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ABSTRACT 
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LINEAR MULTIPLE REGRESSION TECHNIQUE FOR



QUANTIFICATION OF WATER QUALITY PARAMETERS


FROM REMOTE SENSING DATA



Charles Henry Whitlock III


Old Dominion University, 1977



Director: Dr. Chin Y. Kuo



Inconsistent results have been obtained from previous experiments 

which have applied linear multiple regression techniques to remote 

sensing data for quantification of water quality parameters. The 

objective of this investigation is to define optical physics and/or 

environmental conditions under which the linear multiple regression 

should be applicable. To achieve this objective, an investigation 

of the signal response equations is conducted and the concept is



tested by application to both analytical test cases and actual remote



sensing data from a laboratory under controlled conditions.



Investigation of the signal response equations shows that the



exact solution for a number of optical physics conditions is of the
 


same form as a linearized multiple regression equation, even if



nonlinear contributions are made by such factors as surface reflections,



atmospheric constituents, or other water pollutants. Limitations on



achieving this type of solution are defined. Since the exact solution



is in the form of a linear multiple regression equation, application



of multiple regression techniques tp remote sensing and ground truth



data is viewed as a calibration of the exact solution to account for 

ii 



daily variations in background constituents.



Least-squares and statistical concepts for performing the 

multiple regression analysis are examined. A test for evaluating the 

applicability of least-squares techniques to a particular set of data 

is defined and criteria for selection of "good" data are established. 

From analytical test case results, it is concluded that 

constituents with linear radiance gradients with concentration may be 

quantified from signals which contain nonlinear atmospheric and 

surface reflection effects for both homogeneous and non-homogeneous 

water bodies provided accurate data can be obtained and nonlinearities 

are constant with wavelength. It is also concluded thiit statistical 

parameters must be used which give an indication of bias as well as 

total squared error to insure that an equation with an optimum 

combination of bands is selected for utilization.



From application to laboratory data, it is concluded that the 

effect of error in upwelled radiance measurements is to reduce the



accuracy of the least-squares fitting process and to increase the



number of points required to obtain a satisfactory fit. The problem



of obtaining a multiple regression equation that is extremely



sensitive to error is discussed. It is also concluded that the



linearized multiple regression is applicable in situations in which



some types of optical interaction occur between constituents.



The result of this investigation is an increased understanding



of technique limitations, mathematical requirements, ground truth 
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requirements, and error effects which should aid in the obtaining of



consistent results from future remote sensing experiments.
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CHAPTER I



INTRODUCTION



Large amounts of sediments and other pollutants are carried 

annually in the rivers, lakes, estuaries, and coastal waters of the 

United States. These sediments and pollutants are major determinates



of water quality. Measurement of marine sediment and pollutant



concentrations is a tedious and expensive effort usually involving



both in situ and laboratpry work. Efforts have been directed towards



the development of more rapid and economical methods for monitoring



sediment and pollutant concentration in the nation's waters. Many



agencies are investigating the potential of using remote sensing



techniques to monitor various water quality parameters because of the



ability of remote sensing to provide synoptic views over large areas.



Specific data needs usually vary among different user organiza


tions (Kuo and Cheng 1976-). Typical water quality parameters of



interest to user organizations include chlorophyll, phytoplankton,



organic compounds, toxic chemicals, heavy metals, clays, silt, and sand.



For these parameters, the types of information desired are concentra


tion, composition, size distribution, etc. for biological, geological,



oceanographic, and sanitation uses. Advanced monitoring systems which



utilize remote sensing data to its fullest advantage are desired for



assessment of the effects of both man-made and natural events such as



storms, floods, etc.. 
 While much has been done toward the use of
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remote sensing data for monitoring of water quality parameters



("Satellites Helping---
 Problems" 1975), it is clear that additional



research and development of improved data analysis procedures is desired 

by many users (Huwells 1975, for example). Generally the desired use 

of remote sensing data is either identification or quantification of 

surface sediments and pollutants. In the long term, both identifica

tion and quantification are desired simultaneously from the same data. 

At the present time, however, these two processes are approached by



different techniques. This dissertation is concerned with data



analysis procedures for quantification of water quality parameters that



have already been identified and are known to exist within the water



body. Specifically, the study deals with the linear multiple regression



technique as a procedure for defining and calibrating data analysis 

algorithms for such instruments as spectrometers and multispectral 

scanners. The technique has been utilized by Johnson (1975 and 1976), 

and Rogers et al (October 1975) with some apparent success. A more



complete understanding of the limitations, requirements, and precision 

of the linear multiple regression technique is required before it can 

be applied by user agencies in an operational manner. In an effort 

to gain some insight into these questions, it is the objective of this 


investigation to define optical physics and/or environmental conditions 

under which the linear multiple regression analysis should apply for



quantification of water quality parameters. 
 To achieve this objective,



an investigation of the signal response equations is conducted, and



the concept is tested by application to both analytical test cases and





actual remote sensing data from a laboratory under controlled 

conditions. An improved understanding of technique limitations, 

mathematical requirements, ground truth requirements, and error 

effects is desired as a result- of this'study. 



CHAPTER II



REMOTE SENSING CONCEPTS AND PRESENT SYSTEMS



There are two types of remote sensing systems capable of monitoring 

water characteristics. Active systems are those which emit their own



energy source and monitor variances in the return signal. Radars, 

lasers, and microwave radiometers are examples of active remote sensing 

systems. Passive systems are those which depend upon the sun's radiation 

as the energy source and measure variations in the upwelled signal 

radiated back from the surface of the Earth. Aerial photography, 

spectrometers, and multispectral scanners are examples of passive 

remote sensing systems. This investigation is concerned with use of



passive systems, in particular spectrometers and multispectral scanners, 

as a means for remote sensing of water quality parameters. 

Passive remote sensors measure the total upwelled radiance emitted



from the water-atmospheric system as shown in figure 1. Components 

which make up the total upwelled radiance include (1) upwelled 

radiance from the water, (2) reflected light, and (3) diffuse skylight. 

Of these components, only the upwelled light from the water is normally 

a function of the constituents in the water, although in some cases, 

surface films as a result of water pollutants may influence reflected 

radiance. The upwelled light from the water is the result of a 

multiple scattering and absorption process in which a small friction 
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(usually less than one percent) of the dovnwelling light is back


scattered back up through the water surface. Constituents which



introduce particles or dissolved substances alter the scattering and



absorption characteristics of the mixture which in turn alter the



upwelled radiance emitted through the surface of the water. The 

upwelled radiance is further modified by diffuse skylight and 

reflected sunlight before it reaches the remote sensor. Researchers 

are presently seeking methods to separate atmospheric and surface



reflection effects from total remote sensing signals in an effort to 

deduce variations in upwelled spectra caused by variations in water



constituents. The ultimate goal is to devise data analysis procedures 

from which water constituents may be identified and quantified by 

computerized processes. 

For ease of computerized analysis, remote sensing systems which 

have digital radiance output are desired. For this reason, multi

spectral scanners or spectrometers are normally used to monitor 

upwelled radiance whenever economic conditions allow such systems. As 

sketched in figure 2, a spectrometer normally measures the total 

radiance (or power) spectrum over the wavelength range of interest.



The measurement is for only one location within the scene of interest,



however. To overcome this limitation, multispectral scanners have



spanwise rotating optics systems such that upwelled radiance may be 

measured over a total scene as the aircraft or satellite progresses



along its flight path. Unfortunately, multispectral scanners measure



only a portion of the total upwelled radiance spectrum. Total radiance
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values at specified bands over the wavelength range of interest are



the output of these instruments. Most research is presently centered



on the use of multispectral scanners from either aircraft or satellite



for the monitoring of water constituents. It must be noted, however, 

that spectrometers may also be utilized for identification and quanti

fication of marine parameters if one does not require values over a 

total scene. 


A number of multispectral scanner systems are presently available.



Unfortunately, each system has different band locations and band 

widths from the other systems available. Figure 3 shows band locations 

and band widths for several of the more well-known systems. It must 

also be noted that each system has a different ability to resolve 

features on the surface of the earth (spacial resolution). LANDSAT A 

and B have spacial resolutions of 70 meters, and LANDSAT D will have a 

value near 30 meters. NIMBUS G has narrow bandwidths (high spectral



resolution), but its spacial resolution is expected to be near 200



meters. 
 Aircraft systems normally have lower spacial resolutions as 


a result of lower flight altitude. From a 2.4 km altitude, the 

Bendix Modular Multispectral Scanner (M2S) has a spacial resolution of 

7 meters. The NASA Ocean'Color Scanner (OCS) has a spacial resolution


of 70 meters from the U-2 aircraft at an altitude of 18.3 kin. It 

must also be noted that the various scanners have different amounts



of instrument noise in the radiance measurements. Noise in the data



may range from 2 percent to 30 plus percent of the water radiance 

values depending on the particular scanner being used, the particular 
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band under analysis, the instrument gain setting, and the stability of 

associated equipment on the day of the experiment. The effects of 

noise on the analysis of remote sensing data vill be discussed in a 

later section. 



CHAPTER III



HISTORY AND RELATED WORK 

It has been known for a number of years that differences in water 

turbidity or light transmission characteristics can often be detected 

by certain aerial photography systems. Some efforts have been success


ful at quantifying the surface concentrations of some water quality 

parameters from photographic data in a limited number of cases (see 

Lillesand 1973 and Link 1973, for example). With the launch of the 

ERTS-1 satellite (now known as LANDSAT-A), it was recognized by a number 

of agencies that the potential exists for monitoring water quality 

parameters on a large scale. The use of multispectral scanners such 

as that used on LANDSAT-A provide digital radiance data which is 

susceptible to computerized processing in large volumes. If



computerized algorithms can be developed which relate remotely-sensed



radiance values to water constituent concentrations, then certain



water quality parameters may be monitored over large geographic areas 

on a rapid time scale which is not possible with photographic data. 

One of the major difficulties in evaluating the potential for 

remote sensing of water constituents is the fact that only limited
 


optical theory is presently available to relate the remote sensing 

measurements to concentrations of specific water parameters. Jerlov



(1968) gives the precise formulation of the radiative transfer



equation in an absorbing and scattering medium from which the radiance 

8





9 

upwelled from the water may be calculated. The radiative transfer 

a function of the losses caused by absorptionprocess is treated as 

added to the gain caused by scattering. Various approximate solutions 

have been formulated (see Jerlov 1968 and McCluney 1974, for example) 

for relatively clear ocean waters, but an exact solution to the



radiative transfer equation applicable to all classes of water is



believed to be extremely difficult (Jerlov 1968)., Because of this



difficulty, various researchers (Gordon et al 1975 and Ghovanlou 1976,



for example) have developed optical theory models which use Monte Carlo



techniques to trace movement of photons after entry into the water



from the atmosphere. Such models are often prohibitive for practical



investigations because 100,000 separate computer cases may be required



to define the upwelled radiance spectra over a reasonable wavelength



range.



Optical models are also limited at the present time in that they



relate the upwelled radiance to only the optical properties of the water



and not specific constituent concentrations. Monte Carlo optical



models generally compute the upwelled radiance based on the beam



attenuation coefficient, the scattering coefficient, and the



probability scattering function of the water mixture. Only limited 

work has been done to relate these specific optical parameters as a



group to concentrations of specific water constituents for the more



turbid waters as found in the coastal and inland United States. For



example, Ghovanlou et al (1973) collected samples from a number of



East Coast locations and made laser transmission measurements in a
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laboratory. This study was successful in relating beam attenuation



coefficient to constituent concentration and defined the scattering
 


to absorption ratio for a number of different sediments. Whitlock 

(1976) used these data to estimate scattering and absorption coeffi

cients as a function of sediment type and concentration. Unfortunately, 

the results are limited to one wavelength (540 nm) and values for the 

probability scattering function are not available. Thus a complete



set of optical parameters is not available for input to a Monte Carlo 

model without estimating one parameter. The problem of not having



measured values of all optical parameters over a wavelength range for



various constituent concentrations is typical and is a major reason



for the present lack of theoretical relations between water constituent



concentration values and upwelled remote sensing radiance measurements.



As a result of the above unknowns, most LANDSAT and other multi

spectral scanner investigations have approached the problem from a 

statistical point of view. The usual analysis is one in which the 

radiance values of various wavelengths (or bands) are correlated with 

ground truth concentration values of a particular parameter in a 

linearized, least-squares-fit manner. When a high value of correlation 

coefficient (approaching 1.O) and a low value of standard error 

(68 percent of all points for a normally-distributed error band about 

the fitted curve) is obtained, it is often assumed that the regression



equation obtained from the least-squares fit can be used to estimate



water constituent concentrations in other areas of the remote sensing 

image where no ground truth measurements exist. In the simplest case, 



the regression equation is linear and of the following form: 

C = J + Kx(Baa) (3-1) 

where: C = water constituent concentration



J = empirical constant 

KX= empirical constant for wavelength X 

Bad = radiance at wavelength X 
(or band X) 

When a linearized, least-squares fit is made to more than one parameter, 

the resulting relation is known as a linearized multiple regression



equation which might be of the following form:



C = J + KX(Radx) + Ky(Rady) + .... (3-2) 

While statistical data anilysis techniques provide only limited
 


understanding of the optical process being monitored, the approach has



been successful in providing useful information to agencies which



monitor various water quality -parameters. Developments which have led



to multiple regression concepts for analysis of marine remote sensing 

data are reviewed in the following paragraphs. 

Klemas et al (1973) noted the ability of the LANDSAT-A multi

spectral scanner to detect sediment plumes and aquatic fronts with 

band 5. At the same time, Wezernak and Roller (1973) demonstrated that



both LANDSAT and aircraft multispectral scanners had the ability to see 
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acid-iron wastes, sewage sludge, suspended solids, and major water



mass boundaries in the New York Bight area. Maul (1973) noted the



ability to detect chlorophyll-A in the ocean and concluded that sea



state is a significant variable that can dominate the upwelled radiance



when weather conditions introduce bubbles, white caps, and foam.
 


Grew (1973) concluded that it was feasible to distinguish between algae



and sediment from tests conducted at Clear Lake, California. Yarger 

et al (March 1973) showed that LANjDSAT bands 5 and 6 showed strong 

correlation with suspended load in two Kansas reservoirs but noted



possible problems with atmospheric scatter. Scherz et al (1973)



made simple laboratory measurements of upwelled spectral signatures of 

various water samples and concluded that upwelled radiance positively



correlates with water turbidity. Ritchie et al (1974) made spectrometer



measurements of six Mississippi lakes and showed a high linear



correlation coefficient (r = 0.90) between upwelled radiation and total



suspended solids in the 28 to 242 ppm range. The data were from a



number of different water bodies, and there was a large amount of



scatter in the results (probably the result of different dissolved
 


substances and particle compositions in the various lakes). It was



later found (Ritchie et al 1975) that the sun angle had an effect on



the correlation of upwelled radiance to total suspended solids.



Turner (1974) made a study of atmospheric effects and concluded that



variations in atmospheric absorption and multiple scattering have a



significant nonlinear effect on'values obtained from an aircraft or



satellite remote sensing system. Of particular concern was data taken
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under hazy conditions in which aerosol or moisture content might vary



over the remote sensing scene of interest. In spite of these



difficulties, Christensen and Wezernak (1975) concluded that remote



sensing could serve as an important additiQn to techniques available



to a regulatory agency for environmental monitoring. Images, give good 

maps of overall features of turbid and thermal plumes, and surface 

films could be detected at wavelengths between 320 and 380 nm. The 

above results indicate that remotely-sensed spectral measurements are 

quite useful for qualitative evaluation of circulation and transport 

patterns. 

Of particular concern to agencies charged with environmental 

monitoring responsibilities is the requirement to quantify surface 

concentration values using remote sensing data. One early attempt at 

quantification was by Yost et al (1973) which developed additive color



algorithms of the form:



C = J + K(Radx + Rady) (3-3) 

The algorithms produced good results for quantification of suspended 

solids for two days in the New York Bight area but were unsuccessful



in quantification of extinction coefficient, chlorophyll-A, and total 

particle counts. Yarger et al (1973) showed that sun angle had a 

significant effect on upwelled radiance signals and formulated a band


ratio technique which nearly surpressed the effect of unequal 

illumination. The band-ratio algorithm was of the form: 



c = J + K (3-4) 
,Rady



It was also demonstrated that for a concrete target on the ground, the 

band-ratio technique eliminated the effects of variable atmospheric 

scattering and absorption. It was noted, however, that the band-ratio 

algorithm did not produce consistent results for experiments conducted 

on different days. The reason for the anomalous behavior was 

unexplained, and it was believed that variations in water constituents 

and surface conditions between days were not significant. Bennett 

and Sydor (1974) utilized a linear regression algorithm of the form of 

equation (3-1) with LAIDSAT band 5 to map turbidity in Lake Superior 

to an accuracy of 20 percent. It was noted, however, that factors 

which changed the absorption coefficient of the water caused the up

welled radiance for Superior Bay to be four times lower than that from 

Lake Superior water bearing equivalent suspended load. One of the 

most complete investigations recently reported is that conducted by 

Yarger and McCauley (1975). That investigation made correlation



studies with 16 LANDSAT overpasses over three Kansas reservoirs



collecting a total of 170 water samples for ground truth data. It



was concluded that the band-ratio type of algorithm depressed the 

effect of seasonal sun angle variation, and that suspended solids 

could be quantified with a linear algorithm (equation (3-4)) to a 

standard error of 12 ppm over a range of 0 to 80 ppm. The radiance

concentration relationship was nonlinear for concentrations above 
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80 ppm. A good fit to the higher concentration data was obtained with 

a smooth polynomial algorithm of the following form: 

a 3RadX Ra 2 
C = J + Kl(-) + K (-y) + K -g) (3-5) 

A standard error of 35 ppm over a range of 0 - 900 ppm was obtained



for suspended solids. Correlation studies with the SKYLAB multispectral 

scanner produced similar results, however, these experiments were 

limited to suspended solids concentrations less than 100 ppm. The



investigation was unsuccessful in detecting dissolved solids (ranging 

to 500 ppm) and algal nutrients (ranging to 20 ppm). Total chlorophyll 

was not detectable below 8 pg/Z but showed a weak correlation for 

higher values. Also potassium, phosphate, and nitrate were not



detectable. Bowker and Witte (1975) also made repetitive investiga


tions with several LANDSAT passes over the lower Chesapeake Bay in



Virginia. Their analysis included linearized correlation studies using



a number of different types of algorithms including single band



(equation (3-1)), color addition (equation (3-3)), color substraction, 

band ratios (equation (3-4)), and band multiplication (C = J + K 

(RadxBad)) forms. While the experimental data suffered from tidal 

and meteorological effects as a result of time lag between the 

satellite overpass and ground truth sampling, it was concluded that 

good linear correlations with sediment could be obtained with LANDSAT



band 5 or combinations of band 5 and band 4. Only low correlations 

for chlorophyll could be obtained. Results from individual days were 



16 

quite variable indicating the effects of atmospheric, tidal, and 

seasonal variations. Unlike the studies of Yarger and McCauley (1975), 

the band-ratio type of algorithm did not improve this situation. 

Later analysis (Bowker et al 1975) indicated that a color substraction 

algorithm (using (Rad5 - Rad6 )) was highly correlated with total 

particles if a daily calibration could be obtained. Band 5 also had 

high correlation with water attenuation coefficient at a wavelength 

of 535 rm. 

It must be noted that several non-statistical approaches have



been attempted in the effort to quantify certain water constituents



from remote sensing data. Williamson et al (1973) developed automatic



data processing routines using only limited computer capability for



mapping of suspended sediment classes. The technique matched reference



spectra from known ground truth to satellite data (after corrections 

for a standard atmosphere) assuming the following parameters are 

constant over the scene of interest: 

1. Water constituents



2. Water surface conditions



3. Solar geometry



4. Atmospheric composition



(It should be noted that many of the statistical analysis techniques 

make these same assumptions.) It was noted that the technique was 

unable to discriminate between various sediment types for concentra

tions below 25 ppm, but some measure of discrimination was possible



for higher concentrations. Scherz et al (1975) developed a technique
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in which the atmosphere and water surface noise effects on LANDSAT



data can be removed using distilled water laboratory measurements and



field measurement of signals from very clear lakes. The approach



made a number of optical and physical assumptions, but a quantitative



calculation for turbidity is made and used for classification of



Wisconsin Lakes.



Most recently, linearized multiple regression analysis procedures



have been applied to marine remote sensing data. This technique



provides data analysis algorithms of the form of equation (3-2).



The first known use of multiple regression procedures for marine



data was by Mueller (197h) in performing correlations of ocean color



spectra off the Oregon coast. The technique was used in an indirect



manner in thatdummy variables were correlated in the regression



analysis instead of radiance levels from various wavelengths or bands.



The measured upwelled radiance spectra was transformed into four



principle components where the principle components are projections



of the observed spectra on coordinate axes defined by the first four



orthonormal eigenvectors. The purpose of the transformation was to
 


reduce 55 bands of spectrometer data to four variables for ease of 

manipulation. Two algorithms were developed for Secchi-depth 

and Net Equivalent Color concentration with correlation coefficients 

of 0.89 and 0.87, respectively. It was noted that the assumption



of linearity of upwelled radiance with concentration was questionable.



Johnson (March 1975) was apparently the first to apply multiple



regression analysis in a direct manner using actual LANDSAT radiance
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values. Using four data points from the Delaware Bay, an algorithm



was formulated and applied to the Potomac River to produce a



continuously variable map of suspended sediment concentrations.



Unfortunately no ground truth data were available from the Potomac 

to test the accuracy of the algorithm. This study served to introduce



the concept of direct application of multiple regression analysis for



developing data analysis algorithms for quantifying surface concentra


tions of water constituents. The concept was applied to aircraft



multispectral scanner data in a later experiment in the James River 

of Virginia in which 54 ground truth data points were taken near the



time of overpass (Johnson et al June 1975). Linearized radiance


concentration relationships were assumed and multiple regression



algorithms were developed for suspended sediment and chlorophyll



concentrations (Johnson June 1975). For suspended sediment, the



multiple regression algorithm of the form of equation (3-2) had a



standard error of 4.31 ppm over a range of 0 to 50 ppm. The



correlation coefficient was 0.93. This represented an improvement



over the single band regression algorithm (equation (3-1)) which



had a standard error of 4.76 ppm and a correlation coefficient of



0.89. Use of multiple regression analysis produced a more dramatic



improvement for the chlorophyll-A parameter. Over a range of 0 to 

20 mg/m 3 , the multiple regression algorithm had a standard error of 

1.56 mg/m3 and a correlation coefficient of 0.97, while the single 

band regression algorithm had a standard error of 2.64 mg/m3 and a 

correlation coefficient of 0.89. This study suggested the potential
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formultiple regression concepts as an analysis technique for 

separating various water constituents from the total water scene. 

Conducting a more refined analysis of the same James River data set 

(Johnson May 1976 and Johnson and Bahn August 1976), it was found 

that correlation coefficients and standard error values were not as 

good as the earlier analysis had indicated. For suspended sediment, 

a single band regression equation (using band 8) produced a standard 

error of 7.16 ppm (r = 0.79),but a multiple regression equation 

(using bands 8 and l) again improved the analysis reducing the



standard error to 5.86 ppm (r = 0.87). Use of the refined data



produced only a slight degradation in the chlorophyll-A results.



A standard error of 1.78 mg/m3 (r = 0.96) was obtained for this



parameter using a multiple regression equation. It was also found 

that multiple regression algorithms could be derived which gave high 

=
correlations for Secchi-depth (r = 0.92), inorganic NO3 (r 0.98),



inorganic NO2 (r = 0.99), acidity (r = 6.99), and salinity (r = 0.97). 

The high correlation of many of these parameters were not believed 

to be a direct result of the scattering'attenuation optical process 

but rather because of indirect chemical or physical relationships 

between the particular parameter and sediment or chlorophyll properties. 

Unfortunately the results are for only one data set, and there is no 

evidence of the reliability of the analysis technique for different 

days on the same water body. 

The multiple regression concept has now been accepted by other



investigators and applied to other water bodies. Rogers et al (1975)
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applied the concept to define algorithms for 12 water quality parameters



in Saginaw Bay, Michigan. LANDSAT data were then input to these



algorithms to map the surface concentrations of the 12 water quality



parameters. The particular parameters mapped were Secchi-depth,



temperature, conductivity, chloride, chlorophyll, sodium, potassium,



magnesium, calcium, total dissolved phosphorus, total phosphorus, and



total kjeldahl nitrogen. Correlation coefficients ranged from 0.99



for total phosphorus to 0.72 for chlorophyll-A. The data were from a



one-day experiment (June 3, 1974) with 31 ground truth stations,



however, ground truth were not synchronous with the satellite overpass.



(Samples were from 3 hours before overpass to 8 hours after.) These



results also suggest that the multiple regression concept has the



capability of monitoring water quality parameters which may not



directly influence water optical characteristics (attenuation



coefficient, scattering coefficient or volume scattering function).



More recent work has applied the concept to a second dataset (July



31, 1975) over Saginaw Bay (Rogers et al 1976). In the second



application, the concept was modified to incorporate the results of



Yarger et al (1973) in which band raties were believed to suppress



the effects of atmospheric and solar illumination variations.



Instead of performing the linear multiple regression analysis with



LANDSAT bands 4, 5, 6, and 7, the analysis also included the parameters



band h/band 5, band 4/band 6, band h/band 7, band 5/band 6, band 5/



band 7, and band 6/band 7. Thus ten independent variables were



correlated against the ground truth data. In some cases the optimum 
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multiple regression algorithm utilized only band radiances and in other 

cases the optimum utilized ratios of band radiances. Seven water



quality parameters were correlated which included Secchi-depth,



temperature, chloride, conductivity, total kjeldahl nitrogen, total



phosphorus, and chlorophyll-A. Correlation coefficients ranged from



0.94 for temperature to 0.71 for Secchi-depth. Also it was reported 

that the June 3, 1974 data set had been reanalyzed using the modified 

multiple regression procedure. Specific results were not given,



however, it was reported that the modified multiple regression pro


cedure gave improved results over the direct multiple regression 

analysis for most water quality parameters for that particular data set. 

In addition to the James River and Saginaw Bay tests, additional 

experiments have been conducted in the New York Bight and off the



Delaware coast to test linearized multiple regression procedures 

for quantification of water constituent concentrations. Two joint



NOAA-NASA experiments have been conducted in the New York Bight



(Johnson September 1976). The first experiment was conducted on



April 13, 1975 in which ground truth were collected at 24 stations 

within 2 hours of aircraft scanner overpass. Suspended sediment



and chlorophyll-A data were subjected to direct multiple regression



procedures. For suspended sediment, a single-band regression



equation proved optimum having a standard error of 1.39 mg/i



(r = 0.79) over a range of 0.56 to 8.38 mg/k.J A two-band multiple 

regression equation proved optimum for chlorophyll-A giving a



=
standard error of 3.87 mg/m3 (r 0.83) over a range of 2.2 to
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17.8 mg/m3 . These results are somewhat worse than those from the



James River experiment. The reason for the deterioration is not known,



however, a different multispectral scanner with poorer spacial 

resolution (but improved signal to noise ratio) was used. Also the 

fact that the New York Bight has less turbid waters than the James 

River allows deeper penetration depths for remote sensing purposes



(see Whitlock 1976). Deeper penetration depths may allow vertical



concentration gradients to confuse the results. The second New York



Bight experiment was conducted September 22, 1975 for purposes of



testing multiple regression procedures for quantification of sewage 

sludge surface concentrations. For suspended solids in the sludge 

dumping area, a standard error of 4.11 mg/P (r = 0.96) over a range 

of 1.1 to 32.2 mg/9.was obtained using a multiple regression equation 

with two bands. 

One problem with all of the above multiple regression analysis 

experiments was that they required a high number of field data samples 

nearly synchronous with the multispectral scanner overpass. On



August 28, 1975, an acid waste remote sensing experiment was conducted 

off the Delaware coast with only one ground truth boat (Ohlhorst 1976). 

In order to obtain data for performing multiple regression procedures, 


a number of aircraft overpasses were made as the boat moved to 


different concentrations of acid waste. Each overpass was precisely 


synchronous with ground truth sampling, but the process took nearly 


8 hours meaning that each ground truth - remote 'sensing data pair was 

for a different solar angle as well as different meteorological and 
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atmospheric conditions (the wind and waves increased during the last



half of the experiment). Iron precipate concentrations from seven



stations at a 0.6 m depth were correlated with the multispectral



scanner data. Both direct and modified multiple regression procedures



were used to correlate the data. Use of band radiances alone gave



results which indicated that the multiple regression equation offered



no improvement over a single-band linear regression equation of the
 


form of equation (3-1). A standard error of 0.172 mg/Z (r = 0.88) 

over a range from 0.05 to-1.1 mg/Z was obtained. In an attempt to



account for the effects of different illuminations, a normalizing



procedure similar to that suggested by Mueller (1974) was applied. 

For each ground truth location, the radiance levels in all bands 

were summarized and then the radiance in each individual band was



divided by this sum. The values for this ratio were then input to



the process, and a multiple regression equation was developed which



had a standard error of 0.096 mg/Z and a correlation coefficient of 

0.97. Multiple regression correlation with band ratios as suggested 

by Rogers et al (1976) had not been attempted. 

Considering all of the above investigations, it may be concluded



that quantification of surface concentrations of marine constituents
 


from remote sensing spectral data is presently a somewhat unreliable 

process. Various types of algorithms have been attempted which seem



to give good results in some cases and poor results in others. It 

must be noted, however, that present-day remote sensing data often



contains an appreciable amount of instrument noise. Few of the above 
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investigators discussed the problem, but Williamson et al (1973)



did indicate noise of from 7 to 16 percent of the water signal for



early LANDSAT data. Bahn (1976) has indicated that more recent



LANDSAT data has noise levels from 5 to 10 percent of the water signal. 

(It should be noted that signals from land objects are seldom badly 

influenced by this problem because the received radiance is usually a 

high percentage of the dynamic range of the instrument whereas signals 

from water bodies are low in magnitude.) Data from aircraft multi

spectral scanners is quite variable. Depending on -the particular 

scanner used, noise levels may range from 2 percent to values in 

excess of 30 percent of the water signal (Bahn 1976).. In many cases,



smoothing processes are applied to the remote sensing data to suppress



noise, but most published results generally do not discuss this 


aspect of the investigation. Also little is published concerning 


uncertainties in ground truth values used in the various correlation 

studies. Tidal and meteorological effects cause uncertainties when 

there is a time lapse between the remote sensor overpass and the 

taking of the water sample. Variations in sampling technique and 

the present state of art of laboratdry analysis introduce additional 

sources of error. It is clear that more highly controlled experiments 

and additional indepth investigations must be conducted to test 

those data analysis concepts which show promise. 



CHAPTER IV



THEORY



,Thebasic processes which occur during multiple regression



analysis of spectral radiance data can best be examined by analysis 

of the problem from a signal response point of view. The objective of



this analysis is to define those optical physics conditions for which



the linearized multiple regression equation (equation (3-2)) represents



an exact solution to the problem. A single-constituent water mixture



is first discussed with multi-constituent cases analyzed in subsequent



sections.



Single-Constituent Water Mixtures



It is assumed that the polluting constituent (pollutant A) has



an upwelled radiance spectra similar to that shown by Schiebe and 

.Ritchie (1975) for sediment. It is also assumed that at any wave

length, the reflected radiance varies in a linear manner with 

pollutant A concentration. Assuming linear superposition, the



upwelled radiance near the water surface, Rad, for filtered seawater 

plus pollutant A may be expressed as., 

Had'-= A + B PA (4-1)
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where:



A = upwelled radiance of filtered seawater.



B = constant giving change in upwelled radiance


due to PA 

PA = pollutant A concentration.



For a given water mixture of fixed pollutant A concentration, the



constants A and B both vary over the spectral range but are assumed 

constant at any particular wavelength. Thus for a single wavelength



band or channel in the spectra, Rad is a linear function of- PA" 

From these assumptions a hypothetical radiance spectra can be 

constructed as shown in figure 4. The upwelled radiance scale is in 

arbitrary units for simplicity of analysis in this study. Also 

pollutant A concentration values are in arbitrary units (different 

from radiance units) for ease of analysis. The spectral profile for 

pure water (filtered seawater) was taken from Grew (1973). Also 

shown in figure 4 are 5 spectral bands which will be used in this 

analysis. 

Equation (4-1) can be rewritten in terms of sediment concentration



for any one band.



P = + k(Rad) (4-2) 

where:



-A 

1B 
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In the general case where j and k vary with wavelength X, 

PA = J(X) + k(X) Rad(X) (4-3) 

Equations (4-2) and (4-3) indicate that in the single-constituent 

case, sediment concentration may be obtained from measurements in 

only one spectral band assuming the constants j and k are known. 

Dual-Constituent Water Mixtures 

If it is now assumed that the filtered seawater contains two



constituents, pollutant A and pollutant B, the upwelled radiance at



any wavelength X may be written as: 

adX AX +BXPA +ExPB (4-4) 

Equation (4-4) assumes that there are no chemical, electrical, or 

optical interactions between pollutant A and pollutant B, and that 

the upwelled radiance varies linearly with concentration of each 

constituent. If it is further assumed that the radiance linearity 

with concentration is consistent over the-avelength range of interest
 


and that the spectra of pollutant B (in filtered seawater) is different 

than that of pollutant A (see figure 5), then the upwelled radiance



at wavelength Y may be written as: 

ady _Ay + BtA + EB (4-5) 
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The requirement that the spectra of pollutant A be different than that



of pollutant B means that: 

3Bx 
 By 

(4-6)



Ex Ey 

If upwelled radiance values are known at wavelengths X and Y, 

equations (4-4) and (4-5) represent two equations with two unknowns



(PA and PB). Multiplying (4-4) by By and (4-5) by BX and 

substracting,



By(Bad x ) - Bx(Rady) = BYAX - BXA + (B1EX - BXEY)PB (4-7) 

Solving for PB



BA-B By BB BXEy - B AX BEy
B BA (Radx) + Bx x (Ra%) (4-8) 

Remembering that AX, Ay, BX, By, EX and Ey are constants, equation 

(4-8) can be written as: 

PB = J' + K(Rad.) + K{(ad1 ) (4-9) 
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where:



J1 : =BxEy -= BrEx constant 

-By



K = = constant 

= BX___y_ = constantBX -BE



Solving for PA:



PA = J + KX(Radx) + Ky(Rady) (4-10) 

where:



Ax ExBYAX __x 

J - 2 B-- + B constant 

X iy - BB(X 9 -BE



l_+ 2= constantB Ey - ByBxE
x 

Ky BxEy ByEX = constant 

Thus the exact solutions for PA and P.equations (4-9) and (4-1o))



are linear multi-parameter equations of the same form -as the 

statistician's multiple regression equation (siuation (3-2)) if each 

constituent has a linear radiance gradient with concentration and



there are no chemical, electrical, or optical interactions.
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Dual-Constituent Water Mixtures in the Presence 

of Nonlinear Surface and Atmospheric Effects



The total radiance value received by a remote sensing instrument 

includes both surface reflection and atmospheric diffusion effects in 

addition to the radiance upwelled through the surface of the water 

(see figure 1). Such surface and atmospheric effects may be either



linear or nonlinear with various parameters such as pointing angle,



wind speed, aerosol content, and moisture content. Thus one may be



faced with the problem of trying to extract pollutant concentrations



for pollutants with linear radiance gradients from total radiance



measurements which contain nonlinear components as a result of 

variations in unknown surface and atmospheric parameters. For purposes 

of this analysis, it is assumed that these nonlinear radiance 

components are independent of the radiance upwelled from the water.



Atmospheric and surface effects may then be superimposed upon the



upwelled radiance from the water to obtain a total signal. At any



wavelength, the total radiance received by the remote sensing instru


ment may be expressed as:,



Rad = A + BP + EP + H M +I + L (-1) 

where:



A = upwelled radiance of filtered seawater



BPA = upwelled radiance of pollutant A 

EPB = upwelled radiance of pollutant B





31 

H M 
='radiance component from surface reflection


(assumed as a function of some variable such as



which is related to the instrument pointing


angle and the solar elevation angle).



I = radiance component from clear atmosphere. 

LO = radiance component from atmospheric pollutant X
A A(assumed as function of XA to the Nth power).



Equation (h-li) assumes that atmospheric and surface reflection



variations are small over the scene of interest and that their effects



may be approximated by power law functions over small variations. 
 If



it is further assumed that all nonlinearities are consistent (M and N



values are constant) over the wavelength range of the remote sensing



measurements, then the total radiance for wavelengths 
 W, X, Y, and Z



may be written:



RadW = AW + B A + EWP B + Y M + IW + L17A (4-12) 

Eadx =A+BXPA + EXPB +JX'M +I+I + (4-13) 

= Ay + BZPA Z (4-14)+ EzPB + HZ M Iy+ L4 

Rad Az +BP +E 14 + Z (1L15) 

Equations (4-12) through (4-15) are four equations with four unknowns 

(PA' PB' 2A. Solving these equations simultaneously (see Appendix 

C), it can be shown that: 
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PA J + K(Ra) + K(RaX) + KY(Rad 7 ) + Kz(RadZ) (4-16) 

where:



I = Xy ZI I py, Zly)QA 

+ (X%cZLX)(AX + I X ) 

+ ( XuXLz + k%,yLz +' wazNl(Ay + Iy) 

- (SXxLY + OW%, y)(A z + IZz] 

= constant 

=f(AB,E,H,IL)



KW = 1 [SXcy,zLX + ayzLy] = constant 

= -f(BEHL) 

KX = f(BXayZNW] = constant 

= £(B,E,H,L) 
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= -om W'xCLY owau,9z- SY'ZLI] constantKy owa 

= (B,E,H,L) 

Kz = O, j "W,+ Y = constant 

=f(3B,H,L) 

Ae ' B - oxaY'ZWBX - %XaWXLZBy 

+ XtWA~yz - "WN 9YLBY + ",,LB 

+ "jyZYW- OWyZLB 

Rw= (aY'ZLxEw - aY'Z LwKx - aUWXLzEy + aw'T EZ)



Ax = (a JyLzEy - aWqyLyE -a ay L + acYZ LwEY)



'wx (LAH - WX 

'Yz= (LZHY - LyHiZ_) 

-'Wy= (LH W) 


and, 
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PB = + K4(Radw) + Kx(Radx) + K(Rad,) + K(RadZ)4-17) 

where:



JI = constant = f(A,B,E,H,IL)



1 = constant = f(B,E,H-,L), 

K = constant = f(B,E,H,L) 

= constant = f(B,EH,L) 

K' = constant = f(B,E,H,L) 

Equations (4-16) and (4-17) are significant in that they show that the



exact solutions for PA and PB are again linear multi-parameter
 


equations of the same form as the statistician's multiple regression



equation even if nonlinear atmospheric and surface reflection



variations are present. A major assumption of this analysis is that



the atmospheric and surface nonlinearities are consistent over the



wavelength range of the measurements and can be approximated by power


law variations. Again each water constituent is assumed to have a



linear radiance gradient with concentration and there are no chemical,



electrical, or optical interactions between constituents. Another



important point to note is that if the J,K constants of equations
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(4-16) and (4-17) can be obtained, the concentrations PA and PB 

can be computed without knowledge of the atmospheric and surface 

reflection variables, and XA If the nonlinear radiance components. 

do not follow power law variations, but instead follow other relations 

independent of P and P (such as power series expansions),
A B 

procedures similar to Appendix C can be followed and the exact



.solutions for PA and PB will still be in the form of linear 

multi-parameter equations. 

Multi-Constituent Water Mixtures with Nonlinear 

Constituents and Atmospheric Effects 

In this case, one is dealing with a situation that is analytically



similar to the previous case with.nonlinear surface reflection and



atmospheric effects. In both cases, the total radiance received by



the remote sensor is composed of components with linear variations



and components with nonlinear variations. If the water constituent



with a nonlinear radiance variation with concentration is independent



of other constituents (no chemical, electrical, or optical inter


actions) and the nonlinearity may be approximated as a power law



variation, the total radiance may be expressed as:



Rad = A + BP + EP + SPQ + I +LXN (-18)A B C A 11) 



where: 

A = ,upwelledradiance of filtered seawater 

BPA = upwelled radiance of pollutant A

EPB = upwelled radiance of pollutant B



EPQ = uwle aineo oltn 
,= upwelled radiance of pollutant C (assumed as a function 

of concentration., PC, to the Qth power) 

I = radiance component from clear atmosphere 

LA = radiance component from atmospheric pollutant XA 


If it is assumed that the nonlinearity of PC radiance (as well as 

that of XA) is consistent over the wavelength range of interest, 

then equation (4-18) can be written for the wavelengths W, X, Y, and Z. 

The resulting equations are identical to equations (4-12) through 

(4-15) except SPQ terms are substituted for the H terms. If theC 
procedures of Appendix C are followed, it can again be shown that: 

= JPA + KW(Radw) + KX(Rat) + 1y(Rady) + Kz(Radz) (4-19) 

=PB it + K4(Radw) + I (Raa ) + K'jRady) + K.(Radz) (4-20) 

The J,J' terms are a function of A, B, E, S, I, and L and the K,K' 

terms are a function of B,, E, S, and L. Again it must be noted that 

it is not necessary that the nonlinearity of PC obey a power law



relation as used in this example. Equations of the same form as



(4-19) and (4-20) would result so long as the nonlinearity is consistent



with wavelength and independent of PA and PB" A knowledge of PC or 
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XA is'not required to compute PA and P. from equations (4-19)



and (4-20) if the J,K constants can be obtained by some means.



Multi-Constituent Water Mixtures



with Optical Interactions
 


The above analyses have assumed mutual independence with no 

optical interactions between water constituents. While many types of 

optical interactions may occur, there is at least one type for which 

the solution to the signal response equations is still in the form 

of a linearized multiple regression equation. That is the case when 

a constituent with a linear radiance gradient has its radiance 

component modified by the presence of another component because of 

chemical or physical processes.* Assume, for example, the component 

of total radiance contributed by PB is EPB (see equation (0-4)). 

Assume also that there is a constituent PC which when added to 

the water modifies the radiance contributed by PB such that the 

new PB component is EPB + G(PR)(PT), where R and T represent 

power-law approximations of the nonlinear modifications which may 

occur. The total radiance from the water mixture with this type 

of interaction would have the following form (ignoring atmospheric 

and surface nonlinear components): 

Rad = A + BP + EP + G(PB)(PT) (4-21)
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If it is assumed that the nonlinear modification terms, B and T,



are constant over wavelength, then the total radiance for various



wavelengths may be expressed:



Rad% = AW + IPA + EwB + Gw(PB)(Pc) (4-22) 

Radx = AX + BXPA + EXPB + G(PB)(PT ) (4-23) 

Ra% = A + ByPA + EyPB + GY(P (P0 ) (4-24) 

Multiplying (4-22) by GX and (4-23) by GW and subtracting:



,Gx(Rad) - GW(Rad) = (GXA W - k X ) + (GW - GWX)PA 

+ (.a/XE'- GEx)P (4-25)
B 
 

Multiplying (4-22) by Gy and (.4-24) by GW and subtracting: 

Gy(RadW) - Gw(Rady) ( 7 (GAw - GWBY)PA= GAY) + 

+ (GYEW - WEY)PB (4-26) 

Multiplying (4-25) by' (OGyW - GWBy) and (4-26) by (OxB W - GwBx) 

and subtracting: 
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(GxGyBW - GxGiBy)RadW - (GTGyBW - G{By) Rad% 

- (GYGXBW - GyGWBx)RadW + (GWGXBq - Gx)Rada y 

=(GA - GtXr) (GBW - GVTY) 

-(GYw- )(GBw - GWBX) 

+[(GXw- GWEX)(GYBw - GWBy) 

- (GAI - GWEy)(GxBw - GBX)]PB (4-27) 

Solving for PB' the solution is also of the form:



PB1+ K fladQ) + Iq(RadX9 + IKi(Rad7 ) (4-28) 

Thus it can be seen that some types of optical interaction may occur



and the exact solution to the signal response equations is still of



the form of a linearized multiple regression equation. It is



expected that many types of optical interactions may occur in nature,



and it is beyond the scope of this investigation to study the effects



of all possible situations., Rather it is the purpose of this section



to simply note that mutual independence between water constituents



is a desirable but not a strict requirement for application of multiple



regression concepts.
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The above analyses have defined some optical physics conditions



for which the exact solution to the signal response equations is in the



same form as a linearized multiple regression equation. To summarize,



these conditions are:



1. 	 The constituents of interest must have a linear or near-linear



upwelled radiance gradient with concentration.



2. 	 The degree of nonlinearity in each radiance component must



remain constant at the wavelengths which are used in the



multiple regression equation.



3. 	 Mutual independence between constituents (no electrical,



chemical, or optical interactions) is desirable but not



always required.



An additional assumption of the analysis is that the mixture



concentration is constant to the depth of penetration of the remote



sensing signal (see Whitlock, 1976). (The impact of this assumption



will be discussed in a later section.) For those situations in



which the above assumptions approximate real-world conditions, the



linearized multiple regression equation is the appropriate form for



computation of constituent concentration from multispectral remote



sensing data in spite of the presence of nonlinear effects from other



water constituents, surface effects, and atmospheric effects.





C1APTER V



LEAST-SQUARES AND STATISTICAL CONCEPTS



Estimation of Coefficients



It is generally considered that independent variables in a



mathematical equation cause a change in the dependent variables of the



equation. From an optical physics point of view, a change in pollutant



concentration is believed to cause a change in upwelled radiance such



as that given in equation (5-1).



nad A + BPA (571)



From a physical viewpoint, P is the independent variable and Rad

'A,



is the dependent variable expressing the actual cause-and-effect
 


relationship.



From a data analysis viewpoint, the problem must be viewed in an



opposite manner. The regression task is to estimate the j,I



coefficients in which Rad is assumed as the independent variable



and PA is the dependent variable such as given in equation (5-2).



PA = j + I(Rad) (5-2) 

For a multiple regression analysis, the task is to estimate the J,K



coefficients in the following multi-parameter equation.
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PA = J + Xv(Radx) + KBad)+ .. (5-3) 

In this case, RadX, Rady, etc. 
are treated as independent variables.



In manyreal life observations, the- so-called "independent variables" 

are positively correlated with each other as well as with the dependent



variable which make the answers more difficult to interprete (Snedecor



and Cochran 1967, p. 398). 
 For the remote sensing situation, high 

correlations between the independent variables should be expected if 

the pollutant of interest has a broad spectral signature such as those 

shown in figures 4 and 5. 

Because of experimental error and a limited number of sample 

pairs, a precise estimate of the J,K coefficients is usually not 

possible. In this case, the multiple regression equation is 

represented as: 

PA J + K(Rad) + K(Rad) + .... + e (5-4) 

where e = deviation from the true value of PA 

If there are n concentration-radiance sample pairs, the sum of the



squares (SS) of.the deviations from the true values is:



n n 
SS= Z e.2 Z [PA- J KX(Ra) K(Rad) --- (5-5)i=l "i=l i 1 i





The least-squares procedure chooses the J,K constants such that SS is



a minimum. Taking the derivative of SS with respect to J and K and



setting it equal to zero, it can be shown in matrix form (see Draper



and Smith 1966, p. 9-59):



b (Rad'Rad)-iRad'P (5-6)

A



where:



J 

KX 

b



AA1 

Al 

A


P A 2 
PAn



1 Rad& l .Bady1 . 

1 RadX Rady~ . .. 

2 .2 

Rad . 

1 Ra% Ra% . 

n nx
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Thus given radiance values from several wavelengths (say RadX and 

Rad-) taken over n points where PA values were measured PA 

values for the J,K constants can be estimated using matrix transpose,



multiplication, and inversion procedures. In performing the least
 


squares process, three major assumptions concerning the remote



sensing and ground truth data are involved (Daniel and Wood 1971,



P. 	 7). They are:



1. 	 The correct form of equation has been chosen. (Rad is linear



with concentration for all wavelengths involved.)



2. 	 The data are typical and are a representative sample from the



whole range of environmental combinations.



3. 	 The observations of ground truth concentration values 

(dependent variables) are uncorrelated and statistically 

independent.



Three minor assumptions are:



1. 	 All observations of concentration have the same (but unknown)



variance. 

2. The distribution of uncontrolled error is a normal one.



3. All independent variables (ad values) are knon without 

error.



An 	 unwritten assumption is that all the data are "good" without 

physical or instrumentation deficiencies. In the remote sensing case,



this 	 generally means that only those data synchronous with the remote 

sensor overpass should be utilized in the least-squares process.





Time lags between the overpass and ground truth collection cause the



data to be hydraulically inappropriate because of wind and tidal



effects. It may be possible to correct the ground truth data to



account for small time lags (see Kuo and Blair 1976), but such



procedures have not yet been demonstrated valid in field experiments.



An additional problem is that measurements of the independent 

variable (Rad) do contain error. Daniel and Wood (1971, p. 32) note



that when the independent variables have considerable error variance,



the estimate of the K coefficients is biased toward zero. As a rule



of thumb, Daniel (1976) recommends that the least squares analysis
 


be used if the error variance of the independent variables, (Glad)2



is less than 0.1 of the mean square scatter about the mean value of



Rad of the experiment. For any wavelength, X, this is expressed:



i=l[(ax)i a 2) 

(UaI 2 <0.1 -n (5-7) 

where: 

n 
E RadX



i=I


S n



Given an experiment with n observations, straightforward computation



yields the mean square scatter about the mean of Rad. It is often



difficult to estimate the error variance of the Rad measurements,



however. Instrument calibration data may be required. Another 
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possibility is to examine the noise in the data. If the data noise is 

assumed random with a normal distribution about the true value, then 

the maximum deviation from the true value is 3.9()Rad). The full 

range of noise on both sides of the true value is 7.8(rRad) The 
e 

error variance is (CRad)2. An estimate of the error variance is then:



2 (full range of noise)2 (5-8)


B6ad.8 60.8 

Equation (5-8) assumes no bias in the measurement of Rad. If



equation (5-7) is satisfied for all wavelengths to be considered in 

the regression analysis, the independent variables, Bad, are assumed 

to contain minimal error and least-squares estimates of the J,K 

coofficipento arc appropriate,._,



Measures of Precision



Unfortunately experimental radiance and concentration data contain 

errors which in turn cause uncertainties in the estimated values for 

the J,K coefficients., iWbile, errors in the individualcoefficients 

are oft,,some concern,, tbc precision ,of,, the total,,regression,equation,. 

values infofhexpprtjons; t a, remotsensing, 5cfe using,,the least,... 

squares-fitted ecuation is required by the environmental engineer.



Various measures of precision will be discussed in the following
 




Correlation Coefficient



If least-squares estimates are used for the J.,K coefficients, then



the predicted value for PA at any point i is PA." The measured



value at point; i used in the least-squares process is PA. The


1 

mean value of all PA. is P From Draper and Smith (1966, p. 14), 

the following three statistical parameters are related as:



n . _ 2 n ^ _ 2 n-
Z (A A E (A. PA. 2+ (PA. - PA (5-9)

i=l . i=1 1 1 i=l ' 

where:



n 
 2


S(p. -P = SS about mean


i=l A



n



(PA. - pA.)2 = SS about regression 

n


PA )2  
 Z (PA. - SS due to regressioni=l 

The SS about regression are those deviations between the predicted
 

values, PA' and the measured values, PA. If the coefficients are



correct and the total equation is a good fit to the data, then SS



about regrdssion should approach zero. The ratio r2 is defined as:



n 
2 

r2 = SS due to regression = i=l A A


SS about mean n 2 (5-10)



Z (P -P)
i=l A
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2


If r approaches 1.0, then SS about regression must approach zero



2
from equation (5-9). Thus r is one statistical measure of the



adequacy of the, least-squares-fitting process. Draper and Smith



2
(1966, p. 26) state that r measures the proportion of total



variation about the mean value of PA' PA' that is explained by the



regression equation. It is often expressed as a percentage after



multiplication by 100. The square root of r 2 , r, is defined as



the correlation coefficient (multiple correlation coefficient for a



multiple regression equation) and is a statistical parameter which is



often used as a measure of adequacy. A correlation coefficient of 0.9



means that 81 percent of the total variation about the mean value is



explained by the regression equation. Similarly, an r value equal



1.0 indicates a precise fit of the predictive equation to the measured



data. One must be careful not to rely too heavily on r as a measure



of equation precision, however. When the number of estimated



coefficients in the regression equation equals the number of



experimental observations, an exact solution for the coefficients is



obtained. In this case, r will equal 1.0. If, however, there are



errors in the experimental data, the coefficients will be in error.



Thus r is not a good measure of precision as the number of estimated



J,K coefficients approach the number of experimental observations.



For the remote sensing situations 'this means that the number of



ground truth observations should exceed the number of radiance



wavelengths (or bands) in the regression equation by two or more.
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Standard Error



To arrive at other measures of precision, additional statistical



terminology must be introduced. The number of independent pieces of



information that are required to obtain the SS is defined as the



degrees of freedom. If p equals the number of estimated J,K



parameters and n equals the number of independent observations, then



the degrees of freedom are as follows:



Source Degrees of Freedom



SS due to regression p - 1



SS about regression n - p



Mean square values are obtained by dividing SS values by the



appropriate degrees of freedom. The mean square about regression is



2
known as the variance, a , and may be expressed as:



-n
En ("A. - PA. )2 

= i=l I A. 
n - p(5-11) 

The variance is a measure of the deviation between the predicted 

values from the least-squares equation and the measured values. The



square root of the variance is known as the standard deviation or 

the standard error, a. The standard error is a second measure of the 

precision of the least-squares estimation process for estimating 

the J,K coefficients. From equation (5-11), it is clear that the



smaller the value, the more precise the fitted equation. If an error 
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is a sum of errors from several sources, then no matter what the 

probability distribution of separate errors may be, their sum will 

have a distribution that will tend more and more to the normal 

distribution as the number of error components increase by the Central 

Limit Theorem (Draper and Smith 1966, p. 17). Thus the standard error, 

C, is usually assumed to represent a value -withinwhich 68 percent of 

all errors are expected to fall if (1) there are an infinite number 

of observations and (2) there is minimal error in the independent 

variables. Unfortunately there are usually only a small number of 

.ground truth observations that are synchronous with the remote sensor 

overpass for most water quality remote sensing experiments.



F-Test



The F-test is a third method of evaluating the adequacy of the 

least-squares-estimation process. Fortunately, the technique is also



believed to give an indication as to the capability of the regression



equation as a predictive tool. The F-ratio is defined as:



F = (mean square due to regression) (5-12)
(mean square about regression)



For a multiple regression equation with p estimated coefficients and



n experimental observations: 
n 

( n 
i E (P i 

2PA )2 

F = (nL-.p) i=l 
(p -) n 

E 

1(-3 

U'A. -

(5-13) 

i=l A 1 
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An alternative expression for F is (from Snedecor and Cochran 1967,



p. 402):



F (n-p) r2 
F= (n -r2 (5-14)(p -1)1 r

There is also a critical F value available from tables which is



based on the degree of freedom parameters as well as the confidence,



limit. A confidence limit of 0.95 means that the risk of being



incorrect is no more than 5 percent. The F-test is one in which the



calculated F value from equations (5-13) or (5-14) must be greater 

than the critical value for the regression process to be judged 

significant within the confidence limit. For example, if the 

multiple regression equation P A = J + KX(RaX) + K,(Ra%) has been 

obtained from 12 sets of independent observations, the critical F 

value for a 95 percent confidence level (F(p - 1, n - p, 0.95)) 

would be 4.26 from a F-distribution table (Draper and Smith 1966, 

p. 306). If the computed F value were greater than 4.26, the regres


sion equation would be judged significant within a 95 percent 

confidence level. Draper and Smith (1966, p. 64) state that the 

obtaining of a statistically significant regression does not necessarily 

mean that the resulting equation will be useful for predictive



purposes. They note that J.M. Wetz suggests the calculated F value 

should be at least four times the critical F value if the regression



equation is to be regarded as a satisfactory predictor. Thus the



F-test for predictive capability is:
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F > 4.o (5-15) 

cr



Total Squared Error



Daniel and Wood (1971, p. 86) recommend the total squared error 

as a criterion for goodness of fit. This statistic, called Cp, 

measures the sum of the squared biases plus the sum Of the squared



random errors for the dependent variables at all n data points.



Given a multiple regression equation with p estimated J,K



coefficients:



HaS



RSS



Cp --2 - (n-2p) (5-16)



where:



RSS = sum of squares of residuals 
P p-term equation 

= unbiased estimate of a 

For purposes of this analysis, the procedures of Daniel and Wood 

(1971, p. 87) are followed. It is assumed that the mean square of the 

residual of the multiple regression equation containing radiances



)from all possible wavelengths (p = pmax is an unbiased estimate of 

a2 . Equation (5-16) may then be expressed: 
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n( P )2



=
C =[ i - - - (n - 2p) (5-17) 

A. ~mx'max 

An equation with a minimum value of C would have a minimum total 
p 

variance (and average error) when used for predictive purposes. If 

the p-term multiple regression equation has negligible bias, then 

the expected value of RSS is f(n - p)s 2]. From equation (5-16),P 

C = p when there is zero bias in the fitted equation. When there
P 

is substantial bias, C is much larger than p (Daniel and Wood
P 

1971, p. 87). A multiple regression equation which has a low value 

of Cp and the ratio Cp/p < 1.0 is considered by Daniel to be a 

good fit with negligible bias and useful for prediction purposes. 

Selection of Wavelength Combinations



It is usually not known precisely what atmospheric and water 

parameters are present when a remote sensing experiment is performed. 

It is impossible to measure all parameters which might influence the 

total upwelled radiance received by the remote sensor. The usual



case is one in which ground truth measurements are made for only those



parameters of interest. Since all the factors present which make



up the total signal are unknown, it is not possible to predict how 

many wavelengths will be required to separate the desired parameter 

from the total mix of factors influencing the signal. Previous
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authors who have utilized direct multiple regression analysis 

(Johnson 1975 and Rogers et al 1975) have performed least-squares 

fits to various combinations of wavelengths (or bands), using the 

stepwise regression process to select a "best" equation for the



parameter of interest. The stepwise regression process (see Draper



and Smith 1966, p. 171) introduces independent variables one at a time 

to the regression equation to reduce the residual sum of squares. An 

F-test is used to judge the need for adding additional terms. 

Daniel and Wood (1971, p. 85) note that stepwise regression can lead 

to confusing results whenever the independent variables are highly 

correlated (as they are in this case). There are often better equations 

with different sets of independent variables that are overlooked by 

the stepwise procedure. Daniel and Wood (1971, p. 86) recommend



that the Cp statistic be used to select the equation with the 

optimum combination of wavelengths or bands. For purposes of this



investigation, regression equations will be computed for all



combinations of wavelengths or bands for which uprelled radiance



values are available. Correlation coefficients, standard errors,



F-tests, C values, and Cp/p ratios will be computed for each



combination. The selection of a "best" equation will be based on



minimum C values if the C /p ratio indicates an unbiased fit



and if values for correlation coefficient, standard error, and F-ratio



are reasonable.





CHAPTER VI.



MALYTICAL VALIDATION



It is desirable to validate application of the linearized



multiple regression analysis in the presence of known nonlinearities.



In the usual experimental situation, it is often difficult to know



exactly what nonlinearities are present. For this reason, several



hypothetical sets of data with known nonlinearities were constructed.



Linearized multiple regression analyses were then applied to these



data for both homogeneous and non-hQmogeneous test cases. The



following sections describe the hypothetical data and results from



the analyses.



Hypothetical Data 

For purposes of this analysis, the situation described by



equation (4-11) was assumed. The spectral characteristics assumed



for pollutants A and B are shown in figures 4 and 5, respectively. 

As noted previously, the spectra assumed for pollutant A is typical of 

a sediment. The spectra for pollutant B is typical of an algae species 

(see Grew 1973). The upwelled radiation component assumed for surface



reflection is shown in figure 6. For this component it was assumed 

that the upwelled radiance varies as the cube of 4 where 4 is 

related to the solar elevation angle and the instrument pointing 

angle. High values of 4 indicate the instrument is looking near the 
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sun glitter and low values are looking away from the glitter area.



The spectral peaks shown might be caused by a surface film on the water.



The component of upvelled radiance assumed from atm6spheric effects 

(diffuse skylight) is shown in figure 7. It was further assumed that 

XA represents the concentration of some type of fluorescent pollutant 

which absorbs atmospheric scattering in the blue region and enhances



it in the infrared. The modification to clear atmosphere scattering



was assumed to vary as the square of XA concentration.



It was next assumed that the concentrations of pollutant A,



pollutant B, and aerosol XA varied over a remote sensing scene of



interest. The instrument pointing angle, hence , was also



assumed to vary. For the homogeneous case, values for these parameters



at eight locations within the scene were assumed as follows:



Location PA PB XA



1 20 20 20 20


2 10 20 30 4o


3 30 4o 20 10


4 20 30 10 4o


5 4o 10 30 20


6 10 4o 10 30


7 20 10 ho 3o


8 4o 30 4o 10



For each of these eight locations, a hypothetical total upwelled 

radiance spectra was constructed using equation (4-11),and the 

components from figures 4 through 7. Figure 8 shows a typical total 

upwelled radiance spectra constructed during this process. Table 1 

shows total upwelled radiance values computed for each of the eight
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locations. Also shon are concentration values for PA and PB



which were assumed to have been measured. (Values for and 
XA 

were assumed not to be known.)



Analysis Results for Homogeneous Case



The data in table 1 were used in the linearized multiple



regression analysis. Least-squares estimates of the J,K coefficients



for all possible combinations of bands were computed. Since there



were 5 radiance bands, there are 
 25 - 1 or 31 possible combinations



for each parameter of interest. The J,K coefficient estimates for PA



for each regression equation are shown it table 2. The various



statistical estimates of precision for each combination of bands is



shown in table 3. From table 3, it is evident that there are a number 

of band combinations which provide high correlation coefficient,



small standard error, and an F-test greater than 4.0 (at the 95 percent 

confidence level). 
 In this case, there are several combinations which



show negligible bias (Cp/p 
 near 1.0 or lower). The optimum combination



of bands according to Daniel and Wood (1971) is the one with the 

lowest value of C (bands 1, 3, 4, 5). The correlation coefficient, 

the standard error, and the F-test ratio are all satisfactory for this 

combination. Referring back to table 2, the optimum linear multiple



regression equation for extracting PA from the upwelled radiance



data of this scene is:



PA = -26.2 - 0.90(Rad1 ) + 3.73(Rad3 ) - 0.17 (Rad) - 1.89(Rad5) (6-1) 
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It took four wavelengths to extract PA from a scene which contained



four variables as expected based on theoretical considerations.



Estimates of the JK coefficients for PB are given in table 4. 

The statistical estimates of precision for PB are given in table 5. 

In this case there are two combinations of four bands which are 

unbiased. Both have approximately the sane value of C so theP 

combination with the highest F-test is considered optimum (bands



2, 3, 4, 5). Referring to table 4,the equation for extracting PB



from the scene is:



PB = -3.5 + 1.18(Rad2 ) - 4.34(Rad3 ) + 4.28(Rad) -_l.04(Rad 5 ) (6-2)



Both equations (6-1) and (6-2)-should be accurate predictors. 

The standard error for PA is 0.5 units over!a total Tange of values 

of 30 units. This means that all predicted values of PA using 

equation (6-1) should fall within +1.95 units--(3.9) of th& true 

value. The standard error for PB is 1.1 units indicating that all 

predicted values of PB from equation (6-2) should be within +4.29 

units of the true value. To test these hypotheses,radiance values



for ten additional locations have been generated. Values assumed for



the variables which influence upwelled radiance at each location are



given below:
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Location PA B XA 

9 15 38 12 23


10 22 23 18 16


11 37 14 29 27


12 23 11 33 13


13 38 16 39 34


14 12 29 28 37


15 32 34 23 27


16 29 17 17 12


17 14 23 14 17


18 35 32 11 39



Values for the radiances at each location were computed again using 

equation (4-11) and the components,from figures 4 through 7. Table 6 

gives the radiance values for each location. The values from tables 6 

and 1 were input to equations (5-1) and (5-2) for computation of PA 

and PB at each location. Predicted PA and PB values are 

compared with the assumed true values in figures 9 and 10. Since all



predicted values are within +3.90 ,oftrue values, it is concluded



that the linear multiple regression analysis is a valid approach for



extracting linear water quality parameters in-the presence of nonlinear



effects in homogeneous waters provided radiance components are



mutually independent and linearity is constant with wavelength.



Analysis Results for Non-Homdgeneous Case



A water body may-be considered non-homogeneous if a portion of it



contains constituents which are not contained in other parts. An



industrial effluent in a non-tidal, flowing river represents a typical
 

non-homogeneous situation. The river may be flowing with various


concentrations of PA upstream of the industrial plant and outside 



6o



the effluent plume. Within the plume, the waters would contain 

various concentrations of both PA and the effluent P To simulate 

such a situation, a set of hypothetical data has been formulated for 

the case when PB is zero. Values assumed for other parameters are 

as follows: 

Location PA PB XA 

19 15 0 12 23


20 22 0 A8 16


21 37 0 29 27


22 23 0 33 13


23 38 0 39 34


24 12 0 28 37


25 32 0 23 27


26 29 0 17 12


27 14 0 14 17


28 35 0 11 39



Values for upwelled radiances were again computed using equation (4-11) 

and the components from figures 4 through 7. Table 7 shows the 

radiance values computed which were assumed to exist for river locations 

upstream of the industrial plant and outside the effluent plume. 

Next it was assumed that a remote sensing experiment had taken place 

in which five ground truth. data points were taken outside the plume 

(locations 19 through 23 from table 7) and eight points were taken



inside the plume (locations 1 through 8 from table 1). The linearized



multiple regression analysis was then applied to these 13 data points. 

Estimates of the J,K coeffidients and statistical measures of 

precision are given in tables 8 and 9, respectively, for the river
 


constituent, PA. The combination of bands 2, 3, 4, and 5 gives the
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lowest value of Cp and is an unbiased estimate. The equation for 

extracting PA from the non-homogeneous scene is:



P = -22.63 - 1.56 (Bad2 ) + 4.29(Rad3 ) - 0.28(Rad4 ),- 1.76(Ead5) (6-3.) 

Tables 10 and 11 give estimates of coefficients and statistical 

measures of precision for the industrial effluent, PB. Band 

combination 1, 3, 4, and 5 gives the lowest value of C with an 
p 

unbiased estimate. The equation for PB is: 

P = -3.93 + 0.55(Rad.) - 3.85(Rad) + 4.23(Rad4 ) - 0.82(Rad5) (6-4) 

To validate the adequacy of equations (6-3) and (6-4), it was assumed 

that locations 24 through 28 from table 7 represented independent



points from the river outside the plume and that locations 9 through



18 (table 6) represented independent points from within the plume.



Equations (6-3) and (6-4) were then applied to the 15 independent



points 
 as well as to the 13 points used in the fitting process. 

Figures 11 and 12 compare predicted and assumed values for PA and 

PB; respectively. In many cases, the independent points fell on top



of the solid symbols and are hidden from view. 
 Since all predicted 

values are within +3.90 of assumed true values, it is concluded that 

the linear multiple regression analysis is valid for non-homogeneous 

water situations as well as homogeneous cases. The data used in the



fitting process must contain several points from each different water
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mass, however, to insure that a correct correlation is performed for



the total scene.





CHAPTER VII



LABORATORY VALIATION



The analytical test cases provided validation of the linearized



multiple regression analysis when the data contain nonlinear back


ground effects. The hypothetical data set assumed that radiances from 

various sources could be superimposed upon each other (mutual



independence) and the data contained minimal experimental error. In 

practice, the radiance contributions from various sources are not



always totally independent, and remote sensing experiments always 

contain significant errors in the measured ground truth and radiance 

values. As a result of these problems, it is desirable to validate 

application of the linearized multiple regression technique with actual 

remote sensing data under controlled conditions. To achieve this 

result, a laboratory facility was constructed such that upwelled



radiance measurements could be made over various controlled water 

mixes in the presence of light from a solar simulator. Experimental 

error in the measurements was analyzed, and the linearized multiple 

regression analysis was applied to the data. The following sections 

describe the laboratory facility, the test program, and results of 

the analysis.
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Description of Laboratory Facility



A sketch of the laboratory set-up is shown in figure 13. The 

enclosure shown had not been completed at the time of these tests. 

To 	 restrict the amount of diffuse light being input to the water, all 

tests were conducted at night with the solar simulator as the only 

light source. Figures 14 and 15 show photographs of the tank assembly



and 	 solar simulator. The laboratory was designed and constructed to 

satisfy the following objectives:



1. 	 Measurement of upwelled radiance spectra under controlled



conditions to determine at which wavelengths signals are



emitted by various marine pollutants. 

2. 	 Measurements at various concentration levels to determine the



degree of linearity of upwelled radiance with pollutant



concentration.



It was recognized from the start that the laboratory would not provide



a precise simulation of re.al-world spectra because (1) the solar



simulator uses a xenon light source with a slightly different spectra



than 	 that of the sun and (2) diffuse skylight is not simulated. It 

was believed, however, that the design objectives could be met if the



radiance values were normalized against the input solar simulator



spectrum. 


An initial study was conducted (Whitlock 1976) to estimate the 

range of concentration values for which tank tests are applicable. 

Figure 16 shows the results of that study. Z is the penetration 

depth from which 90 percent of the upwelled radiance is emitted.
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Figure 16 indicates that bediment concentrations should be greater



than 4 ppm if bottom reflection effects are to be minimized for a tank



which is 3 meters deep.



The illumination geometry on the water surface is shown in 

figure 17. There was some concern as to whether or not the 35 cm



diameter of the solar spot is adequate to enable the full underwater 

multiple scattering process to occur. In a separate study,



Ghovanlou (1976) conducted a study using a Monte Carlo optical model.



Results of that study are shown in figure 18. Upwelled radiance is 

shown as a function of solar spot size for three sediment concentrations. 

For concentrations of 4 and 6 ppm, the curves are flat for solar 

diameters 35 cm or larger indicating that the true underwater multiple 

scattering process is allowed to occur. Results show that the 35 cm 

solar spot size is not quite large enough for the 2 ppm concentration. 


Optical modeling results indicate that the 35 cm spot size (dictated 

by mirror diameter) is compatable with tank depth in that both limit 

applicability of the laboratory to test concentrations 4 ppm or 

greater.



Another design problem was that of maintaining a uniform, 

homogeneous mixture without significant vertical or horizontal 

concentration gradients in the tank. The problem is that the larger


size particles of a sediment mixture tend to settle quite rapidly 

unless an adequate degree of turbulence is maintained. Figure 19 is a



schematic diagram showing the circulation system finally selected 
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for the tank. Tests were conducted using tracer techniques which



indicate that particle sizes up to 140p (with specific gravity = 2.6) 

are maintained in suspension. Transmission measurements with two 

concentrations of feldspar soil (particle size less than 60P) indicate



that the maximum deviation at any location in the tank was less than 

0.5 ppm. Tests with larger size particles have not yet been conducted



so the maximum capacity of the laboratory in terms of particle size 

is not presently known.



In order to be able to compare data taken from different days, 

a consistent water mixture is required as a base to which pollutants 

are added to achieve various concentrations. The~tank holds 3,063



gallons so, distilled water is prohibitively expensive. Also tap water 

at the Langley Research Center is quite variable, depending upon the 

amount and frequency of rain and the building from which the water is 

being drawn. To overcome these problems, a filtering-deionization 

system has been inserted into the plumbing such that consistent base 

water can be achieved. Figure 20 shows the performance of that 

system. For suspended solids, the fiber filter removes large



sediments and iron particles, and the carbon filter removes small



particles. Suspended solids concentrations are consistently less



than 0.5 ppm. Dissolved substances such as minerals and chlorine
 


are also quite high in tap water. The deionization system in use with



the laboratory reduces the ,combinedconcentration of these constituents



to less than 1.0 ppm.
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The spectrometer used to make upwelled radiance measurements 

was the Tektronix J20/.7J20 unit with the 7313/R7313 oscilliscope



accessory. A photograph of the instrument is shown in figure 21.



The spectrometer measures power/bandwidth (watts/nm) over a range 

from 380 to 980 nam. Bandwidths (spectral resolution) from 4 to 160 nn 

may be selected depending on the intensity level of the radiation 

being 	 measured. For purposes of this investigation, power/bandwidth



values were divided (normalized) by gray-card reflectance measurements


of the input light source. The result is a normalized upwelled 

radiance spectra which is dimensionless. At the time of the tests 

described herein, automatic data read-out equipment were not available. 


Photographs of the oscilliscope images were read by hand. The hand



reduction of data in combination with instrument-oscilliscope noise



introduced several sources for measurement error. Estimates were made



of the effects of various error sources on final normalized radiance



values and are shown below:



Error 	 Source 
 Effect on Normalized Radiance



1. 	 Instrument noise during water 

mixture measurements +0. 0212 

2. 	 Inability to discriminate center of 

line of water measurements +0.0106 

3. 	 Instrument noise during gray 

card measurements +0.0222



4. 	 Inability to discriminate center of 

line of gray card measurements +0.0109 

i 
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If the above errors are assumed random, independent, and equal the



standard error, then the standard error of all combined effects is



0o.0343. The range of normalized radiance values for water mixtures is 

from f to 0.6 so the estimated standard error of the laboratory data 

is 5.7 percent of the range of measurement values. While automated 

data read-out equipment would reduce the error, it must be noted that 

the level of uncertainty oft these particular laboratory measurements 

is compatable with ihstrument noise values from present-day aircraft 

and satellite remoteo~sensing systemis as previously discussed.



For this investigation, specific Values of concentration were



obtained by addition of 'weighed, dry s~iples of the constituent to



the water volume of the .system; (30&3gall6ns).. The system was then 

allowed to circulate for app2oximatzely 15 minutes so that an even



distribution of material would 'exist thr6ughout the tank. The



estimated standard error of concentrati6n values used in this study 

is 5 percent of the quoted value. Quoted values were obtained by



dividing the dry ,material weight by the water volume. 

Test Program



In order to select test materials which had near-linear radiance



gradients with concentration, a series of single-constituent tests



were first conducted. Figures 22, 23,, and 24 show wide-band spectra



(spectral resolution = 160 nm) for the three materials selected-for



this investigation. Ball Clay and Feldspar sediments were selected



because of their small particle sizes (Chapman 1976) and their relative 
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inertness when mixed both in tap water and with each other (Gjardo 1976). 

Rhodamine WT dye was.selected because of its wide use in the



environmental engineering field for dispersion and transport studies.



Figure 22 shows a broad spectra in the visible wavelength range



for various concentrations of Ball Clay sediment. The value at



each wavelength represents the average of all radiances



80 nm both to the left and right of the wavelength being read.



Measurements were made at the 160 nm spectral resolution such that



maximum light could be absorbed by the spectrometer in its "factory



calibrated" mode. (The spectrometer can also be operated in a time


delay integration mode for measurements under low-light conditions



to obtain narrower spectral resolution. Such a mode requires portable



calibration equipment which was not available for these tests.)



Figure 23 for Feldspar sediment shows (1) a pronounced signal at the



lower wavelengths and (2) a much weaker signal than Ball Clay for any 

given concentration. Figure 24 for Rhodamine WT dye shows a signal 

which is also quite weak in comparison to Ball Clay but has a very 

pronounced peak at red wavelengths. The inconsistent curves below 

500 nm and above 780 nm are believed to be the result of measurement 

uncertainty. The standard error of measurement, 'Rad' is estimated 

to be approximately 0.0343 for these tests as previously discussed. 

The radiance values of figures 22 through 24 were cross-plotted 

versus concentration at various wavelengths. Figure 25 indicates that 

Ball Clay sediments are near-linear at all wavelengths for concen

trations greater than 9 mg/k. Figure 26 shows Feldspar to be quite 
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linear for all concentrations at all wavelengths. Rhodamine WT 

dye (figure 27) is nonlinear at all wavelengths where it has a signal. 

Following the single-constituent tests, a series of dual

constituent tests were conducted using various concentrations of Ball 

Clay and Feldspar sediments. It was believed that these two sediments


in combination would provide an interesting test of the linearized


multiple regression analysis because (1) both sediments have near


linear radiance gradients, and (2) the Feldspar has a low signal



magnitude in comparison to the Ball Clay. While both sediments have



different spectra and for that reason should be easy to separate, it



was believed that these data would provide a somewhat severe test of



the multiple regression process. The radiance measurement uncertainty



(ad = 0.0343) is an appreciable portion of the upwelled radiance



component caused by Feldspar sediments (compare 0Rad -ith figure 23).



The analytical test case previously discussed showed that.a



constituent with a low magnitude of radiance (PB) could be accurately



separated in the presence of one with high-radiance values (PA) if



near-perfect data are available. It was questionable as to whether the



linearized multiple regression process would operate as well on



constituents with low upwelled radiation in the presence of significant



measurement errors. The mixtures selected for testing and analysis



are shown below:
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Test Number Ball Clay Feldspar



(ppm) (ppm),



1 129 17


2 173 17



3 9 35


4 9 69 
5 52 69


6 52 173


7 173 173


8 9 17 
9 17 17 

10 129 73 
11 52 17 
12 173 35 
13 17 69 
14 17 35 
15 52 35 
16 173 52 

Over the total wavelength range, five bands were selected at which



to measure upwelled radiance. The bands selected were:



Band Number Wavelength Range Center Wavelength 
(nm) (nm) 

1 '340-500 420 
2 460-620 54o 
3 540-709 620 
4 620-780 700 
5 70o-86o 780 

A limited number of bands was selected because both present and near


future satellite systems will have only a few bands in the visible



and near-infrared wavelength regions-(figure 3). The measured values



for normalized radiance in each of the five bands for each mixture



combination is shown in table 12.
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Following the dual-constituent measurements, a series of tests



were conducted with various mixtures of three constituents, Ball Clay,



Feldspar, and Rhodamine WT dyes. The objective was to add a third



constituent which had nonlinear radiance gradients with concentration



and was known to also have some optical interaction with the sediments.



The mixtures selected for testing and analysis are shown below: 

Test Number Ball Clay Feldspar Rhodamine WT 
(ppm) (ppm) (ppb)



1 9 17 34 
2 9 17 1052 
3 9 •35 34 

17 35 34 
5 9 35 1052 
6 17 35 1052 
7 17 35 19o 
8 17 52 190


9 17 52 535



10 52 52 535


11 17 52 1052


12 52 52 1052


13 173 129 34


14 173 129 190


15 52 129 535


16 129 129 535


17 173 129 535


18 52 129 1052


19 129 129 1052


20 173 129 1052


21 173 173 34


22 173 173 190


23 173 173 535


24 129 173 1052


25 173 173 1052
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Values for the normalized upwelled radiance at the same five bands 

as the dual-constituent tests are shown in table 13.



Results of Analysis



Dual-Constituent Mixtures



Before analysis of the dual-constituent data could proceed, a



test. was first be made to see if measurements were accurate enough 

for application of the least~squares technique. Following the 

recommendation of Daniel (1976), a comparison of the error variance 

with the mean square scatter about the mean of the independent



variables was used for this purpose. Using table 12 data, the mean 

square scatter about the mean was ,computed for the various bands and 

compared with (URad) . example band theFor in 1, calculations are: 

16 
E [('Bad 1 Y. - -ad_]I 

16 1 _0.017315 (7-1) 


From previous discussion, (a )2 = 0.00117. The ratio of the error
Bad 

variance to the mean square scatter about the mean for this band



equals 0.067. Since this value (and values for other bands) is less



than 0.1, it is concluded that the measurement uncertainty is small



enough in comparison to the range of values for least squares



techniques to be used.



On analysis of the data, a general philosophy was adapted in



which it was decided that only a minimum number of points would be
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be used in estimating the J,K coefficients. The resulting multiple



regression equation would then be applied to the unused data in an



effort to test the predictive accuracy of the equation. For the dual


constituent laboratory data, eight of the test points in table 12 were



first selected for analysis. Least-squares estimates of the J,K



coefficients were performed and the various statistical measures of 

precision were computed. These results were discarded, however,



because the correlations with Feldspar concentration were so poor that



the F-test ratio never exceeded 1.0. It was concluded that the



experimental error associated with these tests was large enough such 

that eight points were not enough for an adequate least-squares 

estimate of the J,K coefficients for Feldspar. 

A multiple regression analysis using 12 of the 16 points was



next attempted. All points in table 12 were used except test numbers



1, 3, 7 and 15. Again the regression was performed on all band



combinations. Estimates of the J,K coefficients and statistical



measures of precision for Ball Clay sediment are given in tables 14



and 15, respectively. Coefficient estimates and statistical parameters



for Feldspar sediment are given in tables 16 and 17, respectively.



These data were considered acceptable because some band combinations 

did give F-test ratios greater than 1.0 for both sediments.



Considering first the results obtained for Ball Clay sediment,



review of table 15 indicates that high correlation coefficients,



reasonable standard error values, and high F-test ratios may be obtained 

for a number of band combinations, but the fits may contain large 
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amounts of bias as indicated by Cp/p. The combination of bands 2, 4, 

and 5 contains the lowest total squared error which is unbiased. 

Referring to table 14, the multiple regression equation for Ball Clay 

concentration using this combination of bands is: 

C = -56.8 + 1537.4(Rad2) + 7167.1(Rad4 ) - 12198.9(Rad5 ) (7-2)



The statistical estimates of precision for this equation are: 

r 0.98



=15.6 ppm 

(F/F) = 16.9 
-95 

C = 2.0 
p 

cpp= 0.-

All of these values are considered acceptable so it is assumed the 

equation (7-2) will have good predictive capability. Equation (7-2) 

was then applied to the radiance data in table 12 (including those 

points not used in the fit) and the results are shown in figure 28. 

Most points are within the +3.9a limits and it would usually be 

concluded that equation (7-2) is a reasonable predictive equation. 

The one point which falls outside the 3.9a limit brings up an



interesting point when dealing with a low number of data points. 
 The



fitting of a multiple regression equation to a set of data does not





preclude the possibility that the equation which is obtained may be



quite sensitive to small errors in measurement of the independent 

variables. Equations which compute differences between measured 

parameters sometimes have this problem. When one is dealing with a 

small size data set, it is possible that some-measurements outside 

the set may have a slightly larger error than those points used in 

the fitting process. If the derived multiple regression equation has



very large coefficients, then it is possible that a predicted point 

will fall outside the +3.9a limit. If, hpwever, a larger number of



points is used in the fitting process, the points with maximum error



would presumably be included, and the calculated value of a would be 

larger and more accurate. In the case of the point (test number 7) 

which falls outside the limit in figure 28, simple calculations 

indicate an error in Rad 5 of 0'.004 would give a predicted value of 

d= 141 ppm which is well with the +3.90 limit. Such a value of



measurement error is quite possible since the estimated value of



Rad = 0.0343. It is concluded that equation (7-2) is quite sensitive to 

errors in the independent variables. The fact that the other three 

independent points fell within the band may be a strong indicator 

that equation (7-2) is a good predictive equation if accurate radiance 

data can be obtained. 

Review of table 17 for Feldspar sediment indicates that the 

combination of bands 3, 4, and 5 produce an equation which contains 

the lowest total squared error and is unbiased. From table 16, the



equation for Feldspar concentration using this band combination is:
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C = 62.2 - 2242.6(Rad3 )  10981.2(Rad4 ) + 19674.3(Rad5 ) (7-3)



The statistical estimates. of precision for this equation are: 

r = 0.89 

= 9"4.0 ppm 

(F/F) 2.39


.95



C = 3.'0 

Cp /p' = 0.8 

The effect of instrument error on a low-radiating constituent like



Feldspar appears to be one in which reduced values of the correlation 

coefficient and higher values for standard error are obtained. The 

F-test ratio is greater than 1.0 but does not meet the Wetz criteria



.(see Draper and Smith 1966, p. '64) for being a good predictor at the,



95 percent confidence level. (The confidence level could be reduced 

to some value below 90 percent to produce 'F/Fcr > 4.0, however.) 

The radiance data in table 12 were 'applied to equation (7-3), and the' 

results are shown in figure 29. All values fall within the +3.9U 

limits in spite of the fact that equation '(7-3) is sensitive to 

small measurement errors as was the equation 'for Ball Clay. It 

should be noted that if Rad5 is changed by 0.004 to improve the Ball 

Clay prediction, the calculation for Feldspar is also improved further 

suggesting that test number 7 may ,contain a bad data point. 
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Summarizing the results of analysis of the dual-constituent 

laboratory data, the effect of instrument error in measurement of the



radiance data is to degrade the accuracy obtained from the multiple



regression analysis. The inaccuracies obtained in these tests are not



believed to be caused by lack of fit because the radiance gradients for



both constituents are known to be linear with concentration (figures



25 and 26). The constituents are non-reactive with each other in



tap water (Gjardo 1976), and the principle of linear superposition



seems to give a fair approximation to their total combined signal



(Ofelt 1976). It should be noted that values of standard error in



comparison to the range of values of the experiment are similar to those



obtained by Johnson (May 1976) in an actual field experiment. Whether



or not such levels of uncertainty are acceptable to the environmental



engineering community depends upon the particular use to which the



data will be put. Accuracy requirements for various data uses are



beyond the scope of this investigation.



Three-Constituent Mixtures 


A comparison of the error variance with the mean square scatter 

about the mean for the independent variables was made using the data


in table 13. Mean square scatter values about the mean are larger


than for the dual-constituent tests while the estimated error variance


is the same. The criteria for use of least-squares procedures is easily


satisfied.
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A multiple regression analysis using 12 of the 25 points in



table 13 was performed. The points used in the least-squares



fitting process were test numbers 1, 3, 5, 6, 8, 10, 13, 15, 18, 20,
 


21 and 23. The regression was performed on all band combinations.



Estimates of the J,K coefficients and statistical measures of precision


for both the Ball Clay and Feldspar sediments are given in tables 18


through 21. The 12-point regression analysis was.considered acceptable


because band combinations existed which gave good estimates of


precision for all statistical parameters for both sediments. 

Review of table 19 for Ball Clay sediment indicates that the 

lowest value of total squared error is obtained for band combinations


2, 3, and 4. The fit is also unbiased for this combination which has


for its multiple regression equation (table 18):


C = -4.1 + 243.4(Rad2 ) - 613.7(Rad3 ) + 918.0(Rad4 ) (7-4)



The statistical estimates of precision for this equation are:



r = 0.98 

* = 6.8 ppm 

(F/Fcr) = 105.7 

- .95 

C = 3.0 

p 
C /p = 0.8 
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All values are acceptable so it is assumed that equation (7-4) will 

have good predictive capability. It should be noted that the K 

coefficients of equation (7-4) are not as large as those for the 

dual-constituent results so the equation should not be as sensitive 

to small errors in radiance values. Results of applying the radiance 

data from table 13 to equation (7-4) are shown in figure 30. A1l1 13 

independent data points fall within +3.9C (some are hidden by the dark 

symbols). It is thus concluded that equation (7-h) is a good 

predictive equation and that the linearized multiple regression analysis 

apparently works in spite of the fact that there is a reaction between 

Ball Clay and Rhodamine WT dye (Loper 1976). Sorption of the dye by 

the clay probably changes the absorption and scattering characteristics 

of the clay which in turn cause a change in the upwelled radiance 

spectra. The precise nature of the optical interaction is presently



not known and would be difficult to measure (Loper 1976). A probable 

change in the upwelled radiance spectra is the only reason known at 

this time for the obtaining of a reduced value of standard error under 

that of the dual-constituent tests.



As a result of the Rhodamine WT dye, application of linearized 

multiple regression analysis to the Feldspar data proves quite 

interesting. Review of table 21 indicates that an unbiased estimate 

with minimum total squared error is obtained when only band 3 is 

present. The regression equation in this case is (table 20):





C -8.0 +361.( (7-5)



The statistics for this equation are:



r,= 0.92



CF= 23.8 ppm 

(F/Fr) = 11.2 
.95



C / 0 

p.-

Results of applying the radiance data from table 13 to equation (7-5)



are shown in figure 31. Again all 13 independent points fall within



+3.9a (four points are completely hidden by the black symbols). It



must be concluded that equation (7-5) is a good predictor and that



application of the linearized multiple regression analysis is a success.



It is somewhat troublesome to understand why only one band was



required to quantify Feldspar when there were three constituents



in the water. According to previously developed theory, at least



three -bands, should be required to separate the effects of Feldspar 

from those of the rest of the mixture. The issue is further



complicated by the fact that Band 3 (540 nm to 700 nm) is in the



precise region where Rhodamdine IT has its strongest signal (figure 24) 

and where Ball Clay is also quite strong (figure 22). Without



optical interactions, the Feldspar signal in band 3 should be completely 
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confused by Rhodamine WT and Ball Clay effects since there are not



strong correlations between the concentration values of each constituent.



Loper (1976) notes that quartz-like materials such as Feldspar have



negligible sorption of Rhodamine WT in comparison to the sorption by



clay soils. He suggests that the modification to scattering and



absorption characteristics of the Ball Clay may make it such that Ball 

Clay upwelled radiance is reduced at band 3 wavelengths enabling the



presence of Feldspar to be more clearly seen. While such an explana


tion may be physically possible, detailed high-spectral-resolution



tests of Rhodamine WT dye in the presence of a number of different



sediments are required to define the optical interactions which are



occurring. Such studies are beyond the scope of this investigation



although they would probably be of national benefit because of the



heavy use of Rhodamine WT dye in pollution studies. The important 

point to be made from the three-constituent test results is that the



linearized multiple regression technique apparently works in the



presence of at least some optical interacti6ns. It is believed that



a number of different types of interaction,may occur, and it is beyond



the scope of this investigation to determine and test all possible



situations as discussed previously.



As an additional exercise, it was decided to test application of



the multiple regression technique for quantification of a pollutant



with a nonlinear radiance gradient. Referring back to equation (4-18),



it can be seen that the signal response equation is linear in PQ


C'



Review of the single-constituent data for Rhodmine WT dye (figure 27)





suggests that an approximate value for Q might be obtained by 

fitting a power law equation to the measured values. Upon performing



such an operation, it was found that values from Q = 0.1 to 0.25 

could be fitted through the data because of experimental uncertainty. 

A value of Q = 0.2 appeared to give the best fit to the data for 

bands 2, 3, and 4 where Rhodamine has a strong signal. Results showing 

this fit are presented in figure 32. 

The Rhodamine WT dye values previously presented for the three


constituent tests were used for the nonlinear multiple regression



analyses. The same 12 points as for Ball Clay and Feldspar sediment



analysis were utilized to estimate coefficients and statistical



parameters for an equation of the following form:



CQ = J + Kj(Rad) + K2 (Rad2 ) + (7-6) 

Since an optical interaction had apparently occurred, it was not



assured that Q = 0.2 was the correct value. Therefore, Q was 

varied from 0.25 to 0.05. Nondimensional-statistical parameters for 

the "best" equation for each value of Q are shown below: 

Q 0.25 0.20 0.15 0.10 0.05 

r 0.99 0.99 0.99 0.99 0.99 

(F/Fcr 20.12 20.43 20.64 20.52 20.19 
.95



0 4.o 4.o 4.o 4.o 4.o


p

Cp/p 0.8 0.8 0.8 0.8 0.8 
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While no significant differences exist between the statistical 

parameters, the equation for Q = 0.15 was arbitrarily selected 

because of its slightly larger F-test value. Tables 22 and 23 give 

estimates of equation coefficients and statistical measures of 

precision for Rhodamine WT dye concentrations to the 0.15 power. The 

equation with the "best" fit is: 

C015 = 1.605 - 7.679(Rad1 ) - 3.972(Rad2 ) + 17.582(Rad 3 ) - 7.376(Rad4 )



(7-7)



Results of applying equation (C-7)tothe 25 three-constituent test 

points are shown in figure 33. With such a large nonlinearity, 

figure 33 presents a distorted picture of predictive accuracy. 

Raising the computed and actual Rhodamine WT concentrations to unity



power gives a more accurate picture as shown in figure 34. From



figures 33 and 34, it is concluded that multiple regression procedures



can be used to quantify constituents with nonlinear radiance gradients,



and the technique may be applied to any number of constituents so long



as each constituent is related to optical' changes in the water body



and other technique limitations are not violated.





CHAPTER VIII



FIELD EXPERIMENT CONSIDERATIONS



Analytical and laboratory cases have been used to perform a 

limited validation of linearized multiple regression analysis for 

quantification of marine constituents under a variety of environ

mental and optical conditions. Both analytical and laboratory 

tests are quite valuable for investigating specific areas of concern


under controlled conditions. No matter how many controlled tests



are conducted, final validation of the technique must come through



use of field experiments. Unfortunately such experiments are quite



expensive and beyond the scope of this investigation. As previously



discussed, field experiments which utilize multiple regression analysis



have been conducted by several investigators (Johnson, May 1976, Rogers



et al 1976, Johnson, September 1976, and Ohlhorst 1976). Only mixed



success has been obtained from these experiments. Some of the incon


sistent field results may in fact be expldinable based on various



limitations which have been uncovered by the investigation described



herein. 
 It is the purpose of this section to recommend procedures



which should be used for future field experiments to improve the



opportunity for consistent results.



The linearized multiple regression analysis should never be applied



blindly to a set of data without a background knowledge concerning



the constituent of interest, hydraulics of the water body, and
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measurement uncertainties. This extreme caution is recommended so



that false results are not published concerning the technique. The 

linearized multiple regression analysis has strong theoretical



foundation for a number of environmental conditions and careful 

application should yield useful results. The technique should be 

applied only to those constituents for which accurate ground truth 

values can be obtained. The present state of art of laboratory 

analysis may eliminate multiple regression analysis as a possibility



for some constituents of interest. Also the technique should only



be applied to those constituents whose radiance gradients are known



to be near-linear with concentration. Controlled laboratory or field



tests may be required to determine this property.



Prior to the remote sensing field experiment, measurements



should be made to determine geographic locations to obtain the widest



possible range for ground truth measurements of the constituent of 

interest. A time interval for hydraulic consistency should be 

established such that ground truth data are not included in the



analysis if large water mass movements have occurred between the times



of remote sensor overpass and the taking of water samples. Within



the time interval for hydraulic consistency, as many points as



possible should be obtained with as near a uniform distribution of 

concentration values as technically feasibility. From a statistics 

point of view, the number of points should be geeater than the number 

of remote sensor bands plus one. Because of-experimental measurement 
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errors, it is recommended that the number should be much larger than



that minimum statistical value. The precise number of points required 

is a function of the error magnitudes in both the independent and 

dependent variables. Multi-dimensional parametric studies are



required to assess the minimum number of points required for various



combinations of error and ranges of values. 
 Until such studies are



available, the experimenter must take as many points as possible and



hope that enough are obtained. Care should be taken that all ground
 


truth points used in the analysis are from the same water depth.



The effect of vertical concentration gradients will be minimized, and 

the resulting multiple regression equation will be an algorithm for 

concentration at a particular depth if the assumption is made that 

vertical concentration gradients near the surface are constant over 

the scene of interest. For the situation in which a substance is 

introduced into part of the water body (such as an industrial outfall), 

a number of points both inside and outside the plume must be obtained



to insure against false correlation as a result of non-homogeneity. 

Once remote sensing data are in hand, an analysis to estimate



error variance of the remote sensing measurements based on instrument



noise and calibration data is required. The estimate of error



variance must then be compared with the mean square scatter about



the mean of the experimental radiance values as previously discussed.



Only if an order of magnitude or greater difference exists can the



linearized multiple regression analysis using least-squares techniques



be utilized.
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All data which is outside the time interval for hydraulic 

consistency and therefore not hydraulically appropriate should be 

immediately eliminated from the analysis. A review of the sediment 

levels and water depth of each station should be conducted and compared



with order of magnitude estimates of remote sensing penetration depth



(see Whitlock 1976). Those points whose remote sensing penetration



depth approach the values for water depth must be removed from the



analysis to eliminate confusion due to bottom reflection effects. A



correlation study should be conducted between the various ground truth



parameters measured to understand the possibilities of false 

correlation. In many cases, the hydraulics of the water body under 

analysis make it nearly impossible to obtain measurements which are 

totally uncorrelated with each other. 

For analysis of the data, it is recommended that regression



equations and statistical parametbrs be computed for all possible band 

combinations. The decision as to which equation is optimum should be



based on satisfactory values for all statistical parameters, however,



the ratio of Cp/p is particularly important because it is an 

indication of bias in the fitting process. Results obtained in this 

investigation indicate that good values may be obtained for the 

correlation coefficient, the standard error, and the F-test ratio but



the fit may be extremely biased which is not desirable. If possible,



the analysis should be conducted with less than the total number of



stations obtained such that some points will be available for



independent check calculations. All predicted values in other locations 
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of the remote sensing scene must be accompanled by the estimated value



of standard error. Finally repetitive experiments should be conducted



for the constituent of interest in the water body of interest.



Confidence must be established in use of the 'linearizedmultiple



regression analysis under a variety of atmospheric, wind, wave, and



seasonal conditions.





CHAPTER IX 

SUMMARY AND CONCLUSIONS



The objective of this investigation has been to define optical



physics and/or environmental conditions under which the linear multiple
 


regression analysis should apply for quantification of water quality



parameters. To achieve this objective, an investigation of the signal



response equations has been conducted and the concept has been tested



by application to both analytical test cases and actual remote sensing 

data from a laboratory under controlled conditions. As a result of 

this investigation, an improved understanding of technique limitations, 

mathematical requirements, ground truth requirements and error



effects has been obtained.



Investigation of the signal response equations shows that the 

exact solution for a number of optical physics conditions is of the



same form as a linearized multiple regression equation, even if



nonlinear contributions are made by such factors as surface reflec


tions, atmospheric constituents, or other water pollutants.



Limitations on achieving this type of solution and (1) the constituent



of interest must have a linear radiance gradient with concentration,



(2) the degree of nonlinearity in each of the other components which 

make up the total signal must be constant for the wavelengths used 

in the multiple regression equation, and (3) mutual independence 

between constituents with no electrical, chemical, or optical 
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interactions is desired but not always required. 
 Mixture concentra


tion also must be constant over the penetration depth of the remote



sensing signal, or the vertical concentration gradient must be 

essentially constant near the surface and all concentrations measured



at the same depth. 
Since the exact solution to the signal response



equations under the above conditions is in the form of a linear 

multiple regression equation, the application of linearized multiple



regression analysis to remote sensing and ground truth data may be



viewed as a calibration of the exact solution to account for daily



variations of background constituents in both the atmosphere and water



environment.



To obtain a "calibrated" equation using multiple regression 

techniques, least-squares procedures are used to estimate coefficients 

of the equation. In order to use least-squares techniques, the error



variance of the upwelled radiance measurements must be at least an



order of magnitude smaller than the mean square scatter about the



mean of the experimental radiance data. In addition, ground truth



observations must be uncorrelated and statistically independent over 

the range of values for which the final regression equation will be 

utilized. All data used in the least-squares process must be "good" 

in that (1) the constituent of interest is measured accurately, 

(2) the data are hydraulically appropriate, and (3) the remote sensing 

penetration depth at all points is less than the water depth. 
 For



non-homogeneous water bodies such as those with industrial outfalls,



a number of ground truth points is required from each water mass to
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insure correct correlation of the total scene. From a statistics 

point-of-view, the minimum number 6f ground truth locations required 

is the number of wavelengths (or bands-) at which upwelled radiance is 

being measured plus two. As a result of-experimental uncertainty, it 

is concluded that the total number of ground truth points should be 

significantly larger than the minimum number if possible. 

From analytical test case results, it is concluded that



constituents with linear radiance gradients may be quantified from



signals which contain nonlinear atmospheric and surface reflection



effects for both homogeneous and non-homogeneous mixtures provided 

accurate data can be obtained and nonlinearities are constant with 

wavelength. In addition, it was observed that high correlation 

coefficients, low values of standard error, and acceptable F-test ratios 

could be obtained for various band combinations, but the fits could 

contain a large amount of bias. It is concluded that statistical 

parameters must be used which give an indication of bias as well as 

total squared error to insure that an equation with the optimum



combination of bands is selected for utilization.



From dual-constituent laboratory results, it is concluded that 

the effect of error in the upwelled radiance measurements is to reduce 

the accuracy of the least-squares fitting process and to increase the 

number of ground truth points required to obtain a satisfactory fit. 

It was also observed that the least-squares fitting process does not 

preclude the possibility that the multiple regression equation 
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obtained may have large coefficients and be extremely sensitive to 

small errors in radiance measurement. If the fit is obtained with a 

low number of ground truth points, it is possible that the estimated 

value of standard error is not applicable to predicted values using 

the equation. 

From three-constituent laboratory results, it is concluded that



the linearized multiple regression analysis is applicable for



constituents with linear radiance gradients which experience some



types of optical interaction when combined with other constituents.



It definitely can be said that the analysis will not apply for all



types of optical interaction, however, it is believed that satisfactory



results may be obtained for a number of different situations. The



area of optical interactions for usual water pollutants has received



only limited attention by the scientific community. It-is recommended



that fundamental studies be conducted in this area for various



constituents of interest. Research on this problem may explain why



high correlations have been obtained with certain "invisible"



constituents in previous field experiments.



It is recognized that the analytical test cases and analysis of



laboratory data conducted in this study have provided only limited 

validation of the linearized multiple regression concept. While a



number of additional laboratory tests could be conducted, the only



way to finally validate the concept for use with a particular



constituent is with carefully conducted field experiments. Based
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on the experience of this study, it is believed that the technique



has strong potential for future application. It will be particularly



applicable when advanced remote sensing and ground truth systems



are developed which have improved accuracy. The concept has strong



theoretical support from consideration of the signal response



equations and is applicable without precise knowledge of atmospheric



and water surface parameters. It further allows for some variation



in atmospheric and surface reflection effects over the scene of 

interest which is a severe limitation for several other data analysis 

concepts. For those water constituents with nonlinear radiance 

gradients (versus concentration), the method may be modified and 

utilized if the nature of the nonlinearity is known. 

The most serious problem with the multiple regression concept is 

the present lack of knowledge concerning possible limitations caused 

by the requirement that the nonlinearity of various radiance components 

must be constant over the wavelength range of interest. Based on 

the success of some of the previous field experiments, it appears that 

there is a wide range of wind, wave, solar elevation, and atmospheric 

conditions for which the linearity requirement is satisfied. On the 

other hand, there may be extremes in environmental conditions or 

particular water constituents which cause large variations in 

linearity. Repetitive field experiments under a variety of 

environmental conditions are required to answer this question. 
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It is also recommended that multi-dimensional analytical studies



be conducted to better define ground truth requirements for applica


tion of the multiple regression analysis. Parametric variation of



such parameters as dependent variable error, independent variable



error, range of values, number of points, degree of homogeneity, and



number of constituents may enable the construction of charts based



on normalized parameters *hich would aid the potential experimenter



in assessing the number of ground truth stations required for



expected levels of uncertainty in both remote sensing and ground



truth data. Such information would also be of interest in the



development of future in-situ water monitoring systems.
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APPENDIX B 

LIST OF SYMBOLS 

A = upwelled radiance of filtered seawater 

B = conftant ,givingchange in upwelled radiance due to P 

b = matrix'given by equation (5-6-) 

C = constituent concentration 

C 
P 

= statistical param&ter based on sut of squared biases plus
the sum of squared random errors as defined in equation (5-17) 

E = constant, giving change in upwelled radiance due to P 

e deviation from, true value, 

F = statistical parameter as defined in equation (5-12) 

F critical value df F 
cr 

G = constant giving change in upwelled radiance due-to optical 
interaction between PB ,and PC as given in equation (4-21) 

H = constant giving change in upwelied radiance due to 

I = upwelled radiance from clear atmosphere 

J,J'j = constants in regression equation 

K,K'k = constants in regression equation 

L = constant giving change in upwelled radiance due to atmospheric 
pollutant XA 

M -= arbitrary power expressing upwelled radiance nonlinearity 
with $ 

N arbitrary power expressing upwelled radiance nonlinearity 
with XA 

n number of ground truth points with measured concentration and 
upwelled radiance values 
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A concentration of pollutant A 

PA measured ground truth value-of TPA 

P = mean value of ground truth, values of -P 
B =A



P = concentration of pollutCant B 

PC concentration of pollutant C 

p = 	 number of estimated J, K coefficients in regression equation 

Q = 	 arbitrary power expressing upwelled radiance nonlinearity 
with Pc 

R = arbitrary power expressing upwelled radiance nonlinearity 
with PB in optical interaction with PC 

Rad = 	 upwelled radiance at a particular wavelength or band 

RSS = 	 sum of square of residuals in p-term regression equation


p



r = 	 correlation coefficient as defined by the square root of 
equation (5-10) 

S = 	 constant giving change in upwelled radiance due to PC



SS = sum of squares 

2s = unbiased estimate 'of aY 

T = arbitrary power expressing upwelled radiance nonlinearity 
with PC in optical interaction with PB 

XA = concentration of atmospheric pollutant 

Z = thickness of water layer from which 90 percent of the upwelled 
radiance is measured



IVX = expression defined by equation (-C-10)



'W,Y = expression defined by equation (C-10)



ay z = expression defined by equation (C-10)



Ow = expression defined by equation (C-15) 

OX = expression defined by equation (C-15) 



1o4 

= expression defined byoequation (C-19) 

S = variable which is related to the instrument pointing angle 
and the solar elevation angle 

a = standard error of water constituent concentration 

2 a = variance of water constituent concentration 

'Ra d = standard error of upweiled Tadiance me asurement 

2=
(oRad)= variance of upwell&d radiance measurement 

X = wavelength 

Subscripts:



i = ground truth observation number 

Pmax = quantity for equation with maximum number of estimated 
coefficients 

W = value of wavelength 

X = value of wavelength 

Y = value of wavelength 

Z = value of wavelength





APPENDIX C



SOLUTION TO SIGNAL RESPONSE EQUATIONS



Under the assumptions of this study, the equations for total



radiance at wavelengths W, X, Y, and Z may be writteni: 

RadW = AW + BWPA + FwPB + iM + I W + L (C-1) 

Ra% = AX + BXPA + EXPB + RpM + IX + LA (C-2) 

Bady = A1 +B PA + EYB + Y + IY + LYXA (C-3) 

Rad = AZ = BzP z + EzPB + Hze + I + LX (c-4)Z ZZ ZB Z ZA 

Multiplying (C-1) by LX and (C-2) by Lw gives: 

LxAad-w = LxAW + LxBWA + LxEwPB + LxHM + LX9. + LXA (C-5) 

LRadX = LwAX + LABXPA + LWExP + yIXpM + LWIJX + LxLr/ (C-6) 

Subtracting (C-6) from (C-5):



LakW - L~adX = Lx(kW + : - LW(AX + IX~)



" (LXBw - qBX)PA + (t'W - XB



" (LXI*W - I HX)PM (C-7l) 
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Performing similar operations first on equations (C-3) and (C-4), 

and second, on equations (C-1) and (C-3), one obtains: 

LzRady - LyBad = z(AY + Iy) - L(A +I Z )z 

+ (LzB - LYBz)P A + (LZEY - LEZ)PB 

+ (LZiY- z4 (c-8) 

LyRadW - LW1fady = LY(AW + IW) - L7(Ay + Iy) 

+ (LY:w - Vy)PA + (LyEW- LWEY)P 3 

+ (LAH - -M (0-9) 

Equations (C-7), (*C-8), and (C-9) represent three equations with 

three variables (PA' B'P). For convenience let: 

(LxW- LWHx) = %,X 

(LzH LYHZ) = ay'z (0-10) 

(LAYW - (C-) b W' on 

Multiplying (0-7) by ayWand (C-8) by aW X, one obtains:
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ayZLXRadW - Y zt4RadX= 	 ay zLX(k + W 

- OW(X+ 'X) 

" (ayZLXF- - a'Y,ZMWX)PB 

+ %ZWx M 	 (C-11) 

aWXZflady-Y aIWt~yadZ = 	 aXLZ(Ay + '9) 

- O, jLy(AZ + Z 

+(%W,9LZBY - aVzX9yB)PA
 

" (aWXLEY - %T,#LYEZB 

"+yzwx 	 (C-12) 

Subtracting (C-12) from 	 (C-1i):



cYZL~alW cty ZLWRaX - ctXLRady + c~qXLy~adlZ 

+ y,z x(.Iw + IW) - ,zLYAX + IX) 

(Ay + ry) + aW'+XL(AZ + '9) 

" (tyzLXBw - ay,ZLWBX 

-aw,xLz 
 

- cWXZY+ aWXLYBZ))A 

+ (yzttw - OYZE -	 awXzEy + CVXY)B (C-13) 



o8



Performing similar operations on (c-8) and (0-9.):



W'.LzRady - cv yLadz - IyaZ.Yzadw + ayZWRady = 

+ ,yLz+c-AY + Iy) - ayzLY(Az + I) 

- %,yLy(A Z+IZ) I+azhL(Ay + I9) 

+ (CwyLzBy- CWyLyBZ - c0zzLyBW + aCYZLWBY)PA 

+ (awyLzEY - ,yLy Z - 'yZLyE + yzLwy)PB (c-14) 

Equations (C-13) and (C-14) represent two equations with two variables



(PA and PB). For convenience, let:



(uy'LxEw - O%,zhWX - %,kZEY + tXLyEz) = W 

(C0-15) 
(&WYLZEY - cYLYEz - ayZL i + aYZLW ) = X 

To solve for PA' multiply equation (C-13) by SX and equation (C-14)



by W





log,



XzyLXadW - Oxay,ZLWRadX - QcWx,xLzall + XcWx, Ladz -

+ %xczLx(AW+ 1w) - OxQt,zTI(Ax + IX) 

- X% ,xLz(A + Ii.) + XaxLy(Az + Iz) 

+ (Xy,zL .Bw - OxyzVX - 8X%,xLzBy + 5xaWXLYBZ)pA 

+ (BYW)PB (C-16) 

'SWayLzRadY - S WayLyRad Z - BWcy'zLyRad-W + BW~cy,zLwRad Y = 

+ B aWyLz(Ay + 'y) - 'zLy(Aw +WO+ I) 

- W%,r (Az + I Z ) + wYzW(A + iy) 

+ (SWq%,yLZy - IWaW,xyZ - + YwzLOY)P A+BW 

+ (x W)PB (c-17)'



Subtracting equations (C-17) from (C-16) and collecting like terms:



(%XuczLx + WayzLy)RadW - (XctZLW)RadX 

- (OXWXLZ + w%,YLZ + Bc )RadywZL 
 

+ (XWXLy + OW, +



( Xty'zkX + O~ayZL(kW + I)- (OXjtZLQ(AX +IX
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+- ( xIox1z+ wc w,tz cty ,Z w (Ay + Iy)



+ 1z ) , +
+ ( Xax~ y - Owa9y,)(Az (OXaZLxw 

- XyzXB - X%,XLZBy + OX%, Bz 

- fWQ.,yLzBy + jctWyLyBZ + Way'ZlBW 

- 8Way,ZLWBY)PA (C-18) 

For convenience, let-:



(OXayzLX1w- XayzLwBx - 5XowxLzBY + %(aWXIYBZ 

- OjWwyLzBy + OWaW,yABZ + kWyzLBw 

- W ,ZLWy)= e (C-19) 

Rearranging:



= J +PA KW(Rad) + KX(RadX) + Ky(Rady) + KzCRadz) (C-20) 

where:





i = 10 I-OxayZLX + vy,ZLy)(AW + IW)



" ( X01fZLW)(AX +,IX) 

" ($XaWXLZ + W + WayZL.W)(Ay + I
 
awYLZ y 

- ( XaWXLy - 5WUWyLy)(AZ + IZ 

KW raxoyZLX + vyZLYI



KX [
a xety"ZLW] 

Ky [- Xc ,,, LZ - R,,aWYLZ - WayZ] ,] 

Kz [ XaWXLY + OWaWyLy]
e
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TABLE 1 

RADIANCE AND GROUND TRUTH DATA 

FOR HOMOGENEOUS TEST CASE 

Ground Truth 
Location 

1 

2 
3 
4 
5 
6 

P 
A 

20 

10 
30 
20 
4o 
10 

PBRadl, 
B 

20 25.5 

20 22.9 
40 28.6 
30 19.0 
1O 33.2 
4o 20.2 

Rad 
2 

27.2 

25.2 
30.4 
23.1 
34.8 
22.6 

Rad 
3 

30.3 

29.0 
35.7 
.29.7. 
40.3 
26.9 

Rad 
4 

33.8 
34.1 
43.8 
36.9 
40.4 
36.0 

Rad 
5 

20.3 

24.4 
23.5 
21.9 
25.1 
20.9 

7 20 10 35.8 36.4 38.1 39.0 30.3
8 4o 30 42.6 - 42.8 47.6 52.6 34.0 
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TABLE 2 

ESTIMATES OF J,K COEFFICIENTS



FOR HOMOGENEOUS TEST CASE 

FOR PA 

Bands Used J K K2 K K4 K5 

1 -7.3 1.09 0. 0. 0. 0. 
2 -15.7 0. 1.30 0. 0. 0. 
3 -27.6 0. 0. 1.48 0. 0. 
4 -35.9 0. 0. 0. 1.51 0. 
5 -9.5 0. 0. 0. 0. 1.33
1,2 -61.9 -7.49 9.86 0. 0. 0. 
1,3 -45.5 -1.72 0. 3.4i 0. 0. 
1,4 -20.4 0.49 0. 0. 0.99 0. 
1,5 11.1 2.03 0. 0. 0. -1.80 
2,3 -38.7 0. -2.66 4.12 0. 0. 
2,4 -31.1 0. 0.69 0. 0.86 0. 
2,5 0.1 0. 2.69 0. 0. -2.31 
3,4 -28.9 0. 0. 1.4o 0.11 0. 
3,5 -17.0 0. 0. 2.82 0. -2.28 
4,5 -35.2 0. 0. 0. 1.79 -0.48


1,2,3 -27.5 2.57 -6.41 4.96 0. o. 
1,2,4 -63.5 -6.49 8.42 0. 0.43 0. 
1,2,5 -49.7 -8.31 12.32 0. 0. -2.53


1,3,4 
 -41.8 -2.03 0. 4.20 -0.57 0.


1,3,5 -26.8 -0.79 0. 3.50 0. -1.94


1,4,5 -12.3 1.51 0. 
 0. 1.26 -2.27


2,3,4 -32.1 0. -3.39" 5.46 -0.78 0.


2,3,5 -23.6 a. -1.14 3.73 0. 
 -1.90


2,4,5 -17.4 0. 2.09 0. 1.07 
 -2.57


3,4,5 -18.7 0. 
 0. 2.72 o.14 -2.28


1,2,3,4 0.6 6.66 -13.50 8.38 -1.22 0.,


1,2,3,5 -30.6 -1.82 1.62 
 3.11 0. -2.02 
1,2,4,5 -5i.4 -6.90 10.34 0. o.62 -2.65


1,3,4,5 
 -26.2 -0.90 0. 3.73 -0.17 -1.89


2,3,4,5 
 -22.2 0. -1.47 4.19 -0.26 -1.79 
1,2,3,4,5 -26.9 -1.08 0.287 3.64 -0.15 -1.91
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TABLE 3 

ESTIMATES OF PRECISION 

FOR HOMOGENEOUS TEST CASE. 

FOR PA 

Bands Used r a(F/F: ) c C /p 

1 0.76 Q.4 -1.33 1404. 702.1I 
2 0.79 -7.9 1.61 1252. 626.4 
3 0.88 6.1 3.38 744. 372.5 
4 0.79 7.8 i..67 1224. 612.3 
5 0.53 lO.8 0.40 2340. 1170.3 
1,2 0.87 6.8 1.37 781. 260.6 
1,3 0.93 4.9 3.11 398. 132.7 
1,4 0.81 8.1 0.87 1088. 362.8 
1,5 0.82 8.0 0.89 1066. 355.5 
2,3 0.94 4.7 3.44 363. 121.0 
2,4 0.83 7.9 0.93 1036. 345.5 
2,5 0.88 6.6 1.52 725. 241.7 
3,4 0.88 6.7 1.46 744. 248.3 
3,5 0.99 2.0 21.74 61. 20.6 
4,5 o.8o 8.4 0.77 1177. 392.6 
1,2,3 0.95 5.1 1.72 346. 86.5 
1,2_,4 0.88 7.4 0.70 737. 184.4 
1,2,5 0.98 3.3 4.23 149. 37.5 
1,3,4 0.95 5.1 1.70 349. 87.3 
1,3,5 0.99 0.7 106.33 6. 1.6, 
1,4,5 0.91 6.6 0.96 573. 143.3 
2,3,4 0.96 4.6 2.21 275. 68.9 
2,3,5 0.99 0.9 56.50 11. 2.9 
2,4,5 0.94 '5.4 1.48 394. 98.5 
3,4,5 0.99 2.1 lO.81 60. 15.1 
1,2,3,4 0.97 4.2 1.44 178. 35.7 
1,2,3,5 0.99 0.6 77.55 5. 1.1 
1,2,4,5 0.99 2.3 4.90 56. 11.2 
1,3,4,5 0.99 0.5 132.30, 4. 0'8 
2,3,4,5 0.99 0.6 77.92 5. 1.1 
1,2,3,4,5 0.99 0.5 33.98 6. 1.0 
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TABLE 4



ESTIMATES OF J,K COEFFICIENTS



FOR HOMOGENEOUS TEST CASE 

FOR PB 

Bands Used J K1 K2 K3 K4 K5



.1 39.2 -0.50 10 0. 0. 0. 
2 42.3 0. -0.57 0. 0. 0.


3 39.7 0. 0. -0.42 0. 0.


4 8.4 ,0. 0. 0. 0.42 0. 
5 42.0 00.0. 0. 0. -0.68 
1,2 37.3 -0.81 0.35 0. 0. 0., 
1,3 18.4 -2.03 0. 1.85 0. 0. 
1,4 -19.4 -2.09 0. 0. 2.63 0. 
1,5 34.6 -0.74 o. 0. 0. 0.46 

2,3 24.4 0. 3.63 3.18 0.
-- 0. 
2,4 -9.9 0. -2.62 0. 2.89 0. 
2,5 39.0 0. -0.86 0. 0. 0.43 
3,4 -9.3 0. 0. -3.52 3.96 0. 
3,5 042.3 0. 0.
 -0.09 Q. -0.57

4,5 12.7 0. 0. 0.. 2.05 -2.74 
1,2,3 97.0 16.66 -27.88 8.62 0. 0. 
1,2,4 25.0 6.99 -1..94- O. 3.35 0. 
1,2,5 35.0 -0.66 -0.10 0. O.. 0.47 
1,3,4 -8.4 -o.14 &. -3.72 4:00 0. 
1,3,5 14.7 -2.'21 0" 1:8 :0. 0.39 
1,4,5 -15.3 -1.84 0. '0. 2.69 -0.55 
2,3,4 -9.2 0. 0.07 -3.60 3.97 0. 
2,3,5 17.7 0. -4.3b 3.36 0. o.85 
2,4,5 -8.6 0. -2.50 0. 2.91 -0.24 
3,'4,5 -6.4 o. 0. -3.149 3.96 -o.65 
1,2,3,4 11.9 4.30 -6.46 -1.72 3.69 0. 
1,2,3,5 100.3 21.49 -36.68 1o.64 0. 2.22 
1,2,4,5 25.7 6.97 -- 10.8 0. 3.36 -o.16 
1,3,'4,5 -0.5 0.71 0. -3.95 4.21 -o,.96 
2,3,4,5 -3.5 0. 1.18 -4.34 4.28 -i.o4 
1,2,3,4,5 -2.9 o.14 0.95 -4.26 4.26 -1.03 
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TABLE 5 

ESTIMATES OF PRECISION 

FOR HOMOGENEOUS TEST CASE 

FOR FB 

Bands Used r a (F/Fr) 
or 5 

C 
p 

C/p
p 

1 0.34 12.1 0.13 485. 242.8 
2 0.34 12.1 0.13 486. 243.2 
3 0.25 12.5 0.07 516. 258.5 
4 0.22 12.6 0.05 524. 262.4 
5 0.27 12.4 0.08 510. 255.1 
1,2 0.35 13.3 0.06 487. 162.5 
1,3 o.46 12.6 0.11 437. 145.9 
1,4 0.89 6.4 1.67 112. 37.4 
1,5 0.35 13.2 o.o6 483. 161.3 
2,3 0.53 12.0 0.17 399. 133.1 
2,4 0.93 5.1 2.86 71. 23.6 
2,5 0.35 13.2 o.o6 484. 161.5 
3,4 0.98 2.5 13.39 15. 5.1 
3,5 0.27 13.6 0.03 511. 170.6 
4,5 0.73 9.6 o.49 257. 86.0 
1,2,3 0.72 11.0 0.22 268. 67.2 
1,2,4 0.99 2.5 7.62 14. 3.6 
1,2,5 0.34 14.7 0.03 486. 121.5 
1,3,4 0.99 2.8 6.39 17. 4.3 
1,3,5 o.46 14.o 0.05 437, 109.3 
1,4,5 0.90 7.0 o.83 -09. 27.3 
2,3,4 0.98 2.8 6.28 17. 4.3 
2,3,5 0.55 13.2 0.09 389. 97.4 
2,4,5 0.93 5.7 1.36 72. 18.0 
3,4,5 0.99 1.9 13.62 8. 2.0 
1,2,3,4 0.99 2.5 4.29 12. 2.4 
1,2,3,5 0.80 -ii.0 0.15 202. 40.3 
1,2,4,5 0.99 2.9 3.19 16. 3.2 
1,3,),5 0.99 1.1 21.98 4. 0.8 
2,3,4,5 0.99 1.1 22.71 4. 0.8 
1,2,3,4,5 0.99 1.3 5.73 6. 1.0 
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TABLE 6 

RADIANCE DATA FOR HOMOGENEOUS TEST CASE 

Ground Truth Rat Rad2 Rad3 Rad 4 Rad5 
Location 

9 23.3 25.9 28.9 37.1 20.7 
10 27.7 28.7 31.3 35.2 20.2 
11 31.6 34.1 39.2 4o.5 25.1 
12 33.9 34.8 35.5 36.2h 24.1 
13 37.8 40.0 44.9 46.8 32.2 
14 23.6 26.8 29.9 36.7 24.1 
15 28.0 30.9 36.7 43.4 24.6 
16 28.2 30.2 33.5 35.6 20.1 
17 24.3 26.3 27.8 32.1 18.6 
18 22.7 27.3 35.8 42.7 24.1 
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TABLE 7



RADIANCE AND GROUND TRUTH DATA



FOR NON-HOMOGENEOUS TEST CASE



Ground Truth PA PB Radl Rad2 Rad3 Rad4 Ra 5 
Location 

19 15 0 23.,2 25.3 26.3 25.2 16.4 
20 22 0 27.5 28.3 29.8 28.0 17.6 
21 37 0 31.5 33.9 38.2 36.1 23.5 
22 23 0 33.9 34.7 34.8 32.6 22.8 
23 38 0 37.7 39.7 43.8 41.8 30.4 
24 12 0 23.9 26.8 28.0 28.3 21.1 
25 32 0 27.8 30.4 34.4 32.7 20.7 
26 29 0 28.1 29.9 32.4 30.2 18.1 
27 14 0 24.2 25.9 26.2 24.8 16.1 
28 35 0 22.5 26.8 33.6 32.6 20.5 
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TABLE 8 

ESTIMATES OF J,K COEFFICIENTS 

FOR NON-HOMOGENEOUS TEST CASE 

FOR PA 

Bands Used J K1 K2 K3 K4 K 

1 -9.2 1.17 0. 0. 0. 0. 
2 -17.2 0. 1.36 0. 0. 0. 
3 
4 

-24.9 
-12.0 

0. 
0. 

0. 
0. 

1.44 
0. 

0. 
1.00 

0. 
0. 

5 
1,2 

-4.1 
-39.3 

0. 
-4.46 

0. 
6.28 

0. 
0. 

0. 
0. 

1.21 
0. 

1,3 -28.2 -0.63 0. 2.07 0. 0. 
1,4 -17.2 0.91 0. 0. 0.42 0. 
1,5 -7.6 1.29 0. 0. 0. -0.22 
2,3 -25.6 0. -0.80 2.18 0. 0. 
2,4 -21.9 0. 1.13 0. 0.32 0. 
2,5 -15.0 0. 1.72 0. 0. -0.57 
3,4 -22.4 0. 0. 1.72 -0.33 0. 
3,5 -23.2 0. 0. 2.66 0. -1.84 
4,5 -12.1 0. 0. 0. 0.93 0.12 
1,2,3 -31.3 -1.45 1.18 1.79, 0. 0. 
1,2,4 -39.8 -4.21 5.92 0. 0.11 0. 
1,2,5 -41.6 -5.78 8.41 0. 0. -1.07 
1,3,4 -25.7 -1.47 0. 3.66 -0.90 0. 
1,3,5 -27.5 -0.85 0. 3.58 0. -1.94 
1,4,5 -18.6 1.45 0. 0. 1.22 -1.84 
2,3,4 -18.4 0. -2.63 4.87 -1.18 0. 
2,3,5 -24.2 0. -1.17. 3.82 0. -1.96 
2,4,5 -26.6 0. 1.89 0. 1.21 -2.17 
3,4,5 -25.5 0. 0. 2.56 0.35 -2.13 
1,2,3,4 -4.4 3.04 -7.32 6.48 -1.53 0. 
1,2,3,5 -27.5 -0.85 0.01 3.58 0. -1.95 
1,2,4,5 -48.7 -5.09 7.77 0. 1.07 -2.43 
.1,3,4,5 
2,3,4,5 

-27.3 
-22.6 

-0.94 
0. 

0. 
-1.56 

3.70 
4.29 

-0.10 
-0.28 

-,1.87 
-1.76 

1,2,3,4,5 -23.5 -0.18 -1.26 4.18 -0.25 -1.78 
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TABLE 9 

ESTIMATES OF PRECISION 

FOR NON-HOMOGFMOEOUS TEST CASE 

FOR PA 

Bands Used r a (F/Fcr) C C p/p 
•95 

1 0-77 7.3 3.23 3706. 1853.2 
2 0.81 6.8 h.19 3152. 1576.1 
3 0.88 5.3 , 8.10 1960. 980.5 

0.64 8.7 1.61 5258. 2629.3 
5 0.57 9.4 1.08 6092. . 3o46.4 
1,2 0.87 5.9 3.65 2243. 747.9 
1,3 0.90 5.3 5.00 1754. 585.-0 
1,4 0.79 7.3 2.09 3309. 1103.2 
1,5 0.77 7.6 1.76 3673. 1224.6 
2,3 0.90 5.3 4.88 1790. 596.7 
2,4 0.82 6.8 2.50 2944. 981.4 
2,5 0.82 6.8 2.50 2940. 980.0 
3,4 0.89 5.4 4.78 1822. 607.4 
3,5 0.98 2.5 26.4,7 389. 129.7 
4,5 0.64 9.1 0.87 5253. 1751.1 
1,2,3 0.90 5.5 3.23 1739. 434.8 
1,2,4 0.87 6.3 2.36 2221. 555.3 
1,2,5 0.91 5.3 3.64 1578. 394.6 
1,3,4 0.94 4.4 5.54 1101. 275.3 
1,3,5 0.99 0.6 345.91 15. 3.8 
1,4,5 o.87 6.3 2.31 2260. 565.2 
2,3,4 0.95 4.0 6.95 899. 224.9 
2,3,5 0.99 0.8 175.10 33. 8.3 
2,4,5 0.91 5.2 3.77 1533. 383.4 
3,4,5 0.98 2.2 23.71 280. 70.1 
1,2,3,4 0.96 3.9 5.71 748. 149.7 
1,2,3,5 0.99 0.6 231.81 17. 3.4 
1,2,4,5 0.97 3.1 8.89 494. 98.9 
1,3,4,5 0.99 0.5 312.53 12. 2.4 
2,3,4,5 0.99 0.4 627.48 4. 0.9 
1,2,3,4,5 0.99 o.4 452.69 6. 1.0 
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TABLE 10 

ESTIMATES OF J,K COEFFICIENTS 

FOR NON-HOMOGENEOUS TEST CASE 

FOR PB 

Bands Used J K1 K2 K3 K4 K5 

1 35.0 -0.67 0. 0. 0. 0. 
2 38.0 0. -0.73 0. 0. 0. 
3 24.3 0. 0. -0.26 0. 0. 
4 -24.8 0. o. 0. 1.09 0. 
5 6.6 0. 0. 0. 0. 0.37 
1,2 31.4 -1.33 0.74 0. 0. 0. 
1,3 7.1 -3.30 0. 3.03 0. 0 
1,4 -12.3 -2.19 00. 0. 2.49 0. 
1,5 12.9 -2.32 0. 0. 0. 2.95 
2,3 19.1 0. .-5.61 4.93 0. 0. 
2,4 -1.7 0. -2.63 0. 2.68 0. 
2,5 24.8 0. -2.87 0. 'O., 3.34 
3,4 -4.0 0. 0. -31.45 3.76 o. 
3,5 21.7 0. .0. -2.10 0. 2.77 
4,5 -21.7 0. 10. 0. 3.25 -3.47 
1,2,3 68.4 12.62 -22.86 8.31 0. 0. 
1,2,4 20.0 5.12 -8.45. 0. 2.93 0. 
1,2,5 39.1 3.11 -6.47 0. 0. 3.6o 
1,3,4 -3.3 0.31 0. -3.86 3.88 o. 
1,3,5 6.4 -3.03 0. 1.18 0. 2.38 
1,4,5 -13.0 -1.94 0. 0. 2.86 -0.85 
2,3,4 -4.5 0. 0.35' -3.87 3.87 0. 
2,3,5 17.4 0. -5.20 3.08 0. 2.22 
2,4,5 -2.8 0. -2.47 0. 2.88 -0.48 
3,4,5 -5.0 0. 0. -3.19 3.97 -0.66 
1,2,3,4 4.5 1.95 -2.66 -2.84 3.65 0. 
1,2,3,5 64.5 21.99 -21.64 6.45 0. 2.02 
1,2,4,5 19.1 5.04 -8.28 0. 3.01 -0.23 
1,3,4,5 -3.9 0.55 0. -3.85 4.23 -0.82 
2,3,4,5 6.6 0. 0.89 -4.16 4.32 -0.88 
1,2,3,4,5 -4.4 o.45 0.16 -3.91 4.25 -0.83 
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TABLE 11 

ESTIMATES OF PRECISION 

FOR NON-HOMOGENEOUS TEST CASE 

FOR PB 

Bands Used r (F/For)
•95 

C 
p 

C /p 
p 

1 0.31 15.5 0.23 3355. 1677.7 
2 0.30 15.5 0.22 3367. 1683.8 
3 0.11 16.2 0.03 3660. 1829.9 
4 0.49 14.2 0.71 2820. 1410.2 
5 0.12 16.2 0.03 3651. 1825.7 
1,2 0.31 16.3 0.13 3353. 1117.8 
1,3 0.57 14.1 0.58 2510,. 836.7 
1,4 0.92 6.5 7.10 537. 179.1 
1,5 o.67 12.8 0.97 2065. 688.2 
2,3 0.68 12.5 1.07 1969. 656.2 
2,4 0.96 5.0 13.28 305. 101.8 
2,5 0.70 12.2 1.16 1894. 631.4 
3,4 0.99 2.1 8o.i4 49. 16.2 
3,5 0.46 15.2 0.32 2939. 979.7 
4,5 0.76 11.1 1.66 1567. 522.3 
1,2,3 0.83 10.1 1.69 1165. 291.2 
1,2,4 0.99 2.9 29.14, 91. 22.9 
1,2,5 0.71 12.6 0.81 1816. 454.2 
1,3,4 0.99 2.1 58.15 44. 11.0 
1,3,5 o.68 13.2 o.67 1986. 496.6 
1,4,5 0.93 6.6 5.01 493. 123.4 
2,3,4 0.99 2.1 54.42 47. 11.8 
2,3,5 0.77 11.5 1.11 1517. 379.2 
2,4,5 0.96 5.1 8.88 294. 73.5 
3,4,5 0.99 1.5 111.83 21. 5.2 
1,2,3,4 0.99 2.0 48.38 37. 7.3 
1,2,3,5 0.89 8.9 1.91 794. 158.8 
1,2,4,5 0.99 3.0 20.17 90. 18.1 
1,3,4,5 0.99 0.8 274.72 4. 0.8 
2,3,4,5 0.99 0.9 255.71 5. 0.9 
1,2,3,4,5 0.99 0.9 186.73 6. 1.0 
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TABLE 12 

RADIANCE AND CONCENTRATION DATA 

FOR DUAL-CONSTITUENT TESTS 

Test Ball Clay Feldspar Rat Rad 2 Rad3 Bad4 ad5 
Number (ppm) (ppm) 

1 129 17 0.297 0.310 0.290 0.220 0.156 
2 173 17 0.360 0.390 0.369 0.297 0.205 
3 9 35 0.075 0.058 o.o47 0.034 0.023 
4 9 69 0.114 O.l0 o.o81 0.058 0.042 
5 52 69 0.229 0.213 0.198 0142 0.102 
6 52 173 0.315 0.304 0.267 0.202 0.147 

7 173 173 0.477 0.518 0.496 0.'395 0.285. 
8 9 17 0.072 0.063 0.047 0.036 0.024 
9 17 17 0.099 0.092 0.074 0.056 0.038 

10 129 73 0.420 0.452 0.425 0.332 0.235 
11 52 17 0.189 0.178 0.153 0.107 0.076 
12 173 35 0.369 0.391 0.364 0.286 0.200 
13 17 69 0.142 0.124 0.105 0.077 0.056 
14 17 35 0.094 0.087 0.072 0.049 0.032 
15 52 35 0.171 o.i61 0.145 0.094 o.o68 
16 173 52 0.378 0.420 0.380 0.281 0.200 
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TABLE 13



RADIANCE AND CONCENTRATION DATA



FOR THREE-CONSTITUENT TESTS



Test Ball Clay Feldspar Ba% Rad2 Bad3 Rad4 Bad5 
Number (ppm). (ppm) 

1 9 17 0.094 0.096 0.094 0.053 0.028 
2 9 17 0.039 0.093 0.140 0.078 0.027 
3 9 35 0.105 0.100 0.097 0.056 0.033 
4 17 35 0.121 0.127 0.120 0.080 0.047 
5 9 35 0.044 0.100 0.143 0.078 0.029 
6 17 35 0.054 0.101 o.15h 0.099 0.039 
7 17 35 0.116 0.134 0.155 0.091 o.o45 
8 17 52 0.138 0.148 0.167 0.101 0.052 
9 17 52 0.099 0.148 0.190 0.110 0.050 

10 52 52 0.177 0.192 0.252 0.170 0.090 
11 17 52 0.059 0.105 0.165 0.102 o.o44 
12 52 52 0.113 0.133 0.212 0.154 o.080 
13 173 129 0.406 0.428 0.437 0.370 0.26o 
14 173 129 0.388 0.347 0.429 0.390 0.256 
15 52 129 0.232 0.230 0.304 0.218 0.128 
16 129 129 0.359 0.323 0.439 0.362 0.220 
17 173 129 0.359 0.300 0.440 0.407 0.256 
18 52 129 0.147 0.155 0.245 0.188 0.095 
19 129 129 0.246 0.213 0.355 0.313 0.188 
20 173 129 0.299' 0.263 o.444 o.426 0.256 
21 173 173 0.459 0.470 0.475 0.395 0.267 
22 173 173 0.432 0.379 0.495 0.404 0.267 
23 173 173 0.387 0.322 0.464 0.415 0.267 
24 129 173 0.260 0.225 0.376 .0.334 0.197 
25 173 173 0.290 0.250 0.420 0.386 0.244 
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TABLE 14 

ESTIMATES OF J,K COEFFICIENTS 

FOR DUAL-CONSTITUENT MIXTURES 

FOR BALL CLAY SEDIMENT 

Bands Used 1 2 K KK4 
 

1 -38.6 480.53 0. 0. 0. 0. 
2 -28.7 0. 432.67 0. 0. 0.


3 -22.7 0. 0. 451.68 0. 0.


4 -18.9 0. 0. 0. 571.70 0.


5 -18.2 0. 0. 0. 0. 803.90


1,2 10.7 -1462.21 1709.52 0. 0. 0.


1,3 25.4 -1195.25 0. 1535.61 0. 0.


1,4 10.5 -598.95 0. 0. 1254.52 0.


1,5 18.2 -748.87 0. 0. 0. 2017.54


2,3 -11.6 0. -739.88 1220.43 0. 0.


2,4 -15.9 0. -118.62 0. 726.83 0.


2,5 -26.3 0. 328.77 0. 0. 193.78


3,4 -18.2 0. 0. -75.52 666.89 0.


3,5 -30.2 0. 0. 1314.64 0. -1545.45


4,5 -18.7 0. 0. 0. 4829.20 -6035.00


1,2,3 21.1 -1400.87 835.25 854.23 0. 0.


1,2,4 15.6 -1386.44 1347.28 0. 390.36 0.


1,2,5 13.5 -1463.01 1594.42 0. 0. 215.98


1,3,4 26.0 -1274.41 0. 1898.30 -367.98 0.


1,3,5 17.8 -1195.39 0. 2399.50 0. -1546.89


1,4,5 -51.1 664.16 0. 0. 7123.71 -10360.73


2,3,4 -12.5 0. -48h.76 616.85 428.20 0.


2,3,5 -16.4 0. -1090.38 2740.41 0. -2069.87


2,4,5 -56.8 0. 1537.39 0. 7167.0 -12198.87


3,4,5 -36.2 0. 0. 19o1.18 5547.13-10449.23


1,2,3,4 21.5 -1409.12 792.64 974.82 -87.08 0.


1,2,3,5 16.3 -1326.64 533.25 1821.35 0. -1290.57


1,2,4,5 -54.4 -61.11 156o.61 0. 6991.25-11893.93


1,3,4,5 -35.8 -9.33 0. 1906.45 5516.88 -10400.69


2,3,4,5 -55.4 0. 1391.06 239.57 7035.01-12168.42


1,2,3,4,5 -51.9 -84.22 1401.94 27413 6773.67 -11743.80



http:11743.80
http:7035.01-12168.42
http:10400.69
http:6991.25-11893.93
http:5547.13-10449.23
http:12198.87
http:10360.73
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TABLE 15 

ESTIMATES OF PRECISION 

FOR DUAL-CONSTITUENT MIXTURES 

FOR BALL CLAY SEDIMENT 

Bands Used r a (F/Fcr) 
•95  

C
P C /p

p 

1 0.91 30.6 9.20 21. 10.5 
2 0.93 26.5 12.96 14. 6.9 
3 0.93 25.8 13.74 13. 6.3 
4 0.94 25.4 14.28 12. 6.0 
5 0.93 26.7 12.71 14. 7.1 
1,2 0.96 21.1 12.72 6. 2.1 
1,3 0.,96 20.9 12.95 6. 2.1 
1,4 0.95 24.0 9.57 10. 3.4 
1,5 0.94 25.5 8.37 12. 4.o 
2,3 0.94 26.7 7.49 14. 4.7 
2,4 0.94 26.7 7.52 14. 4.6 
2,5 0.93 27.9 6.80 16. 5.2 
3,4 0.94 26.7 7.49 14. 4.7 
3,5 0.94 26.5 7.66 14. 4.5 
4,5 0.96 21.2 12.56 7. 2.2 
1,2,3 0.96 21.5 8.53 8. 1.9 
1,2,4 0.96 21.9 8.26 8. 2.0 
1,2,5 0.96 22.3 7.92 8. 2.1 
1,3,4 0.96 22.0 8.16 8. 2.0 
1,3,5 0.97 21.1 8.81 7. 1.8 
1,4,5 0.96 21.6 8.51 8. 1.9 
2,3,4 0.94 28.2 4.70 16. 3.9 
2,3,5 0.94 27.0 5.17 14. 3.5 
2,4,5 0.98 15.6 16.89 2. 0.5 
3,4,5 0.98 17.3 13.55 3. 0.9 
1,2,3,4 0.96 23.0 5.53 10. 1.9 
1,2,3,5 0.97 22.3 5.90 9. 1.8 
1,2,4,5 0.98 16.7 10.97 4. 0.8 
1,3,4,5 0.98 18.5 8.79 5. 1.1 
2,3,4,5 0.98 16.6 10.99 4. 0.8 
1,2,3,4,5 0.98 18.o 7.09 6. 1.0 
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TABLE 16 

ESTIMATES OF J,K COEFFICIENTS 

FOR DUAL-CONSTITUENT MIXTURES 

FOR FELDSPAR SEDIMENT 

Bands Used J K1 K2 K3 K4 K5 

1 31.4 95.75 0. 0. 0. 0.


2 38.2 0. 65.73 0. 0. 0.


3 40.5 0. 0. 62.15 0. 0.


4 42.1 0. 0. 0. 71.81 0. 
5 40.5 0. 0. 0. 0. 115.41


1,2 -36.2 2758.13 -2342.77 0. 0. 0.


1,3 -67.9 2697.12 0. -2383.78 0. 0.


1,4 -45.4 1783.59 0. 0. -1961.52 0.


1,5 -58.4 2040.53 0. 0. 0. -3191.53


2,3 -11.4 0. 3457.28 -3530.07 0. 0.


2,4 07.4 0. 1392.70 0. -1749.51 0.


2,5 21.4 0. 776.99 0. 0. -1326.52


3,4 28.4 0. 0. 1479.19 -1792.50 0.


3,5 50.4 0. 0. -1081.50 0. 2048.13


4,5 41.6 0. 0. 0. -10134.35 14467.23


1,2,3 -70.9 2552.56 587.22 -2862.81 0. 0.


1,2,4 -50.3 2538.10 -1290.86 0. -1133.55 0.


1,2,5 -53.7 2763.20 -1613.46 0. 0. -1368.45


1,3,4 -68.8 2800.78 0. -2858.70 481.84 0.


1,3,5 -57.9 2697.31 0. -3529.41 0. 2051.37


1,4,5 36.9 96.34 0. 0. -9801.54 13839.78


2,3,4 -ll.1 0. 3381.27 -3350.24 -127.58 0.


2,3,5 -10.0 0. 4141.38 -6496.74 0. 4039.96


2,4,5 72.7 0. -1253.46 0. -12040.46 19492.74


3,4,5 62.2 0. 0. -2242.63 -10981.22 19674.25


1,2,3,4 -74.6 2631.57 995.69 -4o18.76 834.71 0.


1,2,3,5 -61.2 2401.33 1202.50 -4833.17 0. 2629.36


1,2,4,5 40.2 824.44 -1566.70 0. -9668.56 15378.96


1,3,4,5 13.8 1110.08 0. -2869.59 -7382.94 13899.94


2,3,4,5 56.3 0. 430.40 -2756.74 -10520.86 19142.33


1,2,3,4,5 10.5 lO94.65 288.88 -3205.94 -7123.97 13623.18



http:13623.18
http:19142.33
http:10520.86
http:13899.94
http:15378.96
http:19674.25
http:10981.22
http:19492.74
http:12040.46
http:13839.78
http:14467.23
http:10134.35
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TABLE 17 

ESTIMATES OF PRECISION 

FOR DUAL-CONSTITUENT MIXTURES 

FOR FELDSPAR SEDIMENT 

Bands Used r a (F/F) •9 5  
Cp CP/p 

1 0.28 44.4 0.17 23. 11.3 
2 0.22 45.1 0.10 24. 11.8 
3 0.20 45.3 o.o8 24. 11.9 
4 0.18 45.5 0.07 24. 12.0 
5 0.21 45.2 0.09 24. 11.9 
1,2 
1,3 

0.74 
0.83 

32.7 
27.1 

1.29 
2.36 

9. 
4. 

3.0 
1.4 

1,4 0.75 32.5 1.33 9. 3.0 
1,5 0.70 34.8 1.02 11. 3.6 
2,3 0.52 41.5 0.40 18. 6.0 
2,,4 o.46 43.3 0.28 20. 6.7 
2,5 0.28 46.8 0.09 25. 8.2 
3,4 0.34 45.8 0.14 23. 7.8 
3,5 
4,5 

0.26 
0.82 

47.0 
27.7 

O.O8 
2.23 

25. 
5. 

8.3 
1.6 

1,2,3 0.83 28.5 1.50 6. 1.5 
1,2,4 0.78 32.1 1.05 9. 2.2 
1,2,4 0.76 33.5 0.91 10. 2.5 
1,3,4 0.83 28.5 1.50 6. 1.5 
1,3,5 0.85 27.4 1.69 5. 1.3 
1,4,5 0.82 29.3 1.38 7. 1.7 
2,3,4 0.52 44.0 0.25 20. 5.0 
2,3,5 0.62 40.8 o.4o 17. 4.2 
2,4,5 0.86 26.2 1.90 5. 1.1 
3,4,5 0.89 24.0 2.39 3. 0.8 
1,2,3,4 0.84 29.9 1.03 8. 1.5 
1,2,3,5 0.86 28.3 1.20 7. 1.3 
1,2,4,5 0.87 27.0 1.36 6. 1.2 
1,3,4,5 0.91 23.6 1.91 4. 0.8 
2,3,4,5 0.89 25.5 1.57 5. 1.0 
1,2,3,4,5 0.91 25.4 1.24 6. 1.0 
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TABLE 18 

ESTIMATES OF J,K COEFFICIENTS 

FOR THREE-C0NSTITUENT MIXTURES 

FOR BALL CLAY SEDIMENT 

Bands Used J KI K4K2 K3 K5



1 -27.1 485.74 0. 0. 0. 0.


2 -36.1 0. 515.33 0. 0. 0.


3 -56.6 0. 0. 484.88 0. 0.


4 -29.6 0. 0. 0. 491.89 0.


5 -15.5 0. 0. 0. 0. 709.15


1,2 -22.3 633.02 -166.25 0. 0. 0.


1,3 -52.0 116.74 0. 377.49 0. 0.


1,4 -31.5 108.00 0. 0. 394.33 0. 
1,5 -12.3 -79.96 0. 0. 0. 816.09 
2,3 -56.4 0. 56.75 438.98 0. 0. 
2,4 -34.5 0. 98.06 0. 415.48 0. 
2,5 -13.2 0. -34.07 0. 0. 748.85 
3,4 -22.3 0. 0. -120.00 610.93 0. 
3,5 -2.3 0. 0. -144.38 0. 913.15 
4,5 -15.7 0. 0. 0. 5.18 701.79 
1,2,3 -48.6 214.20 -103.15 371.27 0. 0. 
1,2,4 -33.8 33.60 71.86 0. 405.54 0. 
1,2,5 -13.8 -147.41 62.61 0. 0. 833.39 
1,3,4 -9.4 186.46 0. -388.60 708.97 0. 
1,3,5 1.5 -83.90 0. -150.11 0. 1033.46 
1,4,5 -.5 -172.20 0. 0. -260.28 1308.85 
2,3,4 -4.1 0. 234.43 -613.65 918.00 0. 
2,3,5 -1.1 0. -26.48 -138.14 0. 935.17 
2,4,5 -8.1 0. -60.72 0. -104.93 928.76 
3,4,5 -.4 0. 0. -227.50 180.35 774.65 
1,2,3,4 -4.3 -59.46 285.79 -636.14 954.00 0. 
1,2,3,5 2.0 -200.93 107.82 -183.50 0. 1111.59 
1,2,4,5 -2.2 -215.07 44.75 0. -245.23 1292.72


1,3,4,5 1.9 -105.77 0. -122.21 -63.78 1113.80


2,3,4,5 -3.0 0. 195.62 -552.38 785.25 147.37


1,2,3,4,5 -.4 -131.38 211.89 -448.60 532.29 516.50
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TABLE 19 

ESTIMATES OF PRECISION 

FOR THREE-CONSTITUENT MIXTURES 

FOR BALL CLAY SEDIMENT 

Bands Used r C (F/Fcr) Cp Cp/p 
95 p 

1 0.95 25.1 17.1 116. 58.2 
2 0.91 32.0 9.7 194. 97.2 
3 0.97 17.7 36.26 54. 27.1 
4 0.99 12.7 72.6 24. 12.0 
5 0.99 8.4 169.5 6. 2.9 
1,2 0.95 25.9 9.4 11h. 37.9 
1,3 0.-98 17.8 21.2 50. 16.7 
1,4 0.99 11.8 49.1 19. 6.3 
1,5 0.99 8.1 1o4.7 6. 1.9 
2,3 0.97 18.4 19.6 54. 18.1 
2,4 0,9 11.7 50.4 18. 6.7 
2,5 0.99 8.6 93.0 7. 2.4 
3,4 0.99 . 13.1 39.6 25. 8.2 
3,5 0.99 8.0 109.6 5. 1.8 
4,5 0.99 118.8 88.8 8. 2.6 
1,2,3 0.98 18.5 .13.6 50. 12.6 
1,2,4 0.99 12.3 31.5 20. 5.0 
1,2,5 .0.99. 8.4 68.6 7. 1..8 
1,3,.4 0.99 10.0 4,8.2 12. 3.0 
1,3,5 099 7 5.5 5. 1.2 
1,4,5 0.99 7.8, 8o 9 -5. 1.4. 
2,3-,4 '0.99 6.8 105.7 3. o.8 
2,3,5 0.99 8.3 70.3 7. 1.7 
2,4,5 0..99 9.0 59.7 9. 2.2 
3,4,5 0.-99 7.8 79.2 6. 1.4 
1,2,3,4 ,0.997 7 - 2.4 5. 1.0 
1,2,3,5 0.99 7.3 68.4 5. 1.1 
1,2,4,5 0.99 8.2 54.2' 7. 1.4 
1,3,4;5 0.99 8:0 55.7 7. 1.4 
2,3,4,5 0.199 7.2 .69.7 5. 1.0 
1,2,3,4,5 0.99 7.1 53.5 6. 1.0 
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TABLE 20 

ESTIMATES OF J,K COEFFICIENTS 

FOR THREE-CONSTITUENT MIXTURES 

FOR FELDSPAR SEDIMENT 

Bands Used J K K2 K3 K4 K5 

1 15.2 356.39 0. 0. 0. 0. 
2 9.8 0. 372.46 0. 0. 0. 
3 -8.0 0. 0. 361.40 O. 0. 
4 14.6 0. 0. 0. 355.23 0. 
5 25.9 0. 0. 0. 0. 503.14 
152 22.4 572.63 -244.10 0. 0. 0. 
1,3 -6.8 30.92 0. 332.95 0. 0. 
1,4 12.4 119.53 0. 0. 247.26 0. 
1,5 21.8 104.68 0. 0. 0. 363.12 
2,3 -8.1 0. -32.75 387.98 0. 0. 
2,4 11.0 0. 72.20 0. 298.97 0. 
2,5 24.4 0. 22.84 O. 0. 476.53 
3,4 -18.2 0. 0. 545.13 -185.57 0. 
3,5 -24.9 0. 0. 557.80 0. -285.00 
4,5 13.4 0. 0. 0. 398'.90 -62.97 
1,2,3 -.5 209.92 -189.45 321.54 0. 0. 
1,2,4 15.8 232.27 -108.89 0. 230.27 0. 
1,2,5 25.6 273.00 -156.23 0. 0. 319.96 
1,3,4 -17.5 13.36 0. 525.88 -178.55 0. 
1,3,5 -30.4 119.53 0. 565.97 0. -456.42 
1,4,5 -34.5 542.32 0. 0. 1234.98 -1974.86 
2,3,4 -25.5 0. -91.99 738.84 -3o6.07 0. 
2,3,5 -24.6 0. -7.97 559.68 0. -278.37 
2,4,5 -15.2 0. 229.90 0. 815.83 -922.44 
3,4,5 -25.4 0. 0. 579.64 -47.38 -248.62 
1,2,3,4 -24.8 360.29 -403.18 875.10 -524.22 0. 
1,2,3,5 -31.8 467.00 -320.10 665.10 0. -688.39 
1,2,4,5 -31.8 607.46 -67.98 0. 1212.11 -1950.36 
1,3,4,5 -36.1 495.23 0. 86.62 1095.69 -1836.62 
2,3,4,5 -23.2 0. -170.47 862.74 -574.50 298.00 
1,2,3,4,5 -33.7 523.68 -235.30 449.07 433.77 -1173.33 
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TABLE 21 

ESTIMATES OF PRECISION 

FOR THREE-CONSTITUENT MIXTURES 

FOR FELDSPAR SEDIMENT 

Bands Used r a (F/For) Cp Cp/p 

1 o.88 28.9 6.95 3. 1.7 
2 0.84 33.6 4.63 7. 3.7 
3 0.92 23.8 11.17 0. 0.1 
4 0.90 26.1 8.99 1. o.6 
5 0.90 27.2 8.10 2. 1.1 
1,2 0.89 29.5 3.95 5. 1.6 
1,3 0.92 25.1 5.88 2. o.6 
1,4 0.91 26.6 5.10 3. 0.9 
1,5 0.90 28.3 4.38 4. 1.3 
2,3 0.92 25.1 5.89 2. 0.6 
2,4 0.91 27.1 4.89 3. 1.0 
2,5 0.90 28.7 4.25 4. 1.4 
3,4 0.92 24.8 6.08 2. 0.5 
3,5 0.92 24.6 6.17 1. 0.5 
4,5 0.90 27.5 4.71 3. 1.1 
1,2,3 0.93 25.9 3.89 3. 0.8 
1,2,4 0.91 28..0 3.22 5. 1.1 
1,2,5 0.90 29.6 2.81 6. 1.3 
1,3,4 0.92 26.3 3.75 4. 0.9 
1,3,5 0.93' 25.5 4.03 3. 0.8 
1,4,5 0.94 24.0 4.64 2. 0.6 
2,3,4 0.93 25.9 3.89 3. 0.8 
2,3,5 0.92 26.1 3.83 3. 0.9 
2,4,5 0.92 27.4 3.38 4. 1.1 
3,4,5 0.92 26.0 3.83 3. 0.9 
1,2,3,4 0.94 25.7 2.98 4. 1.1 
1,2,3,5 0.94 25.2 3.13 4. 0.8 
1,2,4,5 0.94 25.5 3.04 4. 0.8 
1,3,4,5 0.94 25.6 3.02 4. 0.9 
2,3,4,5 0.93 27.6 2.54 5. 1.1 
1,2,3,4,5 0.94 27.1 2.04 6. 1.0 
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TABLE 22 

ESTIMATES OF J,K COEFFICIENTS 

FOR THREE-CONSTITUENT MIXTURES 

FOR RHODAMINE WT DYE 

Bands Used S K K2 K3 K4 K5 

1 2.565 -1.077 0. 0. 0. 0. 
2 2.615 0. -1.281 0. 0. 0. 
3 2.336 0. 0. 0.002 0. 0. 
4 2.329 0. 0. 0. 0.035 0. 
5 2.404 0. 0. 0. 0. -0.525 
1,2 2.642 -1.252 -2.629 0. 0. 0. 
1,3 1.916 -10.7o6 0. 9.851 0. 0. 
1,4 2.482 -8.242 0. 0. 7.480 0. 
1,5 2.793 -9.790 0. 0. 0. 12.569 
2,3 2.305 0. -8.277 6.697 0. 0. 
2,4 2.634 0. -6.052 0. 4.751 0. 
2,5 2.818 O. -6.i6o 0. 0. 6.651 
3,4 2.441 0. 0. -1.844 1.865 0. 
3,5 1.144 0. 0. 13.816 0. -20.045 
4,5 1.6o9 0. 0. 0. 25.277 -36.396 
1,2,3 1.948 -9.795 -0.965 9.793 0. 0. 
1,2,4 2.421 -10.251 1.940 0. 7.783 0. 
1,2,5 2.772 -10.749 0.890 0. 0. 12.815 
1,3,4 1.677 -11.097 0. i.141 - -3.970 0. 
1,3,5 1.579 -9.444 0. 13.170 0. -6.502 
1,4,5 1.771 -1.835 0. 0. 22.448 -29.928 
2,3,4 1.621 0. -10.604 20.486 -12.025 0. 
2,3,5 1.465 0. -7.012 15.467, 0. -14.211 
2,4,5 1.550 0. 0.472' 0. 26.133 -38.161 
3,4,5 1.384 0. 0. 3.356 22.693 -37.471 
1,2,3,4 1.605 -7.679 -3.972 17.582 -7.376 0. 
1,2,3,5 1.568 -6.677 -2.549 13.960 0. -8.349 
1,2,4,5 1.668 -4.314 2.588 0. 23.318 -30.861 
1,3,4,5 1.556 -7.974 0. 11.295 4.287 -11.902 
2,3,4,5 1.446 0. -4.733 11.217 8.057 -22.294 
1,2,3,4,5 1.596 -7.514 -3.803 17.153 -6.411 -1.181 
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TABLE 23 

ESTIMATES OF PRECISION 

FOR THREE-CONSTITUENT MIXTURES 

FOR RHODAMINE WT DYE 

Bands Used r (F/Fcr) Cp Cp/p 
.r9 5 pp 

1 0.31 0.51 0.21 263. 131.5


2 0.33 0.50 0.24 258. 129.2


3 0. 0.53 0. 291. 145.4


4 0.01 0.53 0. 291. 145.4 
5 0.11 0.53 0.02 287. 143.7


1,2 0.34 0.53 o.14 259. 86.2

1,3 0.96 0.15 13.28 16. 5.3


1,4 0.86 0.29 2.92 73. 24.5


1,5 0.76 0.37 1.41 122. 40.7


2,3 0.84 0.31 2.49 83. 27.8


2,4 0.73 0.39 1.17 136. 45.2


2,5 0.61 o.44 0.64 181. 60.2


3,4 0.07 0.56 0. 291. 97.1


3,5 o.66 0.42 0.83 161. 53.8


4,5 0.93 0.20 7.03 33. 11.0


1,2,3 0.96 0.16 8.59 17. 4.3


1,2,4 0.86 0.30 1.91 72. 18.1


1,2,5 0.76 0.39 o.88 123. 30.9


1,3,4 0.97 0.13 12.17 11. 2.8


1,3,5 0.98 0.12 15.59 8. 2.0


1,4,5 0.94 0.21 4.73 32. .8.1


2,3,4 0.93 0.22 4.16 37. 9.2 
2,3,5 0.95 0.18 6.26 24. 6.1 
2,4,5 0.93 0.21 4.41 35. 8.7 
3,4,5 0.94 0.20 5.o8 30. 7.5 
1,2,3,4 0.99 0.09 20.64 4. 0.8 
1,2,3,5 0.99. 0.10 17.71 5. 1.0 
1,2,4,5 0.95 0.20 3.69 29. 5.8 
1,3,4,5 0.98 0.12 11.05 
 9. 1.8


2,3,4,5 0.96 0.19 4.42' 24. 4.8 
1,2,3,4,5 0.99 0.10 13.34 6. 1.0 
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Figure 18.- Results from optical modeling study.
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Figure 21.- View of spectrometer system. 
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