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ABSTRACT

FUNDAMENTAL AWALYSTS OF THE
LINEAR MULTIPLE REGRESSION TECHNIQUE FOR
QUANTTFICATION OF WATER QUALITY PARAMETERS
FROM REMCTE SENSING DATA

Cherles Henry Whitlock III
01d Dominion University, 1977
Director: Dr. Chin Y. Kuo

Inconsistent results have been obtained from previous experiments
which have applied linear multiple regression techniques to remote
sensing data for quantification of water quality parameters. The
objective of this investigation is to define optical physies and/or
environmental conditions under which the linesr multiple regression
should be applicable., To achieve this objective, an investigation
of the signal response eguations is conducted and the qggégpt is
tested by applicetion to both anelytical test ceseg and actual remote
sensing dats from & laboratory under controlled conditions.

Investigation of the signal response equations sheows that the
exact solution for & number of optical physics conditions is of the
same form &s & linearized multiple regre§sion equation, even ifT
nonlinear contributions are made by such factors as surface reflections,
atmospheric constitﬁents, or .other water pollutants. Limitations on
achieving this type of sqlution are defined. 8Since the exact solution
is in the form of a linear multiple regression equation, applicatidn
sf miltiple regression technigues to remote sensing and ground‘truth

data is viewed as e calibration of the exact solution to account for



daily variations in background constituents.

Least-squares and statistical concepts for performing the
multiple regression analysis are examined. A test for evaluating the
applicability of least-squares technigues to a particular set of data
is defined and criteria for selection of "good" data are established.

From analytical test case results, it is concluded that
constituents with linear radiance gradients with concentration msy be
quantified from signals which contain nonlinear abtmospheric and
surface reflection effects for both homogeneous and non-homogeneous
water bodieg provided accurate data can be obtained and nonlinearities
are constant with wavelength. It is also concluded that stalistical
perveameters must be'used ;hich give an indication of bias as well as
total sguared error to.insure %hat an equation with an optimum
combination of bands is selected fo; utilization.

From spplication to laboratory data, it is concluded that the
effect of error in upwelied radiance measurements is to reduce the
accuracy of the least-squares fitting process and to increase the
number of points required to obtain a satisfactory fit. The problem
of obtaining a multiple regression eguation that is extremely
sensitive to error is discussed. Tt is slso concluded that the
linearized multiple regression is applicable in situations in which
some types of optical interaction oceur between constituents.

The result of this investigation is an increased understanding

of technique limitations, mathematical requirements, ground truth
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requirements, and error effects which should aid in the obtaining of

« P .

consistent results from future remote sensing experiments.
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CHAPTER I

INTRODUCTION

Large amounts of sediments and other pollutants are carried
annuelly in the rivers, lakes, estuaries, and coastal waters of the
United States. These sediments and pollutants are major determinates
of water quality. Measurement of mariné sediment and pollutant
concéntrations is a tedious and expensive effort usually involving
both in situ and lsaboratory work., Efforts have been directed towards
the development of more rapid and economical methods for monitoring
sediment and pollutant concentration in the nation's waters. Many
agencies are investigating the potential of using remote sensing
technigues to monitor various water quality parameters because of the
ability of remote sensing to provide synoptic views over large areas.

Specific data needs usually vary among different user organiza-
tions (Kuo and Cheng 1976). Typical water quality parameters of
igterest to user organizations inelude chlorophyll, phytoplankton,
organic compounds, toxic chemicals, heavy metals, clays, silt, and sand.
For these parameters, the types of informetion desired are concentra~-
tion, composition, size distribution, etc. for biological, geological,
oceanographic, and sanitation uses. Advanced monitoring systems which
utilize remote sensing data to its fullest advaﬁtage are desired for
assessment of the effegts of both man-made and natural events such as

storms, floods, etc.. While much has been‘done toward the use of

1



remote sensing data for monitoring of water quality parameters
("Satellites Helping~———- Problems" 1975), it is clear that additional
resesrch and development of improved data analysis procedures is desired
by meny users (Huwells 1975, for exsmple). Generally the desired use
of remote sensing dat; ié either identification or quantification of
surface se@iments end pollutants. In the long term, hoth identifica-
tion and quantification are desired simultaneously from the same data.
At the Qresent time, however, these two processes are approached by
different techniques. This dissertation is concerned with data
analysis procedures for quantification of water gquelity parameters that
have already bgen identified and are known to exist within the water
body. Specifically, the study deals with the linear multiple regression
technique as a procedure for defining end calibrating data analysis
algorithms for such instruments as spectrometers and multispectral
scanners. The technique has been utilized by Johnson (1975 and 1976),
and Rogers et al (October 1975) with some apparent success. A more
qomplete understanding of the limitations, requirements, and precision
of the linear multiple regression technique is required before it can

. be applied by user agencies in an operaticnsal menner. In an effort

to gain some insight into these questions, it is the objective of this
investigation to define opticai physies and/or environmental conditions
under which the linear multiple regression analysis should apply for
quantification of water quality parameters. To achieve this objective,
an investigation of the signal response equations is conducted, and

the concept is tested by application to both analytical test cases and



actual remote sensing data from s laborstory under controlled
conditions. An improved understanding of technique limitations,
matheﬁatical requirements, ground truth reguirements, and error

¥

effects is desired as a result of this “study.



CHAPTER II

REMOTE SENSING CONCEPTS AND PRESENT SYSTEMS

There are two types of remote sensing systems capable of monitoring
water characteristics. Active sy$£ems are those which emit their own .
energy source and monitor variances in the return signsl. hadars,
lasers, and microwvave radiometers are exsmples of active remote sensing
systems. Pasgive systems are those whicy depend upon the sun's radiation
a3 the energy source and measure verigtions in the upwelled signal
radiated back from the surface of the Earth. Aerial photogrephy,
spectrometers, and multispectral scanners are examples of passive
remote sensing systems, 'This investigation is concerned with use of
passive gystems, in particular spectrometers and gultispectral gcanners,
as a means for remote sensing of weter guality parameters.

Passive remote sensors meésure'the total upwelled radiance emitted
from the water-atmospheric system as shown in figure 1. Components
which meke up the total upwelled radianqe include (1) upwelled
radiance from the water, (2) reflected light, and (3) diffuse skylight.
Of these components, only the upwelled light from the water is normallx
a function of the constituents in the water, although in some casés,
surface films as a result of water pollutants msy influence reflected

radiance. The upwelled light from the water is the result of a

multiple scattering and absorption process in which & small fraction



(usuaily less than one percent) of the dovmwelling light is back-
scattered back up through the water surface. Constituents which
introduce particles or dissolved substances alter the scattering and
absorption characteristics of the mixture which in turn alter the
upwelled radiance emitted through the surface of the water. The
upwelled radiance is further modified by diffuse skylight and
reflected sunlight before it reaches the remote sensor. Researchers
are presently seeking methods to separate atmospheric and surface
reflection effects from total remote sensing signals in an effort to
deduce variations in upwelled spectra caused by variations in water
constituents. The ultimate goal is to devise data analysis procedures
from which water constituents may be identified and quantified by
computerized processes.

For ease of computerized analysis, remote sensing systems which
have digitel radiance output are desired. For this reason, multi-
spectral scenners or spectrometers are normally used to monitor
upwelled radiance vwhenever economic conditions allow such systems. As
sketched in figure 2, a spectrometer normally measures the total
radiance (or power) spectrum over the wavelength range of interest.
The measurement is for only one location within the scene of inferest,
however. To overcome this limitation, multispectral scanners have
spanwise rotating optics systems such that upwelled réﬁianee may be
measured ovef s total .scene as the aircraft or satellite progresses
along its flight ﬁath. 'ﬁnfortunétély, multispectral scanners measure

only a portion of the total upwelled radiance spectrum. Total radiance



values at specified bands over the wavelength range of interest are
the output of these instruments.‘ Most research is presently centered
on the use of multispectral scanners from either sircraft or satellite
for the monitoring of wster constituents. It must be noted, however,
that spectrometers may also be utilized for identification and quanti-
fication of marine parameters if one does not require values over a
total scene.

’ A number of multispectral scanner systems are presently available.
Unfortunately, each system has different band locations and band
widths from the other systems available. Figure 3 shows band locations
and band widths'for several of the more well-known systems. TIi must
als& be noted that each system has a different ability to resolve
features on the surface of the earth (spacial resolution). LANDSAT A
and B have spacial resclutions of TO meters, and LANDSAT b will have a
value near 30 meters. NIMBUS G has narrow bandwidths (high spectral
resolution), but its spacial resolution is. expected to be nesr 200
meters.‘ Aircraft systems normally have lower spacial resolutions as

; result of lower flight altitude. From = 2.4 ¥m altitude, the

Bendix Modular Multispectral Scenner (M2S) has a spacial resclution of
T meters. The NASA Ocean Color Scanner (0CS) has a spacial resolution
of T0 meters from the U-2 aircraft at an altitude of 18.3 km. It

must also be noted that the various scanners have different smounts

of instrument noise in the rediance measurements., Noise in the data
may range from 2 percent to 30 plus percent of the water radiance

values depending on the particular scanner being used, the particular



band under analysis, the instrument gein setting, and the stability of
associated equipment on the day of the experiment. The effects of

noise on the analysis of remote sensing data will be discussed in a

later section.



CHAPTER III

HISTORY AND RELATED WORK

It has been known for a number of years that differences in water
turbidity or light transmission characteristics can often be detécted
by certain aerial photography systems. Some efforts have been success-
ful at quantifying the surface concentrations of éome water quality
parameters from photographic dats in a limited number of cases (see
Lillesand 1973 and Link 1973, for example). With the launch of the
ERTS-1 satellite (now known as LANDSAT-A), it was recognized by a number
of agencies th#% the potential exists for monitoring water quality
paeramelers on a large scale. The use of multispectral scanners such
as that used on LAWDSAT-A provide digital rediance data which is
susceptible to computerized procéssing in large volumes. If
computerized algorithms can be developed whic@ relat; remotely-sensed
radiance values to water constituent concentrations, then certain
water guelity parametersimay be ménitored ovér large geographic areas
on a rapid time scale which is not possible with photographic:data.

One of the major difficulties in evaiuating the potential for
remote sensing of water constltuents is the faet that only limited
optigal theory is presently available to relate the remote sensing
measurements to ccncentrations of specific water paremeters. Jerlov
(1968) gives the precise formulation of the radiative transfer

equation in an absorbing end scattering medium from which the radiance
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upwelled from the water may be calculated. The radiative transfer
process is trested as a function of the losses caused by absorption
added to the gain caused by scattering. Various approximate solutions
have been formulated (see Jerlov 1968 and McCluney 1974, for example)
for relatively cleesr ocean waters, but an exact solution to the
radiative transfer equation applicable to all classes of water is
believed to be extremely difficult (Jerlov 1968}.  Because of this
difficulty, various researchers {Gordon et al 1975 and Ghovanlou 1976,
for example) have devéloped optical theory models which use Monte Carlo
techniques to trace movement of photons after entry into the water
from the atmosphere. Such models are often prohibitive for practical
invéstigations because 100,000 separate combuter cases may be required
o define the upwelled radiance spectra over a reasonable wavelength
range.

Optical models are also limited st the present time in that they
relate the upwelled radiance to only the optical properties of the water
qnd not specific constituent éoncentratiqns. ‘Monﬁe Carlo optical
models generally compute the upwelled radiance based on the beam
attenuation coefficient, the‘scatteringrcoefficient, gnd the’
probability scattering function of the water mixture. Only limited
work has been done to relate these specific optical parameters as a
group to concentrations of specific water constituents for the more
turbid waters as found in the coastasl and inland United States. For
example, Ghovanlou et al {1973) collected samples from a number of

East Coast locations and made laser transmission measurements in a
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laboratory. This'study was successful in relating beam attenuation
coefficient to constituent concentration and .defined the scattering

to absorption ratio for a number of different sédiﬁents: Whitlock
(1976) used these data to estimate scéttering and absorption coeffi-
cients as a function of sediment type and concentration. Unfortunately,
the results are limited to one wavelength (540 nm)} and values for the
probability scattering func%ion are not available. Thus a éomplete

set of optical parameters is not available‘fér inpﬁt to a Monte Carlo
model without estimating oné parameter.r The problem of not having
measured values of all optical parameters over a wavelength range for
various constituent concenfrations is typical and is a major reason
for the present lack of theoretical felation; between water constituent

concentration values and upwelled remote sensing radiance measurements.

As a result of the above unknowns, most LANDSAT and other multi-

spectral scanner investigations have approached the problem from a
statistical point of view. The usual anelysis is one in which the
radiance values of various wavelengths (or bands) are correlated with
ground truth concentration values of a particular parameter in a
linearized, least-squares-fit manner. When a high value of correlation
coefficient (approaching 1.0) and a low value of standard error

(68 percent of all points for a normelly-distributed error bané about
the fitted curve) is obtained, it is often assumed that the regression
equation obtained from the least-squares fit can be used Lo estimate
water constituent concentrations in other areas of the remote sensing

image where no ground truth measurements exist. In the simplest case,



11

the regression equation is linear and of the following form:

C=J+ Kx(Radx) (3-1)

where: C water constituent concentrstion

J

empirical constant
KX = empirical constant for- wavelength X
RadX = radiance a£ wavelength X
(or band X)
When a linearized, least-squares fit is made to more than one parameter,
the resulting relation is known as a linearized multiple regression

.

equation which might be of the following form:

C=J+ KX(Radi) + KY(RadY) F o (3-2)

AEY

While statistical date enélysis technigues provide only limited

1

understanding of the optical process being monitored, the approach has

0

5een successful in providing useful information to agencies which
monitor various water quality'parémeters. Developments which have led
to multiple regression concepts for analysis of marine remote sensing
data are reviewed in the following paragraphs.

Klemas et al (1973) noted the ability of the LANDSAT-A multi-
spectral scanner to detect sediment plumes and aguatic fronts with

band 5. At the same time, Wezernak and Roller (1973) demonstrated that

both LANDSAT and aircraft multispectral scanners had the ability to see
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acid-iron wastes, sewage s%udge, suspended solids, and major water

mass boundaries in the New York Bight area. Maul (1973) noted the
ability to detect chlorophyll-A in the ocean and concluded that sea
state is & significant variable that can dominate the upwelled radiance
vhen weather conditions introduce bubbles, white capé, and foam.

Grew (1973) concluded that it was feasible to distinguish between algae
and sedinment from tests conducted at Clear Lake, Qalifornia: Yarger

et al (March 1973) showed that LANDSAT bands 5 and 6 showed strong
correlation with suspended icad in two Kansas reservoirs but noted
possible problems with stmospheric scatter. Scherz et al (1973)

aade simple laboratory measurements of upwelled spectral signatures of
various water samples and concluded that upwelled radiance positively
correlates with water turbidity. Ritchie et al (19T4) made spectrometer

measurements of six Mississippi lakes and showed a high linear

correlation coefficient {r = 0.90) between upwelled radiation and total
suspended solids in the 28 to 242 ppm rangs. The data were from a
number of different water bodies, and there was a large amount of
scatter in the results (probably the regult of different dissolved
substances and particle compositions in the various lakes). It was
léter found (Ritchie et al 1975) that the sun angle had an effect on
the correlation of upwelled radiance to total suspended solids.

Turner {19T4) made a study of atmospheric effects and concluded that
variations in atmospheric absorption and mﬁltiple scattering have a
significant nonlinear effect on values obtained from an aircraft or

satellite remote sensing system. ot pafticular concern was data taken
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under hazy conditions in which seroscl or moisture content might wvary
over the remote sensing scene of interest, In spite of these
difficulties, Christensen and Wezernak {1975) concluded that remote
sensing could serve as an important addition to technigues available
to a regulatory agency for environmentel monitoring. Images,give good
maps of overall features of turbid and thermal plpmes, and surface
films could be detected at wavelengths'between 320 and 380 nm. The
above results indicate that remotely-sensed spectral measurements are
quite useful for qualitstive evalustion of circulation and transport
patterns.

Of particular concern to agencies chargéd with environmental
monitoring responsibilities is the requirement to guantify surface
conéentration velues using remote sensing data. One early attempt at
quantification was by Yost et al {1973) which developed additive color

algorithms of the form:

C=4J + K(Radx + RadY) (3-3)

The slgorithms produced good results for guantifiegtion of suspended
solids for two days in the New York Bight area but were unsuccessful
in quantification of extinction coefficient, chlorophyll-A, and total
particle counts. Yarger et al (1973) showed that sun angle had a
significant effect on upwelled radiance signals and formnlated a band-
ratio technique which nesrly surpressed the effect of unequal

illumingtion. The band-ratic algorithm was of the form:
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Ha%
BadY

C=J+K( ) (3-4)
+ was also demonstrated that fo; a conc;ete target on the ground, the
band-ratio technique eliminaéed the effects of variable atmospheric
scattering and absorption. It was noted, however, that the band-ratio
aslgorithm did not produce consistent results for experiments conducted
on different days. The reason for the znomalous behavior was
unexplained, and it was beliéved that variations in water constituents
and surface conditions between days were not significant. Bennett

and Sydor (19Th) utilized a linesr regression algorithm of the form of
eguation (3~l).with LAWDSAT band 5 to map turbidity in Lake Superior
t0 an accuracy of 20 percent. It was noted, however, that factors
which changed the absorption coefficient of the water caused the up-
welled radiance for Superior Bay to be four times lower than that from
Lake Superior water bearing equivalent suspended load. One of the
most complete investigations recently reported is that conducted by
Yarger and McCauley (1975). That investigation made correlation
studies with 16 LANDSAT overpasses over three Kansas reservoirs
collecting a total of 1T0 water samples for ground t;uth deta. It

vas concluded that the band-ratio type of algorithm depressed the
effect of seasonal sun angle variastion, and that suspended solids
could be quantified with a linear algorithm (equation (3-4)) to a
standard error of 12 ppm over a range bf 0 to 80 ppm. The radiance-

concentration relationship was nonlinear for concentrations above

ORIGINAL PAGRAS
OF POOR QUALITY,
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80 ppm. A good fit to the higher concentration data was obteined with

a smocth polynomial algorithm of the following form:

2 3
Rad Ra.@X Ra@X
_ p 4
C=Jd+ Kl(RadY) * KE(RadY) * K3(Radx) (3~5)

A standard error of 35 ppm over a range of 0 -« 900 ppm was obtained
for suspended sclids. Correlation studies with the SKYLAB ﬁultispectral
_scanner produced similar results, however, these experiments were
limited to suspended solids concentrations less than 100 ppm. The
investigation was unsuccessful in detec%iﬁg dissolved solids (ranging
to 500 ppm) and algal nutrients (ranging te 20 ppm). Total chlorophyll
was not detectable beiow 8 pg/% but showed a weak correlation for
higher values. Alsc potassium, phosphate, and nitrate were not
detectable. Bowker and Witte (1975) also made repetitiyg_}pvestiga—
tions with several LANDSAT passes over the lower Chesapeske Bay in
Virginia. Their analysis included linearized correlation studies using
& number of different types of algorithms ineluding single band
(equation (3-1)), color addition (equation (3-3)), color substraction,
band ratios (equation (3-L4)}, and band mul£iplication (C=J+K
(R&dXRadY)) forms. While the experimental date suffered from tidal

and meteorological effects as a result of time lag between the
satellite overpass and ground truth sampling, it was concluded that
good linear correlations with sediment could be obtained with LANDSAT
band 5 or combinations of band 5 and band 4. Only low correlations

for chlorophyll could be obtained. Results from individual days were
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guite variable indicating the effects of atmospheric, tidal, and
seasonal variations. Unlike the studies of Yarger and McCauley (1975),
the band-ratio type of algorithm did nst improve this situation.
Later anzlysis (Bowker et al 1975) indiqaﬁed that a color substraction

algorithm (using (Rad. - Rad6)) was highly correlated with total
.

p
particles if a daily calibration could be obteined. Band 5 also had
high correlation with water attenuation coefficient at a wavelength
of 535 nm.
It must be noted that several non-statistical approaches have

been attempted in the effort to quantify certain welter constituents
from remote sensing data. Willismson et al (1973) developed automatic
‘data processing routines using only limited computer capability for
mapping of suspended sediment classes. The technique matched reference
spectra from known ground truth to satellite data {after corrections
for a standerd atmosphere) assuming the following parameters are
constant over the scene of interest:

1. VWater constituents

2. Water surface conditions

3. Solar geometry

. Atmospheric composition
(It should be noted that many of the statistical analysis techniques
make these same assumptions.) It was noted that the technique was
unable to discriminate between various sediment types for concentra-
tions below 25 ppm, but some measure of discrimination was possible

for higher concerntrations., Scherz et al (1975) developed a technigue
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in which the atmosphere and water surface noise effects on LANDSAT
data can be removed using distilled water laboratory measurements and
Tield measurement of signals from very clear lakes. The gpproach
mede a number of opticel and physical assumptions, but a quantitgtive
calculabtion for turbidity is made and used for classification of
Wisconsin Lakes,

Most recently, linearized multiple regression analysis‘procedures
have been applied to marine remote sensing data. This technique
provides data analysis algorithms of the form of equation (3-2).

The first known use of multiple regression procedures for marine
data was by Mueller {(19T4) in performing correlations of ocean color
spectra off the Oregon coast. The technique was used in sn indirect
manner in that dummy variables were correlated in the regression
analysis instead of radiange levels from verious wavelengths or bands.
The measure@ upwelled radiance spectra was transformed into four
principle components where the principle components are projections
of the obserwfed spectra on coordinate axes defined by the first four
orthonormal eigenvectors. The purpose of the transformation was to
reduce 55 bands of spectrometer data to four variables for ease of
manipulation. Two algbrithms were developed for Secchi-depth
and Nel Equivalent Color concentration with correlation coefficients
of 0.89 and 0.87, respectively. It was noted that the assumption
of linearity of upwelled radiance with concentration was guestionsable.
Johnson (March 1975) was apparently the first to apply multiple

regression anelysis in a direct manner using actual LANDSAT radiance
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values. Using four data points from the Delaware Bay, an algorithm
was formulgted and applied to the Potomac River to produce a
continuously variable map of suspended sediment concentrations.
Unfortunately no ground truth data were available from the Potomac

to test the accuracy of the algorithm., This study served to introduce
the concept of direct application of multiple regression analysis for
developing date analysis algorithms for quantifying surface concentra-
tions of water constituents. The concept was applied to aircraft
multispectiral scanner data in a later experiment in the James River
of Virginia in which 54 ground truth data points were taken near the
time of overpass (J;hnson et al June 1975). Linearized radiance-
concentration relationships were assumed and multiple regression
algorithms were developed‘for guspended sediment and chlorophyll
concentrations (Johﬁsoﬁ June 19752. Por suspeﬁded sedimen?, the
multiple regression algorithm of the form of equation (3-2) had a
standard error of 4.31 ppm over a‘range of 0 to 50 ppm. The
correlation coefficieﬁt was 0.93. This represented an improvement
over the single band regression algorithm (equation (3-1)) which

had a standard error of 4.76 ppm end a correlation coefficient of
0.89. Use of multiple regression analysis produced a more drawmatic
improvement for the chlorophyll~A parameter, Over a range of 0 to

20 mg/m3, the multiple regression algorithm had a standard error of
1.56 mg/m3 and a correlation coefficient of 0.97, while the single

band regression algorithm hed & standard error of 2,64 mg/m3 and 8

correlation coefficient of 0.89. This study'suggested the potential
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for muitiple regression concepts as an analysis technique for
separating various walter constituents from the total water scene.
Conducting a more refined anal&sis of the same James River data set
(Johnson May 1976 and Johmson and Babn August 1976), it was found
that correlation coefficients and standard error values were not as
good as the earlier analysis had indicated. TFor suspended sediment,
a single band regression equation {using band 8) produced a standard
error of 7.16 ppm (r = 0.79),but a multiple regression equation
{vsing bands 8 and 1) again improved the analysis reducing the
standard error to 5.86 ppm (r = 0.87). Use of the refined data
produced only a slight degradation in the chlorophyll-A results.
A standard error of 1.T78 mg/m3 (r = 0.96}) was obtained for this
varameter using a multiple regression equation. It was also found
that multiple regresgion algorithms could be derived which gave high
correlations for Secchi-depth (r = 0.92), inorganic NO, (r = o.gé),
inorganic N0, (r = 0.99), acidity (r = 0.99), and salinityi(r = 0.97).
The high correlation of many of these parameters were not believed
to he a direct result of the scatiering attenuation opticé} process
but rather because of indirect chemical or phﬁéiéal rel;tionshiﬁs
between the particular parameter and sediment o; chlorophyll properties.
Unfortunately the resuilts are for only one data set,'andAthere is no
gy%&gnce of the relisbility of the analysis technigue for different
days on the same water body.

The multiple regression concept has now been accepted by other

investigators and applied to other water bodies. Rogers et al {1975)

OF POOR QUAT Ty
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applied the concept to define algorithms for 12 water quality parameters
in Saginaw Bay, Michigan. LANDSAT data were then input to these
algorithms to map the surface concentrations of the 12 water quality
parameters. The particular parameters mapﬁed were Secchi-depth,
temperature, conductivity, chloride, chlorophyll, sodium, potassium,
magnesium, calcium, total dissolved phosphorus, total phosphorus, and
total kjeldahl nitrogen. Correlation coefficients ranged from 0.99
for total phosphorus to 0.72 for chlorophyll-A. The data were from a
one-day experiment (June 3, 197%) with 31 ground truth stations,
however, ground truth were not synchronous with the satellite overpass.
(Samples were from 3 hours before overpass to 8 hours after.) These
results also suggest that the multiple regression concept has the
capability of monitoring water quality parameters which may not
directly influence water optical characteristics (attenuation
coefficient, scattering ccefficient or vélume scattering function).
More recent work has applied the conceﬁf to a second data.set (July
31, 1975) over Saginaw Bay (Rogers et al 1976).‘ Tn the second
application, the concept was modified to incorporate the results of
Yarger et al (1973) in which band raties were believed to sufpress

the effects of atmospheric and solar i1lumination variations.

Instead of performing the linear multiple regression analysis with
LANDSAT bands 4, 5, 6, and T, the snalysis also included the parameters
band 4/band 5, band h/band 6, band k/band 7, band 5/band 6, band 5/
band T, and band 6/band 7. Thus ten independent variables were

correlated against the ground truth data. TIn some cases the ophimum

ORIGINAT PAGE IS
OF POOR QUALITYi
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multiple regression algorithm utilized only band radiances and in other
cases the optimum uwtilized ratios of band radiances., Seven waler
quality parameters were correlated which included Secchi-depth,
temperatﬁre, chloride, conductivity, total kjeldahl nitrogen, total
phosphorus, and chlorophyll-A. Correlation coefficlents ranged from
0.94 for temperature to 0.7t for Secchi-depth. Also it was reported
that the June 3, 19Tk data set had been reanalyzed using the modified
multiple regression procedure. 8pecific results were not given,
however, it was reported that the modified muitiple regression pro-—
cedure gave improved results over the direct multiple regression
analysis for most waber quality parameters for that particular data set.
In addition to the James River and Saginaw Bay tests, additionsl
experiments have been conducted in the New York Bight and off the
Delaware coast to test linearized multiple regression procedures
for quantification of water constituent concentrations. Two Joint
NOAA-ITASA experiments have been conducted in the New York Bight
(Johnson September 1976). The first exﬁeriment was conducted on
April 13, 1975 in which growmd truth were collected at 2l stations
within 2 hours of aircraft scanner overpass. Suspended sediment
and chlorophyll-A data were subjected to direct multiple regression
rrocedures. For suspended sediment, a single-band regression
eguation proved optimum having a standard‘error of 1.39 mg/
(r = 0.79) over a range of 0.56 to 8.38 mg/iﬁ A two-band multiple
regression equation proved cptimum for chlorophyll-A giving a

standard error of 3.87 mg/m3 (r = 0.83) over a range of 2.2 to
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17.8 mg/m3. These results are somewhat worse than those from the
Jameg River experiment. The reason for the deterioration is not known,
however, a different multispectral scanner with poorer spacizl
resolution (but improved signal to noise ratio) was used. Also the
fact that the New York Bight has less turbid waters than the James
River aliows deeper penetration depths for remote sensing purposes
(see Whitleck 1976). Deeper penetration depths may allow vertical
concentration greadients to confuse the results. The second New York
Bight experiment wasg conducted September 22, 1975 for purposes of
testing multiple regression procedures for quantification of sewage
sludge surface concentrations. For suspended sollds in the sludge
dumping area, a standara error of 4.11 mg/% (r = 0.96) over a range
of 1.1 to 32.2 mg/% was obtained using a multiple regression eguation
wilth two bands.

One problem with all of the above mulbtiple regression analysis
experiments was that they required a high number of field data samples
nearly synchronous with the multispectral scanner overpass. On
August 28, 1975, an acid waste remote sensing experiment was conducted
off the Delaware coast with only one ground truth boat (Ohlhorst 1976).
In order to obtain date for performing multiple regression procedures,
a number of aircraft overpasses were m;de as the boat moved to
different concentrations of sacid waste. FEach overpass was precisely
synchronous with ground truth sampling, but the process took nearly
8 hours mesning that each ground truth - remote‘senging data pair was

for a different solar angle as well as differeptlmeteorological and
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atmospheric conditions (the wind and waves increased during the last
half of the experiment). Iron precipate concentrations from seven
stations at a 0.6 m depth were correlated with the multispectral
scanner data. Both direct and modified multiple regression procedures
were used to correlate the data. Use of band radiances alone gave
results which indicated that the multiple regression equation offered
no improvement over a single-band linear regression equation of the
form of equation (3-1). A standard error of 0.172 mg/% (r = 0.88)
over a range from 0.05 to 1.1 mg/% was obtained. In an attempt to
account for the effects of different illuminations? a normalizing
procedure similar to that suggested by Mueller (1974) was applied.
For each ground truth loeabion, the radiance levels in all bands
were summarized and then the radiance in each individual band was
divided by this sum. The values for this ratio were then input to
the process, and a multiple regression equation was developed which
had a standard error of 0.096 mg/f and a correlation coefficient of
0.97. Multiple regression correlation with band ratios as suggegted
by Rogers et al (1976) had not been attempted.

Considering all of the above investigations, it may be concluded

b3

that quantification of surface concentrations of marine constituents
ra ' )

from remote sensing spectral data is presently a somewhat unreliable
process. Various types of algorithms ﬁ;ve been attempted which seenm
to give good results in some cases and poor results in others. It
must be noted, however, that présent—day{remote sensing daté often

1 N
contains an appreciable amount of instrument noise. Few of the above

(ﬂiR}EQAI;Iyu;
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investigators discussed the problem, but Williamson et al (1973)

did indicate noise of from T to 16 percent of the water signal for
early LANDSAT datas. Bahn (1976) has indicated that more recent
LANDSAT dataz has noise levels from 5 to 10 percent of the water signalﬂ
(It should be noted that signals from land objects are seldom badly
influenced by this problem because the received radiance is usuvally a
high percentage of the dynamic range of the instrument whereas signals
from water bodies are low in megnitude.) Data from aircraft multi-
spectral scanners iz quite varisble. Depending on “the particular
scanner used, noise levels may range from 2 percent to values in
excess of 30 percent of the water signal (Bahn 1976). In many cases,
smoothing processes are applied to the remote sensing data to suppress
noise, but most published results generally do not discuss this

aspect of the investigation. Algo little is published concerning

uncertainties in ground truth values used in the various correlation
studies. Tidal and mebeorclogical effects cause uncertainties when
there is a time lapse between the remote sensor overpass and the
teking of the water sample. Variastions in sampling technique and .
the present state of art of laboratory anélysis introduce additional
sources of error. It is clear that more highly controlled experiments

and additional indepth investigations must be conducted to test ,

those data analysis concepts which show promise.



CHAPTER IV

THEORY

‘The basic processes which occur during multiple regression
analysis of spectral radiaznce dafta can best be examined by analysis
of the problem from & signal response point of view. The objective of
this analysis is to define those optical physics conditions for which
the linearized multiple regression equation (equation (3-2)) represents
an exact solution to the problem. A single-constituent water mixture
is first discussed with multi-constituent cases analyzed in subseguent

sections.

Single—Constituent Water Mixbtures

Tt is assumed that the polluting constituent (pollutant A) hes
an upwelled radiance spectra similar €o that shown.by Schiebe and
"Ritehie (1975) for sediment. It is also assumed that at any wave-
length, the reflected radiance varies in a linear manner with
pollutant A concentration. Assuming linear superposition, J;‘.he
upwelled radiance near the water surface, Rad, for filtered seawater

-

plus poliutant A may be expressed as.,

Rad = A + B P, (L-1)

25
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where:

A = upwelled radiance of filtered seawater.

B = constant giving change in upwelled radiance
due to PA'

Py = pollutant A concentration.

For a given water mixture of fixed pollutant A concentration, the
constants A and B both vary over the spectral range but are assumed
constant gt any particular wavelength. Thus for a single wavelength
band or channel in the spectra, Rad is a linear function of- PA'

From these assumptions a hypothetical rddiance spectra can be
constructed as shown in figure L. Th; upwelled ;adiance scele is in
arbitrary units for gimplicity of analysis in this s%udy. Also
pollutant A concentration values are in arbitrary units (different
from radiance uni%s) for ease of analysis. The spectral profile for
pure water (filtered seawater) was taken f?om Grew (1973). Also
shown in figure 4 are 5 spectral bands which will bg usgd iﬁ this
analysis. -

Equation (b-1) can be rewritten in terms of sediment concentration

for any one band.

P, = i + k(Rad) (4-2)
where:
= -A
J =75
= &
k=3
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In the general case where J and k vary with wavelength A,

P, = 3(A) + k(A) Rad(}r) (4-3)

Bquations (4-2) and (4-~3) indicate that in the single-constituent
case, sediment concentration may be obitained from meagurements in

only one spectral band assuming the constants J and k are known.

Dual-Constituent Waber Mixtures

If it is now assumed that the Tiliered seawater contains two
constituents, pollutant A and pollutant B, the upwelled radiance at

any wavelength X may be written as:

Rady = Ay + Byfy *+ Ty (h-4)

Equation (k-L) assumes that there are no chemical, eleétrical, or
optical interactions between pollutant A and polliutant B; and that

the upwelled radiance varies linearly with coﬁcentraiion of each
constituent. If it is further assﬁméd théi the radiance linearity
with concentration is consistent over the'#évelength'r;ngé of interest
and that the spectra of pollutant B (in filtered seawater) is aifferent

than that of pollutant A {see figure 5), then the upwelled radiance

at wavelength Y may be written as:

Rady = Ay + ByP, + EgPp {L-5)
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The requirement that the spectra of pollutant A he different than that

of pollutant B means that:

(L-6)

If upwelled radiance values are known at wavelengths X and Y,

equations (4-4)} and (4-5) represent two equations with two unknowns

(PA and PB). Multiplying (4-4) by By and (4-5)} by B, and
substracting,
By(Rady) - By(Rady) = By, ~ Byhy + (Byfy - ByEy)7y (4=1)

Solving for PB:

_Byhy = Behy B, B,
Pp = BB, - B, By - BYEX (Redy) + B, - BE (Rady)

(b-8)

Remembering that Ay, Ay, BX Y’ E and EY are constants, equation

(4-8) can be written as:

= J' + Kﬁ(RadX) + K&(RadY) (k-9)
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where:
Byhy — Byhy
J' = et = = songtant
Byfiy ~ ByFy
—BY

e

= g = conshbant
BBy - ByPy
B

F-u——g————" = constant
Byy ~ ByPy

]

«

Solving for PA:

P, =J+ KX(RadX) + KY(RadY) (4-10)

x __Xrx xfy
B 2

: +
BE. - B
x BB - BBE Py ~ ByBy

= congtant

1

3
X By, ~ ByByE,

= econstant

— =1

KY = g;ﬁ;—:—gzﬁg = constant

Thus the exact solutions for PA and P (equations (k-9) and (4-10))
are linear multi-parameter equations of the same form as the
statistician's multiple regression eguation {(equatien (3-2)) if each

constituent has a linear radiance_ gradient with concentration ang

there are no chemical, electrical, or optical interactions.
; it :
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Dual-Constituent Water Mixtures in the Presence

of Nonlinear Surface and Atmospheric Effects

The total radiance value received by a remote sensing instrument
includes both surface reflection and atmospheriec diffusion effects in
addition to the radiance upwelled through the surface of the water
(see figure 1). Such surface and atmospheric effects may be either
linear or nonlinear with various parameters such as pointing angle,
wind speed, aerosol content, and molisture content. Thus one may be
faced with the problem of trying to extract pollutant concentrations
for pollutants with linear radiance gradients from total radiance
measurements which contain nonlinear components as a result of
variations in unknown surface and atmospheric parameters. For purposes
of this analysis, it is assumed that these nonlinear radiance
components are independent of the radiance upwelled from the water.
Atmospheric anﬁ surface effects may then be superimposed upon the
upwelled radiance from the water to obtain a total signal. At any
vavelength, the total radiance received by the remote sensing instru-

ment may be expressed as:

Rad = A + BP, + EP, + H¢M +. I + in‘ ‘ (4-11)

where:

A = upwelled radiance of filtered seawater

BPA = upwelled radiance of pollutant A
EP, = upwelled radiance of pollutant B

B
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-

H¢M ="' radiance component from surface reflection
(assumed as a function of some varieble such as
¢ which is related to the instrument pointing
angle and the solar elevation angle).

I = radiance component from clear atmosphere.

LXﬂ = radiance component from atmospheric pollutant X
(assumed as function of X, %o the Nth power ).

Equation (h~11) assumes that atmospheric and surface reflection
variations are small over the scene of interest and that their effects
may be approximated by power law functions over small veriations. If
it is further assumed that a2ll nonlinearities are consistent (M and N
values are constant) over the wavelength range of the remote sensing
measurements, then the total radiance for wavelengths W, X, Y, and %

may be written:

Rady = A + BP, + E P, + HW¢M i waﬂ (L-12)

Rady = Ay + ByP, + EP. + Ho'l + T, + Lxxi (L-13)

Rady = Ay + ByPy + ByBy + Hyd + Iy + Ly (1-14)
- M | :

Rad, = Ay + B/P, + E, Py + H 4" + I, + szﬁ | (4215)

Equations (4-12) through (4-15) are four equations with four unknowns
(PA’ Pg» ¢M, XﬂL Solving these equations simultaneously (see Appendix

C), it can be shown that:
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P, - K (Rad,) + K (Rad,) + K,(Rad,) + K,(Rad,) (4-16)

- where:

1 . .
I =g =(Byoy Ly + oy JLy) (A + I)

+

(Byory yDy){dy + Iy)
t By yBg + Buoy yhy + By pLy) (Ay + Iy)

- (Byoy Dy + Byoy yBy)(8g + I5)]

= constant

= f{A,B,E,H,I,L)

L

Ky = 5 [Bgoy by + Byoy pbyl = constant

= £(R,E,H,L)
_ 1 _
KX =% [—BXOLY ZNW] = constant

= f(B,E,H,L)



K = %'[“BXQW,XLZ = Byt yly ~ Bydy gly] = comstant

= £(B,E,H,L)

= L. =
Kz = 5 IBgoyxly * By, by = conmstant

£(B,E,H,L)

0 = (Byiy TPy - By JluBy - By, xlzBy
* By, xlyBr ~ Bty vlaPy * Bty vivBy
By 2By~ Bty By

By = oy, olxBy = Oy 2l ~ %, xRgly + O,y

By = (o yLoBy = O yLyBy = Oy LyEy + 0y LB

i

O x = (Tylly ~ Lyty)

O 7 = (Lyly - Lyfl,)

Oy = (Bl = Tyfty)

and,

33
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Ph =-J‘ + Kﬁ(RadW) + K%(Radx) + K} (Rad,) + K} (Rad,) (b-1T7)

Wwhere:

J' = constant = f(A,B,E,H,I,L)

Ky = constant £(3,E,H,L).

£(B,E,H,L)

)

Ki = constant

Ki = constant = f(B,E,H,L)

K! = constant = £(B,E,H,L)

Equations (4-16) and (4-1T7) are significant in that they show that the
exact solutions for P

A

equations of the same form as the statistician's multiple regression

and PB are again linear multi-parameter

equation even if nonlinear atmospheric and surface reflection
variations are present. A major assumption of this analysis 1is that
the atmospherie and surface nonlinearities are consistent over the
wavelength range of the measurements and can be approximsted by power-
law variations. Again each water constituent is assumed to have a
linear radiance gradient with concentration and there are no chemical,
electrical, or opbical interactions between constituents. Another

important point to note is that if the J,K constants of equations
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(4-16) and (4-17) can be obtained, the concentrations PA and PB

can be compubted vithouﬁ knowledge of the atmospheric and surface

€

reflection variables, $ and XA' If the nonlinear radiance components

do not follow power lav variations, but instead follow other relations

independent of PA

procedures similar to Appendix C can be followed and the exact

and PB (such as power series expansions),

sol'utions for PA and Pp will gtill be in the form of linear

multi-parameter equations.

Multi-Constituent Water Mixtures with Nonlinear

Constituents and Atmospheric Effects

In this case, one is dealing with a situa?ion that is analytically
similar to the previous case with nonlinear surface reflection and
atmospheric effects. In both cases, the total radiance received by
the remote sensor is composed of components with linear variations
and components with nonlinear variastions. If the water constituent
with s nonlinear radiance wvariation with concentration is independent
of cther constituents (no chemical, electrical, or optical inter-
actions) and the nonlinearity may be approximated as a power law

variabion, the total radisnce may be expressed as:

_ : Q ) _
Rad—A+BPA+EPB+SPC+I+L}&A (b-18)
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where:
= upwelled radiance cf‘fiitered seawaler
‘ BPA = upwelled radiance of pollutant A
EP, = ipwelled radiance of pollubant B
SPg,= upwelled radisnee of pollutant C (assumed as a function

of conecentration, P., to the Qth power)

C!

I = radiance component from clear atmosphere

LXﬁ = radiance combonent.from.ameSPheric pollutant Xﬁ.

If it is assumed that the nonlinearity of P, radiance (as well as

c

that of XA) is consistent over the wavelength range of interest,
then equation (4-18) can be written for the wavelengths W, X, ¥, and Z.

The resulting equations are identical to equations (L-12) through

Q

o terns are substituted for the H¢' terms. If the

(4-15) except SP

procedures of Appendix C are followed, it can again be shown thab:

g
]

= F Kw(Radw) + KX(RadX) + KY(RadY) + KZ(RadZ) (h-19)

Hd
[}

p = 9' + Ky(Rady) + Kj(Red,) + K!(Rady) + K} (Rad,) (1-20)

The J,J' terms are a function of A, B, E, 8, I, and L and the K,K'
terms are a function of B, %, S, and L. Again it must be noted that

it is not necessary that the nonlinearity of P, obey a power law

C
relation as used in this example. Eguations of the same form as

(k-19) and (4-20) would result so long as the nonlinearity is consistent

with wavelength and independent of PA and PB' A knowledge of PC or
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X, ~is’not réquireﬁ‘to compute P, and PB from equations (4-19)

and (4-20) if the J,K constants can be obtained by some means.

Multi-Constituent Water Mixtures

with Optical Interactions

The sbove analyses have assumed mutual independence with no
optical interactions between water constituents. While many types of
optical interacticons may cccur, there is at least one type for which
the solution to the signal response equations iz still in the form
of a linearized multiple regression equation. That is the case when
a constituent with a linear radiance gradient has its radiance
component modified by the presence of another component because of
chemical or physical processes.: Assume, for example, the component
of total radiance contributed by P, is EPB (see eguation (h-4)).

B
Assume also that there is a constituent PC which when added to
the water modifies the radiance contributed by PB such that the
new PB component is EPB + G(Pg)(Pg), where R and T represent
power-law approximations of the nonlinesr modifications which may
occur. The total radiance from the water mixture with this type

of interaction would have the following form (ignoring atmospheric

and surface nonlinear components):

_ R, ,..T
Rad = A + BPA + EPp + G(PB)(PC) (b-21)
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Tf it is assumed that the nonlinear modification terms, R and T,

are constant over wavelength, then the total radiance for various

wavelengths may be expressed:

Rady = &y + ByP, + ByPp + Gy(PR)(P) (4-22)
Rad, = Ay + BP, + E.Py + (;X(Pg)(pg) (4-23)
Rady = Ay + ByP, + BBy + Gy (PR} (PG, (h-2k)

Multiplying (4-22) by Gy and (4-23) by G, and subbtracting:

Oyllody) — Gy(Redy) = (Cghy = Gby) + (68, - G)E,

+ (6B~ 6B )Py (k-25)

Multiplying (4-22) by Gy and: (4-24) by G, and subtracting:

Gy(Rady) - Gy(Rady) = (Gyhy - GuAy) + (GyBy - GyBy)P,
+ (G — 6B, )P, (L-26)

Multiplying (k-25) by’ (GYBW - GWBY) and (k-26) by (GXBW - GWBX)

and subtracting:
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(GgOyBy — CyG B IRed, — (G,GyBy ~ Gy )Redy
2
- (GYGXBW - GYGWBX)RadW + (GWGXBW - GWBX)Ra,dY
= (Gyhy = Ghy) (GyB, - GBy)
~(Gyhy - Gy (GyBy - GyPy)
+[(GXEW - GWEX)(GYBW - GWBY)

- (GYEW - GWEY)(QXBW - GWBX)]PB (h-27)

Bolving for PB’ the solution is also of the form:

Py = Jr o+ K&(Radw) + K]'C'(Radx) + K_}(Rad_y) (L-28)
Thus it can be seen that some types of optical interaction may ocecur
and the exact solution to the signal response equations is still of
the form of a linesarized multiple regression equation. It is
expected that many types of optical interactions may occur in nature,
and it is beyond the scope of this investigation to study the effects
of all poésible situations” Rather it is the purpose of this section
to simply note that mutual independence between water constituents
is a desirable but not a strict reguirement for application of multiple

regression concepts.
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The above analyses have defined some optical physics conditions
for which the exact solution to the signal response equations is in the
same form as a linearized multiple regression equation. To summarize,
these conditions are:

l. The constituents of interest must have a linear or near-linear

upwelled radiance gradient with concentration.

2. The degree of nonlinearity in each radiance component must
remein constant at the wavelengths which are used in the
multiple regression eguation.

3. Mutual independence between constituents (no electrical,
chemical, or optical interactions) is desirable but not
always required.

An additional assumption of the analysis is that the mixture
concentration is constant to the depth of penetration of the remote
sensing signal {see Whitlock, 1976). (The impact ;f this assumption
will be discussed in a léter sectign.) For those situations in
which the above assumptions approximate real-world conditions, the
linearized multiple regression equation is the appropriate form for
computapion of constituent concentration from multispectral remote
sensing data in spite éf the presence of nonlinear effects from other

water constituents, surface effects, and atwmospheric effects.



CHAPTER V

LEAST-SQUARES AND STATTSTTICAL CONCEPTS

. Estimgtion of Coefficients

It is generally considered that independent variables in a
mathematical equetion cause a change in the dependent. variables of the
equation. From an optical physics point of view, a change in polliutant
concentration is believed to cause a change in upwelled radiance such

as that given in equation (5-1).

A Red = A + BP, (5-1)
Frém a physical viewpoiné, EA, is t@e %ndependent variable and Rad
is the dependent wvariable éxpréssing the actual cause-and-effect
relationship.
From a data énalysis viewpoint, the problem must be viewed in an
opposite manner. The regression task is to estimate the j,k
coefficients in Wﬁich Réd ié assumed as the independent wvariable

and P, is the dependent variable such as given in equation (5-2).

P, = § + K(Rad) (5-2)

For a mulitiple regression analysis, the task is to estimate the J.K

coefficients in the following multti-parameter equation.

b1
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Py = J + K (Rad,) + Ky(Rady) + ... (5-3)

In this case, Radx, RadY, ete. are treated as independent variables.
In many real life cbservations, the'so-called "independent varisbles"
are positively correlated with each other as well as with the dependent
variable which make the answers more difficult to interprete (Snedecor
and Cochran 1967, p. 398). For the remote sensing situation, high
correlations between the irdependent varisbles should be expected if
the pollutant of interest has a broad spectral signature such as those
shown in figures 4 and 5.

Because of experimental error and a limited number of sample
pairs, a precise estimate of the J,K coefficients is usually not

possible. TIn this case, the multiple regression equation is

represented as:
Pp=J+ Ky(Rady) + K (Rady) + ... + e (5-1)

vhere e = deviation from the true value of PA

If there are n concentration-radiance sample pairs, the sum of the

squares (8S) of the deviations from the true values is:

; il

S8 = I e = I [P ~J-K(Rady) - K (Red,) —1? (5-5)
i i i i
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The leagst-squares procedure chooses the J.K constants such that 55 is
a minimum. Taking the derivative of S5 with respect to J and K and
setting it equal to zero, it can be shown in matrix form (see Draper

and Smith 1966, p. 9-59):
b = (Bad'I‘{ad)-lRad'P‘ (5-6)

A

where:

> -

A

1 - Rad.x Ra.dY .




Ll
Thus given radiance values from several wavelengths (say RadX and

RadY) taken over n points where P, values were measured (?A),

A
values for thg 3,K,constants can be estimated using matrix transpose,
multiplication, and inversion procedures. In performing the least
squares process, three major assumpbions concerning the remote
sensing.aqd ground truth data are involved {Daniel and Wood 1971,

P. 7). They are:

1. fThe corréct‘form of equation has been chosen. (Rad is linear
with concentration for all wavelengths involved. )

2. The data are typical and are a representative semple from the
whole range of environmental combinations.

3. The observations of ground truth concentration values
(dependent varisbles) are uncorrelated and statistically
independent.

Three minor assumptions are:

1. All observations of concentration have the same (but unkncwn)
variance.

2. The distribution of uncontrolled error is a normal one.

3. All independent variables (Rad values) are known without
error.

An umwritten assumption is that all the data are "good" without
physical or instrumentation deficiencies. In the remote sensing case,
this generally means that only those data synchronous with the remcte

sensor overpass should be utilized in the least-squares process.
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Time lags between the overpass and ground truth collection cause the
data to be hydraulically inappropriate because of wind and tidal
effects. It ﬁay be possible to correct the ground truth data to
account for small time lags (see Kuo and Blair 1976), but such
procedures have not yet been demonstrated valid in field experiments.
An additional problem is that measurements of the independent
variable (Rad) do contain error. Daniel and Wood (1971, p. 32) note
that when the independent variables have considerable error wvariance,
the estimate of the K coefficients is biased toward zero. As a rule
of thumb, Daniel (1976) recommends that the least squares analysis
be uged 1f the error variance of the independent'variables, (ORad)e’

is less than 0.1 of the mean square scatter about the mean value of

Rad of the experiment. For any wavelength, X, this is expressed:

n 2
b [(Radx) - Radx]
i=1 i

o
Radx) < 0.1 — (5-7)

where:
n
%z Ra
1 - X
X n

Given an experiment with n observations, straightforward computation
yields the mean square scatter gbout the mean of Rad. Tt is often
difficult to estimate the error variance of the Rad measurements,

however. Instrument calibration data mazy be required. Another
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possibility is to examine the noise in the data. If the data noise is
assumed random with & normal distribution asbout the true value, then

). The full

the maximum deviation from the true value is B'QCGRad

range of noise on both sides of the true value is T.B(URad) . The
e
2

error variance is (ORad) . An estimate of the error variance is then:

. 2
)2 = (full rangg‘gf noise) (5-8)

(oRad
Equation (5-8) assumes no bias in the measurement of Rad. If
equation (5-7) is satisfied for all wavelengths to be considered in
the regression snalysis, the independent variables, Rad, are assumed
to contain minimal error and least-squares estimates of the J,K

cocfficients are gppropriate;, .

w ¥

Measures of Precision

Unfortunately experimental radiance and concentration data contain
errors which in turn cause uncertainties in the estimated values for
the F,X coefficients.. While errors in the individual coeffieients -
are ofwAsOWe Courern, the precision.ofl, the total .regression. equabtion: . .
is OF,TFing, GORCE R, The MNCertALALY, iR PERIiAtion, o, concantrabi of, -
valugs, in othex.portions, af. a,remohe,sensing. seene using.the leasti~ .. .
squares-Titted eguation is regquired by thg environmental engineer. .
Various measures of precision will be discussed in the tollowing

sevbivng,
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Correlation Coefficient

If least-squares estimates are used for the J,K coefficients, then

the predicted value for PA at any point i 1is PA . The measured
.'_ i
value at point: i1 used in the least-squares process is ﬁA . The
i
mean value of zll P, 1is ?A. From Draper and Smith (1966, p. 1k4),
i

the following three statistical parameters are related as:

~ - 2_ ~ 2 — 2
E (P, -B)" = E (B, - P, )"+ z (p, -%,) (5-9)
i=1 i i=1 i i i= i
where:
n -
T (P, - P,)° =SS about mean
_ A, A
i=1 i
n 5
I (P, - P, ) = 88 sbout regression
.l A A,
i=l i i
z = \2
LI (p, -P,)° = 88 due to regression
. A, A
i=1 i

The B8 about fegression are those deviations between the predicted

A
correct and the total equation is a good fit to the data, then S8

values, PA’ and the measured wvalues, § .« JIf the coefficlents are

about regression should approach zero. The ratio r2 is defined as:

- 5 )2
I (p, -PF,)
. . A, A,
2 _ 55 due to regression _ i=l i 1 (5-10)
S5 about mean n - .2
(¥, -F,)

i=1 i
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If r2 approaéhes 1.0, then SS about regression must approach zero
from equation (5-9). Thus v is one statistical measure of the
adequacy of the least-squares-fitting process. Draper and Smith

(1966, p. 26) state that r° measures the proportion of total
variation about the mean wvalue of PA’ ?A, that is explained by the
regression equation. It is often expressed as a percentage after
multiplication by 100. The square root of r2, r, is defined as

the correlation coefficient (multiple correlation coefficient for a
multiple regression equation) and is a statistical parameter which is
often used as a measure of adequacy. A correlation coefficient of 0.9
means that 81 percent of the total variation about the mean value is
explained by the regression equation. Similarly, an r value equal
1.0 indicates a precise fit of the predictive equation to the measured
data. One must be careful not to'rely too heavily on r as a measure
of eguation precision, however. When the number of estimated
coefficients in the regression equation equals the number of
experimental observations, an exacht solution for the coefficients is
obtained. In this case, r will equal 1.0. If, however, there are
errors in the experimental data, the coefficients will be in error.
Thus r is not a good measure of precision as the number of estimated
J,K coefficients approach tﬁe number of experimental observations.

For the remote sensing situations, this means that the number of
ground truth observations should exceed the number of radiance

wavelengths (or bands) in the regression equation by two or more.
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Standard Error
To arrive at other measures of precision, additional statistical
terminology must be inbtroduced. The number of independent pieces of
information that are required tc obtain the 88 is defined as the
degrees of freedom. If p equals the number of estimated J,X
Parameters and n equals the number of independent observations, then

the degrees of freedom are as follows:

Source Degrees of Freedom
55 due to regression p-1
58 about regression n-op

Mean square values are obtained by dividing SS values by the
appropriate degrees 6f freedom. The mean sguare about regression is

. 2
known as the variance, ¢°, and may be expressed as:

[ ~ 2
IRy =B )
02 - i=1 i i (5_11)

R

The variance is a measure of The deviation between the predicted
values from the least-équares equation and the measured values. The
square ro&t of the variance iIs known as the gtandard deviation or
the éfandard error, ¢. The standard error is a second measure of the
precision of the léast—squares estimation process for estimating
the J,K coefficients. From equation (5-11), it is clear that the

smaller the value, the more precise the fitted equation. If an error
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is a sum of errors from several sources, then no matter what the
probability distribution of separate errors may be, their sum will
have g distribution that will tend more and more to the normal
distribution as the nuwber of error components increase by-the Central
Limit Theorem (Draper and Smith 1966, p. 17). Thus the standard error,
U, is usually assumed to represent a value within which 68 percent of
all errors are expected to fall if (1) there are an infinite number

of observations and (2) there is minimal error in the independent
variazbles. Unfortunately there are usually onlf 8 small number of

. ground truth observations that are synchronous with the remote sensor

overpass for most water quality remote sensing experiments.

P-Test
The F-test is a third method of evaluating the adeguacy of the
least-squares—estimation process. TFortunately, the technique is also
believed to give an indication as to the capability of the regression

equatlon as a predictive tool. The F-ratio is defined as:

_ (mean square due to regression)
(mean square about regression)

(5-12)

For a multiple regression equation with p estimated coefficients and

n experimental observations:

n o
I (R, -F)

- Eg = g; SRR - (5-13)
L (B, -B,)

i=1 i
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An alternative expression for ¥ is (from Snedecor and Cochran 1967,

p. Lo2):

pofo=p) 2 (5-1%)
p-1)", _ 2

There is also a critical F value available from tables which is

based on the degree of freedom parsmeters as well as the confidence,
'}1

limit. A confidence 1limit of 0.95 means that the risk of being
incorrect is no more than 5 percent.- The‘F-test is one in which the
calculated F value from equations (5-13) or (5-14) must be greater
than the critical value for the regression procesi to be Jjudged
significant within the confidence 1limit. For examplé, if the

multiple regression equation PA =J + KX(RadXS + kY(RadY) has been
obtained from 12 sets of independent observations, the critical F
value for a 95 percent confidence level (ng -1, n - p, 0.95))

would be 4.26 from a F-distribution table (Draper and Smith 1966,

p. 306). If %he computed F value were greater than 4.26, the regres-
sion equation would be judged significant within a 95 percent
confidence level. Draper and Smith (1966, p. 6L4) state that the
obtaining of a statistically significant regression does not necessarily
mean that the resulting equation will be useful for predictive
purposes. They note that J.M, Wetz suggests the calculated F value
should be at least four times the critical F value if the regression
equgtion is to be regarded as a satisfactory predictor. Thus the

F-test for predictive capability is:
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F
7 2 b0 (5-15)

Total Squared Error
Daniel and Wood (1971, p. 86) recommend the total squared error
as a criterion for goodness of fit. This‘stamistic, called EP’
measures the sum of the squared biases-plus the suﬁ of the sq_uared3
random errors for the dependent variables at éll n déta points.

Given a mulitiple regression equation with p estimated J,K

coefficients:

¢ =-—=2 - (n-2p) (5-16)

o)
48]
ds}
il

sum of sqguares of regiduals
p-term eguation

unbiased estimate of 02

1]
|

For purposes of this analysis, the procedures of Dani;l and Wood
{1971, p. 87) are followed. It is assumed that the mean square of the
residual of the multiple regression equation conitaining radiances
from all possible wavelengths {p = Rmax) is an unbiased estimate of

2. Equation (5-16) may then be expressed:



53

M n 2
i a "]
CP = = - 5o, - {(n - 2p) (5-17)
2 (PA. ~ B )
1= i 1
® 7 Ppax
— P

An equatlon with a minimum value of CP would have a minimum total
variance (and average error) when used fof predictive purposes. IT
the p-term multiple regression equation has negligible bias, then

the expected value of RSSP is {(n - p)sz]. Erom equgtion (5-16),
CP = p when there is zero bias in the fitted equation. When there
is substantial bias, CP is much larger than p (Daniel and Wood

1971, p. 87). A multiple regression eguation which has a low value

of CP and the ratio Cp/p £ 1.0 is comsidered by Daniel to be z

good fit with negligible bias and useful for’pfediction purposes.

Selection of Wavelength Combinations

It is usually not known precisely what atmospherie and water
parameters are present when a remote sensing experiment is performed.
It is impossible to measure all parameters which might influence thé
total upwelled radiance received by the remote sensor. The usual
case is one in which ground truth measurements are made for only those
parameters of interest. Since all the factors present which make
up the total signal are unknown, it is not possible to predict how
many wavelengths will be required to separate the desired parsmeter

from the total mix of factors influencing the signal. Previous
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auvthors who have utilized direct multiple regression analysis

(Johnson 1975 and Rogers et al 1975) have performed least-squares

fits to %arious combinations of wavelengths (or bands). using the
stepwise regression process to select a "best" eguation for the
parameter of interest. The stepwise regression process (see Draper
and Smith 1966, p. 171) introduces independent variables one at a time
to the regression equation to reduce the residual sum of squares. An
F-test is used to judge the need for adding additional terms.

Daniel and Wood (1971, p. 85) note that stepwise regression can lead
to confusing results whenever the independent varigbles are highly
correlated (as they are in this case). There are often betiter eguations
with different sets of independent variables that are overlooked by
the stepwise procedure. Daniel and Wood (1971, p. 86) recommend

that the CP statistic be used to select the equation with the
optimum ccmbination of wavelengths or bands. TFor purposes of this
investigation, regression equations will be comﬁuted for ali
combinaticns of wavelengths or bands for which upwelled radiance
values are available. Correlation coefficiénts, standard errors,
F-tests, CP values, and Cp/p ratios will be computed for each
combination. The selection of a "best" equation’ will be based on
minimam CP values if the Cp/p ratio indicates an unbiaged fit

and if values for correlation ccefficient, standard error, and F-ratio

are reasonable,



CHAPTER VI .

ANATYTICAL, VALIDATION: .

It is desirable to validate aéplication bf ;he'linearized
multiple regression analysis. in the presence af'kngwn.nonlineﬁéities.
In the usual experimental situation, it is often difficult to know
exactly what nonlineavities are present. For ‘this reason, several
hypothetical sets of data with known~nonlineariéieskwere constructed.
Linearized multiple regression analyses were then applied to these
data for both homogeneous and non-homogeneous test cases; The
following sections describe the hypothetical data and results from

the analyses.

Hypothetical Data

For purposes of this analysis, the situation described by
equation (4-11) was assumed. The spectral characteristics assumed
for pollutants A and B are shown in figures 4 and 5, respectively.
Aé noted previously, the spectra“assumed for poliutant A is typical of
a sediment. The spectra for pollutant B is fypical of an algae species
(see Grew 1973). The upwelled radiation component assuimed for surface
retlection is shown in figure 6. TFor this component it was assumed
that the upwelled radiance varies as the cube of ¢ where ¢ is
related to the solar elevation angle and the instrument pointing

angle. High values of ¢ indicate the instrument is looking near the

25
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sun glitter and low values are looking away from the glitter area.
The spectral peaks shown might be caused by a surface film on the water.
The component of upwelled radiance assumed from atmdspheric effects
(diffuse skylight) is shown in figure 7. It was further assumed that
XA represents the concentration of some type of fluorescent pollubant
which absorbs stmospheric scattering in the blue region and enhances
it in the infrared. The modification to clear atmosphere scattering
was assumed to vary as the square of XA conecentration.

It was next assumed that the concentrations of pollutant A,
pollutant B, and aerosol XA varied over a remote sensing scene of
interest. The instrument pointing angle, hence ¢, was also

assumed to very. For the homogeneous case, values for these paramebers

at eight locations within the scene were assumed as follows:

Location PA PB ¢ XA
1 20 20 20 20
2 10 20 30 Lo
3 30 Lo 20 10
i 20 30 10 Lo
5 Lo 10 30 20
6 10 ho 10 30
7 20 10 ) 30
8 ho 30 ho 10

For each of these eight locations, a hypothetical total upwelled
radiance spectra was constructed using equation (4-11) and the
components from figures 4 through 7. TFigure 8 shows a typical total
upwelled radiance spectra constructed during this process. TFable 1

shows total upwelled radiance values computed for each of the eight
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locations. Also shown are concentration values for PA and PB
vwhich were assumed to have been measured. (Values for ¢ and XA

were sssumed not to be knowm.)

Anglysis Results for Homogeneous Case

The data in table 1 were used in the linearized multiple
regression analysis. Least-sguares estimates of the J,K coefficients
for all possible combinations of bands were computed. Since there
were 5 radiance bands, there are 2° - 1 or 31 possible combinations
for each parameter of interest. The J,K coefficient estimates for PA
for each regression equation are shown inh table 2. The various
statistical estimates of precision for each combination of bands is
shown in table 3. From table 3, it is evident that there are a number
of band combinabtions which prov&de high correlation coefficient,
small standard error, and an F-test greater than 4.0 {at the 95 percent
confidence level). 1In this case, there are several combinations which
show negligible bias (CP/P near 1.0 or lower). The optimum combination
of bands according to Daniel and Wood (1971) is the one with the
lowest value of CP (bands 1, 3, k4, 5).. The correlation coefficient,
the standard error, and the F~test ratio are all satisfaétory for this
combination. Referring back to table 2, the optimum linear multiple
regression eqguztion for extracting‘ PA from the upwelled radiance

data of this scene ig:

P, = -26.2 - O.90(Radl) + 3.73(Rad3) - 0.17 (Radh) - 1.89(Rad5) (6=1)
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It took four wavelengths to extract PA from a scene which contained
four variables as expected based on theoretical considerations.
Estimates of the J,K coefficients for PB are given in table L.
The statistical estimates of precision for PB gre given in table 5.
In this case there are two combinations of four bands which are
unbiased. DBoth have approximately the.same value of CP so the
combination with the highest F-test is considered optimum (bands

2, 3, 4, 5). Referring to table L, the equation for extracting Py

from the scene is:
P = =3.5 + 1.18(Rad,) ~ 4.34(Rad;) + 4.28(Rad),) ~ 1.0k(Rad;)  (6-2)

Both eguations (6-1) and (6~2) should be accurate predictors.
The standard error for PA is 0.5 units bverfa.total_range of wvalues

of 30 units. This means that all pfedicted values of éA using
equation (6-1) should fall within +1.95 units:(3.90) of thé true
value. The standard error for. PB ig 1.1 units indicating that all
predicted values of P, from equation (6-2) should be within +h.29
umits of the true value. To test these hypotheses,radiance wvalues
Tor ten additional locations have been generated. Values assumed for

the variables which influence upwelled radiance at each location are

given below:
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Loecation PA PB ) XA
9 15 38 i2 23
10 22 23 18 16
11 37 1k 29 27
12 23 11 33 13
13 36 16 39 3k
1k 12 29 28 37
15 32 34 23 27
16 29 17 17 12
17 1L 23 1k 17
18 35 32 11 39

Values for the radiances at each location were computed again using
equation (4-11) and the components from figures 4 through 7. Table 6
gives the radiance values for each location. The values from tables 6
and 1 were input to equations (5-1) and (5-2) for computation of P,
and PB ft ¢ach location. Predicted PA and PB values are

compared with the assumed true values in figures 9 and 10. Since all
predicted values are within +3.90 of true values, it is concluded

that the linear muwltiple regression ana}ysis is a valid approach for
extracting linear water quality p;rameters in-the presence‘of nonlineaf

effects in homogencous waters provided radiance components are

mutually independent and linearity is constant with wavelength.

Analysis Results for Non-Homogenecus Case

A water body may.be considered nohfhomogeneous if a2 portion of it
contains constituents which are not contained in other parts. An
industrial effluent in a non—tidal, flowing river represents a typiecal
non-homogeneous situation. The river may be flowing with wvarious

concentrations of Pp upstream of the industrial plant and outside
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the effluent plume. ‘Within the plume, the waters would contain
various concentrations of both PA and the effluent PB. To simulate
such a gituation, a set of hypothetical data has been formulated for
the case when PB is zero. Values assumed for other parameters are

a5 follows:

Location PA PB 0] XA
19 15 0 12 23
20 22 0 18 16
21 37 0 29 27
22 23 0 33 13
23 38 0 39 3k
2L 12 0 28 37
25 32 0 23 27
26 29 0 17 12
27 1L 0 14 17
28 35 0

11 39

Values for upwelled radiances were again computed using equation (4-11)

and the components from figures I through 7. Table T shows the

radiance values computed which were assumed to exist for river locations

upstream of the industrial plant and outside the effluent plume.

Next it was assumed thaf a remote seﬁsing experiment had taken place

in which five ground truth.data points‘weie taken outsidé the plume

{(Locations 19 through 23 from table T7) and eight points were taken

inside the plume (locations 1 through 8 from taﬁie l). The linearized

multiple regression analysis was then applied to these 13 data points.
Estimates of the J,K coefficients énd'statistical measures of

precision are given in tables 8 and 9, respectively, for the river

constituent, PA‘ The combination of bands 2, 3, 4, and 5 gives the
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lowest value of CP end is an unbiased estimate. The equation for

extracting PA from the non-homogenecus scene is:

PA = -22,63 - 1.56(Bad2) + h.29(3ad3) - O.EB(gadh)v— l.T6(Rad5) (6-3)

Tables 10 and 11 give estimates of coefficients and statistical
measures of precision for the industrial effluent, PB.‘.Band
combination 1, 3, 4, and 5 gives the lowest value of ‘CP with an

unbiased estimate. The equation for Pp is:

Pp = =3.93 + 0.55(Rad; ) - 3.85(Rad3) + k.23(Rag, ) - 0.82(Rad5) (6-h)
To validate the adequacy of equations (6-3) and (6-k), it was assumed
that locations 24 through 28 from table T represented independent
points from the river outside the plume and that locations 9 through
18 (table 6) represented independent points from within the plume.
Equations (6-3) and (6-4) were then applied ts the 15 independent
points as well as to the 13 points used in the fitting process.
Figures 11 and 12 comparg predicted and assumed values for PA, and
PB; respectively. In many cases, the independent points fell on top
of the solid symbols and are hidden from view. Since all predicted
values are within +3,90 of assumed true values, it is conecluded that
the linear multiple regression analysis is valid for non-homogeneous
water situations as well as homogeneous cases. The data used in the

fitting process must contain several points from each different water



mass, however, to insure that a correct correlation is performed for

the total scene.
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CHAPTER VII

LABORATORY VALIDATION ‘

The analytical test cases provideé validation of the linearized
multiple regression analysis when the dats gontain nonlinear back-
ground effects. The hypothetical &ata set assumed that radiances from
various sources could be superimposed upon each other {(mubtual
independence) and the deta containeé minimal experimental error. In
practice, the radiance contributions from various sources are not
always totally independent, and remote sensing experiments always
contaln significant errors in the measured ground truth and radiance
values. As a result of these problems, it is desirsble to validate
application of the linearized multiple regression technique with aectual
remote sensing data under controlled conditions. To achieve this
result, a laboratory facility was constructed such that upwelled
radiance measursments could be made over various controlled water
mixes in the presence of light from a solar simulator. Experimental
error in the measurements was analyzed, and the linearized multiple
regression analysis was applied to the data. The following sections
describe the laboratory facility., the test program, and results of

the analysis.

63
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Description of Laboratory Facility

A sketch of the laboratory set-up is shown in figure 13. The
enclosure shown had not been completed at the time of these +tests.
To restrict the amount of diffuse light being input to the water, all
tests were conducted at night with the solar simulator as the only
light source. Figures ik and 15 show photographs of the tank assembly
and solar simulator. The laboratory was designed and constructed to
satisfy the following objectives:

1. Measurement of upwelled ra&iagce spectra under controlled
conditions to determine af which wavelengths signals are
emitted by verious marine pollutants.'

2. Measurements at various concentration levels to determine the
degree of linearity of upwelled radiance with pollutant
concentratiocn. T, s

It was recognized from the start that the léboréxqry would npf ﬁrovide
a precise simulation of real—wa}ld spectra because (1) the solar
simulator uses a xenon light source with a slightly different spectra
than that of the sun and (2) diffusé skylight is not simulated. It
was believed, however, that the design objectives could be met if the
radiance values were normalized against the-input solar simulator
spectrum.

An initial study was conducted (Whitlock 1976) to estimate the

range of concentration values for which tank tests are applicable.
Figure 16 shows the results of that study. 2 is the penetration

90
depth from which 90 percent of the upwelled radiance is emitted.
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Figure 16 indicates that sediment concentrations should be grester
than 4 ppm if bottom reflection effects are to be minimized for a tank
which is 3 meters deep.

The illumination geometry on the water surface is shown in
figure 17. There was some concern as to whebther or not the 35 cm
diameter of the solar gpot is adequate to enable the full underwater
maltiple séattering process to ahcur. In a separate study,

Ghovanlou (1976) conducted a study using a Monte Carlo optical model.
Results of that study are shown in figure 18, Upwelled radiance is
shown as a function of solar spot size for three sediment concentrations.
For concentrations of 4 and 6 ppm, the curves are flat for solar
diameters 35 cm or larger indicating that the true underwater multiple
scattering process is allowed to occur. Results show that the 35 cm
solar spot size is not quite large enough for the 2 pom concentration.
Optical modeling results indicate that the 35 cm spot size (dictated
by mirror diameter) is compatable with tank depth in that both limit
applicability of the laboratory to test concentrations 4 ppm or
greater.

Another design problem was “that of maintaining a uniform,
homogenecus mixture without significant veétical or horizontal
concentration gradients in the tank. The problem is that the larger-
size particles of a sediment mixture tend to settle quite rapidly
unless an adeguate degree of turbulence is maintained. Figure 19 is a

schematic diagram showing the circulation system finally selected



66

for the tank. Tests were conducted using tracer techniques which
indicate that particle sizes up to 140u {with specific gravity = 2.6)
are maintained in suspension. Transmission measurements with two
concentrations of feldspar soil (particle size less than 60u) indicate
that the maximum deviation at any location in the tank was less than
0.5 ppm. Tests with larger size particles have not yet been conducted
80 the maximum capacity of the 1abo;at0£y in terms of particle size
is not presently known.

In order to Bé aﬁle té compare dats taken from different days,
a consistent water mixgﬁre is reéuired as a base to which pollutants

i

are added to achie%e'various concﬁntrations. The. tank holds 3,063
gallons so.distilled wate;.i; pro?ébﬁtivelf prenﬁive. Also tap water
at the Langley Research Centér‘is ;uite variable, depending upon the
amount and frequency of rain and the bﬁildiﬁg from which the water is
being drawn. To overcome these problems, a filtering-deionization
system has been inserted intbo thé plumbing such that consistent base
water can be achieved. Figure 20 sﬁows the ﬁerformance of that
system. For suspended solids, the fiber filter removes large
sediments and iron particles, and the carbon filter removes small
particles. Suspended solidé concentrations are consistently less

than 0.5 ppm. Dissolved substances such as minerals and chlorine

are also guite high in tap water. .The deionization system in use with

the laboratory reduces the combined concentration of these constituents

to less than 1.0 ppm.
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The spectrometer used to make upwelled radiance measurements
was the Tekbtronix J20/7d20 unit with the T313/R7313 oscilliscope
accessory. A photograph of the instrument is shown in figure 21.
The spectrometer measures power/bandwidth (watts/mm) over a range
from 380 to 980 nm. Bandwidths (spectrasl resolution) from 4 to 160 nm
may be selected depending on the intensity level of the radiation
being measured. TFor purposes of this investigation, power/bandwidth
values were divided (normalized) by gray-card reflectance measurements
of the input light source. The result is a normalized upwelled
radiance spectra which is dimensionless. At the time of the tests
described herein, automatic data read-out equipment were not available.
Photographs of the oscilliscope images were read by hand. The hand
reduction of data in combination with instrument-oscilliscope noise
introduced several sources for measurement error. Estimates were made
of the effects of various error sources on final normalized radiance

values and are shown below:

Error Source Effect on Normalized Radiance

1. TInstrument noise during water

mixture measurements +0.0212
2. Inability to discriminate center of

line of water measurements +0.0106
3. Instrument noise during gray

card measurements +0.0222
Y, Inabilify to discriminate center of

line of gray card measurements +0.0109
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If the above errors are assumed random, independent, and equal the
standard error, then the standerd errof of all combined effects is
0.0343. The range of normalized radiance values for water mixtures is
from 0 to 0.6 so the estim%ted standard error of the laboratory data
is 5.7 percent of the range o6f measurement values. While automated
data read-out equipment would reduce the error, it must be noted that

*

the level of uncertainty bf:these particular laboratory measurements

1

is compatable with ihétrument4nqise vaiueg from present-day aircraft
and satellite remétg;sensiné systems as Previougly discussed.

For this investiéation,"gpecific %hlues éf concentration Were'_
obtained by addltlon of ‘weighed, dry sémples of the constituent to
the water volume of the system (3063 gallons) The system was then
allowed to clrculate for approx1mately 15 mlnutes so that an even
distribution of materlal would.ex1st throughout the tank. The
estimated standara error of ;oncéntratién values ‘used in this study

is 5 percent of the gquoted value. Quoted values were obtained by

dividing the dry*materiai Weight.bj the water volume.

Test Program

In order to select test materials which had near-linear radiance
gradients with concentration, & series of single-constituent tests
were fifst conducted. Figures 22, 23,. and 24 show wide-band spectra
(spectral resolution = 160 nm)*fbr‘the three materials selected- for

~ this investigation. Ball Clay and Feldspaf sediments were selected

‘because of their small particle sizes (Chapman 1976) and their relative
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inertness when mixed both in tap water and with each other {Gjardo 1976).
Rhodamine WI dye was,selected because of its wide use in the
environmental engineéring field for dispersion and transport studies.
Figure 22 shovws a broad spectra in_%he visible wavelength range
for various concentrations of Ball Clay sediment. The value at
each wavelength represents the average of all radiances
80 nm both to the left and right of the wavelength being read.
Measurements were made-at the 160 nm spectral resolution such that
maximum light could be sbsorbed by the spectrometer in its "factory
calibrated" mode. (The spectrometer can also be operated in a time-
delay integration mode for measurements under low-light conditions
to obtain narrower spectral resolution. Such a mode requires portable
calibration equipment which was not available for these tests.)
Figure 23 for Feldspar sediment shows (1) a pronounced signal at the
lower wavelengths and (2) a much weaker signal than Ball Clay for any
given concentration. Figure 24 for Rhodamine WT dye shows a slgnal
which is also quite weak in comparison to Ball Clay but has a very
pronounced peak at red wavelengths. The inconsistent curves below
500 mn and sbove T80 nm are bhelieved to be the result of measurement
uncertainty. The standard error of measurement, GRad’ is estimated
to be approximately 0.0343 for these tests as previously discussed.
The radiance values of figures 22 through 24 were cross-plotted
versus concentration at waricus wavelengths. Figure 25 indicates that
Ball Clay sediments are near-lineer at all wavelengths for concen-

trations greater than 9 mg/2. Figure 26 shows PFeldspar to be quite
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linear for all concentrations st all wavelengths. Rhodamine WT
dye (figure 27) is nonlinear at all wavelengths where it has a signal.
Following the singlé-constituent tests, a series of duwal-
constituent tests were conducted using various concentrations of Ball
Clay and Feldspar sediments. It was helieved that these two sediments
in combination would provide an interesting test of the linearized
multiple regression analysis because (1) both sediments have near-
linear radiance gradients, and (2) the Feldspar has a low signal
magnitude in comparison to the Ball Clay. VWhile both sediments have
different spectra and for that reason should be easy to separate, it
was believed that these data would provide a somevhat severe test of
the multiple regression ﬁroéess. The radiance measurement uncertainty
(GRad = 0.0343) is an appreciable portion of the up%elled radiance

component caused by Feldspar sediments (compare with figure 23).

. GRa.d.-—
The analytical test case previously discussed showed that, a

constituient with a low magnitude of radianée (Pg) éould be accurately
separated in the presence of one with hiéh-radiance values (PA) it
near-perfect dataare availsble. It was guestionable as to whether the
linearized multiple regression process would operate as well on
constituents with low upwelled radiation in the presence of significant

measurement errors. The mixtures selected for testing and analysis

are shown below:
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Test Number Ball Clay Feldspar

(opm) (ppm)
1 129 17
2 173 17
3 9 35
L 9 69
5 52 69
6 52 173
T 173 173
8 9 1T
9 17 17
10 129 73
11 52 T
12 173 35
13 17 69
1L 17 35
15 52 35
16 173 52

Over the total wavelength range, five bands were selected at which

to measure upwelled radiance. The bands selected were:

Band Number ' Wavelength Range Center Wavelength
(nm) (nm)
1 *340-500 : 420
2 460-620 540
3 540-700 . 620
L 620-780 700
5

700-860 780

A limited number of bends was selected because both present and near-
future satellite systems will have only a few bands in the visible
and near-~infrared wavelength regionS'(f%gure 3). The measured values
for normalized radiance in each of the five bands for each mixture

combination is shown in table 12.
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Following the dual-congtituent measurements, a series of tests
were conducted with various mixtures of three .constituents, Ball Clay,
Feldspar, and Rhodamine WI dyes. The objective was to add a third
constituent which had honlinear radiance gradients with concentration
and was known to also have some‘optical interaction with the sediments.

The mixtures selected for testing and analysis are shown below:

Test Number Ball Clay Feldspar Rhodamine WT

(ppm) (ppm) (ppb)

1 9 17 3k
2 9 17 1052
3 9 . 35 34
b 17 . 35 34
5 2 35 ©o1052
6 17 35 1052
T 17 35 190
8 17 52 190
9 17 52 535
10 52 52 235
11 17 52 1052
12 52 52 1052
13 - 173 129 3%
1k 173 129 190
i5 52 129 535
16 129 129 535
i7 173 129 535
18 52 129 1052
19 129 129 1052
20 173 129 1052
21 173 173 3k
22 . 173 173 190
23 173 : 173 535
oh 129 173 1052

25 173 173 1052
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Values for the normalized upwelled radiance at the same Tive bands

as the dual-constituent tests are shown in table 13.

Results of Analysis

Dual-Constituent Mixtures

Before analysis of the dual-constituent data could proceed, a
test. was first be made to see if measurements were accurate enough
for application of the least-squares %echnique. Following the
recommendation of Daniel (1976), a comparison of the error variance
with the mean square scatter about‘fhe mean of the iIndependent
variables was used for this purpose. Using table 12 data, the mean
square scatter about the mean Wasxcomygted for the various bands and

compared with (o )2. For exemple in band 1, the caleculations are:

Rad

16 ——
R: [(‘Radl)’_ - Rad__L]
i=1 i

57 ~— = 0.017315 (7-1)

From previous discussion, (o )2 = 0.00117. The retio of the error

Rad
variance to the mean square scatter sbout the mean for this band
equals 0.067. Since this value (and values for other bands) is less
than 0.1, it is concluded that the measurement uncertainty is small
enough in comparison to the range of values for least squares
techniques to be used. ‘

On analysis of the data, a general philosophy was adapted in

which it was decided that only a minimum number of points would be
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be used in estimating the J,K coefficients. The resulting multiple
regression eguation would then be applied to the unused dats in an
effort to test the predictive accuracy of the equation. For the dual-
constituent laboratory data, eight of the test points in teble 12 were
first selected for analysis. Least-sguares estimates of the J.,K
coefficients were performed and the various statistical measures of
precision were computed. These results were discarded, however,
because the correlations with Feldspar concentration were so poor that
the F-test ratioc never exceeded 1.0. It was concluded that the
experimental error associated with these tests was large enough such
that eight points were not encugh for an adequate least-squares
estimate of the J,K coefficients for Feldspar.

A multiple regression analysis using 12 of the 16 points was
next attempted. All points in table 12 were used except test numbers
l, 3, 7T and 15. Again the regression was performed on all band
combinations. Estimates of thgﬂJ,K coefficieﬁts and statistical
measures of precision for Ball Clay sediment are given in tables 1L
and 15, respectively. Coefficient "estimates and statistical parameters
for Feldspar sediment are given in tables 16 and 17, respectively.
These data were considered acceptable because some band combinations
did give F-test ratios greater than 1.0 for both sediments.

Considering first the results obtained for Ball Clay sediment,
review of table 15 indicates that high correlation coefficients,
reasonable standard error values, and high F-test ratios may be obtained

for a number of band combinations, but the fits may contain large
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amounts of bias as indicated by Cp/p. The combination of bands 2, &4,
and 5 contains the lowest total squared error which is unbiased.
Referring to table 1k, the multiple regression equation for Ball Clay

concentration using this combination of bands is:
C = -56.8 + 1537.4(Rad,) + 7167.1(Rad) ) - 12198.9(Rad5) {(T-2)

The statistical estimateg of precision for this equation are:
Cr = 0.98

o =15.6 ppm

b ]

(F/F ) = 16.9
cer _95

3

All of these values are considered acceptable so it is assumed the
equation (7-2) will have good predictive capability. Equation {7-2)
was then applied to the radiance daéa in table 12 (including those
points not used in the fit) and the results are shown in figure 28.
Most points are within the +3.90 limits and it would usually be
concluded that equation (7-2) is a reasonable predictive squation.
The one point which falls outside tﬁe 3.90 limit brings up an
interesting point when dealing with a low number of data points. The

fitting of a multiple regression equation to a set of daba does not
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preclude the possibility that the equation which is obtained may de
quite sensitive to small errors in measurement of the independent
variables. Equations which compute differences between measured
parameters somebtimes have this problem. When .one is dealing with a
small gize data set; it is possible that some measurements ocutside
the set may have a slightly larger error than those points used in
the fitting process. If the derived multiple regression equation has
very large coefficlents, then it ig possible that a predicted point
will fall outside the +3.90 limit. If, @pwever, a larger number of
points is used in the fitting process, the"points with maximum error
would presumably be included, and the calculated value of o would be
larger and more accurate. In the case of the point (test number T)
vhich falls outside the limit in figure 28, simple ecalculations
indicate an error in Radg of 0,004 would give a predicted value of
C=1la ppm which is well with the +3.90 limit. Such a value of
measurement error is quite possible since the estimated value of
Oﬁad = 0.0343, It is concluded that equation (7-2) is gquite sensitive to
errors in the independent variables. The fact that the other three
independent points fell within the band may be a strong indicator
that equation (7-2) is a good predictive equation if accurate radiance
data can be obtained,

Review of table 17 for Feldsper sediment indicates that the
combination of bands 3, 4, and 5 produce an equation which contains

the lowest total squared error and is unbiased. From table 16, the

equation for Feldspar concentration using this band combination is:
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€= 62,2 - 22&2.6(Rad3) - 10981.2(Radh) + l967h.3(Rad5) (7-3)

The"staéistical estimates. of précision }or this;equation are;
r = 0.89
g?= 2h.0 ppé
(FEL) s 2.39

w95

¢ = 3.0

Cp/p‘ 0.8

The effect of instrument error on a low-radiating constituent like
Feldspar appears. to be one in which reduced, velues of the correlation
coefficient and higher values for standard error are obtained. The
F-test ratio is grgaier than 1.0 but doés not. meet the Wetz criteria
(see Draper and Smith 1966, p. ‘64) for being a good predictor at the.
95 percent confidence level. (The confidence 1evel«could'5e reduced
to some value below 90 percent to produce 'F/Fcr Z_h.?, however, )

The radiance data in table 12 were applied to equation (7-3), and the -
results are shown in figure 29. All values fall within the +3.90
limits in spite of the fact that equation (7-3) is sensitive to

small measurement errors as was the équation for Ball Clay. It

ghould be noted that if Ra.d5 is changed by 0.004 to improve the Ball
Clay prediction, the calculation for Feldspar is also improved further

suggesting that test number T may «contain a bhad data point.
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Summarizing the results of analysis of the dual-constituent
laboratory data, the effect of instrument error in meassurement of the
radiance data is to degrade the accuracy obtained from the multiple
regression snalysis. The inaccuracies obtained in these tests are not
believed tc be caused by lack of £it hecause the radiance gradients for
both constituents are known to be linear with concentration (figures
25 and 26). The constituents are non-reactive with each other in
tap water (Gjardo 1976), and the principle of linear superposition
seems to give a fair approximation to their total combined signal
(Ofelt 1976). It should be noted that values of standard error in
comparison to the range of values of the experiment are similar to those
obtained by Johnson (May 1976) in an actual field experiment. Whether
or not such levels of uncertainty are acceptable to the envircmmental
engineering community depends upon the particular use to which the
data will be put. Accuracy requirements Tor wvarious data uses are

beyond the scope of this investigation.

Three~Constituent Mixtures
4 comparison of the error variance with the mean square scatter
about the mean for the independent variables was made using the data
in table 13. Mean square scatter values about the mean are larger
than for the dual-constituent tests while the estimated error variance

is the same. The criteria for use of least-squares procedures is easily

satisfied.
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A multiple regression analysis using 12 of—tﬂe 25 points in
table 13 was performed. The points used in the least-squares
fitting process were test numbers 1, 3, 5, 6, 8, 10, 13, 15, 18, 20,
21 and 23. The regression was performed on all band combinations.
Estimates of the J,K coefficients and statistical measures of precision
for both the Ball Clay and Feldspar sediments are given in tables 18
through 21. The 12-point regression analysis was. considered acceptable
because band combinations existed which gave good estimates of
precision for all stabtistical parameters for both sediments.

Review of table 19 for Ball Clay sediment indicates that the
lowest value of total gguared error is obtained for band combinations
2, 3, and k. The fit is also unbiased for this combination which has

for its multiple regression eguation (table 18):
C=-h.l+ 2h3.h(3ad2) - 613.7(Rad3) + 918.0(Rag ) (T-4)

The statistical estimates of precision for this equation are:

r=0.98

o= 6.8 ppm

(7/F ) = 105.7
.Cr ‘95

Cp = 3.0
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All values are acceptable so it is assumed that eguation (7-4) will
have good predictive capability. It should be noted that the K
coefficients of eguation (7-4) are not as large as those for the
dual-constituent results so the eguation should not be as sensitive

to small errors in radiance values. Results of applying the radiance
data from table 13 to equation (7-4) are shown in figure 30. A1l 13
independent data points fall within +3.90 (some are hidden by the dark
symbols). It is thus concluded that equation (7-%) is a good
Predictive equation and that the linearized multiple regression analysis
apparently works in spite of the fact that there is a reaction between
Ball Clay and Rhodamine WT dye (Loper 1$76). Sorption of the dye by
the clay probably changes the absorption and scattering characteristics
of the clay which in turn cause a change in the upwelled radiance
spectra. The precise nature of the optical interaction is presently
not known and would be difficult to measure (Loper 1976). A probable
change in the upwelled radiance gpectra iz the only reason known ab
this time for the obtaining of a reduced value of standard error under
that of the dual-constituent tests.

As a result of the Rhodamine WT dye, application of linearized
muttiple regression analysis to the Feldspar data proves quite
interesting. Review of table 21 indiecates that an unbiased estimate
with minimum total squared error ié obtained when only band 3 is

present. The regression equation in this case is (table 20):
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C=-8.0 +-3615h(ﬁa33):’ - (T-5)

The statistics for this equation are:

r= 0,92

Q
H

23.8 ppm
(r/F ) = 1l.2
er’ g5 ;

¢ =0
p

CP/Q = 0

Results of applying the radiance data from table 13 to equation (7-5)
areshown in figure 31. Again all 13 independent points fall within
33.90 (four points .are completely hidden by the black symbols). It
must be concluded that equation (7-5) is a good predictor and that
application of the'linearized multiple regression analysis is a success.

It is somewhat troublesome to understand why only one band was
required to quantify Feldspar when there were three constituents
in the water. According to previously developed theory, at least
three bands should be required to separate the effects of Feldspar
from those of the rest of the mixture. The issue is further
corplicated by the fact that Band 3 (540 nm to 700 nm) is in the
precise region where Rhodamine WT has its strongest signal (figure 2k)
and where Ball Clay is also guite strong (figure 22). Without

optical interactions, the Feldspar signal in band 3 should be completely
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confused by Rhodamine WT and Ball Clay effects since there are not
strong correlations between the concentration values of each constituent.
Loper (1976) notes that quartz-like materials such as Feldspar have
negligible sorption of Rhodamine WT in comparison to the sorption by
clay soils. He suggests that the modification to scattering and
absorption characteristics of the Ball Clay may make it such that Ball
Clay upwelled radiance is reduced at band 3 wavelengths enabling the
Presence of Feldspar to be more clearly seen. While such an explana-
tion may be physically possible, detailed high-spectral-resolution
tests of Rhodamine WT dye in the presence of a number of different
sediments are required to define the optical interactions which are
occurring. Such studies are beyond the scope of this investigation
although they would probably be of national benefit because of the
heavy use of Rhodamine WT dye in pollution studies. The important
point to be made from the three-constituent test results is that the
linearized multiple regression technique apparently works in the
presence of at least some optical inte?aétiéﬁs. Itlis believed that
a number of different types.of interaction.méy oceur, and it is beyond
the scope of this investigation to determine and teét 2ll possible
situations as discussed previously. "

As an additional exercise, it was decided to test application of
the multiple regression technigue for quantification of & pollubant

with a nonlinear radiance gradient. Referring back to equation (4-18),

Q
o
Review of the single-constituent data for Rhodamine WT dye (figure 27)

it cen be seen that the signal response equation is linear in P
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4

éﬁggests that an approximate value for Q might'be obtained by
fitting a power law equation to the measured values. Upon performing
such an operation, it was found that values from @ = 0.1 to 0.25
could be fitted through the data because of experimental uncertainty.

A value of Q = 0.2 appeared to give the best fit to the data for

bands 2, 3, and 4 where Rhodamine has a strong signal., Results showing

this fit are presented in figure 32.

The Rhodamine WT dye values previously pregented for the three-
constituent tests were used for the nonlinear multiple regression
analyses. The same 12 points as for Ball Clay and Feldspar sediment
snelysis were utilized to estimate coefficients and statistical

parameters for an equation of the following form:
Q = d ) + K (Rad.) + ~=—amw=— -
C¥ =7 + K, (Rad ) + K,(Rad,) + (7-6)

Since sn optical interaction had sppsrently oeccurred, it was not
assured that § = 0.2 was the correct value. Therefore, Q@ was
varied from 0.25 to 0.05. Neondimensional .statistical parameters for

the "best" equation for each value of § are shown below:

Q 0.25 0.20 .15 0.10 0.05

r 0.99 0.99 0.99 0.99 0.99

(F/F_ ) 20.12 20,43  20.6k 20.52 20.19
cxr ‘95

c, 4.0 4.0 4.0 . b0 . 4.0

Cp/p 0.8 0.8 0.8 0.8 0.8
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¥While no significant differences exist between the stabtistical
paramebters, the equation for @ = 0.15 was arbitrarily selected
because of its slightly larger F-test value. Tables 22 and 23 give
estimates of eguation coefficients and statistical measures of
precision for Rhodemine WI dye concentrations to the 0.15 power. The
equation with the "best" fit is:

00115

= i.605 - 7.679(Rad, ) - 3.9’]’2(Rad2) + lT.582(Rad3) - 7.376(Raqy)
(7-7)

Results of applying equation {7-T7) to £he 25 three-constituent test

points are shown in figure 33. With such‘a-large nonlinearity,

figure 33 presents & distorted picture of predictive accuracy.

Raising the computed and actual Rhodamine WT concentrations to unity

power gives a more accurate picture as shown in figure 34, From

figures 33 and 3k, it is concluded that ﬁultiple regression procedures

can be used to quantify constituents with nonlinear radiasnce gradients,

and the technigue may be applied to any number of constituents so long

as each constituent is related to optical changes in the water body

and other technique limitations are not viclated.



CHAPTER VIIT

FIELD EXPERIMENT CONSIDERATIONS

Analytical and laboratory cases have been used to perform a
limited validation of linearized multiple regression analysis for
quantification of marine constituents under a variety of environ-
mental and optical conditions. Both analytical and laboratory
tests are quite valuable for investigating speeific areas of concern
under controlled conditicns. No matter how many controlled tests
are conducted, final validation of the technique must come through
use of field experiments. Unfortunately such experiments are quite
expensive and beyond the scope of this investigation. As previously
discussed, field experiments which utilize multiple regression analysis
have been‘conducted by several investigators (Johnson, May 1976, Rogers
et al 1976, Johnson, September 1976, and Ohlhorst 1976). Only mixed
success has been obtained from these experiments. Some of the incon-
sistent field results may in fact be expldinable based on various
limitations which have been uncovered by the investigation described
herein. It is the purpose of this section to recommend procedures
which should be used for future field experiments to improve the
opportunity for consistent results.

The linearized multiple regression analysis should never be applied
blindly to a set of data without a background knowledge conecerning

the constituent of interest, hydraulics of the water body, and

85
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measurement uncertainties. This extreme caution is recommended so
that false results are not published concerning the technique. The
linearized multiple regression analysis has strong theoretical
foundation for a number of environmental conditions and careful
application should yield useful results. The technigue should be
applied only to those constituents for which accurate ground truth
values can be obtained. The present state of art of laboratory
analysis may eliminate multiple regression analysis as a possibility
for some constituents of interest. Also the technigue should only
be applied to those constituents whose radiance gradients are known
to be near-linear with concentration. Controlled laboratory or field
tests may be required to determine this property.

Prior to the remote sensing field experiment, measurements
should be made to determine geographic locations to obtain the widest
possible range for ground truth measurements of the constituent of
interest. A time interval for hydraulic consistency should be
established such that ground truth data are not included in the
analysis 1f large water mass movements ha%e occurred between the timés
of remote sensor overpass and the takiﬁg of water samples. Within
the time interval for hydraulic con;istency, as many points as
possible should be obtained with as near a'unifqpm distribution of
concentration values as technicall& fegsibilitj. From a‘sfatisﬁics
point of view, the number of points should be gfeaﬁer than the number

of remote sensor bands plus one. Because of -experimental measurement
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errors, it is recommended that the number should be much larger than
that minimum statistical value. The precise number of points required
is a2 function of the error magnitudes in both the independent and
dependent variables. Multi-dimensional parametric studies are'
required to assess the minimum number of points required for various
combinations of error and ranges of values. Until such studies are
available, the experimenter must take as many points as possible and
hope that enough are obtained. Care should be taken that all ground
truth points used in the analysis are from the same water depth.
The effect of vertical concentration gradients will be minimized, and
the resulting multiple regression equation will be an algorithm for
concentration at a particular depth if the assumption is made that
vertical concentration gradients near the surface are constant over
the scene of interest. For the situation in which a substance is
introduced into part of the water body (such as an industrial outfall),
a number of points both inside and outside the plume must be obtained
to insure against false correlation as a result of non-homogeneity.
Once remote sensing data are in hand; an analysgis to esﬁimate
error variance of the remote sensing measurémenté.based on instrument
noise and calibration data is reguired. The estimate of error
variance must then be compared with the megh'squaré scatter abouf
the mean of the experimental radiancervalues as previbusly discussed.
Only if an order of magnitude or greater difference exists can the
lineerized multiple regression analysis using least-squares technigues

be utilized.
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A1l daba which is outside the time interval for hydraulie
consistency and therefore not hydraulically appropriate should be
immediately eliminated from the analysis. A review of the sediment
levels and water depth of each station should be conducted and compared
wvith order of magnitude estimetes of remote sensing penetration depth
(see Whitlock 1976). Those points whose remote sensing penetration
depth approach the values for water depth must be removed from the
analysis to eliminate confusion due to bottom reflection effects. A
correlation study should be conducted between the various groun@ truth
parameters measured to understand the possibilities of false
correlation. In many cases, the hydraulics of the water body under
analysis mske it nearly impossible to obtain measurements which are
totally uncorrelated with eacﬁ othéf. .

Yor analysis of the data, it is recommended:that regression
equations and statistical parametérs be computed for all possible band
combinations. The deeision as %o which eéuatioﬁ is optimﬁm should be
based on satisfactory values for all statistical parameters, however,
the ratio of QP/p is particularly impor%ant becauge it is an
indication of bias in the fitting process. Results obtained in this
investigation indicate that good values may be obbtained for the
correlation coeffiecient, the standard error, and the F-test ratio but
the it may be extremely biased which is not desirable. If possible,
the analysis should be conducted with less than the total number of

stations obtained such that some points will be available for

independent check calculations. A1l predicted values in other locations
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of the remote sensing scene must be accompanied by the estimated value
of standard error. Finally repetitive experiments should be conducted
for the constituent of interest in the water body of interest.

Confidence must be established in use of the Jlinearized multiple

B "

regression analysis under a variety of abtmospheric, wind, wave, and
i ;

seasonal conditions.



CHAPTER IX

SUMMARY AND CONCLUSIONS

The objective of this investigation has been to define optical
physiecs and/or envirommental conditions under which the linear multiple
regression analysis should apply for quantification of water quality
parameters. To achieve this objective, an investigation of the signal
response equations has been conducted and the concept has been tested
by application to both analytical test cases and actual remote sensing
data.from a laboratory under controlled conditions. As a result of
this investigation, an improved understanding of technique limitations,
mathematical requirements, ground truth requirements and error
effects has been obtained.

Investigation of the signal response equations shows that the
exact solution for a number of optical physics conditions is of the
same form as a linearized multiple  regression equation, even if
nonlinear contributions are made by such factors as surface reflec-
tions, atmospheric constituents, or other water pollutants.

Limitations on achieving this type of solution and (1) the constituent
of interest must have a linear radiance gradient with concentration,
(2) the degree of nonlinearity in each of the ot;er components which
make up the total signal must be constant for the wavelengths used

in the multiple reé&ession equation, and (3) mutual independence

4

between constituents with no electrical, chemical, or optical

g0
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interactions is desired but not always required. Mixture concentra—
tion also must be constant over the penetration depth of the remocte
sensing signal, or the vertical concentration gradient must be
essentially constant near the surface and &ll concentrations measured
at the same depth. Since the exact solution to the signal response
equations under the above conditions is in the form of a linear

. multiple regression equation, the application of linearized multiple
regression analysis to remote sensing and ground truth data may be
viewed as a calibration of the exact solution to account for daily
variations of background constituents in both the atmosphere and water
environment.

To obtain a "calibrated" equation using multiple regression
techniques, least-squares procedures are used to estimate coefficients
of the equation. In order to use least-squares techniques, the error
varisnce of the upwelled radiance measurements must be at least an
order of magnitude smaller than the mean square scatter about the
nean of the experimental radiance data. In addition, ground truth
observations must be uncorrelated and stafistically independent over
the range of values for which the final regression equation will be
utilized. All data used in the least-squares process must be "good"
in that (1) the constituent of interest is measured accurately,

(2) the dats are hydraulically appropriate, and (3) the remote sensing
penetration depth at all points is less than the water depth. For
non-homogeneous water bodies such as those with industrial outfalls,

& number of ground truth points is required from each water mass to
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insure correct correlation of the total scene. From a statistics
point-of-view, the minimum number c')f'g.x;ound truth locations required
is the number of wavelengths (or bands.) at ﬁhich upwelled radiance is
being measured plus two. As a result of- experimental uncertainty, it
is concluded that the total number of groux}ci truth poiz-lts shémld be
significantly larger than the minimum n;mber if possible.

From analytical test case ;t'esults, it is concluded that
constituents with linear radiance gradients may be quantified from
signals which contain nonlinear atmosphéric and surface reflection
effects for both homogenecus and non-homogeneous mixtures provided
accurate data can be obtained and nonlinearities are constant with
wavelength., TIn addition, it was observed that high correlation
coefficients, low values of standard error, and acceptable F-test ratios
could be obtained for various band combinations, but the fits could
contain a large amount of bias. It is concluded that statistical
parameters must be used which give an indication of bias as well as
total squared error to insure that an equation with the optimum
combination of bands iIs selected for utiiization.

From dual-constituent laboratory results, it is concluded that
the effect of error in the upwelled radiance measurements is to reduce
the aceuracy of the least-squares fitting process and to increase the
number of ground truth points,required to obtain a satisfactory fit.
It was also observed that the least-squares fitting process does not

preclude the possibility that the multiple regression equation
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obtained may have large coefficients and be extremely sensitive to
small errors in radlance measurement. If the fit is obtained with a
low number of ground truth points, it is possible that the estimated
value of standard error is not applicable to predicted values using
the equation.

Fron three-constituent laboratory results, it is concluded that
the linearized multiple regression analysis is applicable for
constituents with linear radiance gradients which experience some
types of optical interaction when combined with other constituents.
It definitely can be said that the analysis will not apply for all
types of optical interactions however, it is believed that satisfactory
results may be obtained for a number of different situastions. The
area of optical interactions for usual wabter pollutants has received
only limited attention by the scientifiec community. It is recommended
that fundamental studies be conducted in this area for various
constituents of interest. Research on this problem may explain why
high correlations have been obtained with certain "invisible"
constituents in previous field experimenfs.

It is recognized that the analytical test cases and analysis of
laboratory data conducted in this study have provided only limited
validation of the linearized multiple regression concept. While a
number of additional laboratory tests could be conducted, the only
way to finally validste the concept for use with a particular

constituent is with carefully conducted field experiments. Based
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on the experience of this study, it is believed that the technique
has strong potential for future application. It will be particularly
applicable when advanced remote sensing and ground truth systems
are developed which have improved accuraey. Thekconcept has strong
theoretical support from consideration of the signal response
equations and is applicable without precise knowledge of atmospheric
and water surface parameters. It further allows for some variation
in atmospheric and surface reflection effects over the scene of
interest which is a severe limitation for several other data snalysis
concepts. For those water constituents with nonlinear radiance
gradients (versus concentration), the method may be modified and
utilized if the nature of the nonlinearity is known.

The most serious problem with the multiple regression concept is

the present lack of knowledge concerning_possible limitations caused

by the requirement that the nonlinearity of various radiance components
must be constant over the wavelength range of interest. Based on

the success of some of the previous field experiments, it appears that
there is a wide range of wind, wave, solar elevation, and atmospheric
conditions for which the linearity requirement is satisfied. On the
other hand, there may be extremes in environmentel conditions or
particular water constituents which cause large variations in
linearity. Repetitive field experiments under a variety of

environmental conditions are required to answer this question.
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It is also recommended that multi—démensional analytical studies
be conducted to better define.groun& truth requirements for app}ica—
tion of the multiple reéression analysis. Parametric variation of
such parameters as dependent va;iable error, independent wvariable
error, range of values, number of points, degree of homogeneity, and
number of constituents may enable the comstruction of charts based
on normalized parameters which would aid the potential experimenter
in assessing the number of ground truth stations required for
expected levels of uncertainty in both remote sensing and ground
truth data. ‘Such information would alsc be of interest in the

development of future in-gitu water monitoring systems.
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APPENDIX B

LIST OF SYMBOLS

4

upwelled radiance of filtered seawater

conftant giving change in upwelled radiance Gue to PA
]

matrix given by equation (5-6)

constituent concentration
statistieal éaramétef based on sumr of squared biases plus
the sum of squared random errors as defined in equation (5-17)

-

constant. giving change in upwelled radiance due to PB
deviation from true wvalue

statistical parameter as defined in equation (5-12)

eritical value ¢f F
constant éiviﬁg chﬁnge in upwelled radiance due-to opbical
interaction between Pp and P, as .given in equation (4-21)

constant giving change in upwelled radiance due to ¢
upwelled radiance from clear atmosphere

constants in regression eqnatiop

constants in regression equation

congtant giving charge in upwelled radiance due to atmospheric
pollutant XA
arbitrary power expressing upwelled radiance nonlinearity
with ¢

arbitrary power expressing upwelled radiance nonlinearity

with XA ‘

number of ground truth points with measured concentration and
upwelled radiance values

o2
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concentration.of‘pollutant A

1

measured ground truth value‘of ‘PA

mean value of ground truth,valugs of PA
concentration of pollutant B
concentration of pollutant ¢

number of estimated J, K coefficients in regression equation

arbitrary power expressing upwelled radiance nonlinearity
with ‘PC

arbitrary power expressing upwelled radiance nonlinearity
with PB in optical interaction with Pc

‘upwelled radiance at a particular wavelength or band

sum of square of wesiduals in p-term regression equation

correlation coefficient as defined by the square root of
equation (5-107)

constant giving change in upwelled radiance due to PC

sum of squares
unbiased estimate of 02

arbitrary power expressing upwelled radiance ncnlinearity
with PC in optical interaction with PB

concentration of abtmospheric pollutant

thickness of water layer from which 90 percent of the upwelled
radiance is measured

expréssion defined by'equatiog (c-10)
expression defined by equation {C-10)
expression defined by equétion {c-10)
expression defined by equation (c-15)

expression defined by equetion (C-15)
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X:] = expression defined by, equation (C-19)

0] = variable which is related to the instrument pointing angle
and the solar elevation angle

o] = gtandard error of water constituent concentration

02 = variance of Waier constituent concentratioﬁ

cRad = gtandard error';f upweiled-radiance méésuremenﬁ

(GBad)2= variance of’upwelléd radiance:meésurement

A = wavelength

Subscripts:

i = ground truth observation number

Ppax = quantity for equation wf%h maximum number of estimated
coefficients

W = value of wavelength

b4 = value of wavelength

Y = value of wavelength

yA = value of wavelength



APPENDIX C

SOLUTION TO SIGNAL RESPONSE EQUATIONS

Under the assumptions of this study, the equations for total

radiance at wavelengths W, X, Y, and Z may be written:

Radyy = &y + Bypy + Py + mgM o 1 4 1]
Redy = Ay + ByP, + ByPy + HgM + 1 + 1)

Rady = Ay * ByFy + ByPp + HY¢M iyt LYXi
. M
Red, = A, = BB, +EP, + Ho' + I, + szg

Multiplying (C-1) by LX and (C-2) by Ly gives:

LRady = Lyhy + LB Py + LEPy + Lt g + LI + LT
LyRedy = Ly + LBPy + LyBePy + LG + LTy + LI x

Subtracting (C-6) from (C-5):

LeRady - LyRady = Ly(Ay + T)"- Lo(ay + Ip)
* (IygBy — LyBy)Py + (Iyy - Ly )Py
+ (Ll - Lo
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(c-1)

(c-2)

(c-3)

(C-k)

(¢c-5)

(¢c-6)

(¢-7)
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Performing similar operations first on equations (C-3) and (C-L),

and second, on equations (C-1) and (C-3), one obtains:

LyRady - LyRad, = Ly(A, + L) - Ly(a, + IZ)

+ DBy ~ LyBy )Py + (L Ey - LyE, )Py

+ (Lgy - LyHy)e" (c-8)
Lyfady = Lyfedy = Ly(by + Iy) - Ty(ay + Iy)

+ (TyBy - LWBY)PA\+ (Lyfy — LBy )Py

+ (L - .I,‘_IHY)¢M (c-9)

Equations (C-T), (C-8), and (C-9) represent three equations with

three variables (P,, Py, $). For convenience let:

(LyHy = Ly = % ,x
(LyHy = LyHy) = oy ; - ? (c-10)
(LyHy, = LyHy) = oy 4 J\

Multiplying (C-7) by Oy and (C-8) by Oy > One obtains:
3 3
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oy plyRedy - oy LuRedy = oy /Iy (a + )
- oy ghylhy *Ig)
* (ay 70yBy = oy, ZlyBy)By
* oy gl — oy, 2Mx s

* “Y,Z“W,X¢M (c-11)

%, xgRedy = Oy xlyRedy = oy oLy {8y + Iy)
- OLW,XLY(AZ + 1)
* (o xDgBy = % xlyBy)Py
* (o xPaBy = Oy xlyBy )Py

+ OLY,ZOLN,X¢M (c-12)

Subtracting (C-12) from (C-11): .

Oy glyRedy = oy JlyRady - o L Redy + o jLyRad, =
ooy GIylhy Iy - oy LAy + Iy)
= Oy xg by * Iy) ooy (A, + 1)
* oy LBy ~ Oy gLyBy - %, xzPy * O xlyBz )y

* oy TyBy = Oy pTyfy = O Loy + 0y yTyFp )P (¢-23)
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\

Performing siwmilar operations on (C-8) and (C-9):

%y, yigRedy - Oy yLyRad, - uY,ZL;{R"‘&W oy glyRedy =
oy ylglhy + Iy) - oy Loy + I
= oy yEy Ay Tp) + oy JLu(Ay + Ty)
* oy yBgBy ~ O yIyBy - oy LBy + oy LBy )P,

* loy yTpBy = oy yIyBy = oy jLyBy + oy JL.E )Py (C-1k)

Equations (C-13) and (C-1k) represent two equations with two varisbles

(PA and PB)' For convenience, let:

(oy LyBy = Oy pLyBy = O yDpBy *+ Oy JLF) = By (o5,
c-15

(aW,YLZEY - Oy yiyEy — Oy TPy ooy JIyEy) = By

To solve for P,, multiply eguation (C~13} by By and equation (C-1k)

by BW:
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By ghady = Byoy pLyRady - Byoy sLoRady + Byon LoRad, =
* Byoy plylly +Ty) - Byay pLlay + Ip)
= By xRy * Ty) + Byoy Ly (&) + 1))
* (Byay gLyBy = By0y pLyBy = Byoyy xBzBy * Byt yLyBy )Py

+ (BB )Py (c-16)

Bty yipRedy = By yLyRed, - Buoy LoRady + Boy L Rad, =
* Byt ylg(Ay + Iy) = Buoy JLy (A, + To)
- By, yhy(Ag + Ig) + Boy Lo(Ay + Ty)

* (Byoy yDgBy = Byoy yIyBy — Buor JLyBy + Bioy JLeBy )Py

+ (B,8. )P, (c-17)

Subtracting equations (C-17) from (C-16) and collecting like terms:

(Byty glo * Bty pLy)Redy — (Byoy L. )Rad,
- (Byty xly * By yLy + Byoy pL)Rady
* (Byoy xBy * Byl y yDy)Rady =

(Byoy gTx * Byty gly) (A + Ty) = (Bpay ,L)(Ap + Iy)



= Byt xly * By gy ylg * Bty oTg) (Ay + IYS
By 3Dy = Byt gLy ) (By + Iz)'; (Byoy LBy
- éx“y,szBx =~ By xPBy * BX“W,XiYBZ

= By, vleBy By, yBr By gDyBy

BWGY,ZLWBY)PA

For convenience, leb:

(Byoy glyBy = ByOy olyBy = Byl yIyBy * Byoy, (LB,
= B, ybBy Bty YRy Bty 2lvBy
- By glyBy) = O

Rearranging:

Py = 7 + Ky(Redy) + Ky(Rad,) + K (Rady) + K, (Rad,)

where:

110

{(c-18)

(c-19)

{C-20)
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N .
I =5 [(Bgay gy *+ By gly) (b + I)
T (Byoy STy Ay + Iy)
J\,f\
* (Byoy Ty * Bty yDy + By oTg) (By + Iy)

= By xly = Byt yly) (A * Ip)l
Ky = % [Byoy 5Lx * By oLy
_1
Kx =% [—BXG‘Y,,ZITJ}
Ky = %’ [-Byony sl = Bty vlg = Byy oy

1
Kz = % [Py xy * By vy



Ground Truth
Location

OO —1 OVUT L0 1O

20
10
30
20
Lo
10
20
Lo

RADIANCE AND GROUND TRUTH DATA

TABLE 1

FOR HOMOGENEQUS TEST CASE

20
20
Lo
30
10
Lo
10
30

Rad

1.

25.5
22.9
28.6

.19.0

33.2
20.2

35.8

ho, 6 .

. Rad

2

27.2
25.2
30.k
23.1
34.8
22.6
36.h
ho,8

Rad3

30.3
29.0
35.7

29.7.

40.3
26.9
38.1

H7.6

Ra.dh

33.8
3.1
43.8
36.9
Lo,

36.0
39.0
52.6

Rad

20.3
2h.h
23.5
21.9
25.1
20.9
30.3

_3bk.0
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TABLE 2

ESTIMATES OF J,K COEFFICIENTS

FOR HOMOGENEQUS TEST CASE

FOR PA

Bands Used
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- TABLE 3 .

ESTIMATES OF PRECISION

FOR HOMOGENEQUS TEST CASE.

F
OR PA

c
P/p
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TABLIE k4

ESTIMATES OF J,K COEFFICIENTS

FOR HOMOGENEQUS TEST CASE

Bands Used
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TABLE 5

ESTIMATES OF PRECISION

FOR HOMOGENEQUS TEST CASE

FOR PB

c
P/p

)
cr .95

(F/F

Bandg Used
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Ground Truth
Location

9
10
11
12
13
1k
15
16
17
18

RADIANCE DATA FOR HOMOGENEQUS TEST CASE

Rad1

23.3
27.7
31.6
33.9
37.8
23.6
28.0
28.2
24 .3
2.7

TABLE 6

Rad2

25.9
28.7
34,1
3L,

40.0
26.8
30.9
30.2
26.3
27.3

R
ad3

28.9
31.3
39.2
35.5
k.9

22.9

36.7
33.5
27.8
35.8

Radh

£ w
O N -]

=
(W3}

W ta
PO wn
NP OENOR VN

=
n

L =i
O O O™y

Rad

20.7
20.2
25.1
24,1
32.2
24,1
2h.6
20.1
18.6
k.1
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Ground Truth
Location

19
20
21
22
23
ol
25
26
27
28

" RADIANCE AND GROUND TRUTH DATA

Fa

15
o
37
23
38
12
32
29
1k
35

FOR NON-HOMOGENEQUS TEST CASE

Fp

OO COQOOO0O0O0

TABLE 7

Rad1

23.1
27.5
31.5
33.9
37.7
23.9
27.8
28.1
2h,2
22.5

Rad2

25.3
28.3
33.9
34,7
39.7
26.8
30.4
29.9
25.9
26.8

Rad3

26.3
29.8
38.2
34.8
43.8
28.0
3k h
32.h
26.2
33.6

Rad l!—

25,2
28.0
36.1
32.6
41.8
28.3
32.7
30.2
24.8
32.6

Rad

16.k
i7.6
23.5
22.8
30.%
21.1
20.7
18.1
16.1
20.5
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TABIE 8

ESTIMATES OF J,K COEFFICIENTS

FOR NON-HOMOGENEQUS TEST CASE

Bands Used
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TABLE 9
ESTIMATES OF PRECISION

FOR NON-HOMOGENEQUS TEST CASE

¥OR P,
Bands Used T o (F/Fcr) Cp GP/P
.95

1 0.77 7.3 3.23 3706. 1853.2
2 0.81 6.8 . k.19 3152. 1576.1
3 0.88 5.3 . 8.10 1960. 980.5
g 0.64 8.7, 1.61 5258, 2629.3
5 0.57 9.4 1.08 6092. . ., 30k6.h4
1,2 0.87 5.9 3.65 © 22h3. T4T.9
1,3 0.90 5.3 5.00 - " 175k, 585.-0
1,k 0.79 7.3 2.09 3309. 1103.2
1,5 0.7T 7.6 1.76 3673. 122k4,6
2,3 0.90 5.3 4,88 1790. 596.7
2,k 0.82 6.8 2.50 ool , 981. 4
2,5 0.82 6.8 2.50 . 29L0, 080.0
3,L 0.89 5.4 4,78 1822, 607.4
3,5 0.98 2.5 26. 47 o 389, 129.7
4,5 0.64 9.1 0.87 - 5953, 1751.1
1.2,3 0.90 5.5 3.23 1739. 434.8
1,2,4 0.87 6.3 2.36 o221. 555.3
1,2,5 0.91 5.3 3.6k 1578. 39h4.6
1,3,4 0.9k bk 5.5k 1101. 275.3
1,3,5 0.99 0.6 345.91 i5. 3.8
1,h,5 0.87 6.3 2.31 2260. 565.2
2,3,kh 0.95 4.0 £.95 899, 22Lk,9
2,3.,5 0.99 0.8 175.10 33. 8.3
2,4,5 0.91 5.2 3.77 1533. 383.4
3,k,5 0.98 2.0 23.71 280. 70.1
1,2,3,h4 0.96 3.9 5.71 T48. 149.7
1,2,3,5 0.99 0.6 231.81 17. 3.k
1,2,4,5 0.97 3.1 - 8.89 holy, 98.9
1,3,4,5 0.99 0.5 312.53 12. 2.k
2,3,4,5 0.99 0.4 627.48 L. 0.9
1,2,3,4,5 0.99 0.k 452,69 6. 1.0
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TABLE 10

ESTIMATES OF J,K COEFFICIENTS

FOR NON-HCMOGENEQUS TEST CASE

Bands Used
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TABLE 11

ESTIMATES OF PRECISION

FOR NON-HOMOGENEQUS TEST CASE

FOR Py
Bands Used r o (F/F_.) ¢, ¢,/»
.95

1 0.31 15.5 0.23 3355. 1677.7
2 0.30 15.5 0.22 3367. 1683.8
3 0.11 16.2 0.03 3660. 1826.9
L 0.ko 14,2 0.7L 2820. 1410.2
5 0.12 16.2 0.03 3651, 1825.7
1,2 0.31 16.3 0.13 3353. 1117.8
1,3 0.57 1k.1 0.58 2510. 836.7
1,k 0.92 6.5 7.10 537. 17%.1
1,5 0.67 12.8 0.97 2065. 688.2.
2,3 0.68 12.5 1.07 1969. 656.2
2,k 0.96 5.0 13.28 305. 101.8
2.5 0.70 12.2 1.16 189k, 631.4
3.k 0.99 2.1 80.14 L. 16.2
3.5 0.46 15.2 0.32 . 2939. 979.7
h,5 0.76 11.2 - 1.66 1567. 522.3
1,2,3 0.83 10.1 1.69 1165. 201.2
1,2,k 0.99 2.9 . 29,14, ol. 22.9
1,2,5 0.71 12.6 0.81 1816. 45h.2
1,3,4 0.99 2.1 58.15 Lk, 11.0
1.3,5 0.68 13.2 0.67 1986. 406.6
1,h4,5 0.93 6.6 5.01 hg3, 123.h
2,3,b 0.99 2.1 5h.h2 . b7, 11.8
2,3,5 0.77 11.5 Sl 151T. 379.2
2,4,5 0.96 5.1 8.88 29k, 73.5
3,4,5 0.99 1.5 111.83 21. 5.2
1,2,3,k 0.99 2.0 18.38 37. 7.3
1,2,3.5 0.89 8.9 1.91 7oL, 158.8
1,2,4,5 0.99 3.0 20.17 90. 18.1
1,3.4%,5 0.99 0.8 27h. 72 h 0.8
2,3,h,5 0.99 0.9 255.71 5 0.9
1,2,3,4,5 0.99 0.9 186.73 6 1.0
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TABLE 12
RADTANCE AND CONCENTRATION DATA

FOR DUAL-CONSTITUENT TESTS

Test Ball Clay Feldspar Ra Rad Rad Rad. Rad
Number (ppm) (ppm) E 2 3 * 2
1 129 17 0.297 0.310 0.290 0.220 0.156

2 173 17 0.360 0.390 0.369 0.297 0.205

3 9 35 0.075 0.058 0.0k7 0.03% 0.023

L 9 69 0.11Lk 0.100 0.081 0.058 0.0k2

5 52 69 0.229 0.213 0.198 0.142 0.102

6 52 173 0.315 0.304F 0.267 0.202 0.1L47
7 173 173 0.477 0.518 0.496 0.395 0.285,

8 9 17 0.072 0.063 0.047 0.036 0.02k

9 17 a7 0.099 0.092 0.0Tk 0.056 0.038
10 129 73 0.k20 0.452 0.k25 0.332 0.235
11 52 17 0.189 0.178 0.153 0.107 0.076
iz 173 35 0.369 0.392 0.364 0.286 0.200
13 17 69 0.142 0.124 0.105 0.077 0.056
1k 17 35 0.094 0.087 0.072 0.049 0.032
15 52 35 0.171 0.161 0.145 0.09:F 0.068
16 173 52 0.378 0.h20 0.380 0.28L 0.200



Test
Number

O o1 wro -

NN NNORE R
GRS SR SRR SRR RN ER S Tl T

Ball Clay
(ppm )

TABLE 13

RADTANCE AND CCNCENTRATION DATA

FOR THREE-CONSTITUENT TESTS

Feldspar
(ppm)

17
iT
35
35
35
35
35
52
52
52
52
52
129
129
129
129
129
129
129
129
173
173
173
173
173

]Ei&u,d:L

0.094
0.039
0.105
0.121
0.0hk
0.05k
0.116
0.138
0.099
0.177
0.059
0.113
0.406
0.388
0.232
0.359
0.359
0.147
0.246

0.299

0.1459
0.432
0.387
0.260
0.290

Bad2

0.096
0.093
0.100
0.127
0.100
0.101
0.13L
0.148
0.348
0.192
0.105
0.133
0.h28
0.3h7
0.230
0.323
0.300
0.155
0.213
0.263
0.470
0.379
0.322
0.225
0.250

OO 0000000 O0OO0
=
i
i

Radbf

.053
.078
.056
.080
.078
.089
L0091
101
.110
170
102
154
.370
.390
.218
.362
o7
.188

0.313

0.hk26

0.395

0.hok

0.415
+0.33%

0.386

QOO0 O0OO0OO0OO0O0COO0OO o000 OCOCO0O

OO0 OOO0OOO0OO0O0O0O0O0OO0OOC OO COOO00OCOO0O

12L

Rad

.028
.027
.033
LOLT
.029
.039
.0L5
.052
.050
090
0Lk
.080
. 260
.256
.128
.220
.256
095
.188
.256
267
267
267
197
24k



Bands Used
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TABLE 1L

ESTIMATES OF J,K CORFFTCTENTS

FPOR DUAL-CONSTITUENT MIXTURES

d

-38.6
-28.7
-22.7
-18.9
-18.2
Y 10.7
25.4
10.5
18.2
~11.6
~15.9
-26.3
-18.2
~30.2
-18.7
21.1
15.6
13.5
26.0
17.8
-51.1
-12.5
~16.4
-56.8
~36.2
21.5
16.3
-54.h
-35.8
-55.4
-51.9

FOR BALL CLAY SEDIMENT

K
480.53

c.

0.

0.

0.
-1h62,21
-1195.25
-598.95
~-748.87

0.

0.

OO0 0
« v .

0.
~1400.87
-1386.44
~1463.01
-127h . 41
-1195.39
664.16

0.

0.

0.

0.
-1409.12
-1326. 6k
-61.11
-9.33

0.
~8h.22

K,
0.
h32.67
0.

0.
00
1709.52

0.

1537.39

0.
792,64
533.25

1560.61
0.
1391.06
1k01.9k

K3
0.
0.
451,68
0.
0.
0.
1535.61
0.
0.
1220.43
0.
0.
-75.52
131k, 6k

0.
1898.30
2399.50
0.
616.85
27h0.41
0.
1901.18
o74.82
1821.35
0.
1906. 45
239.57
o7h:.13
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Kﬁ K

5

0. Q.

0. 0.

0. 0.

571.70 0.
0. 803.90

0. 0.

0. 0.

1254 .52 0.
0. 2017.5k

0. 0.

726.83 0.
0. 193.78

666.89 0.
0. ~1545.k5
4829.20 -6035.00

0. 0.

390.36 0.
0. 215.98

"367 - 98 O -
0. -1546.89
T123,71 -10360.73

428.20 0.
0. -2069.87

T167.0 -12198.87
5547.13 -10kh9.23
-87.08 0.

0. -1290.57
6991.25 -11893.93
5516.88 -10L00. 69
7035.01 -12168. ko
6773.67 -11743..80


http:11743.80
http:7035.01-12168.42
http:10400.69
http:6991.25-11893.93
http:5547.13-10449.23
http:12198.87
http:10360.73
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TABLE 15

ESTTMATES OF PRECISION

FOR DUAL-CONSTITUENT MIXTURES

FOR BALL CLAY SEDIMENT

C
P/p

)
cr .95

(F/F

Bands Used
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Bands Used
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J

31.h
38.2
ho.5
ho.1
40.5
-36.2
-67.9
-5}
-58.4
-11.k
O7.4
21.h
28.4
50.4
41.6
-70.9
-50.3
-53.7
-68.8
-57.9
36.9
=11.1
-10.0
T2.7
62.2
-7h.6
-61.2
ho.2
13.8
56.3
10.5

TABLE 16

ESTIMATES OF J,K COEFFICIENTS

FOR DUAL~CONSTITUENT MIXTURES

FOR FELDSPAR SEDIMENT

0.
2758.13
2697.12
1783.59
2040.53

0.

0.

0.

0.

0.

0.
2552.56
2538.10
2763.20
2800.78
2697.31
96.34

0.

0.

0.

0.
2631.57
2401.33
824 L
1110.08

0.
109L.65

0.
65.73

0.

0.

0.
-2342.77

0.

0.

0.
3457.28
1392.70
T76.99

0.

0.

0.
587.22
-1290.86

-1613.L6

0.

0.

0.,
3381.27
L1k1.38
-1253.46

0.
995,69
1202.50
-1566.70

0.
430.40
288.88

0.
62.15
0.
0.
0.
-2383.78
0.
o.
-3530.07
0.

0.
1k79.19
-1081.50

0.
-2862.81
0.
0.
-2858.70
-3529.41
0.
-3350.2k4
-6496. 7L
0.
-0242.63
-41018.76
-4833.17
o.
-2869.59
-2756.7h
-3205.94

Ky,

0.

0.

0.
71.81

0.

o.

0.
-1961.52

0.

0.
-17k9.51
0.
-1792.50
0.
-1013%.35
0.
-1133.55
0.
481.84
0.
-2801.54
-127.58
0.
-120L0.46
-10981.22
83L.71

0.
-9668.56
~7382.9k

-10520.86
-7123.97
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0.
-3191.53
0.
0.
-1326.52
0.
20k8.13
1hheT.23
0.
0.
-1368.k5
0.
2051..37
13839.78
0.
4039.96
19492, 7h
1967k.25

0.

2629,
15378.
13899.
191k2.
13623.


http:13623.18
http:19142.33
http:10520.86
http:13899.94
http:15378.96
http:19674.25
http:10981.22
http:19492.74
http:12040.46
http:13839.78
http:14467.23
http:10134.35
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TABLE 17

ESTIMATES OF PRECISION

FOR DUAL-CONSTITUENT MIXTURES

FOR FELDSPAR SEDIMENT

C
p/P

)

W.%

(F/F

Bandg Used
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Bands Used
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TABLE 18
ESTIMATES CF J,K COEFFICIENTS
FOR THREE-CONSTITUENT MIXTURES

FOR BALL CLAY SEDIMENT

K, K, K3
485,74 0. 0.
0. 515.33 0.
0 0. 484,88
0 0. 0
0. 0. 0
633.02 -166.25 0.
116.7h 0. 377.49
108.00 0. 0.
=79.96 0. 0.
0. 56.75 438.98
0. 98.06 0.
0. =34.07 0.
0. 0. ~120.00
0. 0. =144 .38
0. 0. 0.
21h.20 ~103.15 371.27
33.60 71.86 0.
147,41 62,61 0.
186.46 0. -388.60
-83.90 0. =150.11
~172.20 0. 0.
0. 234,43 -613.65
0. ~-26.48 ~138.1h
0. -60.72 0.
0. 0. -227.50
-59.46 285.79 -636.1k
~-200,93 107.82 -183.50
-215.07 .75 0.
-105.77 0. ~122.21
0 195.62 -552,38

-131:38 211.80 -Li8.60
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0.
Th8.85
0.
913.15
701.T79
0.

0.
833.39

0.
1033.46
1308.85

0.

935.17

928.76

TTh.65
0

1111.59
1292.72
1113.80

1h7.37
516.50
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TABLE 19

ESTIMATES OF PRECISION

FOR THREE-CONSTITUENT MIXTURES

FOR BALL CLAY SEDIMENT

C
P/p

)
cr .95

(F/F

Bands Used
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TABLE 20
ESTIMATES OF J,K COEFFICIENTS
FOR THREE-CONSTITUENT MIXTURES

FOR FELDSPAR SEDIMENT

Bands Used J Kl K2 K3 K), K5
1 15.2 356.39 0. 0. 0 0.
2 9.8 0. 372.46 0. 0 0.
3 -8.0 0 0. 361.k%0 0 0.
L 1h.6 0 0. 0. 355.23 0.
5 25.9 Q. 0. 0. 0 503.1k4
1;2 22.h 572.63 ~-24k4.10 0. 0. 0.
1,3 -6.8 30.92 a. 332.95 0. 0.
1,4 12.h 119.53 0. 0. 247,06 0.
1,5 21.8 10k.68 0. 0. 0. 363.12
2,3 ~8.1 0. ~32.75 387.98 0. 0.
2,h 11.0 0. 72.20 0. 208,97 0.
2,5 24h.h 0. 22,8k 0. . 476.53
3,4 -18.2 0. 0. sh5,13 -185.57 0.
3,5 ~24.9 0. 0. 557.8C 0. -285.00
k,5 13.k 0. 0 0. 398.90 -62.97
1,2,3 -.5 209.92 -189.k5 321.54 0. 0.
1,24 15.8 232.27 -108.89 0. 230.27 0.
1,2,5 25.6 273.00 -156.23 0. 0. 319.96
1,3,4 -17.5 13.36 0. 525,88 -178.55 O.
1.3,5 -30.4  119.53 0. 565.97 0. -h56.42
1,4,5 -34.5 5ho,32 0. 0. 123%,98 -197k4.86
2,3,4 -25.5 0. -91.99 738.84  -306.07 0.
2,3,5 2.6 0. -7.97 559.68 0. -278.37
2,4,5 -15.2 0. 229.90 0. 815.83 -922.4L
3,4,5 ~25.4 0. 0. 579.64 -47.38 -248.62
1,2.3,4 -24.8 360.29 -403.18 875.10 -524.22 0.
1,2,3,5 -31.8 LET.00 -~320.10 665.10 0. -688.39
1,2,k,5 -31.8 607.46 -67.98 0. 1212.11 -1950.36
1,3,k,5 -36.1 Los.23 0. 86.62 1095.69 -1836.62
2,3,4,5 -23.2 0. -170.h47 862.74 -57k.50 298.00
1,2,3,4,5 -33.7 523.68 -235.30 hlho, 07 k33,77 -1173.33
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TABLE 21

ESTIMATES OF PRECISION
FOR THREE-CONSTITUENT MIXTURES

FOR FELDSPAR SEDIMENT
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TABLE 22

ESTIMATES OF J.K COEFFICIENTS

FOR THREE-CONSTITUENT MIXTURES

FOR RHODAMINE WT DYE
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TABLE 23

ESTIMATES OF PRECISTON

FOR THREE-CONSTITUENT MIXTURES

FOR RHODAMINE WT DYE

c
p/39

)
cr .95

(F/F
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Figure 1.- Optical processes involved in passive remote sensing of water parameters.
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Figure 3.-~ Typical multi-spcetral scanner measurement ranges.
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Figure 9.- Comparison of calculated and assumed PA values for
homogeneous test case.
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Figure 10.- Comparison of calculated and assumed PB values for
homogeneous test case.
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Figure 11.- Comparison of calculated and assumed PA values for
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Figure 12.- Comparison of calculated and assumed PB values for
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Figure 19.- Schematic of tank circulation system.
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Figuré 23.- Wide-band spectra for Feldspar sediment.
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Figure 26.~ Linearity of Feldspar sediment.
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