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} ABSTRACT
E
i3 : In this paper we obtain optimum estimates of nonobservable random
: variables or random processes which influence the rate functions of a
& 'i discrete timme jump process (DTJP),

The approach we follow is based on the a posteriori probability of a

: [ nonobservable event expressed in terms of the 2 priori probability of that
P w4 event and of the sample function probability of the DTJP, Thus, we obtain
a general representation for optimum estimates and recursive equations

P for MMSE estimates,

_ In general, MMSE estimates are nonlinear functions of the observations.
R We examine the problem of estimating the rate of a DTJP when the rate is

‘[i 3 a random variable with a probability density function of the form cxX(i-x)™m
i and show that the MMSE estimates are linear in this case. This class of
E1 density functions is rather rich and explains why there are insignificant
!

differences between optimum unconstrained and linear MMSE estimates in
a variety of problems. '
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I. INTRODUCTION

Estimation and decision problems arising in communications and control
have been studied in detail for continuous time observations., However, not much
has been published for the case in which the observation process is a discrete
time jump process (DTJP). We define a DTJP as a process having arbitrary

jumps at times t A more precise definition is given below, Segall [1]

1 tz, sees
obtained some optimum estimates for the special case where the jumps are
restricted to be unity by using discrete time martingale technigues, _ In this
paper we derive optimal estimates for more general cases,

In Section 2 we define discrete time jump processes precisely, present
some representations, and derive the likelihood function for an observed reali-
zation. In Section 3 we derive the a posteriori probability measure fora
nonobservable random process we wish to estimate given an observed realization
of the DTIP. Recursive optimum estimation eq.uations are derivéd in Section 4.
The problem of optimum linear estimation is briefly discussed in Section 5. An

interesting example in which the optimum estimates turn out to be linear is

presented in Section 6,
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DEFINITION, REPRESENTATIONS, AND LIKELIHOOD FUNCTION
FOR DISCRETE TIME JUMP PROCESSES
We wish to describe an arbitrary discrete time jurnp process, taking
values on a 4-dimensiona) Euclideanspace R'e', by means of discrete time counting
processes. This approach has been used in the context of processes with
independent increments and in general continuous time jump process. .

Let T be the countable set

T = {t }

or by tpr e

where fi is a real number, i, e, tiGR, fori=0,1,2,.... Let(be the set of all

possible piecewise constant right continuous functions defined on R, taking

£ - ' .
values on R, and having jumps in T only. An element we? will be called a sample

. . A
function. Define the variables Yi = Y(ti) and Yig Y(ti) as

A . _

Y. (@) = value of w at time =teT for wen,
A

Yo(w) - 0:

£ =j i fwat ti -

_Yi(w)= Yi(UJ) - Yi_l(w)—- jump size of Wat time t= tie I

vo(w) 2 0

e s L TR TR S e f 3 .
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Let & be the minimal) sigma-algebra of subsets of ) such that all functions

(Yi(lU). tie T) are measurable. Denote by P any probability measure qn &. The
triple ((1,&, P) will be called the discrete time jump process and will be denoted
by Y. Sincey, is a3 - measurable function for all 120, we define &, to be the sub-
sigma algebra of & generated by (yi(w), ie{0,1,+-.,k}). For any Borel set A of

£
R, with 04, define the random variables NR(A) and n, (A) as

- &

N (0,4 Ky ) - v, (wea) ()
k 0<i<k i i-1 )

n (0,8) £ N (0,8) - N, (0, 8) = Iy (Wea) )

where I(* €A) is the indicator set furction of the set A, In accordance with
accepted usage, we shall drop the symbol W and write Yk' Nk' e etc., for
Yk(w)_. Nk(w)’ n.k{w), etc., respectively. Note that Nk(A) represents the number

of jumps of the process Y thatfall in A during the tirhe interval {t < tistk} . Thus,

0
Nk(A) is a finite, nondecreasing, G‘k-measurable function of k. There=-

£
fore, (Nk(A), k=0,1,...) is a submartingale for any Borel set AR . The Doocb
decomposition for submartingales,[ 2, Chapter VII],implies that there exists a

unique decompbsition of Nk(A') in terms of a (3k, P)-martingale 7 QR(A) and &

I’ik 1" measurable, increasing process Hk(A) withll 0(A) =0 such that

Nk(A) = Qk(A) +11 KB) k0,1, z., cie {:3)

From (1) - (3) we obtain, for k=0,1,2, ..., and any Borel set A

n(A)=q (a)+ma) | (4)
where qk(A) 2 Q. (&) -”'Qk-l(A) .
s
M8 ey - T @)
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Note that (qk(A). k=0,1,...) is a martingale difference seguence (MD).
Bemark 1L, The random variable ﬂk(A) has a simple interpretation in terins
of the conditional probability of a jump ati time tk. By taking the conditional

expectation with respect to & of both side: of (4) we obtain

k-1

m (A) = P(ykeAIE (5)

k-l)

The Doob decomposition (4) has been defined here i) to model the
process Y, ii) to guaranty the existance of P(ykeAp k-l)' and iii) for obtaining

estimates of nonobservable events (Section 5).

It is possible to represent the process (yk, tke T) by means of the process

n, defined in (2}, The following lemma is a special case of a result given in

k
Gikhman and Skorokhod[ 3, Chapter VI] and the proof will be omitted.
4 )

Lemma I Let yk(A) = Y_k I_(YkeA) = ykn.k(A) for any Borel set AR with 04A,
Then

P . :

v (8) = [xn (dx) = quk(dx) + . xT (dx) (6)
A A A

fork=1,2,...

Note that yk(A)is the jump size of Yk provided that Yk-Yk leA. I

£ 2
A =R -0, yk(A) becomes yk(R -0)= Yier with

Vi = ernk(dx) = quk(dx_) + Jxﬂk(dx) (7)

where the integration is on the space ijith the.vector 0 excluded. The integrals
in (6) and (7) are defined in the sense of Gikhman and Skorokhod [ 3, Section 3,
Chapter VII].

ark 2 If the space of all possible jumps of Y is countable, say ¥= R’ with
.. f_}, the above representation _reduces to

4
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n (0) 2 1(y,=U) for UK (8)
m @) = 4, (0)+ A (U) (9)

d = b . = . '
an R S flui ?k(Ui)+i§1 Ui A T;) 10)
where A (U)= P (n@U)=1]3_) | an)

In the estimation problem we will study later on, we will assume, for

simplicity, a countable jump space Y.

The likelihood function. The likelihood function is a quantity proportionzl to

P )

the probability of observing a particular realization of the jump process

€T and plays a fundamental role in estimation and

St <
(Yi' t ti tk) for ti,t

0 k

decision problems[4].
We wish to find the likelihood function for a discrete time discrete
amplitude jump process. Denote by Py & p(tk) the probability of having a

particular realization of Y, i.e.

pk = P(Yi = -Evit i=0,1,.- +y k) (12) '

where gie'u . .Then

pk= P (Yk=gklyi=§i’ 1=0!1l".’k-1)pk_1

k .
= n P * = - Iy = » i= L] « "' = 13
4= (Yl §1| Vl gi_ 1 0, ., . s L 1)P(Y0 go) (13}

where

Ply, =By ly;= 6, 1= 0,1, o+ o, k-1) = Ply, =6, 3, ))
= Plmy (5,) = 11 F_) = N () | (14)

5
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Let tjl, tjz, +++, be the jump times of the random process Y with jump

amplitudes £, ,E. , ++., Thenn, (§, )=1, i=1,2,.-., The probability of no
P P

jump,nk= 0 is given by

P(nk=0|yi=€i, ik, 2,000, ke1) = 1-)

k
where )k=.Z Ai(é',i) '
i=1
Therefore, the likelihood function (13) becomes, with Py QP(YO = 50),
P, =P 1T§ O (EN P15 ) oty (15)
k 0 I ] :

i=1

~which can also be written as

r k . ’ -
Py = exp Liél(%{)‘i(gi))ni(gi) + {@n(l- ?\1))'(1- ni) i
(16)
K o AU_) N _
= exp Liél ( Z on Toh N (Un’x)+' (1- }‘i)) r
m=1 1
where we have used the fact that §0 =BO., n, = §_ n (U _), and
K X i m<l i' m
$ = on g
i§.1 rf-‘—-l% li (Um) n, (Um) i=21 ‘\i (s,) ni(gi)

emark 3 If the set of all jump amplitudes of Y is uncountable,

then, by assuming that the limit
.4

A \ .
A (x) £ 1im - T (Ax,) T ([x, x4 x)]
maxIAxi}_"O (l=1 1/ 1

P .
P ¥gr it X JeR , then the likelihood function is;

e gy 3= g




T e ewmearet et e i ' b AP o, et Ao A e e s e s

W -—*-‘"':}

s |

s d

» o3
[CEReTIE |

L2
WL poreiia

AN

k ,., A, (%)

F i —l
Py = expL.T (J L%(I-_?ti—)ni(dx) '*‘g/"(l‘)&i}"'

i=l R

where ?&i 2 Jr ?\i(x)m(dx) and m is a measure on R
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3. A POSTERIORI PROBABILITIES FOR ESTIMA TION
We shall formulate the estimation problen: in a manner motivated by a

problem in communication theory [ 5], [ 6]. Let X(t} be a nonobservable

"'signal' which is applied to the input of a general channel. Let y(t) be the
output of the channel at time te T. We will assume that the observation record

of the channel output at times t +++ is a sample function of the discrete

oy 2
time jump process described in Section 2. Based on the observation record
(y(0), 0<0st;0, teT) we wish to find an estimate of X, in particular, the
minimum mean square error estimate., We formulate the problem in some
convenient probability spaces in such a manner that the observations y can
influence the ''signals® X,

Let (Qs,ﬁs, Ps) be a2 probability space called the 'signal space! where
the events Bse ﬁs are nonobservable, ILet (Qm,ﬂ Pm(ws, ), UJSGQS, be a
probability space called the “trans.fer spé.ce" where the probability measure is
parameterized by the elements w.. The transfer space models the channel
behavior for each msens' We want to obtain statistical inferences about ths
nonobservable events B_€ B-sby' observing events Bme ]

We will assume that the elements wmﬂ'..ﬂm are the sample functions of

the discrete time jump process described in Section 2.

It is convenient to construct the product s.paée 0,8, P) where Q=Qs xnm,

 8=8_ %8  and

]~

P(B,x B )= J]; Pm(ws,'jsm)lés(dws) o | (18)

5

=Uk] €. This event

For example, let Em 1.31_3 the event {yl = Ul' y,= UZ' Y

represents a particular realization of the discrete time jump process from t= ty

(Yo 2 1) up to t= tk_ Then, from (16)
8
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Pm-(ws,Em) = P(ws,Yi,w[O, v Lk])E pk(UJB, W )
k A (U wi'l)
@ H :
_ i i n's'" m -l 1 7

LA (w, v ") - (w,u )

(19)

where we have indicated, explicitly, that the rates ?\i and ?ti(Un) depend on the
’ -1 ’
lgs 1" t. : 1
signal' element W _ and the sample path w  fromt, upto t g Lees W
Let us define 2 new probability measure P?n on the transfer space,

functionally independent of W and n*-.utuaily absolutely continuous with respect

to P_(W_,'). For the event E_, we define
“m' s m

-.k -~} ' Yo(U ;wi-l) \N"
P e B (2 m( AR ) e S o)
i=1 'p=1 1-yi(wm) ' l-Yi(wm )T

where the rates Yi(Un) and Yiare not functions of UJS. We define the likelihood

ratio Lk,(ws' U.lm) as

i-1 i-1
o MU 0,6 ey (7))

I .
RN A L

~i=1 ‘n=] . i-1 _ '
ELREL Ny e ed (e el
i-1
- dn E—E—U-J-nl—);;- 3] | __ (1)
- (0,0 ") -
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The probability of any event Bscﬂs given a sample path realization wm of the

observation process can be calcuiated in terms of the likelihood ratio L., given

k

in (21). In fact, we have
Theorem 1. (Prior-to-posterior probability)

Let { QB, BS,PS) and (Qm, B ,P (w

m' Tm¥s” )} be the signal and transfer spaces

defined priviously. Let I"k be a likelihood ratio between Pm(ws' *) and Pgn.

Then
J L e )P @u )
Bg A
PBx0Q_ |5, @F )= =P (B3 ) (22)
d
[, v )e @u)
Qg
for every B €8 , where S é {6 ,0 1.
_ s s’ o s'''s
Proof . The proof of this theorem, in a more general context,is given in

[6, section IV]
Note that the right-hand side of (22) does not depend on _Pgn because

it can be written, alternatively, using (21}, as
: d
B Pm(ws'Bm)Ps( ws) :
r = QPS(BS‘ER) (23)
d
;_]2 Pm(ws’Bm)Ps( ws)

s

P(B, x DmISO® 7t ))F

where B = Em and & =A_S @ Em(tk), therefore Pr?q is a "ficticious" probability

k 0

measure used to prove the above theorem.

Remark 4 (Conditional probability density) Let the noncbservable random
Ll S TS F o il N

variable X be defined aS'X(wS) = UJS € Qs where Qs = Rn. We want to obtain the

conditional probability density function of X given ¥ . For that purpose, let

k
B = [X,X+4X). Then (23) becomes

10
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I{—I‘A X
Pm(x, Bm)Ps(dx)

P [x,x+AX)I3) = (24)
s\ k [ p_ixB_)F_(dx) .
n I m -]
R
Dividing both sides of (24) by 7 (AX,), taking the limit when max|AXiI -+ 0,
i=1 i
and assuming that Ps(dx} = ps(x)dx, we obtain
n 1 Pm(X, Bm)
lim maX)T P ([x,x+AX)|3k)= - p_(X)
ma.xlAXil 10 =1 j P_(x,B_)p_(x)dx
n
R
)
= p (X]9)) (25)
Q Xl

- .. , w
where Em Bm and Pm(X, Bm) is given by (19) with .

11
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4. RECURSIVE OPTIMUM ESTIMATES
Let (Xk, k=0,1,2,...) be an integrable random process defined on the

product spage ({}, 8). We want to obtain the best estimate X by observing a

k
sample path UJr:_n from to up to tn. The criteria is the minimum mean square

error,

It is well known that the conditional mean minimizes the mean square

error, Therefore, the best estimate is

S o,.n, 8 n .
Xk(mm)-i xk(ws,wm)Ps(de\aﬁn) (26)
S

Using {23), we caa write (26) as

n n
~ E (p (w_,w )X (W ,u0_})
Xk(mn)= s'n’ s’ m nk 5° m (27)
w
E (p_ (0, 0"))
where, for simplicity we have defined
pw o8 p (w,B ); B =(E,N =n] (28)
n' 8 m m' s' m’'' "m n''n .

Equation (27) is the best estimate of X. based on the observation path

k

UJ:;1 from to up to tn, and we have the following cases:

i) smoothing estimate, if n>k (i.e. tn> tk)
ii) filtering estimate, if n=k (i. e. t = tk)

iii) prediction estimate, if n<k (i.e. tn < tk)

For simpli.city, we shall write (27) as

; E_(p_X,)
X (= ==tk 27!
ko™ B (p) (27")

12
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Note that Xk may not be BB®3m(tn) - measurable for k > n, which implies that

Xk may not be Bs - measurable and (27) does not anply, However, if Xk is

constant on Qm’ then, it is Bs measurable and (27) a.pplieé.

~

Remark 5. Note that the random process X depends on both the signal ws and
the observations wm which implies that feedback is allowed, and (27) is the best
estimate of X.

fal
Recursive filtering estimate ., We wish to find a recursive formula for X givea
i R = e R o A -

in (27) for n=k.

From (19) we see that

(U)
- re )\}s n on 1 1
Pie ™ Py SBL, (mk ) PiVn) =T (29)

where we have droppéed W and UJm for simplicity. We prove now that the

denominator of (27} satisfies

o A (0D |
- A 1|1-l n 1 \
& = il 8 - fn = 30
P = E_(p) = py_; %P (r21=1( ", o) n, (U ) 7;-;\ ) (30)
"%ii-1""n ili-1

Es(Ai(Un) ' pi-l)
Es(pi—l)

e

\ k=1,2, "¢ .
where Ki!i-l(Un) ’ 1,

For k=0 we have po=1 and

w A (U ) n,(U) . -
_ I n'\'1''n"_ 1-% if n.=0 :
P, = (1-}\1) Trl ( g/ 1 1 (30')

= 1 ME) if n(E) =] |

The last equality follows because n1=_1 if and only if there is a single jump of

size §€U at t=t.. Notice that (30') can be written as

-
Py = Py (My(E)m (8) 4 (=h) (lon)) | L)

13
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Taking the expectation with respect to E_, dividing both sides of (31) by Es(po)

fwhich is equal to 1), and using {27), we have

Em) | Elegh®) | Bg(Rlh))

E (g = E by 17T TE () 1
Then E(p) = E (pg) | Ay|o(8)m(8) + (1-3y),(8)) 1-ny) ] (32
or .y = By (iyjo(Eny(8) + 1=y (8 (Lem))

Since {31) and (32) satisfy the same type of differenge equation we conclude that
-1_:.1 satisfies (30) with k=1. Using mathematical induction, it is easy to verify

(30). The filtering estimate xlc!k becomes
~ _ Es(kak)

R R o

where ~ ~

o ?\(U)(l-n A
rk( k ﬂln(U)_%_ll__M

—
=(p) P Sexpl T ’kl L0 @h)

~

b e Y =My _ .
k-1 "*Pl n=1 ’ﬁwk_l(un)u-xk) “n -h

>

L = :
Myt v ¥LZ, . (34)

where .E»k_is the exponenﬁal formuia, and AO = 1.

Lo o d

Theorem 2 (Optimal filtering estimate). The optimum f{iltering estimate Xklk

given in (33) satisfies the stochastic difference equation

| mE (X, A, (U.)) - X A (U)+h U) .
% R 5 3 kik1klk1 k!kl o (U
1k Wk-1 _ i
i=1 Akik_l(ui) {1- "Hk-l k *

(35)
for k=1,2, +++ , where
' ' 14
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(X, A, (U.)) (36)
S AR E_(p,_))
h wybiTE [xti (U (U) = Ay, (U (U) ]
k1" 1 = -l K ORR-11 KT kk-1""3 "k i
= Ek-l[xk”‘ﬂkq(ui) ;\kh)‘klk-l)‘kmi”] (37)
and
~ A ) .
Broof, From (33} and (34 we have
ink E @) M) = B Ay 4y (39)
1=
But fak:ﬂf———-l—(-—-—— , n,. =0
1-% 14
k|k-1
A (U,) |
. S U ,n (U) =1, UeY, 5,2,
L "klk-l(ui’
- ' m A (U)
= —= (1- £ n (ul)) Tk—-i——nk(Ui)
1-)‘klk-l i=1 1-1 kk:lk 1 )
- o AU - |
= ik + T L“ik L nk(Ui}
l-lklk-l i=1 }\k{k-l(Ui) (1~ Ak]_k-l
(U )A - A (U, )7\
+_z kikl k-1 n, (U;) (40)
=1 }\.Hk_l(Ui) (1-?\ klk-l‘
Thus, using (39) we ha.ve: : N o
. X SN e B (XA (U)) =X, g ,U)
X4, = W1~ k' S kel KTk Aklk-l k-1 i n, (U}
' : 1- }‘k!k- : i=1 _ }\klk-l(Ui) (l-kkik_l)
o B X op (UIN Ay A(U))] .
;5 k-1 krl‘dk11k»klklk 1Jnk(Ui) (1)
i=1 )\klk-l(Ui) (1-7\141(_1)

15
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By noting that ?\k = 'Ei?\k(Ui) and Akik-l = Zl)\k!k_l(Ui}. the first two terms on

the right hand side of (41) are equal to

S

o B FMGTY - XM T

X, 4T K -
Wit i1V 0 Mo

(ny (U = My (U (42)

and, after some manipulation, the third term on the right hand side of (41} is

equal to

N - ~ _]
o Ek-lek ( Sk hc-l(Ui) )\k(Uj) - )\kik-l(Uj)}‘k(Ui)).' A
-2 E a n Qk(Ui)
i=1 j=1 SPRICALSENIRT

e hy, (U .
R e A (#3)

=1 Mg (U5 “"‘klk-l)

where ﬁk‘k_l(ui) is defined in (37). Combiring (42) and {43) and using (38) we
obtain (35).

Example 1l - I the observation process is a discrete counting process, i.e.,

Y= {Ul} = {1}, then }\k(Ul) = M and {32) reduces to

~ _ A Ek-l(xkkk) - Xklk-llk!k"l ~
Xk!k = Xk!k—l + - — q
NS WY

k

This equation has been obtained by Segall [1 ].

Example 2 - Let us assume that the nonobservable random pr'oce'ss Xk' can be

Pt e

represented as

X = f(k, X

K b X1 Y Y

k

~ where f is a known function of Xk-l .and of'a 31{-._1' measurable

16
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control w ; W, is a MD on the signal space, and is r 3t a function of W _ then
W can be interpreted as noise in the dynamics of Xk' Then, the one step

prediction ickik-l is

Kot = EsFy ) = BgiaX, Uy Oy )+ E Ay )

~

= k1 TEs ALY

We will assume that Wy is a MD with respect tosome sigma-algebra ﬁs(tk)Cﬁs,

~ and that A is ﬁs(tk_l) measurable, then

k-1

E_(w, A )-E(E(w lﬁ(t =0

k k-1

Thus Xk}lkul = fkik-l

Example 3 - Let us assume that the rate parameter )‘1; is a fixed random variable
X defined on the signal space, i.e. A = X = X(® } and that X is uniformly

distributed on [0,1]. The best estimate Xk ati.q e t= 1:k is given by:
: 2 z :
A E X - (X ~

X =X+ - - 2 (- X ) kL2, (44)

k1™ i)

~

where XO = i,

lal

Note that in order to solve (44), we need to know Ek_l(Xz), which can be obtained
from another difference equation involving a term ﬁk_l(x3) and so on up tq
infinity, Therefore (44) is not a closed form solution for the best estimate.
However, this is a general characteristic of nonlinear estimation.

Motiva_tea 5y the problems of Sol.ving (44),. we develop below a recursive

formula for the conditional proba.bility deﬁsity sk(X).

17
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Theorem 3 - Let [Sk(x) be the conditional probability density of the random
variable X = X(UJS) given 3k. Let )\k(Ui.X), the rate of the jump process, for
Uis “, be a know function of X. Then

) e AU, - A [(U)+g (U,x)
| i=1 Meo1(U3) Ay )

A é ~ ~
where gk_-l(Ui' x) = )\klk-l(Ui' x) Ak(x) - Ak‘k-l ?\k(Ui,x)

jvx

Proof Letus consider the random variable y = e, then

o ~ o E (VAU - ¥, oA (U,)+h (U.)

k-1 k kel k-1 k-1 A
E (y)=E_ (y)+Z — LMl 3 Ml g gy (a6)
k k-0 =l My (U (L-Ayyy ) kd
Wk-1""1 Kk-1
Since pk(-) is the conditional probability density, then
o . "
Ek(y) = | exp(;vx)pk(x)dx , for veR (47)

Therefore, from {46) and (47) we get

r

J exp(jvx)ﬁk(x)dx = " exp(jvx)ﬁk_l(x)dx_

F 3o 1

=1 lklk-l(Ui)(l-}‘kik-l)

I_ Jexp{jvx)?\k(Ui)ﬁk“l(x)dx - )\klk_l(Ui)J,exp(jvx)ﬁk_l(x)dx

~

+ J exp(jvx) ()‘k]k-l(Ui))‘k-lkik—lkk{ui))ﬁk-l(x)-dx}

for aﬁy ve R, Thﬁs

o o AU < Ag (U (UDA =h g A (U)o
Py (%) = By (x) ¥ B _4(x) e U5 s Ul 5 e | W

18
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where So(x) is the initial probability density function for the random variable X

Example 3 (cont.) Let }\k(Ul,X) = Ak(X) = X be 2 uniformly distributed random

~

variable, then (45) reduces to

- A - kel » il
By (x) = By (x) [ 1+ % e - X, )b k=12, (48)
Xper™ Ky y)
S
where Xk_l- J xpk_l(x)dx, and
Eo(x) = §1 0sxsl
0 ' otherwise
Notice that knowing Bk-l(x) we can find Xk 1 which in turn allows us to find

sk(x), and so on. Thus we obtain a close form solution for all the conditional

moment of X. Itis straiphtforward to verify from (48) that Xk satisfies (44)

Recursive Smoothing Estimate - We wish to find a recursive formula for the

Lo BV N el ~

optimum smoothing estimate X

of the random variable X, given § for k< n.
kln k n

Thegorem 4 , (OUptimal smoothing estimate). The optimum estimate kk{n’ for

[ B land

k< n and k fixed, satisfies the stochastic equation

n-l = Box R (U ) -%X, Ao (U )+'1:1. (U )
X, =X, +35 = ki i it 7 s ~
dn " THE ik mel ik Tm L e i m q,,(U_)  (49)

MV (1-Aigy)

where

A -

}
=1 i[xk(kiﬂ\i(Um)}‘ +1( +ﬂ (U MUl

i
B
] »

- A
hk}i (Um)

(50)
=B x, X U, -4 u,. M|
L%l VM Mg AP

19
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Proof The proof is very similar to that of Theorem 2. In fact, the smoothing

~

estimate is given by

2 = L= T £
Xidn E (XA = B XA 4 (51)

where

1-) oy kn(Um) " kd n-l(Um)

zn - — n +r§=1 = = nn(Um)
Lknln-l Anln-l{Um) (l-lnln_l)
- Xﬂ (U ) =X (U
n-1'""m m n_m n]n-l
+m§1 ~ 'nn('Um} (52)

kn‘n-l(_Um) (I-Knln- L

Upon supstitutio'n' of (52) in (51), we obtain

' En-l(XkAn(Um)) _Xk‘n-l}‘nln-l(Um)+hkln-1(Um) "
. - a (U_) (53)
)‘nl'no-l(Um) (I-Anln-l)

Xkln= Xkln-l :ngl

for n=ktl, k+2, --+ . Writing the stochastic equations for inn' 1’Xk‘n' PO

etc., we deduce (49).

~

Recursive Prediction Estimate - We wish to find a2 recursive equation for optimum

prediction estimate X of the r_andom variable X, given 3n for n< k. We

k]n

assume here that Xk is Es measurable. A sufficient condition for the Bs

k

measurability of Xk is that Xk be constant on 2

1~

Theorem 5 (Optimum prediction estimate). Assume that the random variable

N

Xy is ﬁs measurable. The optimum prediction estimate Xkln' for k> n and k

fixed, satisfies the stochastic equation

20
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A aoooweloe XA (U) - KMt P! 01 V)
Xn® Xdot 2 EZ » U (U
i=0 m=l Mgt Um!? - 2i)s)

(54)
where h'kii(um) is defined in (50)

Brogf - The proof of this theorem is identical to that of Theorem 4 and will be

[ ]

omitted.
A special case of Theorem 4 is for U= [UI] = {1}. In this case, the

~
recursive formula for xkin becomes

]

n-1 E.(X, A, )-;f A
iy _3 17 ki kil 4l
Xkln = Xk!k+ E ~ ~

=k My (=20 y)

(55)

which has been derived by Segall [1]. The prediction estimate ';{kln’ for

u= {1} , becomes

Yok +’;'1 E XA ) - XidiMals
dn~ “HoO -

= " (56}
=0 "i+1|1(1'}‘i+1|i)
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5., COMMENTS ON OPTIMUM LINEAR ESTIMA TION

In this section we indicate how to obtain the best linear estimate ii] n(Um)
of the intensity function Ak(Um'), m=1,2,,,., in the sense of minimizing the error
covariance function E(N{(Um) - ilfln(Um))z by observing a sample path realization
(ni(Um), i=1,2,...,n), n 2k, of a discrete tirne point process (ni(Um)) which is
obtained (see Section 2) from an arbitrary discrete time, discrete amplitude jump
process (yi, i=1, 2, ve.an). AB we discuss in Section 2, the Dbob submartingale

.

decomposition of ni(Um) gives

n(U_) = A(U_) +qU_ ), (57)

for i=1,2,...,n; m=1,2,..., where qi(Um) in a MD sequence, therefore

' E(q_i(Um')qj(Um)) =0foralli,j=1,2,...,n.

b
The best linear estimate A (U ) 1is of the form
_ k] n’ m

f\z n
l’k] n(Um) - E()\k(Um)) +E

Z )i U ) - BN (58)

where the unit response Hki(Um) is obtained from the orthogonality principle
B[O (U_) -3 (U NmU_)-Eh© )= 0 - (59)
m kln' m ) m jom
for k,j =n, andm-=1,2,....

When )k(Um) is the state of a linear dynamical system, the Kalman filter

can be used to recursively compute the optimum linear estimates,

22
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6, A CLASS OF PROBLEMS IN WHICH THE OPTIMUM ESTIMATES ARE
LINEAR

It is well known that the unconstrained minimum mean-square error
estimates of one set of random variables from another set are linear when the
two sets are jointly normal. Few other examples are known where the optimum
estimates are linear. In this section we present a problem for discrete time
point processes in which the optimum estimates are linear.

We will examine the problem of estimating the rate parameter X for a
binary discrete time point process when X is a random variable with the prob-

ability density function

o

M xk(l-x)m for 08 x =1
m! ki

Py (%) = 9 - | {60)

0 elsewhere

-

where k and m are non-nep~tive integers. Let us assume that the observed

discrete time point process Yy n=1,2,... is a seguence of binary numbers with

Ply, =1 x)=1- Ply_= 0lx)=x ' | ~(61)

and that it is an independent sequence conditioned on X, that is,

: n _
Ply, = §,i=L...,n|xX) = iﬂ=1 Py, = & |X)

= x5 (1-x)" "8 (62)

23




where

n
S= .2 ‘A

i=1

From (25) it follows that

Ply,=€,i=1,...,n|X=x)

X Px(x ‘Yi = gi' i=leeeyn)= Px(x) 1,

] P(yi=§1,i=1,...,n|X=x}px(x)dx
0

N xk+S a )rn-i-n-S

= 3 — X for 0 sx s1

. J‘ xk-i*S (l_x)m+n-5 dx
B 0

‘ Using the fact that

g L. m n

] ¥ (l-x)"dx=m! n!/(m+n+l) |

0
yields
: : (k+tm+n+l) | k45 min-S
= = - <
px(xlyi,1 L,...,n) (%+5)1 (m4n-51 x (l-x) for 0 =x 1
N Therefore, the minimum mean-square error estimate of X given VATERETR is
% [l P 1‘
Xn= E{X lyi,...,yn} = J X Py (xlyi,i=1,...,n} dx

2 _ :

. |

- = (k+l+ L y.)/(ntk+m+ 2)

! =1 1

1 24

5

(63)

(64)

(65)




b

|
Romoans )

[RTY 1

oo

=3 .
o

Raadane

oy
bzl

which is a linear estimate, This result is not at all obvious from the recursive
estimation formula of Example ] in Section 4. Notice that as n becomes large,
the optimum estimate converges to the proportion of one's in the observed
sequence,

The optimum estimate is unbiased. This follows since

E{X ] = (k+1+n E(y,] )/ (n+k+ m+2) | (66)
and

Ely,} = E{Ely, |X]] = E{X] = (+1)/(k+m+2) (67)
50 that

E(X) = E(x] (68)

The linear minimum mean-square error estimate can also be derived by
appealing to the Doob decomposition and expressing the observations as

¥y © X+ q; The sequence q =y - X is a martingale difference sequence with

_ 2\ = T :
E[qiqj}—E[E{(yi-X) lx}}éij E‘xtl-x)}ﬁij

(m+1) (k+1) ‘
(m+k+2)(m+ k+3) 6'13' (69)

The observations can be arranged in the matrix form

"2 ! 1z
= S JE N (70)
_.Yn_i ,.1..J B *n
or
¥ =A X+gQ | - (101)
25
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Then the optimum linear estimate is [7, Ch.13]

i‘{: -5(x} + (a'rPa + v Aty - BLYD (71)

N

where 55 covQ and V= var X, This reduces to the conditional mean Xn
derived above. The corresponding mean-square error is
t -1 -1,-1 _ (m+1) (k+1)

A 2 _
ELX-X)" = (ARTA +V ) o e i mi ) k  mtZ) (72)

The Kalman filter [ 8] can be used to obtain the optimum linear estimates
recursively. If we consider X to bé the state of the dynamical system
X =X withX_ = X, then the observations arey =X +q_ and the Kalman
ntl n 0 n n n

filter equations become

5‘(2 = :?c]:_l + (T Jvarq ) (y_ - :?:lf_l) (73)
and

I‘n = 1"n_1 (var qn)/ (I‘n_'l +var qn) {74)
with the initial conditions

57:;’ = EfX} and T =varX (75)

The mean-square error at time n is rn'

In computer simulations of the optimum nonlinear recursive estimator given
by (44) ard (48} and the oi:timurﬁ linear récursive estimator of p_reviqus paragraph
with probability density functions for X not belonging to the class in this section,

we found only small differences in the estimates. This can be explained by the

g e+ i gon eyt
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fact that after a few steps the a posteriori probability density function becomes
peaked about the true value of X and can be closely approximated by a density
of the class in this section. Then the two estimates become nearly identical.
i
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