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1.0 SUMMARY

This report documents the details of an analysis to determine the

orbiter/SCA separation operational limits for the current target

conditions of ALT free flights 1 through 5. The separation operational

limits are used to verify that no separation design constraints are
	 ....

violated. The operational limits represent the acceptable

dispersions in attainment of separation target conditions which

assure safe separation. Safe separation is based on satisfying all

specified separation design criteria except orbiter altitude at ALT

interface airspeed. Separation operational limits are defined for

each of the five orbiter tailcone on ALT free flight missions based

upon preflight (wind tunnel) aerodynamics. The effect of carrier

pilot steering compensation due to off-nominal flight conditions

(as determined in the Boeing Launch Simulation No. 3) is determined to

be within the separation operational limits. It is recommended that

the current target conditions be retained for free flights 1 through 5

until ALT captive-inert postflight data is available for reverifica-

tion.



2.0 INTRODUCTION

A design rationale which includes flight test verification of the

target separation conditions that satiny all ALT separation design

requirements was proposed in Reference 1. That proposal was instru-

mental in the formalization of the ALT separation support requirements

as specified in Reference 2. A pictorial representation of those

support requirements is reproduced in Figure 1. This design note

documents the results of a MDTSCO off line analysis which contributes

to the development of the criteria for modifying ALT separation con-

figuration/flight conditions as depicted at the bottom of Figure 1.

Reconfiguring the incidence angle between ALT flights requires

demating and remating of the orbiter/SCA. Likewise, reconfiguring

separation elevon position between captive inert flights requires

demating and remating of the orbiter/SCA. It is therefore an overall

objective of the design rationale to determine the incidence angle

and separation elevon position which have a high probability of being

retained for all of the orbiter tailcone on configuration ALT flights.

An additional objective entails selecting separation initial accelera-

tions which accommodate the maximum launch airspeed compatible with

vehicle constraints. Accordingly R I recommended in Reference 3 the

incidence and target separation initial conditions for ALT free flights

1 through 5 (orbiter tailcone on configuration).

In order to verify that no separation design constraints are violated,

separation operational limits are generated by MDTSCO for the R I

prescribed separation tartlet conditions.

r'
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3.0 DISCUSSION

Safe separation is based upon satisfying all known ALT separation

design criteria except orbiter altitude at ALT interface airspeed.

The operational limits represent the acceptable dispersions in

attainment of separation target conditions which assure safe separa-

tion. Separation operational limits are expressed in terms of

separation SCA angle of attack versus separation airspeed.

The dispersions in separation conditions that are expected to occur

during the five second crew decision time have been determined to be

approximately ±0.1 degrees in SCA angle of attack and ±5 KEAS in

airspeed (see References 4 and F). The objective of this analysis is

to verify that this pilot steering capability is within the separation

operational limits for the R I recommended target separation conditions.

3.1 Separation Design Criteria, Constraints, and Dispersions

The separation incidence angle, airspeed, and orbiter elevon setting

were determined based upon retaining common incidence angles for flights

1 through 5, maximizing separation airspeed, maximizing ALT interface

altitude, and achieving nominal initial separation accelerations of

approximately 0.75 g relative normal acceleration and between 0 and 6 deg/

sec t orbiter pitch acceleration. The upper limit on nominal target

separation airspeed is defined by orbiter structural loads. This limit

is 5 KEAS less than 1.1 g on the V-n diagram for the orbiter 751 limit

load. Figure 2 presents a portion of the orbiter 75' structural limit

load V-n diagram for the free flight 1 through 5 separation configurations

(see Reference 6). For flights 1, 2, 4, and 5 (63.9' L B orbiter cg

3
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The data base assumptions are as follows:

1) Orbiter and carrier freestream and proximity aerodynamics are

defined in Reference 7.

2) Carrier engine thrust is defined in Reference 8.

3) Orbiter control system is defined in Reference 9.

4) Carrier control system is defined in Reference 10.

5) Second launch attempt mass properties are defined in Reference 11.

3.2 Analytical Approach

The analytical approach used to generate the separation operational

limits for each of the twe target conditions is illustrated in the

flow chart of Figure 3.

The first step is to select a candidate separation constraint. Each

of the first five constraints listed above is analyzed independently

in order to determine the one which constitutes the most restrictive

separation operational limit. Worst case dispersions of constraint

parameters are generated by tt:e root sum square technique. The con-

straint dependent root sum square composite dispersions for aero-

dynamic coefficients and elevon setting are tabulated in Table 2.

The first two columns are the composite dispersions which maximize the

forward and aft strut -forces. The attach point recontact constraint is

represented by the negative of the same composite dispersions, which

minimize the strut fords. The cone angle constraint is represented

by the arctangent of the longitudinal relative acceleration divided by

the normal relative acceleration.

The mated vehicle is then trimmed in pitch for a sequence of combina-

tions of angle of attack, and airspeed near the target condition, and

5



the constraint parameter is calculated. At each airspeed, the

angle of attack limit is obtained by interpolating for the angle

of attack for which the constraint is equaled.

The separation operational limits are defined by the constraints which

result in the most restrictive angle of attack limit. The equilibrium

glide angle of attack at the target separation airspeed is determined

for one of the most restrictive constraint composite dispersions. The

envelope of pilot steering capability to achieve the target separation

airspeed and angle of attack in the presence of design winds under

analogous dispersed conditions (see References 4 & 5) is then overlayed.

The process is repeated for each of the most restrictive constraints.

The composite envelope of pilot steering capability is then comprised

of the superposition of each of the individual envelopes.

Acceptability of target separation conditions is verified by the non

intersection of the composite envelope of pilot steering capability and

the separation operational limits.

The operational limits are initially defined with the (dated Trim

Program (Reference 11). They are then verified by simulation of post

separation dynamic responses using the Space Vehicle Dynamic Simulation

(Reference 12).

6



4.0 RESULTS

Figures 4 and 5 present the separation operational limits expressed

in terms of carrier angle of attack and airspeed for ALT free flights

no. 1, 2, 4, and 5 and flight no. 3 respectively. The ultimate limits

represent the angle of attack/airspeed boundary with no dispersions.

The operational limits are the angle of attack/airspeed

boundary with the composite la aerodynamic and elevon dispersions.

These limits represent the amount of allowable pilot variation aLout

the equilibrium glide target without violating a separation constraint.

The upper limit on carrier angle of attack is defined by the orbiter

load factor or the aft attach recontact constraints. The lower limit

on carrier angle of attack is defined by the forward load cell vernier

limit of 50000 lbs. For neither configuration do the constraints of

orbiter angle of attack or separation cone angle define a more restrictive

limit for the airspeed range investigated.

The pilot accuracy in achieving and maintaining equilibrium glide at

the separation target condition is illustrated on each figure. The

pilot variability is compatible with the operational limits and no

separation constraints are violated.

i
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5.9 CONCLUSIONS AND RECOMMENDATIONS

The conclusions derived from this analyses are as follows:

1) The separation operational limits generated for the target

conditions of ALT free flights 1 through 5 based on 1u wind tunnel

aerodynamic data dispersions verify that no separation constraints are violated.

2) The most restrictive constraints which define the operational

limits are the aft attach point recontact constraint and the 29

orbiter normal load factor constraint.

3) The pilot steering capability derived from ALT Separation

,iulation No. 3 is within the separation operational limits.

It is therefore recommended that the separation target conditions

tabulated in Table 1 be retained for free flights 1 through 5 until

ALT captive inert postflight data is available for reverification.
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TABLE 1

TARGET SEPARATION EQUILIBRIUM GLIDE CONDITIONS

FLIGHT NO. 1,2,4,5 3

ORBITER CG (% Ls) 63.9 65.9

Worb (LBS)
150000 150000

Ae (DEG) 6.0 6.0

6eorb (DEG) 0.0 1.5

V(KEAS) 267 264

N Z	( _^ .74 .88

rel

"orb (DEG/SEC 2 ) 2.50 3.58
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•	 FIGURE 3

METHOD OF DETERMINATION OF SEPARATIOY OPERATIONAL LIMITS

START

B

SELECT A CONSTRAINT TO BE ANALYZED

DETERMINE COMPOSITE AERO AND ELEVON

TOLERANCES FOR SELECTED CONSTRAINT

V = 260 KEAS

_ o
0'7W-

TRIM MATED VEHICLE AND CALCULATE PARAMETER

REPRESENTING SELECTED CONSTRAINT

0'747-0'747+I^ 
AYES	

a147<80 ?

NO

FIND a747 LIMIT AT V BY INTERPOLATING TO

FIND a747 FOR WHICH CONSTRAINT IS EQUALED

---^ YES
V = V +. 5 KEAS'	 V < 280 ?

NO

A



.	 FIGURE 3 CONTINUED

A

PLOT a747 LIMIT VS. V FOR SELECTED CONSTRAINT

I

	

B NO +

YES

MOST RESTRICTIVE x747 LIMIT AT

EACH V ARE OPERATIONAL LIMITS

DETERMINE EQUILIBRIUi GLIDE AT VTARGET

FOR TOLERANCES FOR MOST RESTRICTIVE CONSTRAINTS

OVERLAY PILOT STEERING CAPABILITY ON EQUILIBRIUM

GLIDE a FOR MOST RESTRICTIVE CONSTRAINTS.

CONSTRUCT COMPOSITE PILOT STEERING CAPABILITY
WHICH E;lCOi1PASSES ALL OVERLAYS
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