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FOREWORD

This report summarizes the current status and results achieved during the

past year on research on Real-Time Flight Simulation Methodology, This work is

a continuation of research performed during the first year on substitutional
methods for digitization, input signal=dep¢pdent integrator approximations, and
digital autopi;ot'design. . :
The recent Semi-Annual Report [1] wés eéxtensive and covered, in detail,
the first six months of effort, Conseqye?tly, that report is heavily refer-

enced herein; and only the informatioqﬁnécessary to provide proper perspective

is repeated.
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I. AN INTERACTIVE SIMULATOR DESIGN PACKAGE

FOR THE DESIGN OF REAL-TIME SIMULATORS

1.0 Introduction

This section describes the status of research on an interactive software
Suppoft system which will aid the design of optimum simulation models. The
generic type of system under study is shown in Fig. 1.0, When programming is
éompleted, iﬁ is envisioned that the Simulator Design Package (SDP) can be used
to evaluateva number of different standard integrator models (for example,
Tustin, Optimum Discrete Approximation) on the basis of selectable error cri;
teria or design an entirely new model suiﬁable for a'particular problem. In
the latter case the model would be designed on an interactive basis, using
selectable algorithms to find an optimal form.

In previoqs work we examined a number of different substitution methods
to determine which was most suitable under various error criteria. Based on
these results, a number of substitution formulas have been chosen for inclusion
in SDP; Consequently, most of tﬁe work during the first six months concen-
trated on thg evaluation of optimization algorithms and discrete representa-
tions., The second six months héve been uéed to develop a subsfantial'amounﬁ of
the software framework of SDP. This inéludes subroutines fé? iterative desigﬁs
of simulatidﬁ models as well és a rudimentary graphics package;‘ |

This section contains three sub—séctions which report on different faéets
of the developmené of SDP, In thebfirst sub—seétion we are concerned with
assdming:é discrete repreSentatioh for a given continuous transfer function and
then itérating to solve for optimal Valu?s'of the;éaraméters céncérned.‘ Pre-
liminary rééults 6f time,démain optimization are‘also discussed. In ﬁhe:second
éub—section a'simiiar efforg,ié feporﬁe@;iuvwhich a form is‘aséumed_forian

CA
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H integration operator, and then a random search method is used to determine the

optimum parameters.

‘In the third sub-section examples of graphical results

obtained with SDP are presented.

1.1.1 Frequency Domain Optimization

As indicated in previous reports, attempts have been made to obtain a

.

digital simulation model in a way that minimizes the frequency~domain error.

We have discussed the general form of the digital system, the error criteria,

and the gradient technique used,

Impliéit formuli for gradients were derived

so that programs can be written to evaluate gradients necessary for the numeri-

cal technique being used.

Referring to the 1976 Semi~Annual Report [l], we have the following

results:

Error:

M = =)
E= I H@{w) - HGw )
. m m
m= 1 _ :
Form of digital system:
K .
; -1 -2 1 -1
; , ? r + 2ok - 12 +va2kz Y1 + a,2 )
H(z) = A k=1
S T NCR/2 NP -1
n (1 + 2b,,cos2b z-1 2 =2 I (L+b.z7)
k=1 K h g T rby? DL yepsl k
where NZ = = number 6f zeros
NP = number &¢f poles
NCP = number of complex poles
k= largest integer NZ/2
at =0 if NZ = Zk(eVeninﬁmber'of zeros)

NZ

(1-1)

(1-2)
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aéz # 0 if NZ - 2k + 1(odd number of zeros)

We also discussed the coqstraints necessary to limiﬁ the time domain
error and to ensure stability.

Three FORTRAN programs have been written to accomplish the optimization
in which the Fletcher-Powell method [2] was used. Since the algorithm is not
critically important and the Fletcher-Powell method has proved to be success-~
ful, no other numerical methods were investigated. The procéss of obtaining
the optimal digital form will be implemented off-line: so the speed-vérsus-
accuracy criterion is no longer important in choosing the numerical algorithm.

The Fletcher-Powell method converges rapidly in this particular application.

Application of the Frequency Optimization (FO) Method

Only recehtly were we éble to use our prograﬁs to perform some prelimi-
nary comparisons. This is due partly to the complexity iﬁVOIVed in program-
ming. The programs‘ﬁere written in such a fashioﬁ that:they can be incorpor—
ated into the SDP in the.future. Only first—érder systems have been investi-
gated, to daté,k Higher-order systems will be considered in future reports.
The first-order system under study is:

1

H(s) = o571

S (1-3)

bThe selected sampling interval is T = /10 secs. Thisvis rather large,‘
but it will{%;ovide‘a good comparison with the Tﬁsﬁin method for 1arge,sémpiing
infervals. Most existing simulation methods work fairly well with small sampl-
; ing'pefiddé but suffer sevérely at larger sampling pefiods. |

The frequency response is given by



H(jw) = -1——’——5% ' (1-4)
l1+w '

The actuai'responsebof this system will be compared with the responses of the
simulation system for a step, ramp, and sinusoidal inputs,

Several different optimized systems were obtained and their performances
compared to the above system. . A distinct characteristic qf this optimization
procedure is that the user can atbitrarily specify the order of the simulation
system, i;e., one can obtain a first-, second-, or third-order digital model
for the simulated first-order system. As results will show, it is usually
better to use the digital model éf the same, or one order higher, than the con-
tinuous system. Furthermore, if the continuous system's pﬁles are all real,
then the user should choose his ‘digital modei to have all real poles in the z-
plane. This is intuitively obvious, since all real poles in the s-plane map
into real polés in fhe z-plane, |

As discussed in the semi-annual report, in order‘to limit the time domain
error we must place consﬁraints on the pole locations of the digital system in

the following fashion:
zwpléne poles = exp[T(s-plane poles)] o (1-5)
or in a less restricted form:

2] = [e5T) = T Real ) - a-)

- This form determines ﬁhe!radius of'a‘circle (in the z-plane). All poles (both‘
real and complex) must'beftdnStfainéd to lie within this circle. We also allow
this radius to approach unity in ordef”td’show that the»constfhint:does;"

indeed, reduce time-domain error,




The following digital systems are models of the first-order continuous
system which we simulate:

(A) Poles of digital systems are restricted to lie within the

circle of radius e_T . 730403

15%-0rder Model:

(Lt 986629z 1

H(z) = -1 (1-7)
1 - .713722z
where K = 1.144102
nd
2 " =0rder Model:
1+ 2.423152"% + .5185982 2
H(z) = K . =5 : ] (1-8)
(1 - .729328z ) (L + .730403z ™)
where K = .118823
(B) Poles of digital systems are restricted to lie within the
circle of radius .9
st ..
17 "=-0rder Model:
1+ .9866297
H(z) = K ) , (1-9)
1 - ,713722z © : )
‘where K = ,144102
279 _order Model:
1+ 2.7839327F + 743926272 PR
H(z) = K : pr——— : T (1-10)
. s ) o

(1= .7283082" ) (1 + .90000z
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where K = .114034
(C) Poles of digital systems are restricted to lie within the

circle of radius .999
0

lst-Order Model:

1+ .9866292

H(z) = K — (1-11)
1 - .713722z
" where K = .144102
an—Order Model:
(1 + 3.01207z" % + .8853062"%)
H(z) = K : (1-12)

(1 - .727803z2" 5y (1 + 999,71y

where K = ,111105
All K are chosen so that the steady-state gain is 1, which is the steady-state
gain of the continuous system.

Notice that all first—order models are the same, regardless of the con-
straint. This is possiﬁie, because we are simulating a first-order system.'
For second-order models the constraint plays a more important role. Thé opti-
mizaﬁion algoriﬁﬁm tends to place poles as far as possible within the con~
straint, This,results in poles at -.9 (for IPoles] < .9 constraint) and at
=.999 (fpr_lPoles| <.,999 constraint). These poles dominate the response of
the system aﬁd, as a reéultf give more error,

" The following figureé show somé of the advantagés and disadvantages of
the FO method. The method/is far better thén Tustin, espeqiélly at high sampl-
ing’periods, As.stated;befére,‘the’digital systems are designed for a sampling

period of T =.1/10 secs. This is rather large for the Tustin method, whose
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performance is best at smaller sampling periods. As we might expect, relaxing
the pole magnitude constraint results in slight oscillations in the simulated
responses. Empirical results also show that better time-domainlaccuracy can be
obtained by using a digital system of one order higher?tﬁan the simulated con-
tinuous system. This may result in slightly more computation time, but it is
not particularly critical. The digital system éan’be designed with high sampl-
ing periods‘to accomodate the real-tgme constraint.

One disadvantage of the FO method is that it is not very flexible in
terms of sampling pefiod. Once a digital system has been obtained, the samp}74
ing period cannot be changed without degrading the simulation performance.' if
the designer desires a model for a different sampling period, he has to start
the design process again. This characteristic is shown in Fig. 1-6, where the
digital system had begn designed for T = NI/10 secs.; but the simulation was
performed at T = .1 sec. For sampling periods other than the one that has been
designed for; the time~domain error increases substantially. Fortunately, this
drawback is not particularly severe. The design proéedure depends almost com-
pletely on the digital computer, and there,is little calculation to be per-
formed by the designer,

All in all, the FO method seems very promising from preliminary results
obtained to date. Only first~order systems have been tried, and no conclusive
resﬁlts can be derived from this limited empirical data. - The next task will

inc¢lude higher~order systems with a variety Qf inputs}

1.1.2 Time Domain Optimization
The preceding discussion was centered around the time-~domain response
resulting from a frequency domain optimization., Although there is a unique

relationship between time and frequency response, minimizing frequency-domain

13
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error does not necessarily make time-domain error a minimum. Our ultimate goal
is to find an optimal time-domain simulation.

The state-of-the-art of optimal time-domain simulation is virtually non-
exiséeﬁt. The biggest obstacle seems to be the definition of a genéral per=
formance index whose value must be minimized to yield a desired digital system.
Unlike the frequency domain performance index; the time~domain error is input
dependent. This feature makes it difficult, if not impossible, to obtain a
general performance index that will suit all inputs which vary from application

to application. Presented below are some of the results published in the lit-

erature, Most of the methods presented are far from being applicable to our

purposes. These approaches, however, could be used for our application, since

the performance index depends only on the numerical values at the sampling
instant of the ideal response.
J. A, Athanassopoulos and A. D. Warren [3] proposed the following form of

the digital system;:

m
b z 'aliz—l
HE, 1) = 2520 (1-13)
) .z aziz-l
i=20
h G- ‘o | - 1" 1-1
where a = [a5 @55 > @y Gogs G915 ) Oo (1-14)

The time-domain response of the above system is a function of the coefficient
vector .o whose determination depends on the performance index.
Now,' let rk be .a. specific value for the response at

t = tk(k =1, 2, » +» + ), let s be a set of all real o such that poles of

H(g, z_l) lie outside the unit circie, and ‘let R(Z; k) be the résponse of
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interest., 1In this application R(EQ k) is chosen to be the time domain response

>

Y(u) tk) = Yk' B
The design problem is then of the following min-max form:
Given the specification set {rklk = 1, oo } and the maximum

allowable degree of H (i.e., maximum numerator and denominator

’ > > o
order), find the coefficient vector o = a* such that:

A male(g*, k) - rkl 5_max‘R(3, k) - rkl (1-15)
k k

Notice that a*e s in order that the digital system be stable.
The above problem is converted to the form of a mathematical program by
using an additional variable n, -Thus, in order to solve (1-15) a vector

A > '
a 2 [a, n]T which minimizes n subject to the constraints

b - -
Wl(a, k) =‘R(a, k)‘+ Y10 T Ti >0 (1-16)

(3]

¥y(a, k) 2 R, k) +yynt T >0 (1-17)

k

must-be determined. This can be easily seen in Fig. 1-7,

kThe goal is to minimize the;width (Ylk + sz)” of a zone subjeét to the
constraint that beth R(Z; k) -and r, lie in the zone for all k. Various meth-
ods, including a'penalty function, can be used if the constraints are highiy
nbniineaf functions’of the variables.,

More studies must be directéd to this method before it can be directly

applied to our application. The constraint is only that poles must be inside

the unit circle. This is not enough to obtain a good tepresentation of the

,continuous’systém, since the optimization procedure will tend to plaCe poles at

16
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farthest possible location.

{%ﬁ Other approaches proposed by Burrus and Parks [4], and
\

Steiglitz [5] have appeared in the literature., Unfortunately, no stability
f .
J} conside;ations were given for these methods; and, as a result, they¥ are not
%E practical‘for our research. With these discussions in mind, we propose the
|

following approach to our research in time-domain optimization.

11 The digital system has the same form as used in the FO method, 1.e.,

B K N
e I (1+a z-fl + a z-z)(l + al z_l)
, _ 2k-1 2k™ NZ
1) -y = a k=1 .
u(z) NCP/2 -1, 9 -2 NP , -1
oI (1+ 2b2kcosb2k_lz + b2kz ) I a + b, 2 )
k=1 k = NCP+1
I | = (1-18)
EE ~ The advantagés of this digital form were discussed in thevsemi—annual report.
: The error function is defined in time domain as:
52
: N T . : :
v E= I |Y =-Y@T)] (1-19)
1. . n . . :
EE n=20 ; :

where Yn is the exact response and Y(nT) is the simulation responsejfrom (1?18)

=

for a given input.- This error function ‘is input dependent; and, in order to

-

achieve maximum generaliﬁy; we must divide inputs into different classes and
design the digital system éccordingly. vInotherwords;va prototype digital
’ksyétem is designed for each class of input; and the designer must choose

v‘be;Ween several ‘systems for the best one under a given circumstance. This

.fiigﬁwﬂigﬁi.”

u":appfoach.is an extension of the Sage's CGptimum Discrete Approximation which
Oniy usésvthe Scép and ramp inputs as’tésﬁ inputs. We can extend this further -

and use a variety‘of’inputs~with the aid of the computer and the optimizationb

18
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algorithm that is already available.

1.2 Digital Simulation and Optimization via Random Search Techniques

1.2.1 Introduction

This section continues diseession on our work involving techniques for
the development of a discrete tiﬁe'integration operator to be used in the simu-
lation process. The integration operator can be optimized for a particular
system subjected to a set of specified inputs. The class of systems beingk
investigated are those which can be represented by a set of state equations. A
discrete time integration operator with certain free parameters is hypothe-
sized. An adaptive random seérch optimization (ARSO) technique is used to fihd

the .optimum values for these parameters, 'Examplee are presented to show the

effectiveness of this technique.

1.2.2 Integration Operator

The class of systems being investigated are those which can be repre-

sented by the set of state equations

x = f(x, u) B (1-20)

where x is the n x 1 state vector, u is for the r x 1 control vector, and f is
the set of n functions, typically nonlinear,
Figure 1-8a is a block diagram of the mathematical relations in Eqn.

(1%20).' The vectors x and u are acted upon by the functional relatidns

f(x, u), producing the vector X. Figure 1-8b is a block diagram of a discrete

approximation to the continuous time system. The control vector u is assumed

to be sampled at a uniform rate, producing the input samples u(k), The

equations:

19
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x(k) = £[x(k), u(k)] (1-21)

are in the same form as those representing the continuous time system. A

discrete~time integration operator of the following form is chosen.

N 3 .

T L M2 p(a +dz+ o+ AN)
F(z) = 420 _ Tty ;
PR TONFI_ N
(1-22)
| -1 . N ~(N + 1)
1. T[ANz + AN - 12 +v + Alz’ + AOz ]
F(z ™) : : g
1 -2z

where T is the sampling period, and the A's are a set of free parameters, the
values of which are to be optimized. This operator yields a realizable simula-
tioﬁ, since the powef of the’denominator is'alWays one greater than that of the
numerator. The pole at z = 1 corresponds to a pole at the origin in the com-
plex s-plane, and the Nth-order pole at the origin in the z-plane corresponds
to an Nth—order pole at negati?e infinity in the s-plane [6]. Therefore, the

transient response of the pdles added at z = 0 to make the operator closed-loop

*.realizable will decay quickly. The state equations are now of the form

(0 = £[x(K), u(©)]
and
x(k + 1) = x(k) + T{A gk (k) +”AN_ii(k“- D - (G (1-23)

Equation (1-23) can be thought of as a polynomial approximation to the value of
a function at point (k + 1) based on its value at point (k) and the value of

its derivative at point (k) and preceding.

21
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The free parameters in F(z) are optimized using an idealized model form
of a model reference adaptive control system [7]. Figure 1-9 is a block dia-

gram of this configuration.

1.2.3 Optimization Technique

The perturbation of parameters in F(z) is controlled by an Adaptive
Random Search Optimization technique (ARSO) which was described in our previous
report [1]. |

The unknown parameters are perturbed in the following manner:

Ai(j +1) = A? + GAi(j + 1) (1-24)

where A(j + 1) is the new value of the ithfparameter, Ai is the "best-=to-date'
value of the i;h parameter; that is, the value.of Ai when the minimum-to-date

value of the J vector was calculated and Gki(j + 1) is the random perturbation

for. the ith parameter. This.is equivalent to the perturbation scheme shown
. I . g .

p

/ A+ = A G) - alEr () + 8A G+ 1)

I o1y

]

a() =0, if J

(3)

"L AT 2T -

J(j) is the performance vector in the,jth~trial, and ij - 1) is the smallest

performance vector obtained through (G - 1) trials. The coefficient a(j) ié‘

. used to negate the effect of an unsuccessful trial, kThe perturbation is

- 2,2 ST
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calculated as follows:

83, () = 1y (3) +/30% (§) [2R9D(0) - 1] (1-25)

where pi(j) is the current value for the mean of the ith random variable, cz(j)
is the current value for the variance, and RND(0) is a uniformly distributed
random variable on the interval [0, 1]. EQuation (1-25) produces a random
number from a uniformly distributed random variable with mean u and variance
02. Stability considerations may place constraints on éhe parameter calculated
in (1-24). 1If a particular perturbation élaces é value outside its limit

for stability, the value may bé moved deterministically inside the limit, or
another random perturbation may be tried. In simulating complex systems, how-
ever, it may be difficult to a priori determine the stability limits for the
coefficients. In this case one or more of the state variables may be monitored
during the simulation; and, if they exceed reasonable values, the trial may be
aborted., This saves computation time and may prevent the entire program from
being terminated due to overflow.

When a particular trial is successful, that is,

J, < J% 1 <i<n

. .th .
where J? is the minimum value of the i~ element of J, the means and variances

of the random variables are updated, The mean is calculated as follows:

Hy(3) = A%, - m, , | (1-26)

where

24
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ci(l) ci(2) ci(3) ci(4) ci(S)

m, = 7 + 4 -+ 8 + 16 + 16 (1-27)

The ci's are past values of A?; that is, previous values of the 'best-to-date'
parameters. The most recent value of AI is ci(l). Since the most recent best
value corresponds to a smaller index than a previous best value, (1-26)
tends to select the most favorable direction for the next perturbation.

The variance for the distribution is detefmined using the following argu-
ment. The perturbation for each parameter is a random variable with a uniform
probability density function with mean y and variance 02. Relating these

moments to the end po#ﬁts of the function (a, b) yields
) S

)

( . L= (b+ a)/2 (1-28a)
N

R

]
|

= @ - a)2/12  (1-28b)

If the mean and one end point is known,; the other end point and variance can be

calculated. That is, if y and a are known, then

b=2u =~ a » ’ k : (1-29a)

6% = (n —,a)2/3 | (1¥295)
and if”u aﬁd b are knowp; then
a = 2u - a O ‘ : (l—SOa)v
’_52 = (b - w23 | <i+3_‘o_i$> |

Figure 1~10 illustratés two possible situations with a scalar cost func-

tio4 and a single parameter after five successes, In the top figure, c(2) ,ﬁ
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should be the end point (a) to ensure that the optimum parameter value lies

within the search area. This gives
a = c(2) - c(1) (1-31)

where ¢(1), the current best value, is taken as the zero point on the density

function. ~Substituting this into (1-28) vyields

0% = [n - c(2) + c(1)1%/3 (1-32)

In the bottom figure ¢(2) should be the upper end point (b). Thus,
b = ¢c(2) - (1) (1-33)

and

02 = [e(2) - (1) - u]2/3 e | (1-34)

Equatioéé (1532) and (1-34) yield the same numerical value for the variance,

since the sign difference is lost when the numerator term is squared. There-
. 4

fore, (1-34), combined with the mean from (1-26), provides the necessary

data for cbmﬁuting the perturbations. When a iarge ﬁumber of consecutive

failures are generated, the means and variances are set to deterministic

values. This allows the search technique to more fully explore the parameter

- space, about which little is known beforehand. If no improvements are obtained

~after a set number of failures, the search is terminated or restarted with a

different set of initial conditions.

1..2.4 Results

One of the problems considered is the simulation of the nonlinear equa~

‘tions of an aircraft. These equations are shown below:
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V cos(y)

v = -g sin(y) - %-vz +~%'cos(a)
E; vy = (1/v) (-g cos(y) + é-vz + %-sin(a)) (1-35)
if @ =
- ‘ o = 1.311'u-— .806 w - 1.311 o

where x is the horizontal displacement, h the vertical displacement, v the '
total velocity, ¥y the flight path angle, o the angle of attack, u the control
- n ‘elevator deflection, and w the rate of change of the angle of attack.

Each of the six states generates an element of the performance index.

The mean squared error between the approximate value and a value obtained by

Runge-Kutta integration is used, The elements are;

J1

range error (feet)

e

altitude error(feet)

ne>

velocity error(feet/sec)

,
L} w
(1

five

i

error in flight path angle(radians)

-

>

error in angle of attack(radians)

B
[}
(9]

e

J6 error in angle of attack rate(rad/sec)

The RMS results of ARSO optimizatioﬁ using one, two, and three parameters
}? are shown in Table 1-1. The sample péfiod for each of these is 0,5 seconds,
, .

Also shown in the table are the rﬁsultS‘using.the forward difference operator

i

and the Milne-Reynolds predictor-corrector method, The Milne-Reynolds results

= are for a sampling period of 0.25 second , as both it and the delayed Tustin

are unstable for T = 0.5 second. The total amount of computation per second

E R
L et

I e
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of simulation time was four times greater for Milne~Reynolds than for the dis-

crete operators obtained via ARSO.

J1
\ J2
J3
Jb
J5
J6
J1
J2
J3
J4
J5
J6
ARSO-1:
ARSO-2:
ARSO-3:

]

i

Table 1.1

Preliminary ARSO Results

ARSO0-1 ARSO-2
218 6.796
4.39 3.63
.305 .216

-4 -4

8.76.10 4.31.10
3.0.1072 1.39.1072
3.4.107° 1.59.1072

Fwd. Diff.

ARS0O~3

2.121
3.385
.205
4.16.10
1.37.10°
1.57.10°

4

2
2

Milne Reynolds

3.69 5.46 x 1072
6.09 1.81 x 1072
.377 . 3.22 x 1070
7.4 x 1074 4.6 x 107
3.1x 1072 2.7x10°
3.5 x 1072 1.4 % 107/
1.0127
1.20793; A, = -.208282

1.20999; A, = -.200159; A

2 3

_ The aircraft maneuver for the data in Iéble 1.

29
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~9.83883.107°

was a climb followed by a



dive with a total range of approximately 5.6 miles. To evaluate the sensitiv-
ity of the cost function to changes in input, a second maneuver, a dive, was
run. The total range was about the same as the first run. The results of this

maneuver for ARSO-2 and ARSO-3 are shown in Table 1.2.

ARS0-2 ARS0-3

J1 8.96 2,82

J2 . 2.48 2.38

J3 .117 | .113
;: 34 4.13.107% 3.91.107
- | | J5 9.49.107° 9.38.107°
o | 36 1.1.107° 1,09,107°
s . Using the ARSO-2 and ARSO-3 coefficients from maneuver one as initdial
T conditions, the parameters were then optimized for input two. Table 1.3 pre-
3 ,
e sents the résults of this optimization, and Table 1.4 lists the cost functipns
o when maneuver one is run with the coefficients optimizéd for maneuver two;

30



i Table 1.3
i Table 1.3

I
= ; ARS0-2 ARSO-3

P

¥ J1 1.32 .653

J2. 2.48 : 2.35

ey
g

J3 .117 J111
4

51

J4 4.04.10" 3.91,10

3

J5 9.51.10° 9.3.10"

2

Fmo
A

J6 1.1.10° 1.08.10°

atd

i
ot isureih |

¢

i
{4
4!

Table 1.4

ARS0-2 ARSO-3

Jl 3.99 2,92

J2 3.53 3,32

. . e J3 | .212 1 200

! o J4 . 4.34.107 4.11,107

J5 ©1.39.10° 1,35.10°2

{ ~J6 1.60.10 1.55.1072

Il

SRS ARSO-2; 1.20807; A

>
]

2 ~0.207852

’ARSO—3:

b
1]

1.21322; A,

=.201530; A4 =,—1.15446,1o"2




a

As can be seen from the tables, increasing the number of parameters

decreases each element of the cost function in each case, This is because the

praiai}

i

33

higher~order polynomial approximation of (1-24) can better represent the

actual function, It should be noted that, although the coefficients are input

dependent, neither they nor the cost function change significantly when differ-
it ent maneuvers are executed. As an aid in evaluating the results of Tables 1,1-

1.4, Table 1.5 lists the cost function for ARSO-2Z from Table 1.1 as a percent-

age of the dynamic range for the respective state variables.

Table 1.5

@

ARSO-2 Dynamic Rangev 'Percent
-~ J1 6,796 29,772 0,023
i 32 3.63 304 1.19
i3 J3 .216 14.318 1.51
? | 34 4.31,107 0525 0.82 |
- L %
| 35 1.39.1072 1.0813 1.29 ;
x4 }

: i

. J6 1.59.10 2 2607 6.1 ;
3 Since the performance vector does not allow an increase in value for any of the :
3 ;

- elements, the ARSO technique is dependent on initial parameter values, Thus;
',several different sets may be used before the final parameter values are

determined.
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1.2.5 Further Study

It is desired to apply the ARSO technique to a twelth-order set of equa-
tions representing a six degree of freedom aircraft. This will be a signifi-
cant step forward in determining the general applicability of this optimization

technique.

1.3 Some Options Available SDP

The existiﬁg programs of the SDP allow the user toiéimulate a continuous
system ‘up to lOth order using the “Tustin and Optimum Discrete Approximation
methods. Results are compared with the fourth-order Runge-Kutta method to
determine'the»efror. The Runge-Kutta method is gpplied at a smaller sampling
period to achieve ''ideal' response.

Various plots can now be obtained. For comparison purposes the time

’

\résponse for each method is plotted against the ideal response for a given sam-

pling period or each method is plotted for different saméling periods. Regard-
less of the type of plot theruser may desire, there always is an "ideal" plot
from which he can obsefve how well‘a given simulation method performs.

At the end of each simulation run, the user can aiso obtain an error
plot. This error is based on the deviation from the Runge-Kutta method and is
plotted against each sampling period that the usér has previously specified.

| To illustrate all the options avaiiéble, two linear -continuous systems
we;é simulatéd;’ In all cases part (a) of a figure illustrates man/machine
interactiéns, while part (b) shows the graphical-reSUlts. ’The first.e#émﬁlé is

a seventh-order autopilot transfer function.  Step and sinusoidal inputs result

“in plots in Fig. 1-11 and Fig. 1-12 with sampling period of

_T = ,15708 (40 rad/sec). ’Ihe second example is a fourth-order continuous

system. Figure 1-13 shows plots of responses bbtained from the Tustin, Sage,



d

F(S) =

Figure 1-11 = Step Response Using T = .15708
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Illustrating Tustin and Sage
Methods for
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s2 + 7.255 + 81

S2 + 8.45 + 36

S2 +5.62 S+ 3.1 S+ .62
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f
1
i
i

GE

éN§UT NUMERATOR. AND DENOMINATOR. ORDERS

HUSERATOR COEFFICIENTS IN ASCENDING ORDER
11222.9,17970.9,11923.2,3719.74,358.72,3c.
PENOMINATOP COEFFICENTS IN ASCENDING ORDER
4291.82,19949.1,23353.8,10433.1,24.61.6,340.468,26.4889, 1.

INPUT INITIAL AND FINARL TIMES
Q,15.708
HOW MANY SAMPLE PERIODS?

1
SAMPLE PERIODS-GREATER THAN.J314E-01
. 16708

RESPONSE LISTED® YES+9,NO=1

éESPONSE PLOTTED? YES=8,NO~{ )
gERFORHANCE IMDEX:Q-MSE, 1-MAE, 2-NTAE
?NPUTl.@-STEP, 1-RAMP, 2-SINE
%HPLITUDE

TUSTIN NUMERATOR COEFFICIENTS
-.724E407
.1975E+408
-.158£+08
~.126€+08
.5067E+98
-.364E+08
-.268E+08
.299%€+08
-0000E+00
.9029€E+00
0002t +00

TUSTIN DENOMINATOR COEFFICIENTS

- —=.861E+07
“+B118E+08

=+ 365E+09
+1803E+10
-.178E+10
.CO16E+10
-.132E+19
.3713E+09
.O003E+00
.9000E+0R
<9909E+00

P.L. SAMP. PER.
.4868E-03 ' .157E+00

SAGE NUMERATOR COEFFICIENTS
.BQ00E+20
. 0Q00E+0D
-.335E+06
.c262E+07
~.666E+07
.1824E+88

—.799E+07

. 2493E+907
.0200E+00
.BBJ8E +09
.0000E+00

SAGE DENOMINATOR COEFFICIENTS
- 424E+06
+4730E+87
~.230E+08
.6313E+38
~-.105E+89
.1842E£+08
~.576E+98
.13S6E+08
.80Q0E+00
o . 9BQ9E+00
.8990E+002

}
/

P.I. SARP. PER.
.1244E-92 -157E+08

TYPE :GO FOR RESPONSE PLOT
SINUL : PAUSE Q@67
SIinyl susP

e

Figure l—ll(a)



9¢

3.507
3.157
2.8@7 2R
2.457
2.104
. 1.757]
1.40]
1.057

+ 791

.35

. Qe T

T T |
-po 1.57? 3.14 ) 4.71 6.28 7.85 S.42 11.@ : 12.6 14.1 15.7

EXACT = SOLID LINE
SAMPLE PERIOD ».1571£+00 TUSTIN = xxx
SAGE = +++

Figure 1-11(b)"



F(S) =

Figure 1~12 Sinusoidal Response (w = 1) for T = .15708
Illustrating Tustin and Sage Methods for

36 L 82 +2.728+2.31 S+ 1.65, 5%+ 7.255 + 81

82 + 8.45 + 36 S2 + 5.62 S + 3.1 S + .62 1.1258% + 13.33 + 81
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-éNEUT NUNERATOR AND DEMOMINATOR ORDERS

'l
HUNERATOR COEFFICIENTS IN ASCENDING ORDER
11532.9,179870.9,11923.2,3719.74,358.72,32.
PEHIMINATOR COEFFICENTS IN ASCENDING ORDER
4381.82,19049.1,23363.8,10433.1,2461.6,348.468,26.4889,1.
INPUT INITIAL AND FINAL TIMES
0,15.708
HOUW MANY SAMPLE PERIODS?

éangns PERIODS-GREATER THAN.314E-01
RESPONSE LISTED? VES=@,NO-1

éesponsz PLOTTED? YES=0,NG~1
PERFORMANCE INDEX:9-MSE, 1-MAE, 2-NTAE
?npur: @-STEP, 1-RAMP, 2-5INE

2
ANPLITUDE AND FREQ.-RAD/SEC
1.1 ¢

TUSTIN NUMERATOR COEFFICIENTS
-.724E+0Q7
+1975E+038
-.158E+88
~.126E+08
.5Q67E+08
~.364E+88
—.268E+08
.299SE+e8
.2ecec+oe
.00Q0E+80
.eeoec+oe

TUSTIN DENOMINATOR COEFFJCIENTS
-.861E+07
.8118E+08
-.365E+0S
<1003E+10
~.178E+1@
.2016E+10
-.132E+10
-3713E+069
.0ee0E+88
.Ge0RE+0D
.0BOOE+0D

P.X. SANP, PER.
. 7834E-03 -157E+09Q

SAGE NUMERATOR COEFFICLENTS
.B0GOE+0D
.9000E+08
-.335E+06
.2262E+07
~.666E+07
.1024E+88
=.799E+07

+C493E+Q7
-Q000E+eR
<Q0@QE+Q0
-Q@QBE+0Q

SAGE DENOMINATOR COEFFICIENTS
=.424E+06
- 4730E+07
~.238E+08
.6313Eve8
~.105E+89
+1042€E+89
-.S76E+@8
.1356E+68
«QC0RE+8Q
.000eQE+R0
.000QE+00

P.I. SAMP. PER.
.4469E-03 -15S7E+08D

TYPE :G0 FOR RESPONSE PLOT
SImUL : PAUSE @087
SInUL SusP

Figure 1-12(a)




RICER S

X

6¢€

1,507
1.35
1.207
1.051
.90
.75
.60
.45
.30

+157]

.08

) EXACT = SOLID LINE
SAMPLE PERIOD =,1571E+0@ TUSTIN = xxx
. SAGE < +++

Figure 1-12(b)




; Figure 1-13 Step Response for T = .05 Illustrating
S Tustin and Sage Methods for

i i 2
T 2(5). = s2 4+ 5.55 + 2.5
& el S* + 553 + 9.582 + 8S + 2.5

i
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s e

T

INPUT NUMERATOR AND DENOMINATOR ORDERS
2,4
HUMERATOR COEFFICIENTS IN ASCENDING ORDER

¢.5,%.5,1

P du INRTOR COEFFICENTS IN ASCENDING ORDER

,S,9.5
IHFUT INITIQL AND FIMAL TIMES

“Q,10

HOU MANY SAMPLE PERIODS?

éRHPLE PERIODS-GREATER THAN.209E-01
RE:PONSE LISTED? YES=9,N0Os1

REQPONSE PLOTTED? YES=9,NO-~1
PERFORHANCE INDEX19~MSE, 1-PAE,2-MTARE
?NPUTS 9-STEP, 1-RAMP, 2-SINE

@
ANPLITUDE
1

TUSTIN NUMERATOR COEFFICIENTS
+1382E+84
-.430E+03
~.31BE+04
.4508E+03
.1822E+04
.0000E+09
. Q00RE+0Q
.8000E+0G
.0eeeE+00
.0000E+00

. +0006E+E0

TUSTIN DEMOMINATOR CCEFFICIENTS
.2255E+07
=.960E+07
.1533t+638
-.109E+08
.2896E+07
+0088£+00
.Q060GE+00
.0000E+00
.8000E+00
.0000£+89

- . 000%E+00

P.1. SANP. PER.
«1262E~93 .S0eE-01

SAGE MUNERATOR COEFFICIENTS
. 2000E +08
.0000E+30
-4200E+03
~.910E+03
.5125€+@3

".8000E+00

.B0QBE+0D

.0Q2QE+0Q
.Q000E+0@
.8Q0QE +00Q
+Q00QE+28

SAGE DENORINATOR COEFFICZENTS

-160QE+06

~.680E+06
.1084E+07
-.76BE+86
«CQ4QE+06
.00QeE+00
.000e£+00
.300%E+80
.80Q0E+E8
«Q0Q0E+29
.2000E+00

P.I. SAMP. PER.
+1327E-03 .500E-01

TYPE :GO FOR RESPONSE PLOT
SIMUL : PAUSE 2097
SIMUL SUSP

Figure 1-13(a)
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2.59
2.264
2.001
1.754
1.501

1.257

(A
g

8 T T  J T T T
po 1.00 2.09 3.00 4.00 5.00 6.00 7.08 8.00 9.00 18.2

R ) EXACT « SOLID LINE
SAMPLE PERIOD «.5000E-01 TUSTIN s xxx
SAGE » +++

Figure 1-13(b)




and fourth-order Runge-Kutta methods for a sampling period of T = .05 sec. .
Figures 1-14 through 1-18 are plots of responses of a given method (in this
case, Tustin) with different sampling periods. The mean-square-error for each

sampling period is calculated and is plotted in Fig. 1-19.
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Figures 1-14 - 1-18 Step Response F or
T=.2, .4, .6, .8

and 1.0, Respectively .

Illustrating Tustin
Method for

S2 + 5,58 + 2.5
g% + 583 +9.552 +8 5+ 2.5

F(S) =
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!NPUT NUMERATOR AND DENOMINATOR ORBERS
hUﬂLRRTOR COEFFICIENTS IN ASCENDING ORDER

c.5,5.
gEuCﬂINR;OR COEFFICENTS IN ASCENDING ORDER
S,
%NFLT INITIAL AND FINAL TIMES
e 10,
HOL MANY SAMPLE PERIODS?

5

SAMFLE PERIOD> GREATER THAN.Z0QE-@1
.2,.4,.6,.8,

RESPONSE LISTED° YES=9,NO=-1 -

éEqPLNSE PLOTTED? YES=@,NO-1
PERFﬂRHRHCE INDEX:Q-MSE, 1-MAE, E-HTAE
gETHODt @-TUSTIN; 1-SAGE; 2-1BM
?NPUT: 8-STEP, 1-RANMP, 2-SINE
%ﬂPLITUDE

TUSTIN NUMERATOR COEFFICIENTS
.4758E+02
-1.00€+02
-.18S5E+03
+1200€+83
-1575E+83
-0000E+20
.8000E+08
O20E+09

TUSTIN DENOMINATOR COEFFICIENTS
.S872E+04
-.301E+05
.S811E+05
~.498E+05
.1603E+05
.0000E+90
. 0000 +80
.@900E +00
.@000E +00
. 0QQ0E+00
.9BOE+00

TYPE 1C0 FOR RESPONSE PLOT

SIMUL 3 PAUSE eee3
SIMUL SUSP

pAoe e e

Figure 1-14(a)




2.507
2.251
2.00
1.751
1.507
1.25

1.0807

N - .pe 1.00

TYPE 1GO TO CDNTINUE
SINUL 3 PAUGE = 0004
SInuL susP .

;/’/}/;/x’1_j—1—x—1—“‘—1~1~1—X~I_X_J~J;J_I X X X X X ¥ X ¥ ¥ v Y Xy X vy xxzx

2.00 3.00 4.08 5.00 6.09

g EXACT = SOLID LINE
SAMPLE PERICD =.20@RdE+30 TUSTIN = xxx
’ SAGE = +++

Figure 1-14(b)

7.080 B.ee
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TUSTIN NUMERATOR COEFFICIENTS
-0000E+02
=.45QE+02
-.350E+02
.650RE+@2
.5Se0E+02
<Q00E+@D
+QQ0QE+09
.Q000E+0¢e
.00CQE+00
+@00QE+0Q
+00QRE+QQ

TUSTIN DENOMIMNATOR COEFFICIENTS
.2eDeE+83
~.132E+04
. 3290E+04
-.366E+04
+153E+04
.Q00RE+0Q
.0000E+00
-000QE+80
~00@IE+Q?
.0000E+00
.9000£+09

‘TYPE tGO FOR RESPONSE PLOT
SIMUL : PRUSE Q@83 -« -
SInuL Susp

Figure 1—1“5 (a)




8¥

2.00

2.507

2.2857

1.757
1.507
1.257
1.007

f75~

.50

TYPE $:GO. 7O CDNTINUE
SINMUL. ¢ PAUSE 2094

SINMCL. susP

.80 8.00

EXACT = SOLID LINE
TUSTIN = xxx
SAGE = ++¢

SANPLE PERIOD ».4000£+00

Figure 1-15(b)
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woeen o e e ST

TUSTIN MUMERATOR COEFFICIENTS
~.472E+01
~.267E+02
-.V22E+01
<4667E+02
.3184E+02
-0000E+00
-QR0QE+00
+O0BCE+0
.Q0RRE+QQ
.2Qd0E+8O
.0000E+20

TUSTIN DEROMINATOR COEFFICIENTS
«1966E+02
-.167E+@3
5446E+403
—~,801E+03
.4434E+03

- @00QE+00 IR

.0000E+00Q
+0000E+020
-Q0QQE+30
.09083E +00
-9000E+00

TYPE 3GO FOR RESPONSE PLOT
SINUL ¢ PAUSE 9003
SINUL SusP

| aptecie= SR ¥ ot

Figure 1-16(a)




DU

]9

2.501
2.257
2.00
1.757
1.507
Xo1.257

1,087

TYPE :GO TO CDNTINUE

SImuL ¢ PAUFE
SInYL SusP

oeo4

EXACT =« SOLID LINE .

SAMPLE PERIOD «.6000E+00Q TUSTIN « xxx
SAGE = +++

Figure 1-16(b)
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TUSTIN NUMERATOR COEFFICIENTS
-.SO0RE+01 ’ :
~-.175E+02

.2500E+0})

-3750E+Q2

.2250€E+02

.@000E+Q0

.900JE+vE

.D0ARE+QQ

. 0000E+0R0

.DOAJE+2Q

.00QQRE+2Q

TUSTIN DENOMINATOR COEFFICIENTS
.2812E+01
~.30QE+02
-1306E+03
-.262E+083
.1S91E+@3
.00Q0E+00
.@398E+080
.0000E+00
.9000E+03
.GB380E +00
.0003E+00

" TYPE 1GO FOR RESPONSE PLOT
SIMUL : PAUSE 0003
SIRUL SUSP .

TS

Figufe 1-17(a)
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2.597
2.251
2.00
1.751
i.se*

>*:.as~
1.007

.75
.50

257

TYPE 1G0 TO CDNTINUE

SIMUL 1 PAUBE
SIMUL SUSP

u
0004

SAMPLE PERIOD

EXACT = SOLID LINE
=, 8002E+20 TUSTIN = xxx
SAGE « +++

Figure 1-17(b)
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%9

FRe
g
P
4
-
b
2
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Figure 1-19 Error Plot Corresponding to Cases
in Figures 1-14 - 1-18,
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II. PARALLEL OPERATION OF MICROPROCESSORS FOR REAL-TIME FLIGHT SIMULATION

2.0 INTRODUCTION

The use of parallel processing with microprocessors is being studied to
determine if the new microprocesscr technology can yield performance superior
to that of large digital computers presently being used for real-time flight
simulation. The simulation éycle time for large digital computers‘is typically
about 1/32 second, and this sometimes introduces appreciable phase shift which.
leads to erroneous simulated results for dynamic systems. Hopefully, the us;
of several small processors would allow a decrease in cycle time; but the word
length would almost certainly be reduced as a practical matter. Thus, one of
the fundamental considerations in the study is to determine relationships
between roundoff error and truncation error, i.e., the relationships between
small word size with high speed and large word size and slow speed,

It is assumed, for the present, that high speed can be obtained via par-
allel processing; but this has not yet been established, The processing meth-
odology and machine architecture to accomplish this are, themselves, major
research problems under study.

As implied above, it is known that the round-off error can become more
significant whén the sampling rate (i.e,, cycle time, extropolation time, etc.)
becomes faster. ihus, it is important to determine tﬁe best range of sampling
rates in terms of: computational accuracy and stabiliﬁj as a function of trunca-
tion-and round;off error. Once this’range of sampling fates,is determined, -
ways to.implement ﬁhe siﬁﬁlation on a multi;microprocessor system can‘be sought
which will meet'é satisfactory‘sampling rate specification.

Generally, thé truncation error (and the total propagaﬁed'error, as well)
in simdlation depeﬁds‘not’onlyron thé sampling taté and the-simulation tech-

nique used but also on the characteristic frequency of the system to be
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simulated. Study has been made in the literature [8] on the relative contri-
bution of the truncation and the round-off error to the error committed at each
step as a function of system characteristic frequency and the sampling rate, as
well as the number of bits allotted to the mantissa. A brief review
follows.

Let us assume that the jth derivative of the state variables of the

system are given by the relation
x<3) = Ix | . (2-1)

where the characteristic frequency w, is, in general, complex. A Taylor series

expansion of x from the point t = nh to t = (n + 1)h gives
= sop L2y L3 -
X o4 - ¥, thx +5hx +ohix + (2-2)

Substituting (2-1) into (2-2) yields .

= (1 + hmc;-i--l hzw 2 + l-h3w 3 +oe e o )X g (2-3)

X 2 c 6 c n

n+ 1
for which the solution using first-order integration is

Jxn £1 = (1 + hwc)xn | - (2-4)

with the local truncation error

_1,2 2 3 |
'1‘l =3 h w, + 0(h™) (2-5)

-

The change in x to first order relative to x'is
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[

| Ges s weee

1 _ .
% Axn = hwC (2-6)

The magnitude of the local relative truncation error is approximately

Il
5 (2-7)

ol
|ax_ | ¢
n

€er

where higher-order terms in (2-5) are neglected. Similar expressions can be

derived for second-order integration, and they are

1 - 1 i
x bx_ = hu (1 + 5 hw ) (2-8)
T, L 6%
= - C
Cex T "6 1 (2-9)
S ax | |1+ = he | ,
n 2 c

The local round-off error R is, when floating-point arithmetic is used,

bounded by*

(2-10)

where Nb is the number of bits for the mantissa. The magnitude of the local

round-off error Er is defined as

(2-11)

*#In this case it is assumed that the so-called inherent error can be neg-
lected with good programming practices. For more detail refer to Ref. [8].
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Thus, to a first-order approximation it has a maximum of

2_Nb
e, = : (2-12)
|ha_]
c
and for second-order it has a maximum of
2“Nb .
g = (2-13)

T e (1 + 3 hw) |
Itvshould be noted that ﬁhe round-off error committed at each step is assumed
to be random. For purpose of analysis a statistical model is generally adopted
for the distribution of round-off error. The most common model is to assume
that the round-off error values are uniformly distributed over the interval
(0, sr). For the assumed distribution, the 50 percentile occurs at the mid-
point, namely (l/2)sr. E

Figure 2-1 shows the local relative truncation and the round-off error
for first-order and second-order integration expressed by (2-7) and (2-9),
(2~12) and (2-13) as functionstof hmc. Two values are chosen for Nb’ one typi-
cal of a large digital computer and the other a microcomputer with the maximum

processing capability currently available*. The figure allows a convenient

comparison of round-off and truncation errors.  For example, when the second-

order Adams-Bashforth (AB-2) method is used on a machine with N, = 47 bits and

b

*Typical word length of a large digital computer is 60 bits. Out of 60
bits, 48 bits are assigned for mantissa. Since one bit is reserved for sign of
the mantissa, the number of significant bits in the mantissa is Ny = 47. The
maximum word length of currently available microprocessors in floating-point
operation is 32 bits. Of the 32 bits:the mantissa occupies 24 bits with one
bit for sign, thus leaving 23 bits in the floating-point representation.
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Figure 2-1 Local relative roundoff and truncation errors
as a function of characteristic frequency and
interval size product for a first- and second-
order techniques on a 23-bit and a 47-bit
fractional part machine.
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hwc > 10 to 10 7, the truncation error is at least two orders of magnitude

=6 to 10-5 the situation is just

larger than round-off error, while for hwc > 10
the opposite.

When, at each local step, one type of error is much larger than the other
in magnitude, it is considered that the propagated error is dominated by the
former. Figure 2-1 will be referred to again in a later discussion.

A practical example has been considered*. The example system is

described by

x = Ax + Bu (2-14)
where '
~0.3236575 O 1 ' -0.01785196
A= 0 0 1 , B = 0
-1.169521 0 -0.4809339 ' -1.379406

The characteristic roots for the above system are

(2-15)

S,» S, = ~0.4023 + j1.0786 = 1.1512¢ (180469 54)

wn
1

The step responses using the Euler and second-order Adams-—-Bashforth meth-
ods on a microprocessor with 32-bit floating—point arithmetic have been simu-
lated by a Hewlett-Packard minicomputer which has 32-bit floéting—point arith-

metic. The system responses obtained have been compared with the solution from

#This is the short-period approximation for linearized longitudinal air-
craft dynamic equations of motion, where x) = 'a(angle of attack), x2 = 6{pitch
angle), and x3 = 6(pitch rate). ~ '




a fourth-order Runge-Kutta method using h = .00l on a computer with 60-bit
floating=point arithmetic. This solution is considered to be reiétively accu-
rate. The average absolute relative error is shown in Figs. 2-2, 2-3, and 2-4
for each state variable, respectively, as a function of sampling frequency. It
is interesting to note that the total error which is the combina;iohal effect
of the truncation and round-off error becomes minimum at a certain frequency
for each state variable. Refer to Fig. 2-1 for an explanation of the results
in Figs. 2-2, 2-3, and 2-4.

The magnitude of the characteristic roots for the example system is, from

(2-15),
ju, | = 1.1512 (2-16)
From Figs. 2-3 and 2-5 the propagated error exhibits a sharp minimum at E
h = 2 msec (2-17)
Thus,
[hw | = 0.0023 ; o (2-18)

From Fig. 2-1, lociAl and 6 intersect at hwc £ .01, i.e., the trun-
cation error with the second-order integration method and the maximum round~off
error on the 23-bit machine committed at each step would be almost the same in
magnitude as at hwc = .01, thus competing with each other for:contributiqn to
the propagated error. Because the slopes of the two 1Qci 1l and 6 are équal in
magnitude,but opposite iﬁ sign, we could reasonably have expected that tﬁe com-
binational effect would become minimum around the intersection point of line 1

and 6. It is noted that the value for |hmcf in (2-18) is farily close to, but
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somewhat smaller than, the value for lhmcl at the intersection. This seems to
be explained, however, by the.fact that €. is the maximum round-off error and
the round~off error can be any value between zero and e at random. Figure 2-1
also explains th the responses with the AB-2 method on machines with two
largely different word sizes have almost same accuracy above h = 5 msec.

. Particular attention has been paid to the case using a large computer
with the AB-2 method and h = 1/32 sec, because it was reported [8, 9] that
this yields real-time flight simulation of s;tisfactory accuracy except for
high~-performance aircraft with high angular rates. Figures 2-2, 2-3, and 2-4
show that the average total propagated error with the AB-2 method on a machine
with 32-bit floating-point arithmetic with a sampling interval h - ,002 sec is
almost two orders of magnitude smaller than that with the AB-2 method on a dig-
ital machine having 60-bit floating-point arithmetic and h - 1/32 sec. That
means that, ?f the sampling frequency can be increased to 500 Hy by means of
efficient parallel operation of microprocessors, the accuracy of the simulation
can be significantly improved over the accuracy currently obtained in real-time
flight simulation on a large digital computer.

The above discussion was for a single open-loop system. The next step in

the research will include closed-loop operation and generalization to other
systems.k It has not yet been established that the AB-2 iska suiltable method

for parallel processing; so-it must be studied, too.
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