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ABSTRACT

ti

This report presents the results of testing-to-failure a two member

, boron-aluminum thrust structure. 	 The structure represented one section of a

more complex planar truss and was designed to test the integrity , of a diffusion

bonded joint.	 The structure failed at 107 percent of the ultimate design

load in the diffusion bond region.	 Strain gages and displacement transducers

were used to measure loads and deflections of the truss. 	 The experimentally

derived axial loads, bending moments and torsion in the various members are

presented and compared with predicted values. 	 In general, ,the comparison is

quite good.	 r
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RESULTS OF BORON-ALUMINUM THRUST STRUCTURE TEST

By

M. W. Hyeri and Michael C. Lightfoot2

INTRODUCTION

Future space travel will require lighter, more efficient space transportation

systems.	 Lighter spacecraft will result in higher payloads and less energy

consumption for travel and maneuver. 	 The use of advanced fiber-reinforced

composites as a structural material is one way to achieve a weight reduction.

Advanced composites increase structural efficiency and thereby offer a weight

savings over conventional structural materials such as titanium or aluminum.

Ultimately an entire space vehicle might be constructed of composite materials,

but at present, studies are centered on selective use of composites to

reinforce primary structural members or to lighten certain weight-critical Y

areas.	 Whenever composites and conventional materials are used together, Al

close attention must be given to fastening these materials together.

Standard techniques such as welding, riveting, and bolting do not lend them-

selves to composites because these techniques, when applied, allow discontinuity

of fibers and abrupt changes in material properties. 	 These methods must be

avoided to achieve maximum structural efficiency when using fiber or rein-

forced composite materials.

This work presents experimental results of testing-to-failure a 1/3

scale boron-aluminum reinforced titanium thrust structure. 	 The structure was

tested at the Langley Research Center and was fabricated by General Dynamics

to test the integrity of a diffusion-bonded step-lapped joint in a compression ^1

member.	 The joint was designed to transfer the load from the boron-aluminum

to the titanium.	 The structure was the second of its type tested, being

i Assistant Professor, Department of Mechanical Engineering and Mechanics, Old
Dominion University, Norfolk, Virginia 23508.

2 Research Assistant, Department of Mechanical Engineering and Mechanics, Old
Dominion University; _Norfolk, Virginia 23508.,



preceded by a boron-epoxy reinforced titanium structure (ref. 1), and was

predicted to fail in the diffusion-bond region. 	 In the pre-71 ious truss,

consisting of a boron-epoxy reinforced compression member and a boron-epoxy

reinforced tension member, the tension member failed at 118 percent of the

ultimate design load.	 Thus the ultimate strength of the compression member

was not determined.	 For this reason, a modification of the design was

incorporated in the boron-aluminum truss.

DESCRIPTION OF STRUCTURE

Figure 1 shows a planar idealization of the booster thrust structure.	 An

unsymmetric loading, representative of gimbaled engines, presents the most

critical case of loading and is the case studied in this report.	 Figure 2

shows internal load distribution in the test segment.

The truss consisted of four major components:	 the compression tube, the

tension member, the joint cluster, and the loading ram.

y	 Of particular interest was the compression member, shown in figure 3. 	 The

member consisted of two titanium collars and a boron-aluminum tube. 	 Each	 ► x

_	 collar was 228.6 mm long with a constant outer diameter and an inner diameter
>a

that varied along the length.	 The fabrication of the boron-aluminum section

consisted of rolling a monolayer unidirectional tape to a wall thickness of

15 plies.	 The precut tape had tapered ends such that when rolled it produced

discrete helical steps at both ends of the tube section.	 After placing the

collars over these stepped regions, the titanium and boron-aluminum were

diffusion bonded together.	 The diffusion bond spanned a region of 127 mm.

Since one of the primary concerns was the ultimate strength of the

compression member, a complementary boron-aluminum tension member was not A

fabricated.	 Instead, a dummy member was fabricated of an alloy steel. 	 This

member was designed to have approximately the same extensional stiffness as the

previous boron-epoxy tension member. 	 The details of the member are shown in

figures 4 and S.

The joint cluster, a hollowed out titanium member, was designed specifically

for the truss fixture.- This joint is a two-dimensional extraction of a typical
^r

r
r
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three-dimensional clustered connector. The loading ram was not meant to repre-

sent actual engine attachments but was designed as a means of transferring load.

TEST PROCEDURE

Figure 6 shows the section mounted in the test position. The load was

applied by a hydraulic jack. The load was actually applied through a round

pin, which in turn rested on a flat plate and rollers. This mechanism allowed

only vertical loads to be applied to the ram.

To determine the truss reactions to the applied load, strain gages and

direct current displacement transformers (DCDT's) were used to record strains

and deflections. Single and rosette gages were mounted along the .length of the

compression tube with all single gages aligned axially on the top and bottom of

the tube and the 0° arm of the 0 0 -45 0 -90° rosettes aligned axially along the

sides of the tube. Figures 7 and 8 show gage locations on the tube. With this

arrangement axial force, vertical and side bending, torsional moment and

y
	 vertical shear load could be determined. In addition, four axial gages were

put on the tension member to check the axial load and vertical and side bending

in that member. DCDT's were located to monitor what primarily would be rigid

body motion of the joint cluster. Figure 9-shows the locations of the DCDT's.
	 x

Alignment of the test section was checked by applying small loads and

monitoring strains and displacements. A survey of the data at a low load

level indicated a tendency of the truss to deflect laterally. At that time it

was not known whether the deflection was due to misalignment of the loading or

due to eccentricities in the truss. To monitor the loading, four axial strain

gages were placed on the loading ram to measure axial load and fore-and-aft

and side-to-side bending. A second low load test indicated side bending of the

ram. Shimming at various locations and alignment of the hydraulic loading

jack helped eliminate some of the bending. Vertical alignment of the entire

'test assembly on the backstop was checked with a surveyor's transit. It was

found that although the upper and lower backstop mounts were vertically aligned,

the top of the joint cluster was 2.54 mm further to the right, when viewed from

the front, than the bottom of the ram. This was basically an assembly eccen-

tricity. In an-effort to align the ram vertically, bolts at various joints were

J
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loosened in hopes of finding enough tolerance in the bolt holes to straighten

the ram and joint cluster. The necessary tolerance did not exist and so the

bolts were tightened to a torque of 54 Nm. Since the misalignment had not

been eliminated, support rods approximately 1 m long and 15.88 cm in diameter

were attached to the cluster and run horizontally to the backstop to restrain

any tendency of the truss to deflect sideways. To determine how much load

was transmitted to the support rods, axial strain gages were placed on the top

and bottom of the right rod.

Table 1 lists all strain gages and DCDT's and their respective locations.

TEST RESULTS

After the alignment procedures, the truss was loaded to failure. Load,

strain, and displacement were recorded every five seconds from 0 to 710 M.

From 710 to 747 kN they were recorded every two seconds. Within a load range

of 747 to 770 kN data was recorded at one-second intervals. Finally after

770 kN the data was recorded at two-second intervals until failure.

The truss failed with a force of 834 kN on the loading ram. This load was 107

percent of the design ultimate load. The failure occurred in the upper

diffusion bonded region of the compression tube when the inner boron-aluminum

tube telescoped inside of the titanium end fitting. Figure 10 shows the

failed compression tube, and figure 11 shows a detail of the titanium end

fitting. Although the load carrying capacity of the truss reached 834 M,

the strain gage data indicated there was a localized failure on the top side

of the upper bond at a load of 456 kN (58.6 percent design ultimate). Figure 12

shows strain at strain gage location 11 and indicates a sudden decrease in strain

at that load level. Gages 10, 12, 20A, 33, and 43A also show a sudden decrease

in strain level but not the same magnitude as at gage 11. Although the ram force

did not change, strain recordings indicated a sudden release of load in the

region of the gage. Except for a slight increase in strain level at 20B, 42B,

and 43B, there doesn't appear to be a clear indication of the load increasing.

elsewhere. DCDT data indicated that the top of the joint cluster jumped

forward and slightly to the right at the time of this Local failure. As the

load continued to increase, there were other sudden decreases in strain

4
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indicating the failure was spreading. Figure 13 shows load versus strain at

locations 43C, 43B, 43A, 42B, and 33, and from these plots these other sudden

changes are evident. Except for a few slight jumps at these same load levels in

several other gages, the majority of the gages , showed linear load-strain

behavior up to failure.

Figures 14 through 19 show, respectively, the axial compressive force,

vertical bending moment, side bending moment, vertical shear and torsional 	 s'`

moment along the compression tube as a function of applied load. Each figure

has the experimentally derived loads for 50 percent and 100 percent design

ultimate load and, in some cases, the theoretical load based on elementary

statics. Computations were done for 25, 50, 58.6, 75, 100, and 107 percent

ultimate load. The 58.6 percent load level was chosen to determine if there was

an adverse loading condition when the local failure occurred,.,and the 107

percent level was chosen since that is the failure load. The 25, 50, 75, and

100 percent load levels were chosen as convenient intervals. Since there were

no unusual conditions at any load level, 50 percent and 100 percent were chosen

as representative.
F	 c

The axial force in the compression member was determined two ways:	 using

top and bottom axial gage pairs and using side-to-side axial gage pairs.	 The

vertical bending moment and side bending moment were computed using top and

bottom and side-to-side axial gage pairs respectively.	 The vertical shear and

torsional moments were computed using side-to-side rosettes. 	 The sign con-

ventions for these loads are indicated on the figures.	 The axial force,

vertical bending moment and vertical shear are the primary loads on the tube and 	 r

are of principal concern while the side-to-side bending and torsional moment,

both of which should be zero, were -computed to determine departure from the ideal

-	 loading situation.	 The value of Young's Modulus,	 E ,	 used in computing the

axial load and bending moment in the boron-aluminum section was determined by

testing a. short cutout segment of the failed compression tube. 	 Appendix A

gives the detailed results of this testing. The value of	 E	 used in the

diffusion bonded region was determined from the rule of mixtures, and the

value for each particular location is given in that appendix.
F

Tables 2, 3, and 4 respectively indicate the loads in the tension member, r
s 

the loading ram, and the right support rod. 	 The sign conventions for these

x
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loads are shown on the figures. The values of E used in these calculations

were taken from handbooks quoting commonly used values for the steel alloys in

the components. Figure 20 shows the displacement of the ram and joint cluster.

The displacement figures were drawn using the DCDT data and assuming rigid body

behavior.

The experimental values of the axial force in the compression member

compare well with the theoretical predictions in the boron-aluminum section.

In the diffusion-bonded region, the comparison is not as good. In this region

(figure 3) the material properties are changing with radial distance through the

tube due to a transition from boron-aluminum to titanium. The rule of mixtures

yields a "smeared out" or equivalent E value for a cross-section in this

region of the tube. Since the elastic properties vary with radius, the strain

varies with radius. Unless the strain gradient is small, there is no a priori

reason to believe that multiplying surface strains by an equivalent E will 	
E

yield the correct average stress. A better approximation to the average stress 	
i

might be obtained if the rule-of-mixtures E was multiplied by a strain	 )

averaged using strains of the inner and outer radius. However, in this case

as in others, only the outer radius strains could be conveniently measured.

I
	 In addition, as previously mentioned, the boron-aluminum in this region tapers

off in helical steps, producing stepped elastic properties. This transitional

effect could well produce erratic readings, particularly if a gage is over a^'

step.

Referring to figure 2, for design purposes, the compression member was

considered to act as a beam column with a moment, shear force and axial load

on the upper end and a shear force and axial load on the lower end. Because

the elastic and geometric properties change along the length of the member,

an analysis of the member is difficult. In addition, any deflection and rotation
F

of the titanium cluster in the plane of the truss would generate an additional
is ?	 >p

moment at the lower end of the compression tube. Thus, the loading on the

member is quite complex and is coupled to the other members and no attempt was 	 r

made to predict the shear and bending moments along the member. Figure 16 shows
^	 s

the experimentally derived moment distribution along the length of the com-

pression member. If the member is not considered as a beam column, the beading
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the lower end and reaching a maximum at the upper end. At the lower load

levels, 25 percent and 50 percent, a sor-awhat linear distribution was evident.

However, as the load increased, beam-column effects and rotation of the cluster

became apparent. In addition, manufacturing eccentricities, basically an un-

known, add other moments. General Dynamics made allowances for a .762 mm

manufacturing eccentricity in their moment calculations. They assumed, for

design purposes, that the moment due to the eccentricity added to the moments

due to vertical loads. Because of the change in sign of the moment along the

tube at the lower load levels, there probably was an eccentricity.

Figure 17 indicates that the side bending moment was substantial. At the

100 percent design load level, the side moment was one-third of the vertical

moment. Although this condition wasn't desirable, it is felt there were no

serious effects due to it.

Although vertical shear forces are generated in the compression tube, the

magnitudes of the force and the accompanying deformations are not significant

in governing the behavior of the truss. 	 Figure 18 shows that the experimentally
4

_	 derived results are somewhat erratic. 	 The shear force changes in magnitude and

sign with the most erratic behavior being in the diffusion bond area.

U
In figure 19 the torsional loads also appear erratic in sign. 	 Torsional

loads can only be transferred to the tube through the ends, and thus the .sign of

the torsion should be constant along the length. 	 The calculations show the

torsional load changes sign with distance along the tube, a condition which
##

cannot exist.	 At the lower load levels, the sign of the torsional load is r i

constant along the boron-aluminum segment of the tube while in the diffusion x

area the sign and magnitude are constantly changing.	 The values of shear
t

modulus in this area were determined using the rule of mixtures. 	 Again, the

erratic experimental results can partly be attributed to using surface strains

as a measure of the stress throughout the cross section.	 At the high load
Yffi

levels it is not clear why the torsion changes sign in the middle of the tube.
^i

It might be noted that the magnitude of the torsional moment is so small that the i

strain gage errors (misalignment, electrical, etc.) might significantly !'

affect the results.

Tables 2 and 3 indicate that the axial loads in the tension member and the

ram are quite close to predictions. The bending moments in the tension member

are insignificant. The fore and aft bending moment in the ram can be expected

7
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CONCLUSIONS

..

k '{

_^ t

due to the rotation of the ram-cluster assembly. The magnitudes of the moments 	 Y.^

are consistent with the magnitude of the outward displacement of the bottom of

the ram. Ideally the side-to-side bending moment should be zero. However, as

indicated earlier, eccentricities existed, and the nonzero moment results. The

magnitude of the moment is consistent with these misalignments experience earlier.

Referring to table 4, as a result of the misalignment and eccentricities,
	

}
the right support rod was subject to substantial axial load. The rotation of

the joint cluster indicates that the rod should have bowed down. The strain

gages indicate the rod bowed up. The Euler load for the rod, assuming simple

supports, was 6.2 M. The rod was not checked for initial straightness, but

after failure of the truss, curvature was evident. The curvature was noted only

after disassembly of the truss and unfortunately the orientation of the curva-

ture, relative to the truss, was not recorded. Considering the strain gage

data from the rod and the rotation of the joint cluster, one can only speculate

that the axial compressive force in the rod coupled with an initial curvature

to bow the rod up, overcoming any bow-down tendency due to cluster rotation.

Since the support rods were not of prime concern it is sufficient to say

that they more than likely prevented side deflection and, consequently,

out-of-plane buckling, which permitted a reliable evaluation of the truss

members.
h

From the experimental results it is clear that the behavior of the truss t

was generally predictable.	 Failure occurred at 107 percent of the design

ultimate.	 Predictions of the mode and level of failure were quite accurate r

and not sensitive to loading and assembly eccentricities. 	 There was evidence ''€

of a localized failure at 58.6 percent of the design ultimate load, and, for

this test, there did not appear to be any serious consequences.	 Whether this
r^

localized failure at the relatively low load level is characteristic of a

diffusion-bonded joint can only be determined through careful experimentation

or, if available, reexamination of similar test data.	 Had this occurred at

80 or 90 percent of ultimate it would not be as significant, but it is felt

that this phenomena should be investigated further.

8
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Table 1. Summary of strain gage and DCDT location.

i
a

1,

Strain
Gage
No.

Locations
(Comp. Tube)

m

Strain
Gage
No.

Locations
(Comp. Tube)

m

Strain
Gage
No.

Location'
(Comp, Tube)

m

1 .1334 15A .1778 21C .8709

2 .1651 15B .1778 22A .9471

3 .1968 15C .1778 22B .9471

4 .2445 16A .2445 22C .9471

5 .3504 16B .2445 23 .1334

6A2 .5244 16C .2445 24 .1651

6B2 .5244 17A .3504 25 .1968

6C2 .5244 17B .3504 26 .2445

7 .5244 17C .3504 27 .3504

8A .5244 18A .5244 28A .5244

8B .5244 18B .5244 28B .5244

8C .5244 18C .5244 28C .5244

9 .6984 19A .6984 29 .5244

10 .8043 19B .6984 30A2 .5244

11 .8519 19C .6984 30B2 .5244

12 .8837 20A .8043 30C2 .5244

13 .9154 20B .8043 31 .6984

14A .1016 20C .8043 32 .8043

143 .1016 21A .8709 33 .8519

14C .1016 2'1B .8709 34 .8837

t.

tj
1.7

if

i )	 r,
s Measured from lower end of compression tube. 	

(cont d	 F

2 
Not used in the ultimate test:

'i
f	 z

i	 -	 9
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Y

Strain.
Gage
No.

Locations
(Comp. Tube)

m

Strain
Gage
No.

Locations
(Comp. Tube)

m

35 .9154 42A .8043

36A .1016 42B .8043

36B .1016 42C .8043

36C .1016 43A .8709

37A .1778 43B .8709

37B .1778 43C .8709

37C .1778 44A .9471

38A .2445 44B .9471

38B .2445 44C: .9471

Mid-span Tension
38C .2445 45

Member - Bottom
Mid-span Tension

39A .3504 46
Member - Left

Mid-span Tension
39B .3504 47

Member - Top
Mid-span Tension

39C .3504 48
Member - Right

Support Rod
40A .5244 53

Top

40B .5244 54
Support Rod

Bottom

40C .5244 49
Loading Ram

Right

41A .6984 50
Loading Ram

Back

41B .6984 51
Loading Ram

Left

41C .6984 52
Loading Ram
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Table 4. Loads in support rod.

Percent Ultimate
Load

Bending Moment, M
(Newton-meters)

Axial Force, P
(Newtons)

25 5.2 1334.4

50 9.1 2636.3

58.6 9.8 3124.3

75 10.7 3970.7

100 11.0 4848.3

107 11.3 5173.0
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1. 02 m

Ultimate Applied Loads and Member Loads (kN)
Engines Symmetric Engines Gimbaled

P 1 351.4 349.2

P2 482.2 478.2
P 3 351.4 349.2

V 1 0 42.7

V2 0 58.7

V 3 0 42.7

AB, BC 285.6 537.3

BD, BF 340.7 505.3

,

'

~~

^

'

1. 02

F

3

|p3

---+^l6

lr2



FORCED
MEMBER

9 I

3
;a

a

ITANIUM
LUSTER

789.1 kN

X
^z 6380 N-M

l"

533.8 kN f "'	 +	 y
ri

STEEL ALLOY
TENSION MEMBER	 STEEL ALLOY

LOADING RAM

r

t778.4 kN

t

Figure 2. Internal loads distribution in test section.

i

i
^#	 15	 r^f

.F 3





E
E
N

T



I

O

O

tA

E--

LO

O
Sr

t

is



l

Figure 6. Test apparatus for truss structure.

19

ORIGINAL t



W
W

y^
CL̂  z

W W

1

^ I W

3 b.0

M I M,. ^^

CA •H e--, -4
GO Z ­q

AIM w r' axc^ a^^- v

P-4^ M
^ 0 p >4

N
V  go

C S

tip 4,4 	 cppC

- 9 to
N Ora^M Q O = rl	 G

Q o ^..i	 3	 b4 X .,.I LA 3(^

U Ln F	 rZ co U et

11	 , 11 	 11 y

00
adz 3 c

W a V M Q p
0--i

ail ,
J

v

3 200	 0
M	 Ln O W W cad 11

A
C

N N M E-• Q 1

H cz^

L
r v v

cn to

^p l- 00
•Cd
fi

Cal
cn

OW y S

a H	 U)
-^ 0 u J

(

1

C u 0

Lnl C14 r_
cz 3

1
1 In

O

Q

1O

^' f u
C

z U 31.75 mm

c~n ¢ M `v 31.75 mm
to

NINW
w ¢ 31.75 mm ,. iM
c ^v 31.75 mm

r

^
o

^ ^

I

3z°
s o `='

20

w,-v
s..v.	

a:-..::._.e...	 T +A9^IfIGilT" AIkSHdmd{AbY•ea^v u,m.rc,^.sc .cv °a	 v^r K ^	 - 	 .ru+^.'^.aaara._ _ ffi-e,Ya	 v.._

F
5.a

_	 _	 _..



7

k!

C 
H ^^

I ^wz

- W O

Gt7^
. I

r,
f^

bo

J

N v 3

^

'^{ cd

E C b0 'n cd

f z

U

^^ •^

H	 M wN
I

..a	 .14 b ^'

I
v V

¢
 p^ LL	

F1 b0

O	 cJ b0 4-a	 b0 ;
O	 N
N	 et

," v '^
Q O .0 cd V

Q o H 3 O •ri	 ^ oI
Ln 't d ccdd 	 c4i 3

1 F - w	 ^1: II	 II	 II .^

ti
H rl V CQ Q

vv- I y

!

3
4J l

li L
eo

1 ^ 
w

•^+

w

^'
v	 ..

000
Cn .,q

Cd

I

E. v

c
H

r

^ ^

H

cn

d0

I
In

'.1
Yd

v
H	 ML. r,' co

O E
+

110	 00 n
s

r I	 M 00
pp

z 1 00
Ln c

cn

N
Gi. Q

f

Y

O w

i

21



a

4

^
Q^ d	 I

0
W7 m^ ^	

I

F
a

o

`i

}

^ xf
w d

N

I cf.

a ua ua ^ .

I ar F z z

Lu

cn °x

p
!! M ^

I

r

c

22



LL;

O

O
s.

O

O

O

it

cn

4;li

J)Rl(;iNAL
	

13



FAI _LED , AREA

TITANIUM COLLAR —

Figure 11. Detail of titanium end fitting after failure.

i	 4

I	 -



r

O

f 300

200

Ali

100

0

i j

i

1'^	 S

x

%i

cn
z

z
a	 0

a
x 400

}
0

--^ .002 ^'--

r
STRAIN (mm/mm)	 f'

v^
Figure 12. Load-strain behavior for strain gage No. 11.

25



^ \}

} ^^

^	 ^

^	
^^	 ^^	 ^	

.

/ !

^.	 ^	 \ ^ ^ \

26



O N

O •

p.

b00
^O
^01

O
O +
O C

.00
b

c^
C)o a

O

c^ co

w
0o w a

a o
O0 0
Ln o
z •^
F ^

z a^'i

0 a Q.Ò* o
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APPENDIX

The internal loads were initially computed using the value of E supplied

by General Dynamics. This value of E gave axial load and vertical bending

moment which were considerably less than p-t redicted. As a check on E , a

101.6-mm-long segment was cut out of the compression tube. Four gages placed

at 90 0 (uniaxially with fibers) around the circumference were used to measure

compressive strains, and the section was loaded between two flat aluminum

plates. In addition to having four strain measurements per compression test,

the section was rotated 90 0 three times to average out any eccentricities in

the loading mechanism or specimen. Load-strain characteristics were plotted on

x-y recorders and the specimen was carefully measured to determine cross-

sectional area. The load-strain curves were quite linear and the slopes of

these curves, and the cross-sectional area, were used to compute E for each

test. The values of E were averaged and the average value of E in the axial

direction was determined to be 24.0 x 10 10 N/m2. The standard deviation among

the values was .5 x 10 10 N/m2 . The value of E taken from reference 2

was 19.29 x 10 10 N/m2,

To determine if this higher E was due to a higher than expected amount

of boron, a volume fraction test was done-with a shorter, 25.4-mm-long, segment.

The volume percent was 52.2 percent boron. The volume percent in reference 2

was 47.1 percent boron. This higher percent of boron probably accounts for the

higher value of E.

Careful examination of a small tube section revealed a thin ply region,

which covered a very short distance of arc length, running the entire length
of the tube. This seam was generated during fabrication of the tube.

Figure A-1 shows an enlargement of both a normal cross-sectional segment of

arc length and this thinner region. The thin region covered an arc length of

3.175 mm compared to the total circumferential distance of 355.6 mm and was

not considered in the calculation of area used to determine E from the com-

pression tests.

The elastic properties in the diffusion bond region were determined by

the rule of mixtures according to the following Formulas:
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c

w

E	 = Etitanium Atitanium + Eboron-aluminum Aboron-aluminum
equivalent	 At

G	 = Gtitanium Atitanium + Gboron-aluminum.Aboron-aluminum
equivalent	 Atotal

i'
Table A-1 shows the equivalent values of E and G at various locations

in the diffusion bond region. The areas and elastic constant used in the

computations are taken from figure 1 of reference 2 since they could not be

measured directly. Because the axial load is constant along the length of the

tube, the value of E required to give the correct axial load is also shown

in the table.
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