Ni{8659 [# 11 Ale3

R
'(FABlUIY CASEFILE Cab,

TECHNIQUES FOR COMPUTING REGIONAL RADIANT EMITTANCES
OF THE EARTH-ATMOSPHERE SYSTEM FROM OBSERVATIONS BY
WIDE-ANGLE SATELLITE RADIOMETERS

By José F. Pina and
Frederick B. House

EARTH ENERGY EXPERIMENT (E3) PROJECT

NASA CONTRACT NAS 1-11871

drexel university

DEPARTMENT OF PHYSICS R
AND ATMOSPHERIC SCIENCE



NASA CR - 145011

TECHNIQUES FOR COMPUTING REGIONAL RADIANT EMITTANCES
OF THE -EARTH-ATMOSPHERE- SYSTEM FROM OBSERVATIONS BY
WIDE~-ANGLE SATELLITE RADIOMETERS

By‘José F. Pina and
Frederick B. House

Final Report
Phase III

Prepared under Contract No. NAS1-11871 by
Department of Physics and Atmospheric Science
o Drexel University
Philadelphia, Pennsylvania 19104

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

August, 1975

NNASA



PREFACE

The present report contains.results of an investigation of critical
problems related to sateliite systems for long-term earth energy budget
(EEB) observations, perforﬁed under Langley Résearch Center Contract No.
NAS1-11871 for the National Aeronautics and Space Admihistration.

This research study, performed by Drexel University, is one part of
a much larger effort by several institutions, includiﬁg Cdlorado State
University, The University of Wisconsin, Virginia Polytechnic Insfitute
and State University, Link Teméo Vought as well as cognizant personnel at
NASA Langley Research Center. This team is studying gsatellite systems
for performing long-term EEB measurements over geographical regions, hemi-
spheres, and the entire ea;th for periods of 10 to 30 years. A major
portion of the total effort is responsive to the AAFE proposal, and the
proposed LZEEBE system (reference 1) which employs three balloon
radiometers.

The decision was made to expand the scope of fhe totai effort beyond
that envisionéd in the AFFE proposal. This boradened scope includes Phase
A type of efforts concerning other concepts of performing EEB observations
besides the balloon system. For example, systems employing spinning plate
radiometers and/or scanning radiometers could be developed for long-term
space application. Regardless of the geometric characteristic of the
observational system, the problems of data analysis and interpretation are
similar for all wide-angle Systems with only an adjustment required for
viewing geometry.

The current investigation was performed during the twelve month period
1 January 1974 through 31 December 1974. This period is denoted as Phase III

‘in subject contract. The express pﬁrpose of the investigation is outlined

y



in the following objectives, contained in the statement of work.

1. Accurééy aéééééﬁénﬁrof éamﬂiihgrﬁiégiﬁy Céﬁ&idééé
Satellite Systems for EEB Observations

2. Development of Procedures for Analysis and Inter-
pretation of EEB Observations by Wide-field, Broad-
band Detectors

3. Accuracy Assessment of Procedures for Analysis and
Interpretation of EEB Observations

4, Specification of Spectral Absorbing Characteristics
of Broad-band Detectors and Calibration Requirements
for Accurate Observation of the EEB

5. Variance Spectrum Analysis of EEB Observations from
ESSA VII Satellite

6. Professional Suppoft and Advisory Effort as Co-Principal
Investigator of LZEEBE

This report is the final report for the phase III effort under NASA
Contract No. NASl;11871. Other reports that are related to the overall
.effort are: "An Investigation of ESSA VII Radiation Data for Use in Long-
term Earth Energy Experiments,' published as NASA CR-132623; "Our Con-
taminated Atmosphere - The Danger of Climate Change,' published as NASA
CR-132625 and "Steady-state Solution to the Conduction Problem of a Spherical
Balloon Radiometers,'" published as NASA CR-132624.

Gratitude is extended to several NASA/LaRC personnel for their encou-
ragement, interest, stimulating discussions and suggestions provided during
the present investigation. Among these scientific personnel are included:
Messrs. George Sweet (technical monitor), Charles Woerner, Jack Cooper,

Dr. Louis Smith and other members of the LaRC team.

Frederick B. House, Project Director
Associate Professor of Physics and
Atmospheric Science
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- INTRODUCTION - e .

- The study of the total energy budget of the planet earth and its atmo-
sphere is based on analysis of the exchange of radiant energy between the earth-
atmosphere (E-A) system and space. Radiometers on earth-orbiting satellites
can effectively measure this exchange of radiant energy at obserfation points
in space external to the E-A system. The current effért is concerned with the
;nalysis and interpretation of observations by wideangle, spherical and flat
radiometers with regard to the general problem of the earth energy Budget (EEB);
but in particular, it is concerned with the problem of determining the energy
budget of regions smaller than the field of view (FOV) of these radiometers.
Before considering specific reasons or motiva;ions for conducting the present

research effort, the background to the overall problem will be discussed.
Background

The energy budget at a specific time t for a given region of the E-A
system's surface can be described by the following expression which shows the

relationship of the net flux Q to the three fluxes Hé, Wr, and we.

Q=H - W +W)
s r e (1-1)

The meaning of the three fluxes 1s shown schematically in figure 1-1l. The
symbols Q, Hs’ w?, and We are'defined in the List of Symbols in the front matter
of this report. Introducing the concept of albedo A = Wr/Hs, which 1is also

depiéted 1in Figure 1-1;,qne.g§p;rgwrite (1-1). as

Q = HS (1 - A) - We (1-2)

1-1



Figure 1-1. Radiant power balance on an earth surface element. -
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A time average of the net - flux Q over any convenient time scale
can be readily computed from the data available for any of the E-A system re-"
gions that has been under study.

The net flux Q defined by equation (1-1) can represent the time average
conditions for a broad range of spatial dimensions. These can range from the
dimensions~of a GARP grid, about 5° x 5° great circle arc, to the dimensions.
of the entire globe. Different observational satellite systems must be
employed to perform the required measurements over this broad range of spatial
dimensions. For exampie, a scanning radiometer would be needed to observe.
the components of net flux for a GARP grid. On the othe; hand, a wide-angle
radiometer can best fulfill the sampling requirements for the entire globe.

In térms of conventional meteorological dimensions a GARP grid maybe classed
as a mesoscale feature. Wide-angle radiometers become .more effective obser-
‘vational tools than scanning (narrow angle) radiometers for some meteorological
features between the mesoscale and global dimensions. It is suggested here
that the synoptic scale meteorological feature may be the cross over point
between the usefulness of scanning énd wide-angle radiometers. |

The current effort focuses on the problem of interpreting wide-angle
observations in terms of the components of che. net flux for regions whose
dimensions are synoptic scale and larger, i.e., spatial dimensions whose areas
are 1-5 x 106 kmz to the entire area of the earth. It should be emphasized that
this problem of data interpretation is common to both spherical and plate
radiometers.

The important point to be noted here is that Hs, Wr, and We, can be
determined from observatiénal data of satellites orbiting the earth. It follows
then, that Q can be computed for any region for which satellite data are

available. Consequently, determination of the fluxes Wr and we mentioned above

for regions smaller than the FOV of the satellite becomes important, and
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techniques to accomplish this task have been sought for some time.
At Drexel University, two techniques involving matrix inversions were
;;,;;;;deyeloped;for;computing_the;twO;fluxes,under;discussion~£or:regions=sma1&er:?u;**;****

‘than. the FOV. The motivation behind the efforts to determine Wr and We for.

surface argashsmal}e:;;haﬁ the FOV will now be discussed.
Motivation

One can think of two reasoms for developing techniques to interpret

wide-angle observations for synoptic scale regions. These reasons are:

(a) - Knowledge of the radiant energy budget over several :areas
(such as eastern continental U.S.A., the polar caps, the
Northwestern part of Africa, and the Caribbean - Gulf of
Mexico region) possessing meteorological significance in the
dynam;gal_adé;ysis of‘:he”atmosﬁhere-are of practical and
scientific;value. These areas are smaller ‘than the FOV of

widg-angle”fa&iometers_on satellites at orbital altitudes

commonly used.

(b) Several of the regions of interest in studies of the earth's
energy budget may have dimensions equal to, or larger than,
the'FOV of the radiometer (e.g. subtropical oceans). However,
often only a portion of the FOV covers part of the area of
interest during an observation; and it is, therefore, impos-
sible to determine from this measurement alone what fraction

of the power measured originated at the area of concern.

The above arguments provide sufficient reason for endeavoring to develop
- the types of techniques sought. The essentials of the two techniques developed

at Drexel follow.



Essentials of Techniques

In one technique, the number of observations m equals the number n of
regions under study, and a unique solution is obtained for each region. The
resulting system of n simultaneous equations is solved by operating on the
observed power column matrix with the inverse of the configuration factor
matrix; If all the observations are made at one time during a single pass of
the satellite, the solutions are termed INSTANTANEOUS. For this reason, the
technique is called Instantaneous/Inversion Technique.

In the other technique, the number of observations m is larger than the
number n of regions being observed. The n simultaneous equations required
to seek a solution is obtained by using an éxtgnsion of the method of least
squares to determine the surface which best fits the data. For this reason,
this technique is termed the Best Fit/Inversion technique. Again here, the
system of n simultaneous equations is solved by the use of a matrix inver-
sion subroutine.

The values of We obtained Ey both techniques ffom error-free observations
were totally acceptable. However, when the ﬁeasurements included uncertain-
ties, not all the instantaﬁeous values of We computed by the first technique
were acceptable. Nevertheless, a prediction scheme was developed which
forecasts the quality of the instantaneous We values to be determined by
the first technique. In this scheme, the square matrix of the coefficients
of the n simultaneous equations found by the first technique was used to pre-
dict the acceptability of the instantaneous values of Wé obtained for each of the

regions. The computer program calculates the elements of the matrix and then



proceeds to analyze the matrix in order to predict the quality of the data
to be obtained. The actual results computed were always compared with the
. pertinent tolerances listed in TABLE 4-7,. Accuracy Requirements.for Radiation
Budget Components, in order to determine the acceptability of the results.
In all cases, the predictions were in agreement with the results of these

comparisons. The results obtained by both techniques are now presented.
Accuracy of Results

Two - types.:of ‘errors.* were selected to perturb the power measurements made
by the radiometers. These were, systematicierrors (0.3, 0.6, and 0.9 watts/mz)
and gaussian random errors (the gaussian distribution had a sigma value g = 0.5
watts/mz). From TABLE 4-7, the pertinent "desired” and "minimum useful"
accuracy requirements for we are *3 watts/mz and #15 watts/mz, respectively.
To evaluate the Instantaneous/Inversion Technique, ten sets of six observations
each were included in the analysis. The predictions and the uncertaintities
in the values of we obtained by using a combination of the gaussian errors

mentioned and 0.9 wattslmzaéystematic errors were as follows (refer to

TABLE 4-8)

Wel We2 Wé3 Weé We5 We6
Predictions, sphere Poor . Poor Accept  Accept Poor Accept
Prediction, plate Poor Poor Accept Accept  Reject  Accept
Sphere 15.2 20.1 6.9 3.1 17.4 5.8
Plate 15.4 21.9 9.1 4,2 33.8 9.3

As it can be seen from these results, only the values of wez and We5
exceed significantly the minimum useful accuracy requirements (15 watts/mz)
given for both satellites in TABLE 4-7. However, it is noticed that consis-

tently the plate exhibits larger uncertaintities than the spheré. It should -
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be remarked here that different satellite orbits that include larger segments
within their FOV's of regions one and five would serve to provide We values
with-lesser errors-for these-regions. e e o
In order to test the Best Fit:/Inversion Technique, thrity-six obser-

vations of six regions were includea. The values of we obtained when the
power measurements were assumed to exhibit the same combination of errors
used above for the Instantaneous/Inversion Technique were as shown below.

The six values used as a standard for comparing the values of W, retrieved

were the averages of the given We values computed for each of the six-regions.

We We We We We We

1 2 3 4 5 6
Average (Standard) 179.4 200.4 220.4 239.8 259.6 280.4

Results 179.3 200.6 222.2 243.0 257.4  .281.5

As 1t can be seeh from these data, the highest uncertainty in the value
of We_is exhibited by Wea, which is 3.2 watts/mz. However, even this error

. ig below the minimum useful accuracy requirement shown in TABLE 4=7.

BASIC IDEAS"

The basic ideas and concepts required for deriving the expression- for
the total radiant power P (watts) intercepted by a radiometer orbiting the

earth are discussed in the following subsections.
Shape or Configuration Factor

This factor F which is dimensionless, appears often in radiative

LTI ol
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transfer literature and is defined in the following expression (reference 3)

where

P = radiant power (watts) intercepted by the radiometer.

BT TNt Yt L0 S S S G U A P S ‘_-(2:1):'

A = characteristic area of the radiometer. This area is A =
n1a2 for both a sphere of radius a and a flat circular

plate of radius a.

W = radiant flux (watts/ﬁz) per unit time, or radiant power
per unit area, which is either emitted (radiant emittance
W ) or reflected (radiant reflectance wr) by the earth-

a%mosphere (E~A) system.

F = shape, or configuration factor (dimensionless).

This

factor represents that fraction of an observed area flux

~ W that is intercepted by the radiometer per unit of

characteristic area.

The power absorbed by the radiometer is given by,

iv e P=-g P = o FAW

where

(2-2)

a = absorptance of the radiometer (dimensionless). It is
the ratio of the power absorbed to the power intercepted.

Radiometer Characteristics

Two types of radiometer will be treated iﬁ this report: (a) spherical,

and (b) horizontal, flat, circular.

The characteristic area A = ﬂa? of both of the above radiometers will be

2

assumed to be A = Im~, This assumption serves to simplify the expressions

without affecting the physical significance of the results.

Both satellites will be assumed to be blackbodies i.e., the spectral

eﬁissivity € and absorptivity e, are assumed to be unity



FA = ék =1 (2-3)

_Therefore, all the radiant power P.intercepted by either radiometer (sphere. -

or plate) is totally absorbed, and one has

o (2-4)

“ P = FW _\ | (2-5)

Radiance and Radiant Emittance

These two quantities are of great importance in the discussion of long-
wave radiation (LWR) emitted by the E-A system. One is interested in the
expression that relates the radiance N(9,y) (watts/m24 sT) anq the radiant
emittance wev(watts/mz) of an area element dA(mz) whose centroid is located
at longitudel and latitude ¢..The radiance is the radiant power per unit area
emitted by dA within an element of solid angle di. The radiant emittance is
the total radiant power per unit area (or radiant flux per unit area) emitted
by dA into a 2w steradians solid angle. The expression relating the imstan-

taneous values of We and N for a given dA (A,¢) is .-

/2

We‘(-)j\‘,.tb,t'.l)-‘.__-‘-‘_-f__ 2 dy g" “N(8,¥; A ¢,t)sin 6 cos 8 dO (2-6)
L e o

Where the radiance is being considered as a function of the zenith angle 8
and the azimuthal angle y which define the direction of N(6, ¥; A, ¢, t).
This quantity and Wé ‘are functions of the position of the area observed as

well as of the specific time at which the observation is made. 1In order to

'simplify the notation, the dependence of N on A, ¢, and t will ﬁot be shown.
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A reasonable approach in the interpretation of LWR is to assume that the

radiance is a function of the zenith angle 8 only (reference 4). Then, one

can write,

N(8,y) = N(8) = N°£(6) @D
where Nf'a Zenith radiance, i.e., the radiance in the zenith
direction, 8 = 0o, ' ’
f(8) = 1limb - darkening function (LDF) which gives a measure

of the anisotropy of the radiation field:

Hence, by substituting equation (2-7) into (2-6) one obtains

/2

W= 2m NZ ™% £(8) sin 8 cos 6 d8 (2-8)
! A

or

W
N? = & (2-9)
m/2 ,
2r [ £f(8) sin 6 cos 08 do
)

The integral appearing in (2-8) and (2-9) is used often and hence, it is

concenient to define it as,

m/

I (f) = é 2 £(8) sin 6 cos 6 d@ (2-10)

Then, (2~-8). and (2-9) can be rewritten as



2 m N1 (f)

=
1]

and W7 - 1 . (2-11)
2r I (f) e
For an ISOTROPIC radiation field, £(8) = 1, I(f) = %, and the isotropic

radiance Nifq 4is then

iso Wé
N = _-" (2"12)

Figure 2-1 shows a satellite S at a height H above a spherical E-A system
of radius R. The geometric nomenclature to be used in this report is presented
in this figure for future reference. A flat earth isAdepicted tangential to
the spherical system at the sub-satellite point(SSP)., The concept of a flat
earth will be used to make certain calculation simplifications and it will
be thoroughly discussed in the subsection entitled "Flat Earth Application".

From this figure one can readily write.

0=y +a
Rsin 8 = (R+ H) sin o (2-13)
Rsin y =r sin o V (2-14)
2 2
r =R + (R + H)Z-ZR(R+H)COSY (2-15)



a FLAJT g:A271§

- Figure 2-1.. Plctorial definition of the symbols used.
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Irradiance, Radiance,.‘l\{adiant Reflectance, and Albedo

These four quantities are of great igportance when the solar shortwave
radiation (SWR) reflected by the earth is treated. One of the expressions of
interest is the relation between the radiance Nr (watts/ﬁm%;sr)) and the
radiant reflectance Wr (watts/mz) of an area element‘dA(mz) whose centroid
is located at longitude A and latitude ¢, The radiance in this case is the
radiant power per unit area reflected by dA within an element of solid
angle dQ., The radiant reflectance is the total radiént power per unit area
(or radiant flux per unit area) reflected by dA into a 27 steradians solid
angle.

Before writing the expressions connecting Nr and wr it will prove
helpful ﬁo define the solar irradiance H (watts/mz). This is the amount of
radiant power per unit area (or radiant flux per unit area) impinging upon
dA(A,¢) from all directions contained within a 27 steradians soiid angle.
Hence, the definitions of We, H, and Wr are very similar, except that they
refer to emitted, incident, and reflected radiations, respectivley. Then,

one can write, using the nomenclature of reference 3.

H(L, %, A, ¢, t)=SL cos (2-16)

where
S = Solar constant (S = 1353+21 watts/m® = 1.940%.03 cal/
' (cm2-min), see reference 5). :

L= Ezldz;z and d are the mean and true sun-to-earth distances,
respectively.

¢:= Zenith angle of the sun at dA (\,¢).
A = Longitude of the observed area element dA.

¢ = Latitude of the observed area element dA.



t = gpecific time at which observation was made.
The instantaneous albedo A(Z,A,¢,t) for the area element dA (A, ¢) is .
defined by S e .- LT -

| AL, A ¢, £)=W (L, T, A, ¢, t)/H(L,T,A,0,t) (2-17)

In order to simplify this expression, one can assume that L does not change
significantly during the time interval of the observations. Then, for
a given L, the dependence of Wr and H on L does not have to be shown. 1In

a similar way, A, ¢, and t can be dropped from the. above expressions, and

A(z) = W (z) /H(z)

(2-18)
From the definitions given for Nr and Wr at the beginning of this
subsection, one can write the following expression relating these two
quantities, which is similar to equation (2-8).
L2 -
W_(2)= 7*" ap /™% N_(8,9,z)sin © cos 6d6 (2-19)
r 0 o r
Dividing this expression through by H(t), one has
2
A(D)=r(o) = g i dy f“/Z p(6,¢,Z)sin 6 cos 8d6 (2-20)
o
Where,
r (g
A(D) = = -

T CE) is the directional reflectance which in this case is the same as the

ingtantaneous albedo.



e NGB
p(BSW’g) =_r—-l-p——)— coe
H(Z)

p(e;w,g) is the bidirectional reflectance.
Thus, the directional reflectance is the ratio of the total radiant power per
unit area wr(c) which is reflected by dA onto a 27 éteradians solid angle to
the total solar radiant power per unit area H(Z) incident on dA at a zenith
angle 7. The bidirectional refiectance involves two directions, namely,
the direction of the incident radiation which is given by the zenith angle
%, and the direction of the observer. The latter direction is defined by
the zenith angle 6 and the azimuthal angle y. The bidirectional reflectance
is the ratio of that amount of radiant power per unit area per unit solid
angle Nr which is reflected by dA onto an element of solid angle d4dQ (8,¥)
to the total solar radiant power per unit area H(Z) incident on dA at the
zenith #ngleq‘.

The integral over the angle 8 appearing in equation (2—26) is similar
to the one appearing in equations (2-8) and can be treated in a similar manner.

That is, one can define I(p) as

I(p)= f"lz p(6,¥,2) sin 6 cos 6d86
0 (2-23)
Then,equation (2-20) can be rewritten as
27 R
A(r) = x(p) = é I(p) dy T (2-24)

A method proposed for utilizing these equations will be discussed at the

end of the section entitled Instantaneous/Inversion Technique.

2-9

TTOTT(2e=22) T T T



Instantaneous Net Flux

Once the representative values of H, Wr, and_we are determined for a
particular region from a given: set of n observations i, taken during a time
interval centered at cj, one can determine the net radiant power, or net flux,

Qi(tj) for this region. Hence, Qi(tj) represents the instantaneous value

of the net radiant flux for the specific time of day tj'

Average Net Flux

It follows from the above discussion of the instantaneous energy budget
ﬁhat a weighted average (using the configuration factor as a weight) for a
given region can be obtained from the m values of Qi(tj) computed for m
sets of observations.

If, for instance, one is interested in obtaining the average of Q(ti)
during a month for a unique value of tj (say 3:00 PM) from m values, one has

m
2 F3 Qi (tj)
= 1 -
Q(tj)_

(2-25)

B

Fi

Other types of averages which are more suitable for the user's needs

can be computed in a similar manner.

NOTE: In thig report only the LWR component will be treated. The SWR
component will be discussed in a subsequent report.
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Radiative Equilibrium

When the temperature of the sensor reaches. a steady state, it is said
that the sensor is in radiative equilibrium. In this state, the power input

P, 1s equal to the power output Pout" On the basis of the definition of

N(8) for the LWR presented in previous sections, one can write the expressions

for Pin for both satellites, considered as blackbodies, as

o [¢3
SPHERE P, = A f2" ay S ® N[6(a)] sin ada (2-26)
in s fo) 0

2m 0‘m .
PLATE Pio = A g dy £ N[6(a)sin a cos ada (2-27)

where um‘is the maximum value of the nadir angle.

The expression for Pout for both satellites follows from Stefan-Boltzmann

law,

PHERE P =S T4 =4 A T4

S oue - SO =aA 0 (2-28)

LATE P = A T4
g out - A © (2-29)
-8 2 o4

Where, o = 5.6697x10 =~ watts/(m“- K ); Stefan-Boltzmann constant.

It will be assumed only for convenience that the characteristic areas of both
radiometers is A_ = 1m2. Also, N[6(a)] will be written in terms of Nﬁland
£[6(a)] periequation:(2<7).

Then, the above four equations can be rewritten as,
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a

SPHERE P, =21 N° /" f[6(a)] sin ada (2-30)
o _
L _ ) :
PLATE P, = 2n N2 £ ™ £[e(a)] sin o cos ada (2-31)
0
PHERE P =401 2
S out = (2-32)
P = T4 '
PLATE out = © (2-33)

Substituting in (2-30) and (2-31) the value of N% as given by (2-9), one

obtains,

[¢]
I ™ £[e(a)] sin o da
= Q
SPHERE P = T2 W, (2-34)
o]

£(8) sin 8 cos 6 do

o .
S ™ fle(a)] sin o cos a da
PLATE P, = & , W (2-35)
m f“/z £(8) sin 8 cos 6 d8 e
0

But comparing equatién (2-5), that is P = FW, with equations (2-34) and (2-35)

one sees that the expressions for the shape factors for both radiometers are
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[
e BegRB@) T st g dg
= Q

F

sph g"/z £(6) sin 6 cos6 dé
“m
S 7 fle(a)] sin o« cos a da
F=Q2
pl f“/ £(8) sin 6 cos 6 d6
)

or, using the definitin of I(f) given by (2-10), one can write

[+

1 g ® £lo(a)] sin a da

L5 |
]

~~

sp I(f)

a .
Fpl= E%ET g ® ¢[8(a)] sin o cos a da

For the special case of isotropic radiation

fle(a)] = 1 and I(f) = %. Then,
Fo0 2(1 = cos a_)
sp m
Fiso = sin2 a
pl m
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FUMDAMENTALS: OF  THE - TECHNIQUES -

The only piece of information that a single satellite 6bse:vation can
-yield is the total radiant perr intercepted by the radiometer, as giﬁen by
either equation (2-30) fbr a sphere, or (2-31) for a plate,‘ This power
represents the sum of those radiances originating at each of the area
elements within the FOV and directed toward the radiometer; Therefdre, iﬁ
is imposﬁible to obtain from A single, wide-angle measufeﬁent, and without
additional information of any kind, an exacf or rigorous solution for either
We or Wr for any area within the FOV of the rad;ometer.

A similar situation exists for measurements by narrow-angle radiometers.
The only information that is contained in a single observation of an area
element is the radiance in the direction of the radiometer on the satellite.
Scanning by this radiometer only adds information about adjacent area
elements and nothing additional about the original area élement under consid-
eration. Hence, the fundamental difficulty one faces when trying to'Aeter@ine

the We field from a measurement of the radiance N (or Wr ffom Nr) is that the

total angular distribution of N (or N.) can not be deducéd from the -

measurement’, —-and 'heﬁéé§1;Wé”"éan "not -be déduced_from the measurement
either., =~ - T L

7 = It follows from the above discussion that it isximpﬁééible to determine -
‘the Wef(or_Wr) field of an area of any .size - i.e.,lof‘énigrea smaller than the
FOV, eéqual to the FOV, or larger than the FOV-of the radiometefséfunlessAtﬁe )
angular distribution of N 157 also nade availalbe. On the other hand, it

is possible that by utiiizing représentative values of the angular distributions -
of-N and Nr obtainéé froﬁ.previous observations the problem can be rendered
solvable in a satisfactory manner; Furthermore, these angular distribution
values can be refined in the fgture by increasing the number of measurements

of these distributions. for different regions of the E-A system, as well as by
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improving the accuracy and precision;of these measurements,

Therefore, one' can utilize an empirical quel which portrays the angular
emitting and reflecting characteristics of the E-A system, based on previous
obsetvétions (satellite, aircraft, etc.) in order td solve the problem. At
Drexel University, this approach was followed by making certain assumptions
which are justifiable on the basis of physical processes and observational
data accumulated by other investigators (reference 4). These assumptions are

discussed in the following subsection,
Basic Assumptions

The following basic assumptions were sufficient to develop a technique
for computing We and Wr from radiant power measurements taken by spherical
and horizontal flat circular radiometers.

pivision into regions. The surface area of the earth - atmosphere system is

assumed divisible into regions which have emitting and reflecting characteristics

significantly distinct from those of adjacent regions. The criterion for
implementing the division must ultimately be based on results of previous

satelli?e observations. The values of We and Wr computed for a given region

are considered to represent the mean of the meteorological variations taking
place in the time interval At(e.g., a month) during which the observations were

made,

Position and extent of each region. The position and extent of each region

is assumed to be available or can be approximated from data gathered by previous

investigators.

Angular distribution of N and N . The éngular dependence of N for LWR, and of
Nr for the reflected solar SWR are available, or approximations can be made,

from previous observations.
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Although two different techniques for computing the radiant emittance
and radiant reflectance fields have been developed at Drexel, the initial
computational steps are common to both techniques. These common steps are

discussed in detail in the following subsectian.
Mathematical Bases

In this subsection, the mathematical bases which are common to both techniques
are treated in detail. At the end of the subsection, the principal differences
in the two techniques for accomplishing the final goal are listed. |

The pt;:blem to be solved is illustrated in figure 3-1, which depicts a
satellite (which for simplification is assumed to be crossing the equator) with
three different regions (Rl’ R2, and R3) falling, partially or tota_lly, within
the FOV of its radiometer. The following development is for a spheriéal
radiometer; however, the treatment for horizontal flat sensor is similar.

>A spherical radiometer of unit cross-sectional area is cons'idered. Using
P = FW, as given by equation (2-5), one can write for the total power contributed
by those portions of the three regions within the FOV of a radiometer on board

the satellite at position S in figure 3~1 the following,

P.n=P'+P + P, (3-1)

or

P, =F. W_. +F W, _ +F, W (3-2)



Figure 3-1. Regions within the FOV of a satellite crossing the equator.
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That is, by using (2-30) to represent the power originating at region Ry and

which is intercepted-by the satellite, one can write

Y o
1n dy S 1
12 01

P, =F, W, =N ufl[e(a)]sin o da (3-3)

Z
1y

P = radiant power from region R, intercepted by the radiometer.

1
N>. = zenith radiance of teg;on Rl.
wfz = lower boundary for ¢ in region R

wi = upper boundary for ¢ in region Rl'
= lower boundary for a in region Rl'

o, _ = upper boundary for a in region Rl'

To facilitate the discussion, an isotropic radiation field will be assumed.

Hence, f {68(a)] = 1, and one obtains

. ] o
P1=Fl W 1= Niso J lu dy S lu sin o dao (3-4)
¢ Y1e a1
Where
iso -
Nl = Igotropic radiance of region Rl.

Using expressions similar to (3-4) for'_P,.2 and P3 we can rewrite (3-1) for
the power input to the radiometer, as
iso iso

S d¢y f sin o da + N S dVv S sin a da (3-5)
Z Ry Ry 3 Ry R3

P=Niso /&y { sina do+ N
Ry 1



Where Rl, RZ’ and R3 imply that the integration limits are those corresponding
to the regions 1,2, and 3, respectively.

Equation (3-5) can be rewritten as

3

P= I N,°° /fsinaded
i=1l 1 Ri :

(3-6)

By using equation (2-12), P can be expressed in terms of wei rather than

N iso, that is,

i

|+

3
P== I W._. /fsinadady (3-7)
T i=]1 el Ri .

The main probiem at this point is to decide which is the most advantageous and
efficient manner to perform the integration indicated in equations (3-6) or
(3-7).

Two main approéches were considered; these are discussed in the following

paragraphs together with the advantages that each presents.

The following different‘methods were considered.

'(é) The integrations indicated in equation (3-6) could be performed
numerically (e.g., by using the trapezoidal rule) between the
‘boundaries given for each region in terms of longitude and latitude.

(b) The integrations could be performed geometrically. That is, by
dividing the surface area of the E-A system into a large number L of
area elements, one could simply sum up the radiances that eéch of
the area elements emits in the direction of the satellite in order

to accomplish the integration indicated by (3-6).

It was decided that the second approach was more advantageous for the following

reasons:



(a)

(b)

(c)

In the first approach, since the boundaries of the regions do not

necessarily follow longitudinal and latitudinal lines of constant

value, the number of separate integrations to be performed could

often be impractically high. Furthermore, the limits of
integration for the angles @ and Y could involve difficult tri-
gonometric expressions which could make the implementation of

this procedure highly impractical.

In the second method, once the centroids and boundaries of each of

the area elements have been accgrately defined, the regions can be

easily defined in terms of a group of adjacent area eleﬁents.

In the second method, a procedure for testing whether a particular
area element AA shouid be considered to be within the FOV or not
can be easily implemented if the longitude and latitude of the
centroid of AA is known. If the centroid is on,ror inside of the
perimeter of the FQV, AA is considered to be within the FOV;
otherwise, it is considered to be outside the FOV. On the average,
it is expected that as many area elements will be accepted as will
be rejected in each integration. Furthermore, since it is at the
limb that the area elements are tested to be accepted or rejected,
and since these area elements have much smaller shape factors than
those sitnated close to the SSP, it is clear that the error would
be negligible even if the number of area elements accepted do not
match the number rejected. T

. Therefore the second method will Be‘fbllpwpd’;n which the
surface of the E-A system is.divided into a large number L of
area elements AA, and each area element is identified by the

longitude and latitude of its centroid.
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In order to illustrate the computation of the radiant power intercepted
by a satellite radiometer whose FOV comprises more than one region, a FLAT
E-A system will be assumed. This type of system greatly simplifies the
results. Only three regions.and three FOV's will be considered, which are
depicted in figure 3-2. The portion of the flat E-A system shown in this
figure is comprised between 0° and 700 longitude, and between -50° and +50°
latitude, which is adequate for the purposes of this discussion. An area
element ié considered within the FOV if its centroid lies on, or within, the
perimeter of the FOV, as per the criterion sta;ed earlier. In figure 3-2,
the area elements have been numbered in order to identify them more easily.
In TABLE 3-1, the elements that are eonsidgred‘to be contained in each of: the
three FOV!s are tabulated. It is seen that in this instance, each FOV
contains exactly twenty-six area elements. |

The equations used tb calculate the radiant power that an area element
AA contributes to one observation  are presented below. The symbols
entering in these expressions are shown in figure 3-3 which is a schematic
of a radiometer at a position'S over the flat E-A system.

Let A Pijk be the power that the ith area element in the kth region

contributes to the jth observation. -Ihen,one writes for a spherical radiometer

A
s _ s
Yok T Nige A Aage % 45 3 (3-8)
15k

For a horizontal flat circular radiometer, one writes,

. As cos. ai‘k (3-9)
_ . _s  ijk -
APy Mgl gk ©°° Pug T 2 -
ijk :
N = Radiance of AAi in the direction of the radiometer

ik

AS = = Characteristic area of the satellite radiometer, which
for the sphere and plate _:1is ma2 (a = radius of sphere
and plate).

<
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TABLE 3-1. DAatavfrom three satellite observations.

Observation Region Area Element No. of Elements
No. No. No. Elements Per Obs.
1 1 201-203 3
1 1 186-190 5
1 1 172-176 5
"1 3 158 1
1 2 159-162 4
1 3 144 1
1 2 145-148 4
1 -2 131-133 3 26
2 2 159~161 3
2 3 144 1
2 2 145-~148
2 3 130 1
2 2 131-134 4
2 3 116 1
2 2 117-120 4
2 3 102 1
2 2 103-106 4
2 2 89-91 3 26
3 2 117-119 3
3 3 102 1
3 2 103-106 4
3 3 88 1
3 2 89-92 4
3 3 74 1
3 2 75-78 4
3 3 .60-64 5
3 3 47-49 3 26
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Pigure 3-3. Radiance Nijk emitted by AAij'k of a flat E-A system and

intercepted by the radiometer S.
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AA ith area element in the Kth region within the

13k FOV of the jth observation.

%dk Zeni;h angle of the radiometer at AAijk

a = Nadir angle of AA

15k at the radiometer

ijk

dijk = Distance from AAijk tp the radiometer

Let it be assumed that Nijk is a function of the zenith angle eijk
only (i.e., that it is independent of the azimuthal angle wijk)' Then, one

can write

£€0..,) (3-10)

Niske = Nige 00451

Where,

z
Nijk = radiance in the zenith direction at AAijk

£( )= limb- -° darkening function (LDF) or anisotropic factor:

)
ijk
at.- AAijk

It will be further assumed that a region K is characterized by the

following:

(a) The value of the LWR radiant emittance in the kth region has a
represeﬁtative average value wek'

-(b) The LWR radiance in the zenith direction has also a representative
average value N; in the kth region.

(c) The LDF has a representative functional form fk(e) throughout

the Kth region.

Hence, for the kth region one rewrites (3-10)as

]
Nige = M B (8540 (3-10")
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To avoid carrying As in the following expressions, it is assumed that
As = 1 mz. This assumption does not affect the validity of the results.
By substituting (3-10) into (3-8) and (3-9), and making As = lmz, one

obtains,

S Z

APijk= Nk fk (eijk)AAijk cos eijk 2l (3-11)
d, . '
ijk
. cos o,
APle— Nk fk (Gle)AA cos eijk dz (3-12)
ijk

In the section BASIC IDEAS, the following expressions were introduced

to show the relationship between N; and we.k. From equations (2-10) and

(2-11) one then writes, respectively,

(£ = fn/z £, (8)sin @ cos € do (3-13)
0
z _ 1
N = 2r 1 (£,) ek - (3-14)

Substituting (3-14) into (3-11) and (3-12) one obtains,

( ) cos 6

s ij rAA ijk. : (3-15)
MBSk 53 £y - =4 2 ek
ijk
(0 cos 6, cos a, .,
p k ljk A ijk iik
ijk
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Al;hough the subscripts in AAijk identify the position, the observation, and
the region, respectively, of the area element under consideration, these sub-
scripts can be dropped here since they appear in other variables in the same
expression. Also, the magnitude of AA has been assumed to be the same for all
area elements; and hence, it is unnecessary to identify it with the subscripts.
It wgs shown in expression (2-5) that if A8 = lmz, the power P is related

to the radiant emittance We by means of the shape factor F, that is

P=FW | (3-17)

Hence, using the definition of the shape factor, one obtains from (3-15) and

(3-16),

B L fk(ei'k) :”:AA ] cos 6 K
13K 2T (F,) 2 (3-18)
ik
> . fk(ei k) ][AA ] cos Si x oS a'jk
Fis87t 21 (£,) 22 (3-19)
i3k

From figure 3-3, it is seen that for a flat E-A system (which is the type of

system being used in this development) di?k is given by
2 2 2
dijk =H" + pijk (3-20)

which is different from the equivalent expression for a spherical E-A system,

which from-figure::2-1 can be seen to be

2 .2 2
rijk = R™ + (B+H) "-2R(R+H)cos ¥

(3-21)
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where,

r,,, = distance from AA to the radiometer in the spherical.
ijk ijk :
E~-A system. _
R = radius of the E-A system,
Y ~ = angle between A and the SSP, measured at the

center of the e%i%h.

In order to obtain the power P contributed by the kth region to the jth

jk
observation of both, the sphere and the plate, equations (3-15) and (3-16)

are summed up over i,

I
pPP= £ aP5,_ = ¥ F°_w (3-22)

I I
PP = T aPP = T FP W (3-23)

where,

I - total number of area elements AA j of the kth.
region that were under the FOV o% ¥he jth obser-
vation. .

Similarly, the configuration factor F,, represents the contribution by

ik
the kth region to the jth observation and is obtained as follows,

s I s (3-24)
F. I F,, -
jk  i=1 "ijk

I
P P (3-25)
F L. F:,
jk  4=1 "ijk

And for the three contributions from the regions Rk (k = 1,2,3) to the jth

observation one obtains by combining (3-22) with (3424) and (3-23) with (3-25),
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3 s 3 s

Po= § P.. = I F>. W 3-26
j k=1 Jk k=1 ik ek ¢ )
3 3
P _ P _ p
PP= ¥ PP = ¢ FP w 3-27
j k=1 3k k=1 ~“jk ek ( )
Or, writing in detail these expressions, one obtains for the sphere,
S _ oS s s
Pp = Fpg Wag T Fp Wy +Fi3 W
S _ S s S _
Py = Fyy Wap ¥ Fpp Wy ¥ Fyg Wy (3-28)
PS= S S S
3= Fgp Wey T Fy3 Wop + Fyz W
And for the plate one has,
P _ P P oy P
Py = Fyg Wog T Fp Wy +Fp3 Vg
PP=rP w_+F.w_+F_w : (3-29)

2 21 el 22 e2 23 el

_ P p P
37 F31 o1 * F3p Wep + Fy3 Vg

o
o
)

By denoting the matrix of the coefficients for the sphere and plate, respectiveiy,

as F° and Fp, one can express (3-28) and (3-29) in matrix form as follows,

Fo { Wl o= o P®} | (3-30)

FP{w } = (P} (3-31)
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Where,‘{we} is the column matrix of the radiant emittance whose elements-
are the We, (k - 1,2,3) values of the three regions. {P"} and {PF} are
éolumn matrices whose elements are the individual power measurements by the
spherical and flat radiometers, respectively.

The mathematical expressions presented up to this point are common to
both of the techniques developed at Drexel. From this point on the two
techniques proceed by different paths. The fundamentals of these two
techniques will be broadly discussed in the next paragraphs before proceeding
to the next sections in which each of the techniques and the results obtained

by applying them are discussed in detail.

Instantaneous/inversion technique. In this technique, the number m of ob-

servations matches the number of regions n (i.e., the n unknown values of
We),_and hence, the solutions are unique. It is termed instantaneous since
the procedure is implemented by taking all the m=n observations during one
single pass or orbit of the satellite. ~Several sets of instantaneous results
obtained at different time intervals can be grouped together and weight-
averaged over the complete time period comprising the total number of obser-
vations. The weights to be used are the configuration factors of those
region éegments appearing within éach of the FOV's, or the areas of the
region segments.

Therefore, in this procedure, the solution to the n simultaneous
equations of the type shown in the set of equations (3-22) for n=3 can be
accomplished by inverting the configuration factor matrix. Tﬁe inverted
matrix then), when multiplied by the column matrix of the n power measure-

values one seeks, -

ments Pj yields the n Wek
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Best-fit/inversion technique. In this technique, the number of observa-
tions m is larger than the number of regiéns n (i.e., the n unknown values
of We). The n simultaneous equations required to solve the problem are
obtained by using an extension of the method of least squares. These n
simultaneous equations are solved by using a matrix inversion subroutine.
The n Wek values determined in this manner represent the partial coeffici-
ents of a surface which best fits the data resulting from the observations.
These We represent a mean atmospheric situation portraying the overall condi—.
tion for a significantly large time period (e.g., a month), and no instan-
taneous results are ever obtained from application of this technique. Here
again, each of the m observations will be represented by an expression simi-
lar to those shown in the set of equations (3-26) or (3-27).

The details of this procedure are presented by means of an illustration

in the section entitled "Best Fit/Inversion Techniques."
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INSTANTANEOUS/INVERSION TECHNIQUE

A mathematical technique for computing the value of W, will first be
presented. Afterwards, the technique will be tested by applying it to a

simplified case of a flat E-A system.

Mathematical Development

The set of simultaneous equations (3-28) for the case of n unknowns can

be written in matrix form as follow;,q

{r} = F {w } (4-3)
- where

{P} = column matrix whose elements are the n power
measurements

'{We} = column matrix whose elements are the hypothetical
values of We for each of the n regions

F = n by n configuration factor matrix whose elements

ij are given by (3-18), and which can be written as,
Fll : F12 Fln

(4-2)

F=||F21 Fag - Fpp |
Fﬁl Fn2 ces an

F_l, the inverse of F, .is then computed in order to solve equations

(4-1) for Wefby operating with -F‘-l on {P}, that is,

FL{p} = {w_} (4-3)



So far, it has been tacitly assumed that F and {P} are exact (i.e;, do not
contain errors). Now, however, it will be assumed that the observations {P}
include uncertainties {éP}.

Then, the actual equation to be solved is not the exact equation (4-1)

but the perturbed equation (reference 6)

F{w}= {P + &P} A (4=4)

where {Wé} has been introduced to represent the exact solution of the
perturbed equation (4-4) as opposed to {We} which is the exact solution of

the exact equation (4-1). One can then write

{we}= {we + awe} (4-5)

Again, using the inverse of F one obtains from (4-4) and (4-5),

_1 _
.F {P + 6P} = {we + awe}

(4~6)
or,
Fled + FloRY = (0} + (60 (4-7)
Subtracting (4-3) from (4-7) one obtains
(4-8)

Ffl{sp} = {ow }
If the elements of the error matrix (Gwe} are large for small error elements
{GP}, the perturbed equation (4-4) is known as ILL-CONDITIONED, the INVERSE
MATRIX F"1 is termed UNSTABLE, and the matrix F is called ILL-CONDITIONED
(references 6 and 7).

If the elements of‘{éwe} are small, or acceptable according to some
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preséribed accuracy requirements, then expression (4~8) has solved the problem
of retrieving the values of we, and nothing else peeds to be done. On the
other hand, if the resulting elemeﬁts of Icwe} do not meet the accuracy
requirements for a givep set of small uncertainties {éP}, then the. problem
has just begﬁn. This is the situation that will be treated in the following
paragraphs. |
Let it he assumed that the elements of {Gwe}'are unacceptable, bu; that

the unstable matrix F -1 can somehow be modified to become a stable matrix

F -1, which, when operating on {éP}, yields a set of new errors in W, which

are now acceptable. - These errors GWé are the elements of the new column

matrix {awe} resulting from the following equations.

FLp + 6P} = (W + &W } (49)
e e

or,

iy + 7l sp)

W} + (oW} - (4-10)

But it is known that {We} is related to the exact power column matrix {P}

by (4~3). That is

1

{we} =F ~ {P} (4-11)

Subtracting (4-11) from (4-10) one obtains,

Fley - mley + FHR) + (60 ) (4-12)

or

71 - Fl7 1 + 71 (ep} = {6 ) (4-13)
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Equation (4-13) shows that the new inverse matrix can contribute in the

following two ways to the value of {GWe}.

(a) The n by n matrix resulting from subtracting the old inverse ma-

trix from the new one appears : multiplying the power:matrix {P}.

(b) The new n by n inverse matrixl”g-l multiplies the power uncer-

tainty. - matrix {éP}.

In the subsection entitled '""Matrix Stabilization,” a detailed account of a
scheme found to stabilize the inverse matrix F-l is given. In that sub-

section is also explained the physical significance of modifying the unsta-

ble inverse matrix.

In order to implement this technique, a computer program would be
required for performing the numerical integrations, matrix inversions, matrix
§Cabilizations, and tests that would be deemed necessary. Furtﬁermore,
another computer progrém woula be required for dividing the surface of the
spherical earth-atmosphere sysﬁem into a finite number of area elements.,

The output data of the latter program would be used in the former for
aécomplishing the numerical integrations.

Nevertheless, before engaging in writing these iarge and sophisticated
computer programs, it was decided to subject the technique to a test.

By cénsidering a hypothetical flat earth-atmosphere system, some of the
equations, as well as the overall computer program could be greatly
simplified. On the other hand, the procedure developed to stabilize the
inverses of the matrices would be rigorously tested. In the next subsection,

the flat E-A system is discussed.



Flat Earth Application

By considering the E~-A system to be flat rather than-spherical, the task
was greatly simplified and less time conéuming; Wﬁiié“thef:esu1§s>obtaiqed
can be interpteted-as a representation of actual physical situations in a
Spherical system, This_flat E-A system was>assumed'to be a rectangle of
360d of longitude by 180° of latitutde. The longitude is measuréd westward
(to the left) from 0°, at a hypothetical Greenwich meridian, to 360°. The
latitude is measured northward (upward) from 0°, at a'hypothetiéal equator,
to 900; and southward ‘downward) from 0° to -90°. It was found convenienﬁ,
for interpreting some of the results, to consider the flat E-A system to
be tangential to the spherical E-A system at the SSP, as shown in figure
4-1, At any point in this flat E-A system, one degree of longitude is the same
as one degree of latitude and each is equal to 100 km. The surface area
of this system was divided into a totai of 2592 equal area elements AA of
5° by So. The area of an area element is given by AA = 500 km x 500 km =
250,000 km2 = 2.5x101%m2. The surface area of the system was also divided
into 162 regions of 20° by 20°, or 2000 km by 2000 km. It is to be noted
that the area elements are used to perform the numerical or geometrical
supmations or integrations. Each area element AA is identified by the
longitude and latitude of its centroid, and hypothetical values of we and
albedo can be assigned to AA. However, in the présent report only we is
included.. Direct and reflected SWR will be discussed in a subsequent report.
A region is characterized by a representative value of W, (and/or wr(O)),
and variations of W_ (or WrIO)) withip it are neglibibly small or undetectable
by a radiometer,

The radius p of that area of the flat E-A system within ﬁhe FOV of the
radiometer can be quickly claculated with the aid of figure 4-1', From this

figure, it can be seen that
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FLAT E-A
SYsTEM

" Pigure 4-1. Flat E-A-_system paraxheteré;. |
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= ain~l R (46-14)
am—sul [R+H]

and,
p. =H tan « ‘ (4-15)
m m

Hence,

o = H tan [sin_l ( RR+ 0 y] | ‘4—16)
For a height H = 800 km, o = 62.74°, and

o (H=800 km) = 1550 km o (4-17)
Since in the flat E-A system 1° = 100 km, ogevhas

p; (B=800 km) = 15.5° (4-18)

As shown in figure 4-1, p is the distance between the SSP and the centroid
of the area element AA under consideration. Therefore, according to the
criterion previously discussed for deciding if a given AAi should be

considered within the FOV or not, one should compare the corresponding value

N with.qm{ If pi"f;%m’ AA, 1s considered to be within the FOV. Therefore,

i
one can write into the computer program a simple scanning scheme for testing
all area elements within the area of interest. Of course, the total of 2592
AA's can be scanned each time a particular AA is considered for inclusion

in the computations, but computer time is saved if one can program the
boundaries of an area somewhat larger than the area of interest. This point

is illuatrated in detail in the following exercise which was actually used

to evaluate the validity of the technique being discussed.
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Error Free Observations

In this subsection, a spherical radiometer is simulated in a straight line
trajectory 800 km above the E~A system. A horizontal flat circular radiometer
- will be assumed to be coincident with the spherical -radiometer at all times
and hence the surface area:of the E-A system intercepted by both FOV's will
be identical. Arbitrarily, six regions and six satellite positions ﬁave
been selected which are portrayed in figure 4-2. Although a total of fifteen
regions are shown in this figure; only six of them are observed at one time
or another by the satellites; and hence. only the We values for these six
regions needed to be shown. Nevertheless, the We values of eight regions
were actually included. The six satellite positions are identified by num-
bers - one through six as the satellites. travel from south to north in their
common trajectory. The longitude and latitude of the SSP for each observation
is shown in parentheses next to the number of the observation. The longitudes
and latitudes of the centroids of all area elements can be easily found by
referring to the longitudes and laﬁitudes indicated at the margins. For ~
example, the longitudes and latitudes of the centroids of the two area ele-
ments positioned north and south of SSP No.4 are -as follows.

North: long..22.5°, lat. +12.5°. South: lomg. 22.5°, lat. +7.5°. All
the data pertaining to those area elements contained within the eight regions
bounded by longitudes 0° and 400, and by latitudes -20° and 60° were fed into
the computer program generated to test the technique.

In order to illustrate how the results for the situation portrayed in
figure 4-2-. were obtained, one may consider the area element AA(12.5,32.5),
that is the area element whos; centroid has longitude 12.5°% and latitude

°, The perimeter of this area element is shown marked with a broken line

32.5
in figure 4-2.. For purposes of this illustration, satellite position No. 6

which has a SSP at 24° longitude and 20° latitude is selected. The first
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Figure 4-2. Six Satellite FOV's over six regibns-of the flat E~A system.

4-9



step is to compute p6 (12.5,32.5) for this situation and compare it with p6m
to determine if AA (12.5,32.5) 1is or is not within the FOV of the satellites
at position No.6. In this notation the Pg (12.5, 32.5) means the distance
(in m) between SSP No.6 and fhe centroid of AA (12.5,32.5); while Pep Teans
the radius of the FOV for SSP No.6, which is the maximum value- p can attain
for observation No.6.

As shown in the previous subsection for H = 800 km, = 1.55x106m.

, P6m
Using primes to_ indicate the distances in degrees, one calculates pé (12.5,32.5)

as follows,

' =@ 2long T4 zlat)l/2 (4-19)
where,
Aiong = (12.5-24.)% = (-11.5)% = 132.25
_Aiat = (32.5-2002" = (12.5)2 = 156.25
o' = distance from SSP to AA in degrees
Then,

L o o
pé = (288.5)%= 17.0; pém = 15.5 (4-20)

Hence, p'6 > pém.,which means -that the area element AA (12.5, 32.5) is NOT
within the FOV of the radiometer at position No.6.

In order to calculate the shape factor and the power increment contributed
by an area element (which must lie within the FOV of the satellites) an area
element lying inside the FOV of observation No.l is selected. Tﬁis element
is AA (7.5,-12.5) and iﬁs boundaries are also marked with a broken line in
figure 4-2., Since the w;zhole trajectory is at a height of 8‘00 km, the value

of R for position No.l is the same as No.6, i.e., p];n = 15.5%, The “calculation .
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2 2
Dlong = (7+5 = 1907 = 132.25
2 2
Alge = (-12:5-(=5))" = 56.25

oy = (188.5)%5 = 13.7°

(4-21)

Thus, ¢)< p]"_'m and 8A (7.5, - 12.5) contributes radiant power to the radiometers

of the satellites at position No.l,.

In order to simplify the computations of thisrun, the radiation field

was assumed isotropic.

f(ei) =1 and I(f) =k

This means that in equations (3-18) and (3-19),

Hence, for a spherical satellite the shape féctot for the ith area element.

in the Kkith region and within the FOV of the jth observation is

S . AA cos®, iy -
ijk m d2
1jk

From figure 4~1, one obtains for the flat E~A system,

cos © = i
ijk .d:.ij
-3 _ 2 2 3/2
digp = @ +oy0)
Hence,
F s - Aé H
ijk (HZ + pigk)sz
5

For the case under consideration pijk = 13.7x10"m, and

AA = 2, leonm2

H = 8x10°m

Then,

4-11
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By (3-24) all the shape factors of the area elements within region No.l, and

within the FOV of SSP No. 1 are added to yield the first element F i of the

1

configuration factor matrix. The value of this element was calculated by the

computer program TARA 7-15-1, and its value, shown in figure 4-3, is

FS) = 0.484847428 (4=25)

Then, according to (3-17) for a spherical radiometer with a characteristic
area As - waz =1 mz, one can write for the power Pil which region No.l

contributes to observation No.l

S . 5 (4-26)
Pi1 = Fi1 W1

From figure 4-2"wel = 236.0 w/mz. Hence,

pS
11

114.4239930 w (4-27)

In a similar manner, the radiant power contributed by regions 2,3, and 4
are computed and added to get the total radiant power intercepted by the sphere
at position No.l. It is noted that since regions 5 and 6 do not appear within

the FOV, their contributions are zero. Then, one writes,

s . AP (4-28)
Pl AP11+AP12+AP13+AP14

s _ '
Py = FyWep F FigWep + FigWog + F Wy (4-29)

This power was calculated by the computer program and its value, shown in

figure 4-3, is

P, = 262.892068914 w :  (4-30)
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1
horizontal flat circular satellite. There is only one difference between the

An identical procedure would be followed in order to obtain PP for the

two calculations which can be seen from comparing the expressions for the
shape factor of the sphere (3-18) and for the plate (3-19). The latter has

an additional faétor, namely, cos a The angle a is the nadir angle of

1jk° ijk
AAijk measured at the satellite, and cos aijk is used in order to account:

for the projection of the plate area onto a plane perpendicular to the direction

of the radiance Nijk (refer to figure 3-3). In the flat E-A system.

uijk = eijk, and hence, cos aijk = ¢os eijk. Thus, from (3-19), the expression

for the shape factor for the plate, assuming an isotropic radiation field, is

cos” 8., ’
F?'k= AA . ijk (4-31)
- Tooas,

ijk

The values of the variables in this expression are the same as for the

sphere. Using the value of cos eijk given by (4-23) then, one has,

2
P-4 E (4-32)
ijk T d4
ijk
4=
FP. = 0.008 (4-33)
ijk

In this case this value is one half that of the sphere; however, this ratio
varies for different area elements as would be expected. The area element
here considered is at\;he 1imb where cos 44k attains its gmallest value. Tor
an area elgment at thé nadir position, cos aijk = 1, and the shape factors for
both sphere and plate have identical values.

Again here, édding all the contributions from region No.l to the plate in

P

11 shown in figure 4-4, that is,

position No.l, one obtains the value of F
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Fgl = 0.378000655 (4-34)

Then,, _again, according to (3-17) for horizontal flat circular radiometer with

P which

a characteristic area As = naz = lm2 one can write for the power P11

region No.l (wel a 236.0 w/mz) contributes to observation No.l

PP = 89.20815458 w (4-35)

Again here, the powers contributed by regions 2,3, and 4 are calculated

in a similar manner and added in order to obtain the total radiant power
intercepted by the plate at position No.l. Since the FOV's of the sphere
and plate coincide, region§ 5 and 6 must not appear in the FOV of the plate

at position No.l either. The expression for P?Aequivalent to (4-29) is

4
P
P17 21 Fik Ve (4-36)

The value of Pg calculated by the computer program TARA 7-15-1 is shown

in figure 4-4; this value is

pP

1° 190.073940996 W

In the previous paragraphs, it has been shown in detail how to calculate
the elements of the configuration factor matrices F and power column matrices
{P} for spherical and horizontal flat circular radiometers. The elements of
the column matrix {We) were assumed known in order to simulate and compute
the radiant power observed by both satellites. In this manner, the elements
of the column matrices {P} for both radiometers were calculated by the
computer program. Figures 4-3 and 4-4 show all the elements of the square
F matrix and of the two column matrices {we} and {P}. These figures show

-the matrix products ‘for” the sphere and plate,which can be written symbolically
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€OFSPH(K,1)
0.484847428
0.276829292
0. 108860067

0.017068977

0.000000000
0.000000000

COFSPH(K,2)
0.384856899
0.276829292
0.127704158
0.035500329
0.000000000
0.000000000

COFSPH(K,3)
0.127704158
0.276829292
0.384856899
0. 355753027
0.247608706
0.137012641

COFSPH (K, 4)
0.108360067
0.276829292
0.484847428
0.595573384
0.596414856
0.415871635

Figure 4-3., Matrix product computed for the sphere,

COFSPH(K,5)
0.000000000
0.000000000
0.000000000
0.017068977
0.068729515
0.137012641

COFSPH(K,6)
0.000000000
0.000000000
0.000000000
0.035500329
0.143711947
0.415871635

236.0
238.0

240.0|}
242.0

244.0
246.0

262.892068914

- PSPHER(K)';

264648803387
265.665298558
254884753820
255,881625193
269259475929
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GOFHOR(K 1)
0.378000855
0.200205230
0.063693275
0.008805215
0.000000000

0.000000000

COFHOR(K ,2)

0.279486438

0.200205230

0.078892673

0.018591209
0.000000000

0.000000000

COFHOR(K ,3)
0.078892673
0.200205230
0.279486438
0.251441001
0.172299495

0.087326867

COFHOR (X ,4)
0.063693275
0.200205230
0.378000655
0.471341713
0.473440034

0.312709653

Figure 4~4., Matrix product computed for the plate.

COFHOR (K ,5)
0.000000000
0.000000000
0.000000000
0.008805215
0.040187252

0.087326867

COFHOR (K ,6)

0.000000000
0.000000000
0.000000000
0.018591209
0.091648780

0.312709653

. We

236.0

' 238.0

240.0

242.0

246.0

4

PHORIZ (k)
90.073940996

191.396199412

193360972805
187.635182979 |

188.275656474 |

194868514638




as

{P} = F {W_} (4-37)

The first test to which the technidue was subjected is the following.
Consider the error-free power measurements contained in the column matrices
entitled PSPHER(k) and PHORIZ(k) in figures 4-~3 and 4-4 réspectively.
Compute the six values of We by operating.with the inverses of the configu-
ration factor matrices on the power column matrices as indicated by equation

" (4-3), that is, by using

Flp} = {w_} (4-38)

For the case in which the observations are free of uncertainties, the six
values of We retrieved should be the same as the six hypotheﬁical values
of We originally given.

The inverses F‘l of the original configuration factor matrices for
the sphere and plate are presented in figures 4-5 and 4-6, respectively. It
should be noted that the inverses appear in the transposed form which is the
order in which the computer, ordinarily, prints out matrices.

The six We values obtained when performing the matrix multiplicatioms
(for the sphere and the plate) given symbolica}ly by (4-38) were identical
to the six original hypothetical We values to at least eight decimal places,
for both satellites.

The technique was then subjected to the following test. The observations
were assumed to include gaussian random uncertaintities. The procedure
followed and the results obtained are described in detail in the next

subsection.
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«126406637E 02
-.299509655E 02
.322632341E 02
-.195404147E 02
.491022939E 01

-.287768318E-01

-.136852019E 02

.403290804E 02

—.463025861E 02
.286083638E 02
~.718887652E 01

.421310440E-01

.128539834E 01
-.137579890E 02
.339027825E 02
-.286083638E 02
.718887652E 01

~.421310441E~-01

-.240860110E 00

.699220887E 01

-.198634305E 02

.195404147E 02
~-.491022930E 01

.287768319E~-01

=.093927101E 01
-.191839507E 02
.103020142E 03
~.145767511E 03
.833969093E 02

-.163760570E 02

.210357918E 01

.386080888E 01
-.252470553E 02

.379092813E 02
-.249340703E 02

.778493063E 01

Figure 4-5. Inverse of original configuration factor matrix, in transposed form, for the sphere,
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.131424995E 02 | -.146981203E 02  .269545375E 01  -,113983297E 01 .272309581E 01 -.373343722E 00

-.292298882E 02 .422074149E 02 -~,157270628E 02 . 774441065E 01 '-,445058032E 02  .,907613661E 01
" .323672225E 02 -.498062519E 02  .378035854E 02 —.293645559E 02 .152739147E 03 -,.328461452E 02
-.201552571E 02 .315809718E 02 -,315809718E 02 .201552571E 02  -,209818167E 03  ,472575341E 02

.499057827E 01 =~,781966270E 01  ,781966270E 01 ~ -,499057827E 01 .120475873E 03 -.308370566E 02
-.264366054E 00 .414231230E 00 -.414231229E 00 .264386054E‘00 -,228348995E 02  ,942600877E 01

Figure 4=6. Inverse of the original configuration factor matrix, in transposéd form, for the plate,



Perturbed Observations

In order to generate the gaussian random errors needed to perturb the
six radiant power measurements, a computer program using two subroutines
~ (RANDU: and GAUSS) was generated. The sigm; value of the gaussian
. distribution is o = 0.5 W/mz. The gaussian errors t; were added to the
power values originally computed (i.e., the unperturbed powers) in order

to obtain the gaussian-perturbed power matrix {Pg}, that is,

(Pt +{ct={P+ec}=1{P} (4-39)
g g g
where

Pg = Gaussian perturbed power elements of the new matrix,

The test to which the technique will now be subjected consists in carrying
out the multiplication of the configuration féctor_matrix by the new column
power matrix ng}. This multiplication is similar to that in (4-38), except
that in the latter, the original power column matrix {P} is used instead of
{Pg}. Hence, the old elements of {We} in (4-38) will be modified by
uncertaintities t%g resulting from the uncertaintities % in the elements of

{Pg}. That is, in matrix form,

RURERCHE R R AR - (4-40)

and the matrix product to be calculated can be written as

-1 _
F {Pg} = {weg} . (4-41)

Where F-l are the inverse matrices given in transposed form for the sphere
and the plate in figures (4-5) and (4-6), respectively. The first three

results obtained by adding Gaussian random perturbations to the exact power
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measurements are listed in TABLE 4-1. There are three sets of data in this
table. For each set, the gaussian error for each of the regions appears on
the first row of the set. The second row contains the uncertaintities €,
. in the values of We for the six regions, resulting from the perturbations
% of the power measurements of the spherical radiometer. Similarly, the
third row contains the corresponding uncertaintities tﬁg in the values of
we for the six regions, for the flat radiometer. Each of the quantities in
the last column represents the root-mean-square (Tm8) values of the six
errors shown in the corresponding row. Two important facts aré to be
noticed from the last column of TABLE 4-1; these are
(a) The plate consistently exhibits a larger error than the sphere.
(b) The results of the matrix inversion are completely unacceptable

when the observations include gaussian uncertainties.

At this point, based on the results stated in item (D) abové, the
applicabiiity of this technique was questioned and therefore, it was decided
to investigate the possibility of improving the situation. However, before
going into a discussion of how the problem was solved, it will prove
helpful tb introduce now the results obtained when the observations included
systematic uncertainties only, as well as when combinations of systematic
and gaussian uncertainties were included.

TABLE 4-2 shows the. errors e in we when systematic errors €, were
added to the power elements of {P}. In this table, two sets of data are
presented. Each set has in the first row, the systematic errors € for the
six regions. The second and third rows, as before, contain the errors € g
in We for the sphere and plate, respectively. Systepatic errors e; of equal
magnitude apd oppositg sign produce errors € g of equal magnitﬁde‘but opposite
sign.

Two conclusions can be made from TABLE 4-2: (a) Systematic errors in
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TABLE 4-1.

Results obtained from observations having

gausgian uncertaintities.
rms of All
Set No. Type of Error Region 1  Region 2 Region 3 Region 4 Region 5 Region 6 Columns
1 Gaussian, eg* - 1.1430 - 0.3780 0.0730 0.7630 - 0.3030 '0.7480 0.6693
Sphere, w8 - 17.1903 21.0556 - 17.8317 12,6009 - 126.0356 36.5961 55.4374
.Plate, ewg - 18.6985 23.9852 - - 21.1519 13.9772 - 188.8153 47.0500 81.0685
2 ' Gaussian, ég - 0.6290 - 0.0900 0.0220 1.1540 0.0010 0.5750 0.5869
Sphere, - ewg - 27.1069 " 36.9908 - 31.8555 21.6465 - 169.1907 45.9727 75.6367
Plate, ewg - 28.3301 41.0255 - 36.1231 22.9781 -~ 249.4868 58.6197 108.0112
3 Gaussian, eg - 0.6060 - 0.0060 - 0.5100 - 0.1780 - 0.0350 0.3750 0.3654
Sphere, ewg - 20.6392 26.8407 - 13.1619 6.9388 - 31.3333 8.6223 20.0993
Plate, ewg - 20.9824 28.8626 -~ 15.6265 7.7164 - 54,7122 13.1255 28.1151
2
* Rk is in w/m".

eg 1s in watts

€
vg
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TABLE 4-2,

Results obtained from observations having systematic errors.

‘rms of All

Set No. Type of Error Region 1 _Region 2 Region 3 Region 4 Region 5 Region 6 Columns
1 Systematic, e * 0.3 - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 0.3
Sphere, ;ws** 0.0882 -~ 0.5409 0.0094 - 0.4641 0.5549 - 0.4432 0.4123
Plate, €us 0.2552 - 0.5636 -~ 0.1789 - 0.5007 0.3662 - 0.5109 0.4205
2 Systematic, €g 0.9 0.9 0.9 0.9 0.9 0,9 0.9
Sphere, ' € 0.2646 1.6226 -~ 0.0283 1.3922 - 1.6648 1.3297 1.2370
Plate, s 0.7657 1.6907 0.5368 1.5022 - 1.0987 1.5328 1.2614
* e 1s in watts *% ¢ is in w/m2
8 ws



the observations do NOT produce large errors in we; and (b) the plate
shows larger errors €5 than the sphere. |

Combinations of systematic and gaussian errors egs were’ iﬁc}.uded in the
powver measufements in order to compute ﬁhe errors.t%gs resulting in the we
va;ues. As expected, these E:wgs errors exhibited more sensitivity to the
gaussian than to the systematic uncertainties. = The results obtained are
shown in TABLE 4-3. The résults in this table again show that the sphere
yields better results than the plate when gaussian random uncertainties .
areﬁincluded in the power measurements. So far, howeQer, the two radiométers
yield acceptable results only when the errors are systematic.

Thus, as can be seen from‘the data in TABLES 4—1 and 4-3, the gaussian
errors are highly magnified through the matrix multiplication of the inverse
of the configuration factor matrix and the perturbed power column matrix.
This instability of the inverses of both configuration factor matrices

(sphere and plate) was corrected as explained in the following section.

Matrix Stabilization

Prior to describing the schéme developed for stabilizing the two matrices,
it is necessary to return to the topic of ill-conditioned perturbéd equations
in order to introduce the concept of the CONDITION NUMBER of a matrix.

Consider the set of n simultaneous equations represented in (4-1) in matrix

form as

F{we} = {P} (4-42)

where
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TABLE 4-3. Results obtained from observations having combinations of gaussian and systematic errors.

rms of All
Set No. Type of Error Region 1 Region 2 Region 3 Region 4 Reglon 5 Region 6 Columns
1 Gauss, € *® - 1.1430 - 0.3780 0.0730 0.7630 - 0.3030 0. 7480 0.6693
Systematic, eg* 0.3000 0.3000 0.3000 0.3000 0.3000 0. 3000 0. 3000
Total egs* - 0.8430 - 0.0780 0.3730 1.0630 - 0.0030 1.0480 0.7170
Sphere Ewgs** - 17.1021 °© 21,5965 - 17,8411 13.0649 - 126.5905 37.0394 - 55.7449
Plate ewgs - 18.4433 24,5488 - 20.9730 14.4779 - 189.1815 47,5609 81.2855
2 Gauss, € - 1,1430 - 0.3780 0.0730 0.7630 - 0.3030 0.7480 0.6693
Systematic, 8 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000
Total e:s - 0.5430 0.2220 0.6730 1.3630 0.2970 1.3480 0.8718
z: Sphere , ewgs - 17.0139 22.1374 - 17.8506 13.5290 - 127.1454 37.4826 56.0537
(V. ]

Plate wgs - 18.1881 25.1123 - 20.7940 14,9786 - 189.5478 48.0718 81.5040
3 Gauss, € - 1.,1430 - 0.3780 0.0730 0.7630 - 0.3030 0.7480 0.6993
Systematic eg 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
Total Egs - 0.2430 0.5220 0.9730 1.6630 0.5970 1.6480 1.0890
Sphere cwgs - 16.9257 22,6782 - 17.8600 13,9931 - 127.7003 37.9258 56.3639
Total ewgs - 17.9328 25.6759 - 20.6151 15.4793 - 189.9140 48,5828 81.7242

;2

® k&
eg, € and egs are in watts Ewgs is in w/m



F = n by n configuration factor matrix
{We} = column matrix of n W, elements

{P} = column matrix of n P elements

It is possible that these quantities may include errors resulting from
either one, or both, of the following (reference 6).
(a) The data (i.e., the observations {P}) are inexact.

(b) Rounding errors are generated during computations.

Samples were run with error-free observations and. all the W, values
retrieved were accurate to at leasf eight decimal places. Consequently; one
is justified in assuming that computational errors have not caused diffi-
’culties, and that only errors of type (a) should be treated in this
discussion.

The perturbed equation to be solved is of the form given by (4-4), that is,
F{Wé} = {P + 6P} (4-43)

where, as indicated in (4-5),

Wil ={w_ +ow)} (4-44)

In this expression, the elements of {&P} are considered to be either
gaussian errors eg, or systematic errors es, or a combination of both Egs'

"It is assimed for purposes of this section that the perturbed equation
(4-43) is ill-conditioned, that is, that the inverse matrix F 1 is unstable.
It can be shown that for ill-conditioning of thié type the following rela-

tionship exists (reference 6).

rel {We} =C, -rel {r} (4-45)
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where

reI{Wé} = |15We|| /llwell (relative error) (4-46)
rel{p} = ||s?|] /||p || (relative error) (4-47)
c, = [F || - ||F_l (condition number (4-48)
of F)
The symbol || || denotes the column or row norm of the matrix inside it, as

will be explained below.

Condition number. - Even though there are several definitions of the

condition number of a matrix (references 6 and 7) only two of them will be

introduced in this report.

maxlAi|
C = ———
1 min| M| (4-49)
c, = Il - [IF7H]] (4-50)
where
max| M|’ = largest modulus eigenvalué,of F
miﬁ]Ai| = smallest modulus eigenvalue of F
[| || = Column or row norm of F defined, respectively,
' as (reference 5)
HFlly = max 2 lpyl (4-51)
L = e 3 atl (4-52)

For the ill-conditioned situation considered here and represented by the.

perturbed equétion (4-44), it can be seen from (4-46) that ill-conditioning
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depends on the size of the condition number C2 and on the relative error
rel {P}. Thus, for a given set of pover errors {6P}, one would expect
that if the original ill—conditioﬁed matrices could somehow be transformed
into two well-conditioned matrices, the condition numbers of the latter
would be smaller than those of the former.

A computer program was used to obtain the eigenvalues of the two
configuration factor matrices and to compute the values of Cf”for both
matrices. This program also verified that the eigenvalues computed are

correct by making use of the following relations (reférence 8)

TrF = L A
P
|F| = 7 a
i 1

where,

TrF = Trace of the matrix F

>
[

ith eigenvalue of F

IFI = The determinant of F

The values of the condition numbers C2 for both of the original ill-
conditioned matrices were calculated. These values are shown in TABLE 4-~4

below.

TABLE 4-4, Condition numbers of the two original matrices.

Type of Sensor 7 C1 02
Spherical , 131.6 693.9
Horizontal flat circular 126.4 . 684.7
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After considerable effort, a scheme was found which rendered both configu-

ration factor matrices well-conditioned and their corresponding values of

C. and C

1 2 became much smaller than those showm in TABLE 4-4.

- Stabilization procedure.- Essentially, this prodedure consists in trans-

lating the smallest elements in the six by six configuration factor matirx.
The translatioﬁ of each element ig performed along the row of the element
to the position of the diagonal element in that row and it is added to the
diagonal element. In this manner, the sum of the elements in the row in
question is preserved. This means that the suﬁ éf the row elements always
adds up tb the configuration factor of the total FOV, which is é desirable
feature, as will be explained below. ‘

Referring to the two original matrices in figures 4;3 and 4-4, for the
and F

41 45

are the lowest value elements in both matrices. For the sphere, these

sphere and the plate, respectively, one sees that the elements F

two elements have the common value 0.017068977; while for the plate the
common value is 0;068805215. In each of the matrices, these two élements;
were translated and added to the diagonal element FAA' For the sphere,

.the original value of this element was 0.595573384; while for the plate,

" the value was 0.471341713. The new values §f F44 for the sphere and plate
become, respectively, 0.629711338 and 0.488952143. The physical meaning - of
this element tr#nslation can be best seen when evaluating the error it
introduces into the pdwer calculations. The translation of an elemént means
that the element will appear multiplying the We value of the column
corresponding to the diagonal element rather than the Wé value corresponding
to the column where the element originally appeared. As an example of the

magnitude of the error introduced, the case of element F4 is calculated.

5

W g = 264.0 WmZ, and W, = 262.0 W/m?. Hence, M = 242.0-2644.0== 2,0-W/m?,

A
and the power error AP introduced 1s approximately AP = (-2.0)(0.017), or,

AP = -0.034 W, which 1s cértainly a negligible error. Physically, this
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error is equivalent to éaying that the radiometers at position No.4 looked
a little more at the limb of region No.4 and did hot see region No.5 at all.
Figures 4-7 and 4-8 show the new stabilized matrices for the sphere and
plate, respectively. The captions of these figures include the title of
the computer program (TARA 7-15-1) which stabilized the matrices and then
used them to compute the values of We. The étabilization scheme used in
this program establishes lower limits for the magnitudes of the matrix
elements for each of the :wa'matrices;'any element whose value is below the
lower limit assigned to its matrix is to be translated as previously des-
cribed. The limits determined after several trials were 0.032 for the
sphere and 0.016 for the plate. A different computer program (TARA 7-15-2)
used different lower bounds as the criteria to carry out the translations.
These limits were 0.04 for the sphere and 0.02 for the plate. The results
obtained with the latter limits were not as good as those obtained with the
former.

The errors in We obtained with computer program TARA 7-15-1 byé
first using the two original 11l-conditioned matrices and later using the
new well-conditioned matrices are présented in TABLE 4-5. Three different
data groups are tabulated there. These groups refer to the first set of data
appearing in each of TABLES 4-1, 4-2, and 4-3, as is indicated in the
first column of TABLE 4<5. These three groups of data correspond to the three
types of undé:taihties - previously introduced, Quassian eg, systematic
€ and combinations of gaussian and systematic ‘és' The type of inverse
matrix F'-1 used (original or stable), as well as the class of radiometer
(sphere or plate), is specified for each row of we errors.

The striking differences exhibited by the fesults compared in TABLE 4-5

is indicative of the effect that stabilization of thé configuration factor
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COFSPH(K ;1)
0.484847428
0.276829292
0.108360067
0.017068977
0.000000000

0.000000000

COFSPH(K ;,2)
0.384856899
0.276829292
0.127704158
0.035500329
0.000000000

0.000000000

COFSPH(K ;3)
0.127704158
0.276829292
0.384856899
0.355753027
0.247608706

0.137012641

caFSPH(K;A)
0.1083 60067
0.276829292
0.484847428
0.595573384
0.596414856

0.415871635

COFSPH(X ;5)
0.000000000
0.000000000
0.000000000
0.017068977
0.068729515

0.137012641

Flgure 4-7. Stabilized matrix for the sphere., Computer program TARA 7-15~1.°

COFSPH(K,6)
0.000000000

0,000000000

0,000000000

0,035500329
0.143711947

0.415871635



-y

C:OFHOR(K ,1)
0.378000655
0.200205230
0.063693275
0.000000000
0.000000000

0.000000000

COFHOR (K ,2)

0.279486438

0.200205230
0.078892673
0.018591209
0.000000000

0.000000000

COFHOR (K ,3)
0.078892673

0.200205230

0.279486438

0.251441001
0.172299495

0.087326867

C.OFHOR (K ,4)

0.063693275

- 0.200205230

0.378000653

0.488952143

 0.473440034

0.312709653

CCFHOR(K ,5)

0.000000000

0.000000000
0.000000000
0.000000000

0.040187252

0.087326867:

Figure 4-8. Stabilized matrix for the plate. Computer program TARA 7-15-1.

COFHOR(K 6)
0.000000000
0.000000000
0.000000000
0.018591209
0.091648780

0.312709653
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.Comparisons of results of original and stabilized matrices for the first set of data shown in TABLES

TABLE 4-5.
. 3-2, 3-3, and 3-4.
Table Type of Error ms of ALl
No. Type of Matrix Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Columqs
3-2  Gauss, . . € - 1.1430 - 0.3780 0.0730 0.7630 -~ 0.3030 0.7480 0.6693
Sphere, Original; e, . 17.1903 21.0556 - 17.8317 12.6009 - 126.0356 36.5961 55.4374
Sphere, Stable ug " 4.3780 2.2977 0.9263 - 0.2114 - 30.4585 11,7397 13.4839
~ Plate, Original; € - 18.6985 23.9852 - 21,1519 13.9772 - 188.8153 47.0500 81.0685
Plate, Stable; g " 6.1246 4.2833 - 1.4500 1.4032 - 57.9194 17.5682 24,9106
3.3 Systematic es' - 0.3 - 0.3 - 0.3 - 0.3 - 0.3 0.3 0.3
Sphere, Original; € - 0.0882 - 0.5409 0.0094 - 0.4641 0.5549 0.4432 0.4123
Sphere, Stable; € 0.1054 -~ 0.8243 0.2928 = 0.6576 1.9990 0.8188 0.9895
Plate, Original; € .~ 0.2552 - 0.5636 - 0.1789 - 0.5007 0.3662 0.5109 0.4205
Plate, Stable; €,s ~— 0.1036 - 0.8011 0.0586 - 0.6523 1.9446 0.8664 0.9673
3-4 Gauss € - 1.1430 - 0.3780 0.0730 0.7630 - 0.3030 0.7480 0.6693
Systematic €g 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Total €gs ~ 0.8430 - 0.0780 0.3730 1,0630 - 0.0030 1.0480 0.7170
Sphere, Originalj € . - 17.1021 - 21.5965 =- 17.8411 13.0649 -~ 126.5905 37.0394 55.7449
Sphere, Stable; € - 4.1861 2.6868 1.0686 10.1490 - 30.2402 11.9819 13.4409
Plate, Original; €. - 18,4433 24,5488 -  20.9730 14.4779 - 189.1815 - 47.5609 81,2855
€ - 5,8109 . - 1.1795 1.8456 - 17.9422 24,8656

Plate, Stable;

wgs

4.7553

57.6776



matrices has upon the magnitudes of the uncertainties in We° For
~instance the rms values for %vg (last. column, second and fourth rows) were
55.4374 W/n® and 81.0685 W/n’ when W_ was computed with the original
matrices for the sphere and plate, respectively. .However, whén the
corresponding stable matrices were used, the values of t%g were 13,4839
w/m2 and 24.9106 w/mz, respectively, as seen from the results in the third
and fifth rows of the last column.

The next question that arises is: how do the condition numbers of the
stable matrices compare with those of the two original matrices? In TABLE
4;6, the two condition numbers for each of the four matrices are listed.

TABLE 4-6. Condition numbers of the original and stabilized matrices for
the sphere and the plate.

TYPE OF SATELLITE TYPE OF MATRIX COMPUTER PROGRAM c c

1 2

Sphere Original (Unsta- TARA 7-15-1 . 131.6  693.9

' ble)

Sphere Stabilized TARA 7-15~1 59.9 223.4

Sphere. - Partially Stable TARA 7-15-2 1.4  293.6

Plate Original (Unsta-  TARA 7-15~1 126.4 684.7
ble)

Plate . Stabilized TARA 7-15-1 39.0 218.2

Plate Partially Stable TARA 7-15-2 58.6 317.1

In the first and second rows of TABLE 4~6 are presented the condition
numbers for the original and stable matrix of the spherical radiometer.
The fourth and fifth rows show the corresponding condition numbers for the
horizoﬁtal flat plate radiometer. These are the four matrices whose results

have been discussed up to now and which were used in computer program

TARA 7-15-1. However, the third and sixth rows of TABLE 4-6 present the
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conditioﬁ numbers of the two matrices obtained by using slightly different
lower bounds (0.04 for the sphere and 0.02 for the plate) as was discussed
previously. The results obtained by using these matrices did not meet the
accuracy requirements and are termed "partially stable" in TABLE 4-6, and
were of no further use. These matrices were genefated by, and used in,

computer program TARA 7-15-2.

Data Quality Prediction

TABLE 4-5 indicates that the errors in We for some of the regions are
much more significant than those for other regions. -For instance, region 5
shows consistently larger errors than the remaining regions for both
types of satellites and for all matrices. Hence, even though the results

obtained with the stable matrix (third and fifth rows of each data group)

are much more acceptable than those obﬁained with the original matrices
(second and fourth rows of each data group), not all of those results obtained
with the stable matrices appear equally acceptable. At this poimt, two
important pertiﬁent questions need to be answered.

(a)  What are the accuracy requirements for We?

(b) Does the form of the original matrix and the magnitude of its
elements bear any relation to the errors in We obtained for each

of the regions? 1If this relationship exists, can it be linked to

the‘tequirements in (a)?

These two questions are thoroughly dealt with in the following two sub-

sections.

Accuracy requirements.- TABLE 4-7 lists the desired and minimum useful

tolerances for each of the quantities to be measured for radiation budget

determinations. It is seen from this table that the minimum useful
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TABLE 4-7. Accuracy BRequirements for Radiation Budget Components.

(Recommendations of investigators conference, 1975)

Variable

Solar Intensity

Solar Spectrum In
Ozone Bands AX = 50A)

Compongnts For Global Net:
Albedo
Longwave‘Exitance‘

Components For Regional Net:
Albedo
Longwave Exitance

Medium Resolution Scanning:

Albedo

Longwave Exitance

Accuracy
Desired

+ 1 to 2 W/m2

+ 0.004

+1 W/m2

+ 0.02

3 W/m2

-+- 0.04

6 W/m

Min;mum
Useful

£ 5 W/m2

+
o

02

+ 15 W/m

Frequenc

Monthly

Long Term With

Monthly Resolution
Desired - Seasonal Is
Minimum Useful Period -

Monthly For 10° Of Great
Circle Latitude And
Longitude

Monthly Averaged Determined
From Scanning Data - 104
to 105 km2 Spatial Resolution



accuracy for mounthly averages of the longwave exitance (We) of small regions
is ¥ 15 w/mz. In the cases presented in TABLE 4-5, however, the values of
We are instantaneous for all practical purposes since the fime interval
during which the measurements were taken is of the ofder of minﬁtes. Hence,
the tolerances for fhese‘results should_be less stringent than those for
manthly averages stated above..
| I; should be pointed out that the accuracy requirements listed in
TABLE 4-7 are the results of recommendations made at the Chicago investi-
gators conference of 1975. On the basis of the above.tolerance of £ 15
w/mz, one can see that from all the we values obtained with the two
stabilized matrices the only ones which are not acceptable are
(a) Those ofvregion‘S resulting from gaussian, or combinations of
gaussian/systematic power errors for the spherical satellite.
(b) Those of regions 5 and 6 resulting also from gaussian or

gaussian/systematic power errors for the plate.

The possibility of a connection existing between the structure of
the original configuration factor matrix and the stability of its inverse
matrix was thoroughly investigated and excellent results were obtained as

discussed in the following paragraphs.

Matrix Parameters.~ The original configuration factor matrices shown in

figures 4-3 and 4-4 for the sphere and plate, respectively, are again intro-
duced here in figures 4-9 and 4-10. However, these latter figures display
additional information which will be needed in this discussion. Each of

the first six quantities in the last column consist of the sums of the
elements in their corresponding rows, and should be approximately equal to
the shape factor of the total FOV of the oSservation corresponding to that
row. The seventh quantity in the same column is the sum of the first six
'quantities.,'Whep this sum is diéidéd by six, it yields the average shape

factor for the total FOV, which is shown in the last row of the last
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COFSPH(K,1)

+ 0.484847428

0.276829292

0.108360067

0.017068977

0.000000000

0.000000000
COLUMN SUMS 0.887105765
PERCENTAGES,"X  81.416314223
Figure 4-9,

COF SPH(K, 2)
0.384856899
0.276829292
0.127704158

0.035500329

0.000000000

0,000000000

0.824890678

COFSPH(K, 3)

0.127704158

0.276829292
0.384856899
0.355753027
0.247608706

0.137012641

1.529764721

f

|

Original matrix for the spherical radiometer.

COFSPH(K,4)
0.108360067
0.276829292

0.484847428

" 0.595573384

0.596414856

0.415871635

2.477896661

75.706371568 . -140.:397921212  227,415062849

COFSPH(K,S)'

0.000000000
0.000000000
0.000000000
0.017068977
0.068729515

0.137012641

0..222811133

20.449039970

O FSPH(K" 6)
0.000000000
0.000000000
0.000000000
0.035500329
0.143711947

0.415871635

0.595083912

54.615290183

SPHROW(k)
1.105768551
1.107317169
1.105768551
1.056465024

1.056465024

'1.105768551

6.537552870

1.089592145
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COLUMN SUMS

'PERCENTAGES»Y |

Figure 4-10. Original matrix for the horizontal plate

COFHOR(K51)

0.378000655
0.200205230
0.063693275
0.008805215

0.000000000

0.000000000 -

0.650704375

82.087244037

COFHOR (K, 2)
0.279486438
0.20020523
0.078892673
0.018591209
0.000000000

0.000000000

0.577175549

72.8114824591

0.279486438

COFHOR(K} 3)
0.078892673

0.200205230

0.251441001
0.172299495

0.087326867

1.069651704

34.9380207892

COFHOR(K; 4)
0.063693275
0.200205230
0.378000655
0.471341713
0.473440034

0.312709653

1.899390561

39.610708856

radiometer.

COFHOR (K, 5)

0.000000000

0.000000000
0.000000000
0.008805215
0.040187252

0.087326867

0.136319334

17.196869788

COFHOR (K ; 6)
0.000000000
0.000000000
0.000000000

0.018591209

0.091648780

0.312709653

0.422949643

53.355674072

HORROW (K)
0.800073041
0.800820918
0.800073041
0.777575561
0.777575561
0.800073041

4.756191165

0.792698527



column. This average value is denotéd by x for the sphere, and by y for the
plate. Each of the quantities in the row entitled "column sums" is the

sum of the six quantities above it. The first six elements of the row termed
"percentages, x,y" are obtained by dividing each column sum by the average

shppe factor for the total FOV and multiplying the result by 100.

NOTE: Since the systematic errors do not produce unacceptable results,

the following discussion applies only to those cases in which the

errors are totally or partially gaussian.

Prediction scheme.- A qualitative prediction classification based solely ‘

on the structure of the original matrices was found. It yielded excellent
results when compared with the rms's of several We errors computed for
each of the regions. This rms 1is bésed on ten sets of error data; each set
has six e values required to perturb the six power measﬁrements of each

observation group.

In order to predict the quality of the data to be retrieved, three
distinct data classes were arbitrarily selected. The qualit} of the We
values to be retrieved were predicted to be either ACCE?TABLE; POOR, or
REJECTABLE, according to the criteria detailed below.

Let SS, denote the sum of the elements in the jth colummn of the

3

configuration factor matrix for the sphere, and let SP, denote the equivalent

h
sum for the plate. It is recalled that x was used to:denote the average of
the six shape factors for the total FOV of the sphere. Similarly, y was used
to denote the equivalent quantity for the plate. Then, using these

definitions, the first criterion can be stated as follows:

NOTE: 1In the following, REJECT means reject the We value determined for the

- _jth region from observations by the sphere, in the case of ssj, or: by

" the plate, in the case of SP,. Similar meanings should be attached

j.
to ACCEPT and POOR. -
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IF Ssj < 0.2X REJECT (4-53)

IF SP, < 0.2Y REJECT ' (4-53")

i

Ocherwise,-SSj and SPj are,sﬁbjected to the following tests.

IF ssj > 1.25% ACCEPT (4-54)
IF spj > 1.25Y

ACCEPT (4-54")

of the j-~colummn of both

If this test is not passed, the diagonal element F

i3
matrices (Fjj for the sphere and ng for the plate) are. subjected to the
following test.
IF Fo, < 0.25 Ss, REJECT (4-55)
i3 |
IF ng < 0.25 s, REJECT (4-55")

Otherwise, the two sets of quantities are subjected to a final test.

IF F,, > 0.6 SS, ACCEPT | (4-56)
i3 3
IF o, > 0.6 S, ACCEPT (4-56")
] J :
~For those cases when F?i and ng are between the above two limits, the
classification is,
S ’ .
IF 0.25 S8S, < F,. 5SS, POOR -
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IF 0.25 5P, < ng 0.6 5P, POOR (4=57")
The predictions made on the basis of the above criteria were sufficiently
satisfactory to indicate that there is a definite relationship between the
quality of the data to be retrieved and the configuration factor matrix of
the measurements., This is of great value sinée a simple aﬁalysis of the
matrix tells in advance which are the regions whose results should be
considered for further processing, as will be discussed in the following
subsection.

TABLE 4-8 compares the data quality predictions with the rms's of the
errors in we for each of the regions. As seen from this table, in every
instance the predictions agree with the computed errors in Wé.- From
TABLE 4-8 the following can also be seen,

(a) In all cases the uncertainties in We for the plate are larger

than those for the sphere

(b) The only instance in which a REJECTION was predicted was for the
plate in region No.5. The we errors computed for the plate in
this case were, 33,9284 w/m2 for the gaussian perturbation and

33.8025 w/m2 for the gaussian/systematic error combination.

It is apparent then that before retrieving the values of We from a given
set of power measurements, the above scheme will tell which We values will
be good enough for further processing, such as averaging of data discussed

in the next subsection.

Weighted Averages

The n observations required to solve the n simultaneous equations for:
We can be taken within a time interval of any arbitrary length. However,

the physical situations represented by the results would be different for
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£v-y

TABLE‘4-8.

Comparisons of data quality predictions.v

vith rms's of computed W, errors.
Type of Type of Type Errors (e) in W, (W/m*)
Satellite Power Error of , .
(W/m2) Results Region Region 2 Region 3 Region 4 Region 5 Region 6
Sphere Gaussian, g Predicted Poor Poof Accept Accept Poor Accept
Spheré Gaussian, é Coﬁputed 15.2497 19.9081 6.8638 2,9748 . 17.4476 5.7264
Sphere Gaussian Plus
(0.9 W/m2)
Systematic, gs Computed 15.1991 20,0824 6.8882 3.1020 17,4142 5.8314
V'
Plate Gaussian, g Predicted Poor Poor Accept Accept Reject Accept
Plate Gaussian, g Computed 15.5824 21.6890 9.0607 3.9728 33.9284 9.0240
|
I
Plate Gaussian Plus }
(0.9 W/m2) i
Systematic, Computed 15.4480 21.9173 . 9.0688 4.2407 33.8025 9.2882

gs




different time interval lengths. At any rate, regardless of the magnitude
of the time intervals selected for accomplishing each set of observations,v
the resulting data can always be averaged out overrmuch longer time periods.
For purposes of the present discussion, a set of results will be considered
instahtaneous if the corresponding set of n observations is taken during

a single pass or orbit of the satellite., A total of T sets of data will

be considered fof averaging in the following discussion.

The following three types of averages were considered,

.Z Wei' .
- =1 =4 ;
Wei T (4-58)
§ Aji W ' :
S O i M (4-59)
ei % Ass
j=l lJ
. Fii W
Wf = A5 73 e (4-60)
ei % s
j=1 "4

Where,

= the jth determination of the value of W, for the ith

wei
J region

A = total area seen of the ith region during the jth

13 observation set.

Fi = gum of all the configuration factors of the ith
3 region which entered in the jth set of observations.

T = total number of results, or observations sets, used
in the averaging.

Wei = plain average of the value of We for the ith region.

4-44



wﬁia Weighted average-of We for the ith region, using the area

Aij as weight.

WF = Weighted average of W for the ith region, using the
el configuration factor 14 as weight. '

The average wei given by (4-58), assigns equal weights to all the we
results entering into the averaging process, regardless of the sizes of
the segmenté of the ith region that were within the FOV's 6f the radiometer,
and regardless.of the positions that these segments occupied within the
radiometer's FOV. Hence, this type of averaging was considered inadequate.
The type of average defined by (4-59) takes into account the size of the
region segments that entered into tﬁe observations; however, two sgsegments
of equal area but making different contributions due to their different.
positions within the FOV are given equal weights, which might be undesirable

in some cases. The third type, defined by (4-60) was considered adequate since

A,it,does,not,sufferffrom,eitherfofgthefsho;tcomingsfmentioned~above4formf

(4-58) and (4-59).

Thus, weekly or monthly weighted averages (for any time of the day)
can be easily obtained from 1nstantaneo;s results (for the time of day
selected) by using the expression (4-60). Although the SWR_compbnent
is not discussed in detail in this report, a proposed method tﬁét is
currently under investigation for tackling the problem of reflected SWR

will now be discussed.

Pfoposed Procedure for Computing Wr

When the Ne regions of the E-A system previously defined were consi-
dered, it was assumed that the variations of we within the region were
negligible or barely detectable by the satellite radiation sensing

" system. Now, one can assume another common characteristic to all
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area elements within a given region; this is the ALBEDO A(;o) for a specific

solar -zenith angle Co. For reasons which will be apparent later, the
zenith angle chosenfor this common characteristic is 8 0°.  Before pro-
ceeding further, it is advisable to recall the following relationships that

| were introduced in the section entitled ''BASIC IDEAS".

W (g) = ng dy gn/z N_(8,4,5) sin 9 cos 6 d6 (2-19)
27 w/2 .

A(T) = () = é dy g p(6,¢,Z) sin 6 cos 6 de (2-20)

A(D) = £(z) = W_(2)/H(%) (2-21)

0(0,4,8) = N_ (8,4,8) /H(Z) (2-22)

Then, one can write for those characteristics that have been assumed

common to all area elements within a given region the following,

W (0)= 2" qy /2
r : o

Nr(e,w,o)sin 6 cos 6 d8= constant (4-61)
)

/2 (4-62)

A(0)= r(0)= f21r dy f" p(8,¥,0)sin 8 cos 6 .d6= constant
o ) ,

However, since at any instant of time the solar zenith angle exhibits
Spétial variations within any given region; then, r(z), A(t), and W) are
not necessarily constant within the given region. Them, thé problem is, how
is one to determine the wr(g) of a region if the value of wr(b) for that
region is known?

The following is a simple procedure which uses data évailablg from
previous satellite observations to provide a quick solution to the above

problem.-
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Figure 5 on page 11 of reference 4 shows several curves which depict
relationships between r(%) and r(6) for different types of surface regions
of the E-A system. One or several of these curves are selected to repre-
sent the refiecting charactetiétics of the hypothetical regions one has
assumed. Consider now the ith area element of the kth region which is
within the FOV of ;he jth observation of a satellite radiometer. This area
element is denoted by AAijk’ and the radiant power it contributes to the
jth measurement is APijk' The reading from the curve in figure 5 that

corresponds to AA is denoted by

1jk

Rijk(c) = rijk(c)/rk(O) (4-63)

The albedo A and directional reflectance r for AAijk is given by

(4-64)

,_*éj_jkm—nri.jk (@) = Rij—kQ—rk (0)

It should be noted that rk(o) does not have the subscripts i and j
since the value rk(o) = Ak(o) changes only if the region changes.

From (2-21) shown above, one writes

W (¢) = r,

riik 1@ By (@) = 4

11k 1318 By (@) (4-65)

Then, subsfituting (4-64) into (4-65) one obtains

Wrijk(;) = Rigi(®) 1y (0) By () ’ ~ (4-66)

. The expression for the power increment APijk which the area element Akijk

emits in the direction of the satellite is,

e = - 41k (4-67)
APigi = Nog5i (8 % D ;‘%—&-AAijk cos 8.1

ijk
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where,

Reflection radiance of AA Kk in the direction
(6, ¢) due to solar radiaéion incident from a
direction given by the solar zenith angle Z.

Noggi(®s ¥s O

A = waz - = Characteristic area of the radiometer, where a
is the radius of the radiometer.

d - = Distance ffom AA; to the radiometer.

1jk 1jk
] = Zenith angle of the radiometer as seen from
ijk AA

13k’

From (2-22) shown above, one writes

Nrijk(e:w’C) = Hijk(C) pijk (85%,%) (4-68)

Substituting (4-68) into (4~67) and assuming that‘As = 1m2, one obtains

AA,., cos 9.,
1]

ijk

APigk = Biq(®)

Now, from the corresponding curve in one of the figures B*3,'B¥4, or B-5
of reference 3, one can read directly (or by using linear extrapolation) the

value of the ratio r(g)/w p(8, ¥, z) which will be denoted by R', that is,

Or,
r, ., (2)
(8.00) = 'l]k v
pijk( ,¢,C) -ﬁ Rijk(e,w’c) (4_71)

Substituting (4-71) into (4-69), one obtains

r,, AA, . 6.,
AP,. =H,. (1) :.LJk(C) gk ik (4-72) -
ijk 4k’ w Ry (8,9,0) 42 : '
| ijk
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But from (2-21) above, one writes

i (®) Tyqp®) = Wy 5, (8)

(4-73)
Substituting (4~73) into (4-72) one obtains
AR, . cos ©
- ijk iik (4-74)
AP, = .
Py = (—— )L 1 W358

2
T

By the definition of the shape, or configuration factor given> by (2-2),

with As = lmz, one writes

APyik = Fije Yrg(®) (4-75)

Comparison of (4-74) and (4-75) indicates that

AA, . cos 6, ,
Foo= (—5T ik 4 | (4-76)
ijk ™ R' . (0,9,7) d2
ijk* " ijk
In the following discussion, a new type of shape. factor will be introduced

in order to develop a simple expression for computing the solutions for the
reflected SWR component of the energy budget. This new type of shape factor
will be termed PSEUDOSHAPE FACTOR.

One can represent Hijk(z;') as

Hijk(;) = Hk (0) cos r’ijk 4-77

Note that since the value of Hk(o) changes only with changes of regionm,

only the subscript k of the region need be used, just as in the case of

1, (0) and Ak(o)..
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Substituting (4-77) into (4~65) one obtains

wrijk(;) = rijk(g) Hr(O) cos ;ijk

For the case Z=0, one obtains from this expression,

W, (0) = £, (0) H_(0)

(4-78)

(4-79)

Again here, only the subscript k is necessary since these three quantities -

change value only with region changes.

From (4-63) one writes

Ty (® * Rygp (8 1 (0)

Substituting (4-80) into (4-78) one obtains

Weigi(®) *+ Bypp(©) 1, (0) B (0) eos g,

And substituting (4-79) into (4-81),

rle(t:) + W, (0) R . (&) cos Sk

Substitution of (4~82) into (4-74) yields

(¢) cos 9, cos C,

k

A
- 14k l]k
APijk ( 11 )L

From this expression one defines the PSEUDOSHAPE FACTOR Fijk

AA, .,
F' = ( ijk [ 11k
Cijk T

(z) cos 6, cos Z,.

k ijk
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By comparing the expressions (4-76) for F and (4-84) for F!, one sees

1jk ijk
that these two qualities are related by the following expression.

1

Figk = Fige Rigi(®) o8 2ig (4-85)

Let the following quantity be defined,

e N = . v ' .

Then, (4-85) can be rewritten as

' = ey '
Fisk = Figu Rige 9 (4-87)
For future‘use, the weighted average value of Ri;k (Z) over all those
area elements AAijk’ of the kth region which appeared at least once within

one of the FOV's of the radiometer will now be calculated. Thus, one

writes
% -g F!.,. = £ F R!'' (¢) = Ri' I F (4-88)
i=1 j=1 ijk 4,3 "ijk "ijk i,j 1k -
where,
I = total number of area elements of the kth region
within the FOV of the jth observation.
J = the number of observations in which the kth region
appears.
Ri( = weighted average of Ri&k (z) for the kth region.
Thus,
' .
Z F.’. . . :
I, Fijk
1,]
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Returning to equation (4-83), one obtains the powef P,, contributed by the

jk
kth region to the jth observation, by adding up over all the area elements

in the kth region. Hence,

I
P, =X AP,.
jk “i=1 ijk (4-91)

Then, one obtains the total power detected in the jth observation by adding

up all the powers P,, contributed by the K regions, that is

jk

K
3T k1 Tak (4-92)

These P,'s are the elements of the power column matrix {P}. In exactly the

3

same manner, one obtains for the configuration factor F and the pseudo-

jk

configuration factor F3k that the kth region contributed to the jth
observation

F.= I F (4-93)

jk  i=1 "ijk

] I 1

Fik = &1 Fijk (4-94)

These Fsk's- constitute the elements of the pseudoconfiguration factor

matrix F'. Thus, one can write in matrix form,

F'{W_(0)} = {p} (4-95)

where the elements of the column matrix {Wr(o)} are the hypothetical values
of Wr(o) which were assigned originally tb the different regions. Then,
by operating on {P} with F'r%, the inverse of F', one obtains back {wr(o)},

that is
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plip) - ()} . (4-96)

If this matrix operation retrieves the correct values of Wr(o) that
were originally assigned to each of the regions, then one proceeds, as in the
ong of'we, to perturb {P} with gaussigp and systematic errors to test the
écabilicy of F L,

The next step is to obtain the values of Wr(C) for each of the regions
from the corresponding values Wr(o) found through (4-95). This can be done
as follows.

Assuming that the kth region appeared in the FOV's of J observationms,
one can find the total power that this region contributed to the J

observations by adding over j the P x povers given by (4-91), that {is,

3

(4"

P.= L P ) -

factors by the kth region to all the J observations are, from {4-93) and

(4=94),
Fo= 1 F
k y=1 jk (4-98)
L - '
e ™ 8 Fie (4-99)

And from (4-91) and (4-97) is obtained

P - I AP, . - (4-100)
ke i,i ijk

By comparing this expression with (4-75), one can write,
P ™ 05 Fage Vegge 8 - (4-101)

i1
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If one defines Wt to be the weighted average of wr(c) over the kth

k

region for all the J observations, one writes

W = det Tage Mragie(® |
rk L. Fiy -
351 ijk (4-102)
Then, (4-101) becomes
P = (4-103)

k wrk jfi Fijk
If now one compares expression (4-100) with equation (4-83) and uses (4-84),

one can write,

=. ’ 1 (4"104)
o= O I E @

Equating (4-103) and (4-104), one obtains

r F!
PR "k
W = u___ll_ W 0
rk $ F.. rk( ) _ (4-105)
i,j 1k
But the ratio on the right is the same as thét in (4-90). Hence, one can

say that

W = Vi (O R | | (4-106)

Where lﬁ(‘ is the weighted average of r(D cosz./r(o) for the kth region for
all observations.

Therefore, the essence of the procedure when applied to an actual set
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'oﬁ power measureﬁents is as follows. Compute the elements of the configu-
ration and pseudoconfiguration factor matrices. Obtain the inverse matrix:
F'-l of the pseudoconfiguration factor matrix and operate with it 6n the
column matrix of the power measurements in order to obtain the column matrix
{Wr(o)}. From these elements, the corresponding er elements are obtained

by application of (4-106).
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BEST FIT/INVERSION TECHNIQUE

As Qas mentioned in the last paragraph of the section entitled "FUNDA-_

MENTALS 0F>THE'TECHNIQUES,V the main feature of the Best Fit/Inversion

Technique is that the number of observations m is larger than the number
- of unknowns n. An extension of thé method of least squares is used to
determine the -approximating surface in the n+l dimensional space. The
procedure followed to find the values of We is illustrated by a simpli=

fied three dimensional case as follows.

Let it be assuméd that a satellite has made eighteen observations over
two regions. The FOV of each observation is either totally filled by one of
the regions, or totally filled by seéments of both of the regions. Further-
more, let it be assumed that the We values of the two regions, identified as
regions 1 and 2; are in the ranges wel = 240.0 + 5 w/m and We2 = 280.0 =5
w/mz, as shown: in TABLE 5-1. This table shows the cénfigurétion factors
Fl and F2 that regions 1 and 2 contribute to each of the measurements. The
hypothetical values of Wel and We2 at the time each observation is taken are -
also presented in this table, as well as the two partial powers for each of

the measurements. These partial powers; for the ith observation, are given by

P, =P + P =W

1 T P,0 P 0% Yei1 Fi1 As™ei, 0,08 (5-1)
Where
Ag = lm2 = characteristic area of thé radiometer.
Therefore, the eighteen observations can be written as
Wer,1 F1,0 ¥ We1 0 F1 2= By
F, + =
We2,1 F2,1 ¥ W2 2 Fp 2= By | (5-2)

We3,1 F3,1 % Vo3, F3’2 =P,

We18,1 F18,1* We1s,2 F18,2 = P1g
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Measurement No.

Parameter

W,y (/a’)

wez '(W/mz)

PI (w)

Pz (w)

P=P +P

0.4
0.6

1.0

240

280

- 96.0

168.0

264.0

0.5

0.5

1.0

241

279

120.5

139.5

260.0

0.6
0.4

1'0I

242

278

145.2

115.2

260.4

0.3
0.7

1.0

243

277

72.9

193.9

266.8

'TABLE 5-1, Hypothetical data about satellite observations of two regions.

0.7
0.3

1.0

239

281

167.3

84.3

251.6

0.2
0.8

1.0

238

282

47.6
225.6

273.2

0.8
0.2

1.0

237

283

189.6
.56.6

246.2

0.1
0.9

1.0

244

276

c24.4

248.4

272.8

0.9
0.1

1.0

- 245

275

220.5

27.5

248.0



TABLE 5-1. Hypothetiéal data about satellite observations of two regions. (Continuation)

Measurement No.

Parameter

P
P, (W)

P=P +P

10

0.0
1.0

1.0

240

280

0.0

280.0

280.0

11

1.0
0.0

1.0

236

284

236.0

0.0

236.0

12

0.45
0.55

1.00

235

285

105.75

156.75

262.50

13

0.55
0.45

1.00

240

280

132 .o

126.0

258.0

14

0.65
0.35

1.00

241

281

156.65

98.65

255.30

15

0.25

0.75

1.00

242

282

60.5

211.5

272.0

16

0.35

0.65

1.00

243

283

85.05
183.95

269.0

17

0.75
0.25

1.00

239

279

179.25

69.75

249.0.

18

0.15
0.85

1.00

238

278

35.7
236.3

272.0



Thg ith equation of this set represents the ith élane in a three-dimensional
space whose rectangular coordinates are Fiil’ Fitz’ and Pi' The form of the
equations indicates that all planes cross the origin of the coordinate system.
One assumes further that the data obtained from the observations (i.e., the

values of Fi’l’ F and Ei) when plotted in this three dimensional coordinate

122
system become a scatter diagram which can be represented by an APPROXIMATING |
PLANE (see reference 9) that best fitg the data. The equations of this plane

will be of the form

el "1 e . 2 (5_3)

and the partiél regression coefficients wel and We will be determined by an

2

extension of the method of least squares as follows.

The general form for the equations (5-2) is,

P =
F1 Vi1 Fi 1 ey 0 Fi (5-4)

One multiplies this equation through by F to form 18 equations (i=1,...18).

i,1
These 18 equations are added up to generate the first équation of the set of 2
equations @ needed to find the 2 unknowns. The second equation required is

obtained by multiplying (5-4) by Fi_2 to form, again, 18 equations which are then

added together as before. Thus

1% P.F =W 1% 2 lg

j=1 1°i,1 ~ el =3 Fi,l+ WeZ i=1 Fi',l Fi,2 (5-5)
18 18 |

18 i} 2

=z PiFi,0 " We1 &) Fin Ty o ¥ Wy 2 Fi (5-6)

1=

In order to simplify the notation, the following quantities are defined.



‘ 18
- PF.= L P F

1 i=1 i’l
—_ 18
PF, = & P, F,

2 i=1 i ,2
218 2
Fp=k i (5-7)
- 18

2 = 2
FZ ) 1El Fl 2

18

- 3
PPy =421 Fi,1 Fi2

Using (5-7), equatiohs (5=5) and (5-6) can be-written as

—_ 2 —_—
PF. = W + W F_F
el l e2 2

1 12 (5-8)
== _ — 2
PFZ = Wel F1F2 + wez F2

. As was mentioned before, (5-8) is a set of two equations in the two

unknowns W and W
el e2

A short program was written to solve the set of equations (5-8) by using a

which is required to solve the problem.

matrix inversion subroutine. This program also computes the aVerage values of

Wel and weZ in order to compare these results with the coefficient values found

by the least squares method. As in previous programg, the original matrix and
its inverse were multiplied in order to verify that the result was the identity
matrix. The values of'wel and Wez obtained from the eighteen observations are

compared in TABLE 5-2 witﬁ the average values of the hypothetical distributions

of wel and we2 given in the_problem.

TABLE 5-2. Comparison of we values computed from error-free data with the

averages of the given we values.

| 2 2
TYPE OF VALUES Wel(w/m ) Wez(w/m )
By least square method from 239.83 279.99
18 observations . :
Averages of the given W 240.17 280.17
values



Two important modifications were introduced in the next application.
(a) Six regions, rather than two, were considered and a total of thirty-six
observations were made. (b) systematic and gaussian uncertainties were
incorporated into the power measurements. It should be pointed out that.since
the space now considered is 7th dimensional, one can no longer speak of the
equation of an approximating plane, but rather of the.equation of an
. approximating surface.

A gaussian random error distribution. with a sigma value of 0.5 w/m?
was used, as well as three values of systematic errors, 0.3~w/m2, 0.6 W/'m2

and 0.9 w/hz.

TABLE 5-3 lists five grouﬁs of results based on the following types of
uncertainties in the observations.

1. No error in the observations,

2. Gaussian errors only included.

3. Systematic (0.3 w/mz) combined with gaussian errors.

4. Systematic (0.6 w/mz) combined with gaussian errors.

5. Systematic (0.9 w/mz) combined with gaussian errors.

The five sets 6f data in TABLE 5-3 clearly show . that the results are
not highly sensitive to the gaussian and systematic uncertainties assumed for
the power measurement.

- It is recalléd that the essential difference between this technique and
the Instantanéous/lnverse Technique is that in the latter the number of
observations m equals the number of unknowns n; while in the former, m is
greatér than n. However, the basic equations to be used are the same ih both
cases, namely, equations (3-22) and (3~23) introduced in the section entitled
"Mathematical Bases.' The configuration factors in these two expressions

include the LDF as can bé seen from equations (3-18) and (3-19). Furthermore,
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TABLE 5-3.

given W values®

TYPE OF DATA

AVERAGE ©of Given we Values

FROM

FROM

FROM

FROM

FROM

‘Error-Free Data

Observations with
Gaussian Errors (o=0.5 w/m )

Observations with (0.3 w/mz)
Systematic & Gaussian Errors

Observations with (0.6 w/mz)
Systematic & Gaussian Errors

Observations with (0.9 w/mz)
Systematic & Gaussian Errors

Region 1

179.36

178.09

178.38

178.68

178.98

179.28

Region 2

200.42

199.63

199.65

199.95

200.25

200.55

VALUES OF we (w/mz)

Region 3

220.44

221.22

221.30

221.60

221.90

222.20

Region 4

239.83

242.15

242.06

242,36

242.66

242.96

Comparison of W_ values computed from data having uncertaintities with the averages of the

Region 5
259.56
256.66

256.45

256.75

257.05

257.35

Region 6

280.44

280.69

280.64

280.94

281.24

281.54



the corresponding expressions for the case of reflected SWR are developed in
a manner similar to that “amployed in the Instantaneous/Inverse Technique.
The results obtained so far by this technique are satisfactory and further

work in its application should be pursued.



SPHERICAL EARTH-ATMOSPHERE SYSTEM

. Onee it had been shown that the techniques for computing We yield
acceptable results, it was decided to return to‘the original problem in
which a spheric#l earth-atmosphere system was being considered.

As was mentioned previously, the power integrations are to be accomp-
lished by adding up the power increments reaching the satellite simultane-
ously from the different area elements whithin the FOV. Hence, the first
step was to generate a computer program which would diQidé the surface area
of the earth-atmosphere system into a finite number of area elements of
equél area. The data output of this progrém gives the longitudes and lati-
tudes of the centroid and four boundaries of each of the 2060 area elements.
An area element of 250,000 km2 was found toAbe adequate. This size corre=~
sponds to an area of 500 by 500 km, or approximatelybso by 5° of great circle
arc. This yielded a total of 2060 area elements, 2058 of which have equal

11 m2 each). The other two elements are those centered at each

of the poles. These have an area of 2.339x1011m2 each. This yields a total

surface area for the spherical E-A system of 5.149678x1014m2. The radius

areas (2.5x10

of this system 1s considered to be 6.40155x106m, which gives a surface area
of 5.149679x1014m2. Since the radius of a sphere having an area equal to

the area of the earth has a radius of 6.37123x106m, it follows that an atmo=- -
spheric spherical shell of 30.32 km thicness is being included. This is
Aapproximately the thickness commonly used (30km) since it was first suggested
by Dr. Frederick B. House (reference 10); More than 95% of the total atmo-
sphere is contained within this shell.

The output data of this program is used in the main computer program

to calculate the We values of a spherical E-A system.
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The total shape. factors for the sphere and plate were calculated also in
this main program by adding up the shape fac;or§ of each of the area
elements within the FOV of the radiometers. The results are compared
below with those obtained analytically.

Configuration factor of the total FOV

Radiometer ' Numerically Analytically
Sphere _ 1.089592145 - 1.0838471
Plate 0.792698527 0.7901660

These results indicate that it is unnecessary to use area elements of |
smaller size to perform the numerical integrations.
The results of the investigations presently being performed using a

spherical E~A system will be discussed in a subsequent report.



CONCLUSIONS

On the basis of the investigation results reported in this document,

the following has been concluded:

1.

2.

3.

The Instantaneous/Inversion Technique (including the data

quality prediction and matrix stabilization schemes) yields
excellent results when applied to radiometer data containing
gaussian and systematic errors. The We values obtained are
acceptable according to the pertinent accuracy requirements

displayed in TABLE 4-7.

The problem of determining the solar radiatien reflecfgd by thé
E~A system has been cast in a form which requires minimum com-i
puter time for calculating Wr and the albedo;’ It is concluded

that this simple formulation represents the optimum method to

solve this problem and will soon be implemented.

The results obtained from preliminary applications of the Best
Fit/Inversion Technique clearly indicate that the errors in We
calculated by the use of this technique are not highly sensitive
to gaussian and/or systematic power uncertaintities. In all
cases investigated the we values ret;ieved met the pertinent

accutacy'requirements in TABLE 4-7.

It has been concluded that division of the surface of the E-A
system into 2060 area elements of about 2.5x105fkm2 each yields
accurate results when used in numercial integrations of

configuration:: factors.
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1.

10.
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