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ABSTRACT

In this paper we obtain optimum estimates of nonobservable random
k
	

variables or random processes which influence the rate '='unctions of a
discrete time jump process (DTJP).

The approach we follow is based on the a posteriori probability of a
nonobservable event expressed in terms of the a priori probability of that

au	 event and of the sample function probability of the DTJP. Thus, we obtain
a general representation for optimum estimates and recursive equations
for MMSE estimates.

In general, MMSE estimates are nonlinear functions of the observations.
We examine the problem of estimating the rate of a DTJP when the rate is
a random variable with a probability density function of the form cxk(1-x)rn
and show that the MMSE estimates are linear in this case. This class of
density functions is rather rich and explains why there are insignificant
differences between optimum unconstrained and linear MMSE estimates in
a variety of problems.
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¢+ I. INTRODUCTION
I'i
I' t

r
Estimation and decision problems arising in communications and control

r

it
have been studied in detail for continuous time observations. 	 However, not much

c

it

tf has been published for the case in which the observation process is a discrete
I'.

t
r ^

time jump process (DTJP).	 We define a DTJP as a process having arbitrary
.

jumps at times tit tZ ,....	 A more precise definition is given below. 	 Segall [1]

3 obtained some optimum estimates for the special case where the jumps are

i	 sttt
restricted tobe unity by using_discrete time martingale techniques. 	 In this

f paper we derive optimal estimates for more general cases.

In Section 2 we define discrete time jump processes precisely, present
r

some representations, and derive the likelihood function for an observed reali-

zation.	 In Section 3 we derive the a posteriori probability measure for a 'I

' nonobservable random process we wish to estimate given an observed realization

of the DTJP.	 Recursive optimum estimation equations are derived in Section 4.
i

i
The problem of optimum linear estimation is briefly discussed in Section 5. 	 An

interesting example in which the optimum estimates turn out to be linear is

` presented in Section 6.
li
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i	 Z. DEFINITION, REPRESENTATIONS, AND LIKELIHOOD FUNCTION
FOR DISCRETE TIME JUMP PROCESSES

We wish to describe an arbitrary discrete time jump process, taking

values on a .f-dimensional Euclidean space R^ by means of discrete time counting

1,L	
processes. This approach has been used in the context of processes with

independent increments and in general continuous time jump process.

Let T be the countable set
i
(1.

r

where ti is a real number, i, e. t. CR, for i = 0, 1, 2, .... Let Q be the set of all

Possible piecewise constant right continuous functions defined on R, taking

values on R n, and having jumps in T only. An element weft will be called a sample

function. Define the variables Y. Y(t,) and y, ^ y(t,) as

fj

t 1'^

I
d

j

4

t^

Y i (w ) = value of w at time	 t = ti e T for w CO,

YO(w) 
6 

0;

Yi ( w) Y. (w)- 
Yi-1(w)= lump size of w at time t= ti s i

Yo (W) 
^ 0

2
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Let U be the minimal sigma-algebra of subsets of 0 such that all functions

(Yi (w), ti e T) are measurable. Denote by P any probability measure on a. The

triple (1),;Y, P) will be called the discrete time jump process and will be denoted

by Y. Since yi is a 3 -measurable function for all i 2 0, we define IFk to be the sub-

sigma algebra of a generated by (yi (s)), ie(0, 1, • • -, k)). For any Borel set A of

R ',R , with 04A, define the random variables N k (A) and nk(A) as

Nk(w,A)^ E	 I(Yi (w) - Yi-I (w)eA)	 (1)
0<isk

nk(w,A) ^ Nk ( w ,A) - Nk-l ( w , A ) = I(yk ( w)eA)	 (2)

where I( • eA) is the indicator set function of the set A. In accordance with

accepted usage, we shall drop the symbol w and write Y k , Nk , nk , etc. , for

Yk (w), Nk (w), nk(w), etc., respectively. Note that Nk(A) represents the number

of jumps of the process Yttatfall inA during the time interval (t 0 <ti stk ] . Thus,

Nk(A) is a finite, nondecreasing, ak-measurable function of k. There-

Jefore, (Nk (A), k=0, 1.... ) is a submartingale for any Borel set ACR . The Doob

decomposition for submartingales, [ 2, Chapter VII] ,implies that there exists a

unique decomposition of Nk (A) in terms of a (ak ,P)-marting'ale Qk(A) and a

0k-1 measurable, increasing process II k (A) withII O (A) = 0	 such that

Nk (A ) = Qk (A)+ 11 k ( A ) > k=0,1,2,...	 ('.'3)

From (1) - (3) we obtain, for k = 0, 1, 2, ... , and any Borel set A

U
nk (A ) = gk (A) + TTk (A )
	

(4)

u

	 where	 qk(A) Qk ( A ) Qk-1(A)

f t !	
nk(A) p

IIk(A) - IIk_1(A)
.1	 3
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Note that (qk (A), k= 0,1,...) is a martingale difference sequence (MD).

,Bemark J,, ,, The random variable rrk(A) has a simple interpretation in terms

of the condit±onal probability of a jump ai time t k . By taking the conditional

expectation with respect to k-1 of both side: of ( 4) we obtain

nk(A) = P(yk eAl a,k _ I )	 (5)

The Doob decomposition (4) has been defined her-- i) to model the

process Y, ii) to guaranty the existance of P(ykeAp k-1 ), and iii) for obtaining

estimates of nonobservable events (Section 5).

It is possible to represent the process (y k , tk s T) by means of the process

n  defined in (2). The following lemma is a special case of a result given in

Gikhman and Skoroklnd[ 3, Chapter VI] and the proof will be omitted.

Lemma l Let yk(A) D= yk I(ykCA) = yknk (A) for any Borel set A C:kR with 0 dA.

`I
	 Then

y (A) _ xnk (dx) = J xg k(dx) + xirk (dx)	 (6)

A	 A	 A

fork= 1,2, ...

ij
	

Note that yk (A)is the jump size of Yk provided that Yk Yk-1 sA- If

S
	 A = R

le
- 0, Yk(A) becomes yk (R

1
- 0) = yk, with

y 	 j xnk (dx) = J xgk(dx) + J xrrk(dx)	 (7)

C
	 where the integration is on the space R with thevector 0 excluded. The :integrals

in (6) and (7) are defined in the sense of Gikhman and Skorokhod [ 3, Section 3,

Chapter VII].

Remark 2 If the space of all possible jumps of Y is countable, say 	 , with

24_ {Ul ,U 2 , • • - ], the above representation reduces to

4



ub' nk(U)	
I(yk U)	 for Ue ?4	 (g)

I'

j nk(U) = qk ( U ) +	 Xk(U)	 (9)

^'	 I
and	 yk = £ U. c([Ti ) _	 Ui gk ( Ui ) + E	 Ui ^c (Ui )	 (10)^ i i=1

m
where	 Xk(U) = P ( nk (U ) = l I ^k_1 )	 (11)

In the estimation problem we will study later on, we will assume, for

^ I ^u simplicity, a countable jump space Z!.
1 The likelihood function.	 The likelihood function is a quantity proportional to

the probability of observing a particular realization of the jump process

(Yi' tOstistk) for ti,tk ET and plays a fundamental role in estimation and

decision problems [4].

We wish to find the likelihood function for a discrete time discrete

'
fi

amplitude jump process. Denote by Pk	 p(tk ) the probability of having a

" particular realization of Y, i. e.

;r

Pk = P(yi = i,	 i= 0, 1, ... , k)	 (lZ)
iI

^

P

.i
where	 i EV	 Then

kJ]

Pk = P ( Yk	 k' Yi= $ i , i = 0,1, ... , k-1) Pk-1

[i

y

!(
k

=	 "T	 P ( Y .	 $i^ Y.	 ^i . i = 0, . , ... , i -1 ) P ( Y0=	 0)	 (13)
i=1

'
If

( where
1

P(Yk= g klyi = ^i, i= 0.1, ... ,k-1) = P(Yk = §kk_l)
i

ff

t

f = P (nkO = 1 Uk_1 ) ° ak (gk )	 (14)

5

1
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Let t• 
1 ^

, t. 
2 , 

• • • , be the jump times of the random process Y with jump
^ 

amplitudes Ej , Ej , • • , Then nj (Ej ) = 1, i = 1, 2, • • . , The probability of no
1	 2	 i	 i

jump,nk 0 is given by

P( nk = 0lyi = S ir i=k,2,....k-1)=I-'k

k
where	 ?k = £ ai(Ei)

i=1

Therefore, the likelihood function (13) becomes, with p0^P(yO = E0)'

k	 p

	

Pk = PO 77 (ai(Ei))"i('i) 	 1-n i 

i-1	 1

which can also be written as

,- k
pk = expL l£ 1 (Pm ( d iT)ni (Ei ) f (2'n(1-1.1))(1-ni) J

(15)

(16)
k	 m	 %(U )	 n

	

- 
exp LEI ( m£ 1	 1 - Xm— n i (U rill )

+ (1 - i )) -J

where we have used the fact that E O 0., ni =1F 1 ni (Um), and
k	 km
£	 £ k X. (U ) n. (U ) _ £ 2n a. (E.) n.(E.)
i=1 m=1	 i m i m

Remark 3	 If the set of all jump amplitudes of Y is uncountable,

then, by assuming that the limit

E
X. (X) = lim	 (TT (Ax.) ,rrl(^x,xf6x)]

maxlA ix ^ O

exists, where x = (xi , xz, - • • , x )e R , then the likelihood function a;
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y^	 n

pk = expLF. 1 ^^ RPm( 1_̂ 1 )ni(dx)+2n(1_Xi)^

R

where ai J a i (x)m(dx) and m is a measure on R .
R

R

(17)
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3. A POSTERIORI PROBABILITIES FOR ESTIMATION

l"	 E We shall formulate the estimation problem in a manner motivated by a

problem in communication theory [ 51, [ 61.	 Let X(t) be a nonobservable

"signal" which is applied to the input of a general channel. 	 Let y(t) be the

i^

output of the channel at time to T.	 We will assume that the observation record

If of the channel output at times t 0 , tl , It	 • • • is a sample function of the discrete

time jump process described in Section 2.	 Based on the observation record

(y(Q), 0 s a St; o, teT) we wish to find an estimate of X, in particular, the

minimum mean square error estimate. 	 We formulate the problem in some

convenient probability spaces in such a manner that the observations y can

influence the "signals " X.
s

Let (n ,^ , P ) be a probability space called the "signal space" where I!
as s	 s	 s I+ i

the events B e SI 	 are nonobservable.	 Let (f)	 ,Si	 P	 (W ,	 ) ), w Co , be as	 s	 m rri	 m	 s	 s	 s

probability space called the "transfer space" where the probability measure is
If

parameterized by the elements W 6 .	 The transfer space models the channel I
if

behavior for each Ws CC)	 We want to obtain statistical inferences about thes .
l

3 nonobservable events B e B by observing events B 	 e 13s	 s	 m	 m z

fl) We will assume that the elements W	 eQ	 are the sample functions of j
m m ^I

the discrete time jump process described in Section 2 .
jl Z

i` It is convenient to construct the product space (0,6, P) where 0=0 sxD

'	 6) S3 =	 $ Si	 and
s	 m

P(B s x Bm)	 J	 Pm (WS , Bm)P s (dWS )	 (1$)

Bs E	 `5

fi ^( For example, let Em be the event 
[yl = U

I , y2= U 2' •	
yk= Uk) CO.	 This event 9

I	 7

represents a particular realization of the discrete time jump process from t = t0
S

(yo	 1) up to t = tk.	 Then, from (16)

I	 ^? s



Pm(ws ' Em) = P( ws , Xi , 1e [ O , - - 
o k]) p 

Pk(ws'W r
k )

i-1
km	 )	 i_1

^ (
i Un'ws'wm 	 )-	 1exp	 ( £ EN	 ) n (U ;wZn

^l-1 	 1-^i(tus, wrnl ) 	 i n "n
1-Xi(w$,wm 1 )^ i

(19)

where we have indicated, explicitly, that the rates X.1 and X 
i n
.(U ) depend on the

"signal" element ws and the sample path Wm from to up to ti-11 i. e. wml .

Let us define a new probability measure Pm on the transfer space,

functionally independent of W  and mutually absolutely continuous with respect

to Pm (ws ,-). For the event E m , we define

-k	 m	 Y.(U ; w l-1)
Pm(Em) = exp L£ ^ £ En / i n 1-m \ nl

(U n) - gn 1 i-1	 i	 (ZO)
d !	 i-1 n=1 ` 1-Yl (w m )	 1-yi(w1- )

i5

t.

where the rates y i (U n) and y i are not functions of ws . We define the likelihood

ratio Lk ( ws , w m ) as

Lk ( ' s'	

Pm(Ws,Em)
s' m	 Pm (Em)

= ex r £ (£ 2n \ (Xi(Un;ws, 
wml ) (1 -Yi ( w ml ) )

	

1	 ni (L'.p i= 1 n=1	 i-	 i-1 ))
Y i (Un' w m) 

(1- 
i (w ws'm

1-Yi(wm 1 )	 \

1-?,i(ws, m

9

LJ
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The probability of any event B s CP	 given a sample path realization W m of the

ii
^Y observationrocess can be calculated in terms of the likelihood ratio L 	 givenp	 k

in (21). In fact, we have
F ^L

Theorem 1.	 (Prior-to-posterior probability)
^EI

^. Let ( 0, S , P ) and (fl	 , S	 , P	 (W	 ,	 )) be the signal and transfer spacest s	 s	 s	 m	 m	 m	 s
i

defined priviously.	 Let Lk be a likelihood ratio between Pm (W S , •) and Pm.

Then

1 (ws,W)P(dWs)J Lk	m	 5 x

-

Bs
P(fisxQ	 Is	 ®a k) =	

d P
s (B s IS k)	 (22)

'I Lk(WS, W m) Ps(dw

^s

gg

9 for every B es , where S	 (4 ,fl	 }
a- s

Proof	 The proof of this theorem, in a more general context, is given in

^y

r

[6, section IV]

i
}

Note	 that the right-hand side of (22) does not depend on P O	 because ti
m

it can be written, alternatively, using (21), as !.

P	 (W ,B	 )P (dW )
B	

m s	 m	 s	 s

P(BS x0	 Is	 a Um (tk ))= (. 
s 	 Ps (Bsl k)	

(23)
J

P(W ' B)P(d wm	 s	 m	 s	 s ) ,
f2s

f

G
3 -

where Bm = Em and 5	 S O 0 a	 therefore Pm is a 'fictitious" probabilitym(tk ),
'

k

measure used to prove the above theorem.
tj
^ ^

t+ Remark 4	 (Conditional probability density) 	 Let the nonubservable random I
ji

C !..

variable X be defined as X(UJ	 = W5 e s wher e Q= Rn.	 We want to obtain thes

conditional probability density function of X given t7 r or that purpose, let

B = [X,X+6X).	 Then (23) becomes
s .

I(

^

i

^^
10



1,

(25)ps(XI 9k)

I

+A X

p 
(x, B )P (dx)

Psl[X, X+AX)I k) = J m 	m s _	 (24)
PM ,x, Bm)P5(dx)

R 

91

f^

^l

r	 ^^

^J

^I

n

Dividing both sides of (24) by Tr (AX i ), taking the limit when max I AXiI + 0,
i=1	 i

and assuming that P s (dx) = p 
s 
(x)dx, we obtain

lim	 rr (AXi)-1	
Pm (X, Bm)

P s ([X, X+AX) I Zyk)= 	

f	

Ps(X)
maxIAXiI 10 i=1	 J Pm(x,Bm)ps(x)dx

R 

where Em = B  and Pm(X, Bm) is given by (19) with W s 0 = X.

11
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4. RECURSIVE OPTIMUM ESTIMATES

Let (X k , k= 0, 1, 2.... ) be an integrable random process defined on the

product spare (0, f3). We want to obtain the best estimate x  by observing a

sample path wm from t0 up to tn . The criteria is the minimum mean square

error.

It is well known that the conditional mean minimizes the mean square

error. Therefore, the best estimate is

Xk (wm )	 Xk(WS, Wm)PS (dw sn )	 (26)

s

Using (23), we can write (26) as

E (p ( W 0 Wn )X (w , wn))
X (w n ) =	 m	

(27)k m	
Es(pn(WS. Wm) )

^o

i .

i71

For simplicity, we shall write (27) as

Es(pnXk)

Xkln Es(pn)

El.
12

Ell

L
slu

r

^a

^v

where, for simplicity we have defined

n 6
pn ( W S , Wm ) = Pm (W S , Bm) B  = {En, i

Equation (27) is the best estimate of Xl

wm from t0 up to tn , and we have the followinf

i) smoothing estimate, if n> k (i. e. t

ii) filtering estimate, if n = k (i, e, tn

iii) prediction estimate, if n < k (i. e. tn

i

E



z	 ^^

^tl

i

i

r

i

S

f

E

k

4

a

u

Note that X ma	 ® tk	 y not be A s m ( n) measurable for k> n, which implies that

Xk may not be B s - measurable and (27) does not a pply. However, if Xk is

constant on Q n , then, it is Ns measurable and (27) applies,

Remark 5. Note that the random process X depends on both the signal W ands

the observations W which implies that feedback is allowed, and (27) is the best
m

estimate of X.
^	 r

Recursive filtering estimate We wish to find a recursive formula for X gives

in (27) for n=k.

From (19) we see that

r m(^ (Un )	 1
Pk Pk-1 expLn 1 \ 1--a	 nk(Un) - 	 1- J (29)

where we have droppdd Ws and W  
for simplicity. We prove now that the

denominator of (27) satisfies

— A	 ( W ( x i1 i•1 (Un )	1	 \
Pk E 5 (Pk) = Pk-1 exp \ £ `	 ni(Un) - Ln	 In=1	

(Un)	 1-xi1i-1

(30)

E (x.(11 ) - P•	 )s i n	 i-1where Xil i-1 (Un)	 E ( P
i	

k=1, 2, .. .
s	 -1)

For k=0 we have p 0= 1 and

i n

i

r;

}4	

1

JIl

pl - (1-al)	 \ ^1
(U 

n

	

 )) I

nl(Un) _ 1-^ 1 	if n1 = 0	 (301)
n= l	 1

	

^1(F)	 if nl ($) = 1

The last equality ,follows because nl=1 if and only if there is a single jump of

size X04 at t=t l . Notice that (30 1 ) can be written as

P1 = P O (X1 (9) n1 (^) + (1-X1 ) (1-n 1))	 (31)

13



Taking the expectation with respect to E s , dividing both sides of (31) by E s (po )	 )
r

	

'	 (which is equal to 1), and using (27), we have	 p

	

l J	 E (P)	 E (P	 (5))	 E (P (1-x

1
) )

E s ( p0 )	 Es(P0)	 "l ( g ) +	 E s ( p 0 )	 (1 n1)

Then	 E s ( Pl ) = E s ( P 0 ) al l 0 (^) nl (^) + (1-)'1^0(^)) (1- n1)]	 ( 32)

or	 ,.l = p0 (X110(§)nl(§) + (1- a^ o (^) (1-n1))

l;

Since ( 31) and (32) satisfy the name type of difference equation we conclude that

pl satisfies (30) with k= 1. Using mathematical induction, it is easy to verify

	

11	 (30). The filtering estimate X I4k becomes

E (P X )
X, k = E s (Pk) = E s ( A kXk )	 (33)

whe re	 ) 
(1-	

)
_	 X . (U	 ,'..

A
	 (P )-1P	 expr E F. k i k	 ^i-1 n (U ) _ pm	 1-1 I
k	 k	 k	 Li=1`n=1	 i^i-':Ii 	 (1-^ i) i n	 1-Xi =

	

(U ) ( 1 -X	 )	 1-X
= A	 exp r	 k nE Zn	 k^k-) n (U ) -	 k^k -1 I

	

^d	 k-1	 L n=1 'k!k-1(Un) (1-a k 	 k n	 1-Xk

	

u.	
A
k-Y k

k	 k=1, 2, • ..	 (34)'

where .2 k is the exponential formula, and A0 = 1.

Theorem 2 (Optimal filtering e;stimate). The optimum filtering estimate
N N	

X^k

	

•-^	 . N N M

	

C	
given in (33) satisfies the stochastic difference equation

^	 n	 A	 n

A	 A	 m Ek-l ( Xkak(U i )) - X	 (U) +h	 (U.) A
X	 - X	 + E	 A	

lak-1 k^k-1 i	 k^k-1 i 
q (U )

	

^	 k	 ^k-1 i= 1	 Xo k _ l (Ui ) (1 - XA k-1)	 k i

(35)
for k= 1, 2, • • • , where

14



P

"t

ff
e	 11

h	 ^^	 f

{	

Es(XkXk(Ui)Pk_1)
`	 Ek-1(Xkx (U i)) -	 E (P	 )	

(36)

s k-1

..	 .,	 ll
`	 klk-1(Ui) 

j£1 Ek-
1 C Xk('^^k-1(Ui)'k(Uj) - aklk- 1 (U j )T k (U i) J

`I

it

t	 - Ek-11V X( Wk-1 (U i )Xk - Ok-1 k(Ui))^	 (37)

li	 and

II s	 ok(U1)	 nk(U.) - xl^k_1(U)	
(38)

x

Proof. From ( 33) and (34) we have

X k = E s (,k A k) = E s (Xk Ak-1 1 k)	 (39)

1-x k
But	 Rk =	 , n	 0i = 

Y	 1-aklk-1
r

a (U.)
k i

nk(Ui) = 1 ,	 U i e 4, i= 1, 2, .. .
f

'klk-1(Ui)

^Y	 1-x	 m	 A (U.)

k (1_ £ n(U.)) + 5 ^k 1 - n (Uk	l)

1-^lclk-1	
i= 1	 i=1 'l k-1(Ui)

1-2 k 	ak(Ui) - Nk_1(Ui)
_	 + £	 nk(Ul)

1-Xkl k_1 i=1 ^klk-I) (1-Xkk-1)

g	
+£ k k-1 i k	 k i klk-1 

nk(U)	 (40)

i= 1	 '1 k- 1 (Ui ) (1-a klk-1)
f

Thus, using (39) we have:

^t

, 	- 	 m	 (X a (U.)) - X	 1(U. )XI	
Xl^k = klk-1 

E k-1(X k a k )	 E
+ £	 k-1 k k i	 ^ idk-1 klk	

1 nk(Ui)
l	 1-aldk_1	 i°1	 'qk-1 (Ui) (1-'1 k-1)

< !
i	+	 Ek-1 LXk(alclk_1(Ui)Xk-aklk-1%k(Ui))J 

nkU
( )	 (41)

i

tQ	
i=1	 flak-1(Ui) (1-%-1)

i 15
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s	 By noting that	 = E ] (U.) and	 _ £	 (U.), the first two terms on

	

k	 i k i	 idk-1	 i idk-1 i

the right hand side of (41) are equal to
c	 E	 (X x (U.^) - X	 (U.)

!	 m	 k-1 k k ^'	 i k-1 Ok-1 1
(	 X	 +£	 n	 n	 (nk(Ui) - x^ k-I ( U i ))	 (42)
Ij	 1^k-1 i-1	 'Ok-Pi) (1-^^k_I

I	 and, after some manipulation, the third term on the right hand side of (41) is

C	 equal to

	

ji - I	 m m	 Ek-1LX k ( ^k Ik -1(Ui) 
^ k (U ) ) - ^Igic_1(U.j1I'k(U i)1,

	D	 £ T	 n	 gk(Ui)
i= 1 j=1	 ^Ak-I(Ud (1-Xk k-1)

m	
hWk

-I(Ui)
n	 n	 gk(Ui)	 (43)

k k-1 i
I `^

	^ j	where h	 (U i ) is defined in (37). Combicing (42) and (43) and using (38)we
k^k-1 

ii
	^'	 obtain (35).

Example I - hi the observation process is a discrete counting process, i. e. ,

	

t_	 2(_ [U l] _ [ 1 ] , then ak(U I ) = ak and (32) reduces to
^	 n	 n

l
Ek _I (Xk^k) - Nk-lXkIk-1 ^

	

t	 N	 X^k-1 +	 (1- qk^ k- 1i

This equation has been obtained by Segall [1 ].
LI

t
(

I

	` 3	Example 2 - Let us assume that the nonobservable random process Xk'can be
l^

jI	 represented as

•	 If	 ^

	

((
	 Xk = f (k ' Xk-1' u k-1) + wk

f	 where f is a known function of Xk-1 and of a 3 k _I measurable

16

'j



1	 1!	 1	 1	 1	 1	 1

1r

L

control u k ; wk is a MD on the signal space, and is rat a function of Wm then

wk can be interpreted as noise in the dynamics of Xk. Then, the one step

prediction X k k-1 is

Xk^k-1 = Es(XkAk-1) = Es (f ( k. Xk-l . Uk-1 ) A k-1) +Es(wkAk-1)

= fk k-1 + E s (wkAk l)

We will assume that wk is a MD with respect to some sigma-algebra Ps(tk)e8so

and that Ak-1 is 6 s (tk-1) measurable, then

E s (wk A k-1 ) = E s (E s (wkAk-I Is s (tk-1)) = 0

Thus	 Xklk-1 - fk{k-1

Example 3 - Let us assume that the rate parameter Xk is a fixed random variable

X defined on the signal space, i. e. ak = X = X(W S ) and that X is uniformly

distributed on [ 0, 1]. The best estimate X  at ,-c a t=t k is given by:

E	 (X Z ) - (X	)Z

	

X  = Xk-1 + k-1	 k-1)
z
 (nk - Xk-1)	 k=l, Z, ...	 (44)

Xk-1 - (Xk-1)

where No= z

Note that in order to solve (44), we need to know E k-1 (X Z ), which can be obtained

3from another difference equation involving a term E k-1(X) and so on up to

infinity. Therefore (44) is not a closed form solution for the best estimate.

However, this is a general characteristic of nonlinear estimation.

Motivated by the problems of solving (44), we develop below a recursive

formula for the conditional probability densitypk(X).

17
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Theorem 3 - Let pk (x) be the conditional probability density of the random

variable X = X(ws ) given ak . L •et ak (U i , X), the rate of the jump process, for

Uie ' , be a know function of X. Then

m xk(Uip x) - xk-1 (U i ) + gk-1(Ui' x)
	 l

pk (}d = Pk_1(x)[1 + £ 	 4k(Ui)	 (45)
i= 1	 xk-1(Ui) (1-Xk k-1)

	

^J	 where gk-1 (U i , x)	 Xk^k-i(Ui, x) X k(x) - Xkl k _ 1 Xk (Ui , x)
i

Proof Let us consider the random variable y = ejvx, then

	

. ,. ^ h!	 N N .v

m Ek-1 (Ya	 ik (U)) - Yk-1^k-1 t(U.)+h^k-i(Ui) ^
Ek (Y) = Ek_1(Y) +i£i	

gk(Ui)	 (46)
)k^k-1(Ui) (1-1)-1)

J
nc

.Since pk(•) is the conditional probability density, then

	

^yl	
Ek(y) _ exp(jvx)pk(x)dx	 for veR	 (47)

	

C:a 	Therefore, from 146) and (47) we get

eXP(j vx) Pk (x ) dx = ! exp(j'vx)pk-1(x)dx

+ £	 1	 L f exP(jvx)X (U.)p	 (x) dx - ]	 (U.)Jexp(j)P	 (x)dx
i=

1 XOk-1(Ui)(1-Xok-1)	 k i k-1	 k-1 i	 k-1

t

+ J eXP(jvx ) ( X^ k-1 (Ud k- 'i k-l'k(Ui)Ipk-1(x)dx'

	

!	 for any veR. Thus

m ak (U i ) - )`k^lc-1(Ui) + ^lc^k-1
(Ui)^k-'^k- l'k(Ui) 

^

	

9	 Pk(x) = Pk _l (x) + Pk _ 1 (x ) £	 gk(Ui)

	

i= 1	 '	 (U.)(1-)	 )I	 lak-1 i	 k^k-1

18
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i

where p 0 (x) is the initial probability density function for the random variable X.

Example 3(cont.) Let a k (U I ,X) = ak(X) = X be a uniformly distributed random

}	 variable, then (45) reduces to

^

Pk(x) = Pk-1(x) L 1 + x -Xk 1 	 2 (nk - Xk-I)"	 k= 1. 2, ...	 (48)
Xk-I - (Xk-I)

^	 ^

where	 Xk-1 J xpk-l(x)dx, and

Po(x) _	 1	 0 5 X:5 1

0	 ' otherwise

^
^

Notice that knowing Pk-I (x) we can find Xk-I which in turn allows us to find

Pk (x), and so on. Thus we obtain a close form solution for all the conditional

moment of X. It is straightforward to verify from (48) that X  satisfies (44)

Recursive Smoothiny,,Fsrtimate, - We wish to find a recursive formula for the

optimum smoothing estimate X An of the random variable X  given 9 n for k<n.

Theorem 4 (Optimal smoothing estimate). The optimum estimate X n, for
N N •V N N N

k< n and k fixed, satisfies the stochastic equation

R

L

	

^	 n-1 m	 E (X a. (U )) X x.	 (U ) +h (U )

	

X, _ ?X	 + £	 £	 i k i+1 m	 lai i+l^i m	 lc^i m ^
i n	 Ak i= k m=1	 ^	 qi+l(Um) (49)

Xi+lji (Um ) (1-Xi+1d

whe re

hldi(Urn) j l EiCXk( ^i+lli (Um )Xi+1 (Uj ) - Xi+Ai(Uj)Xi+1(Um)_1

F EiLX0( i+lli
(Um)1 i+1 Ii+lji)i+l(Um^)'I

(50)

19
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,1	 !	 I	 I	 I	 I	 I	 i	
_I..

Y

and q i+1 m	 i+1(U ) n	 mi+1^ i(U ) - x	 (U m)

j 
a	 Proof The proof is very similar to that of Theorem 2. In fact, the smoothingN N N

t	
estimate is given by

l )

	

	 Xj n = E s (XI, n; = Es(Xknn- l^n) 	(51)

where

7

= 1-Xn + £	 Xn(Um) - 'An-1(Um) nn(Um)
An 1- ^	 m-1	 (U ) (1-^	 )r1n-1	 nln-1 m	 4n-1

0	 + £ '^n-I(Um)'m - ^n(Um'dn-1 n (U j	 (52)

rr	 m=1	 'r,In-I(Um) (1-' n-1)	
n rn

9i
s^

Upon supstitution of (52) in (51), we obtain

En-l(XkXn(Um)) -Xkn-1'nln-l(Um) +hkn-1(Urn) 
q ( U ) (53 )X^n= X^n-1 m l	

'4n-I(Um) (1-'n n-1)	
n m

for n= k+1, k+2, • • • 	 Writing the stochastic equations for X^ n-l' Xk n-2'

etc., we deduce (49).

Recursive Prediction Estimate - We wish to find a recursive equation for optimum

prediction estimate Xk In of the random variable Xk given &n for n < k. 'We

assume here that X  is Pis measurable. A sufficient condition for the Rs

measurability of X  is that X  be constant on 0 m.

Theorem 5 (optimum prediction estimate). Assume that the random variable
^

y	 N N N N N

Xk is a s measurable. The optimum prediction estimate X An for k> n and k

fixed, satisfies the stochastic equation
i

r	
20

it?



A

n-1 
E i (Xkxi+l ) - Xklixi•

X^ n = X,10 +£	 ^

KI	 i=0	 xi+l i(1-Xitlli)

21

	

n	 n n	 n

	n-1 m	 E	 ^.(X	 (U )) - X^ x	 (U ) th (U

	

i	
)

	£ 	
k i+1 m	 i i+Ai m	 i m

X	
q (	 )

n = X t£kJ0	 i+l Um
i=0 m=1	 xitlli(Um) (1-Xi+4i)

(54)

where hO i (Um) is defined in (50)

Proof - The proof of this theorem is identical to that of Theorem 4 and will be

omitted.

A special case of Theorem 4 is for U= {U 1 ] = (1]. In this case, the

recursive formula for XA An becomes

	

n	 n
n-1 E. (X Xi+l) - N i

l .
X	 = X	 +£	 i k i+1	 kli t+l^i	 (55)

lcln	 ^k i=k	 xi+ll (1-^i+lei)

which has been derived by Segall [ 1] The prediction estimate XA n, for

U = {1 ] , becomes

7
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5. COMMENTS ON OPTIMUM LINEAR ESTIMATION

In this section we indicate how to obtain the best linear estimate X kl n(Um)

of the intensity function %k(Um), m=1, 2, , , . , in the sense of minimizing the error

covariance function E((Um) - 'kln(Um))2 by observing a sample path realization

(n 
i m
(U ), i = 1, 2, .... n), n a	

i
k, of a discrete time point process (n m(U )) which is

obtained (see Section 2) from an arbitrary discrete time, discrete amplitude jump

process (yi , i= 1, 2, ... , n). As we discuss in Section 2, the Doob submartingale

decomposition of n 
i m
(U ) gives

ni (Um ) _ %i(Um) + g i (Um) ,

for i= 1, 2, ... , n; m= 1, 2, ... , where g i (Um ) in a MD sequence, therefore

E(gi (Um)q.
77

 (U m )) = 0 for all i, j = 1, 2, ... , n.

The best linear estimate Xk l n (Um ) is of the form

Ei

^f

^G

(57)

(58)^I

„ k	 n

'kJ n(Um) = E (^k (U m)) +1£1 Hki (U m)(ni ( Um ) - E(Xi(Um)))

i

where the unit response Hki (Um ) is obtained from the orthogonality principle

	

(1^	 E IVUm) - ak l n(Um)I( nj (Um) - E(k j (Um))] = 0	 (59)

for k, j sn, and m = 1, 2, ... .

liWhen U

	

til ^'',	 ( m ) is the state of a linear dynamical system, the Kalman filter

can be used to recursively compute the optimum linear estimates.IS

11
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6. A CLASS OF PROBLEMS IN WHICH THE OPTIMUM ESTIMATES ARE
LINEAR

It is well known that the unconstrained minimum mean-square error

estimates of one set of random variables from another set are linear when the

two sets are jointly normal. Few other examples are known where the optimum

estimates are linear. In this section we present a problem for discrete time

point processes in which the optimq,m estimates are linear.

iNe will examine the problem of estimating the rate parameter X for a

binary discrete time point process when X is a random variable with the prob-

ability density function

(km! k ) I 
xk(1- x)m for 0 s x s 1

PX (x) =	 ( 60)

0	 elsewhere

where k and m are non-neg^tive integers. Let us assume that the observed

discrete time point process yn, n= 1, 2.... is a sequence of binary numbers with

P ( yn = "X) = 1 - P ( yn = 01X) = X	
(61)

and that it is an independent sequence conditioned on X, that is,

n
P(yi =	 i= 1, ... n IX) = rr	 P(yi = 9i IX)i = 1

= XS (1- X)n-S	(62)

23



where

n
S= E	 y,

i=1

From (25) it follows that

P(y,=E„i=1,...,njx=x)
pX (x lYi = ^i,i=1,...rn	 Xx	 1,r

P(yi=,i=1,...,nJX=x)pX(x)dx

0

xk+S 
(1- 

x)m+n - S

1j k+S (1- x)m+n - S dx
0

for 0 5 x 5 1	 (63)

Using the fact that

1
xm (1-x) n dx= m  n! /(m+n+1) I

0

yields

(k+m+n+l) I	 k+S	 m+n-S
p X {x ^yi , i=1, ... , n) _ (k

+S) I (m+n - S) ! 	 x	 (1-x)	 for 0 !9x!51  	 (64)

Therefore, the minimum mean-square error estimate of X given y i , .... Y  is

1•

n = E (X l yi .... , yn } = J x PX (x I yi, i= 1, ... , n) dx

0

n
_ (k+l+ E yi)/(n+k+m+ 2)

i=1

24



which is a linear estimate. This result is not at all obvious from the recursive

estimation formula of Example 1 in Section 4. Notice that as n becomes large,

the optimum estimate converges to the proportion of onus in the observed

sequence.

The optimum estimate is unbiased. This follows since

E(Xn } 	 (k+1+nE(yi ) )/(n+k+m+2)	 (66)

and

E(yi} = E(E (yi lX}} = E(X) = (k+l)/(k+m+2)	 (67)

so that

E(X = E(X}	 (68)n

The linear minimum mean-square error estimate can also be derived by

appealing to the Doob decomposition and expressing the observations as

yi = X + qi . The sequence q  = y  - X is a martingale difference sequence with

E(giq.J }= E(E((yi -X)2 1XI } 6 i = E,X(1-X)} 6 i

(m+l)(k+l)	 6
(m+k+2)(m+ k+3)	 ij

The observations can be arranged in the matrix form

(69)

Yl

Y2

Yn

1
1

X +

1

ql
q2

q 

s
(70)
	

w

'z

or

Y = A X +Q (701)

25
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Then the optimum linear estimate is [7, Ch. 13]

	

1( : '	 XR = E [X} + (A t R- 'A + V-1)-1 A t R-1 (Y - E[Y})	 (71)

	

W	 n	 — —	 — —

where R_ = cov Q and V = var X. This reduces to the conditional mean Xn

derived above. The corresponding mean-square error is

E [(X - X ) 2 } _ (A t R -1 A + V -1 ) -1 =	 (m+l) (k+1)	 (72)n	 — — —	 (k+m+2)(k+m+3)(n+k+m+2)

	

111	 The Kalman filter [ 81 can be used to obtain the optimum linear estimates

recursively. If we consider X to be the state of the dynamical system

Xn+l = X  with X0 = X, then the observations are y n = Xn +qn and the Kalman

	

Cy	 filter equations become

Xn= Xn-1 + ( n/var qn ) (Yn - Xn-1 )	 (73)

and

	F1 '	 n= n-1 (var qn)/ (rn-1+var q n)	 (74)

with the initial conditions

X 0 = E (X } and 0 = var X	 (75)

^n
The mean-square error at time n is r	 9

n

In computer simulations of the optimum nonlinear recursive estimator given	 n
1

by (44) and (48) and the optimum linear recursive estimator of previous paragraph

`	 with probability density functions for X not belonging to the class in this section,
(	 )

we found only small differences in the estimates. This can be explained by the	 k I

Ej	
26
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fact that after a few steps the a posteriori probability density function becomes

JJ.'	
peaked about the true value of X and can be closely approximated by a density

S ^	 of the class in this section. Then the two estimates become near; identical.

,
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