,m sin(Ln,mh) 

n,m sin(kn,mh) cos(Ln,mh) + yn,m cos(knmh) sin(Lnmh) 

do not appear in Petritskaya's expression See reference 6, equation (4)
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(b) The reaction pressure is assumed relatively insensitive to the details



of the shape of the membrane. In equation (2-9) n will be represented by a



simple trial expression, which consists of a single unknown q and which



retains the basic features of the membrane displacement below the first membrane



resonant frequency (Cextttenunat the center, zero on the periphery)



First let us examine the consequences of assumption (a). Equation (2-8)



can be rewritten 

4(r,O,0) = > [-iwn + f , T ,' (2-10)
m=O m m k=lZ k~A,m'm ask TP

wherein



a 

nm 27r f n(r) Jo (mr) r dr (2-11a)
0 

Rkm = k Jo(Emak) (2-11b) 

r= sin(kmh) + T m sin(Lmh)m= sin(kmh) cos(Lmh) + ym cos(kmh) sin(Lmh) (2-llc) 

-km{2[l - cos(kmh) cos(Lmh)] + (ym + Ym1 ) sin(kmh) sin(Lmh)} 
Tm= sin(kmh) cos(Lmh) + ym cos(kmh) sin(Lmh) 

Ill inin in(2-11d) 

pm iraj 2 ( ma) (2-11e) 

2
km 2 - m (2-11f)



L2 m2 (2-11g) 

Ym =km L/m 2 
. (2-11h) 
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When we employ the expressions (2-11) in (2-1a) and the boundary condition



(2-2e), and use (2-10) to relate the k's to the fk's , we obtain the following



set of equations, written in matrix form:



(I + A)F = B , (2-12) 

where I Eq x q) is the identity matrix and F (q x 1) a column matrix,



1 f
f2


= ,F (2-13a,b) 

1/ f


f q 

and A (q x q) and B (q x 1) contain the following elements 5 

aks Sk E P Ta .= os q Z 0o(Emas) Jo(Emaak Y k5 (2-13c)
i=lm=O m m



bk = E P T bo2 s k [ q=i imrm J° (EmaP) YLk9 (2-13d) 
k=M=0 m m 

Upon solving (2-12) for the fk's , we substitute the results into



(2-10) to find *(r,0,0) The solution is incomplete because the unknown



displacement n(r) , contained in the integral nm (2-11a), is still present



in equations (2-10) and (2-13d). In order to resolve this difficulty we turn to



assumption (b) and represent n(r) by a trial expression in equation (2-11a).



Actually three different trial expressions have been investigated



SkS s k


5 Petritskaya excludes the factors -2 and - in his expressions for
aks and bk respectively ak ak
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(1)Constant n(r) = no . Here we assume that the reaction pressure



depends only upon the average value of the displacement, but not its shape



(ref. 10).



(2) Parabolic: n(r) = no (1 - r2/a2) This is the simplest polynomial



fulfilling the requirements at the center and periphery



(3) Bessel" n(r) = n0 [J (Kr)/J 0 (Ka) - 1] . Here we assume that the



effect of the reaction pressure is to change the amplitude, but not the shape,
 


of the membrane displacement.
 


Substitution of a trial expression into equation (2-11a) permits a



straightforward solution for n in equation (2-5) in terms of the single



unknown no which we eliminate by requiring that the average value of fl



as obtained from equation (2-5), be equal to that obtained from the trial



expression. We express the latter in terms of no and a "shape" factor B



<r(r)> = Bno (2-14) 

where



B = 1 for case (1) (constant) (2-15a)



= 1/2 for case (2) (parabolic) (2-15b)



= J2 (Ka)/J 0 (Ka) for case (3) (Bessel) (2-15c)



We express the integral (2-11a), as well, in terms of the unknown constant



no



rm = 7Ta2 nT6(m) for case (1) (2-16a)


ra2 J0 (ma) 
2 (2) (2-16b)2 no6(m) - 4 o [1 - &(m) for case 
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Ka Jo(ema ) JI(Ka) a2 ]
[ 
- 2n 	 K _o(ma) Jo(Ka) 2 6(m) for case (3), (2-16c)

(K - 02 2 IJ(Ka) 
 

where 6(m) = 1 if m = 0 or 0 if m 0 Because nm is proportional 

to no iit follows that the constants bk and fk are also proportional 

to no0 as we see from equations (2-13) and (2-12). We shall find it convenient 

to define a new integral 

6m = nm/no 	 (2-17) 

and new matrices



T = F/ 	 , 8= B/ o , (2-18a,b) 

with elements Ts = f s/n and 8s = bs/T (s-= 1, 2, ., q) , so that we 

may rewrite equation (2-12) in terms of T and a 

(I+ A)T= -a. 	 (2-19) 

The solution to equation (2-5) is the following



Fo= Jo(Kr) 1 2wpono 

TK2 
 L 0 (Ka) J a 

r q1×p-Iwo + L Ts srmop=i m:0 	 I m s=l maS) (2-20)



Jo( pr)
pJo(Ema) 

(Xp2 - M)( p2 - K)TmPmJi(tpa) 

Equation 	(2-20) is found with the aid of the Fourier-Bessel series expansion



2 2 p Jo( Ma) Jo(xpr) 
p=l (Xp2 - m 2) jl(Apa) 

13 



where



Jo(Xpa) = Ji(%ma) = 0 

From (2-20) we find the average value of the displacement n(r)



a 

<n (r)>= - n(r) rdr 
2
a o



F° 52 (Ka) i4o Pn 
TK2 Jo (Ka) - iT = + = TsrssJ° ( mas) 

iI I J2 (Ka) Jl(Ka)[l - 6(m)] (
TmJo( maa 6(m) + . (2-21)
m ogma) J(Ka) 2K(K2 -

2 ) Jo(Ka) 

In equation (2-21) the p-summation is evaluated in closed form:



>- 1 a2 J2 (Ka) aJ1 (Ka)[I - 6(m)] (2-22)


P=1 (2p2 m2)(XP 2 _ K2) 4K2 Jo(Ka) 6(m) +2K( K 2 _ 2 ) jo ( Ka )



Proof of equation (2,22) is given in Appendix B. Upon comparing equation (2-21)



with (2-14) we eliminate the unknown no and write the average membrane



displacement in terms of the microphone parameters.



F J2 (Ka)< r>= +D(2-23)



TK2 J2(Ka) + D



where 

14 



i4p 
irTB -

r 
[i -e 

q 
+ E TsssJ ( aS) 

1i 
T J(m 

m=O m s=l so m m 
(2-24) 

J2 (Ka) Jj(Ka)[i - 6(m)] 
- 6 (m) + 

4K2a2 2Ka(K2 a2 - Em2a 2 ) 

In equation (2-24) we obtain from equations C2-16) and (2-17), and
0m TS 

from (2-13), (2-18), and (2-19). 

The frequency dependence of the average membrane displacement amplitude,



computed from equations (2-23) and (2-24) for the prototype microphone cartridge



described below in table 3, is shown for each of the trial expressions in figure


5.6 
 We note that n = constant [case (1)] tends to underestimate the damping,



and that the parabolic and Bessel expressions [cases (2) and (3)] show excellent



agreement with one another right through the first membrane resonance Hereafter,



in the remainder of this report, we shall use the Bessel expression [case (3)]



in all theoretical analyses of condenser microphone response



We could insert the known expression for vo [from (2-14) and (2-21)] back



into (2-20) to find a better approximation to the integral (2-11a), however,



continued iterations of this sort have not been pursued.



4. Lumped-parameter model. We can write the expression (2-23) for



<i(r)> in the following familiar form (ref 10)



ra 2 F 
< =(r)> 0 (2-25)
iLUzM 

where zM is the mechanical impedance of the membrane-air layer system



ira 2 TK2 F JO (1(a) 1 
z -aTK L J2 (Ka) + D (2-26)
M J (a JW 

6 The summations over m are carried to 10 terms 
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Table 3. Parameters of prototype microphone cartridge.



a membrane radius 	 4.7625 x 10- 3 m



t membrane thickness 
 5.588 x 10-6 	 m
 

7.9 x 103 	kg/m 3

PM membrane density 
 

-
a 	 membrane surface density 	 4.4145 x 10 2 kg/m 2



PO 	 air density 
 1.21 kg/m3



-
1.86 x 10	 5 N sec/m 
2



air viscosity coefficient
nA 
 

c air sound velocity (isothermal) 2.8735 x 102 m/sec



- 3
4.5720 x 10 m
aBP 	 backplate radius 
 

number of holes in backplate 4
bI 
 

-3
2.6924 x 10
 m
hole location 	
a1 
 
-4 
 

r, hole radius 3.969 x 10 m



-4 
 
£I 	 hole depth 	 6.604 x 10 m



a2 slot center line location 	 4.667 x 10
- 3 
 m
 

-5
9.525 x 10
	 m
slot width 	
t2 
 

-4 
 
k2 	 slot depth 	 6.604 x 10 m



V 	 volume of backchamber 	 1.4878 x 10-7 m3 

Adjustable 	 h air gap


T membrane tension
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At frequencies well below the first membrane resonance 
w << 2 408 cM/a


the Bessel functions in equations (2-23) and (2-26) can be approximated by the



first few leading terms in their power series expansions. The acoustical



impedance becomes



= __w = + + (DI + D2 + D3 + DO 
2
(Tra 2 ) 2 ra im(ra2)2 iw (Tra 2 ) 2 

(2-27) 

T TK2 

in which a = - = 	 - The first and second terms represent the membrane 
w2cM2 

mass M and compliance where
CM 
 

MC 
 

and the D's 
 

D= 

4a (ira2 ) 2 

- ', 	 (2-28a,bJ
3 7a' M 8TT 

are obtained from equation (2-24) 

DI + D2 + D3 + D4 (2-29) 

2 2po0W2J2 (Ka) p0oca
 
D ___=0(2-30a) 

Tk2K2h 8Th



ipoJ 2 (Ka) q ipow q

T s 
 s_2 


TBk 2K2a2h s=1 8rTBk 2h Z Ts



D2 = 2 i	 L 
 T 3 (2-30b)



2pod 2JI (Ka)

D3 = 

m


TBXa



2
m=l Tm(K2a - 2a2) Jo(%ma) 

(2-30c) 
~Poo 2  6



2 2
M=l Tm(K2a - m a2) Jo(Ema) 
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a2po0Jl(Ka) q T s r J (Emrs) 
D4 - rTBKa s so 2 

m-l s=l Tm(K2 a2 - m2a2 Jo( ma) 

_p0 q T,sS r m Jo( m s) 
2
wTBm l_ =1 Tm(K2a - Cm a2) Jo( ma) 

The D's have the following physical meanings:



Dl = air compliance term,



D2 = term accounting for motion of air through the openings in the



backplate,



D3 = correction to D1 accounting for curvature of the membrane,



D4 = correction to 
 D2 accounting for curvature of the membrane,



From equations (2-27) and (2-30) we find the air compliance CA



(ira2)2 (2-31a)
A = 8ifTRe{D}



A resistive element R , which accounts for the microphone damping, consists of 

the real terms of equation (2-27)-

R = SirT Im{D} . (2-31b) 
(ira2)2 

The representation (2-27) suggests the lumped-parameter equivalent circuit


of figure 6, which is valid below the first membrane resonance. The expression



for the air compliance (2-31a) yields substantially greater values than the



corresponding expression for a closed cavity CAI because of the openings in



the backplate
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C]C (7ra 2)2 ~ra2h


A >A =8rTRe{D1} PC2



In the expression (2-31b) for the resistance R , D1 makes no contribution 

since it has no imaginary part, furthermore the imaginary parts of D2 and 

D4 are proportional to w , so that the major contribution to the frequency 

dependence of R orginates in the D3 term, which is small at low frequencies. 

The quality factor of the microphone is given by the elementary formula 

S=R N M(CE + CA) (2-32)
C-M-CA



Figure 7 shows the theoretical frequency dependence of CA R and



all computed for case (3) Beyond 2 kHz the lumped-parameter approximation



breaks down, but the Q given by equation (2-32) is still indicative of the



height of the microphone resonant peak. We take the values at 1 kHz as



representative of the microphone. For the prototype described in table 3 and



figure 5, equations (2-28), (2-31), and (2-32) yield the following values for



the lumped parameters.



M = 826 kg/m4


membrane mass 
 

membrane compliance CM = 6.82 x 10-14 m
5/N



air compliance CA = 1.60 x 10-12 m5/N



R = 1.32 x 107 N sec/m 5

air resistance 


quality factor Q = 8.52



C. Comparison with Experiment



The preceding theory has been used as the basis for design of the prototype



high-temperature microphone. Figure 8 shows a block diagram of the instrumentation



used to measure the frequency response of the microphone by the electrostatic



actuator technique The microphone membrane was excited into vibration at a



selected frequency by an ac signal originating at the oscillator, amplified by the



power amplifier, superimposed upon an 800 V polarization voltage in the microphone
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calibration apfaratus, and applied to the electrostatic actuator. Motion of the 

membrane was detected by the converter-zero drive system, which produces an 

output voltage proportional to the instantaneous membrane displacement This 

system is described in detail in references 3 and 4 Because the short connection 

between the microphone and converter is unavoidably unshielded in this experiment, 

the spurious electrical pickup, which proved to be considerable, required 

filtering. The haghpass and lowpass sections of the filter were adjusted at each 

frequency to provide a third-octave bandwidth After some amplification by the 

oscilloscope plug-in unit, the magnitude of the response was measured on a true 

rms voltmeter; with the output of the power amplifier serving as a reference, the 

phase was measured at the output of the filter. For the purpose of determining 

the attenuation and phase shift of the filter alone, measurements were taken with 

a reference signal switched directly from the oscillator to the input of the 

filter after each change in frequency. The automatic counter was used to measure 

the oscillator frequency. Identification of all the instruments in the system 

is included in the caption of figure 8



The response of several prototype microphones, fabricated in the Instrument



Development Section, Langley Research Center, has been measured for comparison



with theoretical predictions. The values of the parameters entering equations



(2-23) and (2-24) are listed in table 3. Two of the parameters readily permitted



adjustment the gap distance by means of a threaded shaft supporting the back


plate; and the membrane tension by means of a threaded ring, which applies



pressure to a tension rang (see figure 12 to follow). The gap distance h was



determined by measurement of the static capacitance C between the membrane
 


and backplate:



a2



h = , (2-33) 
36 x 109 C 

where aBP is the radius of the backplate. The membrane tension T was deter


mined by measurement of the first vacuum resonant frequency fR1 (for which



the experimental arrangement of figure 8 was also used)



T = 6.825 a2fR 2Pot . (2-34) 
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Figure 9 shows the theoretical and experimental microphone frequency



response for two different gap distances. Because of the difficulty in obtaining



an absolute calibration of the membrane displacement, the experimental data for



each microphone were multiplied by a constant calibration factor to fit the



theory at a frequency of 10 Hz The figure shows that the theory accurately



predicts the height of the membrane resonance peak for both gap and distances



as well as the shift in peak location with respect to that of the vacuum



resonance (no damping). The increase in damping with decreasing gap distance



is expected in view of the role of viscosity in the flow between the membrane



and backplate



Figure 10 shows the response for two different membrane tensions at constant



gap distance Again both the height of the resonance peak and the shift in



peak location show good agreement between theory and experiment. The change



in membrane tension has two effects, both apparent in the figure: first the



resonant frequency increases as the square root of the tension, secondly the



sensitivity below resonance decreases with tension. The peak height does not



change with tension because the latter has but negligible effect upon the damping.



Figure 11 shows the frequency dependence of the phase angle between applied



driving force and membrane displacement Theory accurately predicts the



frequency at which the phase goes through the resonance step. The high experi


mental values on the high-frequency side of resonance are believed to contain a



contribution from the zero drive amplifier, which produces some phase shift at



frequencies approaching 20 kHz



The theoretical and experimental results presented here lead to two conclu


sions 

(a) The close agreement between the theoretical curves of those trial
 


functions which satisfy the boundary requirements [cases (2) and (3)] supports



assumption (b), i e., that the reaction pressure is relatively insensitive to the



details of the shape of the membrane



(b) Accurate prediction of the relative microphone response, and changes



therein with changes in parameters, substantiates the self-consistent approach



and the assumptions upon which it is based
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D Practical Construction of a High-Temperature Condenser Microphone



A cross section of the prototype microphone cartridge is shown in figure



12. All parts are made of 300-series stainless steel, except the backplate B


7



and insulator F, which are made of type 17-4 PH stainless steel and macor
 

machinable glass ceramic respectively. The membrane A is stretched over the top



face of the case E and clamped in place by means of the membrane retaining



ring D, which overlaps the case to facilitate membrane replacement. The macor



insulator F supports the backplate B, which serves as the fixed electrode;



a 4-40 thread provides for adjustment of the gap between the backplate and



membrane. Four holes in the backplate, in addition to the peripheral slot,



permit the flow of air between the gap and the backchamber concomitant with the



membrane motion. The threaded ring G is used to adjust the vertical position of



the insulator and tension ring C, and thus provides the means of adjusting the



tension in the membrane. The insulator contains a keyed slot to prevent



rotation and a 0.000S08 m (20 mil) vent hole for pressure equalization (neither
 


shown on the figure). The locking tube H holds the backplate firmly in place,



once the gap and tension adjustments are completed, and terminates with a



slotted-shell contact to engage the pin of the mating cable connector (part C,



figure 19). The flange at the bottom of the case contains four screw holes for



attachment to the test panel as well as to various adapters used in laboratory



tests



The choice of macor as the material for the insulator F, as well as for



the insulating pieces in the cable connectors, is based upon two outstanding



properties- (1) machinability, which permits fabrication of small pieces with



conventional tools and equipment, and (2) excellent stability of its mechanical



and electrical properties at elevated temperatures.



In the prototype cartridge shown in figure 12 the force exerted by the



threaded ring G upon the tension ring C is transmitted through the insulator F



In order to relieve the insulator of this force, an alternative design was



studied which features two tightening rings, a membrane tightening ring



directly below the tension ring C, and a second tightening ring below the



7 TM Corning Glass Works.
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insulator F sorely to hold the latter in place. However, inferior microphone



response at elevated temperatures led to abandonment of this design.



E. Design Considerations



The choice of microphone design parameters is based upon three
 


fundamental considerations sensitivity, bandwidth, and maximum allowable



membrane tension. The sensitivity S is defined as the capacitance change



6C per unit incident sound pressure F At frequencies well below the first
. 

membrane resonance, where membrane stiffness predominates over the inertial and



damping forces, we neglect D in equation (2-23), approximate the Bessel
 


functions by their leading terms, and arrive at the following approximate
 


expression for average membrane displacement



z
a
 
o C235<nl(r)> Z 

F 
- (2-3s)
8T



The capacitance change is related to the average displacement according to the
 


familiar relation



C E:oABPa2Fo


6C h (2-36)
T-<(r)> 8Th2 


where A is the area of the backplate. From equations (2-35) and (2-36)



we find the microphone sensitivity.



(2-37) 
= 0ABP

8Th2

0 


The bandwidth will depend upon the first membrane resonant frequency,
 


fR1 = (6.285Tp M ta2) (2-38) 
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and the maximui allowable membrane tension upon the tensile strength aT of



the membrane material,



T < Tm =a t (-2-39) 
max T 

We have four basic design parameters--membrane radius a , tension T 

thickness t , and gap h --to satisfy the requirements of equations (2-37), 

(2-38), and (2-39). A summary of these requirements appears qualitatively in 

table 4. 

Table 4. Requirements of microphone design parameters



Requirement for



Parameter High Sensitivity Large Bandwidth
 


Membrane radius a large small



Membrane tension T small large



Membrane thickness t --- small



Gap h small ---


It is clear from equation (2-37) that, independently of the values we assign



the other parameters, we can adjust the gap h to yield any desired sensitivity



(limited only by the supporting electronics) The bandwidth, on the other hand,
 


is limited by the tensile strength of the membrane material, as indicated by



equations (2-38) and (2-39).



In view of the requirements regarding dynamic range and frequency response,



the prototype microphone cartridge, as specified in table 3, is dimensioned



roughly after the commercial 12.7 mm (1/2 in.) microphone. Its case, however,



is larger and sturdier for better adaption to the hostile operational environment



The choice of membrane material is based upon three criteria



(1)high strength at elevated temperatures,



(2)good corrosion resistance at elevated temperatures,
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(3) sufficient ductility to form a smooth membrane.



Three different foils, listed in table 5, were examined as possible membrane



materials.



Table 5 Properties of membrane foils.



Material Thickness Tensile strength* (ref 11)



304 S/S 5.588 x 10-6 m (0.00022 inch) 5.861 x 108 N/m2 (85000 psi)



302 S/S 7.112 x 10-6 m (0.00028 inch) 6.205 x 108 N/m2 (90000 psi) 

K-Monel 7.874 x 10-' m (0 00031 inch) 6.205 x 108 N/m2 (90000 psi)



* Annealed condition



Because the K-Monel membranes consistently showed a tendency to produce cracks



under tension, they were abandoned, subsequent testing was restricted to the other



two foils.



With the thicknesses listed above and the values of and a given in
p0 
 
table 3, we use equations (2-38) and (2-39) to find the membrane tension and


stress necessary to produce a membrane resonant frequency of 20 kHz For the 

type 304 and 302 stainless steel foils T = 2733.5 and 3479.0 N/m respectively. 

The corresponding stress in the membrane in both cases amounts to 4 89 x 108 N/m2 

(71000 psi), which is safely below the tensile strengths given above However,


a certain margin of safety is needed for operation at elevated temperatures,


owing to the decrease in tensile strength with increasing temperature


The backplate is designed to produce a slightly underdamped membrane


motion, a situation corresponding to curve 2 of figure 9 We notice that the


-3 dB point on the high-frequency flank of the resonant peak roughly coincides


with the membrane vacuum resonance, so that equation (2-38) is a good criterion


for the bandwidth The choice of type 17-4 PH stainless steel for the backplate


material is based upon a favorable thermal expansion coefficient, as will be


explained in Part VC The effect of temperature upon other microphone parameters


and subsequent microphone operation will be discussed there as well.
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F. List of Symbols Used in Part II



Numbers in parentheses refer to defining equations.



A 	 vector velocity potential (2-1a)



A 	 see (2-12) and (2-13c)



ABP 	 area of backplate [m2]



a 	 radius of membrane [m]



ak 	 location of kth hole [m] (fig. 3)



aks 	 element of matrix A



aBP 	 radius of backplate [m]



B 	 shape factor (2-15)



B 	 see (2-12) and (2-13d)



bk 	 element of matrix B



bj 	 number of holes in backplate of prototype microphone



(table 3)



C static capacitance between membrane and backplate [pF]



CA air compliance [m5/N] (2-31a)



CA' 	 air compliance for the case of no openings in backplate



[ms/N]



CM membrane compliance [mS/N] (2-28b)



c isothermal sound velocity in air = (Po/po)'



[m/sec]


CM sound velocity in membrane = (T/aM)1 [m/sec]


%M



D =D + D2 + D3 + D4 	 contributions to mechanical impedance from air layer 

(2-23) and (2-24) 

D, D2 D3 ,D 4 	 see (2-30)



F 	 see (2-12) and (2-13b)



F 	 incident acoustic sound pressure [N/m 2 ]
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fk vertical velocity at kth opening in backplate [m/sec] 

f(r,6) vertical velocity at backplate (2-2e) 

fRI first membrane resonant frequency in vacuum [Hz] 

(2-38) 

h gap distance between membrane and backplate [m] 

I identity matrix (2-13a) 

Jn(X) Bessel function of the first kind of order n and 

argument x 

K wave number of sound in membrane = 2irc/c M [m- 1 ] 

k wave number of sound in air = 27rc/c [m-1] 

index to enumerate openings in backplate 
km see (2-11f) 

L wave number for vector potential = (-l/v)i/2 [m-1 ] 

Lm see (2-11g) 

k index used with admittance matrix Ykz 

Pk depth of kth opening in backplate [m] (A-4, A-S) 

M membrane mass [kg/ma] (2-28a) 

m index used with air layer eigenfunctions 

n index used with air layer eigenfunctions 

P acoustical pressure matrix (A-i) 

Pk acoustical pressure at kth hole [N/m 2] (A-2a) 

Pm see (2-11e) 

p index used with membrane eigenfunctions 

p(r,e,z) reaction pressure [N/m 2] (2-5) 

Q quality factor of microphone (2-32) 

q number of openings in backplate (including slot) 

R equivalent microphone resistance [Nsec/m 5] (2-31b) 
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Rk m see (2-11b) 

r radial coordinate (fig. 3) 

rk radius of the kth hole in backplate [m] (A-4) 

s index to enumerate openings in backplate 

area of kth opening in backplate [m2 ] 

T tension of membrane [N/m] 

Tm see (2-11d) 

t thickness of membrane [m] 

tk width of kth opening if a slot [m] (A-B) 

U volume velocity matrix [m3/sec] (A-i) 

Uk volume velocity at kth opening in backplate [m3/sec] 

(A-2b) 

V volume of backchamber [m3 ] 

v acoustical particle velocity [m/sec] (2-1a) 
vr radial component of v [m/sec] 

yz axial component of v [m/sec] 

wk length of kth opening if a slot [m] (A-5) 

Y acoustical admittance matrix = Z1 [m5/Nsec] (A-8) 

Y£ element of matrix Y [m5/Nsec] 

Z acoustical impendance matrix [Nsec/m 5] (A-2c) 

Zc acoustical impedance of backchamber [Nsec/m 5] (A-3) 

ZM acoustical impedance of microphone [Nsec/m 5] (2-27) 

Zk acoustical impedance of kth opening in backplate 

[Nsec/m 5] (A-4) or (A-5) 

z axial coordinate 

zk mechanical impedance of kth opening in backplate 

[Nsec/m] (2-3) 
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V 

zM 
 

ak 
 

s 
 

r
m 
 

Ym 
 

S(m) 

Co 
 

n , n(r) , r(r,6) 

nA 
 

Ti 
 

no 

o 

m 
 

p 
 

Em 
 

PO 
 

PM 
 

a 
 

GT 
 

Ts 
 

mechanical impedance of membrane-air layer system 

[Nsec/m] (2-26) 

angle subtended by kth opening in backplate (fig. 3) 

== B/n (2-18b) 

= bs/n o



see (2-ic)



see (2-11h)



Dlirac delta function



dielectric permittivity in air [Farad/m] (2-36)



displacement of membrane [m]



viscosity coefficient of air [Nsec/m 2]



see (2-11a)



unknown in trial expression for membrane displacement



[Im] 

angular coordinate 

= nm/no



used to designate roots of Bessel function



1 (Xpa) = 0 (2-20)



kinematic viscosity of air = nA/p° [m2/sec]



used to designate roots of Bessel function



Jl(Ema) = 0 (2-20)



static density of air [kg/m 3]



density of membrane material [kg/m 3]



surface density of membrane = pMt [kg/m 2 ]



tensile strength of membrane material [N/m 2] (2-39)



= fs/no 
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€ , (r'e'z) acoustical scalar potential (2-1a) 

k acoustical scalar potential at kth opening in backplate 

(2-3) and (2-4) 

angular frequency of incident sound [sec -1] 

III. THE CABLE PROBLEM



A. Role of the Cable



Figure 13 shows a block diagram of the microphone carrier system. Pressure



fluctuations produce capacitance changes in the condenser microphone, which



amplitude-modulate a carrier voltage provided by the carrier electronics The



detected output signal is measured or recorded on an output device. A cable


of length £ 2 6 m (20 ft) separates the carrier electronics from the



microphone.



The carrier electronics consists of a converter and a zero drive amplifier


described in detail in references 3 and 4. The function of the converter, for



which a circuit diagram appears in figure 14, is to produce an output current at



terminal A proportional to the instantaneous sound pressure at the microphone C.


In brief, the central component is the 3N202 dual-gate FET, which serves as a



mixer. An RF oscillator, connected to terminal L, drives gate G2 and produces a



drain current at the carrier frequency. A tank circuit consisting of the



condenser microphone C, the cable, the 1N5463 varactor diodes, and the 9pH



inductor is connected to gate G1 and tuned to the carrier frequency by either



of two methods. (1)by applying a control voltage at terminal E to control the



capacitance of the varactor diodes, or (2)by controlling the frequency of the



RF oscillator As result of drain-to-gate capacitive coupling, a small fraction



of the drain current leaks into the tank circuit and produces a voltage at



gate G1 . Because the transconductance with respect to gate G1--that is, the ratio



of drain current to voltage at gate G1--is highly sensitive to the voltage



applied to gate G2, the signal at gate G1 mixes with that at gate G2 to generate



a direct drain current component (over and above the quiescent current) A change



in capacitance C changes the level of this direct current component, consequently



a periodic change in C, as caused by the presence of sound in the microphone,



produces a periodic drain current at the frequency of the sound. The circuit
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components to the right of the FET serve the functions of amplification,



detection, and reduction of output impedance.



The zero drive amplifier, connected to terminals A-B, has three functions



(1) to provide a constant 22 V at the converter terminals A-B Normally an



intermediate device, a "line driver," is connected between the signal source and



the zero drive amplifier Elimination of the line driver permits use of the



22 V on the line as the supply voltage of the converter.



(2) to amplify the converter signal for recording on an output device.



While maintaining a stiff voltage between terminals A-B, the zero drive amplifier



senses changes in the converter line current (entering point A) and provides a



proportional output voltage



(3) to provide a reference voltage for automatic tuning control The zero



drive amplifier contains an internal voltage which is indicative of the status



of converter tuning. This voltage is used to fulfill an automatic tuning control



function, as will be described in part IV



In the original converter circuit, for comparison, a local oscillator with



a fixed frequency of 10 MHz provides the carrier voltage at gate G2 The



microphone is connected to gate G1 without an intervening cable, and optimal



tuning is achieved by means of the control voltage applied to terminal E.



The circuit of fligure 14 was used in the present cable studies as well as



several laboratory tests of the microphone carrier system. The tuning frequencies



are determined essentially by the cable resonances and are only slightly affected



by the original tank circuit. The frequency of the external oscillator connected



to terminal L is adjusted for initial tuning, and the voltage at terminal E is
 


used for subsequent automatic tuning control.



In the final version of the converter circuit, a voltage-controlled oscillator



(VCO) provides the carrier frequency at terminal L. Now the control voltage is



used to control the oscillator frequency The inductor and varactor diodes are



removed altogether, and optimal tuning occurs very close to the cable resonances



Details are given in part IV.
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A half-wavelength8 lossless cable would reflect the condenser microphone



directly to the input terminals of the converter The losses in a real cable,
 


however, lead to a substantial reduction in system sensitivity In this phase of



the research we investigate the operation of the cable as a hal-f-wavel-ength



transmission line and seek criteria for holding its detrimental effects to a



minimum.



B. Theoretical Analysis



The analysis presented in this section 9 yields an expression for the output


voltage of the system with the cable relative to that without the cable. This



expression enables us to predict the signal attenuation due to the presence of the



cable and to compare performance with different cables.



A circuit diagram of the "front end" of the converter (elements connected 

to gate G1) is shown in figure 1Sa. Elements L , C , and R represent 

the tank circuit, C as before the condenser microphone, and ZS and ZR 
the impedance at the sending and receiving ends of the cable, respectively. The 

admittance YT between gate G1 and common is the following:



1 1 1



=-+jWC + + (3-1)
T jezL o R ZS



where w is the carrier angular frequency. If the losses of the cable are



small, the.admittance YS looking into the sending end of the cable can be



approximated as follows (ref. 12)



1 1 rt (1 - mCR tan wOT) + j(nCR° + tan wT) ] 

S Z R (1 - wCR tan wY) + jaZ(cCR + tan wt) (3-2) 

where



8 Or integral multiple thereof



9 	 Some symbols have a different meaning from that in Part II A list of


symbols for Part III appears in Part IIIE
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a = attenuation constant of the cable [neper/m]



r = 1/c = transit time from one end of the cable to the other [sec]



c = velocity of propagation [m/sec]



R = characteristic impedance of the cable [0]



Near the resonant frequencies of the cable it will always be true that



ICR tan wTj << 1 . (3-3)0 
 

Using the inequality (3-3) and substituting equation (3-2) into (3-1), we obtain



an approximate expression for YT near the resonant frequencies of the cable:



I + (Co + C) + tantYTZJ [ + 1+ + (wCR +t r)J (3-4) 

Resonance occurs when the imaginary part of equation (3-4) vanishes



-i 
 C tan =T



IL+ (C R = 0 
 (3-5)


0



By applying Newton's Rule we obtain an approximate solution for the resonant



angular frequencies R *



Th R (1 - T2) 
= + -70 0

T rL [1 + (Ro/W2 LT) ( + 2 T2/n2lr)] 

(3-6)



(n = 1, 2, 3, .),



where wo = [L(C + C)]-/2 - resonant angular frequency of the isolated tank



circuit with the microphone Hence the coupling between the cable and the tank



circuit renders the sequence of frequencies anharmonic. If both the tank circuit
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and the cable, in its fundamental mode, are tuned to the carrier frequency, it



follows that:



W0T= Tr (3-'7) 

In practice, equation (3-7) is only approximately fulfilled owing to imprecision



in cutting the cable and to the effect of the cable connectors. In the present



application it is true that



./T
R/TrL << (3-8)



In view of expressions (5-7) and (3-8), the anharmonicity becomes greater with



increasing n but remains small for the first several values of n



It will be found convenient to represent the cable by an equivalent parallel



tank circuit, as shown in figure 1Sb, which will be valid near the cable



resonances The last term in equation (3-4) represents the equivalent parallel



resistance Rz



1 ak 
 2 (3-9)
T [1 + (LCR + tan wT)2] 

The equivalent capacitance Cz and inductance L. , when isolated, must yield 

the resonances of the isolated cable. 

2LiCPC T2 /n 2 71 (3-10) 

Furthermore, the circuit of figure 15b must yield the resonant frequencies given



by equation (3-6).



LL, (C + Co + C') (3-11) 

WR
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Equations (3-10) and (3-11) yield the following expressions for C and Lk



r R W
2 T

2 1 

"= L 0 1 (3-12a) 

0 

2R t 

LI L0 (3-12b)
n 2 2 1- o (i o12~ 

0n27r2n0 
W2L nn2 Tr2 

0 

The admittance of the circuit shown in figure lSb may be written



=YT I - 1 + + )(C + C ] +1-+ (3-13) 

According to equations (12) and (18) of reference 3 the conversion gain s



of the carrier electronics (output voltage per unit pressure amplitude) can be



written in the form



s = K[Q/(C + C + Cz)] 2 (3-14)



where K depends upon parameters of the electronic circuit and Q is the



quality factor of the circuit of figure 15b



Q WR(C + Co + C) R- R (3-15) 

Substituting for Q in equation (3-14) we find



. RR 2 

s =K RR X(R2) (3-16) 

The conversion gain without the cable is
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so 0 , (3-17) 

where R= equivalent parallel resistance of the isolated tank circuit at its



resonance. Then the output voltage with the cable, relative to that without the



cable, is given by the following expression:



Output voltage [dB] = 20 log (s/s )



(3-18) 

= 40 log [wdRRRZ/LoRI(R + R)] 

Near the resonant frequencies we may neglect tan wT in equation (3-9) and then



substitute the resulting approximate expression for into equation (3-18):
R1 
 

Output voltage [dB] = 40 log {RRo0R/w RI(R + Rct



(3-19)

X (1 + wRC2RO)]}



Under the conditions of the present experiments R
0 

<< Rcd . Thus 

=
Output voltage [dB] 40 log [wRRo/woRlcd(I + C2R) (3-20)



Equation (3-20) shows that a high output voltage is favored by a high value of



the ratio R /cd , i.e., high characteristic impedance and, of course, low



cable losses. This ratio at some fixed frequency may be regarded as a figure



of merit for the cable.



C. Comparison with Experiment



Examination of equation (3-19) reveals that we must know the equivalent



parallel resistance R of the original tank circuit as well as the cable



attenuation a in order to compare experimental results with theory. Both



quantities are, in general, frequency dependent.



The equivalent parallel resistance R was determined by the method



suggested by equation (16) of reference 3 (utilizing the difference in frequencies
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at the positive-and negative peaks of the converter transfer function). Varying



the capacitance of the varactor diodes and adding external capacitance permitted



determination of R over the frequency range 8 to 14 MHz The data fit the



expression



R = 43754 f-0. 73 [q] (f in MHz) 

which was used over the entire frequency range investigated (7 to 50 Mz) 

The frequency dependence of the attenuation coefficient a was determined



from measurements on a Hewlett-Packard Model 4815A Vector Impedance Meter



The a values were found slightly higher than those listed in reference 13,



probably as a result of connector losses, but agreement was generally good



The attenuation values for all the cables tested, shown in figure 16, fit



expressions of the form



a = DfA (f in MHz) 

Values of D and A , as well as the characteristic impedance R , length 

t , and figure of merit at 10 MHz R /a10Z are listed in table 6 on the following 

page Other parameters entering equation (3-19) have the following values, 

0= 70.0890 x 106 radian/sec



C = 17 7 pf 

A block diagram of the instrumentation used to test the system sensitivity 

with various cables is shown in figure 17 The microphone was excited by means



of an acoustic calibrator, driven externally by the test oscillator-power



amplifier combination The test cable connected the microphone to gate G1



of the FET in the converter. The converter-zero drive system was the same as that



described in references 3 and 4 except for the chassis, a conventional minibox



in place of the stainless steel tube, which contains jacks for connecting the



cable and an external carrier voltage to drive gate G2 of the FET The rf signal



generator provided the carrier voltage, and a digital true rms voltmeter measured



the output voltage Both the acoustical and carrier frequencies were monitored



on electronic counters.
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UTable 6. Coaxial cable parameters.

Go 

Characteristic Attenuation Figure of 
Impedance Parameters Length Merit 

Cable Re D A k Ro0/alO* 

neper/m m 


G0323311* 76 1.66 x 10-3  0.53 10 75 1257 


-
RG 62 A/U 95 1.13 x 10 0.53 15.11 1642 


RG 58 C/U 51 1.66 x 10-3  0.53 11.10 817 


RG 11 A/U 

RG 59 B/U 

76 

76 

9.44 x 10-I 

1.36 x 10-' 

0.53 

0.53 

11.19 

11.14 

2123 

1480 

*a1 = attenuation constant at 10 MHz. 

* Video cable. 



The level bf acoustical excitation was adjusted for 132 dB at I kHz for



all measurements The rf signal generator was tuned to a resonant frequency of



the coupled tank circuit-cable system, and the output voltage of the zero drive



amplifier recorded, this procedure was repeated to obtain data for the first six



resonant frequencies A measurement was also made with the microphone connected



directly to the converter in order to establish the output reference voltage



VREF = 7 53 V. Then, if VOUT is the system output voltage with the cable,



we have



Output voltage [dB] = 20 log (VOUT/VREF) (3-21)



Figure 18 shows the theoretical [equation (3-19)] and experimental



[equation (3-21)] output voltages versus carrier frequency for the five



coaxial cables investigated. The theoretical curves are plotted with no



adjustable parameters. The roll-off of the experimental points beyond 31.6 MHz



is attributed to the deterioration of the quality factor of the inductor at



high frequencies and is, in fact, displaced to higher frequencies when the



inductor is removed In view of the wide range of test frequencies and cable



properties involved, agreement between theory and experiment is considered



excellent.



Tests on two-wire, 300 ohm antenna cables, both shielded and unshielded,



showed that these are unsuited for the present application because of high



sensitivity to vibration, high electrical pickup, and erratic behavior of the



cable parameters with varying carrier frequency.



The results presented in figure 18 enable us to draw the following



conclusions



(1) Because the response of the system has a direct correspondence with 

the cable figure of merit, Ro/at , the latter should be as high as possible 

for the cable used in the system (see table 6) For this reason RGII A/U is 

chosen as the system cable type.
 


(2) System sensitivity increases with carrier frequency It is desirable



to use a higher carrier frequency than the 10 MHz in the original converter.



In fact, upon removal of the inductor, which is not needed in normal system
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operation, the optimal carrier frequency is found to lie in the vicinity



of 48 MHz, for which the electronic system is ultimately designed.
 


(3)The use of a high-quality cable, together with a high carrier frequency,
 


confines the loss of system sensitivity to about 20 dB. This would appear to



raise the noise floor of the system from 55 to 75 dB (see table 2), however, two 


additional contributions further elevate the noise floor- (1)noise generated



in the cable itself, and (2)reduced microphone sensitivity, as is required to



accommodate high sound pressure levels. Thus a cable with the highest possible
 


figure of merit is needed to meet the system dynamic range specifications.
 


D. Practical Construction of a High-Temperature Cable Connector



The function of the high-temperature cable connector, shown in figure 19, is



to transmit the modulated carrier signal between the high-temperature environment



of the microphone and the cooler environment of the RG 11 A/U cable A 7.5 cm



(~ 3 inch) connector length is deemed sufficient to protect the cable.



The microphone connector consists of case A, spacer B, and contact pin C



The contact pin, silver-soldered to the center conductor G, engages the slotted



shell of the microphone locking tube (part H in figure 12) A small piece of



brass foil wrapped around the contact pin promotes good electrical contact to the
 


shell. An external stainless steel ring between case A and the microphone case



insures proper contact pressure. Two macor spacers E prevent motion of the center



conductor with respect to the copper tube D, the outer conductor. The cable



connector consists of the cap H and a TNC straight coaxial jack (General Fittings



Part No. 4025-005), which is screwed onto the external threads of the cap. The



original jack insulators are replaced with identical macor insulators. The inter


nal threads of the cap are used to adjust the tension in the center conductor,



whereafter the cap is spot-soldered to the tube.



A 1.22 m (4 ft) rigid cable, similar in design, was constructed for the



purpose of high temperature testing in the laboratory This cable was used as an



intermediate connection between the microphone and RG 11 A/U cable when the former
 


was tested in an oven. As before, all insulating parts subjected to elevated



temperatures were made of macor.
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E. List of Symbols Used in Part III 

Numbers in parentheses refer to defining equations 

A exponent in expression for frequency dependence of 

cable attenuation 

c velocity of propogation in cable [m/sec] 

C condenser microphone capacitance [pF] 

C2 equivalent capacitance of cable near resonance (3-10) 

[pF ] 

C tank circuit capacitance without condenser micro

phone [pF] 

D coefficient in expression for frequency dependence of 

cable attenuation 

f frequency [MHz] 

K coefficient in expression for conversion gain (3-16) 

Y, cable length [m] 

L tank circuit inductance [pH] 

L equivalent cable inductance near resonance (3-16) 

n cable harmonic number (= 1, 2, 3, ) 

Q quality factor of front end of converter 

R equivalent cable resistance (3-9) [q] 

Ro characteristic impedance of cable [n] 

R equivalent parallel resistance of isolated tank 

Circuit [] 

R1 value of R at resonant frequency of isolated tank 

circuit (3-17) [Q] 

s conversion gain of electronic system with cable 

(3-14) [Vm2/N] 
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s conversion gain of electronic system without cable 

(3-16) [Vm 2/N] 

VOUT converter output voltage with cable (3-21) [V] 

VREF converter output Voltage without cable (3-21) (V] 

Y S admittance looking into sending end of cable 

(3-2) [mho] 

YT admittance looking into front end of converter (3-1) 

[mho] 

ZR impedance at receiving end of cable [Q] 

ZS = Ts-1 impedance looking into sending end of cable 

(3-1) [&2] 

a cable attenuation constant [neper/m] 

alO cable attenuation constant at 10 MHz [neper/m] 

T = k/c one-way transit time along cable [sec] 

W angular frequency [rad/sec] 

° 	 resonant angular frequency of isolated tank circuit
0 
 

[rad/sec]



S -resonantangular frequency of front end of converter
R 
 

(3-6) [rad/sec]



IV. THE ELECTRONICS PROBLEM



When the inductor and varactor diodes are removed from the front end of



the converter, the nth resonant frequency of the cable terminated by the micro


phone is obtained by letting CO = 0 L in equation (3-6)



f 	. n I -0 (RoC << T)


n2f-r\ r ' 0



where T is the one-way transit time along the cable, R the characteristic

o 

impedance of the cable, and C the static capacitance of the microphone. Changes
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in microphone capacitance C resulting from changes in temperature will thus



lead to a shift in the resonant frequency, detuning of the converter, and



reduction in conversion gain. An automatic tuning control system is needed to



compensate continuously for changes in static microphone capacitance.



Figure 20 shows a block diagram of the microphone carrier system with 

automatic tuning The voltage-controlled oscillator (VCO) supplies the carrier 

voltage to the converter. There are two modes of operation, "open-loop" and 

"closed-loop," corresponding to operation without and with automatic tuning 

control, respectively. In the open-loop mode the differential amplifier-filter 

is disconnected from the system by means of mode switch S. Tuning of the 

converter is accomplished directly through adjustment of open-loop reference 

voltage VR4 , which controls the VCO frequency. 

The system is switched to the closed-loop mode of operation to maintain 

a fixed converter tuning point The zero drive amplifier contains an internal 

voltage, located at a circuit point called "test point 3," which is highly 

sensitive to the state of tuning of the converter The difference between the 

test point 3 voltage v3 and the closed-loop reference voltage VR3 provides 

the error voltage v4 at the output of the differential amplifier-filter, which 

is used to correct the frequency of the VCO. Under optimal tuning the test 

point 3 voltage v3 matches the closed-loop reference voltage V , the error 

voltage v4 is zero, and the open-loop reference voltage VR4 alone determines 

the VCO frequency. A change in static microphone capacitance C produces 

corresponding changes in v3 and v4 ; the latter causes the control voltage 

vs and the VCO frequency to change in such a manner as to compensate for the 

change in C. 

When sound is applied to the microphone, the corresponding variation in



V3 ,too, would normally produce a differential amplifier output, which would



cause changes in VCO frequency to compensate for changes in C To avoid



cancellation of the acoustical signal, low-pass filtering is built into the



differential amplifier stage The relatively high acoustical frequencies are



blocked, but the slow variations associated with changes in static microphone



capacitance pass through the differential filter to complete the control loop



The upper cutoff frequency is selected to be 1 Hz, corresponding to a control



system time constant of 0 16 sec
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The circuit diagrams of the differential amplifier-filter and summing



amplifier are identical to those shown in reference 4 with one exception



voltage v4 is applied here to the noninverting input of the summing amplifier



instead of the inverting input, because of the direction in which the VC0



frequency changes with control voltage.1 Both stages are located physically



within the zero drive amplifier chassis.



In order to calibrate the system an electrical signal vC is applied at



the inverting input of the summing amplifier. The calibration signal frequency


modulates the VCO and produces variations in converter output voltage similar



to those produced by acoustical excitation of the microphone.



The procedure for adjusting the control system for optimal tuning is 

straightforward and simple. First one switches the system to the open-loop 

mode, applies either an acoustical or electrical calibration signal, and tunes 

the converter by adjusting VR4 to obtain a maximum output voltage v Then 

he switches to the closed-loop mode and repeats the procedure with an adjustment 

of VR3 . The system is then ready for operation. 

The VCO is a Hope Electronics Model VCO-100A, having a center frequency of



48 MHz, controllable to within ±5 percent, and an output power of 100 mW into



a 50 2 load.



Modifications to the front end of the converter are shown on the insert 

of figure 20 The 47Q-i10 pF parallel network is required to provide the proper 

load to the VCO; the 470 pF capacitor isolates the VCO from the gate G2 bias 

voltage. The 100 kQ resistor reduces the impedance from gate G1 to ground, thus 

improving converter stability and lowering the noise floor A type 3N212 is 

used to replace the type 3N202 because of superior conversion gain. The 

connections to gate G2, drain D , and source S are otherwise the same as 

in figure 14. 

The tuning controls, which include the potentiometers for control voltages



VR3 and VR4 and the feedback mode switch, as well as the calibration jack



and gain switches, in steps of 2 dB and 10 dB, are located on the front panel



of the zero drive amplifier. No other controls are needed for adjustment of



the system.



I The VCO frequency increases with increasing control voltage
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The development of the VCO system took place in the closing stages of the



research grant. For this reason much of the system testing had been undertaken
 


with the varactor diode system, employing an external signal generator and the
 


converter of figure 14 Although both systems were found to show similar



performance, the VCO system is preferred for its lower cost, considerably less



bulk, and better adaptability for field service
 


V RESULTS OF LABORATORY TESTS



A Description of Systems Tested



A series of laboratory tests was conducted to compare system performance 

against the specifications listed in table 1. The VCO system of figure 20 was 

used for the dynamic range and vibration sensitivity tests, the varactor diode 

system, in which the rf signal generator replaces the VCO, was used for the 

frequency response and thermal shock tests Two prototype microphones with 

different membrane thicknesses were prepared, whose properties are summarized in 

table 3 and table 7 below 1 

Table 7. 	 Some properties of prototype microphones used


in laboratory tests.



Microphone 1 Microphone 2 

Membrane thickness [m] 5 588 x 10-6  7.112 x 10-6 

Membrane tension [N/m] 2893.1 4487.2 

Static capacitance [pF] 15 6 13.6 

Gap fm] 3 72 x 10-5 4.30 x 10- 5 

The cable was a 5.718 m length of RGllA/U with a type N coaxial connector and



TNC adapter The system was always switched to the closed-loop control mode



for all the tests.



1 Exceptions are noted in the text
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B. Dynamic Range



1. Definitions. The "dynamic range" of the microphone system is defined



to extend from 5 dB above the noise floor to the sound pressure level (SPL)



at 4 percent distortion. The "noise floor" is taken to be the internal



system noise within the frequency band 22.4 Hz to 22.4 kHz, corresponding to the 

"linear" band of the third-octave analyzer used in the measurements. The 

definition of "percent distortion" is based upon the response of the system to 

excitation by a pure tone. If the system is excited at some fundamental 

frequency to an amplitude A1 and if the output amplitude at the ith harmonic 
frequency is A. (i = 1, 2, 3, . . ) , then the percent distortion is 

obtained from the following formula. 

/A2 A32 14



percent distortion 2 2 X 100. (5-1)

\ 1 + A2 + A3 + 

As before, all measured amplitudes, when expressed in dB, are referred to



2 x 10-5 N/m2 
 .



2. Experimental method Figure 21 shows the experimental arrangement used



to measure the harmonic distortion The microphone was excited by means of a


calibrated sound source at known frequency and sound pressure level. The



output amplitudes at the fundamental frequency and the next three harmonics



were measured on the third-octave analyzer; harmonics higher than the fourth


were found to contribute practically nothing and were neglected.



Two different sound sources were employed a Model PC-125 Acoustic



Calibrator of Photocon Research Products, and a Model 901D Microphone Calibrator



of BB&N, Inc. Each source contains an inherent distortion, which we call



"chamber distortion" and which was determined through measurements on a system



known to have negligible distortion over the applicable amplitude ranges


a BMK microphone, type 2615 preamplifier, and type 2801 microphone power



supply. Pertinent information regarding the sound sources and their calibration



is given in table 8. In view of the specifications regarding the B&K microphones



it is felt that the latter made no significant contribution to the distortion



at the SPL's used in the tests The measured values of chamber distortion at
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Table 8 Calibrated sound sources. 

Sound Source Photocon PC-125 BBN 901D/Module 40-70 

Driving mechanism acoustic driver pastonphone 

Output adjustments 

Sound pressure levels [dB] 110, 120, 130, 140, 150 140, 150, 160, 170 

Operating frequency [Hz] 1000 80 

B&K microphone used to 
measure chamber distortion 

Type 4134 4136 

Size 12 7 mm (1/2 inch) 6.35 mm (1/4 inch) 

Distortion specification 4% @ >164 dB 3% @ >172 dB 



each SPL are summarized in table 9. The relatively high second harmonic



content of the BB&N 901D lies in the nature of the driving mechanism. The



substantial frequency drift of this unit precluded use of a distortion analyzer



for the distortion measurements.



The distortion tests were conducted at the frequencies and SPL's listed



in table 8. The sound sources themselves provided reference levels to calibrate



the third-octave analyzer 130 dB at 1 kHz for the PC-125 and 140 dB at 80 Hz



for the 901D. The noise level in each applicable third-octave band was also



measured on the third-octave analyzer The true harmonic amplitudes were



evaluated according to the following formula-


A= M12 -N 2)/2-C , (5-2) 
Ai i N11 

where



A = true amplitude of the ith harmonic



M = measured amplitude



N = noise amplitude



C = chamber distortion amplitude



All quantities entering equations (5-1) and (5-2), of course, were converted



from dB levels to absolute amplitudes.



3. Results. Figure 22 shows the percent distortion versus sound pressure



level for both microphones Below 160 dB the distortion is attributed to



electrical noise and imprecise compensation for chamber distortion, at 160 dB



the microphone system distortion becomes noticeable; and at 170 dB, the highest



SPL for which measurements could be conducted, it remains well below the 4



percent limit.



Because the distortion originates predominantly from saturation of the



carrier electronics, and not nonlinearity of the membrane deflection, it depends
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Table -9. Chamber distortion of calibrated sound sources



A Photocon Research Products PC-125



Input SPL at Output SPL at



1000 Hz 1000 Hz 2000 Hz 3000 Hz 4000 Hz



[dB] [dB] [-] [dB] [%] [dB] f%] [dB] [%] 

110 110.0 100 55.8 0.19 51.6 0 12 * 

120 120.0 100 65.8 0.19 60.6 0.11 * 

130 130.0 100 76.2 0.20 71.6 0 12 * 

140 140.0 100 94.6 0.54 84 6 0.17 * 

150 150.0 100 114.4 1.66 100.2 0.32 * 

* Less than 50 0 dB. 

B. BB&N 901D/Module 40-70



Input SPL at Output SPL at 

80 Hz 80 Hz 160 Hz 240 Hz 320 Hz 

[dB] [dB] [%] [dB] [%] [dB] [%] [dB] [%] 

140 140.0 100 117.8 7.7 103.2 1.4 102.2 1 3 

150 149 8 100 127 6 7 7 113 4 1.5 107 6 0.8 

160 159.8 100 139.2 9.3 124 6 1 7 113 6 0 5 

170 169.6 100 152.6 14.0 137.8 2 5 124.8 0.6 

Note [%] refers to percent of fundamental amplitude. 
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upon all the factors which affect the system gain, including the range setting



of the zero drive amplifier, membrane-backplate gap, and membrane tension.



The lowest zero drive amplifier range for which a reasonable noise floor could



be obtained was the 10 dB range for microphone 1 and the 20 dB range for



microphone 2, and these were selected for measurement of the system dynamic



range. Several tests revealed that the distortion increases with decreasing



gap and decreasing tension, a trend which correlates with increasing system



gain A gap near 40 pm, corresponding to a static capacitance of about 14 pF,



appears to be an optimal choice, for a smaller gap will tend to increase the



distortion beyond specification and a larger gap to produce too high a noise



floor



The dynamic range data, including both noise floor and percent distortion,



are summarized in table 10



Table 10. Dynamic range of microphones 1 and 2.



Zero Drive Noise Floor1 Percent Distortion Dynamic Range2 

Microphone Range [dB] [dB] at 170 dB SPL [dB] 

1 10 105 4 1.4% >60 

2 20 109.4 1.5% >55 

I Bandwidth. 22.4 Hz to 22.4 kHz.



2 	 From 5 dB above noise floor to SPL at 4 percent distortion. Output voltage


of the zero drive amplifier at 170 dB is approximately SV P-P.



C. Frequency Response at Room and Elevated Temperatures



1. Experimental method. For the purpose of testing microphone frequency



response at room and elevated temperatures, a high-temperature electrostatic



actuator (ref 14) was constructed, consisting of a stainless steel electrode,



macor insulator, and three standoffs to seat the actuator on the microphone.



Each standoff was made of a macor pin pressed axially into a stainless steel
 


set screw By means of the latter the separation between the actuator electrode


-
and microphone membrane was adjusted to 4.572 x 10 4 m (0 018 inch) This was



the only feasible means of conducting tests at elevated temperatures
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Figure 23 shows the experimental arrangement for measuring the frequency



response. The microphone and electrostatic actuator were placed in an oven with



automatic temperature control The bare copper leads to the electrostatic



actuator entered the oven through ceramic tubing The 1 22 m (4 ft) rigid



cable described at the end of part HID, terminating with a BNC connector



containing macor insulators, furnished the electrical connection to the micro


phone The excitation instrumentation--the oscillator, power amplifier, and



microphone calibration apparatus--appears in the upper portion of the figure,



and the microphone response instrumentation--the converter, zero drive amplifier,



and third-octave analyzer, etc.--appears in the lower portion of the figure.



The equivalent sound pressure p exerted on the membrane is found from the



well-known formula (ref. 15)



Ee 
p = 8 85 x 10-12 0 [N/m 2 ] . (5-3)

d2



With a polarization voltage H° = 800V , ac excitation voltage e = 20V rms 
- 4
and spacing dl = 4.572 x 10 m , we obtain p = 0.6774 N/m2 rms , which 

corresponds to a sound pressure level of 90 6 dB. The rf signal generator was 

tuned to the fundamental resonant frequency of the coaxial cable-rigid cable 

combination (approximately 15 INRdz), where the response was slightly better than



at any of the higher resonances, the carrier voltage was adjusted to 2.2 V rms



Furthermore, because of the weak excitation of the electrostatic actuator the



range setting of the zero drive amplifier was increased to 30 dB



Throughout a temperature run the converter automatic tuning control
 


remained operative, the system was never retuned manually--by means of neither



the carrier frequency nor the control voltage At each temperature the



microphone frequency response, temperature, control voltage, and microphone



resonant frequency were measured. These measurements were performed during



both heating and cooling at temperatures of 210C (700F), 930C (2000F),



204°C (400°F), 316 0C (6000F), and 427°C (8000 F) Prior to measurement the



microphone was allowed to remain at the set temperature for one hour, a



sufficient time to insure thermal equilibrium. The temperature was read



directly from the controller The microphone frequency response measurements



were later corrected for noise, which was in most cases insignificant.
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Voltmeter I was used to monitor the varactor diode control voltage,



from which the gap (membrane-backplate separation) could be inferred. The



automatic tuning control system strives to keep constant the sum = C + CV
CT 
 

of the microphone and varactor diode capacitances Using the known relation


ship between CV and control voltage VC (ref 4), we relate the microphone



capacitance to the control voltage.



C CT - CV = CT V1 0 44 [pf] , (VC in volts) (5-4) 

(I + 06) 

The total capacitance CT is known from the known values of microphone capaci


tance and control voltage at room temperature (see table 7). In the present



tests VC was adjusted to 5.6 volts at room temperature, corresponding to a



varactor diode capacitance of 3.94 pf.



Voltmeter 2 was used to determine the microphone resonant frequency and 

hence the membrane tension. As the oscillator was tuned to the membrane 

resonant frequency, the reading on voltmeter 2 reached a maximum. The filter 

served to bandpass frequencies in the neighborhood of the microphone resonance 

- With the aid of figure 6 we find the membrane compliance CM in terms of the 

membrane resonant frequency fR 

CM = CMO [m5/N] , (5-5)
1 + 47r2 MQMO(fR - fRO) 

where CMO and fRO are known room-temperature values. The membrane mass



is known from equation (2-28a) Since the membrane compliance varies inversely



with membrane tension T [see equation (2-28b)], we find the tension at



any temperature from the relationship



T = CMO T /CM , (5-6)



where T0 is the room-temperature value of membrane tension.
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2. Results. Figure 24 shows the frequency response of microphone 1 at



the selected frequencies during both heating and cooling. After an initial



microphone failure at elevated temperature the membrane had to be replaced,



for this reason the membrane tension and gap, given in the figure caption,



differ from those given in table 7. The height of the resonant peak reveals
 


lower membrane damping than desired. This is the result of an increase in



gap needed to maintain good linearity at high SPL's.



The theoretical considerations of part II facilitate the interpretation



of the frequency response curves The three predominant effects of temperature



changes are changes in the gap, membrane tension, and air viscosity Of



primary interest is the temperature dependence over the flat region of the



frequency response. Because the air viscosity has but negligible effect over



this region, even at elevated temperatures, only the other two parameters need



be considered



Figure 25a shows the temperature dependence of the microphone response



at 1000 Hz, representative of the microphone sensitivity. During heating up to



316 0C (6000 F) the response remains nearly constant. Between 316 0C and 427 0 C



(800'F) an irreversible change in the microphone takes place, which enhances



the microphone sensitivity by about 2.5 dB. Upon cooling from 316 0C the



microphone sensitivity drops steadily to a new room temperature value 2 dB
 


below the origlnal room temperature value



Figures 25b and 25c show the temperature dependence of the membrane tension



and gap, computed from equations (2-38), (5-4), (5-5), and (5-6) During heating



the gap remains nearly constant, but the microphone tension shows a sharp drop



between 316 0C and 4270 C, which accounts for the rise in microphone sensitivity.



During cooling the situation is reversed, the membrane tension remains nearly



constant, and the loss of microphone sensitivity is attributable to an irre


versible widening of the gap. Fortunately, the decrease in membrane tension and



increase in gap have compensating effects upon the microphone sensitivity, in



fact the compensation at 204 0C during cooling is nearly perfect



For comparison, the temperature dependence of the same parameters is shown 

in figures 26 and 27 for microphone 1 with reduced membrane tension and gap. 

In contrast to figure 25a, figure 27a reveals relative insensitivity of the 

microphone response to temperature changes The trend of increasing gap with 
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temperature is compensated for by a steady decrease in membrane tension, at



least for measurements following those at 204 0 C of the heating portion of the



thermal cycle. Furthermore this microphone shows no permanent geometric



changes as a result of the thermal cycle--only a small decrease in membrane



tension, which accounts for the 1.8 dB increase in gain upon cooling.



Figure 28 shows the results of some early measurements on a microphone



with a backplate made of type 347 S/S, for which the thermal expansion



coefficient closely matches that of the case material, type 304 S/S The



strong reduction in gap with increasing temperature leads to an unacceptably



rapid increase in microphone sensitivity For this reason the backplate



material was changed to type 17-4PH S/S, which not only reverses the temperature



dependence of the gap but closely matches the macor insulator with regard to



thermal expansion, as illustrated in table 11.



Table 11. Thermal expansion coefficient a of microphone materials



Material Microphone part a [0C-1] at 200 C Remarks 

304 S/S case 17 3 x 106 

347 S/S backplate 16.7 x 106 Abandoned 

17-4PH S/S backplate 10 8 x 10-6 Close match to macor 

Macor insulator 9 4 X 10  6 

D. Vibration Sensitivity



1. Experimental method The experimental arrangement of figure 29 was



used to measure the vibration sensitivity, that is, the response of the



microphone to external vibrations A B&K type 4809 Vibration Exciter served



as a source of axial vibrations, whose amplitude and frequency were controlled



by adjustments of the test oscillator. The microphone acceleration was



measured with a BB&N type 501-159 accelerometer, bonded to the microphone,



and the microphone output was measured on a third-octave analyzer.
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Initially the microphone carrier system was calibrated at 1000 Hz with
 


the aid of a PC-125 acoustic calibrator. Then the microphone was mounted in



the vibration exciter adapter and subjected to sinusoidal vibrations at



frequencies of 20, 50, 100, 200, 500, 1000, 2000, and 5000 Hz The cable was



clamped rigidly to a support on the workbench at a point about 60 cm from the



microphone to suppress triboelectric noise At each frequency the test



oscillator output level was adjusted to produce an accelerometer output



corresponding to 0.5 g, the highest level showing a linear response at all



frequencies. The vibration sensitivity levels--output volts per unit



acceleration--were measured on the third-octave analyzer and later corrected



for electrical noise.



2. Results. The vibration sensitivity spectra for microphones 1 and 2



are shown in figure 30 The response of each microphone lies below the



specified limit of 0.6895 N/m2/g (horizontal line) at all frequencies. For



comparison the vibration sensitivity specifications for two commercial trans


ducers are given below:



B&K type 4134 12.7 mm (1/2 inch) condenser microphone- 0.5 N/m2/g



Kulite type BQH-1100-5 solid state pressure sensor 1.38 N/m2/g



These values apply to the entire operating frequency range. 

According to reference 16 the vibration sensitivity at 1 g should equal 

ag , where a is the membrane surface density and g the acceleration of 

gravity For microphones 1 and 2 these values are 0.453 and 0 551 N/m2/g 

respectively, decidedly above the measured values Apparently vibrations 

applied to the flange of the microphone case are damped along the path to the 

membrane 

The maximum allowable vibration sensitivity per specification corresponds



to a noise level of 91 dB at 1 g Since the system noise floor exceeds 100 dB,



vibration sensitivity will not be the iimiting factor regarding the lowest



measurable dynamic pressure levels



E. Thermal Shock



1 
 Definition "Thermal shock" refers to a rapid change in microphone



temperature [about 1670 C (300'F) per minute], during which time the response of
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the microphone to a steady acoustical excitation is monitored. The purpose of



the test is to study the stability of the microphone under dynamic thermal



conditions.



2. Experimental method. Refer to figure 31. The microphone and



electrostatic actuator were mounted on a stand, which rested upon a flat side



of an aluminum cable drum The hole through the center of the drum and the two



wooden spacers on which it was supported provided clearance for the microphone



cable. The electronic systems for exciting the electrostatic actuator and



measuring microphone response were essentially the same as those used in the
 


static temperature tests (figure 23). In the absence of the rigid cable,



however, the rf signal generator was adjusted for a carrier frequency near



48 MHz and an output of 2.2 V. The polarization voltage applied to the



electrostatic actuator, furthermore, was reduced to about 400 V to prevent



arcing at high temperatures The test was conducted at a single acoustical



frequency of 2000 Hz, for which third-octave band the electrical noise was



lowest. The HP model 3403C True RMS Voltmeter provided an output proportional



to the logarithm of the input; this was used to monitor the output level of



the microphone in dB on one channel of the strip chart recorder. Despite the



low-level excitation by the electrostatic actuator, the signal-to-noise ratio



on the 2000 Hz third-octave band amounted to 27.4 dB



The microphone was heated simply by means of an acetylene flame applied



by hand. A blower, Master Appliance Corp. HG 301 Heat Gun (switched to



"cool"), provided means of rapid, forced-air cooling A copper-constantan



thermocouple, screwed onto the electrostatic actuator near the microphone,



together with a reference thermocouple at ambient temperature, 20'C, provided



the temperature signal on the remaining channel of the strip chart recorder.



The microphone remained excited at 2000 Hz and fixed amplitude all during



the test. The acetylene flame was applied to the microphone, as uniformly as



possible around its periphery, until the recorder indicated a thermocouple output



corresponding to at least 370 0C. Then the flame was removed and the microphone



temperature permitted to decrease slowly, when it reached 340'C the blower was



switched on, and the thermocouple and microphone outputs were recorded



simultaneously on the strip chart recorder
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3 Results The test result for microphone 2 is shown in figure 32. The 

average cooling rate of the microphone over the first minute is found to be 

1620C per minute, very close to the 1670C per minute required by the specifi

cations. After an initial negative spike following activation of the blower, 

the microphone response remains well within a 2 dB band over the entire cooling 

interval. The fluctuations in the microphone response are of aerodynamic 

origin; because of their broad frequency spectrum, it was necessary to insert 

a filter which passed only those frequencies within the 2000 Hz third-octave 

band. Figure 32 is typical of repeated dynamic temperature tests of microphone 

2 as well as microphone 1. From these tests we conclude that microphone 

stability under rapid temperature changes is satisfactory. 

VI. CONCLUSIONS



A. Review of Work Accomplished Toward Achievement of Research Objectives
 


The objectives of the three basic research problems--microphone, cable, 

and electronics--have been for the most part satisfactorily achieved. The 

self-consistent theory of part IIB, by which one can predict the frequency 

response, quality factor, air compliance, air resistance, and other parameters 

in terms of the physical properties of the microphone, has been substantiated 

by experiment, and has proved useful as a basis for condenser microphone 

design. The prototype microphone-cartridge of figure 12, which has operated 

successfully at temperatures up to 4270C (800'F), contains two new design 

features not found in conventional microphones First, the choice of a 

backplate material (type 17-4PH stainless steel) with a lower thermal expansion 

coefficient than that of the case has alleviated problems concerning rapid 

changes of the microphone gap with changes in temperature, secondly, the 

slotted-shell contact on the locking tube H, mated to the contact pin C of 

figure 19 (with a brass foil in between), has maintained reliable electrical 

continuity at elevated temperatures 

Operation of the 6 m (20 ft) cable in figure 13 as a half-wavelength



transmission line has been demonstrated in part III as a practical and



effective means of separating the microphone from the carrier electronics To



minimize cable losses it was determined that the cable should have the
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highest possible figure of merit R0/a2 , where R° , a , and Z are the 
cable characteristic impedance, attenuation constant, and length, and that the



system should operate at the highest possible carrier frequency The cable



losses of the prototype carrier system, operating with an RGllA/U cable at



48 MHz (-third cable resonance), have been limited to about 20 dB



The use of a voltage-controlled oscillator (VCO), in place of the varactor



diodes, have proved an effective means of achieving automatic tuning control of


the converter, as described in part V. A possible improvement in the electronics



system would be the addition of automatic gain control, which would keep overall



system gain constant despite variations in static microphone capacitance One



such system, developed under a previous grant (ref 17), utilizes an insertion



voltage in a feedback loop to detect and compensate for changes in system gain.



B. Analysis of Laboratory Test Results



The laboratory test results of part VC clearly suggest that the microphone



cartridge must be modified to improve the frequency response of the system. Two



considerations are of primary interest First, the present microphone has a


much lower damping than desired; the resonant peak, shown in figure 24, is in fact



so high as to render the microphone useful at frequencies up to only 10 kHz In



the original design of the microphone it was intended that the gap be adjusted to



about 29 pm, corresponding to a static capacitance of 20 pf. With such a small



gap setting, however, it was learned that the harmonic distortion at 170 dB



exceeded specification and could not be reduced to an acceptable level until the



gap was increased to about 40 jm. The increase in gap consequently reduced the



microphone damping to the detriment of its frequency response. Secondly, the



membrane tension required to extend the microphone frequency response to 20 kHz is



excessively high and thus excessively sensitive to temperature. Figures 25b and



27d show that the membrane with lower tension (2733 N/m) is less affected by



exposure to elevated temperatures than the membrane with higher tension (4288 N/m),



hence the desirability of a reduced membrane tension



The dual goals of lowering the sensitivity to reduce harmonic distortion and



of extending the bandwidth can both be realized through a reduction in the radius



of the membrane, in which case the microphone could operate at reduced values of



gap and membrane tension. The reduced gap would increase the damping and,



together with proper backplate design, would suppress the resonant peak and
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extend the bandwidth, the reduced tension would render the membrane less



sensitive to temperature cycling and thus enhance microphone stability



The present system has achieved its best performance under the following



operating conditions



membrane tension 4000 N/m



gap 40 im



carrier frequency 	 48 MHz (third resonance of a 5 7 m length of



RGlIA/U)



zero drive range 10 for microphone 1 

= 20 for microphone 2 

Microphone 1 (membrane thickness = 5.588 um) showed somewhat better specifications



than microphone 2 (membrane thickness = 7.112 pm), but the latter may prove more



durable in field tests. A summary of the specifications achieved with the two



microphones appears in table 12.



Table 12. Summary of achieved specifications.



Specification Microphone 11 Microphone 22 

Harmonic distortion at 170 dB SPL 1.4% 1.5% 

Noise floor (22 4 Hz to 22 4 kHz) 105 dB 109 dB 

Frequency response (±2 dB) 20 Hz to 10 kHz 

Maximum operating temperature >4270 C (800'F) (continuous duty) 

Thermal shock <2 dB change in sensitivity during 
cooling at rate of 162 0C/min (2920F/min) 

Vibration sensitivity <0.5 N/m2/g (7.25 x 10- 5 ps:/g) 

1 Membrane thickness = 5.588 pm (0.00022 in).



2 Membrane thickness = 7.112 pm (0.00028 in)



The noise floor of both microphones is somewhat higher than desired, but that



of microphone 1 is acceptable for measurements at SPL's above 110 dB. The
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upper limit of -the dynamic range can only be estimated, for no means of



testing above 170 dB was available. Nevertheless extrapolation of the curves



of figure 22 suggests that the harmonic distortion may not exceed 4 percent



at 180 dB. The upper limiting frequency of 10 kHz falls shy of the desired



20 kHz, as explained above, and the frequency response below 20 Hz was not



measured. The specification on thermal shock is acceptable if a 2 dB change



in sensitivity is permitted. The vibration sensitivity meets specifications,



even without external vibration damping or compensation.



C. Effect of Temperature Upon Condenser Microphone Operation



It was pointed out in part VC that the three predominant effects of



temperature changes are changes in gap, membrane tension, and air viscosity.



The effect upon the gap, related to the thermal expansion coefficients of the



backplate and case materials, was discussed previously.



The effect upon the membrane tension warrants a more complex interpretation,



for there are contributions from two different physical effects. thermal



expansion, which tends to stiffen the membrane with increasing temperature, and



the temperature dependence of the tensile strength, which tends to soften it.



As seen in figure 27b, thermal expansion prevails up to 204 0C of the heating



portion of the thermal cycle, but the reduction in tensile strength prevails



at all temperatures thereafter. In the static test of figure 27, where the



microphone was held at each temperature for one hour, a permanent reduction in



membrane tension after the test is evident In the dynamic test of figure 32,



on the other hand, where the microphone was exposed to elevated temperatures



for only a few minutes, a permanent change in microphone sensitivity, and thus
 


membrane tension, is lacking. A permanent reduction in membrane tension may



be attributable to creep of the membrane material upon prolonged exposure to



elevated temperatures, and may possibly not appear in field tests of relatively



short duration. In any case, the membrane can easily be retightened or even
 


replaced after a temperature run.



Viscosity affects the frequency response significantly only near the



microphone resonance. The increase in viscosity with increasing temperature



tends to lower the resonant peak, as is evident in figure 26, and is but a



secondary consideration.
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The present microphone was designed such that the change in gap and membrane



tension will have compensating effects upon the microphone sensitivity



D. Public Disclosure



During the course of the research several aspects of the microphone system



have been presented at scientific conferences.



1 N. V Cohen, "Analytical and Experimental Studies of Capacitance



Microphones," Virginia Academy of Sciences, 53rd Annual Meeting, May 1975



2. A. J. Zuckerwar, "Self-consistent Approach to the Problem of Fluid-


Membrane Coupling in Condenser Microphones," 90th Meeting of the Acoustical



Society of America, November 1975 (J.Acoust. Soc. Am. 58, Suppl 1, 345,



1975).



3 A. J. Zuckerwar, "Operation of a Condenser Microphone as the Terminal



Element of a Half-wavelength Transmission Line in an AM Carrier System,"



91st Meeting of the Acoustical Society of America, April 1976 (J Acoust.



Soc. Am 59, Suppl. 1, 362, 1976).



4. A. J. Zuckerwar, "Performance of a Condenser Microphone Designed for



Operation at Elevated Temperatures," to be presented at the 93rd Meeting of the



Acoustical Society of America, June 1977.



Descriptions of the self-consistent theory of condenser microphones



and the high-temperature microphone carrier system will be submitted for



publication in scientific journals A Disclosure of Invention (NASA Form 235),



describing the microphone system, will be submitted to the Office of Patent



Counsel, Langley Research Center.
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Appendix A. The Boundary Condition at the Backplate.



We 	 write the circuit equations of figure 4 in matrix form



P = ZU, 	 (A-i) 

where the pressure, volume velocity, and acoustic impedance matrices are



defined as follows



P1 U 1



P2 U12



P 	 U =(A-2a,A-2b)



p 	 U



zl	+ zC zC zC 

ZC Z2 + ZC 

Z =(A-2c) 

zC 	 Zq + z C 

In the matrix (A-2c) the impedance Zc is just the acoustic impedance of the



backchamber



poc 

ZC 	 = poCV 	 (A-3)



and the impedance Zk (k = 1, 2, .. of the kth opening of the backplate is 

given by 

Z 	 = 	 OZk + 4 Po-P-- (A-4) 
rk 4 7rk62
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if the opening -is a hole of radius r k and depth Zk , or by 

12p oWk 6 _o k 
k = t w + 5I 

if the opening is a narrow slot of length wk , width tk , and depth k 

Upon using the relationships 

Pk = ib1PoA 4k (A-6a) 

Uk = fksk ' (A-6b) 

and rewriting equation (A-i) in the form, 

'U = Y P, (A-7) 

where 

-Y = Z , (A-8) 

we find the following expression for the fk . 

f IP Yk (A-9)
=k k z£ kP~ 

The matrix Y , with elements Yk in equation (2-4), is just the inverse of 

Z , defined in equation (A-2c) 
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Appendix B. Proof of Equation C2-22).



First let us expand the summand S into partial fractions:



p 
4
a
 

- 1 
2
p =(Xp2 _ 2)(X 2 - Kz) 2 2 2)
( m a - K2a2)(Xp2a _ 2a
 

(B-l) 
4


a



2 2 2)( p 2 2 K2
(K2a - m a a - a2)
 

Now, starting with the identity (ref. 18)



J (z) = H


p=l K X p2a2



taking the natural logarithm of both sides, and differentiating with respect 

to z , we obtain 

J 1 (z) 

2zJo(z) 2 2 (B-2)

p=l X 2 a - z



p 

Upon summing (B-1) over p and applying (B-2) we find



a4 Ji( ma) a4



S = + 

p=l P - K2(2 ) 2maa (K2a - Em2a
2 )


2 2 maio(Ema) 2
 

J1 (Ka)



2KaJ0 (Ka)



However,
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J1i( m=a) 0 if m 0

a 

mra 

1 
if m= 0-, 

from which equation (2-22) follows.
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Figure 1. Typical experimental arrangement to measure pressure


fluctuations on externally blown flaps.
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Figure 2. 	 Cross section of prototype condenser microphone and
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Figure 5 Frequency dependence of average membrane displacement for the constant [case 
(1)], parabolic [case (2)], and Bessel [case (3)] trial expressions entering 
equation (2-11a). Membrane tension = 2962 N/m. Air gap = 6.05 x 10-5 m. 
SPL = 1 N/m2 (94 dB). 
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Figure 7. 	 Frequency dependence of air compliance, resistance, and quality


factor for the prototype microphone of figure 5.
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Figure 8. 	 Instrumentation used to measure microphone frequency response. oscillator = HP


model 651B, automatic counter = HP model 5323A; power amplifier = HP model 467A,



calibration apparatus = B & K type 4142, converter (see reference 3); zero drive


amplifier = MB Electronics type N461 with modifications (see reference 4); 

falter = Kronhite model 3202, oscilloscope = Tektronix type 549 with 1A7A plug-in, 
voltmeter HP model 3403C, phase meter = Ad-Yu Electronics type 405L. 
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Figure 9. 	Frequency.dependence of membrane displacement amplitude for two different gap 
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Tension = 2962 N/m. Excitation = 0.6774 N/m2 (90.6 dB) 
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Figure 11 Frequency dependence of phase angle between incident pressure and membrane displace

ment corresponding to curve (1 of figure 9.





o 

CC 

Figure 12. 	 Assembly drawing of microphone cartridge. A membrane, 
B backplate, C tension ring, D membrane retaining ring, 
E.case, P insulator, G threaded ring, 1!locking tube. 



CONDENSER CABLE CARRIER OUTPUT


MICROPHONE ELECTRONICS DEVICE



Figure 13. Block diagram of high-temperature microphone system 
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Figure 14. 	 Circuit diagram of the converter containing varactor diodes for tuning 
control. Terminal connections. A zero drive amplifier input, B zero 
drive amplifier common, E zero drive amplifier control, L RF signal 
generator. C = condenser microphone. 
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Figure 16. Measured cable attenuation versus frequency
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Figure 17 	 Instrumentation used to measure system sensitivity. 
Test oscillator = HP651B, power amplifier = HP467A, 
automatic counter = HP5323A, acoustic calibrator = 
Photocon PC-125, microphone = B&K 4134 (SN 489856), 
converter (see refs. 3 and 4), zero drive amplifier= 
Gilmore N461 (modified), true rms voltmeter = HP3403C, 
rf signal generator = HP606B3; electronic counter = 
HP5245L, bscilloscope = Tektronix S49 with IAI plug-in. 
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Figure 18 Relative sensitivity of system with various coaxial


cables versus carrier frequency Output voltages are


referred to system response with microphone connected


directly to converter (no intervening cable). Solid


curves: theoretical. Symbols: experimental data


points.
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A



Figure 19. 	 Microphone-cable connector assembly. Microphone connector parts A Case


(stainless steel), B Spacer (macor), C Contact pin (stainless steel).


Extension tube parts: D Tube (copper), E Spacer (macor), F Pin (copper),


G Center conductor (copper). Cable connector parts H Cap (copper), plus


parts of a TNC connector (not shown, see text). Scale- linear dimensions


twice actual size, except for center conductor G, which is exaggerated.
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Figure 20 Block diagram of the VCO system with automatic tuning control. Insert shows details of


the modified front end of the converter.
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Figure 21. Experimental arrangement for measuring harmonic distortion. Calibrated sound source


Photocon PC-125 or BB&N 901D; third octave analyzer = B&K 3347; filter = HP5489A; 
cable = RG 11 A/U (5 72 m), voltage-controlled oscillator = Hope VCQ-100A; remaining 
components are the same as those in figure 17. 



SPECIFICATION


4 

3 

2 

I-3


C0


0 

Ol10 120 130 140 150 160 170 

CD,	 SOUND PRESSURE LEVEL [dB]
(a)


C) 
SPECIFICATION 

4 

LuJ 

3		 00 

2-
Uj 

0		 SPCIIATO 

110 120 130 140 150 160 170 

SOUND PRESSURE LEVEL [dB] 

(b) 

Figure 22. 	 Harmonic distortion versus sound pressure level for (a)micro

phone 1 and (b)mcrophone 2, measured with 0 PC-125 at


1000 Hz, 0 BB&N 901D at 80 Hz.
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Figure 23. Experimental arrangement for measuring frequency response. Microphone calibration


O 	 apparatus = B&K 4142, third octave analyzer = B&K 3347, filter = Kronhite 3202, 

voltmeter 1 = 1P3403C; voltmeter 2 = IIP427A; coaxial cable = RG iA/U (5.59 nO, 
remaining components are the same as those 3n figure 17 
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Figure 24 	 Frequency response of microphone 1 during heating and


cooling Because of membrane replacement the membrane
 

tension (4282.4 N/m) and gap (4.208 x 10 - 5 m) differ from 
those listed in table 7
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Figure 25. 	 Temperature dependence of (a) microphone


response at 1000 Hz, (b) membrane tension,


and Cc) gap of microphone 1
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Figure 26. 	 Frequency response of microphone 1 with reduced


tension and gap during heating and cooling.


Tension = 2733.1 N/m Gap = 2 903 x 10- 5 m
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Figure 27 	 Temperature dependence of (a)microphone response


at 1000 Hz, (b)membrane tension, and (c)gap of


microphone 1 with reduced tension and gap.
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Figure 28. 	 Temperature dependence of (a)microphone


response at 1000 Hz and (b)gap of microphone
 

1 with type 347 stainless steel backplate.
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Figure 29 	
 Experimental arrangement for measuring vibration sensitivity. Vibration exciter = B&K 4809,

third octave analyzer = B&K 3347; accelerometer = BB&N 501-1S9, cable = RG 11 A/U (5.72 m);


voltage-controlled oscillator = Hope VCO-100A, remaining components are the same as those in


figure 17.
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Figure 30 Vibration sensitivity spectrum of 0 microphone I and U microphone 2. The 
horizontal lane indicates the maximum vibration sensitivity permitted by the 
specification (0.6895 N/m2/g). 
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FigaLre 31 	 Experimental arrangement for thermal shock test. Filter=


EDMAC 8010A, dual channel strip chart recorder = Leeds and


Northrup Speedomax, cable = RG 11A/U (7.62 m), remaining

components are the same as those in figure 23
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Figure 32. Time history of microphone response to a steady electrostatic actuator signal during thermal 
shock test. Blower was turned on at time t = 0 


