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PREFACE

The present report contains results of an investigation of critical

problems related to satellite systems for long-term earth energy budget

(EEB) observations, performed under Langley Research Center Contract No.

NAS1-11871 for the National Aeronautics and Space Administration.

This research study, performed by Drexel University, is one part of

a much larger effort by several institutions, including Colorado State

University, The University of Wisconsin, Virginia Polytechnic Institute

and State University, Link Temco Vought as well as cognizant personnel at

NASA Langley Research Center. This team is studying satellite systems

for performing long-term EEB measurements over geographical regions, hemi-

spheres, and the entire earth for periods of 10 to 30 years. A major

portion of the total effort is responsive to the AAFE proposal, and the

proposed LZEEBE system (reference 1) which employs three balloon

radiometers.

The decision was made to expand the scope of the total effort beyond

that envisioned in the AFFE proposal. This boradened scope includes Phase

A type of efforts concerning other concepts of performing EEB observations

besides the balloon system. For example, systems employing spinning plate

radiometers and/or scanning radiometers could be developed for long-term

space application. Regardless of the geometric characteristic of the

observational system, the problems of data analysis and interpretation are

similar for all wide-angle systems with only an adjustment required for

viewing geometry.

The current investigation was performed during the twelve month period

1 January 1974 through 31 December 1974. This period is denoted as Phase III

in subject contract. The express purpose of the investigation is outlined



in the following objectives, contained in the statement of work.

1. Accuracy assessment of Sampling Bias by Candidate
Satellite Systems for EBB Observations

2. Development of Procedures for Analysis and Inter-
pretation of EEB Observations by Wide-field, Broad-
band Detectors

3. Accuracy Assessment of Procedures for Analysis and
Interpretation of EEB Observations

4. Specification of Spectral Absorbing Characteristics
of Broad-band Detectors and Calibration Requirements
for Accurate Observation of the EEB

5. Variance Spectrum Analysis of EEB Observations from
ESSA VII Satellite

6. Professional Support and Advisory Effort as Co-Principal
Investigator of LZEEBE

This report is the final report for the phase III effort under NASA

Contract No. NAS1-11871. Other reports that are related to the overall

effort are: "An Investigation of ESSA VII Radiation Data for Use in Long-

term Earth Energy Experiments," published as NASA CR-132623; "Our Con-

taminated Atmosphere - The Danger of Climate Change," published as NASA

CR-132625 and "Steady-state Solution to the Conduction Problem of a Spherical

Balloon Radiometers," published as NASA CR-132624.

Gratitude is extended to several NASA/LaRC personnel for their encou-

ragement, interest, stimulating discussions and suggestions provided during

the present investigation. Among these scientific personnel are included:

Messrs. George Sweet (technical monitor), Charles Woerner, Jack Cooper,

Dr. Louis Smith and other members of the LaRC team.

Frederick B. House, Project Director
Associate Professor of Physics and
Atmospheric Science
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-..--- INTRODUCTION —-. - . . , , - - . . .

The study of the total energy budget of the planet earth and its atmo-

sphere is based on analysis of the exchange of radiant energy between the earth-

atmosphere (E-A) system and space. Radiometers on earth-orbiting satellites

can effectively measure this exchange of radiant energy at observation points

in space external to the E-A system. The current effort is concerned with the

analysis and interpretation of observations by wideangle, spherical and flat

radiometers with regard to the general problem of the earth energy Budget (EEB);

but in particular, it is concerned with the problem of determining the energy

budget of regions smaller than the field of view (FOV) of these radiometers.

Before considering specific reasons or motivations for conducting the present

research effort, the background to the overall problem will be discussed.

Background

The energy budget at a specific time t for a given region of the E-A

system's surface can be described by the following expression which shows the

relationship of the net flux Q to the three fluxes H , W , and W .
S IT C

Q = H - (W + W )s r e u-i>

The meaning of the three fluxes is shown schematically in figure 1-1. The

symbols Q, H , W , and W are defined in the List of Symbols in the front matter

of this report. Introducing the concept of albedo A » W /H , which is also
* r s

depicted in Figure 1-1, one .can rewrite (1-rl). as

Q - H (1 - A) - W (1-2)
S C
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Figure 1-1. Radiant power balance on an earth surface element.
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A time average of the net flux Q over any convenient time scale

can be readily computed from the data available for any of the E-A system re-

gions that has been under study.

The net flux Q defined by equation (1-1) can represent the time average

conditions for a broad range of spatial dimensions. These can range from the

dimensions/-of a GARP grid, about 5x5 great circle arc, to the dimensions

of the entire globe. Different observational satellite systems must be

employed to perform the required measurements over this broad range of spatial

dimensions. For example, a scanning radiometer would be needed to observe •

the components of net flux for a GARP grid. On the other hand, a wide-angle

radiometer can best fulfill the sampling requirements for the entire globe.

In terms of conventional meteorological dimensions a GARP grid maybe classed

as a mesoscale feature. Wide-angle radiometers become more effective obser-

vational tools than scanning (narrow angle) radiometers for some meteorological

features between the mesoscale and global dimensions. It is suggested here

that the synoptic- scale meteorological feature may be the cross over point

between the usefulness of scanning and wide-angle radiometers.

The current effort focuses on the problem of interpreting wide-angle

observations in terms of the components of the net flux for regions whose

dimensions are synoptic scale and larger, i.e., spatial dimensions whose areas

6 2
are 1-5 x 10 km to the entire area of the earth. It should be emphasized that

this problem of data interpretation is common to both spherical and plate

radiometers.

The important point to be noted here is that H , W , and W , can be

determined from observational data of satellites orbiting the earth. It follows

then, that Q can be computed for any region for which satellite data are

available. Consequently, determination of the fluxes W and W mentioned above

for regions smaller than the FOV of the satellite becomes important, and
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techniques to accomplish this task have been sought for some time.

At Drexel University, two techniques involving matrix inversions were

d̂eveloped ̂for ̂computing-the* two^fluxes-under-dis cus sion-for—regionŝ smalier*

than the FOV. The motivation behind the efforts to determine W and W for. r e

surface areas smaller:than the FOV will now be discussed.

Motivation

One can think of two reasons for developing techniques to interpret

wide-angle observations for synoptic scale regions. These reasons are:

(a) Knowledge of the radiant energy budget over several areas

(such as eastern continental U.S.A., the polar caps, the

Northwestern part of Africa, and the Caribbean - Gulf of

Mexico region) possessing meteorological significance in the

dynamical analysis of the atmosphere are of practical and

scientific value. These areas are smaller than the FOV of

wide-angle'radiometers on satellites at orbital altitudes

commonly used. ,

(b) Several of the regions of interest in studies of the earth's

energy budget may have dimensions equal to, or larger than,

the FOV of the radiometer (e.g. subtropical oceans). However,

often only a portion of the FOV covers part of the area of

interest during an observation; and it is, therefore, impos-

sible to determine from this measurement alone what fraction

of the power measured originated at the area of concern.

The above arguments provide sufficient reason for endeavoring to develop

the types of techniques sought. The essentials of the two techniques developed

at Drexel follow.
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Essentials of Techniques

In one technique, the number of observations m equals the number n of

regions under study, and a unique solution is obtained for each region. The

resulting system of n simultaneous equations is solved by operating on the

observed power column matrix with the inverse of the configuration factor

matrix. If all the observations are made at one time during a single pass of

the satellite, the solutions are termed INSTANTANEOUS. For this reason, the

technique is called Instantaneous/Inversion Technique.

In the other technique, the number of observations m is larger than the

number n of regions being observed. The n simultaneous equations required

to seek a solution is obtained by using an extension of the method of least

squares to determine the surface which best fits the data. For this reason,

this technique is termed the Best Fit/Inversion technique. Again here, the

system of n simultaneous equations is solved by the use of a matrix inver-

sion subroutine.

The values of W obtained by both techniques from error-free observations

were totally acceptable. However, when the measurements included uncertain-

ties, not all the instantaneous values of W computed by the first technique

were acceptable. Nevertheless, a prediction scheme was developed which

forecasts the quality of the instantaneous W values to be determined by

the first technique. In this scheme, the square matrix of the coefficients

of the n simultaneous equations found by the first technique was used to pre-

dict the acceptability of the instantaneous values of W obtained for each of the

regions. The computer program calculates the elements of the matrix and then
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proceeds to analyze the matrix in order to predict the quality of the data

to be obtained. The actual results computed were always compared with the

pertinent tolerances listed in TABLE 4̂ 7, Accuracy Requirements for Radiation

Budget Components, in order to determine the acceptability of the results.

In all cases, the predictions were in agreement with the results of these

comparisons. The results obtained by both techniques are now presented.

Accuracy of Results

Two types of errors were selected to perturb the power measurements made

2
by the radiometers. These were, systematic errors (0.3, 0.6, and 0.9 watts/m )

and gaussian random errors (the gaussian distribution had a sigma value a = 0.5
2

watts/m ). From TABLE 4-7, the pertinent "desired" and "minimum useful"

2 2accuracy requirements for W are £3 watts/m and ±15 watts/m , respectively.

To evaluate the Instantaneous/Inversion Technique, ten sets of six observations

each were included in the analysis. The predictions and the uncertaintities

in the values of U obtained by using a combination of the gaussian errors

2
mentioned and 0.9 watts/m systematic errors were as follows (refer to

TABLE 4-8)

We. We. We, We. We_ We,
1 Z J H J O

Predictions, sphere Poor Poor Accept Accept Poor Accept
Prediction, plate Poor Poor Accept Accept Reject Accept

Sphere 15.2 20.1 6.9 3,1 17.4 5.8

Plate 15.4 21.9 9.1 4.2 33.8 9.3

As it can be seen from these results, only the values of We. and We,.

2 '
exceed significantly the minimum useful accuracy requirements (±15 watts/m )

given for both satellites in TABLE 4-7. However, it is noticed that consis-

tently the plate exhibits larger uncertaintities than the sphere. It should
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be remarked here that different satellite orbits that include larger segments

within their FOV*s of regions one and five would serve to provide W values

with-lesser errors for these regions.

In order to test the Best Fit;/Inversion Technique, thrity-six obser-

vations of six regions were included. The values of W obtained when the

power measurements were assumed to exhibit the same combination of errors

used above for the Instantaneous/Inversion Technique were as shown below.

The six values used as a standard for comparing the values of W retrieved

were the averages of the given W values computed for each of the six-regions.

We, We. We, We. We_ We,1 2 3 4 5 6

Average (Standard) 179.4 200.4 220.4 239.8 259.6 280.4

Results 179.3 200.6 222.2 243.0 257.4 ;281.5

As it can be seen from these data, the highest uncertainty in the value

2
of W .is exhibited by We, , which is 3.2 watts/m . However, even this error

is below the minimum useful accuracy requirement shown in TABLE 4-7.

BASIC IDEAS

The basic ideas and concepts required for deriving the expression for

the total radiant power P (watts) intercepted by a radiometer orbiting the

earth are discussed in the following subsections.

•

Shape or Configuration Factor

This factor F which is dimensionless, appears often in radiative

'- — "I-::;,., "" " •' 2-1



transfer literature and is defined in the following expression (reference 3)

FAW '(2=1T

where

P = radiant power (watts) intercepted by the radiometer.

A - characteristic area of the radiometer. This area is A «
ira2 for both a sphere of radius a and a flat circular
plate of radius a.

2W = radiant flux (watts/m ) per unit time, or radiant power
per unit area, which is either emitted (radiant emittance
W ) or reflected (radiant reflectance W ) by the earth-
atmosphere (E-A) system.

F » shape, or configuration factor (dimensionless). This
factor represents that fraction of an observed area flux
W that is intercepted by the radiometer per unit of
characteristic area.

The power absorbed by the radiometer is given by,

•-• — •->• P ~ci P = a FAW (2-2)_

where

a » absorptance of the radiometer (dimensionless). It is
the ratio of the power absorbed to the power intercepted.

Radiometer Characteristics

Two types of radiometer will be treated in this report: (a) spherical,

and (b) horizontal, flat, circular.
2

The characteristic area A = ira of both of the above radiometers will be
2

assumed to be A « 1m . This assumption serves to simplify the expressions

without affecting the physical significance of the results.

Both satellites will be assumed to be blackbodies i.e., the spectral

emissivity e. and absorptivity a. are assumed to be unity
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•" . . £ A = a A = 1 <2-3>

.Therefore, all the radiant power P intercepted by either radiometer (sphere,

or plate) is totally absorbed, and one has

p = p
o (2-4)

Hence, the power absorbed by the radiometer can be written as

; P = FW <2'5>

Radiance and Radiant Emittance

These two quantities are of great importance in the discussion of long-

wave radiation (LWR) emitted by the E-A system. One is interested in the
2

expression that relates the radiance N (8,1(1) (watts/m - sr) and the radiant

2 2emittance W (watts/m ) of an area element dA(m ) whose centroid is located

at longitude A and latitude '$. .The radiance is the radiant power per unit area

emitted by dA within an element of solid angle dfl. The radiant emittance is

the total radiant power per unit area (or radiant flux per unit area) emitted

by dA into a 2ir steradians solid angle. The expression relating the instan-

taneous values of W and N for a given dA (A,<f>) is

W (A,<j>,t) »• /2lT di|» J" N(9,4»; A,<fr,t)sin 9 cos- 6 d9 (2-6)e •-• =...-•<-• o o

Where the radiance is being considered as a function of the zenith angle 8

and the azimuthal angle 4* which define the direction of N(8, i|/; A, <£» t).

This quantity and W 'are functions of the position of the area observed as

well as of the specific time at which the observation is made. In order to

simplify the notation, the dependence of N on A, 4>, and t will not be shown.
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A reasonable approach in the interpretation of LWR is to assume that the

radiance is a function of the zenith angle 6 only (reference 4). Then, one

can write,

= N(9) = NZf(9)

where IT = Zenith radiance, i.e., the radiance in the zenith
direction, 9 => Oo.

f (6) • limb darkening function (LDF) which gives a measure
of the anisotropy of the radiation field.

Hence, by substituting equation (2-7) into (2-6) one obtains

W = ZTT NZ f"/2 f (9) sin 9 cos 6 d6 . (2-8)
e o

or

W
NZ -75 S (2-9)

2ir / ' f(9) sin 9 cos 9 d9
o

The integral appearing in (2-8) and (2-9) is used often and hence, it is

concenient to define it as,

I (f) = /u/2 f(9) sm 0 cos 9 d9 (2-10)

Then, C2-8) and (2-9) can be rewritten as
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2 TT NZ I (f)

and (2-11)
N = w

2ir I (f) We

For an ISOTROPIC radiation field, f(6) - 1, I(f) » %, and the isotropic

iso
radiance N is then

W
Niso=_e (2-12)

Figure 2-1 shows a satellite S at a height H above a spherical E-A system

of radius R. The geometric nomenclature to be used in this report is presented

in this figure for future reference. A flat earth is depicted tangential to

the spherical system at the sub-satellite point(SSP). The concept of a flat

earth will be used to make certain calculation simplifications and it will

be thoroughly discussed in the subsection entitled "Flat Earth Application".

From this figure one can readily write.

6 = y + a

R sin 6 = (R + H) sin a (2-13)

R sin Y = r sin a (2-14)

r2 - R2 + (R + H)2-2R(R+H)cosy (2-15)
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Figure 2-1. Pictorial definition of the symbols used,
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Irradiance, Radiance*. Radiant Reflectance, and Albedo

These four quantities are of great importance when the solar shortwave

radiation (SVR) reflected by the earth is treated. One of the expressions of
2

interest is the relation between the radiance N (watts/(n» - sr)) and the

2 2radiant reflectance W (watts/m ) of an area element dA(m ) whose centroid

is located at longitude X and latitude 41. The radiance in this case is the

radiant power per unit area reflected by dA within an element of solid

angle dfi. The radiant reflectance is the total radiant power per unit area

(or radiant flux per unit area) reflected by dA into a 2ir steradians solid

angle.

Before writing the expressions connecting N and W it will prove

2
helpful to define the solar irradiance H (watts/m ). This is the amount of

radiant power per unit area (or radiant flux per unit area) impinging upon

dA(X,<J>) from all directions contained within a 2ir steradians solid angle.

Hence, the definitions of W , H, and W are very similar, except that they

refer to emitted, incident, and reflected radiations, respectivley. Then,

one can write, using the nomenclature of reference 3.

H(L, «, X, <J,, t)=SL cos

where

2
S » Solar constant (S = 1353±21 watts/m - 1.9401.03 cal/

(cm2-min), see reference 5).

—2 2 —
L « d /d .d and d are the mean and true sun-to-earth distances,

respectively.

?:•'» Zenith angle of the sun at dA (X,<j>).

X <* Longitude of the observed area element dA.

4> » Latitude of the observed area element dA.

2-7



t • specific time at which observation was made.

The instantaneous albedo A(£>^»4>»t) for the area element dA (X, <J>) is .

defined by - -

, A, <j), t)=Wr(L, £, A, 4>, t)/H(L,C,A,<j>,t) (2-U)

In order to simplify this expression, one can assume that L does not change

significantly during the time interval of the observations. Then, for

a given L, the dependence of W and H on L does not have to be shown. In

a similar way, A, <f>, and t can be dropped from the. above expressions, and

- «r (t)/H<0

From the definitions given for N and W at the beginning of this

subsection, one can write the following expression relating these two

quantities, which is similar to equation (2-8).

2ir ir/2 it 1Q^W (?)= / difj / ' N (9,<j>,£)sin 8 cos 9d9 U-J-»Jr o o r

Dividing this expression through by H(?), one has

6 cos 8d6 (2-20)
o

Where,

A(C) = r(0 - 1 (2-21)

r (t) is the directional reflectance which in this case is the same as the

instantaneous albedo.
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r — - —- — - -(2-22)̂

pCQ.'i'*?) is the bidirectional reflectance.

Thus, the directional reflectance is the ratio of the total radiant power per

unit area W (£) which is reflected by dA onto a 2ir steradians solid angle to

the total solar radiant power per unit area H(?) incident on dA at a zenith

angle C. The bidirectional reflectance involves two directions, namely,

the direction of the incident radiation which is given by the zenith angle

5, and the direction of the observer. The latter direction is defined by

the zenith angle 6 and the azimuthal angle 41. The bidirectional reflectance

is the ratio of that amount of radiant power per unit area per unit solid

angle N which is reflected by dA onto an element of solid angle dft (6,40

to the total solar radiant power per unit area H(£) incident on dA at the

zenith angle C .

The integral over the angle 6 appearing in equation (2-20) is similar

to the one appearing in equations (2-8) and can be treated in a similar manner.

That is, one can define I(p) as

0 (2-23)
I(p)= /* p(6,*,O sin 9 cos 6d6

0

Then .equation (2-20) can be rewritten as

diji (2-24)

A method proposed for utilizing these equations will be discussed at the

end of the section entitled Instantaneous/Inversion Technique.
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Instantaneous Net Flux

Once the representative values of H, W , and W are determined for a

particular region from a given set of n observations i, taken during a time

interval centered at t j, one can determine the net radiant power, or net flux,

Q. (tj) for this region. Hence, Q (t.) represents the instantaneous value

of the net radiant flux for the specific time of day t..

Average Net Flux

It follows from the above discussion of the instantaneous energy budget

that a weighted average (using the configuration factor as a weight) for a

given region can be obtained from the m values of Q. (t.) computed for m

sets of observations.

If, for instance, one is interested in obtaining the average of Q(t.)

during a month for a unique value of t. (say 3:00 PM) from m values, one has

f *i Qi (t-j)
Q(t.) =^

J ? v (2-25)i FI

Other types of averages which are more suitable for the user's needs

can be computed in a similar manner.

NOTE: In this report only the LWR component will be treated. The SWR
component will be discussed in a subsequent report.
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Radiative Equilibrium

When the temperature of the sensor reaches a steady state, it is said

that the sensor is in radiative equilibrium. In this state, the power input

P. is equal to the power output P .On the basis of the definition ofin ^ r r Qut

N(6) for the LWR presented in previous sections, one can write the expressions

for P. for both satellites, considered as blackbodies, asin

SPHERE P. = A / d\l> f m C9(a)3 sin a da (2-26)in s 0 o

a

o o

9
PLATE P. = A / dij> / m NC6(a)Hsin a cos add (2-27)

where a is the maximum value of the nadir angle.

The expression for P for both satellites follows from Stefan-Boltzmann

law,

4 4
SPHERE P = S a T =4A aTout s

PLATE P = Ag a T
4
 (2_29)

Where, a = 5.6697xlO~ watts/ (m -°K ); Stefan-Boltzmann constant.

It will be assumed only for convenience that the characteristic areas of both
2

radiometers is A = 1m . Also, N[6(o)] will be written in terms of Nz and
S

f [8 (a) ] perleqaation:' '(2-7) .

Then, the above four equations can be rewritten as,
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a
SPHERE P. = 2ir NZ / m f[9(a)H sin ada (2-30)

a
PLATE P. = 2ir NZ / m fC9(a)H sin a cos ada (2-31)in n

SPHERE PQut = 4 a T
4 (2-32)

PLATE PQut = a T
4 (2-33)

Substituting in (2-30) and (2-31) the value of Nz as given by (2-9), one

obtains,

a
/ m fC8(ci)3 sin a da

SPHERE P. = ^72 W
ein jiiit f(Q)

o

a
3 »in a cos a da

PLATE P±n = *~72 - : - W (2-35)
r'* f (9) sin 9 cos 6 d9 e

o

But comparing equation (2-5), that is P » FW, with equations (2-34) and (2-35)

one sees that the expressions for the shape factors for both radiometers are
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a
•--/-— -f-E9<-a)"3" sin- a-da—

(2-36)
sph .ir/2 f(Q) gin

o

a
/ m fC9(a)I] sin a cos a da

°f*'2 f (6) sin 6 cos 9 d9

or, using the definitin of I(f) given by (2-10), one can write

F - -—• f m fCe(a)D sin a da (2-38)
sp l(t) o

F - 77̂ - / m f[6(a)] sin a cos a da (2-39)
pi L(t) o

For the special case of isotropic radiation

f{e(o)] "1 and I(f) = h. Then,

Fis° - 2(1 - cos a )sp m

_iso .2F , = sin api m
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FUNDAMENTALS" OF THE TECHNIQUES

The only piece of information that a single satellite observation can

yield is the total radiant power intercepted by the radiometer, as given by

either equation (2-30) for a sphere, or (2-31) for a plate. This power

represents the sum of those radiances originating at each of the area

elements within the FOV and directed toward the radiometer. Therefore, it

is impossible to obtain from a single, wide-angle measurement, and without

additional information of any kind, an exact or rigorous solution for either

W or W for any area within the FOV of the radiometer,e r

A similar situation exists for measurements by narrow-angle radiometers.

The only information that is contained in a single observation of an area

element is the radiance in the direction of the radiometer on the satellite.

Scanning by this radiometer only adds information about adjacent area

elements and nothing additional about the original area element under consid-

eration. Hence, the fundamental difficulty one faces when trying to determine

the W field from a measurement of the radiance N (or W from N ) is that thee r r

total angular distribution of N (or N ) can not be deduced from the

measurement", and hencey—.W "can not be deduced,from the measurement

either.- .'"'.'.' " " - - '

It follows from the .above discussion that it is.impossible to determine

the W (or W ) field of an area of. any .size - i.e.,, of an.-area smaller than the

FOV, equal to _the FOV, or -larger than the FOV of the radiometer — unless the

angular distribution of N ±s'I_also made availalbe. On the other hand, it

is possible that by utilizing representative values of the angular distributions

of N and N obtained from previous observations the problem can be rendered

solvable in a satisfactory manner. Furthermore, these angular distribution

values can be refined in the future by increasing the number of measurements

of these distributions for different regions of the E-A system, as well as by
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improving the accuracy and precision,of these measurements.

Therefore, one can utilize an empirical model which portrays the angular

emitting and reflecting characteristics of the E-A system, based on previous

observations (satellite, aircraft, etc.) in order to solve the problem. At

Drexel University, this approach was followed by making certain assumptions

which are justifiable on the basis of physical processes and observational

data accumulated by other investigators (reference 4). These assumptions are

discussed in the following subsection.

Basic Assumptions

The following basic assumptions were sufficient to develop a technique

for computing W and W from radiant power measurements taken by spherical

and horizontal flat circular radiometers.

Division into regions. The surface area of the earth - atmosphere system is

assumed divisible into regions which have emitting and reflecting characteristics

significantly distinct from those of adjacent regions. The criterion for

implementing the division must ultimately be based on results of previous

satellite observations. The values of W and W computed for a given region

are considered to represent the mean of the meteorological variations taking

place in the time interval At(e.g., a month) during which the observations were

made,

Position and extent of each region. The position and extent of each region

is assumed to be available or can be approximated from data gathered by previous

investigators.

Angular distribution of N and N . The angular dependence of N for LWR, and of

N for the reflected solar SWR are available, or approximations can be made,

from previous observations.
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Although two different techniques for computing the radiant emittance

and radiant reflectance fields have been developed at Drexel, the initial

computational steps are common to both techniques. These common steps are

discussed in detail in the following subsection.

Mathematical Bases

In this subsection, the mathematical bases which are common to both techniques

are treated in detail. At the end of the subsection, the principal differences

in the two techniques for accomplishing the final goal are listed.

The problem to be solved is illustrated in figure 3-1, which depicts a

satellite (which for simplification is assumed to be crossing the equator) with

three different regions (R.., R_, and R,) falling, partially or totally, within

the FOV of its radiometer. The following development is for a spherical

radiometer; however, the treatment for horizontal flat sensor is similar.

A spherical radiometer of unit cross-sectional area is considered. Using

P *» FW, as given by equation (2-5), one can write for the total power contributed

by those portions of the three regions within the FOV of a radiometer on board

the satellite at position S in figure 3-1 the following,

Pin = Pl + P2 + P3

or

P = F W + F W + F W
in 1 el 2 e2 3 e3
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Figure 3-1. Regions within the FOV of a satellite crossing the equator.
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That is, by using (2-30) to represent the power originating at region R. and

which is intercepted by the satellite, one can write

P. = Fn W , = N / • d^> S f.CeCcODsin a da (3-3)1 1 el 1

Where ,

P * radiant power from region R. intercepted by the radiometer.

N̂ 'i - zenith radiance of region R-.

ip-j. • lower boundary for tji in region R, .

$' » upper boundary for i|» in region R- .

a,. » lower boundary for a in region R..

a1 » upper boundary for a in region R. .

To facilitate the discussion, an isotropic radiation field will be assumed.

Hence, f [6(a)] » 1, and one obtains

T, •„ TT n^-w /• lu ,, ,. lu . , (3-4)Pn=F- W - = N1 / dijj J sin a da
1 1 el 1 ij,-^ a1A

Where

N. - Isotropic radiance of region R..

Using expressions similar to (3-4) for T?2 and P.. we can rewrite (3-1) for

the power input to the radiometer, as

P=N?"SO / dijj / sin a da + N"° / <ty / sin a da + N^S° / dip / sin a da (3-5)
1 R! % 2 R2 &2 R3 R3
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Where R_, R2, and R imply that the integration limits are those corresponding

to the regions 1,2, and 3, respectively.

Equation (3-5) can be rewritten as

"i ô
P = I NT // sin .a .da d

By using equation (2-12), P can be expressed in terms of W rather than

, that is,

o

P = — 2 W . // sin a da d 1(1 (3-7)
TT i=l ei RI

The main problem at this point is to decide which is the most advantageous and

efficient manner to perform the Integration indicated in equations (3-6) or

(3-7).

Two main approaches were considered; these are discussed in the following

paragraphs together with the advantages that each presents.

The following different methods were considered.

(a) The integrations indicated in equation (3-6) could be performed

numerically (e.g., by using the trapezoidal rule) between the

boundaries given for each region in terms of longitude and latitude.

(b) The integrations could be performed geometrically. That is, by

dividing the surface area of the E-A system Into a large number L of

area elements, one could simply sum up the radiances that each of

the area elements emits in the direction of the satellite in order

to accomplish the integration indicated by (3-6).

It was decided that the second approach was more advantageous for the following

reasons:
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(a) In the first approach, since the boundaries of the regions do not

necessarily follow longitudinal and latitudinal lines of constant

value, the number of separate integrations to be performed could

often be impractically highi Furthermore, the limits of

integration for the angles a and ij> could involve difficult tri-

gonometric expressions which could make the implementation of

this procedure highly impractical.

(b) In the second method, once the centroids and boundaries of each of

the area elements have been accurately defined, the regions can be

easily defined in terms of a group of adjacent area elements.

(c) In the second method, a procedure for testing whether a particular

area element M should be considered to be within the FOV or not

can be easily implemented if the longitude and latitude of the

centroid of AA is known. If the centroid is on, or inside of the

perimeter of the FOV, AA is considered to be within the FOV;

otherwise, it is considered to be outside the FOV. On the average,

it is expected that as many area elements will be accepted as will

be rejected in each integration. Furthermore, since it is at the

limb that the area elements are tested to be accepted or rejected,

and since these area elements have much smaller shape factors than

those situated close to the SSP, it is clear that the error would

be negligible even if the number of area elements accepted do not

match the number rejected. -•---. ™ / . ' . . ' . . - -•

Therefore the second method will be followed in which the

surface of the E-A system isT.divided into a large number L of

area elements AA, and each area-element is identified by the

longitude and latitude of its centroid.
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In order to illustrate the computation of the radiant power intercepted

by a satellite radiometer whose POV comprises more than one region, a FLAT

E-A system will be assumed. This type of system greatly simplifies the

results. Only three regions and three FOV's will be considered, which are

depicted in figure 3-2. The portion of the flat E-A system shown in this

figure is comprised between 0 and 70 longitude, and between -50° and +50°

latitude, which is adequate for the purposes of this discussion. An area

element is considered within the FOV if its centroid lies on, or within, the

perimeter of the FOV, as per the criterion stated earlier. In figure 3-2,

the area elements have been numbered in order to identify them more easily.

In TABLE 3-1, the elements that are considered to be contained in each of: the

three FOVts are tabulated. It is seen that in this instance, each FOV

contains exactly twenty-six area elements.

The equations used to calculate the radiant power that an area element

AA contributes to one observation are presented below. The symbols

entering in these expressions are shown in figure 3-3 which is a schematic

of a radiometer at a position-S over the flat E-A system.

Let A P.., be the power that the ith area element in the kth, region
1J K

contributes to the jth observation. Then,one writes for a spherical radiometer

A
A Pijk = Nijk A Aijk C°S 9ijk -T- (3-8)

di

For a horizontal flat circular radiometer, one writes,

A cos a. ..
P - N A A cos 6 s ^ (3-9)
ijk N i jkA A i jk C°S 8ijk 2

N = Radiance of AAi in the direction of the radiometer

A ~ • •» Characteristic area of the satellite radiometer, which
for the sphere and plate ^: is irâ  (a = radius of sphere
and plate) .
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Figure 3-2. Three satellite positions over three regions.
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TABLE 3-1. Data from three satellite observations.

Observation
No.

1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3
3

Region
No.

1
1
1
3
2
3
2
2

2
3
2
3
2
3
2
3
2
2

2
3
2
3
2
3
2
3
3

Area Element
No.

201-203
186-190
172-176
158
159-162
144
145-148
131-133

159-161
144
145-148
130
131-134
116
117-120
102
103-106
89-91

117-119
102
103-106
88
89-92
74
75-78
60-64
47-49

No. of Elements
Elements Per Obs.

3
5
5
1
4
1
4
3 26

3
1

1
4
1
4
1
4
3 26

3
1
4
1
4
1
4
5
3 26
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Figure 3-3. Radiance N± emitted by AA ' fe of a flat E-A system and

intercepted by the radiometer S.
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AA... = ith area element in the kth region within the
•' FOV of the jth observation.

6. . » Zenith angle of the radiometer at AA .

« Nadir angle of AA . at the radiometer

d. .. » Distance from AA... to the radiometer

Let it be assumed that N. . is a function of the zenith angle 6 ,

only (i.e., that it is independent of the azimuthal angle K.,). Then, one

can write

N. . . = N?.. f ( 9 . . . ) (3-10)ijk ijk ijk

Where,

N. . « radiance in the zenith direction at AA. ..

f(9. . )= limb darkening function (LDF) or anisotropic factoir;
j

It will be further assumed that a region K is characterized by the

following :

(a) The value of the LWR radiant emittance in the kth region has a

representative average value W .

(b) The LWR radiance in the zenith direction has also a representative

average value N, in the kth region.

(c) The LDF has a representative functional form ffc(6) throughout

the kth region.

Hence, for the kth region one rewrites (3-10)as

fk îjk' (3-10')
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To avoid carrying A in the following expressions, it is assumed that
s

2
A - 1 m . This assumption does not affect the validity of the results.

2
By substituting (3-10) into (3-8) and (3-9), and making A - 1m , one

S

obtains,

"k £k ijk (3-11)

-
cos a

cos

ijk

In the section BASIC IDEAS, the following expressions were introduced

to show the relationship between N, and W ... From equations (2-10) and

(2-11) one then writes, respectively,

I(f. ) = f11*2 f. (0)sin 9 cos 9 d6
JC o K

(3-13)

Nk 2* I (£) Wek (3-14)

Substituting (3-14) into (3-11) and (3-12) one obtains,

. .,
13*'

21 (fk)

cos 8

<*

wW
6cC

(3-15)

PpP
fl (9- -1 )k

ijk 21 (f.)

COS 9- -1 COS wek
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Although the subscripts in AA.., identify the position, the observation, and
1JK

the region, respectively, of the area element under consideration, these sub-

scripts can be dropped here since they appear in other variables in the same

expression. Also, the magnitude of AA has been assumed to be the same for all

area elements; and hence, it is unnecessary to identify it with the subscripts.

2
It was shown in expression (2-5) that if A « 1m , the power P is related

to the radiant emittance W by means of the shape factor F, that is
e

P = F W (3-17)
e

Hence, using the definition of the shape factor, one obtains from (3-15) and

(3-16),

f. (9. ., ) . . cos 9.
_r k llk ir A-A~L JL -

ijk~ 21 (f ) TT 2 (3-18)
k ijk

f, (9. ., ) . . cos 9. .. cos a.
~P _r k ijk -ir A_AF ~ L J L

_ _

ijk~ 21 (f ) TT 2 (3-19)
ijk

From figure 3-3, it is seen that for a flat E-A system (which is the type of

system being used in this development) d.., is given byIJK

»-20>

which is different from the equivalent expression for a spherical E-A system,

which from figure-.-2-l can be seen to be

ri'k = R2 + (R+H)2-2R(R+H)cos Y
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where,

«» distance from AA. ., to the radiometer in the spherical-
E-A system. 1Jk

R » radius of the E-A system.

Y « angle between A... and the SSP, measured at the
center of the earth.

In order to obtain the power P.. contributed by the kth region to the jthjK.

observation of both, the sphere and the plate, equations (3-15) and (3-16)

are summed up over i.

PS - I AP S . - I FS., W. <3'22>jk 1=1 ijk 1=1 ijk ek

PP = I APP . 1 FP w 0-23)
jk 1=1 ijk 1=1 ijk ek

where,

» total number of area elements AA... of the kth.
region that were under the FOV or^the jth obser-
vation.

Similarly, the configuration factor F , represents the contribution by
jfc

the kth region to the jth observation and is obtained as follows,

A' . 1 "It C . ..jk 1=1 ijk

FP = 1 FP (3-25)
jk 1=1 ijk

And for the three contributions from the regions R. (k » 1,2,3) to the jth

observation one obtains by combining (3-22) with (3-24) and (3-23) with (3-25),
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s 3 s 3
P7 = E P., - 2 F.. W . (3-26)
J k=l Jk k-1 Jk ek

3 3
Pp = £ PP = Z F?. W . (3-27)
J k=l Jk k-1 Jk ek

Or, writing in detail these expressions, one obtains for the sphere,

ps = ps u + FS W + FS W
1 11 el 12 e2 13 e3

s = FS W + FS W + FS W
2 *21 el + *22 e2 *23 e3

Ps = Fs u + FS W + FS W
3 31 el *23 e2 ^33 e3

And for the plate one has,

P = pP u + pP W + FP W
1 11 el 12 e2 13 e3

pP = pP W + F15 W + F15 W (3-29)
2 ^21 el *22 e2 23 e3 U ^'

p = F W + F W + F W
^3 *31 el + ^32 e2 33 e3

By denoting the matrix of the coefficients for the sphere and plate, respectively,

as F and F , one can express (3-28) and (3-29) in matrix form as follows,

F° { W } = { P ' } (3-30)e

{ W } = { Pp } (3-31)e
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Where, {W } is the column matrix of the radiant emittance whose elements

are the We (k - 1,2,3) values of the three regions. {P } and {PP} are

column matrices whose elements are the individual power measurements by the

spherical and flat radiometers, respectively.

The mathematical expressions presented up to this point are common to

both of the techniques developed at Drexel. From this point on the two

techniques proceed by different paths. The fundamentals of these two

techniques will be broadly discussed in the next paragraphs before proceeding

to the next sections in which each of the techniques and the results obtained

by applying them are discussed in detail.

Instantaneous/inversion technique. In this technique, the number m of ob-

servations matches the number of regions n (i.e., the n unknown values of

W ), and hence, the solutions are unique. It is termed instantaneous since

the procedure is implemented by taking all the m=n observations during one

single pass or orbit of the satellite. Several sets of instantaneous results

obtained at different time intervals can be grouped together and weight-

averaged over the complete time period comprising the total number of obser-

vations. The weights to be used are the configuration factors of those

region segments appearing within each of the FOV's, or the areas of the

region segments.

Therefore, in this procedure, the solution to the n simultaneous

equations of the type shown in the set of equations (3-22) for n=3 can be

accomplished by inverting the configuration factor matrix. The inverted

matrix then, when multiplied by the column matrix of the n power measure-

ments P. yields the n We, values one seeks.
J K
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Best-fit/inversion technique. In this technique, the number of observa-

tions m is larger than the number of regions n (i.e., the n unknown values

of W ). The n simultaneous equations required to solve the problem are

obtained by using an extension of the method of least squares. These n

simultaneous equations are solved by using a matrix inversion subroutine.

The n We, values determined in this manner represent the partial coeffici-
JC

ents of a surface which best fits the data resulting from the observations.

These W represent a mean atmospheric situation portraying the overall condi-

tion for a significantly large time period (e.g., a month), and no instan-

taneous results are ever obtained from application of this technique. Here

again, each of the m observations will be represented by an expression simi-

lar to those shown in the set of equations (3-26) or (3-27).

The details of this procedure are presented by means of an illustration

in the section entitled "Best Fit/Inversion Techniques."
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INSTANTANEOUS/INVERSION TECHNIQUE

A mathematical technique for computing the value of U will.first be

presented. Afterwards, the technique will be tested by applying it to a

simplified case of a flat E-A system.

Mathematical Development

The set of simultaneous equations (3-28) for the case of n unknowns can

be written in matrix form as follows

{P} - F {W }
e (4-i)

where

{P} = column matrix whose elements are the n power
measurements

column matrix whose elements are the hypothetical
values of W for each of the n regions

F » n by n configuration factor matrix whose elements
F., are given by (3-18), and which.can be written as,

F =

F12 ••' Fln

F F F
21 22 "• *2n

F • F . . .. F
nl n2 nn

(4-2)

F , the inverse of F, is then computed in order to solve equations

(4-1) for W -by operating with F~ on {P}, that is,

F'1 {P} = {We> (4-3)
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So far, it has been tacitly assumed that F and {P} are exact (i.e., do not

contain errors). Now, however, it will be assumed that the observations {P}

include uncertainties {6P}.

Then, the actual equation to be solved is not the exact equation (4-1)

but the perturbed equation (reference 6)

F {W1} = {P + 6P} (4-4)
e

where {W1} has been introduced to represent the exact solution of the

perturbed equation (4-4) as opposed to {W } which is the exact solution of

the exact equation (4-1). One can then write

. {w'}= {We + 6We> (4-5)

Again, using the inverse of F one obtains from (4-4) and (4-5),

+ 5P} = {We + 6We>

or.

+ F"1{6P} = {W } + {6W } (A"7)
e e

Subtracting (4-3) from (4-7) one obtains

-1 i (4-8)
e

If the elements of the error matrix {6W } are large for small error elements

{6P}, the perturbed equation (4-4) is known as ILL-CONDITIONED, the INVERSE

MATRIX F*"1 is termed UNSTABLE, and the matrix F is called ILL-CONDITIONED

(references 6 and 7).

If the elements of {6W } are small, or acceptable according to some
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prescribed accuracy requirements, then expression (4-8) has solved the problem

of retrieving the values of W , and nothing else needs to be done. On the

other hand, if the resulting elements of {<5W } do not meet the accuracy
e

requirements for a given set of small uncertainties {6P}, then the problem

has just begun. This is the situation that will be treated in the following

paragraphs.

Let it he assumed that the elements of {<SW } are unacceptable, but that

the unstable matrix F can somehow be modified to become a stable matrix

F , which, when operating on {6P}, yields a set of new errors in W which

are now acceptable. These errors 6W are the elements of the new column

matrix (<SW } resulting from the following equations.

6P} = {W + <SW
e e

or,

F~1{5P> = {'W> + {6W> (4-10)

But it is known that {W } is related to the exact power column matrix {P}

by (4-3). That is

{W } = F"1 {P} (4-11)
e

Subtracting (4-11) from (4-10) one obtains,

(4-12)

or

dp"1 - F"1] {P} + F'1 {6P} = {6Wfi} (4-13)
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Equation (4-13) shows that the new inverse matrix can contribute in the

following two ways to the value of {6W }.

(a) The n by n matrix resulting from subtracting the old inverse ma-

trix from the new one appears ; multiplying the poweriraatrix {P}.

(b) The new n by n inverse matrix F multiplies the power uncer-

tainty : matrix {6P}.

In the subsection entitled "Matrix Stabilization,'!, a detailed account of a

scheme found to stabilize the inverse matrix F is given. In that sub-

section is also explained the physical significance of modifying the unsta-

ble inverse matrix.

In order to implement this technique, a computer program would be

required for performing the numerical integrations, matrix inversions, matrix

stabilizations, and tests that would be deemed necessary. Furthermore,

another computer program would be required for dividing the surface of the

spherical earth-atmosphere system into a finite number of area elements.

The output data of the latter program would be used in the former for

accomplishing the numerical integrations.

Nevertheless, before engaging in writing these large and sophisticated

computer programs, it was decided to subject the technique to a test.

By considering a hypothetical flat earth-atmosphere system, some of the

equations, as well as the overall computer program could be greatly

simplified. On the other hand, the procedure developed to stabilize the

inverses of the matrices would be rigorously tested. In the next subsection,

the flat E-A system is discussed.
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Flat Earth Application

By considering the E-A system to be flat rather than spherical, the task

was greatly simplified and less time consuming, while -the results obtained

can be interpreted as a representation of actual physical situations in a

spherical system. This flat E-A system was assumed to be a rectangle of

360° of longitude by 180° of latitutde. The longitude is measured westward

(to the left) from 0°, at a hypothetical Greenwich meridian, to 360°. The

latitude is measured northward (upward) from 0 , at a hypothetical equator,

to 90 ; and southward (downward) from 0 to -90 . It was found convenient,

for interpreting some of the results, to consider the flat E-A system to

be tangential to the spherical E-A system at the SSP, as shown in figure

4-1. At any point in this flat E-A system, one degree of longitude is* the same

as one degree of latitude and each is equal to 100 km. The surface area

of this system was divided into a total of 2592 equal area elements AA of

5° by 5°. The area of an area element is given by AA » 500 km x 500 km «

2 11 2
250,000 km » 2.5x10 m . The surface area of the system was also divided

into 162 regions of 20° by 20°, or 2000 km by 2000 km. It is to be noted

that the area elements are used to perform the numerical or geometrical

summations or integrations. Each area element AA is Identified by the

longitude and latitude of its centroid, and hypothetical values of W and

albedo can be assigned to AA. However, in the present report only W is

included. Direct and reflected SWR will be discussed in a subsequent report.

A region is characterized by a representative value of W (and/or W (0)),

and variations of W (or W (0)) within it are neglibibly small or undetectable

by a radiometer.

The radius p of that area of the flat E-A system within the FOV of the

radiometer can be quickly claculated with the aid of figure 4-1'. From this

figure, it can be seen that
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Figure 4-1. Flat E-A system par"eterse 



Pm = H tan am 

Hence, 

For a height  H = 800 km, am = 62.74', and 

pm (H=800 km) = 1550 km 

Since i n  t h e  f l a t  E-A system lo = 100 lan, one has  

1 

pm ( 8 8 0 0  km) = 15.5' 

A s  shown i n  f i g u r e  4-1, p is t h e  d i s t a n c e  between t h e  SSP and t h e  cent roid  

of t h e  a r e a  element AA under considerat ion.  Therefore,  according t o  t h e  

c r i t e r i o n  previously discussed f o r  deciding i f  a given Mi  should be 

considered wi th in  t h e  FOV o r  n o t ,  one should compare t h e  corresponding value 

bi d t h  .P,* If P i . . I P m ,  Mi  is considered t o  be wi th in  t h e  FOV. Therefore, 

one can write i n t o  t h e  computer program a simple scanning scheme f o r  t e s t i n g  

a l l  a r e a  elements wi th in  t h e  area of i n t e r e s t .  Of course, t h e  t o t a l  of 2592 

A A ' s  can be  scanned each time a p a r t i c u l a r  AA i s  considered f o r  inc lus ion 

i n  t h e  computations, bu t  computer t i m e  i s  saved i f  one can program t h e  

boundaries of an area smewhat l a r g e r  than t h e  a rea  of i n t e r e s t . .  This  point  

is  i l l u s t r a t e d  i n  d e t a i l  i n  t h e  following exerc i se  which was a c t u a l l y  used 

t o  eva lua te  t h e  v a l i d i t y  of t h e  technique being discussed. 



Error  F.ree Observations 

I n  t h i s  subsect ion,  a s p h e r i c a l  radiometer is sfmulated i n  a s t r a i g h t  l i n e  

t r a j e c t o r y  800 km above t h e  E-A system. A hor izon ta l  f l a t  c i r c u l a r  radiometer 

w i l l  be assumed t o  be  coincident  wi th  t h e  s p h e r i c a l  radiometer a t  a l l  t i m e s  

and hence t h e  su r face  a r e a o f  t h e  E-A system in te rcep ted  by both  FOV's w i l l  

be i d e n t i c a l .  A r b i t r a r i l y ,  s i x  regions and s i x  satel l i te  p o s i t i o n s  have 

been s e l e c t e d  which a r e  portrayed i n  f i g u r e  4-2. Although a t o t a l  of f i f t e e n  

rqgions a r e  shown i n  t h i s  f i g u r e ,  only six of them a r e  observed a t  one t i m e  

o r  another by t h e  satellites; and hence. only t h e  W values f o r  these  s i x  e 

regions  needed t o  be shown. Nevertheless,  t h e  W va lues  of e i g h t  regions  e 

were a c t u a l l y  included. The s i x  s a t e l l i t e  pos i t ions  a r e  i d e n t i f i e d  by num- 

b e r s  one through s i x  as t h e  satellites t r a v e l  from south  t o  nor th  i n  t h e i r  

common t r a j e c t o r y .  The longi tude  and l a t i t u d e  of t h e  SSP f o r  each o b s e r v a t i ~ n  

is shown i n  parentheses next  t o  t h e  number of t h e  observation. The longi tudes  

and l a t i t u d e s  of t h e  cen t ro ids  of a l l  a r e a  elements can be e a s i l y  found by 
- 

r e f e r r i n g  t o  t h e  longi tudes  and l a t i t u d e s  indicated  a t  the  margins. For 

example, t h e  longi tudes  and l a t i t u d e s  of t h e  cent roids  of the  two a r e a  ele- 

ments pos i t ioned nor th  and south  of SSP 30.4 a r e  as follows. 

b 0 0 North: long. 22.5 , lat .  +12.5 . South: long. 22. so, l a t .  +7.5 . A l l  

t h e  d a t a  pe r ta in ing  t o  those  a r e a  elements contained wi th in  t h e  e i g h t  regions 

bounded by longi tudes  0' and 40°, and by l a t i t u d e s  -20' and 60' were fed i n t o  

t h e  computer program generated t o  test t h e  technique. 

I n  order  t o  i l l u s t r a t e  how t h e  r e s u l t s  f o r  the  s i t u a t i o n  portrayed i n  

f i g u r e  4-2 were obtained,  one may consider t h e  a rea  element AA(12 .5,32.5), 
- 

t h a t  i s  t h e  a r e a  element whose cent roid  has longitude 12.5' and l a t i t u d e  

32.5'. The perimeter  of t h i s  a r e a  element is shown marked wi th  a broken l i n e  

i n  f i g u r e  4-2.. For purposes of t h i s  i l l u s t r a t i o n ,  s a t e l l i t e  pos i t ion  No. 6 

which has a SSP i t  24O longi tude  and 20' l a t i t u d e  is se lec ted .  The f i r s t  
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Figure 4-2. Six Sate l l i t e  FOV'S over s ix  regions of the flat. E-A system. 



s t e p  is t o  compute p (12.5.32.5) f o r  t h i s  s i t u a t i o n  and compare i t  wi th  ph 
6 

t o  determine i f  AA (12.5,32.5) is o r  is no t  wi th in  t h e  FOV of t h e  satellites 

a t  p o s i t i o n  No.6. I n  this no ta t ion  t h e  p6 (12.5, 32.5) means t h e  d i s t ance  

( i n  m) between SSP No.6 and t h e  cent roid  of M (12.5,32.5); while p6m means 

t h e  rad ius  of the FOV f o r  SSP No.6, which is t h e  maximum value  p can a t t a i n  

f o r  observat ion No.6. 

6 A s  shown i n  t h e  previous subsect ion f o r  H = 800 km, ph - 1 . 5 5 ~ 1 0  m. 

Using primes t o  i n d i c a t e  t h e  d i s t ances  i n  d e ~ r e e s ,  one c a l c u l a t e s  ci (12.5,32.5) 

a s  follows, 

2 2 )L, 
P '  = long + A  l a t  

where, 

PI = dis tance  from SSP t o  AA i n  degrees 

Then, 

t 

Hence, pk r %m ,which 'means -that. the area element A A ' (12.5, 32.5) i s  NOT 

wi th in  t h e  FOV of t h e  radiometer a t  p o s i t i o n  No.6. 

I n  order  t o  c a l c u l a t e  t h e  shape f a c t o r  and the  power increment contr ibuted 

by an area element (which must l i e  wi th in  t h e  FOV of t h e  s a t e l l i t e s )  an a rea  

element l y i n g  i n s i d e  t h e  FOV of observation No.1 i s  se lec ted .  This element 

is AA (7.5,-12.5) and i t s  boundaries a r e  a l s o  marked with a broken l i n e  i n  

f i g u r e  4-2. Since the  whole t r a j e c t o r y  is at a height  of 800 lan, t h e  value 

of $ f o r  p o s i t i o n  No .l is t h e  same a s  No-; 6, i. e . ,  '. = 15.5'. . ~he:-c.iSctilat ion  . P lm . -. .. 



of p; (7.5,-12.5) is then, 

b 2  = ( 7 . 5 - 1 9 ) 2 = 1 3 2 . 2 5  
long 

h 2  = ( - 1 2 . 5 - ( ~ 5 ) ) ~  = 56.25 
lat  (4-21) 

Thus, p i <  p i m  and AA (7.5, - 12.5) con t r ibu tes  rad ian t  power t o  t h e  radiometers 

of t h e  satel l i tes  a t  p o s i t i o n  No.1. 

I n  o rder  t o  s impl i fy  t h e  computations of t h i s r u n ,  t h e  r a d i a t i o n  f i e l d  

w a s  assumed i s o t r o p i c .  This means t h a t  i n  equations (3-18) and (3-19), 

( 0 )  = 1 and I ( f )  = 4 

Hence, f o r  a s p h e r i c a l  s a t e l l i t e  t h e  shape f a c t o r  f o r  t h e  i t h  a r e a  element.  

i n  t h e  fi:th region and wi th in  t h e  FOV of t h e  j t h  observation is 

A A 
cos e 

s = -  i j k  
F i j k  n 2 

d i j k  

From f i g u r e  4-1, one ob ta ins  f o r  t h e  f l a t  E-A system, 

H 
COS 9 = - 

i j k  d . .  
1~ k 

3 2 2 )3/2 
d i j k  = (H + Pijk 

Hence, 

5 For t h e  case under considera t ion p = 1 3 . 7 ~ 1 0  m, and 
i J k  

Then, 



By (3-24) a l l  t he  shape fac tors  of the  a rea  elements within region No.1, and 

s 
within the  FOV of SSP No. 1 a r e  added t o  y ie ld  t he  f i r s t  element Fll of the  

configuration f ac to r  matrix. The value of t h i s  element was calculated by the  

computer program TARA 7-15-1, and its value, shown In f igure  4-3, is 

Then, according t o  (3-17) f o r  a spher ical  radiometer with a cha rac t e r i s t i c  

2 S a rea  As - na2 = 1 m , one can wr i te  f o r  the  power Pll which region No.1 

contr ibutes  t o  observation No.1 

From f igu re  4-2,Wel 
2 = 236.0 w/m . Hence, 

I n  a s imi l a r  manner, the  radiant  power contributed by regions 2,3, and 4 

a r e  computed and added t o  ge t  the  t o t a l  radiant  power intercepted by the sphere 

a t  posi t ion No.1. It is noted t ha t  s ince regions 5 and 6 do not appear within 

the  FOV, t h e i r  contr ibut ions  a r e  zero. Then, one wr i tes ,  

P: = Fl lWel  + F12We2 + '13'e3 + *14'e4 (4-29) 

This power was calculated by the  computer program and i t s  value, shown i n  

f igure  4-3, is  



An i den t i ca l  procedure would be followed i n  order t o  obtain P: f o r  the  

horizontal  f l a t  c i r cu l a r  s a t e l l i t e .  There is only one difference between the 

two calculat ions  which can be seen from comparing the expressions f o r  the  

shape f ac to r  of the  sphere (3-18) and f o r  the  p l a t e  (3-19). The l a t t e r  has 

an addi t ional  fac tor ,  namely, cos a i j k '  
T h e a n g l e a  is t h e n a d i r  a n g l e o f  

i j  k 1 

AA measured a t  the  s a t e l l i t e ,  and cos a is used in order t o  accouht-: 
i j k  i j  k 

f o r  t he  project ion of t he  p l a t e  area  onto a plane perpendicular t o  the  d i rec t ion  

of the  radiance N ( r e f e r  t o  f igure  3-3). In  the f l a t  E-A system. 
i j  k 

a i j k  - 'ijk9 and hence, cos a ' = cos' 8 i j k  i j k '  
Thus, from (3-19), the  expression 

f o r  the  shape f ac to r  f o r  the  p l a t e ,  assuming an i so t rop ic  rad ia t ion  f i e l d ,  is 

The values of the var iables  i n  t h i s  expression a r e  the same a s  f o r  the 

sphere. Using the value of cos e given by (4-23) then, one has, 
13 k 

I n  t h i s  case t h i s  value is one half  t h a t  of the  sphere; however, t h i s  r a t i o  

va r i e s  f o r  d i f f e r en t  area  elements as  would be expected. The area element 

here considered i s  a t  the  limb where cos a i j k  a t t a i n s  i ts  smallest  value. For 

an area element a t  the  nadir  posi t ion,  cos a 
i j k  = 1, and the shape fac tors  f o r  

both sphere and p l a t e  have iden t i ca l  values. 

Again here, adding a l l  the contributions from region No.1 t o  the  p l a t e  i n  

posi t lon No.1, one obtains t h e  value of F ~ :  shown i n  f igure  4-4, t h a t  is, 



Then.,),.again, according t o  (3-17) f o r  hor izontal  f l a t  c i r cu l a r  radiometer with 

a cha rac t e r i s t i c  a rea  As = na2 = lm2 one can wr i t e  f o r  the  power P which 11 
2 

region No.1 (Wel 236.0 w/m ) contr ibutes  t o  observation No.1 

Again here, the  powers contributed by regions 2,3, and 4 a r e  calculated 

i n  a s imi l a r  manner and added i n  order t o  obtain  the  t o t a l  radiant  power 

intercepted by the  p l a t e  a t  posi t ion No.1. Since t he  FOV's of t he  sphere 

and p l a t e  coincide, regions 5 and 6 must not appear in  the  FOV of the  p l a t e  

a t  posi t ion No.1 e i t he r .  The expression f o r  pP equivalent t o  (4-29) is  1. 

The value of P: ca lculated by the  computer program TARA 7-15-1 is shown 

i n  f igure  4-4; t h i s  value is 

I n  the  previous paragraphs, i t  has been shown i n  d e t a i l  how t o  ca lcu la te  

the  elements of the  configuration f ac to r  matrices F and power codirmn matrices 

@I f o r  spher ical  and hor izontal  f l a t  c i r c u l a r  radiometers. The elements of 

the  column matrix {We) were assumed known i n  order t o  simulate and compute 

the radiant  power observed by both s a t e l l i t e s .  In  t h i s  manner, the  elements 

of the  column matrices {PI f o r  both radiometers were calculated by the  

computer program. Figures 4-3 and 4-4 show a l l  the  elements of the  square 

F matrix and of the  two column matrices {We) and $I-. These f igures  show 

t-h.e-- ma t-=.h . 
pr,bd&tg : f o r  . .. fK= :'Isphee-:-and'-$p'late .. .. ,which can be w r i t  ten  symbolically 



Figure 4-3.  Matrix product computed f o r  the sphere. 

COFSPH (K, 1) 

1 

0.484847428 

0.276829292 

0.108860067 

0.017068977 

0.000000000 

0.000000000 



Figure 4-4. Matrix product computed f o r  the  p l a t e .  

. 
-, . 

PHO'RIZ (k) 

- - 

,. , 

'90.073940996 

-91.396199412 

193.360972805 

187.635182979 

188.275656474 

194.868514638 



The f i r s t  test t o  whi'ch t h e  technique was subjected  is t h e  following. 

Consider t h e  e r ro r - f ree  power measurements contained in t h e  column matr ices  

e n t i t l e d  PSPHER (k) and PHORIZ (k) i n  f igures  4-3 and 4-4 respect ively .  

Compute t h e  s i x  values  of We by opera t ing wi th  the  inverses  of t h e  configu- 

r a t i o n  f a c t o r  matr ices  on t h e  power column matr ices  a s  ind ica ted  by equation 

(4-3), t h a t  is, by using 

For t h e  case i n  which t h e  observations a r e  f r e e  of u n c e r t a i n t i e s ,  t h e  s i x  

values of W r e t r i e v e d  should be  the  same a s  t h e  six hypothet ica l  va lues  e 

of We o r i g i n a l l y  given. 

The inverses  F-' of t h e  o r i g i n a l  conf igura t ion f a c t o r  matrices f o r  

t h e  sphere  and p l a t e  a r e  presented i n  f i g u r e s  4-5 and 4-6, r e spec t ive ly ,  It 

should be noted t h a t  t h e  inverses  appear i n  t h e  transposed form which i s  t h e  

o rder  i n  which t h e  computer, o r d i n a r i l y ,  p r i n t s  ou t  matrices.  

The six We va lues  obtained when performing the  matrix m u l t i p l i c a t i o n s  

( fo r  t h e  sphere and the  p l a t e )  given symbolical ly by (4-38) were i d e n t i c a l  

t o  t h e  s i x  o r i g i n a l  hypothet ica l  We values t o  a t  l e a s t  e i g h t  decimal p laces ,  

f o r  both s a t e l l i t e s .  

The technique was then subjected  t o  the  following t e s t .  The observations 

were assumed t o  inc lude gaussian random u n c e r t a i n t i t i e s .  The procedure 

followed and t h e  r e s u l t s  obtained a r e  described i n  d e t a i l  i n  t h e  nex t  

subsection.  



Figure 4-5. Inverse of original configuration factor matrix, in transposed form, for the sphere, 



Figure 4-6.  Inverse of the original configurat%on factor matrix, in transposed form, f o r  @he plate, 



Perturbed Observations 

I n  o tder  t o  generate the  gaussian random e r r o r s  needed t o  per turb the  

s i x  radiant  power measurements, a computer program using two subroutines 

(RANMT-and GAUSS) was generated. The sigma value of the  gaussian 

2 
d i s t r i bu t ion  is o = 0.5 W/m . The gaussian e r ro r s  E were added t o  the  

8 
power values o r ig ina l ly  computed ( i .e . ,  t h e  unperturbed powers) i n  order 

t o  obtain  t he  gaussian-perturbed power matrix {P 1, t h a t  is, 
g 

where 

P = Gaussian perturbed power elements of the  new matrix. 
g 

The t e s t  t o  which the  technique w i l l  now be subjected cons i s t s  i n  carrying 

out the  mul t ip l ica t ion  of the  configuration f ac to r  matrix by the  new column 

power matrix {P 1. This mul t ip l ica t ion  is s imi l a r  t o  t h a t  i n  (4-38), except 
8 

t h a t  i n  the  l a t t e r ,  the  o r ig ina l  power column matrix {PI is used instead of 

{P 1. Hence, the  old  elements of {We} i n  (4-38) w i l l  be modified by 
g 

unce r t a in t i t i e s  E. resu l t ing  from the  unce r t a in t i t i e s  E i n  the  elements of 
w g g 

{Pgl. That is, i n  matrix f o m ,  

and t h e  matrix product t o  be  calculated can be wr i t t en  a s  

Where F-' a r e  the  inverse matrices given i n  transposed form f o r  t he  sphere 

and the  p l a t e  i n  f igures  (4-5) and (4-6), respectively.  The f i r s t  three  

r e s u l t s  obtained by adding Gaussian random perturbations t o  the  exact power 



measurements are l i s t e d  i n  TABLE 4-1. There a r e  t h r e e  sets of d a t a  i n  t h i s  

t ab le .  For each set, t h e  gaussian e r r o r  f o r  each of the  regions  appears on 

t h e  f i r s t  row of  t h e  set. The second row conta ins  the  u n c e r t a i n t i t i e s  E 
wg 

i n  t h e  values  of We f o r  t h e  s i x  regions,  r e s u l t i n g  from t h e  pe r tu rba t ions  

E of t h e  power measurements of t h e  s p h e r i c a l  radiometer. S imi la r ly ,  the  
g 

t h i r d  row conta ins  t h e  corresponding u n c e r t a i n t i t i e s  c i n  t h e  values  of 
wg 

W f o r  t h e  six regions,  f o r  t h e  f l a t  rgdiometer. Each of t h e  q u a n t i t i e s  i n  e 

t h e  last column represen t s  t h e  root-mean-square (ms) values  of t h e  s i x  

e r r o r s  shown i n  t h e  corresponding row. Two important f a c t s  a r e  t o  be 

no t i ced  from t h e  l a s t  column of TABLE 4-1; these  a r e  

(a) The p l a t e  c o n s i s t e n t l y  e x h i b i t s  a l a r g e r  e r r o r  than t h e  sphere.  

(b) The r e s u l t s  of t h e  matrix invers ion a r e  completely unacceptable 

when t h e  observat ions  inc lude gaussian uncer ta in t i e s .  

A t  t h i s  p o i n t ,  based on t h e  r e s u l t s  s t a t e d  i n  item (b) above, t h e  

a p p l i c a b i l i t y  of t h i s  technique was questioned and the re fo re ,  i t  was decided 

t o  i n v e s t i g a t e  t h e  p o s s i b i l i t y  of improving t h e  s i t u a t i o n .  However, before 

going i n t o  a d iscuss ion of how the  problem was solved,  i t  w i l l  prove 

h e l p f u l  t o  in t roduce now t h e  r e s u l t s  obtained when t h e  observations included 

sys temat ic  u n c e r t a i n t i e s  only ,  a s  w e l l  a s  when combinations of systematic 

and gaussian u n c e r t a i n t i e s  were included. 

TABLE 4-2 shows t h e  e r r o r s  & i n  W when sys temat ic  e r r o r s  es w e r e  e 

added t o  t h e  power elements of {PI. I n  t h i s  t a b l e ,  two sets of d a t a  a r e  

presented. Each set has  i n  t h e  f i r s t  row, t h e  systematic e r r o r s  \ f o r  t h e  

six regions. The second and t h i r d  rows, a s  before ,  contain t h e  e r r o r s  E 
W S  

i n  W f o r  t h e  sphere and p l a t e ,  r e spec t ive ly .  Systematic e r r o r s  E of equal  e s 

magnitude and opposi te  s ign  produce e r r o r s  & of equal  magnitude but  opposi te  

s ign.  

Two conclusions can be made from TABLE 4-2: (a) Systematic e r r o r s  i n  



TABLE 4-1. Results  obtained from observations having gaussian unce r t a ln t i t i e s .  
- 

rms of A l l  
Set  No. Type of Error  Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Columns 

1 Gaussian, 6 * - ' 1 .1430-  0.3780 0.0730 . 0.7630 - 0.3030 0.7480 0.6693 
g 

Sphere, . c  * - 17.1903 21.0556 - 17.8317 12.6009 - 126.0356 36.5961 55.4374 
wg 

..:.Plate, c - 18.6985 23.9852 - 21.1519 13.9772 - 188.8153 
Wg 47.0500 

81.0685 

2 ' Gaussian, e - 0.6290- 0.0900 0.0220 1.1540 0.0010 
€3 

0.5750 0.5869 

Sphere, c - 27.1069 36.9908 - 31.8555 21.6465 - 169.1907 45.9727 75.6367 
wg 

P l a t e ,  E - 28.3301 41.0255 - 36.1231 22.9781 - 249.4868 
"g 

58.6197 108.0112 

Sphere, 6 - 20.6392 26.8407 - 13.1619 6.9388 - 31.3333 8.6223 20.0993 
w g 

P l a t e ,  E - 20.9824 28.8626 - 15.6265 7.7164 - 54.7122 13.1255 28.1151 
wg 

c i s  i n  wat ts  
g 



TABLE 4-2. Results obtained from observations having systematic errors.  

'ms of A l l  
Set No. Type of Error Region 1 . Region' 2 Region 3 Region 4 Region 5 Region 6 Columns 

1 Systematic, c * - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 0.3 s 

Sphere, E ** - 0.0882 - 0.5409 0.0094 - 0.4641 0.5549 - 0.4432 0.4123 
W S  

Plate ,  6 - 0.2552 - 0.5636 - 0.1789 - 0.5007 
w s  0.3662 - 0.5109 0.4205 

2 Systematic, c8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

Sphere, 6 0.2646 1.6226 - 0.0283 1.3922 - 1.6648 1.3297 1.2370 
W 8  

J 

Plate ,  E 0.7657 1.6907 0.5368 1.5022 - 1.0987 1.5328 1.2614 w s  

* E is i n  watts ** E~~ is in  w/m 2 
8 



the  observations-do NOT produce l a rge  e r ro r s  i n  W and (b) the  p l a t e  e ' 
shows l a rge r  e r ro r s  E than the  sphere. 

WS 

Combinations of systematic and gaussian e r ro r s  E, were included i n  the  
g s 

power measurements i n  o rde r  t o  compute the  e r ro r s  E resu l t ing  i n  the We 
wgs 

values. A s  expected, these E e r r o r s  exhibited more s e n s i t i v i t y  t o  t he  
wgs 

gaussian than t o  t he  systematic uncer ta int ies .  - The r e s u l t s  obtained a r e  

shown i n  TABLE 4-3. The r e s u l t s  i n  t h i s  t ab le  again show t h a t  the  sphere 

y i e ld s  b e t t e r  r e s u l t s  than the  p l a t e  when gaussian random uncer ta in t ies  : 

a r e  included i n  t he  power measurements. So f a r ,  however, t he  two radiometers 

y i e ld  acceptable r e s u l t s  only when the  e r ro r s  a r e  systematic. 

Thus, a s  can be seen from the da ta  i n  TABLES 4-1 and 4-3, the  gaussian 

e r r o r s  a r e  highly magnified through the matrix mult ipl icat ion of the  inverse 

of t h e  configuration f ac to r  matrix and the  perturbed power column matrix. 

This i n s t a b i l i t y  of t he  inverses of both configuration fac tor  matrices 

(sphere and p la te )  was corrected a s  explained i n  the  following sect ion.  

Matrix S t ab i l i z a t i on  

P r io r  t o  describing the  scheme developed f o r  s t ab i l i z ing  the  two matrices,  

i t  is necessary t o  re turn  t o  the  topic  of i l l-condit ioned perturbed equations 

i n  order  t o  introduce the  concept of t he  CONDITION NUMBER of a matrix. 

Consider t h e  s e t  of n simultaneous equations represented i n  (4-1) i n  matrix 

form a s  

where 



TABLE 4-3. Results obtained from observations having combinations of gaussian and systematic errors .  

rms of A l l  
Set No. Type of Error Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Columns 

1 Gauss I E * - 1.1430 - 0.3780 0.0730 0.7630- 0.3030 0.7480 0.6693 
Systematic, &* 0.3000 . 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 
Total Zs * - 0.8430- 0.0780 0.3730 1.0630 - 0.0030 

g S 1.0480 0.7170 
Sphere E ** - 17.1021 21.5965 - 17.,8411 13.0649 - 126.5905 37.0394 55.7449 

wgs 

Pla te  E - 18.4433 24.5488 - 20.9730 14.4779 - 189.1815 47.5609 81.2855 
wgs 

2 Gauss, E - 1.1430 - 0.3780 0.0730 0.7630 - 0.3030 0.7480 0.6693 
Systematic, eg s 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 
Total E - 0.5430 0.2220 0.6730 1.3630 0.2970 1.3480 0.8718 

gs 
CI 
I 
N Sphere E - 17.0139 22.1374 - 17.8506 13.5290 - 127.1454 37.4826 56.0537 wgs Cn 

Pla te  E - 18.1881 25.1123 - 20.7940- 14.9786 - 189.5478 48.0718 81.5040 
wgs 

3 Gauss, E - 1,1430- 0.3780 0.0730 0.7630- 0.3030 
g 0.7480 

0.6993 
Systematic E s 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 
Total E - 0.2430 0.5220 0.9730 1.6630 0.5970 1.6480 

g s 
1.0890 

Sphere E - 16.9257 22.6782 - 17.8600 13.9931 - 127.7003 37.9258 
wg* 

56.3639 

Total E - 17.9328 25.6759 - 20.6151 15.4793 - 189.9140 48.5828 
"gs 

81.7242 

* eg, E*,  and E a re  i n  watts 
g s 



F = n by n conf igura t ion f a c t o r  matrix 

{We) = column matrix of n We elements 

{P) = column matrix of n P elements 

It is poss ib le  t h a t  these  q u a n t i t i e s  may include e r r o r s  r e s u l t i n g  from 

e i t h e r  one, o r  both ,  of t h e  following ( reference  6 ) .  

(a) The d a t a  (i;:e., t h e  observations {PI) are inexact .  

(b) Rounding e r r o r s  a r e  generated during computations. 

Samples were - run 'wi th  e r r o r - f r e e o b s e r v a t i o n s  and. a l l  t h e  W values 
e 

r e t r i e v e d  were- accurate. t o  a t  least e i g h t  decimal places.  Consequently-, one 
- - .. .. 

i s  j u s t i f i e d  i n  assuming t h a t  computational e z r o r s  have not '  caused d i f f i -  

c u l t i e s ,  and t h a t  only e r r o r s  of type (a)  should be t r ea ted  i n  t h i s  

discussion.  

The perturbed equation t o  be solved is of t h e  form given by (4-4), t h a t  is, 

where, a s  ind ica ted  i n  (4-S), 

I n  this expression,  t h e  elements of { 6 P )  a r e  considered t o  be e i t h e r  

gaussian e r r o r s  E ,  o r  sys temat ic  e r r o r s  E o r  a combination of both E . 
g s ' g s 

?t.'i's ass-med f o r  purposes of t h i s  s e c t i o n  t h a t  t h e  perturbed equation 

(4-43) is f l l -condit ioned,  t h a t  is, t h a t  t h e  inverse  matrix f -' is unstable.  

It can be shown t h a t  f o r  i l l - cond i t ion ing  of t h i s  type the  following re la -  

t ionsh ip  e x i s t s  ( reference  ' . 



where 

re l iwel  = I 16weI I 1 1  Iw,! I ( r e l a t i ve  e r ro r )  (4-46) 

r e l { ~ l  = 116pII /IIP I I  ( r e l a t i ve  e r ro r )  (4-47) 

(condition number (4-48) 
of F) 

The symbol ( ( I ( denotes the  column o r  row norm of the  matrix ins ide  i t ,  as  

w i l l  be explained below. 

Condition nmber.  - Even though there a r e  several  def in i t ions  of the  

condition number of a matrix (references 6 and 7) only two of them w i l l  be 

introduced i n  t h i s  report .  

where 

maxjkil' = l a r g e s t  modulus eigenvalue o f  F 

min] )lil = smallest  modulus eigenvalue of F 

I I F I  1 = Column o r  row norm of F defined, respectively,  
a s  (reference 5) 

IIFII, = m a x   IF:..^ 
i 3 IJ 

For the ill-conditioned s i t ua t ion  considered here and represented by t h e -  

perturbed equation (4-44), i t  can be seen from (4-46) t ha t  i l l-conditioning 



depends on the  s i z e  of t h e  condit ion number C2 and on the r e l a t i v e  e r r o r  

re1 {PI. Thus, f o r  a given set of power e r r o r s  {6P), one would expect 

t h a t  i f  t he  o r ig ina l  ill-conditioned matrices could somehow be transformed 

i n t o  two well-conditioned matrices,  the  condit ion numbers of the  l a t t e r  

would be smaller  than those of the  former. 

A computer program was used t o  obtain the  eigenvalues of the  two 

configuration f ac to r  matrices and t o  compute the  values of C'i f o r  both 

matrices. This program a l so  ve r i f i ed  t h a t  t h e  eigenvalues computed a re  

correct  by making use of t h e  folilowing r e l a t i ons  (reference 8 )  

where, 

*F = Trace of t he  matrix F 

Xi = i t h  eigenvalue of F 

I FI = The determinant of F 

The values of t h e  condition numbers C2 f o r  both of the o r ig ina l  ill- 

conditioned matrices were calculated.  These values a r e  shown i n  TABLE 4-4 

below. 

TABLE 4-4 .  Condition numbers OF the  two o r ig ina l  matrfces. 

Type of Sensor 

Spherical  

Horizontal f l a t  c i r c u l a r  126.4 . 684.7  



Afte r  considerable e f f o r t ,  a scheme was found which rendered both  configu- 

r a t i o n  f a c t o r  matr ices  well-conditioned and t h e i r  corresponding values of 

C a n d  C2 became much smaller than those  shown i n  TABLE 4-4. 
1 

S t a b i l i z a t i o n  procedure.- E s s e n t i a l l y ,  t h i s  prodedure c o n s i s t s  i n  trans-  

l a t i n g  t h e  smal les t  elements i n  t h e  s i x  by six conf igura t ion f a c t o r  matirx. 

The t r a n s l a t i o n  of each element is performed along t h e  row of t h e  element 

t o  t h e  p o s i t i o n  of t h e  diagonal  element i n  t h a t  raw and i t  is added t o  t h e  

diagonal  element. I n  t h i s  manner, t h e  sum of t h e  elements 2x1 t h e  row i n  

ques t ion is presemed.  This means t h a t  t h e  sum of t h e  row elements always 

adds up t b  t h e  conf igura t ion f a c t o r  of t h e  t o t a l  FOV, which is  a des i rab le  

f e a t u r e ,  a s  w i l l  be explained below. 

Referring t o  t h e  two o r i g i n a l  matr ices  i n  f i g u r e s  4-3 and 4-4, f o r  t h e  

sphere and t h e  p l a t e ,  r e spec t ive ly ,  one sees t h a t  t h e  elements F41 and F45 

are t h e  lowest va lue  elements i n  both  matrices.  For t h e  sphere,  these  

two elements have t h e  common va lue  0.017068977; while f o r  t h e  p l a t e  t h e  

common value  is 0.008805215. I n  each of t h e  matr ices ,  these  two elements, 

were t r a n s l a t e d  and added t o  t h e  diagonal  element Fg4. For t h e  sphere,  . 

t h e  o r i g i n a l  va lue  of t h i s  element w a s  0.595573384; while f o r  t h e  p l a t e ,  

t h e  value w a s  0.471341713. The new values of Fq4 f o r  t h e  sphere  and p l a t e  

become, r espec t ive ly ,  0.629711338 and 0.488952143. The physica l  meanfrig- of 

t h i s  element t r a n s l a t i o n  can be b e s t  seen when evaluat ing t h e  e r r o r  it  

in t roduces  i n t o  t h e  power ca lcu la t ions .  The t r a n s l a t i o n  of an element means 

t h a t  t h e  element w i l l  appear mul t ip ly ing t h e  We value of t h e  column 

corresponding t o  t h e  d iagona l  element r a t h e r  than t h e  We va lue  corresponding 

t o  the  column where t h e  element o r i g i n a l l y  appeared. As  an example of t h e  

magnitude of t h e  e r r o r  introduced,  t h e  case  of element is calcula ted .  

2 2 = 244.0 W/m , and We4 - 242.0 W/m . Hence, 2 
We5 *'e 

a 242.0-244.0.. - 2.0 W/m , 

and t h e  power e r r o r  AP introduced is approxj.mately AP = (-2.0) (0.017), o r ,  

AP P -0.034 W,  which is c e r t a i n l y  a n e g l i g i b l e  e r r o r .  Physica l ly ,  t h i s  



e r r o r  is equivalent  t o  saying t h a t  t h e  radiometers a t  pos i t ion  No.4 looked 

a l i t t l e  more a t  t h e  limb of region No.4 and d id  no t  see region No.5 a t  a l l .  

Figures 4-7 and 4-8 show t h e  new s t a b i l i z e d  matr ices  f o r  t h e  sphere  and 

p l a t e ,  respect ively .  The capt ions  of these  f i g u r e s  inc lude t h e  t i t le  of 

t h e  computer program (TAM 7-15-1) which s t a b i l i z e d  t h e  matr ices  and then 

used them t o  compute the  values  of We. The s t a b i l i z a t i o n  scheme used i n  

t h i s  program e s t a b l i s h e s  lower limits f o r  the,magnitudes of t h e  matrix 

elements f a r  each of t h e  two matrices; any element whose value  is below the  

lower l i m i t  assigned t o  its matr ix  is t o  be t r a n s l a t e d  a s  previously des- 

cribed.  The l i m i t s  determined a f t e r  s e v e r a l  trials were 0.032 f o r  t h e  

sphere  and 0.016 f o r  the  p l a t e .  A d i f f e r e n t  computer program (TARA 7-15-2) 

used d i f f e r e n t  lower bounds a s  t h e  c r i t e r i a  t o  c a r r y  out  t h e  t r a n s l a t i o n s .  

These limits were 0.04 f o r  t h e  sphere and 0.02 f o r  t h e  p l a t e .  The r e s u l t s  

obtained wi th  t h e  latter l i m i t s  were not  a s  good a s  those obtained with the 

former. 

The e r r o r s  i n  We obtained with computer program TARA 7-15-1 b y -  

f i r s t  using t h e  two o r i g i n a l  i l l -condi t ioned matr ices  and l a t e r  using the  

new well-conditioned matr ices  a r e  presented in TABLE 4-5. Three d i f f e r e n t  

d a t a  groups a r e  tabula ted  there .  These groups r e f e r  t o  the  f i r s t  set of da ta  

appearing i n  each of  TABLES 4-1, 4-2, and 4-3, a s  is indicated  i n  t h e  

f i r s t  column of TABLE 4-5. These t h r e e  groups of d a t a  correspond t o  t h e  t h r e e  

types of u n c e r t a i n t i e s  previously introduced,  Guassian E , sys temat ic  
g 

c , and combinations of gaussian and systematic c . The type of  inverse  s g s 

matr ix  F-L used ( o r i g i n a l  o r  s t a b l e ) ,  a s  w e l l  a s  t h e  c l a s s  of radiometer 

(sphere o r  p l a t e ) ,  i s  spec i f i ed  f o r  each row of W e r ro r s .  e 

The s t r i k i n g  d i f f e r e n c e s  exhibi ted  by t h e  r e s u l t s  compared i n  TABLE 4-5 

is i n d i c a t i v e  of t h e  e f f e c t  t h a t  s t a b i l i z a t i o n  of t h e  conf igura t ion f a c t o r  



C'WSPH(K ,1) C 0FSPH (K , 2 )  C OFSPH (K ;J) C.WSPH(K ,4) C'OFSPH (K , 5 )  C:aFSPH (K ;6) 

Fggure 4-7. S t a b i l i z e d  matrix f o r  the sphere. Computer program TARA 7-15-1. 



Figure 4-8. S t a b i l i z e d  matrix f o r  the  p l a t e .  Computer program TARA 7-15-1. 



TABLE 4-5. Comparisons of resul t s  of or iginal  and s tabi l ized matrices for  the f irst  s e t  of data shown i n  TABLES 
I 

e 3-2, 3-3, and 3-4. 

Table Type of Error -ma of A l l  
No. Type of-Matrix Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Columns 

3-2 Gauss, c - 1,1430 - 0.3780 0.0730 0.7630 - 0.3030 0.7480 0.6693 
g 

Sphere., Original; E - 17.1903 21.0556 - 17.8317 12.6009 - 126.0356 36.5961 55.4374 
Sphere, Stable e wg - 4.3780 2.2977 0.9263 - 0.2114 - 30.4585 11.7397 

w g 
13.4839 

Plate ,  Original; E - 18.6985 23.9852 - 21.1519 13.9772 - 188.8153 47.0500 81.0685 
Plate ,  Stable; E wg - 6.1246 4.2833 - 1.4500 1.4032 - 57.9194 17.5682 24.9106 

wg 

3-3 Systematic 6 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 0.3 
8 

E 
Sphere, Original; c - 0..0882 - 0.5409 0.0094 - 0.4641 0.5549 - 0.4432 0.4123 

I 
W 

Sphere, Stable; E:: .0.1054 - 0.8243 0.2928 a 0.6576 1.9990 - 0.8188 0.9895 
W 

Plate ,  Original; E - 0.2552 - 0.5636 - 0.1789 - 0.5007 0.3662 - 0,5109 0.4205 
p la te ,  Stable; eW8 - 0.1Q36 - 0.8011 0.0586 - 0.6523 1.9446 - 0.8664 0.9673 W S  

3-4 ~ a u s s  c - 1,1430 - 0.3780 0.0730 0.7630 - 0.3030 0.7480 0.6693 
g Systematic E 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
8 

Total E - 0.8430 - 0.0780 0.3730 1.Q630 - 0.0030 
g s 1.0480 0.7170 

Sphere, Original; f 
wg s 

- 17.1021 - 21.5965 - 17.8411 13.0649 - 126.5905 - 37.0394 55.7449 
Sphere, Stable; E 

wgs 
4.1861 2.6868 1.0686 0.1490 - 30.2402 11.9819 13.4409 

Pla te ,  Original; E - 18.4433 24.5488 - 20.9730 14.4779 - 189.1815 - 47.5609 81,2855 
Plate ,  Stable; E wgs - 5.8109 4.7553 - 1.1795 1.8456 - 57.6776 17.9422 

wgs 24.8656 



matrices has upon t h e  magnitudes of t h e  unciiktaint les i n  wee For 

ins tance  t h e  nus values f o r  E ( l a s t  column, second and f o u r t h  rows) were 
wg 

2 2 
55.4374 W/m and 81.0685 W/m when We was computed wi th  t h e  o r i g i n a l  

matr ices  f o r  t h e  sphere and p l a t e ,  respect ively .  However, when t h e  

corresponding s t a b l e  matrices were used, t h e  values  of c were 13.4839 
wg 

2 w/m2 and 24.9106 W/m , respec t ive ly ,  as seen from t h e  r e s u l t s  i n  t h e  t h i r d  

and f i f t h  rows of  t h e  last column. 

The next  ques t ion  t h a t  a r i s e s  is: how do t h e  condit ion numbers of t h e  

s t a b l e  matr ices  compare w i t h  those of t h e  two o r i g i n a l  matrices? In TABLE 

4-6, t h e  two condi t ion  numbers f o r  each of t h e  four  matr ices  a r e  l i s t e d .  

TABLE 4-6. Condition numbers of t h e  o r i g i n a l  and s t a b i l i z e d  matr ices  f o r  
t h e  sphere and t h e  p la te .  

TYPE OF SATELLITE TYPE OF MATRIX COMPUTER PROGRAM 1 C2 

Sphere 

Sphere 

Sphere 

P l a t e  

P l a t e  

Or ig ina l  (Unsta- TARA 7-15-1 
b le )  

S t a b i l i z e d  TARA 7-15-1 

P a r t i a l l y  S t a b l e  TARA 7-15-2 

Or ig ina l  (Unsta- TARA 7-15-1 
b le )  

S t a b i l i z e d  TARA 7-15-1 

P l a t e  P a r t i a l l y  S t a b l e  TARA 7-15-2 58.6 317.1 

I n  t h e  f i r s t  and second rows of TABLE 4-6 a r e  presented t h e  condi t ion  

numbers f o r  t h e  o r i g i n a l  and s t a b l e  matrix of t h e  s p h e r i c a l  radiometer. 

The four th  and f i f t h  rows show t h e  corresponding condit ion numbers f o r  t h e  

hor izon ta l  f l a t  p l a t e ,  radiometer. These are t h e  four  matr ices  whose r e s u l t s  

have been discussed up t o  now andwhich were used i n  computer program 

TARA 7-15-1. However, t h e  t h i r d  and s i x t h  rows of TABLE 4-6 present  t h e  



condi t ion  numbers of t h e  two matr ices  obtadned by using s l i g h t l y  d i f f e r e n t  

lower bounds (0.04 f o r  t h e  sphere and 0.02 f o r . t h e  p l a t e )  a s  was discussed 

previously.  The r e s u l t s  obtained by using these  matr ices  d i d  no t  meet the  

accuracy requirements and a r e  termed " p a r t i a l l y  s t ab le"  i n  TABLE 4-6, and 

were of no f u r t h e r  use. These matrices w e t e  generated by, and used i n ,  

computer program TARA 7-15-2. 

, 

Data Q u d i t y  Pred ic t ion  

TABLE 4-5 i n d i c a t e s  t h a t  t h e  e r r o r s  i n  We f o r  some of t h e  regions  a r e  

much more s i g n i f i c a n t  than those f o r  o t h e r  regions. For ins tance ,  region 5 

shows c o n s i s t e n t l y  l a r g e r  e r r o r s  than t h e  remaining regions f o r  both 

types of satellites and f o r  a l l  matrices.  Hence, even though t h e  r e s u l t s  

obtained w i t h  t h e  s t a b l e  matr ix  ( t h i r d  and f i f t h  rows of each d a t a  group) 

--- 

a r e  much more acceptable  than those obtained wi th  t h e  o r i g i n a l  matr ices  

(second and four th  rows of each d a t a  group)., no t  a l l  of those r e s u l t s  obtained 

wi th  t h e  s t a b l e  matrices appear equal ly  acceptable.  A t  t h i s  p o i n t ,  two 

important p e r t i n e n t  ques t ions  need t o  be answered. 

(a)  What are t h e  accuracy requirements f o r  W ? e 

(b) Does t h e  form of t h e  o r i g i n a l  matrix and t h e  magnitude of i ts  

elements bear  any r e l a t i o n  t o  t h e  e r r o r s  i n  We obtained f o r  each 

of t h e  regions? I f  t h i s  r e l a t i o n s h i p  e x i s t s ,  can it be l inked t o  

the  requirements i n  ( a ) ?  

These two ques t ions  a r e  thoroughly d e a l t  wi th  i n  t h e  following two sub- 

sec t ions .  

Accuracy requirements.- TABLE 4-7 lists t h e  des i red  and minimum use fu l  

to le rances  f o r  each of t h e  q u a n t i t i e s  t o  be measured f o r  r a d i a t i o n  budget 

determinations.  It i s  seen from t h i s  t a b l e  t h a t  t h e  minimum u s e f u l  



TABLE 4-7. Accuracy Requirements f o r  Radiation Budget ~ o d ~ o n e n t s .  

(Recommendations of investigators conference, 1 9 7 5 )  

Variable 

Solar  In t ens i t y  

: . 
Solar Spectrum I n  
Ozone Bands A X  = 50A) 

c. 
I Components For Global N e t :  

W 
0\ 

Albedo 

Longwave ' Exi tance 

Components For Regional Net: 

\ 

Albedo 

Longwave Exitance 

Medium Resolution Scanning: 

Albedo 

Longwave Exitance 

Accuracy 
Desired Minhum 

2 1 t o  2 ~ / m  2 2 5 W/m 2 

Frequency 

Monthly 

Long Term With 
Monthly Resolution 
Desired - Seasonal Is 
Minimum Useful Period 

Monthly For 10' Of Great 
Ci rc le  Lati tude And 
Longitude 

Monthly Averaged Determined 
From Scanning Data - lo4  
t o  105 km2 Spat ia l  Resolution 



accuracy f o r  monthly averages of t h e  longwave exi tance  (We) of small  regions  

2 is f 1 5  w/m . I n  t h e  cases presented i n  TABLE 4-5, however, t h e  values  of 

W a r e  ins tantaneous  f o r  a l l  p r a c t i c a l  purposes s i n c e  t h e  time i n t e r v a l  e 

during which t h e  measurements were taken is of t h e  order  of minutes. Hence, 

t h e  to lerances  f o r  these  r e s u l t s  should be less s t r i n g e n t  than those f o r  

mmthly averages s t a t e d  above.- 

It should be pointed o u t  t h a t  t h e  accuracy requirements l i s t e d  i n  

TABLE 4-7 are t h e  r e s u l t s  of recornendations made at  t h e  Chicago inves t i -  

g a t o r s  conference of  1975. On t h e  b a s i s  of t h e  above to le rance  of + -15 

w/m2, one can see t h a t  from a l l  t h e  We va lues  obtained wi th  t h e  two 

s t a b i l i z e d  matr ices  t h e  only ones which a r e  not  acceptable  a r e  

(a) Those of r e g i o n - 5  r e s u l t i n g  from gaussian,  o r  combinations of 

gaws ian / sys temat ic  power e r r o r s  f o r  t h e  s p h e r i c a l  s a t e l l i t e .  

(b) Those of regions  5 and 6 r e s u l t i n g  a l s o  from gaussian o r  

gaussian/systematic power e r r o r s  f o r  t h e  p l a t e .  
-- 

The p o s s i b i l i t y  of a connection e x i s t i n g  between t h e  s t r u c t u r e  of 

t h e  o r i g i n a l  conf igura t inn f a c t o r  matrix and t h e  s t a b i l i t y  of i t s  inverse  

matrix was thoroughly inves t iga ted  and e x c e l l e n t  r e s u l t s  were obtained a s  

discussed i n  t h e  following paragraphs. 

Matrix Parameters.- The o r i g i n a l  conf igura t ion f a c t o r  matr ices  shown i n  

f i g u t e s  4-3 and 4-4 f o r  t h e  sphere and p l a t e ,  r e spec t ive ly ,  a r e  again i n t r o -  

duced he re  i n  f i g u r e s  4-9 and 4-10. However, these  l a t t e r  f i g u r e s  d i sp lay  

add i t iona l  information which w i l l  be needed i n  t h i s  discussion.  Each of 

t h e  f i r s t  s k q u a n t i t i e s  i n  t h e  l a s t  column c o n s i s t  of the  sums of t h e  

elements i n  t h e i r  corresponding rows, and should be approximately equal  t o  

t h e  shape f a c t o r  of t h e  t o t a l  FOV of t h e  observation corresponding t o  t h a t  

row. The seventh quan t i ty  i n  t h e  same column is t h e  sum of t h e  f f r s t  s i x  

q u a n t i t i e s .  When t h i s  stun is divided by six, i t  y i e l d s  t h e  average shape 

f a c t o r  f o r  t h e  t o t a l  FOV, which is shown i n  t h e  l a s t  row of t h e  l a s t  



Co FSPH (K ,4) CO FSPH (K, 5) (XII FSPH (K 6) SPHROW (K) 

COLUMN SUMS 0.887105765 0 .a24890678 . 1.529764721 2.477896661 0. ,222811133 0.595083912 6.537552870 

Figure 4-9. Original matrix for the spherical radiometer. 



COFHOR(KS 1) COFHOR(Ks 2) COFHOR(K, 3) COFHOR(K, 4) COFHOR(K, 5) COFHOR(K; 6) HORROW (K) 

I 
COLUMN SUMS 0.650704375 0.577175549 1*069651704 1.899390561 0.136319334 

PERCENTAGESsY 82.087244037 72.8114824591 34.9380207892 39.610708856 17.196869788 

I Figure 4-10. Original matrix for the .horizontal plate radiometer. 

f 



column. This average value is denoted by x f o r  t h e  sphere, and by y f o r  the  

p la te .  Each of t he  quan t i t i e s  i n  the  row e n t i t l e d  "column sums" is the  

sum of t h e  s i x  quan t i t i e s  above i t .  The f i r s t  s i x  elements of the  row termed 

I1 percentages, x,y" a r e  obtained by dividing each column sum by the  average 

shape f ac to r  f o r  the  t o t a l  FOV and multiplying the  r e s u l t  by 100. 

NOTE: Since t h e  systematic e r r o r s  do not produce unacceptable r e s u l t s ,  - 
t he  following discussion appl ies  only t o  those cases: i n  which the  

e r r o r s  a r e  t o t a l l y  o r  p a r t i a l l y  gaussian. 

Predict ion scheme.- A qua l i t a t i ve  predict ion c l a s s i f i ca t i on  based so l e ly  

on t he  s t ruc tu re  of t h e  o r ig ina l  matrices was found. It yielded excel lent  

r e s u l t s  when compared with t he  ms's of severa l  We e r ro r s  computed f o r  

each of t he  regions. This rms is based on ten sets of e r r o r  data ;  each s e t  

has s i x   values required t o  perturb t he  s ix  power measurements of each 

observation group. 
-- - - - - - - - -- - - -- 

I n  order t o  p red ic t  the  qua l i t y  of t he  data  t o  be re t r ieved,  three  

d i s t i n c t  da ta  c lasses  were a r b i t r a r i l y  se lected.  The qua l i ty  of t he  We 

values t o  be re t r ieved  were predicted t o  be e i t h e r  &CCEPTABLE; POOR, o r  

REJECTABLE, according t o  the  c r i t e r i a  de ta i led  below. 

Let SS denote t he  sum of the  elements i n  the  j t h  column of the  
j 

configuration f ac to r  matrix f o r  the  sphere, and l e t  SP denote the  equivalent 
j 

sum f o r  the  p la te .  It is recal led t h a t  x was used t o  denote the  average of 

t he  s i x  shape f a c t o r s  f o r  the  t o t a l  FOV of the  sphere. Similarly,  y was used 

t o  denote the  equivalent quant i ty  f o r  the  pla te .  Then, using these  

def in i t fons ,  the  f i r s t  c r i t e r i o n  can be s t a t e d  as follows: 

NOTE: I n  t he  following, REJECT means r e j e c t  the  We value determined f o r  the - 
- - -  j t h  region from observations by the  sphere, i n  the case of SS o r  by 

j ' 
the p l a t e ,  i n  t he  case of SP Similar meanings should be attached 

j ' 

to  ACCEPT and POOR. 



IF SS. < 0.2X 
J 

r L 

REJECT 

REJECT 

0therwise;SS and SP a r e  subjected  t o  t h e  following t e s t s .  
j j 

IF S P .  > 1.25Y 
3 

ACCEPT 

ACCEPT 

I f ' t h i s  test  is no t  passed, t h e  diaponal  element F of t h e  j-column of ba th  
j j- 

s 
matrices (F f o r  t h e  sphere and FP f o r  t h e  p l a t e )  are. subjected  t o  t h e  

j j j j 

following t e s  t . 

REJECT 

REJECT 

Otherwise, t h e  two sets of q u a n t i t i e s  are subjected  t o  a f i n a l  test. 

ACCEPT 

ACCEPT 

For those cases  when FS and FP are between t h e  above two l i m i t s ,  t h e  
j j j j 

c l a s s i f i c a t i o n  is, 

IF 0.25 SS < F' 5 SS POOR 
j jj j 
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I F  0.25 SP. < F' 5 0.6 SP POOR 
1 j j j 

The p r e d i c t i o n s  made on t h e  b a s i s  of t h e  above c r i t e r i a  were s u f f i c i e n t l y  

s a t i s f a c t o r y  t o  i n d i c a t e  t h a t  the re  is a d e f i n i t e  r e l a t i o n s h i p  between t h e  

q u a l i t y  of t h e  d a t a  t o  be  re t r i eved  and t h e  conf igura t ion f a c t o r  matrix of 

t h e  measurements. This is of g r e a t  value s i n c e  a simple a n a l y s i s  of t h e  

matrix tells i n  advance which are t h e  regions  whose r e s u l t s  should be  

considered f o r  f u r t h e r  processing,  a s  w i l l  be discussed i n  t h e  following 

subsection.  

TABLE 4-8 compares t h e  d a t a  q u a l i t y  p red ic t ions  with t h e  rms's of the  

e r r o r s  i n  We f o r  each of t h e  regions.  A s  seen from t h i s  t a b l e ,  i n  every 

ins tance  the  p red ic t ions  agree wi th  t h e  computed e r r o r s  i n  We. From 

TABLE 4-8 the  following can a l s o  be seen, 

( a )  I n  a l l  cases t h e  u n c e r t a i n t i e s  i n  We f o r  t h e  p l a t e  a r e  l a r g e r  

than those f o r  the  sphere 

- -- -- 

(b) The only i n s t a n c e  i n  which a REJECTION was predic ted  was f o r  the  

p l a t e  i n  region No.5. The We e r r o r s  computed f o r  t h e  p l a t e  i n  

2 
t h i s  case  were, 33.9284 w/m f o r  the  gaussian per turbat ion and 

2 
33.8025 w/m f o r  t h e  gaussian/systematic e r r o r  combination. 

It is apparent  then t h a t  before  r e t r i e v i n g  t h e  values  of We from a given 

set of power measurements, t h e  above scheme w i l l  t e l l  which We values w i l l  

be good enough f o r  f u r t h e r  processing,  such a s  averaging of d a t a  discussed 

i n  t h e  next  subsection.  

Weighted Averages 

The n observations required  t o  so lve  t h e  n simultaneous equations f a r  

W can be taken wi th in  a time i n t e r v a l  qf any a r b i t r a r y  length.  However, e 

the  physica l  s i t u a t i o n s  represented by t h e  r e s u l t s  would be d i f f e r e n t  f o r  



TABLE 4-8. Comparisons o f  d a t a  q u a l i t y  p r e d i c t i o n s  wi th  nns 's  of  computed W e r r o r s .  e 

Type o f  Type of  Type E r r o r s  (cW) i n  We (w/mZ) 
S a t e l l i t e  Power E r r o r  o f 

(w!m2) Resu l t s  1 Region 2 Region 3 Region 4 R e ~ i o n  5 Region 6 

Sphere Gaussian, E Pred ic t ed  Poor -~ Poor Actep t Accept Poor 
8 

Accept 

Sphere 

Sphere 

P l a t e  

P l a t e  

P l a t e  

Gaussian, E Computed 
g 

Gaussian P l u s  
(0.9 ~ / m 2 )  
Sys temat ic ,  E Computed 

g s 

Gaussian,  E Pred ic t ed  
g 

Gaussian,  E Computed 
8 

Gaussian P l u s  
( 0 . 9 .  W/m2) 
Systematic ,  E Computed 

g s  

Poor 

15.5824 

Poor Accept Accept Rejec t  

21.6890 9.0607 3.9728 33.9284 

Accept 

9.0240 



d i f f e r e n t  time i n t e r v a l  lengths .  A t  any r a t e ,  r egard less  of t h e  magnitude 

of t h e  time i n t e r v a l s  s e l e c t e d  f o r  accomplishing each set of observat ions ,  

t h e  r e s u l t i n g  d a t a  can always be averaged ou t  over much longer  time periods.  

For purposes of t h e  present  d iscuss ion,  a set of r e s u l t s  w i l l  be considered 

ins tantaneous  i f  t h e  corresponding set of n observations i s  taken during 

a s i n g l e  pass  o r  o r b i t  of t h e  satellite. A t o t a l  of T sets of d a t a  wi l l  

be considered f o r  averaging i n  t h e  following discussion.  

The following t h r e e  types of averages were considered, 

Where, 

= t h e  j t h  determination of t h e  value  of We f o r . t h e  i t h  
Weij regiop 

A = t o t a l  area seen of t h e  i t h  region during t h e  j t h  
i j  observat ion set. 

F = stnu of a l l  t h e  conf igura t ion f a c t o r s  of t h e  i t h  
j region which entered i n  t h e  j r h  set of observations.  

T = t o t a l  number of r e s u l t s ,  o r  observations sets, used 
i n  t h e  averaging. 

'ei = p l a i n  average of t h e  value  of We f o r  t h e  i t h  region. 

-, 



wA = Weighted average o f  We f o r  t h e  i t h  region,  using t h e  a r e a  
A a s  weight. 
i j 

= Weighted average of W f o r  t h e  i t h  region, using t h e  
Wei conf igura t ion f a c t o r  % as weight. 

i j  

The average Wei given by (4-58), a s s igns  equal  weights t o  a l l  t h e  We 

r e s u l t s  en te r ing  i n t o  t h e  averaging process,  r egard less  of t h e  s i z e s  of 

t h e  segments of t h e  i t h  region t h a t  were wi th in  t h e  FOV's  of. t h e  radiometer, 

and regard less  of t h e  p o s i t i o n s  t h a t  these  segments occupied wi th in  t h e  

radiometer 's  FOV. Hence, t h i s  type of averaging was considered inadequate. 

The type of average defined by (4-59) takes  i n t o  account t h e  s i z e  of the  

region segments t h a t  entered i n t o  t h e  observat ions ;  however, two segments 

of equal  a r e a  but  making d i f f e r e n t  con t r ibu t ions  due t o  t h e i r  d i f f e r e n t .  

p o s i t i o n s  wi th in  t h e  FOV are given equal  weights, which might be undesirable 

i n  same cases. The t h i r d  type, defined by (4-60) w a s  considered adequate s i n c e  

it~does~not-suffer-from-either-of-the-shortcomings-mentioned-above-fo~- 

(4-58) and (4-59). 

Thus, weekly o r  monthly weighted averages ( f o r  any time of t h e  day) 
b 

can be e a s i l y  obtained from instantaneous r e s u l t s  ( f o r  the  time of day 

se lec ted)  by osing the  expression (4-60). Although t h e  SWR component 

is n o t  discussed i n  d e t a i l  in  t h i s  r e p o r t ,  a proposed method t h a t  is 

c u r r e n t l y  under i n v e s t i g a t i o n  f o r  t ack l ing  t h e  problem of r e f l e c t e d  SWR 

w i l l n o w  be discussed.  

Proposed Procedure f o r  Computing Wr 

When t h e  Me regions of t h e  E-A system previously defined were consi- 

dered, i t  w a s  assumed t h a t  t h e  v a f i a t i o n s o f  Be wi th in  the region were 

n e g l i g i b l e  o r  bare ly  de tec tab le  by t h e  s a t e l l i t e  r ad ia t ion  sensing 

system. Now, one can assume another common c h a r a c t e r i s t i c  t o  a l l  
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a r e a  elements wi th in  a given region;  t h i s  is the  ALBEW A(CO) f o r  a s p e c i f i c  

s o l a r - z e n i t h  angle CO. For reasons which w i l l  be  apparent l a t e r ,  t h e  

z e n i t h  angle  chosenfor t h i s  common c h a r a c t e r i s t i c  is 5, = oO. Before pro- 

ceeding f u r t h e r ,  i t  is advisable  t o  r e c a l l  the  following r e l a t i o n s h i p s  t h a t  

were introduced i n  t h e  s e c t i o n  e n t i t l e d  "BASIC IDEAS". 

2a 
wr(<) = I d$ j"I2 Nr(0,$.5) s i n  cos 0 do 

0 0 

~ ( 5 )  = r (5)  = 12" d$ I"I2 p(0,$,5) s i n  8 cos 0 do 
0 0 

Then, one can w r i t e  f o r  those c h a r a c t e r i s t i c s  t h a t  have been assumed 

common t o  a l l  a r e a  elements wi th in  a given region the  following, 

25 
Wr(0)= I d$ Nr(O,$,O)sin 0 cos 0 d0= constant  

0 
(4-61) 

0 

2 n 
A(O)= r(O)= I d) I a l 2  p(0 ,$,O)sin 0 cos 0 .dB= constant  (4-62) 

0 0 

However, s i n c e  a t  any i n s t a n t  of time t h e  s o l a r  zen i th  angle  e x h i b i t s  

s p a t i a l  v a r i a t i o n s  wi th in  any given region;  then, r ( < ) ,  A(5.), and W e )  a r e  

not  necessa r i ly  constant  wi th in  t h e  given region. Then, t h e  problem is,  how 

is one t o  determine t h e  W (F) of a region i f  t h e  value of Wr(0) f o r  t h a t  r 

region is known? 

The following is a simple procedure which uses d a t a  a v a i l a b l e  from 

previous s a t e l l i t e  observations t o  provide a quick so lu t ion  t o  t h e  above 

problem.. 



Figure 5 on page 11 of reference 4shows several  curves which depict  

re la t ionsh ips  between t ( t )  and r (6)  f o r  d i f f e r en t  types of sur face  regions 

of the  E-A system. One o r  several  of these curves a r e  se lected t o  repre- 

s en t  t h e  r e f l ec t i ng  cha rac t e r i s t i c s  of the  hypothetical  regions one has 

assumed. Consider now the  i t h  a rea  element of the k th  region which is 

within the  FOV of the  j t h  observation of a s a t e l l i t e  radiometer. This area 

element is denoted by &Iijk, and the  radiant  power i t  contributes t o  the  

j t h  measurement i s  AP 
i j k '  The reading from the  curve i n  f igure  5 t h a t  

corresponds t o  hA is denoted by 
i j k  

The albedo A and d i r ec t i ona l  re f lec tance  r f o r  AA is given by 
i j  k 

It should be noted t h a t  rk(o) does not have the  subscr ipts  i and j 

s ince  the  value rk(o) = q ( o )  changes only i f  the  region changes. 

From (2-21) shown above, one w r i t e s  

Then, subs t i t u t i ng  (4-64)  into (4-65) one obtains 

The expression for t he  power increment AP which t he  a rea  element AA 
i j k  i j  k 

emits i n  the  d i rec t ion  of the  s a t e l l i t e  is, 

A Pijk = b$.ijk ( 8, $, 5) A Aijk cOS 0 i j k  
dijk 



where, 

N l i j k  (8, $, 5 )  = Ref lec t ion  radiance of AA in t h e  d i r e c t i o n  
(8, $) due t o  s o l a r  r a d i a u k n  inc iden t  from a 
d i r e c t i o n  given by t h e  s o l a r  z e n i t h  angle F. 

2 
A = a a  = C h a r a c t e r i s t i c  area of t h e  radiometer, where a 

8 is t h e  rad ius  of  t h e  radiometer. 

d 
i J k  

= Distance from A A '  t o  t h e  radiometer. 
i j k  

8 
i j  k 

= Zenith angle  of t h e  radiometer a s  seen from 

%jk* 

From (2-22) shown above, one w r i t e s  

Nr l jk  ( e , + , ~ )  I H , ~ ~ ( s )  pijk (8,$,5) (4-68) 

S u b s t i t u t i n g  (4-68) i n t o  (4-67) and assuming t h a t  AS - 1m2, one ob ta ins  

A A i a k  COS 0 - i j k  APijk - Hijk(5) ijk(0,q,5) 
12 
U 

i j k  

Now, from t h e  corresponding curve i n  one of t h e  f i g u r e s  B-3,'B-4, o r  B-5 

of reference  3, one can read d i r e c t l y  (or  by using l i n e a r  ex t rapo la t ion)  t h e  

value of  t h e  r a t i o  r ( c ) / a  p (8, J I ,  5 . )  which w i l l  be  denoted by R' , tha't is, 

S u b s t i t u t i n g  (4-71) i n t o  (4-69), one o b t a i n s  



But from (2-21) above, one w r i t e s  

Hijk(5) rijk(5) = Wrijk(<) 

Subs t i  t u t i n g  (4-73) i n t o  (4-72) one ob ta ins  

' * i j k  , cos 8 i j k  (4-74) 
APijk = ( 7 2 1 W r i j k ( ~ )  

R i j k  (e,$,<) dijk 

By t h e  d e f i n i t i o n  of  t h e  shape, o r  conf igura t ion f a c t o r  g i v e n i b y  (2-2), 

2 
wi th  AS = lm , one writes 

- 
"ijk - Fi jk  Wr i jk (5 )  

Comparison of (4-74) and ( 4 - 7 5 )  ind ica tes  t h a t  

AAiSk cos 8 
= ( - ) C  i j k  

*ijk 7r 2 1 
R i j k  (8,$,5) dijk 

I n  t h e  following discuss ion,  a new type of shape .  f a c t o r  w i l l  be  introduced 

i n  o rder  t o  develop a simple expression f o r  computing the  s o l u t i o n s  f o r  t h e  

r e f l e c t e d  SWR component of t h e  energy budget.. This new type of  s h a p e f a c t o r  

w i l l  be termed PSEUDOSHAPE FACTOR. 

One can represent  Hijkk') a s  

H i j k  (5) = % (0) COS 5 i j k  

Note t h a t  s i n c e  t h e  va lue  of %(o) changes only wi th  changes of region,  

only t h e  s u b s c r i p t k  of t h e  region need be used, j u s t  as i n  t h e  case  of 

rk(o) a d  



Subs t i tu t ing  (4-77) i n t o  (4-65) one o b t a i n s  

'ri j k (5) = rijk(5) Hr(0) cos Fijk 

For t h e  case  P O ,  one ob ta ins  from this expression,  

w, (O) a rk(o) HI(o] (4-79) 

Again here ,  only t h e  s u b s c r i p t  k is necessary s i n c e  these  t h r e e  q u a n t i t i e s  

change value only wi th  region changes. 

From (4-63) one writes 

r i j k  (5) +Rijk(F) rk(0)  

S u b s t i t u t i n g  (4-80) i n t o  (4-78) one o b t a i n s  

'ri j k (5) + Rijk(5) rk (0 ) .  Hk(0) cos Gijk 

And s u b s t i t u t i n g  (4-79) i n t o  (4-81), 

' r i jk  (G) + wrk(o) Rijk(5) COS Sijk 

S u b s t i t u t i o n  of (4-82) i n t o  (4-74) y i e l d s  

A A i . k  R i j k  (5) cos e i e k  COS 5 

"i jk - ( + I [  2 
i j  k]w (0) 

r k  
R i j k  (er$JaF) d i j k  

(4-83) 

From t h i s  expression one de f ines  t h e  PSEUDOSHAPE FACTOR F' as 
i j k 

A A i S k  'ijk (5) cos Bi .k C 0 S  5 
= (-I[ i j k  ';jk n 2 

'ilk (e ,$,<)  dijk 



By comparing t h e  expressions (4-76) f o r  F and (4-84) f o r  F' one sees 
i j k  . i j k  

t h a t  these  t w o . q u a l i t i e s  a r e  r e l a t e d  by t h e  following expression. 

Let  t h e  following quan t i ty  be defined,  

Then, (4-85) can  be^ r ewr i t t en  as 

For f u t u r e  use, t h e  weighted average value of R" ( E )  over a l l  those  
i j  k 

area elements AA , of t h e  kth. region which appeared at least once wi th in  
i j k  

one of  t h e  FOV'S of t h e  radiometer w i l l  now be ca lcula ted .  Thus, one 

writes 

where, 

I = t o t a l  number of a rea  elements of t h e  kt$ region 
d t h i n  t h e  FOV of t h e  j t h  observation.  

J = thenumber  of observations i n  which t h e k t h  region 
appears. 

' - i e i g h t e d  average of R I  (c) Lor t h e  k t h  region. 
i j  k 

Thus , 
F ' . i j k  

%' = 2 F i j k  
i , j  



Returning t o  equation (4-83), one obtains  the  power P contributed by the  
j k 

kth  region t o  t h e  j t h  observation, by adding up over a l l  the  a rea  elements 

i n  t h e  kth  region. Hence, 

Then, one obtains  t he  t o t a l  power detected i n  the  j t h  observation by adding 

up a l l  t he  powers P contributed by the  K regions, t h a t  is 
jk  

These P 's a r e  t he  elements of t h e  power column matrix {PI. I n  exact ly  the  
j 

same manner, one obtains  f o r  the .configurat ion f ac to r  F and the  pseudo- 
jk  

confgguration f ac to r  F' t h a t  t he  k t h  region contributed t o  t he  j t h  
Sk 

observation 

. . - - . . - . . . .  .. . _ . . _ . _ . . _ _ _  ._ ._ -.- 

These F' 's cons t i t u t e  the  elements of t he  pseudoconfiguration f ac to r  
j k  

matrix F'. Thus, one can wr i t e  i n  matrix form, 

where t he  elements of the  column matrix {wr(o)} a r e  t he  hypothetical  values 

of W (0) which were assigned o r ig ina l ly  t o  the  d i f f e r en t  regions. Then, 
r 

by operating on {PI with F'-f , the inverse  of F" , one obtains  back {wr (0) 1, 

t h a t  is 



I f  t h i s  matrix operation r e t r i eves  the  cor rec t  values of Wr(o) t h a t  

were o r ig ina l ly  assigned t o  each of the  regions, then one proceeds, a s  i n  the  

one of We, t o  perturb {PI with gaussian and systematic e r ro r s  t o  t e s t  the  

' -1 s t a b i l i t y  of F . 
The next s t e p  is t o  obtain  the  values of wr(C) f o r  each of the  regions 

from the  corresponding values Wr(o) found through (4-95). This can be done 

a s  follows. 

Assuming tha t  t he  kth. region appeared i n  the  FOV's of J observations,  

one can f ind t he  t o t a l  power t h a t  t h i s  region contributed t o  the  J 

observations by adding over j t he  P powers given by (4-91), t h a t  is, 
jk 

. . .  - .. . . .. . . .  . - . ~ -  . 

Similar ly ,  the  contr ibut ion of a l l  the  configuration and pseudoconfiguration 

fac tors  by t he  k t h  region t o  a l l  the  J observations a r e ,  from (4-93) and 

And from (4-91) and (4-97) is obtained 

By comparing t h i s  expression with (4-75), one can wr i te ,  



I f  one def ines  Wrlc t o  be the  weighted average of W (c) over the  lith r 

region f o r  a l l  t he  J observations, one wr i tes  

Then, (4-101) becomes 

I f  now one compares expression (4-100) with equation (4-83) and uses (4-84), 

one can wr i t e ,  

Equating (4-103) and (4-104), one obtains 

But the  r a t i o  on the r i g h t  is the  same a s  t h a t  i n  (4-90). Hence, one can 

say t h a t  

Where l$ is the  weighted average of r(  0 cos < / r (o )  fo r  t he  kth region f o r  

a l l  observations. 

Therefore, t h e  essence of t he  procedure when applied t o  an ac tua l  set 



of power measurements is as follows. Compute the elements of the configu- 

ration and pseudoconfiguration factor matrices. Obtain the inverse matrix 

F'-' of the pseudoconfiguration factor matrix and operate with it on the 

column matrix of the power measurements in order to obtain the column matrix 

{Wr (0) 1 .  From these elements, the corresponding W elements are obtained rk 

by application of (4-106). 



64 was mentioned i d  the  l a s t  paragraph of t h e s e c t i o n  e n t i t l e d  "PUNDA--. 

MENT&S O F  THE TECHNIQUES,!' t he  main fea ture  of the  Best Fit / lnversiw 

Technique is t h a t  the  number of observations m is l a rge r  than the number 

of unknowns n. An extension of t he  method of l e a s t  squares is used t o  

determine the - a@P_roxima&*g;' surf  ace i n  the  n+l dimensional 'space: The 

procedure followed t o  f ind  the values of We is i l l u s t r a t e d  by a simpli- 

f i ed  three dimensional case as  follows. 

L e t  i ?~  be assumed t h a t  a s a t e l l i t e  has made eighteen observations over 

two regions. The FOV of each observation is e i t h e r  t o t a l l y  f i l l e d  by one of 

the  regions, o r  t o t a l l y  f i l l e d  by segments of both of the regions. Further- 

more, l e t  i t  be assumed t h a t  the  We values of the  two regions, i den t i f i ed  as  

regions 1 and 2, a r e  i n  the  ranges Wel - 240.0 t 5 w / m  and We2 - 280.0 k 5  

w/m2, as shorn- in TABLE! 5-1 This t ab l e  shows the  configuration fac tors  

F and F t h a t  regions 1 and 2 contr ibute  t o  each of the  measurements. The 1 2 
r 

hypothetical values of Wel and We2 a t  the t i m e  each observation is taken a t e  

a l so  presented i n  t h i s  t ab le ,  as  wel l  a s  the two p a r t i a l  powers f o r  each of 

the  measurements, These p a r t i a l  powers; f o r  the  i t h  observation, a r e  given by 

Where 

A: = lm2 = cha rac t e r i s t i c  area  of t he  radiometer. s 

Therefore, the  eighteen observations can be wr i t ten  a s  

F = P1 'el,l F1,~ + ' e 1 , ~  1,2 

F = P2 'e2,1 F2,1 + 'e2,2 2,2 



TABLE 5-1. Hypothetical data about s a t e l l i t e  observations of two regions. 

Measurement No. 

Parameter 1 2 3 4 5 6 7 8 9 



TABLE 5-1. Hypothetical data about s a t e l l i t e  observations of two regions. (continuation) 

Measurement N o .  

. . 

Parameter 10 11 12 1 3  14 15 . 16 17 18 



The i t h  equation of t h i s  set represen t s  t h e  i t h  plane i n  a three-dimensional 

space whose rec tangu la r  coordinates  are Fi.,.l, Pjr2, and Pi. The form of t h e  

equations i n d i c a t e s  t h a t  a l l  planes c r o s s  t h e  o r i g i n  of the  coordinate 'system. 

One assumes f u r t h e r  t h a t  t h e  d a t a  obtained from t h e  observations ( i . e . ,  t he  

values  of  Fi,l. and Pi) when p l o t t e d  i n  t h i s  t h r e e  dimensional coordinate 1 '2  

system become a scatter diagram whichcan  be represented by an APPROXIMATING 

PLANE ( see  reference  9 )  t h a t  b e s t  fits the  data .  The equations of t h i s  plane 

w i l l  be of t h e  form 

and t h e  partial regress ion c o e f f i c i e n t s  W and We2 w i l l  be determined by an e 1 

extension of t h e  method of l e a s t  squares  a s  follows-; 

The genera l  form f o r  t h e  equations (5-2) is, 

One m u l t i p l i e s  t h i s  equation through by F t o  form 18 equations ( i = l ,  ... 18).  
i, 1 

These 18 equations a r e  added up t o  genera te  t h e  f i r s t  equation of t h e  set of 2 

equations needed t o  f i n d  t h e  2 unknowns. The second equation required  is  

obtained by mult iplying (5-4) by Fi - t o  form, again,  1 8  equations which a r e  then 

added together  as before.  Thus 

I n  o rder  t o  s impl i fy  t h e  no ta t ion ,  the  following q u a n t i t i e s  a r e  defined. 



Using (5-7) , equations (5=5) and (5-6) can be-wri t ten  aS 

A s  w a s  mentioned before ,  (5-8) is a set of two equations i n  t he  two 

unknowns Wel and We2 which is required t o  solve  t he  problem. 

A sho r t  program was wr i t t en  t o  so lve  the  set of equations (5-8) by using a 

matrix inversion subroutine. This program a l s o  computes the  average values of 

Wel and We2 i n  o rder  t o  compare these  r e s u l t s  with t he  coe f f i c i en t  values found 

by t h e  l e a s t  squares method. A s  i n  previous programs, the  o r i g i n a l  matrix and 

its inverse  were mul t ip l ied i n  order  t o  ve r i fy  t ha t  the  r e s u l t  was the  i d e n t i t y  

matrix. The values ofWel and We2 obtained from the  eighteen observations a r e  

compared i n  TABLE 5-2 with the  average values of t he  hypothetical  d i s t r i bu t i ons  

of Wel and We2 given i n  t he  problem. 

TABLE 5-2. Comparison of W values computed from error-f ree  da t a  with t h e  
e 

averages of t he  given We values. 

TYPE OF VALUES 

By least square method from 239.83 
18 observations 

Averages of t he  given We 
values' 



Two important modif ica t ions  were introduced i n  t h e  next  app l i ca t ion .  

(a) S i x  regions ,  r a t h e r  than two, w e r e  considered and a t o t a l  of t h i r t y - s i x  

observat ions  were made. (b) sys temat ic  and gaussian Uncer ta in t ies  were 

incorporated i n t o  t h e  power measurements. It should be pointed  out_..that..since 

t h e  space now considered is 7 t h  dimensional, one can no longer speak of t h e  

equation of  an approximating plane, b u t  r a t h e r  of t h e  equation of an  

approximating surface .  

A gaussian random e r r o r  d i s t r i b u t i o n  wi th  a sigma value  of 0.5 w/m. 2 

2 was used, a s  w e l l  as th ree  values of sys temat ic  e r r o r s ,  0.3 w/m , 0.6 w/m 
2 

2 and 0.9 w/m . 

TABLE 5-3 lists f i v e  groups of r e s u l t s  based on t h e  following types of 

u n c e r t a i n t i e s  i n  t h e  observations.  

1. No e r r o r  i n  t h e  observat ions .  

2. Gaussian e r r o r s  only included. 

2 
3. Systematic (0.3 w/m ) combined wi th  gaussian e r r o r s .  

2 4. Systematic (0.6 w/m ) combined wi th  gaussian e r ro r s .  

2 
5. Systematic (0.9 w/m ) combined wi th  gaussian e r ro r s .  

The f i v e  sets of d a t a  i n  TABLE 5-3 c l e a r l y  show. t h a t  t h e  r e s u l t s  a r e  

not  highly s e n s i t i v e  t o  t h e  gaussian and sys temat ic  u n c e r t a i n t i e s  assumed f o r  

t h e  power measurement. 

I t ' i s  r e c a l l e d  t h a t  t h e  e s s e n t i a l  d i f fe rence  between t h i s  technique and 

t h e  Instantaneous/Inverse Technique is t h a t  i n  t h e  l a t t e r  t h e  number of 

observations m equals  the  number of  unknowns n ;  while i n  t h e  former, m is  

g r e a t e r  than n. However, t h e  b a s i c  equations t o  be used a r e  the  same i n  both 

cases ,  namely, equations .(3-22) and (3-23) introduced i n  t h e  s e c t i o n  e n t i t l e d  

 athe he ma tical ~ a s e s . "  The conf igura t ion f a c t o r s  i n  these  two expressions . 
inc lude t h e  LDF a s  can be seen from equations (3-18) and (3-19). Furthermore, 



TABLE 5-3. Comparison of We values computed from data having uncertaintities with the averages of the 
given W values. e 

TYPE OF DATA Region 1 Region 2 Region 3 Region 4 Region 5 

AVERAGE of Given We Values 179.36 200.42 220.44 239.83 259.56 

FROM Error-Free Data 178.09 199.63 221.22 242.15 256.66 

V, 
I 
U 

FROM Observations with 2 178.38 199.65 221.30 242.06 256.45 
Gaussian Errors ( 1 ~ 0 . 5  w/m ) 

2 
FROM Observations with (0.3 w/m ) 178.68 199.95 221.60 242.36 256.75 

Systematic 6 Gaussian Errors 

2 
FROM, Observations with (0.6 w/m ) 178.98' 200.25 221.90 242.66 257.05 

Systematic 6 Gaussian Errors 

2 
FROM Observations with (0.9 w/m ) 179.28 200.55 222.20 242.96 257.35 

Systematic & Gaussian Errors 

Region 6 



the corresponding expressions for the case of reflected SWR are developed.in 

a manner similar t o  that .anployed in  the Instantaneous/Inverse Technique. 

The results  obtained so  far by th is  technique are satisfactory and further 

work i n  its application should be pursued. 



SPHERICAL EARTH-ATMOSPHERE SYSTEM 

' -  Once tt had been shown t h a t  t h e  techniques f o r  computing W y i e l d  
e 

acceptable  r e s u l t s ,  i t  was decided t o  r e t u r n  t o  t h e  o r i g i n a l  problem i n  

which a s p h e r i c a l  earth-atmosphere system w a s  being considered. 

As  was mentioned previously,  t h e  power i n t e g r a t i o n s  a r e  t o  be accomp- 

l i s h e d  by adding up t h e  power increments reaching t h e  s a t e l l i t e  simultane- 

ously from t h e  d i f f e r e n t  area elements whithin t h e  FOV. Hence, t h e  f i r s t  

s t e p  was t o  genera te  a computer program which would d iv ide  t h e  su r face  a r e a  

of t h e  earth-atmosphere system i n t o  a f i n i t e  number of a r e a  elements of 

equal  a rea .  The d a t a  output  of t h i s  program gives  t h e  longi tudes  and l a t i -  

tudes of the  cen t ro id  and four  boundaries of each of t h e  2060 a r e a  elements. 

2 
An a r e a  element of 250,000 km w a s  found t o  be adequate. This s i z e  corre- 

0 
sponds t o  an area of 500 by 500 km, o r  approximately 5 by 5' of g r e a t  c i r c l e  

arc. This y ie lded  a t o t a l  of 2060 a r e a  elements, 2058 of which have equal  

a reas  (2.5x1011 m2 each).  The o t h e r  two elements a r e  those centered a t  each 

11 2 of t h e  poles.  These have an a r e a  of 2.339~10 m each. T h i s . y i e l d s  a t o t a l  

14 2 
su r face  a r e a  f o r  t h e  s p h e r i c a l  E-A sys  t e m  of 5.149678~10 m . The rad ius  

6 
of t h i s  system is considered t o  be 6.40155~10 m, which gives a s u r f a c e  a r e a  

14 2 
of 5.149679xl0 m . Since t h e  rad ius  of a sphere having an a r e a  equal  t o  

6 
t h e  a r e a  of t h e  e a r t h  has a r ad ius  of 6.37123~10 m, i t  follows t h a t  an atmo-. 

spher ic  s p h e r i c a l  s h e l l  of 30.32 km th icness  is being included. This is 

approximately t h e  thickness commonly used (30km) s i n c e  i t  was f i r s t  suggested 

by D r .  Frederick B. House ( reference  10). More than 95% of t h e  t o t a l  atmo- 

sphere is  contained wi th in  t h i s  s h e l l .  

The output  d a t a  of t h i s  program is used i n  t h e  main computer program 

t o  c a l c u l a t e  t h e  We values of a s p h e r i c a l  E-A system. 



The t o t a l  shape . fac tors  f o r  the  sphere and p l a t e  were calculated a l s o  i n  

t h i s  main program by adding up the  shape f ac to r s  of each of the  area 

elements wi thin  the  FOV of t he  radtometers. The r e s u l t s  a r e  compared 

below with those obtained ana ly t ica l ly .  

Configuration f ac to r  of the  t o t a l  FOV 

Radiometer Numerically Analytically 

Sphere 

P l a t e  

These r e s u l t s  ind ica te  t h a t  i t  is unnecessary t o  use area  elements of 

smaller  s i z e  t o  perform the  numerical in tegrat ions .  

The r e s u l t s  of t he  invest igat ions  present ly  being performed using a 

spher ica l  E-A system w i l l  be discussed in a subsequent report .  



CONCLUSIONS 

On t h e  b a s i s  of t h e  i n v e s t i g a t i o n  r e s u l t s  repor ted  i n  t h i s  document, 

t h e  following has been concluded: 

1. The Instantaneous/Inversion Technique ( including t h e  d a t a  ' 

q u a l i t y  p red ic t ion  and matr ix  s t a b i l i z a t i o n  schemes) y i e l d s  

e x c e l l e n t  r e s u l t s  when applied t o  radiometer d a t a  containing 

gaussian and sys temat ic  e r r o r s .  The We va lues  obtained are 

acceptable  according t o  t h e  p e r t i n e n t  accuracy requirements 

displayed i n  TABLE 4-7. . 

2. The problem of determining t h e  s o l a r  r a d i a t i o n  r e f l e c t e d  by t h e  

E-A system has  been c a s t  i n  a form which requ i res  minimum com- 

p u t e r  time f o r  ca lcu la t ing  Wr and t h e  albedo. It is concluded 

t h a t  t h i s  simple formulat ion represen t s  t h e  optimum method t o  

s o l v e  t h i s  problem and w i l l  soon be implemented. 

3. The r e s u l t s  obtained from prel iminary app l i ca t ions  of t h e  Best 

F i t / Invers ion  Technique c l e a r l y  i n d i c a t e  t h a t  the  e r r o r s  i n  We 

ca lcu la ted  by t h e  use  of t h i s  technique a r e  no t  h igh ly  s e n s i t i v e  

t o  gaussian and/or sys temat ic  power u n c e r t a i n t i t i e s .  I n  a l ic  

cases  inves t iga ted  t h e  We values re t r i eved  m e t  t h e  p e r t i n e n t  

accuracy requirements in TABLE 4-7. 

4. It has been concluded t h a t  d i v i s i o n  of t h e  su r face  of t h e  E-A 

5. 2 
system i n t o  2060 area '  elements of about 2 . 5 ~ 1 0  . km each y i e l d s  

accura te  r e s u l t s  when used i n  numercial i n t e g r a t i o n s  of 

configuration::: f a c t o r s .  



REFERENCES 

1. House, F.B., Sweet, G.E., e t . a l . ,  Long-term Zonal Earth Energy Budget 
Experiment (ZEEBE). A proposal t o  AAFE. NASA-Langley, 1973. 

2. Craig, R.A.: The Upper Atmosphere Meteorology and Physics. Academic 
Press (New York, N.Y.) 1965. 

3; Stevenson, J.A.;  and Grafton, J.C.: Radiation Heat Transfer Analysis 
f o r  Space Vehicles. ASD Technical Report 61-119, Part  I. Aeronautical 
Systems Division, Air Force Systems Command, U.S. Air Force, Wright- 
Patterson Air Force Base (Ohio), 1961. 

4 .  Raschke , Ehrhard ; Vonder Haar , Thomas He ; Pas ternak, Musa ;. and Bandeen, 
William R.: The Radiation Balance of The Earth-Atmosphere System from 
Nimbus 3 Radiation Measurements. NASA TN D-7249, 1973. 

5. Anon. : Earth Albedo and Emitted 'Radiation. NASA SP-8067. July 1971. 

6. Cohen, A.M.; Cutts,  J.F.; Fielder ,  R.; Jones, D.E.; Ribbans, J.; and 
S tuar t ,  E.: Numerical Analysis. 30h.n Wiley and Sons (New York), 1973. 

7. Faddeev D.K.; and Faddeeva, V.N. (Robert C. Williams, t rans la tor ) :  
Computational Methods of Linear Algebra. W.H. Freedman and Company 
(San Francisco) , 1963. 

8. Matthews, Jon; and Walker, R.L.: Mathematical Methods of Physics. 
W.A. Benjamin, Inc. (New York), 1965. 

9, Spiegel, Murray R.: Theory and Problems of S t a t i s t i c s .  (Schaum's 
Outline Ser ies ) ,  McGraw-Hill Book Company (New York), 1961. 

10. House, Frederick B.: The Radiation Balance of the  Earth from a 
S a t e l l i t e .  Ph.D. Thesis. Department of Meteorology, The University 
of Wisconsin, 1965. 




