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CARBON DIOXIDE AS WORKING GAS

FOR I AHORATORI' PLASMAS

ABSTRACT

31caturcment y ►► ith a Rl probe. retarding poteuttai anal , t • ser and »lass spectrometer in a
lahnrator,r plasma taut, hair heen perowmed using the gases ('(1 2 , N 2 . A and M , in order to

compare their properties as working gases jor lahorah)r. ► plasma production 17te overall result

is that CO, kadv to Itigher plasma clettsities at hmver neutral-gas pressures as ► yell as to a larger

Maxwelhan component uJ the electron population. ivitile the electron temperature is lower than

that when .V2 , A and He are used.

1. INTRODUCTION

One of the tasks involved in a laboratory plasma-diagnostics protect at thc University of

Texas at Dallas WTD1 was to eduip a cylindrical vacumn chamber, 70 cm long and SU cm in
diameter. with a plasma source providing a collisionless plasina with a Maxwellian, low-teri

perature velocity distribution of the electrons. To each end flange of the tank was attached a
bell jar, as sketched in Figure I. The general concept is tv produce a primary plasma

TANK

BELL JAR

P 	 G	 P	 I	

P2z	 i

j^	 a
5

l t¢ure 1.	 Schematics of the ractnon tYstem.



2	 GRNUALCONSIDERATIONS

(discharge) in a region of high Pressure (bell jar) and let it expand through 
all
	 into a

region of low Pressure (tank). The present scientific note is concerned with the preparatory
phase of the project in which different gases (CO 2 , N 2 A, Ile) were compared in order to learn

About their properties as working gases for laboratory plasmas.

2. GENERAL CONSIDERATIONS

'I'hc pressure p, am:' 1) 2 in the tank and bell jar, respectively, are governed by the following
equations (see Pig. I):

2Q

PI = -S	 (1)

AP = P2 Pa = G
	

(2)

P2 = Q (S + d)	 (3)

Q is the gas stream in Torr I V introduced into each bell jar, G is the gas kinetic conductivity
In 19" of the orifice and S is the pumping speed in i V applied to the tank. For S»G we get

p2 ^ Q/G r Ap, i.e. p, «P2 . The first problem is to produce values for p, and P2 such that

P2 is sufficiently high to run a discharge and p, is sufficiently low to allow fora collisionless
plasma in the tank. 'Collision less' means that there are practically no collisions between
electrons and neutral gas particles. The collision frequency I'coli then is governed by collisions

with the tank walls according to

vcoli ^ 
Pre 
	(4)

where D is essentially the diameter of the tank and Ve is the mean velocity of the electrons.

The plasma density Ne in the lank is governed by the continuity equation

aN
c, _ P 

at — 

The production teran P describes the quantity of electrons that enter the tank per unit time
through the orifice. It is a complicated function of Yhc discharge parameters such as working

gas, working pressure P 2 , geometry, material and voltages of electrodes (cathode, anode, grids)
etc.

The loss tern L describes the quantity of electrons that get lost per unit time primarily clue

(5)

i
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CONSIDERATIONS CONCERNING COr AS WORKING GAS	 3
I

to recombination at the wall. In a very general way G call be described in terms of a mean

lifetime re that is spent by an electron in the tank before gelling lost:

N
L	 e

Te

e

In a stationary-state situation ((BNe/3!) = 0) the electron density in the lank will then be

controlled by the production term P and the mean lifetime according to

Ne—P, re	(6)

The lifetime re will be closely related to the lifetime rr of the ions, since, owing to their low
mass and the strong Coulomb forces, the electrons will always be tied to the ions ill such a

way that the plasma remains quasineutral. If ions get los4 quickly (low r j), electrons will

immediately get lost at it corresponding rate (low Tc), Thu,; it is to be expected that it and

hence rc will decrease when the pressure p  is decreased, since at low pressure (below -^ IV

pascal*) ions will travel directly to the wall, whereas at higher pressures p, they collide with
neutrals, which leads to a long totai ion path before the wall is reached. Collisions of electrons
with the wall do not necessarily mean electron loss, since many electrons are reflected back by
the potential within the ion sheath. As long its high plasma bulk velocities (wake phenomena)

and/or magnetic fields (Lorentz forces) are not involved, the plasma potential with respect to

the wall always attains a value such that the mean lifetime of the electrons matches that of the

ions, Then the plasma body is quasineutral, and potential differences are confined to surface

sheaths, the thickness of which is of the order of several Debye lengths.

ALrording to equation (6) a decrease in the charged-particle lifetime must be compensated far

s; y the p,ovision of a sufficiently high production rate P to maintain a required plasma density.

ii
3, CONSIDERATIONS CONCERNING CO 2 AS WORKING GAS

3.1 VACUUM PHYSICAL CONSIDERATIONS

The demand for a large pressure difference p 2 — p t, t)2 typically being I pascal and p, less
than 10" pascal, Ind to a required pumping speed S in the order of a few 10 1 1 s' , a much

higher value than the available turbomolecular point) could provide (only 260 1 s' ). In order to

* I pascal ;^: 10' 2 'rorr = 10 µm}ig
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reach the required pumping speed at relatively low cost, cryogenic pumping with liquid

nitrogen seemed to he appropriate.

This vacuum physical requirement called for a working gas with a vapour pressure less than

about IU 3 pascal at 77 K. ('0 2 appeared to be a suitable candidate, since its vapour pressure
is 5 x I V 'Corr.

I{III-AKD(MN VOI.TAGF AND IONISA I ION PKONABI I ITY

III to get a high production terns P the working gas shouid have low breakdown
voltage and high ionisation probability. I i-irc 2 shows the Paschen curve for ('02 in
comparison with several other gases. The distar,x d between cathode and anode for our system
is typically 10 2 nnm. With P2 in the order of I pascal, the parameterp . d for our discharge will

he somewhere around I Since the slope of the Paschen curve in this region is very steep, even

-I 	 displacement with respect to another curve (compare for example ('02 with air) leads

to an appreciable decrease ill 	 breakdown voltage.

As to the ionisation probability, Figure 3 shows that CO 2 can be expected to provide a

higher discharge current for a given pressure than N 2 and A. As an example. electrons within

'ge avalanche with an energy of 15 eV would produce about 30 times more

n CO 2 than in N 2 and A.

ness of energy states (electronic, vibrational, rotational) of the CO 2 molecule

w the discharge electrons to randomise their kinetic energy more quickly, i.e. over a

u.ion length, than would be possible for electrons in N 2 , A or Ile.

6	 10	 14 18 22 26 30

pd(MM-MM Hg)

Paschen crrri,	 r„r r,rri„tr^ gaws (arlier ,Al. KA'OLL. l-. 0LLEVD0RI-'1', and

R ROMPS,	 Springer-('erlag. Berlin (/935)1.
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1%igure 3, Ionisation probability for various gases W.P. Lossing, A,W, Tlckner, and
W.A. Boce, J. Chrm. PAys. 19, 12540951)).
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ii

3.3 RELEVANT REACTIONS OF CO2

(a) Thermal dissociation: At 2000 K, 1,8 per cent of the CO 2 dissociates according to

2CO 2 42CO+02

The neutral gas temperature should stay tar below 2000 K; it might approach about
1000 K in the vicinity of a heated cathode. Thus only a very low thermal dissociation rate is ro

be expected in the discharge,

(b) Reactions in the CO 2 discharge involving charged particles are as follows:

(1) Dissociative excitation

CO 2 +e - CO* +0'+e

J

CO 2 +c- C*+O'+0"+e
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(2) lonisalion

CO, + c -* COi 4-20

(3) Dissociative recombination

CO=+e^ CO* +0'

pa +e-+0*+0'

'4) Charge exchange: CO + + CO 2 - CO + CO (very fast)

0 + COz + —* Ot + CO —+ 0 + + CO=

Little is known about the rate coefficients of these reactions. 	 r

(c) The consituents of tltc CO, plasma ro be expected are listed below:

Neutrals furs

CO2 C0=

co CO,
Oz s02
0 0+

C

The diagnostic investigations that were to be performed later in the plasma were concerned

with the motion of plasma electrons (electromagnetic and clectroacouslic plasma waves) so

that the presence of different kinds of neutrals and ions was of no consequence as tar as the

Interpretation of the measurements was concerned.

4. MEASUREMENTS

4.t CRYOGENIC PUMPING OF CO2

A preliminary investigation was made in order to determine the effect of a cryogenic type of
pump on the tank pressure p, for various gases, ror this purpose, a LNz Goole.' sorption

pump was temporarily connected to the tank. Figure 4 shows its effect on pn for lie, N 2 and

COV The effect is strongest for CO 2 and zero for tle. Although !it this case two effects were

mix9d, i.e. the absorption effect of the sieve material and the low temperature of the trapping

f
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Figure 4.	 Effects of sorpilon pump (SP) on the lank pressure pt.
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r6ire S.	 ('02-pressure In the tank for mininium and maximulil selling of the irds dia-
phragm applying cryogenic ptmlping at Leis temperature.
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surface, it was to be expected that, with CO 2 as working gas, operation of it cryogenic wall
would lead to it considerably higher pumping speed twin if the turbomolecular pump were
e,Icruted alone.

A copper shroud with copper tubes soldered on one side and covering about hair tl:: inner

wall of the tank was inserted Into tho chamber. It could be cooled down to LN 2 temperature
within about one hour. III

	 to the cryogenic wall, an iris diaphragm was installed
between bell jar and lank to provide it diameter of the orifice between the discharge
and the measuring volume. As can be soon from Figure 5, it was possible to maintain a
pressure ratio p2/1)I or roughly two to three orders of magnitude by adjusting the iris
diaphragm and cooling the cryogenic wall down to liquid nitrogen temperature. Thus the
vacuum requirements for producing it 	 plasma were met by this device, using CO2
as working gas.

4.2 BREAKDOWN VOLTAGE

Figure G shows measured values of the breakdown voltage (cold cathode discharge) as a
function of pressure for a fixed distance d between cathode and anode (both of circular
shape). The breakdown at presrv°:r hclow about 2 pascal occurs at considerably lower voltages

In CO2 than m N2 . This is it' ,orw:ment with the Paschen curves hi Figure 2, it being expected

that air would behave in a similar fashion to N2.

UeD / V

I
I

Of

d = constant =100 nm
CO 2 XXX

N 2	 000

.,

w

0	 1	 2	 3	 L	 5	 6	 7	 8	 9	 10	 11	 p•,,/pascal

Figure 0.	 /Breakdown voltage Uljn as a function ref pressure p i Ji)r CO, and 1V2.

U

f
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CO2
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4.3 ELECTRON DENSITY

To investigate further the properties of CO2 as it 	 gas for plasma production,

voltage current (U/J) characteristics were measured with :I 	 potential analyser (RPA)

in plasmas of CO 2 , N 2 , A and He, RPA measurements were performed over it pressure interval
0.5 to 10 pascal ( without cryogenic pumping) and it 	 voltage range 600 V

6 UDC 6 3000 V. In these cases p2 is very close to p,. A representative set of these

characteristics is shown in the Figures 7 (a) through (d). The plot is ecmilogarithmic. Note the

different scale for the Iag J ordinates. Although the discharge parameters (pressure p,

discharge voltage UDC) are not the same for the four curves they claarly show that in the CO2
plasma both the strongest Maxwellian component and the lowest electron temperature T. are

obtained. ThL Electron saturation current Jsnt (defined here as t1w current at U =+ I V) of the
RPA characteristics can be taken as it mcusure of the electron density obtained III tank,
Figure 8 (a) shows Log V,,,, I) versus discharge voltage UDC for CO 2 , N; and A. Although the
pressure for the CO2 curve is lower (0.6 pascal) than the one for the N 2 and A curves (1.0 and

1.4 pascal, respectively) the saturation current for CO 2 is considerably higher than that for the
other two gases. This holds over the entire range of UDC.

Figure 8(b) shows Log (^sar) as a function of pressurep, for UDC= 1200 V. It can be seen
that the value of Jsat is much higher for CO 2 than for N 2 and A in the pressure range below

about 3.5 pascal. At higher pressures the density provided by a CO 2 discharge goes down. This

fact may be due to volume recombination and/or formation of negative ions (C07• No

detailed interpretation of this fact has been attempted since the pressures p, we deal with later
are well below 3.5 pascal.

E

w

j

Simultaneously with the RIIA-measurements, the parallel resonance frequency FP of a

cylindrical RF prnbe immersed in the plasma was measured. Fig is identified as the plasma

frequency FN (neglecting corrections for the collisions) which is related to the plasma density

I!!N. according to:

N. [m a 1 = 1.2456 X 1010 FN2 [Mlizl	 (7)

ii
Figure 9 shows FN as ,I 	 of the discharge voltage UDC comparing CO 2 with N; at

i pressures p, of about 0.6, 1.0 and 2.0 pascal, This diagram again shows the striking advantage

of CO 2 for providing It 	 production term P for the steady-state plasma in the tank.

II

4.4 ELECTRON-ENERGY DISTRIDuTI.ON
F

Returning to the set of RPA measurements, we find it 	 way of presenting the data

that reveals facts again favouring CO 2 for piasma, prod uelion. In general, most of the RPA

l;

t
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Figure $	 (a) Saturation current 1;a t,taken from RPA curves versos cold cathode discharge

voltage UDC (with neutral gas pressure approximately constant) for CO 2 , N2

and A. (b) Saturation current [sat taken from 2PA curves versus neutral gas

pressure p, (constant discharge voltage UDC) for CO2 , N2 and A.

characteristics measured in CO 2 and N2 plasmas have the general form shown in Figure 10.

The semiloyarithmic plot usually contains three components (a, p and y) of the electron

population represented by straight or nearly straight lines which can be attributed to electron

temperatures V TO, 1`, respectively. Figures I 1 (a) and (b) represent these temperatures (71
only as table) as a function of botli p i and UDC. The scale for 7c is on the left, the scale for
0.1 on the right side of the diagrams.

The iepresentation shows the following points:

(I) 7e (CO 2 ) stays low (1000 to 3000 K) over the investigated ranges of p^ and UDC
respectively.

(2):(e (N 2 ) rises strongly towards the 10 1 K range when the pressure decreases to I pascal.

For constant pressure (1 pascal) it is about 101 K and rises slightly with increasing

discharge voltage UDC.

(3) 7¢ (CO 2 ) increases with increasing pressure for constant UDC (1200 V) and decreases

with increasing UDC at constant pressure (0.6 pascal) towards a constant level (about

3 X 104 K).

1
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	 Plasma frequency fN fit lite lank as a function of discharge voltage UDC for
CO2 and N2 at three different neutral gas pressures ph,

a

.	 I

U

Figure 10,	 General three-component feature of the 1lU characteristic as seen with the RPA

in CO2 and N2,
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rigure ll. (it) Temperature components Te and 7^ versus pressure p 1 for CO2 and N2 at

constant discharge voltage UDC (b) Temperature components 7' and 70

versus discharge voltage UDC for CO 2 and N2 at constant pressur. p l . 7 for

N2 is not included, since the 0-component could not be identified clearly
enough from the h/U characteristics.

(4) 7e (N2 ) is low compared with T.- (CO 2 ) and rises slowly with increasing pressure.

4.5 THE FINAL LABORATORY PLASMA SYSTEM

The body of information collected by the measurements described above clearly favoured

the choice of CO 2 as a suitable working gas for producing a laboratory plasma with a strong

Maxwellian electron component of low temperature (a few thousand K). A source which was

then developed was of the back diffusion type, making use of a heated cathode in order to
further increase the production rate P. The final system is shown in Figure 12. The brush

electrode was used temporarily for cold cathode discharge experiments and noted later as the

anode for the back diffusion source. 'file paddle proved very effective in baffling high-energy
electrons. The drawing also shows schematically the position and geometry of the diagnostic
probes as well as the LN 2 -cooled copper shroud for cryogenic pumping. A screen was present

in the chamber. This was occasionahhv used to influence the plasma Potential by having a bias

voltage applied to it, but in general it was kept at floating potential. Typical neutral-pressure

values for this laboratory plasma system in operation were a few pascal in the discharge region
(bell jar) and 10-2 pascal in the tank.

I L,
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4.6 PLASMA DIAGNOSTIC-PROBE MFASURFAI:NTS

RF-measurements were performed with a cylindrical two-electrode system IF,, I•: 2 1. 'IS
shown in Figure 13, The principle of the 10 --measurement is also shown. A - , ept-frequency
Rl generator provides a signal of constant amplitude within the fre(juv ".:y interval of typically
I to 25 Mllr. Both the RF-reference voltage U R at " I and 'he test vo; • . t,. U7• at I?: are

measured and compared as to their complex ratio

UTIUR z I..+Y"

by mcans of a network analyser I hp 8407).

fhe signals provided by the network analyser are magnitude

1 1,71

a =	 =	 f.•2 + F2	 I d li I
iR

and phase	 = arctan (FIE) in degrees. Magnitude and phase together are a measure of the
complex plasma impedance 7. = X + i l between F I and E 2 .
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In f= igure 14 current/voltage characteristics of a spherical (diameter: 10 nm ► ) stainless-

ace[ I .mt;rnu ► r probe are shown. The parameter of this set of curves is the bias voltage V, of
the plasma source heating circuit. It can he .ern that the velocity distribution and temperature

Te of the electron. is markedly influenced by 11 1 . In the prese ►► t case the distribution function

is Ma%wellian m good approximation for ll t %.dues of 2 V, s V and 4 V. I hr

corresponding T, values are 0.55, 0.53 and 0.52 eV, respectively. For each of these 1_anginuir

curves the magnitude a measured as a function of frequency was plotted ()it an X-Y recorder.

Figure 15 shows the corresponding set of curves, which reveals the lollowing essential features:

a)

	

	 above the parallel resonance fp, which is in our case (no magnetic field) equal to the
plasma frequency l:v. an additional re%on;uce fz occurs and

h) fy is clearly most pronounced for the case of Maxwelhan distribution of the electrons

with low electron ten ► prrattire Te IU, = - 2 V, - 3 V. 4 V).

I his resonance l! can he understood in terms of resonantly excited elect roacoustic waves

(also called electron- pressure or I andau waves). These waves are set up by an KF source above

?8.474
£XPNO 09

-10 Ca

5	 10	 15	 20	 25

f/MHz

I ;^,rrr / i	 Phimp ►a	 of the c_rlrnclmal rtt—clectrode sYstcnr.
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the plasma frequency. Excitation of this longitudinal type of plusml wave, which is damped

with Increasing frequency by collisionless or Landau damping, is predominantly responsible for
the real part of the Impedance of an electrode system immersed in a plasma. For a single
electrode this real part would decrease monotonically with Increasing frequency. For it
two-electrode system (E, , I1 2 ), a% used in our experiment, however, it characteristic electrode

-	 distance ti can be defined (distance between inner and outer cylinder). In 11115 case the
electroacouslfc wave call produce a standing-wave pattern between Li, and 1s 2- "" I ' s is expected

to occur essentially at efgenfrequencfes of the system (electrodes/plasma) 1'or which the

wavelength )`en (or integer multiples of it) matches the distance d, '1 lie detailed discussion of
these resonances is oulsidc the scope of the present paper,

4.7 MASS-SPECTROMETER MEASUREMENTS

As regards the chemical composition of the CO 2 -plasma, I1leaslll'ealentS With 
it

 neutral mass spectrometer (a laboratory model of the Lunar Atmospheric Composi-

tion Experiment (LACE) flown to the moon by APOLLO 17 - J. Hoffman, principal

investigator) provided information about the abundant neutral molecules and atoms, The
neutrals entering the ion source of the mass spectrometer are ionised by an electron beam. The

ions are accelerated and collimated to a beau which passes into a magnetic analyser by which

the ions are separated according to their momenta and detected in one of three mass channels.

Figures 16 (a) and (b) show a set of measured mass spectra (signal current versus anal number)

for two energies tic, of the ionising electron beam (25 and 90 eV, respectively). The saluence
of the measuring conditions in each case is

(a) background gas at 9 X 10" pascal, with no CO 2 introduced via bell jur and no plasma;
(b) CO2-pressure at 2 X 10' 2 pascal, but piasnw switched off;
(c) CO2 -gas stream as fn (b), but with plasma switched on.

III case (c) the neutral gas pressure increases by about one order of magnitude, mainly

because CO, which is produced by dissociation in the discharge, cannot be pumped
cryogenically at LN 2 temperature. The pressure im-rease was measured independently by an
ionisation manometer in the tank at d by a Penning manometer within the mass spectrometer.
As a result of this pressure increase, the base line of the spectrogram is enhanced and (owing to
multiple scattering fn the ion source) the p ine width of the detected peaks is increased (which
affects the anus selectivity of the im(r unenl).

The spectra in Figure 16 (a0 and (b) show the following features:

I.	 When the plasma is switched on, the CO and 0 2 peaks strongly increase; CO beeonlcs the
dominant molecule. This holds for both electron energies (/;' L, = 25 and 90 CV). I he

:^
tt
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previously measured cracking pattern of. the instrument for ('0 2 (private communication
by J. Hoffman) shows that only about 105r of the incoming CO 2 molecules are
decomposed into CO and 0 in the ion source at G C values of 70 ... 90 eV. Tile strong
enhancement of CO lilts implies that dissociative excitation: CO 2 + e -i CO* + O' + e
followed by 0 + 0 -+ 0 2 , Is a process which is very efficient In the CO 2 disellarge, Since
the neutral gas pressure in the discharge volume is in the order of I pascal, the density of
the CO molecules coming From the discharge can exceed tine ('0 2 density in the lank
because CO is not cryogenically pumped at LN 2 temperature.

2. For E. = 25 cV and the plasma switched off' (CO2 pressure of the order of 10 -1 pascal),
no carbon 12C is detected. This holds also for CO 2 pressures of 10.2 pascal without
plasma (separate measurement). Thus (lie appearance of 12 C when the plasma Is switched
oil that 12C is produced to a small extent in the discharge, recording to the
reaction CO2 + c -)- CF + 0' + 0" + e.

Fur J,e = 90 eV the 12 C peak is strongly enhanced. This is due to the dissociation of CO2
by elce'ron bombardment in the !oil of the mass spectrometer. According to the
above• mentioned cracking pattern, about 9% of the CO 2 molecules will be cracked down
to produce' 2 C at these high values 01, Ec.

3. The CO, peak (anmi = 44) is followed by two isotopic lines at anti = 45 and 46. These are
due to tle molecules 12 C 1602 and 12C 160 "0, respectively. The abundance --
relative to CO 2 — of these isotopic molecules is about 15c and 4%. There are cor-
responding isotopic lines at amu = 29 and 30. These lire related to 1 X 1 1 0 and 12 C 1 M O,
respectively.

4. The peak at amu = 18 is due to residual 1-1 2 0 vapour present in the vacuum system; the
mass 17 peak is produced by dissociative ionisation of 1-1 2 0 in the ion source leading to
OM

S.	 Al re = 90 cV, double ionisation of CO 2 is possible, leading to lines at amu = 22(COz) ,
22.5( 1 	 4 Os ) and 23(12Ci601800).

S. CONCLUSIONS

The investigations reported here show that carbon dioxide has properties that favour it
as working gas for the production of a :rollisionless Maxwellian plasma with low electron
temperature (T,, in the order of ionospheric F-region values). CO 2 leads to higher plasma
densities at lower pressures as well as a larger Maxwellimi component of the electron popul-

i
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ation with lower electron temperature as compared with other gases such as Ne. A. and lie.
'fhe fact thal ('02 can be pumped at high pumping speeds by a liduid•nitrogen•cuoled %;ryo-

genic wall enables a steep neutral gas pressure gradient to be achieved between tine dkdwrbc

volume and the measuring volume. however, in the difl'usiun type of p la cmn system used :u

the present work, the CO concentration relative to the CO, density is strongly incivased it the
tank because CO is not pumped cryogenically at LN 2 temperature. The ubumlau^;a of uaygea
in the plasma naturally imposes restrictions on the choica of materials liar diagnostic prob.,,

etc.

It may finally be mentioned that studying CO 2 plasma in the laboratory may contribute to an

understanding of some of the properties of the Martian and Venustan ionospheres.
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