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INTRODUCTION

Stress corrosion cracking (SCC) is the simultaneous action

of a tensile stress and an aggressive environment on an alloy

system to produce a brittle fracture in a normally ductile

material at stress levels far below engineering design limits.

The stress can be externally applied or it can be an internal

residual stress. SCC is also highly specific in that there is

no universal environment observed as yet that will produce the

phenomenon in all alloy systems. What is an aggressive environ-

ment for one alloy system may leave another unaffected. All of

these characteristics make SCC one of the most insidious problems

for the design engineer to deal with.

The phenomenon of SCC was first observed in the nineteenth

century with the failure of cold worked brass shell caseings in

atmospheres containing traces of ammonia (1). The SCC of the

austenitic stainless steels in aqueous chloride environments has

been recognized for about fifty years with the first work

published in 1940 (2). Since the austenitic stainless steels in

chloride solutions are so economically important, this system has

been the subject of intensive research ever since it was first

recognized. Much empirical data has been previously recorded,

but no universally accepted mechanism has been proposed to satis-

factorally explain all of the observed data. For these reasons,

this system was chosen for the subject of this study. Improved
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experimental techniques now available allow for the examination

of the phenomenon of SCC on a more fundamental level.

SCC has been traditionally divided into two major aspects,

crack initiation and crack propagation. The major concern of

this study will be the crack initiation aspect, ie., what condi-

tions must exist at the alloy environment interface to initiate

cracks and how are these conditions affected by various environ-

mental parameters?

It has been commonly observed that a very close relation-

ship exists between SCC and pitting, so that any discussion of

the crack initiation aspects of SCC must include the description

of mechanisms involved in the pitting process also.

In an attempt to explain the mass of empirical data accumu-

lated to date, various mechanisms have been proposed. Several

of the more popular explanations will be briefly outlined here.

More complete summaries of the currently accepted mechanisms can

be found elsewhere (3-5).

1. The Dissolution Model

The dissolution model explains the localized attack on the

surface of an alloy on the basis of small areas which are anodic

with respect to the surrounding matrix. Such areas have been

identified as metal carbides (6), sulfide inclusions (7,8), grain

boundaries (9,10), and deformed material (1). It has also been
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thought that areas depleted in chromium can lead to localized

attack by depriving the base material of a protective coating

(9). Pitting corrosion studies have also identified pits as

local anodes (11). This essentially electrochemical theory has

some merit, but is inadequate in explaining the effect of stress

and the observation of transgranular failures.

2. The Dislocation Structure Model

It has been observed by Staehle, Scully and others that

many alloys which are susceptible to SCC, including the austeni-

tic stainless steels 'nave low stacking fault energies (SFE)

(4,5,12). In these cases, cross slip is difficult and essentially

a widely spaced planar array of dislocations results. Another

factor influencing the dislocation structure in the austenitic

stainless steels is the presence of short range order (SRO) which,

like low SFE, confines the dislocations to planar arrays (12).

The planar arrays then move under the application of stress and

eventually emerge on the surface as slip steps which are subject

to localized attack by interrupting a protective surface film

(13,14). The catalytic activity of dislocations and dislocation

pileups cutting the surface imply likely regions for localized

dissolution (15). Furthermore, the existence of SRO could lead to

compositional changes on the surface which could create a local

anode.
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Scully has indicated that the susceptibility of an alloy in

a particular environment depends on the kinetics of repassivation

of the newly exp.osed surfaces (13,14). This model accounts for

both the localized attack necessary for crack initiation and the

effect of stress. It holds much attraction except for the obser-

vation (12) that alloys such as Incoloy 800 which meet the model's

criteria are not susceptible as predicted.

3. The Adsorption Model

This model for SCC, principally supported by Uhlig (16),

states that the adsorption of a damaging species lowers the

surface energy of the alloy allowing for easier decohesion and

hence, accelerated attack. As a result of pitting corrosion

research by a number of investigators (17-19), the chloride ion

has been identified as the species which attacks or breaks down

a protective film leading to localized dissolution. Protective

or passive film, in this context, should not be restricted to

mean an oxide layer, but any covering which blocks the base metal

from the environment. Recent experimental work done by Vetter

and associates (20-23), on iron and nickel show localized chloride

concentration at pit sites. Rideout and coworkers, in electron

microprobe studies of hot salt stress corrosion cracking of

titanium based alloys have shown not only high chloride concen-

tration around the stress corrosion cracks but also a correspond-
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ing high sodium concentration as well (24).

A mechanical extension of this model recently updated by

Vermilyea and coworkers (25) theorize that a brittle film exists

on the surface which is broken under stress, exposing localized

areas of the base metal to the environment.

It has been noted by Scully (13) that stressing changes the

morphology of the pits from wide shallow ones to deep narrow pits

or crack nuclei. But as he later pointed out (14), SCC require-

ments must be stringent since it has been generally observed

that while alloys susceptible to SCC in a particular environment

will pit in the absence of stress, not all systems which pit will

crack when stressed. This model does not account for the varying

degrees of susceptibility of the austenitic stainless steels in

different chloride environments. As an example, it has been

generally observed that the austenitic stainless steels are more

susceptible in magnesium chloride environments than in sodium

chloride environments of the same concentration (26,27). These

differences have yet to be satisfactorally rationalized at this

time.

4. The Hydrogen Model

The many similarities between the phenomenon of hydrogen

embrittlement (HE) and SCC such as brittle delayed failure, have

lead to the development of an HE mechanism for SCC by Troiano,
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Nielson (28), Vaughn (29) and others. Although it was thought

for some time that the face-centered cubic alloys were generally

immune to HE, it has been shown to occur in aluminum alloys (30),

monels (31) and the austenitic stainless steels (32). Troiano

and associates (33-35) have demonstrated that hydrogen will per-

meate through an austenitic stainless steel under anodic condi-

tions in acid and chloride environments if and only if pitting

occurs. This has been attributed to a drop in pH at the base of

a pit giving a high concentration of available hydrogen. A more

detailed account of the electrochemical processes occurring in

pits and cracks is given by Ateya and Pickering (36). The ex-

perimental evidence of hydrogen permeation through an austenitic

stainless steel under a net anodic potential when, electrochemi-

cally, hydrogen evolution is not expected to occur on the metal

surface shows that a great deal of consideration must be given

to reactions on a local cell level. Furthermore, the effect of

stress is accounted for in that it would assist the transport of

hydrogen to critical areas possibly by a dislocation dragging

mechanism (37-39). Considering the slow diffusion rate of hydro-

gen through a face-centered cubic lattice (33), applied stress

may be necessary to achieve adequate transport rates explaining

the coaction of stress and environment.

A major objection to an HE mechanism for SCC in the austeni-
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tic stainless steels is the small ductility loss observed after

cathodic charging (4). There is also some disagreement as to

whether HE and SCC are two separate and distinct phenomena or

one and the same effect.

Due to the extreme complexity of the phenomenon of SCC, it

is conceivable that no unified theory will ever be formulated

using a single simple model. Indeed, due to the experimental

verification of such widely diverse processes as hydrogen em-

brittlement, adsorption, and localized anodic dissolution

occurring during SCC, it is possible that all of the above occur

simultaneously to varying degrees. The principle process in-

volved in a particular alloy-environment combination might well

be determined by the kinetics of each of the individual pro-

cesses.

Although no model currently enjoys universal acceptance in

describing an operable mechanism for SCC, all models share a

common obvious feature, ie., in the initiation process of SCC,

the reactions at the metal-environment interface are of extreme

importance. Up until relatively recently, these surface re-

actions were deduced indirectly from the response of a material

to changes in environmental parameters by using engineering

parameters such as times to failure. At the present time,

however, experimental techniques are available which allow for

the direct determination of the various surface reactions. The
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techniques include the electron microprobe, Auger spectroscopy,

low energy electron diffraction and secondary ion mass analysis.

These techniques are described in a recent paper by Benning-

hoven (40).

This research employed the secondary ion mass spectrometer

(SIMS) as the principle experimental tool. A more detailed

description of the instrument will be given later. The ability of

the SIMS to distinguish the light elements easily makes it a

particularly suitable instrument for testing the hydrogen and

adsorption models simultaneously during the measurement of sur-

face concentrations.

The electron microprobe and scanning electron microscope

were also employed here to a lesser extent in such instances

where their capabilities make them particularly suited.

As mentioned earlier, these techniques were applied to

the study of pitting and the crack initiation phase of SCC of

a stable austenitic stainless steel in aqueous chloride environ-

ments. AISI type 310 stainless steel was chosen as the alloy

to be examined because the high nickel content stabilizes the

austenite and eliminates the martensite reaction. The presence

of a nonuniform distribution of martensite would add a compli-

cating factor at this time. Magnesium chloride and sodium

chloride environments were chosen because of their chemical

similarity yet different behavior in SCC. This research will
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attempts to point out the differences between the two environ-

ments which could account for their dissimilar behavior.



MATERIALS AND APPARATUS

In all experiments, a commercial grade type 310 stainless

steel from a single heat was used. The chemical analysis for

the heat is given in Table 1. The steel was supplied in a bright

annealed sheet form. A slight amount of cold working resulted

from the coiling operation, but no attempt was made to reanneal.

Light micrography in Figure 1 shows the grain structure to still

be equiaxed. Tensile data included in Table 1 shows also that the

amount of cold working was slight.

The solutions were prepared from single lots of ACS certified

grade chemicals in distilled water and were unbuffered. Single

lots of both alloy and chemicals were employed to minimize spurious

effects of trace elements. The solutions were prepared for

concentrations of 5.M sodium chloride and 2.5M magnesium chloride of

dry salt in order to obtain a constant chloride concentration be-

tween the two salt solutions. The pH of the solutions ranged from

5.5 to 6 with the magnesium chloride solutions slightly more acidic.

The electrochemical polarization of the specimens was carried

out with a Wenking Potentiostat Model 70 TS1. To facilitate the

recording of polarization curves, a Wenking SMP 72 Scanning Poten-

tiometer was used in conjunction with the potentiostat to change

the amount of overvoltage at a fixed, predetermined rate. Poten-

tials were measured using a platinum counter electrode with respect

to a saturated calomel electrode (SCE) isolated from the test solu-

10
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tion by a salt bridge of the same composition as tbe solution.

Figure 2 illustrates the experimental arrangement.

The major part of the surface analysis was carried out with

a GCA secondary ion mass spectrometer (SIMS). Figures 3 and 4

show the instrument. The SIMS combines a sputter ion source and

a mass spectrometer. Detailed descriptions of the theory and

construction are available in the literature (41-45). A duo-

plasmatron ion source produces a beam of ions which are acceler-

ated through a system of electrostatic lenses to the sample stage

below. The sample to be analyzed is mounted at 45° angle to the

incident primary beam. Surface components are sputtered off of

the sample and the charged secondary ions, along with the reflected
' 4 <

primary beam, are accelerated through a second set of electro-

static lenses into the mass spectrometer section. The mass spec-

trometer is of the Mattauch-Herzog double focusing type. The

design and optics of this particular type of mass spectrometer are

described by Herzog elsewhere (46). The double focusing capabili-

ties refer to separate electrostatic and magnetic sectors. The

electrostatic sector serves as an energy window to produce a

monoenergetic beam of ions for mass analysis. This feature allows

for uniform sensitivity over the entire mass range.

In order to examine concentration gradients on the surface on

a microscale, an ARL electron microprobe EMX-SM was used since the

electron beam diameter is on the order on one micron or less. In
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contrast, the beam diameter for the GCA SIMS is on the order of

millimeters.

Surface details of cracks and pits were observed with a JEOL

scanning electron microscope (SEM) Model JSM 2 which has been

equipped with capabilities for the energy dispersive analysis of

x-rays.



EXPERIMENTAL PROCEDURE

1. Electrochemical Polarization

Two types of polarization experiments were carried out.

First was the determination of the polarization curve for each of

the environmental conditions of interest. The second type of

polarization experiment involved holding a sample at a constant

arbitrary potential for subsequent analysis in the SIMS to deter-

mine the concentration of various species present on the surface

as a result of that treatment.

For all polarization experiments, the samples were prepared

in an identical manner. No more than one hour prior to immersion

in the test cell, the steel was wet ground with 600 grit silicon

carbide paper, rinsed in ethanol and air dried using a heat gun.

All other surfaces and leads which were not to be in contact with

the test solution were coated with a fast drying lacquer. After

the sample was placed in the cell and all leads were connected,

it was allowed to equilibrate for one hour. After this time, it

was found that the open circuit or rest potential, Er, had sta-

bilized. If the solution was to be deaerated, this was done for

at least twelve hours previous to the test by bubbling argon

through the solution using a fritted glass disperser. Any aeration

of the solution was done by introducting oxygen into the solution

during the rest potential stabilization period. The overvoltage

13
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for a constant potential experiment was applied for one hour,

after which time, it is believed, conditions on the surface would

be in equilibrium. After this experiment, the samples were re-

moved from the solution, washed briefly first in distilled water

and then in ethanol, air dried and mounted for analysis. The

washing procedure was arrived at by trial and error and is

thought to be the best compromise in removing artifacts without

unduly disturbing the surface.

Unless indicated on the figures, all polarization was done

on unstressed specimens. Specimens that were stressed for con-

stant potential analysis were stressed using a two point bending

method similar to that described by Heimerl and Braski (47).

The samples were stressed just below the yield point. To obtain

stress corrosion cracked specimens for EMX and SIMS analysis, the

samples were stressed in uniaxial tension by a constant load in a

cantilever beam arrangement (35).

Polarization curves were obtained using a step wise potentio-

static method in which the overvoltage was changed in small fixed

increments while monitoring the current. For cathodic polarization,

the scan rate was 15 millivolts per minute and for anodic polari-

zation, the scan rate was 3 millivolts per minute. The same pro-

cedures for sample preparation and equilibration as for the con-

stant potential samples were followed here as well.
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Surface analysis with the SIMS was carried out using techni-

ques developed earlier by the author (48). High purity argon was

used as the primary beam since no chemical reaction between the

beam and the sample would be expected to occur during the sputter-

ing process. The primary instrument parameters were kept constant

throughout this investigation and are summarized in Table 2.

For normal operation, secondary ions that are analyzed are positive

species. Modification to the SIMS prior to this investigation

allowed for the detection of negative species as well. It was

felt that the modification would allow for more sensitive detection

of species sucli as oxygen, the hydroxyl and chloride ions which

readily pick up electrons and are not expected to ionize as posi-

tive species to any great extent. To minimize errors in the de-

tected concentrations due to sputtering time effects, specimens

that were cathodically polarized were first analyzed for the posi-

tive species. In this manner, any possible hydrogen pickup would

be detected quickly. Analysis for negative species would then be

carried out on an undisturbed area of the sample. The reverse

procedure was used for samples anodically polarized for the detec-

tion of the chloride ion and oxygen and hydroxyl ions as well.

Some sputtering time effects are bound to occur, but this method

minimizes these effects. Each mass species of interest was checked

for maximum focus conditions rather than maintaining constant focus

conditions. Although much care was taken to insure that the instru-
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ment parameters were kept constant from analysis to analysis,

small variations, some due to electronic drift, occur sometimes to

yield large effects on a log scale. For this reason, all intensi-

ties reported here are normalized relative to the detected iron

peak for that particular analysis. Since iron is the main matrix

element in type 310 stainless steel, it is assumed that fluctua-

tions in iron concentrations are minimal. Also, the relatively

large beam diameter would tend to integrate out any differences

on a microscale.

The large beam diameter of the SIMS made it unsuitable for

the detection of preferential adsorption of any species on a

microscale. An EMX was employed in these instances due to the

less than one micron beam diameter. For best results in the sur-

face analysis where coatings were expected to be of atomic dimen-

sions, the accelerating voltage of the EMX was reduced to 5

kilovolts. The low primary accelerating voltage minimized electron

beam penetration. It was found earlier that higher voltages

"smeared out" any surface variations.



RESULTS AND DISCUSSION

1. Polarization Curves

The polarization curves for the conditions of interest are

given in Figures 5 through 12. Several features should be noted

here. The first obvious feature is that these systems do not

exhibit classic active passive behavior as for the austenitic

stainless steels in acid environments. The active passive be-

havior of the austenitic stainless steels in aqueous chloride

environments has been noted by Ro (35), d'Erceville (49), and

Staehle (4). d'Erceville has shown that for increasing chloride

concentrations, the passive potential range decreases, probably

due to instabilities of the passive film. For the concentrations

used in this study, the active range is totally obscured and there

is only evidence of a very small quasi passive range at room

temperature due to the high reduction reaction. The structure and

properties of the passive film of an austenitic stainless steel

are given by Okamoto (50).

This can be more clearly illustrated by the following de-

scription. The classic active passive polarization curve is

illustrated in Figure 13a with the regions appropriately labeled.

As the potential is made more noble the current rapidly increases

in the active region until a passivating potential Epp is reached.

At this point, a passive film formation occurs which blocks the

17
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alloy from the environment as evidenced by the drastic drop in

current. This passive film is usually stable over a large poten-

tial range. As the potential Ej, is reached, localized breakdown

of the film lead to the creation of local anodes surrounded by re-

latively large cathodic areas and pitting results.

In Figure 13b, a hydrogen reduction reaction is superimposed

on the oxidation reaction which intersects the oxidation reaction

in the passive region only. In the absence of applied potentials,

the alloy is spontaneously passivated in this environment. At a

given potential, both the oxidation and reduction reactions are

occurring simultaneously. A potentiostat measures the net current

difference, anodic for applied potentials more noble than the rest

potential and cathodic for potentials more active. For overvoltages

farther from the rest potential the contribution of the lower

current reaction is slight due to the large current differences.

The resultant current-potential curve as actually measured experi-

mentally is illustrated in Figure 13c.

Electrochemical breakdown of the stable passive layer occurs

at potentials far more noble than potentials applied in this study

as indicated in the Appendix. Local film breakdown leading to

pitting attack probably occurs initially by adsorption and the

dissolution of anodically active precipitates on the surface. For

the anodic branch of the polarization curves determined here, the

anodic current is an average of the relatively low rate of attack
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on the passive film and the high rate of attack at pits. As the

pitted surface area increases, this contribution to the anodic

current increases also. Therefore, while a true breakdown poten-

tial is never reached pitting occurs and a transpassive region is

observed on the anodic branch none-the-less. Okamoto (50) shows

the destruction of the protective film due to the chloride adsorp-

tion process. A complicating factor experimentally is the rapidly

increasing surface area due to pitting. Customarily, current

density is indicated on the polarization curve but when pitting is

occurring, this can only be approximate.

For cathodic polarization, the break in linearity of the

hydrogen reduction reaction may be due to the relatively larger

contribution of the oxidation reaction at the "knee" of the curve.

As the potential becomes more active, this contribution to the net

current rapidly decreases and the cathodic polarization branch

becomes linear as expected.

The above discussion assumes single processes only. If, as

done here, oxygen is deliberately added to the environment, an

additional reduction reaction is added so that the total reduction

reaction is shifted in the noble direction.

The major differences between this set of curves in Figures 5

through 12 seems to be in the movement of the rest potential Er.

The effect of the various environmental parameters will be summa-

rized here.
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a) For botli the sodium chloride and magnesium chloride

environments, the additions of oxygen to the environment shifts

the rest potential in the noble direction as compared to the

corresponding deaerated condition. This is not unexpected, since

the addition of oxygen adds an additional reduction reaction which

increases the total reduction current for a given potential.

Thus, the rest potential becomes more noble.

b) Increasing the temperature to the boiling point leads to

a shift of the rest potential for both sodium and magnesium

chloride in the active direction.

c) Consistent shifts in the rest potential between corres-

ponding conditions of temperature and aeration for the two salts

are difficult to ascertain. This may mean that the polarization

behavior is more dependent on the concentration of the anion in

the solution. Since chloride concentrations for sodium and

magnesium chloride solutions are the same, the rest potential in

each case is roughly equal.

The effect of aeration on the anodic polarization for the

sodium and magnesium chloride environments is evident at low

current densities. The cathodic polarization shows major shifts

to higher currents due to the addition of the oxygen reduction re-

action. At boiling temperatures, however any differences between

the aerated and deaerated conditions are seen to be slight prob-

ably because of the boiling action which automatically deaerates

the solution.
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The polarization curves were used to choose appropriate experi-

mental conditions and appropriate potentials for the constant

potential polarizations for surface analysis. The interpretation

of these polarization curves to obtain corrosion and pitting in-

formation is given by Greene (51,52).

It should be noted here that the deaeration technique using

an inert gas to force the oxygen out of solution by the artificial

boiling action may not be completely adequate. ASTM recommended

practice for the determination of polarization curves dictate the

use of hydrogen as a deaeratiou agent (53), but this was not done

for safety reasons.

2. Surface Analysis with the SIMS

Table 3 shows the average background intensities for several

nominally clean unpolarized samples. As noted earlier, all inten-

sities are normalized with respect to an iron peak to account for

instrument differences from experiment to experiment.

In the early stages of these experiments, SIMS analysis of

the constant potential conditions were repeated two or three times

each in order to determine the degree of repeatability. In gen-

eral, it was noted that the detected intensities of the main matrix

elements for clean samples varied by + 0.1. Background intensities

for trace elements such as hydrogen and oxygen showed a little more

variation. While little significance should be attached to the
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actual intensities recorded here, for the reasons given later, the

trends that were noted were highly repeatable.

Typical mass scans for type 310 stainless steel anodically

polarized in the magnesium chloride solution for both the positive

and negative ions are shown in Figures 14 and 15. One should note

the drastic improvement in the detection of the chloride, hydroxyl,

and oxygen ions by scanning the negative ion spectrum in Figure 15.

Without the ability to detect these negative ions, the SIMS would

have been useless in this application. Emphasis should be made at

this point that the relative intensities shown here for different

ions are not an indication of relative concentrations. For ex-

ample, the fact that the chromium peak is larger than the iron peak

does not mean that a greater amount of chromium exists in the

alloy. Quantitative estimates may be made if accurate values for

the sputter yields for an element in a particular matrix can be

determined. To date, the physics of sputtering is not developed

to the point that a good description can be given of the process.

All data which will be presented then are uncorrected for sputter

yields.

Cathodic Polarization

No variation of oxygen or the hydroxyl radical with potential

was observed and the levels detected were essentially background
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levels for both the aerated and deaerated conditions in both salt

solutions as shown in Figures 18 through 23. Some of this back-

ground can be attributed to traces of moisture in the vacuum

system, some to adsorbed moisture picked up on the sample during

loading into the SIMS and some to an oxide coating.

There was usually a small increase of hydrogen observed on

the surface at more active potentials for all conditions. The

hydrogen intensity could be observed to decrease with more noble

potentials. No differences in hydrogen adsorption can be seen

between the two salt solutions. The sensitivity of the SIMS to

hydrogen pickup has been previously demonstrated (48) so that if

a significant amount of hydrogen adsorption at high active po-

tentials occurred, it would have been noted.

It was usually, but not consistently observed that large

amounts of magnesium or sodium were present on the surface at high

active potentials.

Anodic Polarization

With evidence of only a weak quasi passive film, as shown by

the polarization curves, pitting was observed to occur at even

small overvoltages, the pit density determined by the amount of

anodic current. SEM photomicrographs in Figures 16 and 17 shows

that the pits are irregular but generally hemispherical, especially

in the initial stages. It should be noted here that, for even
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severely pitted surfaces, no general corrosion is observed to have

occurred with the original polishing scratches still intact.

SIMS examination shows in Figures 18 through 23, a sharp

increase in the amount of chloride detected for anodic potentials.

This occurred consistently for all environmental conditions. At

more noble potentials, a decrease in the chloride intensity occurs.

Since this occurs for most conditions and was verified several

times, the decrease is assumed to be real. The instances where the

chloride concentration did not decrease occurred for potentials

closer to the rest potential. This probably arises for several

reasons. First desorption due to ionic repulsion after a maximum

surface concentration is reached could occur. It would not be

reasonable to expect to observe increasing surface concentrations

with increasing noble potentials but rather a saturation limit

instead. A second reason for the decrease is due to the high

anodic current at high noble potentials which implies a high dis-

solution rate which would destroy existing surface conditions.

Possible surface reactions occurring for austenitic stain-

less steel in an aqueous chloride solution are listed in the

Appendix along with the equilibrium potential for each reaction.

Extensive data for these reactions are available at room tempera-

ture only.

One should note that the maximum chloride concentrations for
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both salt solutions at room temperature occur at potentials that

correspond closely to the equilibrium potentials for iron chlo-

rides formation. The adsorption process may be described as a two

stage process in which physical adsorption is followed by chemical

bonding to form "surface molecules" at a given potential. Vetter

and Strehblow (22) have advanced the idea that active metal is not

exposed directly to the environment during the pitting process but

is covered by an iron chloride salt covering. The relationship

between the increase in chloride concentration and the equilibrium

potential for iron chloride formation tends to support this theory.

Data concerning the ionic conductivity of the chloride com-

plexes are not generally available, but it is assumed that an iron

chloride layer in an amorphous form on the surface would not in-

hibit ion transfer and, hence, not act as a protective film as

would an oxide.

Research by Gerasimov and coworkers (54) using autoradiography

techniques has shown a similar behavior to the results in this

study for the adsorption of the chloride ion on type 304 stainless

steel. Increasing chloride adsorption was observed for anodic

potentials up to the breakdown potential after which a decrease was

seen. The relationship between the adsorption of the chloride ion

and the onset of pitting or cracking observed by many previous

workers appears to be verified in this study.



26

An unexpected result was the detection of either a high mag-

nesium or sodium concentration under anodic conditions. From

classical electrochemical theory, one would not expect the adsorp-

tion of positive ions for net anodic conditions on the surface.

This effect was again consistently observed for all environmental

conditions. One possible explanation for this phenomenon might be

that the chloride ions attract the positive ions from the solution

to maintain charge neutrality on the surface after the applied

potential was removed at the termination of an experiment. The

use of the SCE made it impossible to maintain the applied potential

during sample removal. It is difficult to ascertain then whether

this electrodeposited "salt" coating is a real effect or an arti-

fact due to sample handling. It was consistently observed and

appeared to be adsorbed strongly enough to survive the sample

washing in distilled water prior to analysis in the SHIS. Another

reason that this effect is a real one is the fact that the reverse

situation is not seen, ie,, for high active potentials, where

higher levels of sodium or magnesium were detected, no correspond-

ing high levels of the chloride ion are observed.

No differences in oxygen level were observed between the

aerated and deaerated conditions for either the magnesium chloride

or sodium chloride solutions. Due to fluctuations in background

any oxygen effects were difficult to observe and no evidence can be

seen for any competitive adsorption process with the chloride ion.
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According to recent work by Vacarro (27), aeration has little

effect on failure times for 310 austenitic stainless steel in

magnesium chloride solutions. Since very little effect is seen

with the addition of oxygen in this study, this result is easy to

rationalize. In early work by Edelenau (26), it was found that

the addition of oxygen to sodium chloride solution induces SCC

susceptibility in the austenitic stainless steels but failure times

are still very long. The effect of the additional reduction reac-

tion might be sufficient to increase the equilibrium potential

above the cracking potential so that cracking occurs. In either

case the addition of oxygen to the solution has only a slight

effect on SCC behavior and is reflected by the relative oxygen

levels determined here.

As the temperature was increased, no substantial increases in

chloride ion intensities were observed compared to room tempera-

ture. On the other hand, a consistently large increase of magne-

sium was observed at high temperature but a similar increase for

sodium was not seen. This different behavior might be attributed

to film formation accelerated by the high temperature in the

magnesium chloride solution. Magnesium hydroxide has been commonly

observed to form during SCC, but no increase in the hydroxyl

radical is consistently observed here.
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Chromium and nickel intensities are also plotted as a function

of potential for the deaerated conditions for both ambient and

boiling temperatures in Figures 18b, 20b, 21b and 23b. With the

exception of the boiling magnesium chloride environments in

Figure 23b, little variation in intensity for both species over

the whole potential range is observed.

Although the idea has been abandoned by Staehle (4), there

may be some evidence for nickel enrichment for more noble poten-

tials since an increase in the nickel concentration is seen for

all cases except for the boiling sodium chloride environment.

This is a reasonable result since nickel is more noble than iron

and chromium and hence, will dissolve at a slower rate. An appar-

ent increase may possibly be interpreted as an iron depletion at

more noble potentials.

Two possibilities exist for the form in which the nickel

exists on the surface. First, the nickel may exist as simple

metallic nickel. Second, the nickel might be tied up in a surface

complex, either a nickel oxide or a nickel chloride or a mixture

of the two. A nickel oxide would be stable on the surface normally

arid a chloride complex might be stable at local noble areas. There

is no way to distinguish which of these possibilities is the most

likely in this study. Mass scans extended to the higher ranges

usually show a great deal of background and it is sometimes diffi-
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cult to identify special peaks. No mass peaks were observed which

could be satisfactorily identified as either a nickel oxide or a

nickel chloride.

With the exception of the boiling magnesium chloride environ-

ment, the chromium intensity shows a slight decrease at higher

noble potentials. This decrease is consistent witli the chromium

depletion theory of Joshi and Stein (9).

It should be noted that deviations from the expected trends

for both chromium and nickel occur for boiling temperatures in

both environments. Whether this observation is significant or

merely due to experimental error is not known at this time. The

surface reactions determined in the Appendix are for room tempera-

ture only because information for these reactions is readily

available. The possibility exists that at higher temperatures

other surface reactions might occur to explain these results.

3. Concentration Profiles

A unique feature of the SIMS is the ease with which concen-

tration profiles may be determined. With the mass spectrometer

fixed for a specific species, the intensity may be monitored as

a function of time as successive layers are removed during the

sputtering process. With an estimate of the sputtering rate,

concentration profiles may be directly determined. An approxi-

mate rate of removal for these beam conditions based on previous
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estimates is seven to ten microns per hour. Accurate determina-

tion of removal rate is difficult due to errosion cones and

cratering effects (48). For this reason, only concentration versus

time profiles are reported here.

Concentration profiles for stressed and unstressed samples

anodically polarized 100 millivolts over the rest potential are

shown in Figures 24 through 27. These profiles show the surface

effect of the adsorbed species which fall off rapidly to values

approaching background levels. Although not plotted here, the

iron peak was checked before and after each profile with negli-

gible variation so the higher surface concentrations are not due

to possible iron depletion.

There does not seem to be much surface hydrogen but none

should be expected under anodic conditions. Higher levels of

hydrogen above background after long time sputtering are probably

due to edge contributions from the crater which develops. Edge

effects were minimized here by using a wide beam of relatively

low current density, but cratering is bound to occur in any event

and cannot be completely avoided.

One might expect that the intensities for the chloride,

sodium, and magnesium ions should decrease to near zero levels

after appreciable sputtering times, edge effects notwithstanding,

but such is not the case. The use of commercial grade alloys im-

ply the existence of many trace impurities. The sensitivity of
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the SIMS to these low concentrations, especially to the more easily

ionized elements is about one part in 10 to 10̂ . As a result, it

is probably that a substantial contribution to the intensities

after long time sputtering can be due to bulk impurities (55,56).

The effect of stress on the surface concentrations had been

an increase of both sodium and magnesium relative to the chloride

ion. .A dark corrosion film on the sample stressed in the magne-

sium chloride solution might account for the large increase in the

amount of magnesium detected. Surface concentrations of the chlo-

ride ion were approximately the same for both the unstressed and

stressed sample in the sodium chloride solution and for the un-

stressed sample in magnesium chloride. The chloride ion showed a

large jump in intensity for the stressed sample in magnesium chlo-

ride, however, and may be a significant factor in identifying the

relative susceptibility of the two salts for the SCC of the aus-

tenitic stainless steels. There appears to be some evidence for

a stress assisted adsorption effect. Gerasimov (54) had also

observed the stress assisted adsorption of chlorides on the sur-

face of a 304 austenitic stainless steel. Since the stressed

samples were only exposed for one hour at room temperature no pit-

ting or cracking was observed.

Some results were quite erratic for several stressed samples,

but much of this can be attributed to uncertain stress conditions.

Two point bending does not seem to be a reliable method for ob-
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taining a well defined stress state unless special fixtures are

devised. Ideally, the stressing should be done uniaxially.

4. Surface Analysis of Pits and Cracks

To obtain pitted specimens for EMX analysis, anodic polari-

zation in magnesium chloride solutions was employed. A typical

traverse for a pit is shown in Figure 28 and similar results

were noted for several other pits on the same sample. Figure 23

shows evidence of chloride segregation at the edge of pits similar

to that seen by Vetter and associates (20-22) and EMX work for the

hot salt SCC of titanium alloys (24).

Stress corrosion cracked surfaces were obtained by loading

in uniaxial tension in boiling magnesium chloride polarized 20

millivolts over the rest potential. The traverse across a secon-

dary crack is shown in Figure 29 and a SEM photomicrograph of the

typical secondary cracks observed is shown in Figure 30. As with

pits, chloride segregation was observed along with small effects

of chromium depletion. Due to the results observed here for the

constant potential experiments, magnesium was traced across the

crack as well. Even on a localized level, higher chloride concen-

trations had corresponding higher magnesium concentrations asso-

ciated with them.

As seen in Figure 30, localized dissolution around the sec-

ondary cracks exists so that a traverse approaching a crack should
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be expected to show essentially the same results as for a pit.

Figure 31 shows the combined intergranular and transgranular

nature of the primary fracture surface. SIMS analysis on this

fracture surface is summarized in Table 4. A very high hydrogen

concentration is shown as well as higher magnesium and chloride

concentrations. Nielson (57), using a laser microprobe had ob-

served a similar result for the concentration of hydrogen on the

stress corrosion cracked fracture surface of a ferritic stainless

steel. The much higher hydrogen on the fracture surface is simi-

lar to that noted for cathodically charged monel in which an

order of magnitude increase in hydrogen concentration was seen

for a fracture surface compared to a free surface (48).

The concentration of hydrogen in both instances followed the

same trend, high amounts on the surface rapidly decaying to back-

ground levels further into the sample. The similar qualitative

results between the fracture surface of the sample cathodically

charged to deliberately introduce hydrogen into the lattice and

the fracture surface of the sample which had suffered SCC under

anodic conditions is suggestive of an HE mechanism for crack

propagation in SCC.

During the crack propagation process, new active surfaces

are exposed to the environment and hydrogen entry in these areas

would not be inhibited. Hydrogen movement through the oxide or

hydroxide film is not expected to readily occur. This leads to
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high local concentrations of hydrogen at the cracked surfaces as

was observed by the SIMS in this study.

The necessity for localized hydrogen entry under anodic

conditions is evident when the results of Table 4 is compared

with the filmed free surface results in Figure 18 through 23.

One can also see in Table 4 a reduction in the chromium in-

tensity corresponding to the chromium depletion theory of Joshi

and Stein (9). In their research using Auger spectroscopy,

however, a sensitizing heat treatment produced chromium carbides

at the grain boundaries, denuding the surrounding areas of chro-

mium. The annealed sheet used in this study should not be expected

to produce as much chromium segregation.

A large increase in the amount of nickel on the fracture

surface shows that the nickel enrichment idea of Staehle (4) has

merit. Comparison of the results of the EMX and SIMS on the

fracture surface shows generally good qualitative agreement, but

it must be emphasized that the SIMS integrates a much larger area

for analysis due to the beam diameter. The EMX illustrates the

segregation around a crack much more satisfactorily.



CONCLUSIONS

A major goal early in this study was the determination of

the suitability of the SIMS for surface analysis as applied to

corrosion research. After suitable experimental procedures had

been devised, it was evident that the instrument could provide

valuable information about the surface reactions that occur in the

initial stages of SCC. The ability to detect hydrogen consti-

tutes a primary advantage enjoyed by the SIMS technique when ap-

plied to SCC phenomenon.

More modern instruments than the model employed in this study

contain refinements such as a primary beam approaching EMX L

dimensions and the ability to raster the beam across the surface

giving an "ion picture" for a given species. Fundamental studies

of SIMS operation and the physics of the sputtering process are

necessary however, in order to obtain reliable quantitative in-

formation.

Several conclusions can be stated at this time concerning the

crack initiation phase of the SCC of austenitic stainless steels

in aqueous chloride environments:

1) The surface concentration of the chloride ion shows a

consistently sharp increase for anodic potentials where SCC is

observed. The increase in chloride concentration appears to

correspond to the formation of an iron chloride complex. A de-

crease for more noble potentials is observed to occur, probably

35
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due to excessive anodic dissolution.

2) Higher chloride concentrations are observed at pits and

cracks. The role of the chloride ion in the initiation of pits

and cracks confirms the theories of many previous investigators.

3) High levels of the positive ion, either sodium or mag-

nesium were observed in conjunction with high chloride ion levels

both on the overall surface and localized at pits and cracks. The

concentration of the sodium ion appears to be relatively inde-

pendent of temperature whereas the concentration of the magnesium

ion increased with increasing temperature. This may be due to a

film formation of some sort.

4) No substantial differences in the adsorption characteris-

tics could be observed between the aerated and deaerated condition

for both salts. Although no competitive adsorption of chlorine

and oxygen could be seen, the additions of oxygen might account

for rest potential shifts and film formation as observed in the

polarization curves.

5) There is some evidence for a stress assisted adsorption

effect which is more pronounced for the magnesium chloride environ-

ment than for the sodium chloride environment. This again may be

due to some film formation.

6) Although relatively low levels of hydrogen were detected

on the overall surface after anodic polarization, a large amount
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of hydrogen was observed on a stress corrosion fracture surface

generated by the same electrochemical conditions.

7) There is some evidence to support the chromium depletion

and nickel enrichment ideas of SCC.



APPENDIX

Surface Reactions and Complex Formations

During the pitting and crack initiation stage of SCC, many

surface reactions are assumed to occur simultaneously because of

variations in surface potential. Regardless of the applied

potential on the overall surface, the potential at a point de-

termines which reaction will be in equilibrium.

This is an attempt to determine which surface reactions are

important in potential regimes used in this study. Obviously,

it is impossible to identify all the reactions which may occur

since this is a complicated system. The reactions involving

chromium, nickel, and iron are only considered here with the ef-

fect of trace elements neglected. Also, it is assumed that the

reactions involving each of the major alloy components occur

more or less independently.

The basic approach used here assumes that an oxide surface

layer is broken down in several stages to form hydroxide or

chloride complexes.

For experiments done in this study, the electrochemical

breakdown of the passive film is unlikely. On the average, the

equilibrium potential for the oxide react-ions is approximately

200mV SHE O ISOOmV SCE). More likely processes for premature

38
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passive film breakdown are: a) mechanical breakdown of the pas-

sive film, b) chloride adsorption to change the conductivity

properties of the film, or c) preferential dissolution of certain

precipitates such as sulfides.

After localized breakdown of the passive film occurs, ac-

celerated dissolution at these small relatively anodic areas

leads to pitting. Rapid dissolution prevents the surface from

reforming the passive film. Consequently, the active base

metal is exposed to the environment. This discussion assumes

that this active surface may then be oxidized to form chloride

complexes.

Standard oxidation potentials are used with the Nernst

equation* to calculate the equilibrium potential for a given

chloride formation. The oxidation potentials and reaction con-

stants used here were obtained from several sources and reflect

the more recent or accepted values as much as possible (58,59).

Uncertainties in the experimental values determined for the re-

action constants allow one to merely approximate the equilibrium

potentials for the chloride formations.

The reader should be cautioned that these reactions are not

standard redox reactions but are written to reflect the physical

situation. For example, chloride reduction is not considered.
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* The Nernst equation is given by:

RT
E = E° + -£r In K

Lr

Where E° = Standard oxidation potential

R = Universal gas constant

Z = Valence transfer

F = Faraday constant

K = Stability or reaction constant

For T = 298° K, the equation becomes

E = E° + - log K (volts)

although in certain circumstances it may occur.

On the active surface, obtained during the pitting process,

chromium is oxidized:

.+2 „__ ,,0 _Cr(s) = Cr + 2e~ E° = 557mV SHE

Cr+2 = Cr+3 + e- E° = 410mV SHE

Or by the direct process:

Cr(s) = Cr+2 + 2e~ E° = 740mV SHE

As a result of either the passive film breakdown or active sur-

face oxidation, the chromium chloride formation can be described

by the following:

Cr+3 + Cl" = CrCl+2 log K = 0.60 E = 752mV SHE
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and

Cr"1"3 + 2C1~ = CrCl2
+ log K2 = -0.71 E° = 726mV SHE

As with chromium, oxidizing active nickel during pitting

gives the following:

Ni(s) = Ni+2 + 2e~ E° = 250mV SHE

The oxidized nickel may then form a chloride by the reaction:

Ni+2 + Cl" = NiCl"1" log K = 0.89 E° = 276mV SHE

by the Nernst equation.

Active iron during pitting may be oxidized in stages by the

following:

and

Fe(s) = Fe+2 + 2e~ E° = 440mV SHE

Fe+2 = Fe*3 + e" E° =-770mV SHE

or by the direct process:

Fe(s) = Fe+3 + 3e~ E° = 36mV SHE

The iron chloride may then be formed:

Fe+3 + Cl" = FeCl+2 log K = 1.48 E° = 66mV SHE

In addition to the simple chloride, an iron perchlorate may be

formed as described by the following reaction:

Fe+3 + 3(C104") = Fe(C104)3 log K = 1.15 E° = 59mV SHE

by the Nernst equation. The perchlorate formation is pH inde-
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pendent as seen from the reaction and may proceed if the chloride

ion can actually enter the oxide film and form the perchlorate

radical.

The results for the complex formations are summarized in

Figure 32. Since the stability constant is defined as the proper

product of the activities of the products divided by the proper

product of the activities of the reactants, and the oxidation

potential is constant, increasing the applied potential in the

noble direction implies the stability of the products from the

Nernst equation. The potentials for complex formations identi-

fied earlier are equilibrium potentials. At potentials more

noble than tiie equilibrium potential, a given complex should be

stable.
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ELEMENT

Chromium

Nickel

Iron

Silicon

Phosphorus

Sulfur

Manganese

Carbon

WEIGHT PERCENT

24.15

19.45

Balance

0.38

0.018

0.001

1.41

0.054

Tensile Strength = 40,100 psi

Ultimate Yield Strength = 37,400 psi

TABLE 1

COMPOSITION OF TYPE 310 STAINLESS STEEL
AND RELATED TENSILE DATA
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PRIMARY BEAM COMPOSITION

Primary Accelerating Voltage

Sputter Area

Target Current Density

Secondary Accelerating Voltage

Detector Voltage

Pressure-Sample Chamber
(Without Beam)

Pressure-Sample Chamber
(With Beam)

Pressure-Mass Spectrometer

ARGON

10 kV

6.3 mm2

5 yA/mm2

: _+ 1 kV

3 kV

2 x 10-7 torr

2 x 10-6 torr

1 x 10~7 torr

TABLE 2

IMPORTANT SIMS INSTRUMENT PARAMETERS
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SPECIES

H+

o-

OH-

Na+

Mg+

ci-

Cr+

Ni+

NORMALIZED INTENSITY

0.094-0.140

0.014-0.080

0.012-0.025

0.110

0.019

0.077

3.48

0.10

TABLE 3

BACKGROUND LEVELS FOR A NOMINALLY CLEAN UNPOLARIZED
SPECU1EN OF 310 STAINLESS STEEL
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SPECIES

H+

o-

OH-

Mg+

ci-

Cr+

Ni +

NORMALIZED INTENSITY

7.09

0.72

0.21

2.91

1.82

3.18

4.55

TABLE 4

SIMS ANALYSIS OF A PRIMARY STRESS CORROSION CRACKED
FRACTURE SURFACE
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FIGURE 1: LIGHT METALLOGRAPHY OF THE AS-RECEIVED SURFACE OF
TYPE 310 STAINLESS STEEL, 250X.
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FIGURE 2: ELECTROCHEMICAL TEST CELL AND ASSOCIATED ELEC-
TRONICS.
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FIGURE 3: SIMS AND THE ASSOCIATED ELECTRONICS.

FIGURE 4: DETAIL OF SIMS SHOWING SAMPLE CHAMBER AND MASS
SPECTROMETER.
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64

log i

t
'TRANSPASSIVE REGION

V

PASSIVE REGION

V

ACTIVE REGION

FIGURE 13a: IDEAL METAL OXIDATION REACTION SHOWING ACTIVE
PASSIVE BEHAVIOR.
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NOBLE

ACTIVE

log i

FIGURE 13b: REDUCTION REACTION SUPERIMPOSED ON THE METAL
OXIDATION REACTION.

NOBLE

ACTIVE

ANODIC POLARIZATION

CATHODIC POLARIZATION

log i

FIGURE 13c: RESULTANT POLARIZATION CURVE MEASURED EXPERIMENTALLY.
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FIGURE 16: PITTED SURFACE OF 310 STAINLESS STEEL AFTER
ANODIC POLARIZATION IN 5M NaCl, 23°C, 300X.
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FIGURE 17: DETAIL OF THE PITTED SURFACE OF 310 STAINLESS STEEL
AFTER ANODIC POLARIZATION IN 5M NaCl, 23°C, 3000X.
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FIGURE 30: SECONDARY CRACKS ON THE SURFACE OF 310 STAINLESS
STEEL STRESS CORROSION CRACKED IN MgCl2 AT 108°C,
1000X.
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FIGURE 31: PRIMARY FRACTURE SURFACE OF THE.STRESS CORROSION
CRACKED 310 STAINLESS STEEL, 1000X.
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