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SUMMARY

Unlike many government programs, a disaster warning system

requires the participation of two distinct deci si on-making parties: first,

the government must decide on the type of transmission-reception system

to employ; second, the individual must decide whether to purchase a

receiver and, given a warning, whether to take action. This two-party

nature of disaster warning decisions suggests that traditional "single-

decision-maker" approaches to the evaluation of alternative systems may

not be fruitful. For example, different warning systems may provide

services that individual citizens desire to a greater or lesser degree.

A complete analysis must take account of these differences in valuations

on the part of individual citizens as well as differences in value from the

perspective of the government decision-maker.

This report summarizes the results of a study of methods for

estimating the economic costs and benefits of the trans mission-reception,

and reception-action segments of a disaster warning system (DWS).

Specifically, the objectives of this study were to: (i) identify-methods

for the evaluation of alternative disaster warning systems; (ii) perform

example analyses using the methods identified.

The methods considered in this study included those from the
o

economics of information, benefit-cost analysis, general economic theory,

and statistical decision theory. In order to insure that the methods

proposed were applicable to disaster warning systems, a brief review

of system technologies that have been previously developed was conducted.
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The examples in the report indicate that the methods identified

in the study provide the user with a set of proper, and practical, tools

with which to evaluate alternative disaster warning systems. However,

it is important to emphasize that, as with all analytic tools, the methods

proposed are only an aid (albeit an important one) to the decision maker.
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NOTE TO THE READER

The purpose of this study is to identify appropriate methods for

the evaluation of alternative disaster warning systems and to illustrate

their application by examples. As such, it is designed so that individual

chapters are, for the most part, sufficiently complete to be read

separately. There are, however, three important consequences of this

design that should be explicitly noted:

First, appendices and references are located at the end of
the chapter in which they are used;

second, examples in different chapters cannot be compared
since the assumptions used in each (discount rates, for
example) are not necessarily comparable. The reason is
that each example is designed to illustrate specific points
about the individual methods;

third, because the examples are designed to illustrate
specific points, they cannot be considered to be complete
analyses of any actual system.
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CHAPTER I:

INTRODUCTION AND SUMMARY

A. Overview

This report presents the results of a study of methods for

estimating the economic costs and benefits of the transmission-

reception segment of a forecasting-warning system. Specifically,

the objectives of this study are to:

» identify methods for the evaluation of the

transmission and reception portions of alternative

forecasting-warning systems;

• perform example analyses using the methods

identified.

The nature of these tasks and our findings become clearer if we

focus on the individual components of a fore casting-warning system

rather on the overall system itself. Such a system can be thought of

as being made up of the following, functionally distinct, components:

• Sensing - detection of a potential disaster

before it occurs

• Forecasting - the use of sensor data to predict the

nature, time and location of a disaster

• Transmission - sending the forecast to the public

• Reception - receipt of the forecast by individuals

• Action - doing something to mitigate the losses

that result from disasters.
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While additional functions could be added (most notably post-disaster efforts),

these five functions usefully delineate the bounds of a forecasting-warning

system without cutting across the jurisdictional responsibilities of several

agencies.

In this report, we do not consider the sensing and forecasting

components of the system. There are two related reasons for this. First,

the design of transmission and reception components does not depend

significantly on the design of the sensing and forecasting components.

Second, since the sensing and forecasting components serve other purposes

(namely, routine weather forecasting) they are generally taken as given.

Figure 1-1 depicts the relationship among the five components and the dotted

line encloses those functions that we refer to as a disaster warning system

(DWS) and that were considered in this study. —

Looking at the components within the dotted lines in Figure I-1,

we see that there are decisions that must be made by the government

(i. e. , what transmission system to invest in) and by the individual

(e.g. , whether or not to invest in a home warning receiver). The fact

that a disaster warning system provides a service directly to the public

makes it something1 of a novelty as far as system evaluations since value of

service to individuals as well as cost considerations may arise in analyses

of alternative systems. We need, therefore, to analyze both governmental

decisions about transmission systems and individual decisions about receivers,

IJ These components include the transmission of routine forecasts as
well but in this study attention is directed primarily toward the disaster
warning role.
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Sensing

The Disaster Warning System
Subsystems Covered by This Report

Action

Forecasting

Figure 1-1

The Five Components of a Forecasting-Warning System

1-3



Unless the decisions of the individuals are taken into account in an

evaluation of a particular disas ter warning system, the resul ts of the

analysis may not be relevant. For example, if the government were to

select a t ransmission system that required very expensive rece ivers ,

it is likely that not many people would buy the rece ivers . Therefore,

very few people receive any warning that is issued over the system and

the system would be worthless as a means for providing warnings to the

vast majority of the public.

The methods we have considered for dealing with these and other

problems include those from the economics of information, benefi t-cost

analysis , general economic theory, and stat is t ical decis ion theory. In

order to insure that the methods we propose are applicable to disaster

warning systems, we have also conducted a brief review of system

technologies that have been previously developed. Some currently avail-

able data sources have also been reviewed for use in the example analyses

In addition to the identification of appropriate evaluation methods,

two additional topics are included in this report. The f i r s t is the theo-

retical foundation of the method. This discussion is intended to explain

when each method is appropriate and in what sense each provides a useful

indicator of the value of a system.

The second topic we discuss is the practical implementation of

each method by way of an example analysis using the method. In this

study, the examples that have been developed are a compromise between

realism and simplicity. 'Clearly, an example that entirely abstracts

from reality would not serve as a useful guide for an actual application of
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the method In the real world. Just as clearly, however, an example that

incorporates all the complexities associated with the evaluation of d isas ter

warning system, components would not provide a clear illustration. For

this reason, as well as missing data and the incomplete specif icat ion of

alternative systems, these examples are il lustrations of the methods

only and are not to be interpreted as analyses of actual systems.

B. A Framework for Economic Evaluation of Disaster Warning Systems

Given the diverse and diffuse nature of the benefits generated by

a DWS, how can we compare government costs, private costs, and the

benefits that accrue as a result of a DWS being implemented? In this

section, we describe the methodological framework that we will use

throughout this report. Naturally, no methodological tool can make the

determination of what system the government "should" invest in.

However, economic evaluations, by providing information to the decision

maker about relative costs and benefits of alternative systems, can aid

in the decision-making process.

I. Principles

The general principles underlying the economic evaluation of

alternative systems are well-known; they are those of benefi t -cost analysis.

Benefit-cost analysis is simply the application of decision making techniques

used by private decision makers to governmental decis ion problems. The

application of benefit-cost analysis is depicted graphically in Figure 1-2.

There, we let E be a measure of system effectiveness. By "effectiveness"
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Benefits,
Costs

C(E)

* B(E)

Effectiveness

Figure 1-2

Solution of the Benefit-Cost Problem

we mean a measure of how "well" the system, performs with respect to

one or more characteristics (in Figure 1-2, effectiveness is in terms of

one characteristic). The measures used willdepend upon the characteristics

determined to be relevant in a comparative analysis of two or more systems.

In an analysis of disaster warning systems, for example, an important

characteristic is coverage and a measure of effectiveness might be the

percentage of the population that could receive a warning.
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The cost function, C (E) , gives the minimum cost for a given level

of ef fec t iveness .—' This corresponds directly to the private f i rm's cost

function which depends on the amount produced. Similarly, B(E) gives

some measure of society's "well-being" (benef i t s )— that are obtained

from a given level of benef i ts .— This corresponds to the private firm's

revenue function which, again, depends on the amount sold. Conceptually,

*

at least, it is also an easy matter to estimate the costs of system alter-

natives for public projects. One simply follows known engineering-

economic principles. Of course, it is important to ensure that the true

opportunity costs of resources are used in the calculation. For example,

the opportunity costs of facilities used must be included — even if no new

facilities are required — as long as facilities used have an alternative

public or private use.

It is somewhat more difficult, both in concept and practice, to

estimate the benefits of alternative transmission-reception segments of

a DWS. This portion of the system derives its value from the information

that it provides to decision-makers —in this case, households, businesses,

governments, institutions, etc. --that are the target audience for natural

disaster warnings. How to go about placing a value on this information--

and the system which conveys i t--is, however, a difficult problem.

1_/ This curve (or surface in cases where there is more than one
effectiveness dimension) can be determined via equal capability
cost analysis, to be described below.

2/ The controversy surrounding the use of what essentially is a social
welfare function is too involved for satisfactory discussion here.
The interested reader is referred to Quirk & Saposnik. All we
require here is that some method is used to relate effectiveness to
well-being.

_3_/ We shall have more to say in Chapters IV and V about how this
curve may be determined.
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2. Practical Methods

The fact that the disaster warning system can be divided into

transmission and reception segments suggests that some of these problems

can be simplified by using different methods for each segment. We have,

therefore, identified three methods for the evaluation of alternative disaster

warning systems, each suitable for a specific segment. For the transmission-

reception link, equal capability cost analysis 'discussed in Chapter III)

provides a suitable method. For the reception-action link, and the benefits

to be derived by the individual from a disaster warning system, consumers'

surplus (discussed in Chapter IV) is an appropriate measure and can be

derived directly from the demand curve, if it is known, or can be calculated

from a demand curve derived through the use of decision theory (as we

illustrate in Chapter V). The relationship among these methods and the

benefit-cost framework is described briefly in the remainder of this section.

The solution to the government's decision, again like the solution

to the private decision,' is to maximize the (posit ive) difference between

benefits and costs (net benefi ts) which corresponds to the maximization of

profits. This occurs in Figure 1-2 at effectiveness E* where the slopes of

the benefits and cost curves are equal. To provide a higher level of

effectiveness, say E, means that the increase in well-being AB(=B(E) - B('E*))

is less than the increase in cost Ac( = C(E) - C(E*)).- Therefore, society

would prefer to save the amount of resources AC to receiving AB (expressed

in the same units as costs) in benefits.

!_./ This is another application of the widely used marginal analysis so
common in economics. In this case, the optimal point is D, where
B'(E) = C'(E_)_--jnarginal benefits equal marginal costs (primes denote
derivatives)T~If ~B"r(E)>Cr(E) C r (E)>B' (E) for all E," no system is
optimal.
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While it is a simple matter to talk about curves labelled "benefits"

and "costs", it is not so simple to estimate these curves in practice.

However, by considering different situations in which the evaluation is to

take place, appropriate techniques for analysis can be identified.

Suppose, f i rs t , we have a situation where two, or more, systems

can be made to have varying degrees of effectiveness at some cost and

within a limited range. This is illustrated in Figure 1-3. The two systems

S, and $2 while similar in effectiveness and cost do show some differences,

namely, in the cost associated with increased effect iveness (measured by

the slope of the lines in Figure 1-3).

C ost i

T

I System 1 (Sj)

System 2 (S2)

99% Coverage
Requirement

Coverage
Requirement

90% R
0

.A Effectiveness (e.g. ,
I Population Coverage)

100%

Figure I- 3

Graphical Depiction of Equal Capability Cost Analysis
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How can the decision-maker make a choice in this situation?

If we assume certain requirements, say R_ (see Figure 1-3), then one

appropriate way would be to compare cost at that level of effect iveness

and S, \vould be selected. We can term this the "equal capability cost

comparison approach."

The danger with this method, of course, is that at a higher level,

R, (see Figure 1-3), the decision would change and depending on how

"close" R-. and R. are, the sensitivity of the result to the presumed

requirements level may be extremely high. Therefore, a careful

sensitivity analysis is called for when this approach is used. In Chapter III,

we will illustrate the use of this method in the disaster warning framework.

Generally, the decision-maker is not confronted with a choice

among systems of similar effectiveness but one where different systems

provide quite different levels of effectiveness. In this situation, one

solution is not to redesign the systems but to relate costs to effectiveness

levels and determine the additional resources that must be foregone to

get a system, with additional benefits.

This process is displayed in Figure 1-4. There, effectiveness

(E) and cost (C) are placed on the two axes and alternative systems, S.,

with different degrees of effectiveness and cost, are shown in relation

to one another. If a particular system is lower in effectiveness and higher

in cost than some other system, it is obviously dominated by that other

system. Therefore, for system Sy in Figure 1-4, we have drawn

dashed lines delineating; the northwest quadrant (the shaded area) in
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relation to the system. If any system falls Into this quadrant, we know

it is dominated by system S.,. Thus, we know S- is dominated and we

do not consider it further.

COST

REQUIRED
EFFECTIVENESS (R)

EFFECTIVENESS

= SYSTEM i.

Figure 1-3

Graphical Depiction of Cost-Effectiveness Analysis

Often, a minimum level of effectiveness shall be taken to be

"required." If this means that the decision-maker cannot even consider

systems whose effectiveness is below that level, then such systems can

also be ignored. In Figure 1-4 we have set a minimum level of effective-

ness at R thus removing S, from consideration.

Finally, note the solid lines connecting the remaining systems

S^, S-, and SA. These represent the "trade-offs" between effectiveness

and cost that only a decision-maker can make. Represented as the slope
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of the line (AE/AC), it is the increase in effectiveness that can be

obtained for the increase in cost AC. The goal of cost-effectiveness

analysis is to provide the decision-maker with these trade-offs.

While the method of cost-effectiveness analysis avoids the problem

associated with dissimilar systems, it leaves the decision-maker confronted

with a set of costs and effectiveness levels (and there is generally more

than one measure of effectiveness) from which to make his choice. Thus,

we do not consider cost-effectiveness analysis in this report.

A solution to the problem associated with systems providing dif-

ferent levels of effectiveness is to translate effectiveness into a measure

commensurate with costs, in other words, to estimate the benefits

function, B(E) , described above. Therefore, a large part of the report

is concerned with the development of methods and measures for finding

the benefits associated with a particular level of effectiveness. In

Chapter IV, -we describe and illustrate the estimation of the generally

accepted measure of benefits (consumers' surplus) in the context of

disaster warning. As we will see there, knowledge of the demand curve

is necessary for the calculation of consumers ' surplus. Therefore, in

Chapter V, we describe and illustrate a method called statistical decision

theory that is used to estimate the demand curve if one is not known.

3. A Caveat

The use of any of these related methods requires care. Like

other formal methods, they may provide a false sense of precision about

the costs and/or benefits associated with a particular alternative. It is
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unfortunate, perhaps, that uncertainty is a pervasive part of our lives.

(Otherwise, of course, there would not be any requirement for a disaster

warning system.) If the results of a benefit-cost analysis are presented

as, say, X dollars in net present value, this may mask uncertainties

about costs ( e . g . , perhaps communication cost will rise, or fall, in the

future) or uncertainty about benefits (what will the demand actually be? ).

If these uncertainties are not made explicit, the results can be misleading.

In addition, these analyses cannot, practically, capture all of

the benefits and costs associated with a project. It is unlikely any method

can. Reliance on the results of such analyses alone is apt to lead to

trouble.

C. Report Organization

The history of disaster warning concepts and analyses appears

in Chapter II which is designed to provide a brief review of disaster

warning and a basis for the methods described in the following chapters.

In Chapter III, a specific method of evaluating systems with the same

effectiveness (benef i ts) is described and illustrated by use of an example.

In Chapter IV, the measurement of consumers' surplus, generally

accepted as the proper way to calculate the benefits associated with a

specific system given a demand function, is discussed and an example

calculation provided. Chapter V addresses the problem of assessing

consumer demand in the absence of market survey or other demand data.

This method does not rely on any survey and, in addition, can be used to

estimate a demand curve from which benefits can be calculated. The

relationship between the chapters and the components identified in

Section A above is shown in Figure 1-5.
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Figure 1-5

Relation Between Functional Components and

Chapters in this Report

Component:

Sensing

V

Forecasting
and

Warning

_v

Transmission

Reception

Action

Applicable Methods
Discussed In:

-- T - Chapter in

Chapter IV
Chapter V

Chapter V

Components dealt with
in this report.
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D. Using the Report

While the report provides a framework in which to evaluate alter-

native disaster warning systems, a specific analysis need not require the

use of ail of the methods described. In order to assist the reader who has

a specific analysis to perform, we have prepared the flowchart appearing

in Figure 1-6. By working through the flowchart, the relationships among

the methods can be seen and the appropriate tool for the specific analysis

can be selected.

The first question that is asked is: Do the systems that the

analyst is considering appear to have roughly equal benefits? (The

concept and measure of economic benefits are discussed in Chapter IV).

If the answer to that question is "yes", an equal capability cost analysis

(described in Chapter III) can be performed. If the benefits of the

systems are sufficiently different, or if there is uncertainty about the

relative benefits, then some estimate of the benefits of each system should

be made. If the demand for the home receiver (or, equivalently, for the

information provided by the receiver) has been previously estimated,

the associated consumers' surplus (discussed in Chapter IV) can be

calculated directly. If this demand information is not available (or as

a check on the information) statistical decision theory (Chapter V) can

be used to assess the potential demand and, from this, the associated

consumers' surplus. When the net benefits have been estimated, they

can be compared with the costs of.portions of the system'not covered by

user chargers to provide information on the relative merit of the alternative

systems.
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YES NO (or.UNCERTAIN)

V

Perform
Equal Capability
Cost Analysis
(Chapter III)

Calculate Consumer
Surplus
(Chapter IV)

NO or
(UNCERTAIN)

Use Statistical
Decision Theory
to Compute Demand
(Chapter V)

Calculate Costs Not
Covered by User
Charges and Compare
with Benefits

V V

Document and
Report
Analysis

Figure 1-6

Selecting the Proper Method
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In addition to providing a valuable decision-making aid, the methods

we have identified can also be used to aid in the planning process. For

example, reviewing results of various decision theory analyses can lead

to the identification of services that would be highly valued by the individual

and, therefore, these services become promising candidates for inclusion

in a disaster warning or other system.

Finally, the usefulness of the methods described in this report is

not limited to disaster warning systems. Any proposed project providing

information to the public for which there exists a demand could be evaluated

using these methods.

E. Report Summary

As noted above, the provision of services directly to the home

by a disaster warning system means that analyses based only on trans-

mission system costs may not always be correct for overall system.

evaluation. We have found, however, that by considering components of a

system separately we have been able to identify and illustrate three

methods which are suitable as evaluation techniques.

More specifically, we have observed as a result of this study

that:

• unlike many government investment alternatives, a disaster

warning system often requires an investment on the part

of the individual. Therefore, the cost of the transmission

portion of the system alone is not a sufficient criterion

on which to base a government investment decision;
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because the methods we propose incorporate the

"private" decision and the individual's benefit-cost calculus,

the economic benefits and costs of disaster warning systems

can be analyzed with the methodological base we present;

given the receiver demand curve (from whatever source),

consumer surplus Is one measure of the economic benefits

to be derived from a disaster warning system that, while

not value-free, does have intuitive appeal and Ls a

generally accepted measure of benefits;

statistical decision theory, because it provides a way

of incorporating the inherent uncertainty associated with

natural disasters is one method of assessing potential

consumer demand that does not require an extensive and

expensive market survey;

by making explicit the benefits and costs associated

with the individual's receiver acquisition decision,

statistical decision theory can often be useful in,

generating new alternatives that may provide greater

economic benefits; . .

by removing much of the problem of unequal effective-

ness inherently associated with different transmission

systems, the equal capability cost analysis method of'

comparing-alternative transmission systems can be

usefully applied when the requirements for the system

are clearly defined;
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• All methods have certain characteristics that make

them more or less appropriate in specific situations.

Therefore, the strengths and weaknesses of each of the

methods described in this report should be considered

before implementation of specific methods is attempted.

The methods described and illustrated in the following chapters

provide the user with a set of proper, and practical, tools with which to

evaluate alternative disaster warning systems. However, it is important

to emphasize that, as with all analytic tools, the methods we propose in

this report are only an aid (albeit an important one) to the decision-maker.
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. . ' - • - ' - ' CHAPTER I I :

A REVIEW OF DISASTER WARNING PROGRAMS

A. Introduction

Before we describe the methods we propose, it will prove

useful to review briefly the various disaster warning program evaluations

that have been undertaken in the past. In particular, we review and

critique four analyses of disaster warning systems to provide the

motivation for the methods we propose in the following chapters. As

a part of this review, a brief history of disaster warning is presented.

This history provides a perspective from which to understand how current

concepts and policies have evolved. In the Appendix, we describe several

alternative technologies for disaster warning. This technology review

is concerned only with the warning function and not with the functions

of sensing and forecasting.

The next section traces the government's involvement in disaster
*

warning from the early 1950's to the present. In Section C, four

analyses that have addressed the evaluation of alternative systems are

reviewed. Summary remarks are provided in Section D.

B. History of Disaster Warning Systems —

The Federal Government's involvement with disaster warning,

which has occurred primarily in the post-World War II period, originated

with the concern about nuclear attack. In any emergency situation, including

nuclear attack or natural disaster, early warning of those affected can

— This brief history is based on the discussion in [3].
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be Important in reducing losses. To this end, the government originally

supported the installation of community sirens. Soon thereafter, in an

effort to apply radio technology to the warning problem, CONELRAD

was developed. This system provided the public with disaster information

over two frequencies (both in the AM band) while other broadcasting was

suspended. The purpose of using the two particular frequencies was to

make it difficult for enemy aircraft to use the radio signals to navigate.

When more sophisticated navigation technologies

became widely used (about 1963), CONELRAD was replaced by the

Emergency Broadcast System (EBS). With EBS, selected stations broadcast

warnings on their normal frequencies during emergencies.

A widely recognized problem with the CONELRAD and the EBS

concepts was that people received warnings only if they happened to be

listening to radio or watching television when the warning was broadcast.

To overcome this problem, a method was sought to provide warnings even

when the radio and television were turned off. The first concept considered

was the National Emergency Alarm Repeater (NEAR), which was based on

powerlines transporting a signal to turn-on radios and television

sets. Development was halted when interference from other electrical

appliances became a problem.
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Following the Palm Sunday tornadoes In 1965, an interagency

group was formed to study procedures that would reduce the impact of

natural disasters. The study resulted in recommendations to combine

many of the existing systems into a coordinated entity. The primary

system was to consist of the weather teletype system feeding warnings

to the public via the media and of outdoor sirens. A backup system,

consisting of amateur radio, the National Warning System, and the NOAA

Weather Radio System (see below) would support the primary system.

Termed the,Nationwide Natural Disaster Warning System (NADWARN),

it was never actually implemented.

Two systems that are operational are the National Warning System

(NAWAS) and NCAA's Weather Radio. The NAWAS of the Defense Civil

Preparedness Agency (DCPA) is a telephone system which was designed

to issue warnings of enemy attack to government agencies. Although

designed specifically for attack warnings, it has also been used to provide

warnings of natural disasters since 1958. The NAWAS is currently the

primary system for issuing attack warnings.

The Weather Radio System of the National Oceanic and Atmospheric

Administration (NOAA) is a network of VHF radio transmitters that provide

local weather forecasts and warnings on a 24 hour basis. This is unique

in that it has the capability to signal a warning by demuting a specially

designed receiver. Until recently almost all such demutable receivers

were in the hands of agencies that'require quick notification in an
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emergency which was apparently due to their relatively high cost.

Relatively Inexpensive derrmtable receivers are now becoming available

and are being marketed in those areas where NOAA Weather Radio

transmitters are operational. Less expensive receivers that do not have

the demute capability but that are set to the proper frequency are also

available.

In 1971, an Interagency group chaired by the Office of Tele-

communications Policy (OTP) conducted a study of the various warning

systems then operating or planned for the future. Specifically, the group

considered the EBS, the VHF-FM weather radio (NOAA Weather Radio),

the commercial telephone system, a warning satellite, the Decision Infor-

mation Distribution System (DIDS), and a system based on nighttime use

of television stations (CHAT-TV). — As a result of this study, (which

was also concerned with the Administration's policy with respect to home

receivers) it was established that purchase of a home receiver would
7

be voluntary, and that the "DIDS system appears capable of providing

the greatest coverage and geographical selectivity. . .and the fastest

response time ". — U^J

Following this study, OTP studied the probable market penetra-

tion of home receivers. This study was based on several factors

including cost, the time required to bring alternative systems to

I/ These systems are described In the Appendix.

2/ See Section C. 2 below for a review of OTP study.
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completion, and additional services that could be provided by

the home receiver. As a result, it concluded in 1975 that NOAA's

Weather Radio "is the best choice ior a Federal radio warning system"

[l4j . Although BIDS as a warning system per se was not evaluated, it

became official policy that DIDS would no longer be used ior direct, to

the home, warning. [l^J

The General Accounting Omce recently (April 9, 1976) issued

a report criticizing the lack of coordination in tne development of disaster

warning systems. [9] It singled out three systems tor particular criticism

on operational and cost grounds: DIDS, NOAA's Weather Wire, and the

Disaster Warning Satellite System (DWSS). As will be seen, however, the

systems all vary in capability and functions performed, and, therefore,

these cost comparisons may be misleading. —

This is, of course, an abbreviated history of disaster warning

in the post-WWII era. It does indicate, however, the types of systems

that have been conceived for this purpose. Several specialized systems

also exist. These are designed for forest fires, river flooding, and tsunamis

(to name a few). These are not all considered separately in the appendix

since the procedures, the technology, and, in some cases, actual parts

of other warning systems are used. However, in any evaluation of

disaster warning systems, care must be exercised to include as relevant

costs, changes in these specialized systems induced by changes in the

disaster warning system.

_!/ See Section C. 3 below for a fuller discussion of the GAO report.
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Table II-l presents a summary of the values for several des-

criptive characteristics discussed in the Appendix for some alternative

disaster warning systems. The values in this table do not have the

precision to make comparisons among systems unless the differences are

very great. For example, the values under lead time that involve seconds

or minutes cannot be differentiated without further information. Some

of the systems we discuss in the Appendix were not included since they

were similar to others. From the table it is clear that mass telephone

ringing is dominated ( i .e . , it's more costly and less effective) by other

systems. CHAT-TV, NOAA Weather Wire, and EBS also appear to be

inferior solutions for disaster warning through home receivers. Of

the remaining four, it is clear that there must be a trade-off between

performance and cost in deciding which system is best.

Of course, these values are not all precise and subject to exact

comparison. Generally, unless reliability is an important part of the

system (as it is for BIDS), there may not be exact measurements. In

those cases, we have attempted to provide at least a subjective value that

can be used for comparisons. The current objectives for several of the

programs are given in Table II-2.

One possibility, not considered in the comparison summarized

in Table II-l is that of combining two or more of the systems to provide

both attack and natural disaster warning capability. Such a system might

be a combination of NAWAS and NOAA Weather Radio (as suggested by

GAO) or of DWSS and NOAA Weather Radio as developed in the CSC report.
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Table II-1

I/Values of Descriptive Characteristics for Selected Alternative Disaster Warning Systems —

Ri

System

DWSS

DIDS

Weather
Radio

NAWAS

Weather Wire

EBS

CHAT -TV

Mass Telephone
Ringing

Coverage

h
u

i j&
100 100 All

96% 91% All

(55-
90% 85) All

90% (75) All

15% (75) Nat.

Indeter-
minant Dis.

Variable All

Variable Alt

80% ? All

Lead Time

Leee than
1 mln.

30 sec.

Less than
Z minutes

25 sec.

Short (If
dur ing Broad
cast )

Short (If
during
broadcast)

T2-Z4"Uor
preparation)
1 -2 minutes '
(act. warning

No
Estimate
Available

Reliability 2/

u>
o

Jl V -f

« '£ i& a a %
2 h-S £

Good Good Excellent

.99 .00001 Good
'Good) (Good)

.99 .01 Fair

(Good) (Good)

Good Good Good

Fair Good Poor

Good Good Poor

Good Good Poor

Fair Fair Poor

Cost 5f

(Not Necessarily

Comparable)

$72 million
$81 million

$59 million
$73 million

$4.4 milUon/yr.

$14. 4 million

$880, 000/yr,

$127,000/yr.

No Complete
Estimates
Available >

$300-500
million

Selectivity

Part of a County
20, 000 separate

areas)

Up to
5000 Addressable
A reas

331 Separate
areas

varies

varies

Fair

Fair

No estimate
available

Hours

Fulltime

Fulltime

Fulltime

Fulltime

6:00 am-
1:00 am

6:00 ani-
1:00 am

6:00 am-
1 :00 am

Fulltime

I/ See Appendix for sources.
j[/ Although some numerical values exist for the characteristics, we have included subjective values that we

would have applied in the absence of this Information. Thus, we are implying, for example, that .99
Mechanical reliability is "Good". We do this solely to provide a comparison with the other systems.

3_f For DIDS and DWSS, we show two cost estimates. This does not represent a possible range, but rather two
different point estimates whose variance could well be cauaed by inflation.



Table 11-2

Objectives Vs. Federal Program Changes FY 1975-80 (Funding)

OBJECTIVE FY 1975 PROGRAM CHANGES FY 1976 PROGRAM CHANGES FY 77-80 PROGRAM ESTIMATES REMARKS

WARNING DISSEMINATION

NWS
Complete coverage of NOAA
Weather Wire Service Co
all conterminous atatea
in U.S.

I VHF-FH Weather
CO Transmission

Complete the planned net-
work of 331 stations to
provide nationwide
coverage of VHF/FM NOAA
radio continuous broad-
casts of weather
forecasts and warnings.

Weather-by-Phone
Expand the availability of
automatic telephone fore-
cases to major metro-
politan areas nationwide
as rapidly at. possible.

NOAA
KUWS operational In 35
states.

NOAA
Install NOAA Weather
Radio at 10 locations,
bringing total stations
operating tb 77.

NOAA
Funding by TELCO. State-
wide trial In Illinois
as a test function
(zero K).

NOAA
Complete coverage In states
of: NV, UT. NM, MB, MA,
CT, RI, MN, ND, SD, ID(N),
WA, CA (49/1455K)

NOAA
Install equipment at 46
locations. Continue
negotiations of purchase/
lease arrangements for
remainder of locations.
(0/3560K)

NOAA
Funding by TELCO.
(Zero K).

NOAA
FY 76
1/4
FY 77

FY 78

FY 79

NOAA

Install equipment
at 23 sites.
Install equipment
at 87 sites.
Install equipment
at SO sites.
Install equipment
at final 48
locations.

Funding by TELCO expansion
on nationwide basis as
much as possible.

PY 1976 increases will
complete the program with
service available in the
conterminous 48 states.

Equipment for 56 stations
Installed in FY 74 and 75
was purchased using re-
programmed funds. FY 1976
Increases will buy out the
program and maintain it In
future years under a com-
bination purchase/lease
contractual arrangement.

NOAA
Persuade the various
telephone companies to
solicit sponsors for this
service, and to expand their
own funds to provide tUls
service as a profit-making
enterprise.

Source: [?]



Table II-2 (continued)

Objectives Vs. Federal Program Changes FY 1975-80

OBJECTIVE FY 1975 PROGRAM CHANCES FY 1976 PROGRAM CHANGES FY 77-80 PROGRAM ESTIMATES REMARKS

DIDS
Provide a low cose radio
warning system known as the
Decision Information Distri-
bution System (DIDS) to
disseminate attack warning
to selected Federal agencies,
local governments and
institutions, home of
selected officials and
emergency services key
personnel, the broadcast
stations, and by inter-
face, over the NOAA
Weather Radio System to
private homes. Use DIDS
whenever practicable to
disseminate natural
disaster warnings. Test
interface of DIDS with
the National Weather
Service disaster warning
operations.

NAWAS
Provide additional DCPA
National Warning System
Circuits, in Weather
Service Offices and
communities. Provide
interstate connections to
Weather Service Offices
for speeding the warning
process when tornadoes cross
state boundaries.

Future Dissemination
System
Conduct investigations
and studies needed to
develop for mid 1980s a
low cost national warning
system that will make
warnings available In
all homes.

DCPA
Continue to operate the
first DIDS transmitter
located at Edgewood, Md.
Conduct special tests.
Continue the general
weather announcements and
time announcements now
being made over DIDS.
Continue to operate the
375 voice receivers now
deployed and now operational
In a 10-state area.
FY 75 Increased $500K
over FY 74. DCPA and NOAA
are developing procedures
for dissemination of attack
warnings over NOAA Weather
Radio.

DCPA
Only 38 out of a planned
200 cities and counties
were added to the National
Warning System due to a
freeze on U.S. Army Com-
munications Command
leasing funds. The program
is funded through the
Dept. of the Army. This
was a decrease of $40K
from the FY 74 effort.

NOAA/NASA
Continued work following
Initial jointly-funded
feasibility study which
showed a Disaster Warning
Satellite System (DWSS)
was technologically
feasible.

DCPA
Continue operation of the
first transmitter and the
375 voice receivers. Add
1,000 voice receivers.
Conduct operational test
of the 1,000 voice re-
ceivers deployed in
specific geographical
areas prone to natural
disasters and other
emergencies. FY 76 de-
creased $179K from FY 75.
DCPA and NOAA will finalize
and Implement procedures for
disseminating attack warnings
by NOAA Weather Radio.

DCPA
Add 77 National Weather
Service Stations to the
DCPA National Warning SysT
terns giving them a total
of 356 stations on the
system. Add a total of 123
cities and counties to the
National Warning System.
The program is funded '
through Dept. of Army.
This increase FY 75 funds
by $80K.

NOAA/NASA
Undertake system defini-
tion studies for a
DWSS.

Continue to operate the
first DIDS transmitter and
the 1,375 voice receivers.
Evaluate operations and
the results of special
tents. Expand the system
within the 10-state area
of coverage and beyond
this area of coverage.

DCPA
Continue to add a total of
200 cities and counties to
the National Warning System
each fiscal year.

NOAA/NASA
Further developmental
work contingent on out-
come of FY 1976 studies.
Favorable outcome could
lead to prototype launch
in 1981.

[NOTE: DIDS testing
is currently being
held in abeyancej

Source: [?]



C. Previous Analyses

1. Introduction

This section reviews and critiques previous analyses of the

cost-effectiveness of alternative disaster warning systems. We

consider four different analyses done over the period 1971-1976. The

goals of this review are two-fold: first, to describe some alternative

methods by which disaster warning systems have been evaluated; and,

second, to motivate the methods we propose in the following

chapters.

The four analyses that we review are: the Office of Telecommunications

Policy (OTP) report of 1971 [11]; the General Accounting Office's report

of 1976 [8]; the Computer Sciences Corporation (CSC) study of 1974 [1];

and the 1974 study by Rosen and Haim.es [4] . The first two of these represent

evaluations of several systems while the last two represent more detailed

studies of particular systems.

20 The Office of Telecommunication Policy Study

Because the definition of. warning- requirements overlaps the

responsibility of several government agencies, a. Warning Steering Group

11-10



was established under the auspices of the Office of Telecommunications

Policy (OTP). This group was composed of representatives from the

Office of Civil Defense (OCD), the National Oceanic and Atmospheric

Administration (NOAA), the Office of Emergency Preparedness (OEP),

the Federal Communications Commission (FCC), the Department

of Transportation (DOT), and OTP.

To support the Steering Group, a Warning Working Group was

established to:

„ . e survey and summarize the current state of knowledge
about the capabilities and costs of present and potential
systems for alerting and informing the public. [12, p. l]

There were three system requirements underlying the Group's work:

provision of warning to the home; provision of both natural disaster and

attack warning; and provision of a selective addressing capability.

In much the same way as we have done in the Appendix, various criteria

were established by which to evaluate the different systems. These

criteria were in terms of:

• coverage

• time constraints (time availability and the lead time
required)
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• survivabilLty

• security (against unauthorized signals)

• assessability and control (includes message priority
capability, demuting capability and selectivity)

• input and output (modes of messages and strength of
signals).

These criteria served both to determine the systems chosen for evaluation —

and the comparison among systems.

Five systems were eventually selected by OTP for detailed evaluation:

telephone warning systems, BIDS, CHAT-TV, FM-Broadcast, and

VHF-FM ("Weather Radio). In particular, a "satellite system was not

considered by OTP because: [12]

... the Working Group feels that satellite warning
systems cannot meet the Minimum Acceptable Performance
Standards, and are likely to be more costly than other
systems.

However, the Group saw satellites as becoming technically feasible in

the late 1970's.

The method employed in the study was cost-effectiveness

analysis, i.e., the values for different performance criteria (effective-

ness) were ascertained and costs were estimated. Based upon these

I/ The minimum values for the various criteria are discussed in [12],
""" Annex B.
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results, a determination could be made of the "cost-effective" system.

As an example, we report the summary results for two systems (BIDS

and VHF-FM) in Table II-3.

A major area of weakness in the study is the inconsistency

of the cost estimates. This is understandable given the varying degrees

with which each of the proposed systems is defined. Thus, the costs for

DIDS are relatively detailed compared to the others. This makes it

extremely difficult to compare the costs properly.

In addition, proper cost analysis concepts were not always

followed. A prime example is the fact that total discounted costs were

not presented. Costs for DIDS, for example, are presented as one-time and

annual costs. Because the phasing of the different systems may be quite

different, even the same information for all systems would not provide

a proper basis for comparison.

Cost-effectiveness analyses, in general, also have two

other characteristics that should be discussed. First, the benefits

of the system are not explicitly calculated. This is because the multidimensional

trade-off, relating several measures of effectiveness to benefits, is assumed

to be specific to the decision-maker. This is often required for services for

which data on the individuals valuations do not exist. We show in both

Chapters IV and V that this data, however imperfect, does exist

in the case of disaster warning. Without an estimate of the benefits

associated with a system, it is difficult to relate the cost of a project

to the benefits of the project.
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Table II-3

Example of Results From OTP Study

DIPS

a. Response Time: Excellent

b« Coverage: Excellent; 97%

c. Survivability: Very good

d. System Reliability: Very good; has built-in safeguards
against false alerts

e. Cost: Nominal

f. General: Meets ail minimum requirements for attack
and natural disaster home warning.

VHF-FM

a. Response Time: Excellent

b. Coverage: Good, 85%

c0 Survivability: Poor - subject to weapon affects damage.

do System Reliability: Good, however, there are hundreds
of points where partial false alerts can be initiated.

e0 Cost: Moderate

f. General: Does not meet all requirements; has insufficient
address selectivity.

Source:[12],
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The second area of weakness is the dependence of the results on the

requirements. By a suitable specification of the requirements, any

system can be made to appear "cost-effective" by virtue of the fact

that it is the only one which meets the "requirements. "

An example of this is the requirement for response time,, The

requirement, as stated in the OTP report is 30 seconds. The values

for each of the systems evaluated are:

• Mass telephone ringing -- 33-48 seconds

• DIDS — 20-29 seconds

• CHAT-TV -- "minutes"

• FM Broadcast — 30-40 seconds

• VHF-FM -- 30-40 seconds

On the basis of this one requirement alone, only DIDS meets the "Minimum

Acceptable Standard. " I/

Lest we appear overly critical, the type of approach does

have valuable uses. In the early phases of any program, there will

be many systems in alternative stages of development. A report such
«

as the OTP study can be extremely useful in concisely describing

and comparing alternative systems.

I/ In the following chapter, we discuss one method that is designed
to deal with this problem.
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Additionally, a study such as this can often be useful in giving

a good indication of relative total costs even though refined cost

estimates are not available. For example, the cost estimates provided

for mass telephone ringing indicate (probably correctly) that this method

would be significantly higher in cost than others.

3. The General Accounting Office's Report

At the request of Congressman Clarence J. Brown, the GAO

conducted a study into the disaster warning system effort and the

coordination problems encountered. The study was, therefore, not a

study designed to determine the most cost-effective system per se

but a study designed to improve the managerial and coordination efforts

of the many Federal agencies involved.

Although this was the underlying theme of the study, the GAO

also used this report to derive conclusions about which systems were

cost-effective. It is, therefore, proper to inquire into the methods

used to make this determination. Before we discuss the methods, it

will be useful to describe the study.

The GAO Identified twelve different warning systems currently

planned and/or operated. Of these, seven are specialized systems

(i.e., designed in response to specific disasters) while five are

general purpose. The report is concerned primarily with these five,

which are:
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• NOAA Weather Radio

• NOAA Weather Wire

• Disaster Warning Satellite

• NAWAS

• DIDS

These systems are first described briefly and then the report discusses

the reasons it believes "NAWAS and Weather Radio should provide an

adequate means of warning the general public of natural disasters and

enemy attacks." [ 9 , p. 7]

The basic reason for this conclusion is that these two systems

provide "sufficient" capability and at lower "cost. " Thus, the analysis is

again of the cost-effectiveness type and many of the comments in the previous

section apply here also. In addition, in this study, the requirements are not

clearly specified. This is recognized by the GAO and in fact their findings include

the fact that "requirements of a consolidated warning system [are] not

defined. " However, the result of the GAO report is just the opposite of

the OTP study. In the OTP report, only one system met all requirements
t

while in the GAO study all systems met them, at least implicitly.

Second, benefits are never explicitly discussed. Although there

is a recognition that the potential receiver market may be small and that

the effectiveness of a system depends on the ability of the system to

provide information to those who value it, no attempt is made to evaluate

differences in this type of effectiveness.
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Finally, the costs reported by GAO are mainly funding requests

rather than estimated actual costs. Also, the costs are not reported

as total discounted costs. This may make cost comparisons among

systems misleading.

In summary, then, the GAO report suffers from the same defects

and has the same strengths as the OTP report. Although these reports

are useful in summarizing alternative system performance parameters,

there generally is not sufficient 'information on which to base a cost-

effectiveness decision. Additionally, these reports concentrate solely

on the costs of the transmission system and neglect benefits and the costs

of the receivers. As we will see below, without careful study to insure

that alternative systems that have benefits which exceed total cost have

been considered the "best" system may be overlooked. We are not

suggesting that another system or set of systems is to be preferred to

those recommended by GAO (or OTP). Rather, we would argue, neither

study provides complete enough information on which to make a specific

recommendation.

4. The Computer Sciences Corporation Study

In a complete and thorough study that meets many of the criticisms

leveled above, CSC [ 1 J has provided a detailed cost comparison

between two alternative disaster warning technologies --a satellite system
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and a terrestrial system. The study was a cost-effectiveness study only

and was not intended to be anything more. The report proceeds in

the following manner:

• definition of requirements;

• design of a terristial system that satisfies the

requirements;

• design of a satellite system that satisfies the

requirements;

• cost comparison; and

• senstitivity analyses.

Because the assumed requirements were explicitly stated, the

effect of small changes in any one of them can be (and Is) analyzed in

sensitivity analyses. Also, the cost estimates for both alternatives

were prepared to the same level of detail using similar factors and

methods. Therefore, the cost comparison provides useful information

about the relative cost of each system at the functional level (i. e.,

warning, coordination, data acquisition, and spotter reporting).

The design of the terrestrial system is, basically, the NOAA

Weather Radio System for broadcasting with dedicated landlines for cer-

tain coordination functions. The concept is illustrated in Figure II-l, which

has been reproduced from [ 1 , p. 6-18], The satellite system was the

DWSS described in the Appendix and illustrated in Figure II-2.

The cost estimates for the two systems were $1 billion for the

terristial system and $1. 6 billion for the satellite system. These

H-19



COLLECTION
COORDINATION

SPOTTER REPORTING

Figure II-l

Terrestrial System Concept

Source : [1]
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WARNING
COORDINATION

CONTROL
6 GHz SPOTTER REPORTS

DATA, COORDINATION, CONTROL
1.7 GHz

SPOTTER
REPORT
2.03 GHz

Source: [l]

Figure 11-2

Satellite System Concept
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do not include receiver costs. The baseline systems were then modified

to lower the costs. These resulted in costs of $. 87 billion and $1. 32 billion

for the terrestrial and satellite system respectively.

As we stated above, benefits were not estimated in this study.

Thus, it cannot be shown that either system Ls or Is not cost-effective.

However, it Ls an excellent example of a cost comparison that provides

information on relative costs for two types of systems.

5. The Rosen and Haimes Study

In an imaginative and interesting study, Rosen and Haimes (hereafter,

"RH") [4] investigated the costs and benefits of a home warning system

for delivering messages about impending national (e.g. , nuclear

attack) and/or natural disaster to the general public at home. RH

concentrated on costs and benefits of alternative home warning

systems for providing warnings of natural disasters.

Three alternative transmission systems were investigated: DIDS,

DWSS, and VHF-FM (NOAA 'Weather Radio). All transmission systems

are designed to broadcast to demutable home receivers which demute

upon receiving a suitable signal and then to broadcast a warning tone

followed by a voice message concerning an impending disaster.

In the RH analysis, the costs of the three alternative systems included

the investment and operating costs of both the transmission system

and the home receivers. Benefits estimates included the estimated

incremental reduction in property loss (estimated in dollars) and loss of

life (estimated in lives) that would be achieved if one of the alternative
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home warning systems were adopted and the existing system of radio and

television warnings were maintained. An important step in the evaluation

of benefits was predicting the rate and extent of adoption of home receivers

by the public. RH concluded that in no case do monetary (property) benefits

outweigh transmission system costs, and that about 300-540 lives would be

saved by a home warning system (over a twenty-year period).( [4] , p. vii)

The RH analysis of benefits is based on'the following basic

premises:

1. households that do not have home receivers receive

no benefits from a home warning system,

2. benefits accrue to a home warning system only

when warnings are received from it and from no

other source (e. g., radio and/or television), and

3. benefits may be evaluated as reductions in property

damage and lives saved as a. result of defensive

action taken, initiated by receipt of a warning.

Based upon these assumptions, RH constructed a probability

simulation model to simulate the distribution of benefits that may be

expected from adoption of each of the three home warning systems

they studied. The details of their procedure are far too numerous and

complex to discuss here. Instead, we have tried to develop a simpler

version of their model which hopefully does it justice. To develop this

stylized version of their model, we shall need a modest amount of

notation:
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Pr(E) = probability that a warning is received by the household
via the existing warning system.

Pr(E) = probability that a warning is not received by the
household via the existing system.

Pr(H) = probability that a warning is received by the house-
hold via. a home warning system.

Li = loss per disaster per household in absence of warning.

M = fraction of household loss remaining if warning is
received ("mitigated" loss fraction).

F = number of households.

In terms of this notation, the RH estimate of benefits (in terms

of expected reduction in loss) per disaster for the existing system and for

the home warning system may be explained as follows.

First, consider the expected reduction in losses per disaster

per household using, the existing system. Expected losses per household

under the existing system are:

LPr(E~) + MLPr(E)

That is, expected loss is loss in the absence of warning (L>) times the

probability that no warning is received (Pr(^E)), plus the "mitigated" loss fraction

(M) times unmitigated loss (L) times the probability that a warning is

received (Pr(E)). The expected benefit.per -disaster-.per household of having

the existing system over the no-system alternative, therefore, is

L - LPr("E) - MLPr(E) = L[l - (1 - Pr(E)) - MPr(E)]

= LPr(E) [1 - M] (1)

since

Pr(E) = 1 - Pr(E)
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If a home warning system is added to the existing system, then

the probability that a warning will be received by the household is:

Pr(E) + Pr(H) - Pr(E) • Pr(H)

and the expected reduction in tosses per disaster O^OT'household over the

no-warning case (L) is:

L - [1 - Pr(E) - Pr(H) + Pr(E)Pr(H)]L -

ML(Pr(E) + Pr(H) - Pr(E) . Pr(H))

= L(Pr(E) + Pr(H) - Pr(E)Pr(H))[l - M] (2)

The incremental reduction in expected loss per household obtained

by adding a home warning system to the existing system is given by

equation (2) minus equation (1), or:

L(l - M)[Pr(E) + Pr(H) - Pr(H) • Pr(E) - Pr(E)]

= L(l - M)[Pr(H) -Pr(H) -Pr(E)] (3)

and the total loss over all households is then just,

L(l-M) [Pr(H) - Pr(H) • Pr(E)] . F

This is the basic Logic behind the RH estimates of benefits accruing

as reductions in property Loss (where L measures baseline property

Loss in dollars) and reductions in Loss of life (where L is in lives).

Based upon this Logic, -RH compute the estimates of benefits

and lives saved for-the alternative home warning systems shown in

Table H-4. (The estimated costs are also shown there. )
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Table II-4

Summary of Results of Rosen and Haimes Study

Present Value /of Property
Savings (10 Dollars)

Number of Lives Saved
Over 20 -Year Horizon

Present Value of Trans-
mitters' Costs

Present Value of
Receivers' Costs

DIDS

43. 3 - 5.0. 9

304 - 362

60.9

209.4 - 426.7

System

DWS

32.8 - 39.0

324 - 384

180.2

208.8-268.5

VHF - FM

50.4 - 59.4

461 - 539

25.8

190.9-231.3

Source: Table i, page vi.

Obviously, several assumptions are required to compute the

probabilities used by RH to estimate; benefits and lives, saved.

For example, RH use assumptions about frequency of

occurance of disasters, the time of day at which they occur, the

probability of hearing a warning on radio or television and so

forth. RH have done a commendable job in documenting

their assumptions and we do not intend to appraise their assumptions
I

here.,

The RH measure of monetary benefits is based on assumed

market values of property damage reduced. This measure understates

to some extent the benefits to be gained from receiving a warning for

three reasons. First, it is doubtful that all costs that result from a

disaster can be enumerated. For example, psychological costs borne

by victims are not included in the RH measure. Second, there will be

damage to some objects considered by victims to be "priceless. " Third,

there are inevitable transactions costs to be incurred in the replacement

of damaged property.
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A more usual method of assessing benefits is to inquire into how

much the individual would pay to have the additional warning. As

we show in Chapter IV using the RH data, benefits estimated in this

way are substantially larger than those estimated by RH.

In summary, the RH analysis is useful in aiding our understanding

of the stochastic nature of the problem and the way in which disaster

losses are generated. In addition, their approach to benefits measurement

provides at least a lower bound on which to conduct an analysis.

Lacking any information on demand for receivers, this would be the best

that could be hoped for. In Chapter IV we describe more completely

the willingness-to-pay approach to benefits estimation and, as an

illustration of the method, use the same data as RH to derive revised

benefits estimates.

D. Summary

In this brief review we have identified several applications of cost-

effectiveness analysis and one application of benefit-cost analysis. Two

of the cost-effectiveness analyses, the OTP report of 1971 and

the GAO report of 1976 illustrate the dependence of the conclusions of

the analysis on the assumed requirements. The CSC report illustrated

one approach to mitigating the effects of requirement definition on the

relative costs of the systems to be compared.
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The Rosen and Haimes study was the only one of the four

analyses reviewed that attempted to measure benefits. The method

they used was to estimate the property savings and Lives saved associated

with alternative systems. Although this measure generally underestimates

true benefits (see Chapter IV) this study represents a valuable first step

in the proper evaluation of alternative disaster warning systems.
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APPENDIX

REVIEW OF ALTERNATIVE DISASTER WARNING SYSTEM TECHNOLOGIES

A. Introduction

1. Candidate Technologies

The alternative technologies to be described in this appendix

include systems that are currently in operation and two that have not

been implemented but for which considerable documentation exists. Current

technologies that will be described are the Emergency Broadcast System

(EBS), National Warning System (NAWAS), NOAA Weather Wire (NWWS),

and NOAA Weather Radio (NWRS). The other two systems are the

Disaster Warning Satellite System (DWSS) and Defense Information

Distribution System (DIDS). — For each alternative, the hardware

will be described, system operation discussed, and the values for the

descriptive characteristics described below will be provided.

Section B describes the current systems while Section C is concerned

with those systems that have not yet been implemented but that still represent

technically feasible approaches. Section B also includes a brief discussion

of systems that have been reviewed in the past but have not been implemented,

nor are they currently being studied.

!/ As a result of a recent OTP Policy Statement [l4J , DIDS is not currently
being considered for home warning. However, because the technology
represents a technically feasible approach, we have included DEDS in
our review.
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2. Disaster Warning System Characteristics

The alternative technologies to be described below possess very

different characteristics. Thus, it is necessary to develop some

characteristics that may be used to compare them. The characteristics

listed below will be used throughout to describe and compare

the various disaster warning systems. Due to the nature of the different

systems and the differences in their level of development, not all

characteristics can be assigned a numerical value for all systems. —

For example, the values for reliability (described below) are not available

for most systems and therefore have been assigned rather subjective

values. The cost estimates are not necessarily

comparable because of differences in system capabilities. In addition,

many of the "costs" reported here are appropriations and may understate

or overstate the true economic costs of a particular system.

a. Coverage

The coverage achieved by a system can be classified as being one of

three types. First, there is demographic coverage which describes the

characteristics of the population that will be affected by the new technology.

The primary measure of demographic coverage is the percentage of the total

U. S. population that is able technically to receive a warning from a particular

system. The demographic coverage characteristic is important because

I/ The values assigned to the characteristics of each system are
~ taken from different sources. This is in itself a major .cause of

none ompar ability.
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it indicates the potential for accomplishing the main goal of any warning

system: to get the warning to as many people who may be affected by

a national disaster as possible.

The second type of coverage characteristic is geographic coverage.

This refers to the land area reached by the system's signals (e.g. the

forty-eight contiguous states). Geographic coverage is important since

there may be areas that are prone to natural disasters of a particular

type that will not be covered.

Finally, we will be interested in the types of natural disasters

that a particular system is designed to warn against. In general, the

warning system tends to be independent of the underlying disasters.

There may be technological or design reasons, however, for

a limitation on the types of disasters reported. If a system is designed

primarily for natural disaster warning, for example, it is unlikely that

it will be hardened against nuclear attack.. -Although technically capable

of providing.such a, warning, it would be vulnerable in an actual attack.

b. Lead Time

The second important characteristic that can be used to describe

a system is the lead time. This is the time from the issuance of the

warning to the receipt of the message. The shorter the lead time, the

greater is the time available, to take precautionary actions.
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c. Reliability

In any communications system, an important aspect of its effec-

tiveness is its reliability. Reliability can be further divided into equipment

availability, possibility of generating a false warning, — and (for want of

a better term) survivability.

A measure of equipment availability is the probability that, at any

point in time, the system will not tunction. Availability is particularly

important with respect to disaster warning systems because of their

relatively infrequent use, coupled witn the great potential loss should the

system fail to operate as expected.

Another aspect of reliability is the probability-of issuing a false

warning. Since false warnings are costly, both because of the costs

incurred from taking unnecessary action and from the decreased

confidence in the system, false alarms should be infrequent.

Survivaoiiity, on the other hand, refers to the capability of the

system to survive the disaster and to withstand the environment even

after the impact of the disaster. Tnis may include, for example,

radiation after a nuclear attack or heavy winds during and after a hurricane.

1 / In this case, we mean false warnings due to equipment failure and
~" not to the issuance of a forecast later shown to be false.
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d. Cost

Clearly, an important characteristic is the cost of the system.

This means the total cost, which includes investment costs, operating

and maintenance costs, receiver costs, etc. A complication with this measure

is that the system may also be used for another purpose and that some

sort of cost allocation to the disaster warning function will be necessary.

e. Selectivity

Especially in the case of natural disasters, selectivity (the

capability to address a specific subset of the population) is important if

the system is to be accepted. Numerous warnings for disasters occuring

elsewhere will, sooner or later, cause citizens to ignore warnings

that actually concern them. The degree of selectivity can be measured

in several ways including the number of addresses,— or the smallest

geographical location that can be addressed. Selectivity is also important

because different disasters may make it desirable to select the target

audience in different ways. For example, flooding will tend to affect those

in low-lying areas and along rivers. Tornadoes, however, follow a less

predictable path.

f. Readiness :

The final characteristic considered here is the readiness of the

system, as measured by its hours of operation. The closer the system

_!/ The number of subsets of the population.
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is to a 24-hours, seven days a week operation, the more effective it

will be. Several systems, particularly those that depend on sources

outside the Federal Government for transmission, may operate only

on a part-time basis.

B. Present Warning Systems

There are currently several systems that are, or could be,

used for natural disaster warning. Some of these systems are already

in operation while others are in various stages of development.

Below, we briefly describe the hardware used by these systems and the

effectiveness, measured in terms of the characteristics described

above, for the task of natural disaster warning.

1. Emergency Broadcast System

As described in the introduction of this chapter, the Emergency

Broadcast System (EBS) was designed to replace CONELRAD and to

provide the President with a direct means of communication with the

public in times of attack or other national emergency. Because it uses

the broadcasting facilities of private stations, it is dependent on their

cooperation. EBS circuits lead to the nationwide dissemination path

for the broadcast industry so that more than 8, 500 stations are

accessed [9]. This makes for broad geographic coverage but it also

depends on the station transmitting being on-the-air and individual's listening
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or watching. Although this system is not used for local warnings, the

FCC could approve procedures for "linking" other warning systems with

local broadcast stations [9].

The basic problem with this system, for the purposes of

warning, is the lack of capability of receiving a warning when the

receiver is off. This deficiency lowers the probability of an individual

home receiving any one warning. Thus, while the potential coverage

may be high, the prospects for receipt of a message are not. Of course,

this system also does not require the purchase of an additional

receiving device and may, therefore, be as effective as a system that

requires purchase of a home receiver whose price is sufficiently high

to discourage purchase.

The nature of the EBS makes the assignment of values to the

various characteristics difficult since the voluntary nature and the lack of

control that can be exercised by a central agency often results in con-

siderable variability. However, some descriptive values may be given.

a. Coverage

As was stated above, the percentage of the population that is

potentially "alertable" is equal to that number of households that have

a radio or television and that are in the vicinity of EBS stations, in terms

of the alertable population, coverage is close to 100 percent [9].

b. Lead Time

The lead time for the EBS is less than one minute, assuming that

the alert occurs during normal broadcasting hours.
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c. Reliability

The mechanical reliability of the EBS is good. However, only

600 of the stations have backup power. [11] Thus, EBS might not be

usable during and after disasters.

d. C o s t

The only cost of the EBS is the annual circuit rental for the leased

line to the network distribution point,, which Is approximately $127, 000

annually. [9] All other facilities are provided by the broadcaster and

no estimate of these costs (if any) is available. There is no additional

home receiver cost.

e. Selectivity

For those in areas that are able to receive a broadcast the

selectivity is good because, while all in the viewing and listening areas

are being warned, it is possible to describe the affected areas.

f. Readiness

The hours that the system is operational varies according to the

broadcast schedule of the stations in the system. Although many of the

EBS stations will operate on a full-time basis, the period usually taken

is 6:00 a.m. - 1:00 a.m., the period of when most stations are generally

transmitting and the audience is of sufficient size for the warning to

have any effect. Since there is no positive alert feature (demuting, sirens,

etc.) associated with EBS, we take 6:00 a.m. - 1:00 a.m. as representative

of the readiness of the system.
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2. National Warning System

The National Warning System (NAWAS), whLch is under control of

the Defense Civil Preparedness Agency (DCPA), is operated and funded

by the U. S. Army Communications Command. The system Is designed

to provide warning of an attack upon the United States. Under the Disaster

Relief Act of 1970, the NAWAS can also be used by the National Weather

Service (NWS) to provide warnings to local officials of Impending natural

disasters. Figure H-A-1. shows the location of the NWS offices that have

"drops" off of the NAWAS. By using the NAWAS, information can be

passed expeditlously between NWS offices. NAWAS Is controlled by three

National Warning Centers located In protected facilities in various parts

of the country. The system can be divided Into eight separate areas

controlled by a DCPA regional office. Any one National Warning Center

can control the entire system, and any state can operate the system as

a warning system while continuing to monitor the regional_ci.rcuit.

All circuit terminations of the system are In government offices.

Since It Is not designed for direct (to the general public) warning, the

warnings Issued over the system must be relayed by sirens or some other

method. However, because the system operates as a party-line, post-

disaster feedback Is provided.

The values for the characteristics for the NAWAS are more

readily available.

a. Coverage

The population coverage of the NAWAS will be 90% when completed [9].

The geographic coverage while still unknown appears to be similar to

that of other systems with similar population coverage or around 75%.

Although designed specifically for warning against attack, NAWAS can

also be used for natural disaster warning or as a statewide warning system.
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b. Lead Time

The lead time required to transmit a message to all points on the

network has been estimated at 25 seconds [9, p. 9]. This, however,

does not include the time required to warn the general public.

c. Reliability

The equipment reliability is good and the three National Warning Cen-

ters are hardened. System reliability suffers because, in getting the message

from the Center to the public, human action is required at points other than

the initiating Center. A backup circuit sends the warning to the UPI and

AP news services. From there it is transmitted to "about 6, 800 radio and

television stations [9]. "

d. Cost

Estimated costs, through 1980, are $14. 4 million [9].- These

include both operating costs and investment (for expansion). Annual

operating costs only are estimated to be $2. 5 million [9, p. 9]. There

are no home receiver costs.

e. Selectivity

Selectivity varies from state to state because of differences in the

state systems.

f. Readiness

NAWAS is designed to operate 24 hours per day, seven days per

week.

_!/ Although not explicitly stated, it appears that all costs in the GAO report
[9] are constant 1976 dollars. The basis for this is that for EBS, the
five year total is equal to five times the annual cost.
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3. NOAA Weather Radio

The NOAA Weather Radio System is designed to provide con-

tinuous •weather forecasts and warnings over three FM frequencies

(162.55MHz, 162.40MHz, and 162. 45MHz). These broadcasts can be

received on specially designed radios available to the public, — some

of which have the capability to demute on signal. There are at Least

two advantages of a system such as this over a system such as NAWAS.

First, there is no possibility of congested circuits since the system

depends on radio broadcast. — Second, the warning is issued directly to the

household via a receiver that also provides continuous weather information

during normal periods. Thus, the individual is provided with additional

capability for his investment.

331 transmitters would be required to cover 90% of the

contiguous U. S. (see Figure II-A-2). Each of these transmitters will be

equipped with a 330-1200 watt transmitter. In addition to the trans-

mitting equipment, appropriate tape equipment, antennas, circuits to

the transmitters, a tone alert transmitter and spare parts are required.

The receivers, in the hands of the general public and organizations,

are of two types: a standard VHF receiver with either fixed or tunable

frequency, (two or three channel) and a tone-alert receiver with fixed

frequency.

_!_/ Not all receivers have the capability of receiving all three
frequencies.

2_/ A different problem is frequency congestion. This affects the
completion but not the operation of the system.
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Procedures for issuing the warning are as follows: The

operator takes the equipment out of the normal weather reporting tape

mode. The tone alert button is then pushed to activate the demutable

receivers and the warning is issued.

a. Coverage

The nature of the Weather Radio System constrains the coverage

characteristics to be dependent upon the number of transmitters.

Currently, there are 115 active broadcasting transmitters. Their loca-

tions are shown on the map in Figure II-A-2. When completed, the system

will contain 331 transmitters in all. At that time, the population

coverage is estimated to be 90 percent [2, p. 1]. The geographic

coverage is unknown but an estimate of 55-85 percent appears

reasonable. — While primarily designed for natural disaster warning,

the NOAA Weather Radio System can also be used for the dissemination

of attack warnings under an agreement between NOAA and DCPA.

_!_/ The radius of coverage is to be about 64 km (40 mi. ) [6]. If
64 km is used, the area covered is 4. 25 million square.kilometers,
or 55 percent of the gross (land and water) area of the 48
contiguous states. If a 80 km (50 mi.) radius is used the coverage
increases to 86 percent.
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b. Lead Time

It has been estimated that the time required to activate the system,

once a warning message is received, is less than two minutes [12].

c. Reliability

During a 1968 test, the alert signal activated the receiver 99% of

the time and a false signaling occurred approximately one percent of

the time [12]. The receivers were located up to 80 kilometers from the

transmitter.

As described above, there are two ways of transmitting the

warning message. When the landlines are broken, however, the alert

signal will not be broadcast. Most of the transmitter sites have backup

power but no sites are hardened.

d. Cost

The cost of the NOAA Weather Radio service can only be estimated

at this time since the method of providing service to the remaining 254

sites is not known. On May 13, 1976, in testimony before the House

Subcommittee on Communications, estimates of per site costs varied from

$6, 200 to $20, 000 annually depending on the bidder and whether or not the

communications equipment was included [2], Using $15,000 per site

per year for the still uninstalled sites and $8, 000 annual operating costs

for those sites already installed, an estimate of the annual operating

costs of the Weather Radio system is $4. 4 million. —' This estimate,

however, is subject to error as the actual nature of each site installation

is still an unknown.

I/ The cost is calculated using 254 sites @ $15, 000/year/site plus
77 si tpo (3) <ts nnn / , , ^o -^ / c , :< -=77 sites @ $8, 000/year/site.
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Costs of the home receivers are projected to be in the range of

$15-25 per unit [9]. This range includes both radios with and without

automatic demuting, assuming sufficient quantities of each are produced.

e. Selectivity

The system can address 331 different areas separately.

f. Readiness

The system is designed to be ready 24 hours per day, seven

days per week.

4. NOAA Weather Wire Service

The NOAA Weather Wire Service (NWWS) was designed as a

system that would provide consumer-oriented weather information

(forecasts and warnings) directly to the news media. The system

consists of a network of leased lines and teletypewriters linking local

NWS offices with broadcasters and newsrooms. The service is pri-

marily intrastate with overlay circuits providing the interstate connec-

tions. Input to the system is limited to certain NWS offices.

The system is envisioned by NOAA as a backup to the NOAA

Weather Radio that will provide broadcasters with a printed copy of the
•

message. This system has essentially the same drawbacks as the EBS

discussed earlier: the efficiency of the system is dependent on the broad-

caster's cooperation and whether or not the public is "listening". However

the NWWS suffers from the added complication that the service is a

subscription service. If the individual news organization is not a sub-
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scriber, neither It nor Its audience receives the warning. The fact

that much of the same information is available from Weather Radio, and

that the cost of that system is the one time purchase cost for the receiver,

lessens the incentive to subscribe to the NWWS.

The characteristics for the NWWS are described below.

a. Coverage

The NWWS is currently available in 36 states plus the District

of Columbia (see Figure II-A-3) [7]. Originally expected to be operational

in all states by FY 1976, progress is currently dependent upon

available funding. The population covered is highly variable since it

depends on whether or not the local broadcaster is a subscriber. Of

the 9, 000 broadcasting stations, only about 1, 300-1,400 currently

subscribe to the service. No estimate of the percentage of the population

covered is available. The NWWS is solely used for weather forecasts

and warnings but there is no technical reason.why it could not be used

for other warnings.

b. Lead Time

As in the case of EBS, the lead time for the NWWS is dependent

on whether or not the stations are broadcasting. If they are on the air,

a warning should be broadcast within a few minutes of being typed into

the network.

c. Reliability

Since the NWWS is a subscription weather service, no extra-

ordinary precautions have been taken to insure the system is protected

from natural disaster. Like the EBS, the use of NWWS during and after

disasters is doubtful. The NWWS is not hardened.
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d. Cost

The estimation of the costs of the NOAA Weather Wire service

involves two complicating factors: the existence of common personnel

costs and the revenues produced by subscribers. Using figures from [9],

the incremental costs (costs that could be avoided by discontinuing NWWS)

can be estimated as $2.68 million annually (49 personnel @$20, 000

annually plus $1. 7 million in annual circuit cost). Annual subscriber revenues,

assuming $75/month— and 2,000 subscribers would be $1.8 million. The

net cost of NWWS is thus about $880, 000 annually.

e. Selectivity

Only those areas that are covered by the subscribing news

organizations can be addressed. Within those areas, the selectivity is

the same as for the EBS.

f. . Readiness

The hours that this system would be effective are the hours that

the station is broadcasting, generally 6:00 a.m. to 1:00 a.m. although,

again, many stations will operate 24 hours per day.

5. Other Systems & Concepts

There are several other possible systems either currently used

for specialized warnings or that have been proposed as candidates for

a disaster warning system. We will briefly mention some of those

systems and indicate the advantages and disadvantages for use as a

natural disaster warning system.

I/ The GAO [9] gives estimates of $50 - $100/month.
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a. Washington Area Warning System

The Washington Area Warning System (WAWAS) is used to provide

warnings of attack or natural disaster to Federal, State, and Local

governments in the Washington, D. C. area. It consists of two-way voice

channels with a two-way record copy backup. In terms of technology and

concept, WAWAS does not appear to be much different from NAWAS and

therefore the comments of the latter system apply here.

b. Tsunami Warning System

This system, which operates between Alaska, Hawaii, and the

West Coast, is designed to warn against a specific type of danger, the

tsunami. It does this over various circuits including the teletype

circuits of DoD and the NAWAS. It too is similar to the NAWAS and

has many of the same characteristics.

c. U. S. Coast Guard Marine Weather Broadcast

This system is designed to provide weather information to the

marine community on the coasts and the Great Lakes. This is done

over approximately 300 HF, VHF, and VHF-FM Coast Guard stations.

Since this system is also a radio broadcast system, it will have much

in common with the NOAA Weather Radio.

d. Multiple-Ace ess Recorded Telephone Systems

The telephone system that provides weather forecasts and

warnings to many areas of the country cannot be considered a viable

alternative for disaster warning since it requires that the public take the

initiative and call for the information. The location of these telephone

services is shown in Figure II-A-4. This illustrates that large areas of the

country are without service.
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e. Mass Telephone Ringing

One system that has been proposed in the past is the ringing of

telephones in the individual households. The system would operate as

follows: The local central office would receive notification signal. It

would automatically disconnect all calls in progress, ring telephones

(with a distinctive ring), deliver a voice warning, and then resume

normal telephone service. The coverage for this service was estimated

to be approximately 80% [12]. The cost was estimated to be on the order

of $300-500 million investment cost plus an annual cost on the order of

40% of the investment cost [12]. From these figures, it is reasonable to

say that this system is not as good an option as some of the others, since

its costs are considerably higher and its effectiveness no better.

f. Crisis Home Alert - T. V. (CHAT-TV)

This system is another warning system that takes advantage of the

household television set as a warning receiver. The procedure

under CHAT would be as follows. When there is a crisis or the probability

of a natural disaster, the public would be advised to tune their television to a

predetermined "silent" channel for the night and leave it there. When an attack

or the disaster was imminent, the broadcaster would broadcast this warning

over the channel at higher than normal volume. If no disaster or attack

occured, the television could be turned off in the morning. Two things

about this system are obvious. First, the attack or the disaster must be

predicted well in advance. Second, it assumes that people are already watching

television (to obtain notification of possible warning). In fact, In the case of
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a natural disaster, if people are tuned to a distant station (e.g. , through

cable television) they may not receive the warning. In addition, this

system again depends on the cooperation of the individual broadcaster.

C. Other General Systems

1. Decision Information Distribution System (DIPS)

In 1972, the Defense Civil Preparedness Agency (DCPA) of the

Department of Defense started work on the Decision Information

Distribution System (DIDS). The system was intended to provide a

warning capability for both (nuclear) attack and major natural disasters.

As warning system in addition to the current NAWAS system, DCPA has

stated that DIDS would provide faster warning, wider coverage, greater

reliability, more complete information, direct warning with home

receivers, and the capability to warn of possible weapons impacts

locations. Although no longer being considered for home warning, the

technical details of DIDS warrant its inclusion in this review.

The distribution system would be terrestrial, low-frequency radio

system that provided coverage to the 48 contiguous states. The trans-

mitter sites would be constructed to withstand natural disasters and

hardened for protection in a nuclear attack. The first DIDS transmitter

was completed in 1974 and has undergone some tests although it is

not active currently.

The distribution system would consist of the following com-

ponents:
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• Three National Warning Centers located

throughout the country and already in operation

as part of NAWAS. These centers are located

near Colorado Springs, Denton, Texas, and

Washington, D. C. Their function -was dis-

cussed above under NAWAS.

• Two control stations with high power (200 KW),

low-frequency (61. 15 KHz) transmitters designed

to be automatic and hardened for protection.

• Ten distribution stations with medium power

(50 KW), low-frequency (167-191 KHz) trans-

mitters, having the same protective features

of the control stations.

Figure H-A-5 shows the proposed Locations of these stations and their pro-

posed coverage. A backup system using leased landlines and dial-up AUTOVON

circuits (the telephone net-work of DoD) would interconnect the three

Centers, two control stations and ten distribution stations.

The receiving portion of DIDS would consist of 40, 000 receivers

located at various Federal, state, and local offices, as well as the homes

of selected government officials [8]. These receivers would vary in their

capability to receive messages in different formats. The eight DCPA

regional offices would have receivers with voice and radioteletypewriter

capability. These capabilities would also be available to state and local

governments. The offices of the state governors, the state adjutants

general, and the state civil defense offices would have receivers with
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voice capability only. The emergency operating centers of the U. S.

Army Areas would have both types of receiving capability. The approxi-

mately 5, 000 control rooms where siren systems are controlled would be

equipped with receivers that have the capability to control the sirens

automatically. The concept of the system is illustrated in Figure II-A-6.

The DIDS would have the capability to operate in two modes:

fully automatic nationwide and "ad-lib". In the automatic mode, the warn-

ing officer (see the description of NAWAS above), upon command from

the Director of Civil Preparedness, would activate the control and

distribution systems. The Warning Center from which the alert is

issued would transmit the alert to the two control stations and simul-

taneously, through the landlines, send it to the two control stations and

the ten distribution stations. The control stations would then transmit

the alert to the distribution stations. Upon, receiving the broadcast,

the distribution station would select a prerecorded tape and transmit a

signal that would turn on the receivers and that -would automatically

activate the community sirens. When these actions were completed,

the system would then transmit a signal to turn the receivers off

(remute) unless another message was to be sent. In the ad-lib mode,

the warning could be limited to those areas affected.

The values for the characteristics for DIDS, taken from available

documents, are less refined since the system has not been implemented.

Where there are disagreements among the sources, we have generally

taken an "average" or "representative" value.
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a. Coverage

An estimated 96-98% of the population would be covered by

BIDS [3, 8]. These values are not precisely comparable with other

coverage estimates, because there are some areas where voice warnings

will not be received but sirens will be activated. We use 9b% as the

population coverage since that represents a reasonable possibility for the

reception of voice warning. Voice warning is the appropriate figure

for BEDS since it is the direct home warning aspect of BIBS that makes it

substantially different from NAWAS for our review.

Geographic coverage of BIBS is estimated at 91% for voice and 99-100%

for city and community sirens [12]. — BIBS is capable of providing

warnings against both attack and natural disasters.

b. Lead Time

The lead time for BIBS is estimated to be 30 seconds [3],

c. Reliability

The overall reliability for BIBS is estimated to be . 99. The

probability of a false alarm (a mechanical failure resuting in a warning

being isssued) is estimated at 0.00001. In terms of failure rates, the

MTBF for all but the transmitters is 5 years. The MTBF for the trans-

mitters is 3000 hours [12]. The BIBS is hardened.

_!_/ This value refers to cities and communities and not to 99-100% of
the total land area.
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d. Cost .

Investment cost estimates for DIDS range from $59 million [8] to $73

million [9].— This does not include the cost of household receivers.

(It is unclear whether these figures include receivers in government

offices.)

e. Selectivity

Up to 5,000 separate codes for states, counties, and up to 300

cities can be sele'cted in DIDS [3].

f. Readiness

DIDS would be designed to operate 24 hours per day, seven days

per week.

2. Disaster Warning Satellite System (DWSS)

Because of advances In satellite technology, and particularly

in the technology of communications satellites, the use of a satellite

for disaster warning is technically feasible. In 1969,

NOAA and NASA entered into an agreement to study the possibility

of using a satellite for this purpose. Although still in the study phase,

and hence not completely defined, a warning system based on the use

of satellites can certainly be described operationally, and the charac-

teristics as far as the design goals are concerned.can.be spelled out

Although the first study was completed in 1970, a more complete

review was undertaken in 1972 to determine the feasibility of a satellite

system in comparison to a terrestrial system [l].. (The terrestrial system

_!/ This difference may well be the result of inflation because of the
different times at which these estimates were published.
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was very similar, in its warning function, to the NOAA Weather Radio

and hence is not discussed further in this chapter. ) —

There are three basic hardware components in the warning
2 /

system portion of the DWSS. — The f irst is the satellite(s) used for the

communications. Depending on the capabilities of the satellite, more

than one may be required (for example, if insufficient battery power is

available during eclipse). The second is the antenna at (or remotely

located from) the local Weather Service Offices (WSO's) used to trans-

mit warnings. Third, is the home receiver which must be capable of

receiving the satellite signal.

The procedure for issuing a warning is much the same as in

the NOAA Weather Radio System. However, if there are no continuous

weather forecast broadcasts, — there would be no tape to halt. The

warning is issued by the WSO via the uplink channel. The satellite

issues the demuting signal to the selected addresses followed by the

warning. The concept of the DWSS is illustrated in Figure II-A-7.

Since the DWSS is still being designed, the following characteristic

values are based on design goals.

_!_/ This study is discussed in Section G. 4 above,

2J The DWSS as conceived in the CSC study [l] can also be used for data
collection and distribution, spotter reports and spotter coordination.
These are addressed in the next chapter. Here we are concerned
only with describing the warning function of each of the systems.

_3/ The GAO report states (apparently incorrectly) that ". . .this system. . .would
transmit weather forecasts and warnings directly to special receivers
purchased by the public." [9, p. 4]
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a. Coverage

Both demographic and geographic coverages are 100 percent [6, 7]

The geographic coverage includes coverage of portions of the Atlantic

and Pacific Oceans. Both types of disaster warnings could be issued

with this system.

b. Lead Time

The lead time is estimated to be less than one minute [10].

c. Reliability

The design life for the satellite is five years [1], An on-the-

ground backup satellite could be provided.

d. Cost

The system cost for the DWSS naturally depends on the number of

satellites used. In addition, the number of communication channels

available is an important cost driver. An estimate of system cost is $81

million (in constant, 19.76 dollars). [9] A second estimate is $72 million

for the R&D program (including a first satellite) plus $25 million for each

additional satellite [10]. These costs are in constant, 1974 dollars. Because

of the design uncertainties, costs are less certain for the DWSS than the

costs provided for the past or present systems. An important factor in the

cost associated with the satellite (and all other systems) is the extent

to which other services are provided.

11-60



e. Selectivity

One of the stated requirements for the DWSS is the capability to

address a part of one county implying great selectivity (up to 20, 000

separate areas) [l].

f. Readiness

The DWSS is designed for full-time availability.
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CHAPTER III

EVALUATION OF SYSTEMS WHEN BENEFITS

HAVE NOT BEEN ESTIMATED

A. Introduction

In the previous chapters -we emphasized the importance

of benefits estimation in a benefit-cost analysis. There may be times,

however, when benefits estimates are not available or they are suspect. Also,

as is sometimes the case for disaster warning systems, transmission systems

with the same coverage, reliability, readiness, etc. , (and hence with roughly

equal benefits) may have to be compared. In such a situation the best system

is the one with the lowest cost. —

The purpose of this chapter is to illustrate that a method that we have

2/called — the "equal capability cost comparison" approach can be used to

derive implications about the relative cost-effectiveness of two such systems

without having to consider a multi-dimensional effectiveness measure. Thus,

we avoid the need to trade off, say, population coverage with geographic

coverage, etc.

As we have illustrated graphically in Chapter I, equal capability cost

analysis consists of the following steps:

« specify the requirements) each DWS alternative is to

meet;

• design each alternative to meet each requirement in

the least-cost manner;

• Calculate the costs associated with each alternative

• perform sensitivity analyses;

_!_/ Note that this assumes that a disaster warning system has positive net
benefits. If not, no system, regardless of relative cost, is "best. "

2/ See Chapter I. B above.
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Of course, simplifications such as the avoidance of specific

tradeoffs do not come without their price. Often in attempts to design

two or more systems to "equal capability" we must mold the designs to

meet the assumed (required) capability, which often results in a hybrid

system design for which a minimum cost design is more difficult to identify.

Thus, we may run into many of the same problems that were criticized

in Chapter II, namely, by specifying the capability, we may be

implicitly selecting the system. However, as we stated in Chapter II, this

approach can often be useful in indicating dominated alternatives and

allowing the decision-maker to focus on fewer, more desirable alternatives.

In the next section, we use this approach with an example comparison

of two possible disaster warning transmissions systems. In Section C, we

remark on the use and efficacy of this approach.

B, Illustration of the Equal Capability Cost Comparison Approach

1. Problem Definition

This section presents-a cost comparison between two alternative

systems designed for disaster warning using the equal capability cost

analysis method described above. The two systems considered

are the Disaster Warning Satellite System (DWSS) and the VHF-FM NOAA

Weather Radio System (NWRS). (Although the DWSS provides many

other functions such as coordination and data transfer,, the impetus behind

the satellite has been disaster warning.) The configuration of the satellite

used for the cost analysis for the DWSS is described in NASA Technical
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Memorandum TM X-730407 [4], while the NWRS system design is based

on the CSC report of September, 1974 [2], — The period covered by the

analysis is 1976-2010. This example is laid out in the way outlined

in Section A above and in a way that an analysis of this sort should proceed.

Therefore, any specific equal capability cost analysis problem could

follow the steps just as they are given here.

Because of the inherent differences in the effectiveness, functions,

capabilities, and benefits of the two systems, a complete benefit-

cost analysis would be desirable. However, problems associated

with the measurement of the benefits (for example, the assignment

of dollar values to the number of lives lost) may tend to cloud some

important comparisons being addressed in the cost analysis itself. To avoid

these problems, we have chosen to redesign the two systems so that their

capabilities and performance parameters are as equal as possible. (Clearly,

the two systems can never be perfectly equal. For example, the DWSS may

provide: more "survivability" -- i. e. , the capability to function, even in the

disaster environment. On the other hand, the NWRS, given the multitude

of transmitters, does not rely on a single transmission source for the

entire country. These qualitative differences cannot be overcome without

making the two systems identical, rather than merely equal in capability. )

!_/ In performing this example analysis, we have used data from published
studies. Therefore, the designs we have arrived at do not necessarily
represent the current design of either system. Again, this example is
designed to illustrate the method only.
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The purpose of any cost analysis is to provide information --

specifically, information on cost. This analysis is no different.

However, •where most cost analyses evaluate one or more systems

to provide information for a choice on systems, our analysis

attempts to determine the relative costs for various system.functions

as well as total costs. Furthermore, it is intended to provide

information on fruitful avenues of future investigation. Because

the systems have qualitative differences that will make their relative

cost-effectiveness dependent upon the assumed requirements, we will

identify the effect of the assumptions on the relative costs of the two systems.

The next section describes the functions the two systems are

assumed to be capable of providing. Following that, the analysis for

the DWSS is provided in Section 3. Section 4 contains the analysis for

the NWRS. Finally, Section 5 provides the results of a sensitivity

analysis of. some of the major assumptions.

2. System Requirements

The following system specifications are assumed to be required

and met by both systems.

a. Disaster Warning

The system must be capable of transmitting a message to 99

percent of the population in the 50 states. Ocean coverage is not assumed
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to be a requirement since it is not feasible for the NWRS system at

reasonable cost. (This, of course, causes the NWRS to appear less

costly. ) Other performance capabilities (time required to transmit

a warning message, reliability, etc.) are assumed approximately equal for

the two systems (see Chapter II). Only the coverage parameter appears

to be a cost driver for our purposes,

b. Continuous Weather Forecasts

Local continuous weather forecasts must be available to 90 percent

of the population with either system, resulting in greater costs for the DWSS.

The 90 percent figure is based on current plans of the National Weather

Service (NWS) for 331 transmitters.

c. Home Receivers

Demutable receivers that individuals can purchase must be

available for either system. Additionally, the receiver must be

capable of the reception of both local continuous weather for ecasts and

warning transmissions. (This requirement implicitly assumes that all

purchasers of one capability desire the other. )

d. Coordination

Both systems must provide for coordination among the 300

Weather Service Offices — fWSO fs) and spotter coordination. In addition,

both systems must have the capability of interrogating 20,000 [4] data

collection platforms and receiving data transmissions in a manner

consistent with the GOES program. Because of technical advantages of the

DWSS, tibis requirement leads to higher costs for the. NWRS.

!_/ Including Centers and Weather Service Forecasting Offices.
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e. Spotters

Both systems must provide the capability for the reporting of

2,000 spotters. The original requirement of 100,000 spotters [4] has been

reduced after discussions with NASA-LeRC personnel.

3. DWSS Cost Analysis

The assumptions used in the DWSS cost analysis are shown in

Figure III-4. We discuss each function separately below.

For the warning function a satellite as described in the Disaster

Warning Satellite Study Update [4] will be used. The first unit cost

(including R&D) is $82 million [4]. — This cost is distributed over the

period 1976-1984 as shown in Figure III-4. Additional units are estimated to

cost $29 million [4] and to be launched at five year intervals (due to the

five year life [4] of each satellite). No spares will be launched or main-

tained in orbit. Launch costs, using the Shuttle, are estimated to be

.$15 million [3], %

The local continuous weathe? br oadcast requirement will be met by 331

transmitters like those currently in use and planned for the NOAA Weather

Radio. The lease costs of the transmitters include maintenance and

are based on testimony given by the National Weather Service in con-

gressional hearings on NOAA Weather Radio [5].

_!/ These costs are adjusted to 1976 dollars from thos« in [4] by using an
assumed 7 percent annual rate of inflation.

2/ This figure is based on a 1246 kg payload (including apogee motor)
with a Spin-Stabilized Upper Stage (SSUS-A) being 9.14 meters
(30 feet) in length. Such a payload would take up one half of the
Shuttle bay and given some inefficiency in loading additional payloads,
we assume to represent 75% of the total Launch payload. The cost
of an SSUS-A is estimated to be $2-3 million [3] in 1975 dollars
while the total cost of a launch is estimated at $16-18 million again
in 1975 dollars. Taking the midpoint and using 7% to adjust to 1976
dollars gives approximately $15 million.
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Figure HI-4

DWSS Costs

Requirement Cost Basis —'I/ Source

1. Warning

2. Continuous
Weather
Forecasts

3. Home
Receivers

4. Coordination

5. Spotter
Reporting

One satellite with 5 year design life:

Hardware (1st unit) $72 x 10
with R&D

Phased as follows

NASA letter [4]

NASA letter [4]

5
$
$

10;
4 x 1 0 '

10x
$10 x 10
$12 x 10

1976
1977
1978
1979
1980
1981 $12x 10?
1982 $12 x 10?
1983 $12x 10?
1984 $12 x 10

Operational in 1985

Additional units $29 x 10

Launch costs $15 x 10°

Launch dates 1984, 89, 94, 99, 2004
(5 year life)

331 transmitters @$15K/yr.
(includes equipment lease and
maintenanc e)

phased in as follows

77 in place
85 in 1977
85 in 1978
84 in 1979

Market penetration as described in
Rosen & Haimes. Replacements
equal to 10% of previous year's
stock. Cost:

$15/unit through 1984
$25/unit 1985 and after

300 Earth Stations @$121K in 1985
plus $3M R&D in 1985

1 Central Control Station (CCS)
@$6M plus annual ooerations cost
$2M 1986-2010

2, 000 tranceivers w/spares and parts
@$6K 1985

NASA letter [4]

NASA [3]

(5 year life)

Testimony [5]

Rosen-Haimes [ 7 ]

GAO [l]
Rosen-Haimes [ 7 ]

plus. $5/weather
broadcast
capability

CSC [2]
CSC [2]

CSC [2]

CSC [2]

If All costs adjusted to 1976 collars using a 7 percent rate of inflation.

HI-7



Home receivers for the DWSS will probably be more complicated

than those required for the NWRS system. This is due to the technical

requirement that the receiver antenna have high gain and be capable of

receiving two frequencies (the warning and the weather broadcasts).

Although Rosen and Haimes [6] use a figure of $20 for the receivers, we

have used $25 (1976 dollars) to allow for the additional capability of receiving

the local continuous weather broadcasts. The market penetration is assumed

to be that given in Rosen and Haimes (about 22% of households) and is

reproduced in Figure III-5 (column 2). As an allowance for maintenance and

replacement, we have assumed that 10 percent of the stock existing in year

t-1 is replaced in year t so that the total number of units purchased in year

t is:

= s t + o . iou t - 1

where

U. 1= stock of receivers in year t-1

S = sales in period t

This figure is shown in column 4 of Figure III-5. Until the satellite is

launched in 1984 all receivers are assumed to be the $15 type. In

1985 and thereafter the receivers are assumed to be the $25 variety.

For the coordination function, we take the requirements listed

in the CSC study [z].- We also adopted the CSC report's [2] $2

million annual cost for the operation of the Central Control System. This

was the only place personnel costs were included explicitly for the DWS since

the Central Control System is unique to the DWSS.
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Figure DZ-5

Receiver Sales and Costs
(Millions)

1976

1980

1985

1990

1995

2000

2005

2010

Net .,©
Sales -esf-

.62

1.74

3.04

3.47

3.08

2.34

1.6

1.08

.71

.46

.28

. 19

.10

. 10

. 04

.02

. 01

.01

.01

.01

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Previou^)
Y.sar Stock

5t-l

--

.62

2.36

5. 40

8.48

10. 82

12.42

13.50

14.21

14.67

14.95

15.14

15.24

15,34

15.38

15.40

15.41

15.42

15.43

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15.44

15..44

G?=. ix©
Replace-
ments

--

.06

.24

. 54

.85

1.08

1.24

1. 35

1.42

1.47

1.50

1. 51

1.52

1.53

1. 54

1.54

1.54

1.54

1.54

1.54

1. 54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

Total (5)
Purchases
(D+ ©

.62

1. 80

3.28

4.01

3.93

3.42

2.84

2.43

2.13

1.93

1.78

1.70

1.62

1.63

1.58

1.56

1.55

1.55

1.55

1.55

1.54

1.54

1. 54

1.54

1.54

1.S4

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

1.54

Recejy*
NWRS (D

9.3

27.0

49.2

60.15

58.95

51. 30

42.60

36.45

31.95

28.95

26.70

25.50

24.30

24.45

23.70

23.40

23.25

23.25

23.25

23.25

23. 10

23. 10

23.10

23.10

23.10

23. 10

23.10

23. 10

23.10

23.10

23. 10

23.10

23.10

23.10

23.10

;r Costs
DWSS ©

9.3

27.0

49.2

60.15

58.95

51.30

42.60

36.45

31.95

48.25

44.50

42.50

40.50

40. 75

39.50

39.00

38.75

38.75

38.75

38.75

38.50

38. 50

38.50

38.50

38.50

38.50

38.50

38.50

38.50

38.50

38.50

38.50

38.50

38.50

38.50

_!/ Baaed on [6 ], Table 5-10, where new sales in year t (S.) are

st = x .01 x

where Af , Au are lower and upper penetration percentages in year t
and H are U. S. households (in millions) in year t .

UI-9



Spotters are assumed to be one-fiftieth the number given in [4],

or 2,000. Each satellite transceiver (with spares and parts)

is assumed to cost $6, 000 [2] in 1976 dollars.

The cost estimates for the DWSS are shown in Figure DI-6. (Details of

the calculations are presented in the Appendix.) A 10 percent rate of discount

was assumed. Any additional inflation was assumed to be offset by cost-reducing

technical improvements. The total present value of the cost resulting

from the operation of the DWSS over the period 1976-2010 is $59.1

million. The major part of the cost is clearly the costs associated with

receivers and is estimated to be $424 million or 72 percent.

Figure III-6

Present Value of DWSS Cost, 1976-2010
(In millions of 1976 dollars)

Function Cost

1. Warning $ 89

2. Weather Broadcast 46

3. Home Receivers 424

4. Coordination 27

5. Spotters 5

6. Total Cost (1+2+3+4+5) $591

7. Cost to the Government $167
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4. NWRS Cost Analysis

Figure EU-7 lists the assumptions used in the development of the

NWRS cost estimate. In order to provide the 99 percent population coverage,

750 transmitters (instead of the currently planned 331) are required [2].

The phasing is assumed to follow that of the current plan, for the first

331 with the remaining 419 added in 1985 to provide comparable capability

with the satellite system. — Since lease costs were used, and these Include

maintenance, no allowance for maintenance or replacement was included.

The continuous weather broadcast function will be provided by

the same equipment used for the warning function.

The assumptions used for home receiver penetration are the same

as those for the1 DWSS system except that home receivers are assumed to

cost $15 per unit. Again, 10 percent of the existing stock is replaced

each year as an allowance for maintenance and replacement.

The coordination requirement is assumed to be provided by the

landlines, as was the case in the CSC study [2, Table 8-7]. As shown in

Figure 111-7, the largest single cost is $10 million per year for "Local

I/ It Ls unlikely that such a large number of transmitters would ever be
implemented in one year. However, in order to provide "equal
capability" we have estimated the cost on this basis. Note that,
this phasing leads to lower costs for the NWRS.
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Figure III-7

NWRS Costs

Function Cost Basis II Source

1. Warning

2. Weather
Forecast

3. Home
Receivers

4. Coordination

5. Spotters

750 transmitters (65km (40 mi. ) radius)
$15K/yr. (including
maintenance)

Phased in as follows:

77 in place
85 in 1977
85 in 1978
84 in 1979
419 in 1985

Included in warning function

Market penetration as described in
Rosen & Haimes. Replacements
equal to 10% of previous year's stock.
Cost $15/unit throughout.

Landlines: WSO-WSO $ 4M/Yr.
Spotter Control IM/Yr .
News Medial/ OM/Yr .
National Org. IM/Yr .
Local Comm.

Officials IQM/Yr.

Total $l6M/Yr.

DCP Required Personnel IM/Yr .

$17M/Yr.

2, 000 mobile FM radios @$2, 000
300 spotter control trans, /rec. @$6, 000

CSC [2]

NWS [5]

Rosen & Haimes
[ 6 ]

GAO [1]

CSC [2]

CSC [2]

_!/ Costs for CSC [2] adjusted to 1976 dollars using a 7 percent rate of inflation.

2/ Because of rounding,,
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Community Officials. " Although it is unclear whether or not this function will

also be provided by the DWSS, this cost was included for the NWRS.

The $1 million for personnel is an additional cost for this system required

for the handling of the data from the data collection platforms [2]. All

other costs for the platforms are equal for the two systems [2] and are,

therefore, not included.

The spotter requirement for the NWRS system has been reduced

to 2, 000 in the same way as for the DWSS. The FM radios are $2, 000

as given in [2]. The headquarter transceivers are assumed to cost $6,000

in line with the CSC report [2], —

The cost calculations are shown in Figure HI-8, Again, any inflation

was assumed to be offset by improvements in technology. The total present

value of cost is $502 million. Again the major cost is home receivers

at $354 million or 71 percent of the total.

Figure III-8

Present Value of NWRS Cost, 1976-2010
(In mLULons of 1976 dollars)

Function Cost (millions)

1. Warning $ 73
2. Weather Broadcast 0
3. Home Receivers 354
4. Coordination 73
5. Spotters 2

6. Total Cost (1 + 2+3+4+5) $502
7. Cost to the Government $148

5. Sensitivity Analysis

This analysis was conducted in an attempt to evaluate relative

costs for. two potential disaster warning systems providing (approximately)

I/ Again, these costs have been adjusted to 1976 dollars.
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equal service. Where assumptions beyond those In the NASA LeRC

or CSC documents were required, they tended to reduce the costs (with some

exceptions), of the satellite system. As an example, the local community

officials cost ($10 million annually) applied to NWRS may be

associated with a feature not available on the satellite system. If this

function were deleted, the cost of the NWRS would be reduced by $43

million to $459 million.

Since the figures for system costs are dependent on the

functional requirements, Table III-l presents the results of a sensitivity

analysis on some of the more important requirements. The first row of

figures is based on the baseline assumptions presented, above (i. e., Figures

IU-4 and III-7). The second row shows the results If receiver costs are

equal for both systems ($15/unit). The next comparison is based on the

assumption that the "Local Community Official" requirement, explicitly

accounted for in the NWRS costs is not a requirement. This results in a

reduction of $10 million annually (1985-2010) or a total present value of $43

million. The next comparison assumes that only 90 percent population cover-

age is required. This, is equivalent to assuming that the planned 331 trans-

mitters are sufficient for the warning tasks. As shown there, the satellite costs

are insensitive to coverage. Finally, weather broadcasts are assumed

not to be a requirement and the results for the two systems are shown. In all

cases but one, the "Equal Receiver Cost" case (see line 2 of Table III. 1),

DWSS costs are noticeably higher (greater than 10%) than NWRS costs. The one

exception is, for all practical purposes, a tie. As these analyses show,

receiver costs are really the key to the relative costs of the two systems.
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Table III-1

Sensitivity Analysis - Total Discounted Costs (Millions of 1976 dollars)

for Selected Changes in Assumptions

(1976 - 2010)

Assumptions

1.

2.

3.

4.

5..

Baseline (Figs. 2 and 4)

Equal ($15/unit) Receiver
Costs

No Requirement for "Local
Community Official" Communication

90% Population Coverage
Requirement

No Requirement for Weather
Broadcasts (receivers for DWSS
remain at $25 /unit)

DWSS

$591

$521

$591

$591

$566

NWRS

$502

$502

$459

$475

$502
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The analysis to this point has proceeded on the assumption that

the two systems are substitutes. However, it is clear that each system

has certain advantages. For example, because the weather broadcasts

are assumed to be required, use of the NWRS for diaster warning

costs very little. Similarly, once a satellite has been launched for

warning purposes, the costs of using it for coordination are low. This

may suggest that a more fruitful approach to the analysis of disaster

warning systems is the analysis of communication systems (i. e. , consider-

ing the NWRS and the DWSS as complements).

An example will illustrate this point. Figure III-9 repeats the results

of the analysis for the two systems in columns 1 and 2. Column 3 is the

cost of a hybrid system where the NWRS is used primarily for the weather

broadcasts and warning (to 90% of the population) while the satellite is used

for coordination, data transfer, and providing warning services to the

remaining 10% and ocean areas. Therefore, the cost of warning is equal to the

weather forecasting cbst of the DWSS. The continuous weather broadcast

costs are included in the warning cost. The receiver cost represents

the costs of reaching 90% of the population with NWRS receivers and the

remaining 10% with the higher-cost receivers capable of receiving a

warning from the satellite.~~ The coordination costs represent the full

cost of the satellite ($89 million) plus the previous satellite coordination

costs. Finally, the spotter costs are the same as under the NWRS.

_!/ Note that because the quantity of the higher cost radios sold is lower,
the unit price may increase. However, since the quantities assumed
remain relatively large, we assume there is no change in unit price.
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Although the total costs are greater than the NWRS alone, this type of

analysis suggests that by considering the communications requirements

together, a less costly hybrid system may be possible. For example,

the satellite design might be different if it were to be used only for NWS

communications. Alternatively, by a different design, it might be

able to provide redundant warning capability.

One implication of this is that an investigation of NWS communi-

cations requirements may be desirable in order to determine other

services that could be provided by a disaster warning system. The

provision of additional services by the satellite results in economies to

warning.

Figure III-9

Cost of a Hybrid System,. 1976-2010
(Present Value in millions of 1976 dollars)

1.
2.

3.

4.

5.

6.

7.

Warning

Weather

Receivers

Coordination

Spotter

Total Cost

Cost to Government

DWSS

$ 89

46

424

27

5

591

165

NWRS

$ 73

0

354

73

2

502

148

HYBRID

$ 46

0

378

116

2

542

164
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C. Remarks

In this chapter, we have presented a method for evaluating

alternative systems when an estimate of benefits is not available.

This method relies on defining the competing systems in such a way

that they are, for all practical purposes, equally effective. The

illustration we have provided in the previous section provides an

example of its application.

From that example, we see that the method can be useful as

well in identifying, by functional area, where alternative systems

might be more desirable. This, in itself, can provide valuable

information to the decision-maker as far as alternative functions that

might be performed.

We also saw from the example that the sensitivity analysis

is an important adjunct in this approach like it is in any benefit-cost

analysis. Because the results of the analysis depend so heavily on

the definition of the capability to be met by both systems, special

care must be exercised to insure that the definition does not rule out

all but one system.

Therefore, the actual application of this method should proceed

as follows. First, the characteristics that define effectiveness (e.g. ,

coverage) are selected and minimum, "required", values assigned.

Second, each of the competing systems is modified to satisfy each of

these requirements in the lowest-cost manner. This modification must

be reviewed to insure that the modified system is technically feasible

and represents the minimum cost way for the system to meet each

assumed requirement. Third, the cost of each system is calculated
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and the systems compared. Finally, a sensi.ti.vlty analysis is performed

to test the robustness of the results.
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APPENDIX

This appendix provides the details of the cost calculations used

in the analysis. Figure A-l illustrates the calculations for the DWSS

(in support of Figure III-6 In the text) while Figure A-2 shows the calculations

for the NWRS (supporting Figure HI-8 in the text). While most of the

calculations are straightforward, the formula derived below will be helpful

in working through the calculations.

The present value of $1 spent (or received) t years from the

present (e. g. , 1 976) is equal to

PV.$I

where r is the appropriate discount rate. If a series of $1 payments

is to be made (received), the present value of the series is

t
1

1 -
• J.-I-T r

i=0

since it is a finite geometric sum.

Because many of the calculations in this appendix involve uniform

annual payments beginning in some year other than the first, the above

expression must be modified. Suppose the payments begin in year a

and end in year b. Then, the present value (we drop the $1 for

convenience) is
XI

PV = / J

i=a iTi i=b+l

in-20



These are both infinite sums of terms less than 1. Let s = -r—— .

Then, since both terms are geometric series, we have

sa sb+1 sa sb+1

PV = 1-s 1-s 1-s

In the following calculations,

1 1
i+. io = -90909- ••

and a and b represent years from 1976. For example, a in many

calculations is

a = 1985-1976 = 9

while,

b = 2010 - 1976 = 34

and the multiplier is,

a b+1 , n . .9 . n i .34
PV - s - s - (»91) 7 - (.91) - 4 93
PV " 1-s ~ 1 - . 9 1 ~ *
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Figure A-1

DWSS Cost Analysis

Warning;

(a) First Unit

1984

t=1976 (1 + - 1 Q )

where S, = cost in year t (see Figure III-5).

(b) Additional Units

C =
14.
1983 - 1976 + 5t

(c) Launch Costs

U + . 1 0 ) 1984 - 1976 + 5t
= $20M

c = $i5M . y^
L-J

Total Warning Cost = $89M

Weather Forecasts:

C = $15K

2010

77 x

2010

85 L̂

i
1984 - 1976 + 5t

= $17M

2010

85
1

t=1977
(1.+ .10) t-1976

2010

vt-1976
= $46M
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Figure A-l

DWSS Cost Analysis (Continued)

Home Receivers:

2010 R

C =y. . t ._IQ^ = $424M

t=1976 ll T ' ivf

where R is undiscounted receiver cost for the DWSS (coLumn 6 of

Figure III-5.

Coordination:

(a) Earth Stations

300 x $121K
.10)1985-1976 ( 1 + . 10)^85-1976

(b) CCS

2010

C = 1985-1976 T *"vi LJ ,,, 10>1976
(1 + . 10) t=1986 (1 + ' 10)

Total Coordination Costs =

Spotter Reporting;

2000 x $6K _ $5M
1985-1976 ~ *IV83 1 V / t >
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Figure A-2

NWRS Cost Analysis

Warning;

2010

C = $46M + 419 x $15K > 1 , Q7A = $73M
A-^ 1i + 10

t=1985 ( '

where $46M is obtained from Figure A-l (Weather Forecast).

Weather Forecast: No additional Cost

Home Receivers;

2010

t=1976

Coordination;

•z —-*—^* (\ -4- t n \
t— IITT^. \ L ' • I V )

C = c , = S354M
,t-19/6

2010

C = $17M = $73M

Spotter:

r - 2000 x $2K 300 x $6K _ .
= (i + .io)1985-1976 u+ ~~ $
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IV. MEASURING BENEFITS

A. Introduction

In Chapter III, we saw how to apply the benefit-cost framework

when we did not have estimates of benefits. In this chapter we describe

a generally accepted measure of benefits .from a. government project

and Illustrate how this measure can be estimated for a particular project.

This chapter may be less familiar and intuitive in the theoretical

foundations than the previous chapter for two reasons. First, cost

analysis methods are often much simpler to apply than benefits estimation

methods, and, therefore, much more widely applied and understood.

Second, there still exists a considerable amount of misunderstanding

about the empirical measure of benefits that we propose, even within

the economics profession.

Therefore, in Section B, we provide a simple discussion of the benefits

measure we propose. This discussion is designed to give the reader a

general picture of the concept that is sufficient for an understanding of

the example in Section C. In an appendix to this chapter, we provide the

theoretical foundations for this measure of benefits. Because of the

theoretical nature of this appendix, it is necessarily more complex

than the sections, in the main body of this chapter. The example presented

in Section C is an illustration of estimating the benefits of a home receiver

for disaster warning using data provided in Rosen and Haimes [10]. Thus,

the estimates we calculate are comparable to those obtained by Rosen

and Haimes in their analysis (see Chapter II).
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B. The Estimation of Benefits

A generally accepted principle of benefit-cost analysis is that

the value of anything is measured simply by what people are willing

to pay for it. — If, for example, a household buys a home receiver

capable of receiving disaster warnings for $25, then we may infer that

the value which the household attaches to the services provided by the

receiver is at least $25.

In particular, households that purchase a. home receiver will, in general,

attach a higher value to the receiver than what is actually paid for it. For

example, many households might still be willing to purchase the receiver

if its price were $35. The difference between what households actually

pay and the maximum amount they would be willing to pay rather

than go without it is called net willingness-to-pay. —' It measures what

consumers would be willing to pay over and above what they actually pay.

Net willingness-to-pay is thus a measure of economic benefits

to project beneficiaries, over and above any user-charges that may be

levied upon them. This measure is accepted generally in the economics

3/profession as the appropriate way to value benefits. — Benefit-cost analysis

consists of comparing net willingness-to-pay with any costs not covered

by user charges.

_!_/ See the discussion in Chapter I on this point.

2J A rigorous definition of net willingness-to-pay is given in the appendix.
Roughly, it is as follows: consider a good whose price is p. Then the
amount of money, m, that a consumer would be willing to give up that
would make him just indifferent between (i) buying the good at price p
and giving up m, and (ii) not buying the good at all, is the consumer's
net wiliingness-to-pay.

_3_/ See, e. g., Harberger [3] and Mishan [?] .
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As a practical matter, it is necessary to work with approximate

estimates of net willingness-to-pay. This is because it is almost

always impossible to perform the kind of experiment or to observe the

kind of situation that one needs to make an exact estimate.

The approximation most frequently adopted is to measure consumers'

surplus. The basic idea behind consumers' surplus is to use points

along the ordinary market demand — curve as indications of maximum

willinghess-to-pay for successive units of product. This is illustrated

21in Figure IV-1, which presents the market demand curve for a product.—

In this diagram, p is the market price and 10 is the quantity purchased.

By examining the market demand curve, DD , we find that consumers

would be willing to pay p, for a total of one unit. To be induced to buy a

second unit, the price would have to be Lowered to P2> This amount (p^) is

(approximately) the (gross) willingness-to-pay for the second unit, and so forth'.

Figure IV-1

Illustration of the Determination of Consumer's Sunlus

Price /D

?5

P6

?7

?8

P?
o

\

\

Demand

1 3 3 4 o 7 3 • ? 1 0 Quantity

J_/ The market demand curve represents the demands of all individuals
in the market and is constructed by summing all the individual
demands at each price p. .

2J The only requirement on the demand curve is that it is downward
sloping. We use linear demand curves to facilitate the exposition.
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If N units are sold, the consumer's suplus approximation to net

willingness to pay is:

N

CS = > ,(p. - p)

If we treat units of goods as infinitely divisible, this approximation

becomes:

N

CS = i p(n)dn - p(N) • N

*0

IN

•/
where p(n) is the demand function.

An Lntuitlve appreciation for this measure can be gained by

considering the benefits of a government project that lowers the cost

of an existing product or service. This situation is pictured in

Figure IV-2. There demand for the good Is given by D and the price

before the government program is pn . At price p.., q units will

be consumed. Let the government, project result in a reduction in

price to p1 . At this price, q1 units will be sold.

A measure of benefits that would often be used in this situation

is "cost-savings". Each of the units sold would be sold for (p_ - p.)

dollars less. Total cost-savings would, therefore, be the difference

in unit costs (p_ - p.) multiplied by the number of units sold q,, or

q-(p_ - p,) (the cross-hatched area in Figure IV-2. )
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Figure IV-2

Cost-Savings and Consumer Surplus

Price

B

Demand

•Quantity

The consumers' surplus measure includes the same area but, in

addition, takes into account the benefits accruing to those who purchase units

of the good purchased at the lower price but not at the higher price. These

additional benefits are shown as the triangular-shaped region ABC in

Figure IV-2. In the case of a price-reducing investment, consumers'

surplus includes cost-savings in its measure of benefits.
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Knowledge of the market demand curve, therefore, can be used to

measure approximately— the net willingness-to-pay on the part of individual's

for the services of the home receiver. This figure can then be compared

directly to the cost of the transmission system to determine the economic

value of the particular disaster warning system. In the next section, we

illustrate how this concept can be used to estimate the benefits associated

with a home receiver. Since the receiver Ls not associated with a

particular sensing, forecasting, or transmission system, the results

cannot be attributed to any one system.

C. Aq Application of the Consumer's Surplus Measure of Benefits

In this section we apply the concept of consumer's surplus to estimate

the benefits associated with a disaster warning system. The demand data

we use is provided by Rosen-Haimes [ 10 ]• Thus, the results we obtain

here should be comparable to the benefits they estimate. We caution

the reader again, .however, that this is merely an application of the method

and is not to be taken as a necessarily accurate estimate of the benefits

associated with any disaster •warning system.

\J The reasons that this only provide an approximate measure and the
~ error induced by using it are discussed in the Appendix to this

chapter.
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1. Demand Curve Estimate

If we adopt the procedure discussed in the preceding section,

all we require to estimate the benefits of a home warning system for

natural disasters is a demand function for home warning receivers.—

Fortunately, this is provided by Rosen and Haimes (RH), whose method

also requires demand information. In Table IV-1 below, we report the

results of a survey conducted by the Opinion Research Corporation [ 9 ]

on which RH based their demand analysis.

We have plotted the points for prices of $10, $25, $50 and $100

in Figure IV-3 and have drawn straight-line segments between these points.

The graph thus obtained closely resembles a demand curve.— Indeed, if

we specify how many households there are in the nation and assume

that each purchasing household buys only one home warning receiver,

we may find the quantity of home warning receivers that would be

purchased at each and every price by simply multiplying the

percentage of households buying at that price (as read off the

_!/ This is the derived demand function [x(p)j discussed in the appendix.

2/ Again, for those readers who have gone through the appendix, this Is
the ordinary (uncompensated) demand curve.
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Table IV-1

Household Demand for Home Receivers

Price

<$10

$10

$11-19

$20-24

$25

$26-30

$31-49

$50

$51-99

$100

>$100

Percentage of Households
Indicating That They
Would Purchase Immed-
iately a Natural Disaster
Warning Receiver

25.8%

25.0%

23.4%

22.6%

19.8%

15.4%

14.2%

13.6%

9.2%

8.4%

3.2%

Source: Rosen and Haimes, [ 10 ], Table 3-2, p. 47.
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Figure IV-3

The Estimation of Consumers' Surplus

PRICE OF A 1ZO
HOME
RECEIVER

ASSUMED MAXIMUM PRICE ABOVE
WHICH NO INDIVIDUALS WOULD BUY
THE RECEIVER

"ACTUAL" DEMAND

ESTIMATED DEMAND

PRICE

10 -

I
10

I
15

I
20

I
25

% OF HOUSEHOLDS SAYING THEY
WOULD PURCHASE A HOME
RECEIVER IMMEDIATELY

axis of Figure IV-3) by the number of households. This relationship

between price and quantity purchased is, by definition, the market

demand curve.

Recalling from Section B that we require only the market

demand curve in order to estimate economic benefits via the net
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willingness-to-pay approach, it Ls evident that we have precisely

the information we require to use this approach. In order to simplify

the calculations, we have fitted the points shown in Figure IV-3 with

the following curve: —

N = 94.84p~° < 5 2 1 0 < p < 1 0 0 (1)

This curve is plotted in FigureIV-3 as the dotted line. Assuming that

there are H households in the nation and that each purchasing

household buys only one receiver, the demand curve for receivers

may be approximated as

R = . 9484Hp"°'52 1 0 < p < 1 0 0 (2)

where R is the number of receivers sold.

2. Some Estimates of Benefits Using Consumer Surplus

We have prepared several different estimates of benefits, each

based on slightly different assumptions from the others. Some assumptions

I/ In the regression, we eliminated the two end points and for those
~ demand estimates given for an interval, we used the average of

the two prices. The coefficient of determination (R2) was . 93.

IV-10



and estimates are relatively unrealistic. They are presented nonetheless

because they give some insight into the sensitivity of estimated benefits.

All estimates are based on the assumption of a 5.75 percent discount

rate (an assumption adopted by RH),—' that home receivers last forever,

and that the number of households in the United States will forever be

70 million. Benefits are evaluated over a 20 year horizon. Home

receiver prices are assumed to be constant at $25.

a. Assuming Immediate System Activation and
Immediate Purchase of Home Receivers

The complicating factor in this example is the durability of the

receiver which means that we have to look at benefits over a period of

time. Therefore the area under the demand curve alone does not

?/correspond to annual benefits.— The market demand curve is obviously

influenced by both the expected life-of the receiver and the expected life

of the program. Clearly, other things being equal, consumers' willingness'

to-pay for a receiver varies directly with its expected life and with the

expected life of the home warning program. Because of this multiple year

accrual of benefits, the benefit calculation must include an annualizing

feature that converts a lump sum of benefits to an annual flow.

In our analysis, consumer expectations with regard to the life of

the program are assumed to be embodied in stated willingness-to-pay.

Moreover, an infinite life for home receivers is assumed in computing

annual benefits; a finite life would result in higher estimated benefits.

_!_/ Because of such assumptions, the results of this chapter cannot be
compared to those of the previous chapter.

2/ If the receiver lasted only one year and this demand curve was still
~~ valid, then the area under the demand curve multiplied by the number

of households is a measure of annual benefits. In the opinion poll
itself, there was no explicit information given about either the expected
life of the program or the receiver.
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Consider the benefits for any one year. If the receiver has an infinite
;'c

life and if the individual is willing to pay p' dollars for it, he is

willing-to-pay an amount

x = .0575 p*

in equivalent annual rental cost. Therefore, we must multiply the

area under the demand curve by the annualizing factor of . 0575 to obtain

annual benefits. Thus, the annual benefits per household are:

100

C = ( ( .0575) (.9484) p"'52 dp

25

where the limits of Integration (25 and 100) are designed to capture

almost all of the consumers' surplus. — The surplus per household is:

100

CS = ( .0575) (.9484) p " ° ' 5 2 d p

25

p
(.0545)

.48 i100

25

$.5035

annually.

_!_/ Note that this results in an underestimate of the benefits since the
form of the fitted equation implies a positive demand even at
prices above $100. Also, we use a price of $25 since RH claim
that "benefits are relatively insensitive to receiver costs in the
retail unit cost range of $15-25" [10]. Thus, our estimates
represent a lower bound in terms of receiver cost. The reason we
use $100 is that there is no information about demand above that
price. (Also, note that with no upper limit, the integral will
fail to converge. )
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For 70 million households, the annual benefits are:

CS = (70 x 106) ($.5035) = $35.2 x 106

The net present value of the benefits over 20 years are computed

as

CS = $ 3 5 . 2 x l 0 6 f e"< 0 5 7 5 t dt

20

I
0

or

20

CS = $35.2 x 106
-e

-.0575t"

. 0575
= $418 x 10 6

b. Assuming Immediate System Activation and
Staged Market Penetration

New products typically penetrate the market over a period of time

rather than immediately as was assumed in our computations above. Let

us assume that the percentage of households that will actually have bought

a home receiver at time t is

N(t) = N(l - e"
At) (3)

where N is given in equation (1) above.

The speed with which N( t ) approaches N obviously depends upon

the value of the parameter A.. We have chosen two alternative values, one
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designed to yield N( t ) /N = . 5 in five years and one designed to yield

N( t ) /N = . 5 in 10 years. — Respectively, these values are

X = 0.1386
5

X1Q = 0.0693

Under these assumptions, estimated benefits are given by

20 100

B = A'0' °57V 0575)^ N(p)H (l-e-Xt)dpdt

0

20

25

20 100

/V°-°5751(l-e-At) (0.0575) (70xl06) /(. 9484) P~* "dpdt

25

from equation (2).

Therefore —

20

B =

0

20

(0.0575) (70xl0) (8. 757)dt

= (35.
|~e-(A+.0575)t

[ A+ .0575
e-.0575t]

" ".0575 H

-.20

J 0

\_l RH assumed that home receiver market penetration would be about
50 percent complete by 10 years after introduction of the system.
The Opinion Research Corporation estimates that this same level
will be attained in 5 years.

2_/ From the calculations above, we know 100 ,-,,
/ ( .9484)p~'5 <Jp =

25
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Values for benefits are presented in Table IV-2.

Table IV-2

Estimates of Present Value of 20 Year Benefits Under
Alternative Penetration Rates

\5 = 0. 1386 \1Q = 0.0693

Benefits $242_4jsl06 $162.7xl06

It is evident that stretching out the purchases of home receivers

reduces the estimated benefits. This is clearly reasonable since the

stream of services rendered by a receiver are not available until the

receiver is in homes.

c. Assuming System Activation in Five Years and
Staged Market Penetration

Some time will be required, regardless of the system adopted,

to put the transmission system in place. Assuming that no receivers

are purchased until the transmission system is in place and that this

will take five years, estimated benefits may be calculated as follows:

B = a-0'0575'5' 35.2K106 V0' 0575t(i - e'

0
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Values for benefits estimated using this expression are presented in

Table IV-3.

• ' ~~ ______—_ (

I i
\ Table IV-3 j

I Estimates of Present Value of 20 Year Benefits Under i
i Alternative Penetration Rates, System Active in Five Years j

X5 = 0. 1386 ^g = 0. 0693

Benefits $137.8xl06 $88.2xl06

Under all assumptions, the costs against which these estimates

of consumers' surplus must be compared are those of the transmitting

system. For example, if the cost of the transmitting system were less

than $88 million^' and if the assumptions used here in the estimation of

benefits were valid, a disaster warning system would have positive net

benefits.

3. Comparisons With RH's Estimates

The estimates presented in Table IV-3 are based on assumptions

most nearly comparable to those of the RK calculations. These estimates

cannot be directly compared to the benefits in RH and reproduced in

Table II-4 above because the estimates given above in Table IV-3 are

estimates of willingness-to-pay over and above what is actually paid

for home receivers. That is, in a full-scale benefit-cost analysis, the

benefits estimated by RH would have to be reduced by the present value

of the receiver cost; receiver costs have already been netted out in

II Again, because we are employing different assumptions in the various
~~ examples, the examples cannot be compared.
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the consumers surplus calculation. — Even if a value of $1 million

were placed on each life lost (which is significantly higher than values

most often used), the net benefits (after subtracting out receiver costs),

as estimated by RH are on the order of $20-30 million. This is clearly smaller

than the estimated benefits using the consumer surplus measure.

It should be pointed out, in addition, that the following assumptions

have been made that tend to bias downward the estimates of

benefits:

(i) No decline in the price of home receivers with

volume. (RH assume that price declines. )

(ii) No growth in the number of households. (RH

assume growth in the number of households. )

(iii) Home receivers are infinitely durable. (RH's

assumption is ambiguous.)

(iv) Demand is zero everywhere outside the price

range [10, 100].

(v) Zero elasticity of demand with respect to

income. (In other words, as consumers become

wealthier, they won't increase their willingness -

to-pay.)

(vi) Purchasing households buy only one receiver.

All of these assumptions work in the direction of reducing estimated

benefits.

!_/ These benefits cannot be compared to the costs not covered by user
charges estimated in Chapter III because of the differences in certain
assumptions (e.g. the discount rate) and the fact that the receivers
in the ORC study are not necessarily the same as those driven by
the transmission systems in Chapter III.
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D. Remarks

As we have shown, both theoretically and with an actual example,

the consumer surplus measure of benefits is greater than what might

be termed the "cost savings" approach. The actual implementation of

this method for benefits measurement has also been demonstrated.

The use of this measure of benefits can be easier to calculate

than the cost-savings approach. The reason for this Is that the consumer

Incorporates all the cost-saving benefits into his demand function

Implicitly. Therefore, the analyst need not spend time searching for

both areas of cost-savings and the magnitude of cost savings.

The following steps depict the implementation of consumer surplus

in practice:

first, obtain estimates of demand for a particular receiver. —
These estimates may come from market surveys, actual sales
data, or other sources. The important thing is to have
quantities associated with different prices.

second, estimate the demand function. The technique here
was statistical regression analysis but other methods may be
used. Because of the importance of this estimated demand
curve, some care must be taken in the specification and fitting
of the functional form.

third, given the expected (or actual) price of the receiver
calculate the consumers' surplus as the integral of the demand
curve from the selling price to a price that represents a
reasonable "maximum" price. This maximum price should
be such that it is reasonable that there would be only minimal
sales above it.

l_/ The analysis of benefits in this chapter has rested upon the knowledge
of the demand function for home receivers. In Chapter V, we present
an alternative method that can be used when the demand function is
not known.
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finally, compare the consumers' surplus to the cost of the
transmission system only (since consumer costs have been
netted out). If the surplus is greater, then the economic
benefits are greater than the economic costs of the system.

It must be remembered that the use of consumers'

surplus as a measure of benefits is only appropriate if the following

axioms are accepted:

(1) the benefit of a project to an individual is what the

individual is willing to pay to participate in the

project,

and

(2) the total benefits of a project are equal to the sum of

the individual benefits.
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APPENDIX

TO CHAPTER IV

THE ESTIMATION OF BENEFITS-THEORETICAL, FOUNDATIONS -

A. 1 Measuring Value for a Single Individual

As we saw In Section B, a consumer's surplus Is loosely defined

as the difference between the larg.est amount of money which he will freely

pay and the amount he actually pays In order to consume some bundle of

goods. This Is a workable definition, but it is Imprecise because it

doesn't make clear what bundle the individual has before and after the

payment is made or how prices and the Income facing the consumer change.

We can think of characterizing an economic system as seen by a con-

sumer, by simply listing all prices p,, . . . , p where p. is the price of the ith

good, and the consumer's income, I. Thus, in a specific period t , we can

use an n+1 dimensional vector (p , . . . , p .» '! .) = (p*. > L.) to characterize the
it nc t t u

economic system for a specific consumer. We will refer to such a characteri-

zation as a "state" of the economic system. Consumers' surplus analysis

aims at assigning a value to a change in state in which a public or private

project, a set of taxes or subsidies, or some other activity changes the price

vector facing consumers. That is, it values any change that moves the

consumer from some initial state (pn, I) to another state (p , , I ) . —

!_/ The work in this Section was taken from several sections of [ 1 ]. The
original use of consumers' surplus is due to Dupuit [ 2 ] and was given
some mathematical meaning by Hotelling [ 6 ]. Sections a and f
draw heavily on Willig [12 ] (see also Willig [ 11 ]), while the analysis
in Section 3, originally due to Hicks [ 5 ] is based on the recent paper
by Morning [ 8 ]. The compensating and equivalent variations are,
of course, due primarily to Hicks [ 5 ].

2_l If the project consists of making available a previously unavailable
good, we can view it as a move from a state with p = M where
M is arbitrarily large to p.,
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SLnce Individuals may choose freely their consumption in

either state, the usual assumptions of economic theory Imply that they

will select their consumption bundles, represented by a vector

x = (x., . . . , x ), so as to achieve a maximum of utility. The conditions

for this maximization are (see, e .g . , [4 ]):

U. - Ap. = 0 i = 1, . . . ,n
i *i

PlXl + •'• + PnXn = l (1)

where the individual's utility function is U(x) with f irst partial

derivatives U. = d U ( x ) / d x . , and where the La grange multiplier A gives

the marginal utility of income to the consumer. (The "value", in utility

terms of an additional, infinitesimally small amount of income. )

These necessary conditions are then solved for the demands for

goods in terms of the prices and the Individual's Income. These so-

called derived demand functions can be written as a vector function x(£, I),

where each element of the vector is the quantity of the i good consumed

when the consumer is in state (p, I). — Given the derived demands it is

possible to write the value of the individual's utility function given his

optimal choices x(p,I). This Is called the Indirect utility function and Is

Uj x(p, I)j . It depends only on the state (p, I).Y x ( p , i A . it

_!_/ We will assume that U(x) is strictly concave, so that the conditions
in (1) do define a unique maximum of utility, and also that the
derived demand functions can be found when some of the optimal
x, 's are zero.
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To find out how much a consumer values the change from state (p , I)

to state ( p _ i > I ) we can ask him (1) how much he is willing to pay to keep

the new prices p_ ^ or (2) how little he will accept to be removed to the

old prices p . Either question calls for the consumer to find the change

in his inco'me which makes him indifferent, in utility terms, between

the offered states. Given his indirect utility function, the income changes

can be written as the solution to algebraic equations. Thus, the answer

to question (1): the least amount which the consumer is willing to accept

in order to be indifferent to a change from the prices p. to p,,

(traditionally designated C ), is defined by: —

U (x (p ,1)} = U ( X ( P I , I + C ) ) (2)
V -o / \--i /

Similarly, the answer to question ( 2 ) : the income change which will make

the consumer's utility with prices p the same as his utility at the old

prices is E, the solution to ;

(3)

_!_/ This is not equal to the change in prices multiplied by the quantity
of the goods consumed. A change in prices changes relative as well
as total consumption because of (1) changes in relative prices (the
substitution effect) and (2) changes in real income (the income effect).
See the following subsection for an illustration of the ideas presented
here.
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Both C and E are measures of a consumer's surplus. The sLgns of the

income changes in Eqs. (2) and (3) have been chosen so that C<TO and

E > ° as PO ^£1* If prices increase, both C and E are positive

because consumers require compensation for their loss in welfare. If

prices fall some amount must be paid (L. e. , some income foregone) If

utility is to be unchanged.

Notice that the technique used in (2) and (3) is a particular example

of a general method of defining the change in income which will just make

a consumer indifferent between two states of the economy. This compensation

depends on the initial and final prices p and p and on the income I of
— (J — • L

the consumer. We may •write this implicit function as Y(p ;p ,1) and

call it the income compensation function — . It is defined by

U x p , Y ( p ; p 1 ) ) ] = U j x ( p ,1)) ( 4 )
- ~ U / \ ~

for any price vector p. Notice that Y(p.; p^, I) ' = I and that the

two measures of value can be defined using the income compensation function

to be:

!_/ When we wish to remind the reader that the income compensation
function depends on prices, we will.,write the first price vector without
a subscript. A subscript will be used when a particular final price
is intended.
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E = Y(£ I ; p^ I) - Y(pQ ; £l, I) (5)

C = Y(£I; p0, I) - Y(p0; p0, I) (6)

That is, as we have said before, E is the change in money income

equivalent in utility to a cha nge from prices p~ to p, and C is the

•maximum amount a consumer will pay (or the least he will accept) for

the change from p« to p, .

A. 2 Example

Since many of the concepts developed above may be

unfamiliar, the following example may provide intuitive under-

standing of what is taking place — . Assume we have a world with two

goods, x. and x with prices $2 and $5 respectively. The individual

is assumed to have an income of $100 and a utility function of the form:

That is, the individual's utility depends on the combination of

the two goods consumed. From the necessary conditions (1) above we

know that:

I/ The basis for this example comes from [ 4 ].
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(x l f x 2 ) - Xp1 = 0

= 0

Plxl * P2
X2

In this case, we have

«2 - 2A = 0

x, - 5A. = 0

4- 5x2 = 100

Solving for x1 and x_, we see that

Xj = 25

and

X2 = *° '

These are the individual's derived demands and depend on prices and income

only. His utility is seen to be

U(x 1 ,x_) = x,x2 = 250.
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Suppose now that a project is proposed that will result in the price

of the second good being lowered from $5 to $4. We want to calculate C

and E , the compensating and equivalent variations. For the compensatLng

variation we see that at the new set of prices, the necessary conditions are

(the superscripts indicate new period consumption):

xl - 2A = 0
L+

x| - 4X = 0

2x* r 4x^ = 100 -r C

plus the requirement that utility be unchanged, or,

1 1 0 0x,x_ = x. x- =
L & L £

This system of four equations in four unknowns can be solved to obtain—

A. = 5. 59

C = -10.56

xj = 22.36

xi = 11. 18
£«

and

U(xjx^) = 250.

_!_/ The marginal utility of income X, is positive given the assumption
of non-satiation (essentially that more is preferred to less).
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Thus, the individual would be willing to give up $10. 56 in income to avoid

returning to the old prices. Similarly, we could solve for the equivalent

variation and find that it is equal to -$11.80.

The important thing to note in this example is that measures of

"cost savings" understate the value, to the consumer, of the change in

prices. We saw that originally the individual consumed 10 units of the

second good. In terms of cost savings, he "saved" $1 for ten'units for a

total savings of $10. In terms of his willingness-to-pay, he was "better

off" by $10. 56. This is because a change in prices affects real income

as well as relative prices and the individual reallocates his income to

maximize his utility.

A. 3 Measures of Value and Measures of Welfare

The welfare meaning of the C and E measures of value depends

on the ideas of Pareto optimality and of compensation. A particular state

of the economy is said to be Pareto optimal if no change in state can be

made which makes no one worse off and at least one consumer better off.

The compensation principle has been proposed as an extension of the

Pareto optimality. The Idea behind the compensation principle

is that we can judge the value of an act which changes prices by looking

at the Pareto improvement which would occur if the change in state is

made and incomes are costlessly redistributed after the change in state.

IV-27



In particular, C , which is called the "compensating variation"

in income, has important implications for cost-benefit analysis under

the compensation principle. Suppose some project •will change the

the economy so as ultimately to change the prices faced by consumers. After

the change is made (i. e. , at price p, ), the value of C tells us how much

a consumer's income would have to be altered for him to be indifferent

between the old and new states of the economy. The compensation

principle states that if the algebraic sum of all the C's of all the consumers

in the economy is greater than the cost of the project, then it should be

undertaken, because after the change it would be possible to pay the costs

and to compensate fully all consumers by a redistribution of their incomes

in such a way as to make at least one consumer better off.

As its name suggests, C may be thought of as the compensation

(positive or negative) which a consumer requires to make him indifferent

between living in the old state of the world (?«> I) and the new state

(p., I+C). The so-called "equivalent variation" in income, which we have

symbolized by E, has a similar interpretation. E is the amount of income

which a consumer must forego if he is to be indifferent between the new

state of the economy (p^, I), and the old state (pQ, I-E). The

value of E is thus the income change, relative to the old prices £Q

which is equivalent to the utility change induced by a change in prices

to p, . The equivalent variation is also sometimes interpreted as the

maximum amount a consumer is willing to pay to avoid the price change.

IV-28



The concepts of compensating and equivalent variation can also

be illustrated graphically by reference to a standard indifference-curve

diagram. Consider figure IV-A-1 which is based on a figure in MLshan [?].

There income, I, is measured along the vertical axis and the quantity of

the new good (or the good whose price is being reduced) is measured

along the horizontal axis. The indifference curves (U- and U ) represent

combinations of income and the amount of good x between which the

individual is indifferent.

When a new good is introduced (or its price lowered) the new price

lines are represented by the lines I and I '. (The slope of these lines

indicate the amount of income that must be given up in order to consume

an additional unit of good x ). If the consumer originally has income In

with no opportunity to consume x , he is on indifference curve U.,. When

good x becomes available, he trades down the price line to point Q, where

Figure IV-A-1

Graphical Depiction of Equivalent and
Compensating Variations

Source: [?]

IV-29



he consumes Mj units of x .

The compensating variation is the amount of income he would pay

to be able to make this trade. From Figure IV-A-1 we see this is just the

income equal to I~ - I, . For if the individual gives up (I_ - I.) units of

income he will then be at point I. . Trading down the price line I i . I i '

(which is, of course, parallel to I_ I ' ) he stops at Q_ which is on

indifference curve U,.. Therefore he is just as well off as before the

trading opportunity. By similar reasoning, the equivalent variation is

equal to the distance I, - I .
^ u

The equivalent variation is useful when a change in state which

affects only prices or incomes is being considered. For instance, it is

a relevant measure to use when evaluating the effects of a tax or a subsidy.

The compensating variation is useful in different circumstances, where

the incomes and prices will both be changed; and it is the compensating

variation which is most often meant in benefit-cost analysis when one

speaks loosely of "willingness-to-pay" or of the consumer's surplus. This

is because C measures the value between a proposed change and the

present state, while E is used to compare different proposed changes.

Nevertheless, it should be clear that different measures of value are

appropriate in different circumstances. The analyst must take care that he

specifies completely the change in state which he proposes before he tries

to evaluate it.
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A. 4 The Marginal Value of a Price Change

/ The measures C and E derived above are defined for any price

change, but it is useful to derive the measure of value appropriate to an

infinitesimal change in a price. That is, what is the value of the partial

derivative of Y(p_, p., I) with respect to an element of p, evaluated at

£ = £0
?

To find this derivative we begin by finding the conditions which

must hold if a consumer's utility is to remain constant after an infinitesimal

change in price has occurred, accompanied by a compensating adjustment

in income. The derivative of utility with respect to a price p. can be

/ \ Jfound by differentiating the indirect utility function U(x(p, 1)1. It must

be zero if utility is held constant. Hence:

n

dU
i dp.

i=l J

j = 1, . . . , n (7)

The term dx. / 6*p. includes the change in consumption of the i good

due to the change in price (the substitution effect) and due to the compensating

change in income. Now, by the necessary conditions for a maximum

of the consumer's utility, Eq. (1), the condition in Eq. (7) becomes:

n ,.

^ x j = 1,... , n (8)
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This holds if, as prices are changed, income is adjusted to keep the con-

sumer on his original indifference curve. Since A ̂  0 (unless the consumer

is completely satiated.) we can conclude that the summation in (8) will

always be zero when compensation is provided.

The compensating change in income is now found by differentiating

the consumer's budget constraint and applying this result:

dY(p;p ,1)
' " ^i -ST- Xi j = l . . - .n (9)

That is, the marginal value (measured as a change in income) due to a

change in the j price is just equal to the quantity demanded of the

.th ,J good.

The meaning of (9) will perhaps be clearer if we realize that the

income compensation function Y(p_; p.., I) is really an argument of x.

on the right-hand side of (7) because income is continuously adjusted to

make (8) hold.- Equation (9) can be rewritten in the following

f o rm —:

aP
U=const

= x/p, Y(p)V j = 1, . . . , n (10)

_!_/ In the remainder of this chapter, we drop the subscripts following the
semi-colon in the income compensation function Y . It is assumed to
be (pQ, I). Thus, Y(pjPo, I) = Y(p) .
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where x. ( p, Y(p ) is the demand for the j commodity when the consumer. ( p, Y(p )] i

is compensated for price changes relative to the base state (p0, I), or the

"compensated demand" for short.

What makes (10) interesting is that it serves as an alternative

definition of the income compensation function because it is a system of

partial differential equations for the unknown function Y(p) with the boundary

condition I = ^fon^ ' Equation (10) thus forms the basis for the common

definition of consumers' surplus In terms of the area under the demand curve

for a good, whLch we will now discuss.

A. 5 Consumer's Surplus as the Area under a
Demand Curve

Instead of proceeding from utility functions, the consumers' surplus

measure is often derived by applying the following, hypothetical algorithm. A

monopolist offers a consumer the opportunity to consume a particular good,

say the j one, at a very high price. At first the consumer will buy

nothing but as the price is lowered to pQ. he begins to buy some of the

good. The monopolist continues to lower the price in infinitesimal increments

of the j good. As the price changes, the consumer is compensated

according to (10). Finally, at some price PJ., the process stops.

The total amount paid by the consumer is the area under the inverse —

_!_/ If the demand curve is x.lp, Y(pH the inverse demand curve gives the
maximum price which the' consumer will pay for the last, infinitesimal
unit of the fin good when he is consuming a quantity x.. It can be written:

'pn'

The demand curve used in Section A above was the ordinary (uncom-
pensated) demand curve.
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.th
of his income compensated demand curve for the j good. The consumer's

surplus is this area less the cost of the final amount purchased P^-*:' ».

This is the shaded area in Figure IV- A-2.

.thNow. if the price of the j good was the only price to change

during this bargaining process, we can write this area as the integral of

the consumer's compensated demand function for the j good.

= Y(£l) - Y(pQ) = ,/] XJ(E' Y'p')dpj ( ID

o

COsz
o
o

a

e

n

u

QUANTITY CONSUMED .

"Consumer's Surplus"

Figure IV-A-2
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We can see that (11) is correct by differentiating with respect to the

price p..

dC

which is the same as (10). Since this derivative relation (which we know

to be correct) holds by construction at every price between p_. and p, .

the result in (11) must hold by the fundamental theorem of the integral

calculus.

Equation (11) gives a method of valuing a change from one price

to another for a single price change — , but it contains a circularity because

it solves for Y (p_) by assuming that It Is already known. It is thus

impractical to use (11) to find the income compensation function (and hence

to evaluate C and E ). A solution which is often adopted is to find the

area under the ordinary demand curve (i. e. , the demand curve which is

not compensated for changes in utility). • This procedure defines a function

A(p;p , I) which is:

A(p;p0 ,I) = J x(p,I)dP j . (12)

_!_/ A more general form of (11) can be derived for changes in the price
vector. This is

C = Y ( p 1 ) - Y ( p Q ) = /"s xYp, Y(p0) ) d p _ .
J i=1 \ '

We won't discuss this case further because we are concerned with single
price changes in the disaster warning problem.

IV-35



A. 6 The Relation between A — , E and C

The effect of using the ordinary demand curve can be analyzed
4

by looking at the income elasticity of demand, J? . We can see how the'

income elasticity affects A by considering the case of a change in the^

price of good j , where the income elasticity of demand is assumed to be

constant. The definition of the income elasticity of demand is:

dx.71 =

(This is, roughly, the percentage change Ln the demand for good j , given

a one percent change in income). Then the demand in the final and initial states

of the economy is related to the incomes by —

xl
, i) (14)

Rearranging (14) and integrating both sides with respect to price gives the

relation —

A/I = (15)

In Y ( P i ) / I if ?= 1

\_l For brevity, we will use A instead of A(p.;p_ , I)

_2/ Consider a demand curve x. = I

1 I ^-l I
Then the income elasticity of demand is -^ — * — — = >?I • r-jr - 77

x -
which is constant.

3>y A more detailed drivation of (15) and its successors is presented in
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Using (5), (6) and (15) it is possible to solve for the values of C and

E in terms of *?, A and the consumer's income I .

C_
I

1-77

- 1

A/I

E_
I

A

1 - e
-A II

if »?

if »7

if >7

if rj l

(17)

It is interesting to note that the difference between either C/I or E/I

and A/I is small whenver the income elasticity is small. This can be

seen from the Taylor's series expansions of (16) and (17) to second order,

which are:

C
I

E
I

A
I

A
I "

77
2

>7
2

1
\ I

(A
\ I

(18)

(19.)

Equations (18) and (19) show that A/I lies between the compensating and

equivalent variations, and that all the differences between C/I, E/I

and A/I are small if either the income elasticity f? or A/I , the

magnitude of the measured surplus relative to income, are small.
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It is possible to extend this kind of analysis to the case where the

income elasticity of demand is not constant or where more than one price

changes (see e.g. iJ5i or J16] ). In these cases, it is possible to bound the

values of C/I and E/I between two limits which depend on A/I and the

income elasticities of the goods. These limits can be shown to be small

when the elasticities are near zero or when A/I is small as was the case

here (see [l6j ). These results all support the use of A as an approxi-

mation to C or E when the demand for a good is income inelastic or

when the change in welfare is small relative to income. This latter

assumption certainly seems reasonable when dealing with a home warning

receiver whose value to the individual generally isn't large relative to

his income.

The fact that A is a measurable quantity if demands can be measured

is probably the principal reason why the method of consumers' surplus is

used in economics. Other methods are certainly more general or more

satisfying theoretically. But the possibility of measuring the benefits or

losses in welfare from the demand curves which consumers possess is an

attractive, practical way of obtaining the information. Viewed in this

light, the approximations made, for example, when 17 was assumed to be

constant become merely another source of error or uncertainty with which

an analyst must deal.

A. 7 Summary and Remarks

Consumers' surplus is a methodology for measuring the value of a

change in the state of an economic system by determining the payment

required to compensate an individual for the change in utility he experiences

as a result of the change in state. Two important measures of this value

are the equivalent variation and the compensating variation. The compensating

IV-38



variation is the measure appropriate fco cost-benefit analysis because

it gives the change in money income which must accompany a change in

price if a consumer is fco be indifferent between his final and initial states.

The equivalent variation, which compares the consumer's utility in situations

where either prices or income change but not both, is a useful tool when

policies changing only one of these are considered.

The measures are all related to one another by the income com-

pensation function which gives the income Y(p; p_, I) required to make

a consumer facing prices p indifferent between that state of the economy

and a base state (p., I). The most important property of the income

compensation function is that its derivative is equal to the consumer's derived

demand, Eq. (10). To this differential equation there corresponds an

integral equation which is often interpreted as the area under the consumer's

derived demand curves. This path-independent line integral is often used as

an alternate definition of the income compensation function.

It is possible to approximate this integral by the integral under the

consumer's ordinary (i.e., uncompensated) demand curves. If the income

elasticity of demand is constant and if only one price changes this integral

can be solved for either the compensating or equivalent variation. In other

cases, it is possible to derive upper and lower bounds on the variations.

The bounds are close when the income elasticities of the goods are near

zero and the surplus small relative to total income.

Individual changes in compensated incomes are usually added

algebraically to determine the benefits to society of a proposed change in

state. This procedure is acceptable under the compensation principle,

which implicitly assumes that the marginal social utility of income is the

same for all consumers. If equity considerations lead to a different specifi-
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cation of the social welfare function, the appropriate aggregation

procedure will differ and the area under an aggregate demand curve will

not necessarily be the correct measure of social benefits.

However the consumers' surplus is aggregated, we must usually

resolve the problem of finding out how much prices change by using the

economic model. When it is impractical to take a general equilibrium

approach, a partial equilibrium one, which models only some of the goods

in our economy, must be used. This necessarily means that price changes

in other sectors of the economy are not modeled and their effect on con-

sumers' surplus therefore is unknown.

However, if goods in the excluded sector experience only a small

price change, and if these changes have only a small effect onthe demand

for those goods in the included sector then it can be shown that the effect

on consumers' surplus will also be small.

Despite the assumptions, approximations and value judgments which

are a part of the methodology of consumers' surplus, the technique is often

a useful one in economic analysis. It contains a clear connection with the

basic ideas of efficiency at the core of welfare economics. Furthermore,

it is often analytically easier to use consumer's surplus than to resort to

the treatment of individual utilities. Finally, it is sometimes possible to

measure the benefits of a project in a real setting by means of consumers'

surplus, at least to within some known approximation error. This makes

the technique important in cost-benefit analysis and in other areas of policy

analysis which must use some criterion to choose among alternative acts.
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CHAPTER V:

ASSESSING POTENTIAL, CONSUMER DEMAND FOR HOME RECEIVERS:

THE STATISTICAL DECISON THEORY APPROACH

A. Overview

A disaster warning system (DWS) provides information about

impending disasters, including hurricanes, tornadoes, and floods.

This information, if acted upon, can result in substantial reductions in the

loss of life and property. In a disaster 's aftermath, a DWS may also

be used to provide information in support of post-disaster recovery

effort.

As we noted in Chapter I, the assessment of alternative warning

systems must take' account of the fact that the purchase of a home receiver

is a private decision. However, it is only as a result of these private

decisions that the benefits of disaster warning systems are realized.

The evaluation of systems requiring purchase by individuals must proceed

in two steps. First, the aggregate benefits derived by individuals must

be estimated net of the costs of the home receiver itself. Then, these

net benefits must be compared to the costs of those portions of

the DWS not covered by user charges to determine whether or

not the costs are less than the benefits. This two-part nature of the

warning problem is important, for example, in analyzing the NOAA

Weather Radio System (NWRS) and the Disaster Wanning Satellite

System (DWSS). Both these systems require the purchase
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of radio equipment to receive warning broadcasts. As we have shown in

Chapter III, home receiver costs for the NWRS and the DWSS are three times

as great as the cost in the transmitting portion of either of the two systems,

assuming these receivers are purchased by twenty percent of the nation's

households. — Clearly, information about the market for home receivers

is important for determining the potential effectiveness and costs of the

system.

An earlier study [7] used survey techniques to try to measure

consumers demand for a home receiver. In this chapter we take a

different approach. Our objective is, (i) to provide an alternative method

for estimating the extent to which consumers will be willing to acquire

the home receivers, (ii) to apply this method to a particular type of

disaster -- namely tornadoes -- to illustrate the use of this method,

and (iii) to infer from the analysis the characteristics of a DWS that may

have important influences on the acquisition decision.

Briefly, we propose to compare the costs of alternative DWS receivers

with the value of the information they provide to the individual. This approach

is based on statistical decision theory. As defined by Raiffa and

Schlaiffer: [10] .

[Statistical decision theory deals] with the logical
analysis of choice among courses of action when (a)
the consequences of any course of action will depend
upon the "state of the world," (b) the true state is
as-yet unknown, but (c) it is possible at a cost to
obtain additional information about the state.

_!_/ See Chapter III for the other assumptions used.

V-2



The "states of the world" that concern us are, naturally, the

effects of natural disasters, which differ in their intensity, duration

and geographical extent. The decision maker, in this context, is the

individual consumer. He decides, given information about the occurrence

of a natural disaster, not only whether or not to buy a receiver, but what,

if any, preventative action to take. Finally, the cost of information is the

cost of the home receiver. (Since we assume that the transmission portion

of a DWS will be installed regardless of the individual5s decision concerning

the purchase of a receiver, his tax payments that are used for the trans-

mitting portion are sunk and dp not enter his analysis. ) Note that it is

the information provision aspects of home receivers that make this method

particularly suitable for this demand assessment. The individual is assumed i

to value the receiver only to the extent that it provides information and not

for the receiver itself.

In Section B we present the basic elements of a decision problem

and illustrate its solution in terms of a decision problem that arises

more often (hopefully) than disaster warnings. One specific problem of

decision analysis -- that of valuing the outcomes when they are not explicitly

stated in monetary terms (e.g. , lost lives) is discussed in Section C. As will

become clearer in Section B, valuation of outcomes is absolutely necessary in

order to make a logically consistent choice among system alternatives. In

Section. D of this paper, we use actual (albeit incomplete) data to examine

a "representative" household's decision on whether or not to purchase

a demutable home receiver usingr the techniques of statistical derision theory.

The sensitivity of the results of our analysis to the assumptions used are

discussed in Section E. Another study, related to the analysis performed here,

provides a valuable yardstick for comparison and is described as well in

Section E. We use the model to derive a demand curve for home receivers

in Section F and discuss extensions and observations in Section G.
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B. The Elements of Decision .Analvsis —

1. The Framework

There are six basic elements to every problem of choice under

uncertainty. They are:

(i) a set of alternative experiments which may be under-

taken to gain more information about unknown parameters,-

(ii) a sample space, which describes the possible outcomes

of all experiments under consideration,

(iii) a set of possible actions (or decisions) from among

which a choice is to be made,

(iv) a set of unknown parameters which govern the outcome

of the decision to be taken,

(v) A payoff evaluation, which assigns a payoff to performing

a particular experiment, observing a given outcome,

taking a. particular action, and then discovering the

particular values of parameters that actually result,

(vi) a probability assessment, which assigns a joint

probability distribution to unknown parameters and

the outcomes of experiments to find out about them.

The six elements of a decision problem may be usefully described

as a game between the decision maker and a make-believe player we

call "Lady Luck. " There are four basic moves in the game. First

If The reader familiar with statistical decision theory can skip directly to
Section C without loss of continuity.
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the decision maker (DM) chooses an experiment. Then Lady Luck chooses

an outcome to the experiment. Third, the DM selects an action. Finally,

Lady Luck chooses the value of unknown parameters. The DM then

receives a payoff corresponding to the outcomes of the various moves of

the game.

In Figure V-l , we have translated these six elements into an example

decision tree — for an individual faced with the decision of whether or not

to go on a picnic. In the tree, we can find the six elements referred to.

The set of experiments consists of calling (or not calling) the weather fore-

caster. It is an experiment in that the individual expects to obtain additional

information about the true state of the world (e. g. , whether or not there will

be rain). The sample space (outcomes) will be the information received,

i. e., a "fair" or a "rain" forecast. The set of actions consists of taking the

picnic or staying home. The unknown parameter in this case is whether

or not it will rain. The payoff evaluation is how the individual values the

combination of weather and activity (e.g. , being on a picnic when it rains)

The values given in the tree are only meant to provide an indication of

the relative valuation of the various outcomes and activity decisions.

Obtaining weather information is assumed to cost $5 so the outcomes on

the lower branches are reduced correspondingly. Finally, the probability

assessment determines the probability that a particular branch will be

followed when leaving the chance mode.

_!_/ While two approaches to actual quantitative analysis of the decision
problem are common in the literature, we consider only one in this
paper; the so-called "extensive form, " which is most easily illustrated
by reference to a decision tree. The second approach, the normal
form, leads to the same conclusions and is described in [9].
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Figure V-l

DM's Decison Tree

Experiment j Experiment Outcome Acrion Decision ! unknown Parameter ! Payozf

| i = decision node

i j = chanca node

100

50

95

20
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In the construction of the tree, note that the decision maker has

different amounts of information available to him at different decision

nodes. For example, in the picnic problem, he has no information about

what the weather will be like on the day of the picnic (although he may

have an idea of how often it rains, for example) when he must decide

about obtaining a forecast. When he makes the decision about the picnic

itself, however, he may have more information about the weather (in

the form of a forecast, if he made the decision to obtain one) than he

had originally. Thus, the nodes in the tree can ordered in terms of

what must logically come first. In the picnic example, it would not make

sense to decide to go on the picnic and only then obtain the weather

forecast. By assumption, the only reason for obtaining the forecast was to

aid in making the go/no go decision.

Table V-l introduces a standard notation for the elements of the

problem depicted in the decision tree. As indicated, the payoff of the

decision is dependent on the experiment (because of experiment costs),

any action taken (because of action costs), and the value of the unknown

parameter. The probabilities that are required are the conditional

probabilities (conditional on the value of the unknown parameter) since

most experiments do not provide perfect information and the probabilities

of the unknown parameters (i. e. , the probability of rain). The conditional
•f.

probabilities are termed "likelihoods" and the probabilities of the unknown

parameters are termed "prior probabilities, " i. e. , prior to any revision

resulting from new information.
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TABLE V-l

NOTATION FOR THE "REPRESENTATIVE"
HOUSEHOLD'S DECISION PROBLEM

(i) . Experiment; e ; Do not call weather forecaster

e. ; Call weather forecaster

(ii) Outcome of experiment; z- ; No Information received

z. ; "Fair" forecast

z_ ; "Rain" forecast

(iii) Actions; a ; Go on Picnic

a1 ; Stay home

(iv) Unknown parameters; dn ; FaLr

d ; Rain

(v) Payoffs; f (e . , afe , 6) i, k, I = 0, 1

(vi) Probabilities;

Probability of outcome conditional on experiment and
unknown parameter

Pr(z. |e. , 6^) i, j, X = 0,1

Probability of unknown parameter
/

Pr(0 f l ) i = 0, 1
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To find the best decision, we work backward from the

right hand side of the decision tree shown in Figure V-l. Instead

of starting by finding the optimal experiment to be chosen, we start by

finding the optimal action to take for each possible experiment and out-

come. By optimal, we mean to find that decision which maximizes

expected utility. — To find this optimal decision, we need to investigate

what probabilities the decision maker would attach to unknown parameters

given the experiment performed and the result obtained.

2. Probability Assignment

Prior to obtaining experimental evidence, we know from experience

(e.g. , historical evidence, or some other source), the probabilities of the

unknown parameters. If no experiment is performed, there would be

no basis to revise these prior probabilities, P r ( 0 ) , and so the decision maker

would have to make his decision on the basis of these prior probabilities.

For our simple picnic problem, we assume that it rains, on average, once

every five days so that the probability of rain, Pr ( &.), is . 2 and the

probability of fair weather, P r (# ), is .8 .

If an experiment is performed, the decision maker would naturally

want to consider how the information derived from it can be used to

sharpen his estimate of the probabilities of these events. That is, we. want

to find the probabilities of 9^ and 9, conditional upon the outcome

\l By using utility rather than monetary returns, we can allow for behavior
~~ often characterized as risk averse, a very desirable feature for any

analysis involving potentially large losses. It is also more general and
can incorporate maximization of monetary returns as a special case.
The use of utility functions is discussed in Section C below.
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of the experiment (the forecast). Before we do this, we must determine

the likelihoods (in this case the forecasting accuracy). Therefore, we

assume that:

Pr (forecaster says rain given it does rain) = Pr(z^ d^) = .6

and

Pr (forecaster says fair given it is fair) = Pr(z, j 9,.) = . 75

The probability of the complementary events (i. e. , erroneous forecasts)

are then just 1 minus these values. The revision of the prior probabilities

is made via use of the classic result in probability theory known as Bayes'

Theorem. — To obtain the revised probabilities, we combine the likelihoods

(conditional probabilities) with the priors (probabilities for the unknown

parameter) using the standard laws of probability. For example, we determine

the joint probability of 0* and z.. (fair weather and a "fair" forecast),

denoted Pr( 0 Q, z ) by the multiplication rule:

P r ( 0 Q , Zj) = P r ( Z l | 0 0 ) P r (0 Q ) = (. 75)( . 8) = .6 (1)

For our example problem, the joint probabilities are shown in

Table V-2.

J7 See any book on probability theory or statistical decision theory
(e .g . , [9 ]).
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Table V-2

Joint Probabilities for the Picnic Decision

Probability -^of
and?^

Day is Sunny (0.)

Day is Rainy (Q^)

Marginal Proba-
bility £or Forecasts

No Weather Information
Sought (eQ)

No Forecast (z^)

.8

.2

1.0

Weather Information Sought (e.)

"Fair'-Forecaat (Zj)

.6

.08

.68

"Rain" Forecast (z2)

.2

.12

. 32

The second step in determining the revised probability is to

compute the probability of dn and 6-\ conditional upon ZQ and Zi ,

using Bayes1 Rule:

Pr(0. |z .) =

where

Pr(z.) =

f z ) / P r ( z . )

. f z . )

(2)

(3)

For example, Pr( ^ 0 | z j ) = Pr( dQ , z^ /Pr fz^ = . 6/. 68 = . 88 is the

probability of fair weather given a "fair" forecast and Pr(z.) = Pr($Q, z ) -i-

Pr( d.j_ , Z) = . 6 -r . 08 = . 68 is the probability of a "fair" forecast.
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These revised probabilities are frequently termed "posterior"

probabilities because they reflect revisions of beliefs about the relative

probability of the values taken by unknown parameters based upon experimental

evidence. Notice that our posterior probabilities are affected by the

"accuracy" of the experiment. Because the experiment may be "unreliable, "

we remain somewhat uncertain about the true value of the unknown para-

meter. The probability values assigned to the right hand most branches

are exactly those just calculated, i. e. , the Pr( 8. \ z.) which are given

in Table V-3.

Probabilities appear in one more segment of the decision tree --

that which corresponds to the outcome of the experiment. We have already

computed the required probabilities (called "pre-posterior" probabilities)

in Equation 3 above. Accordingly, we assign the probabilities Pr(z.)

(the marginal probabilities) to the appropriate branches of the tree. Note

that these probabilities depend both upon the accuracy of the experiment

(as reflected in the likelihood we assign to the outcome of the experiment)

and prior probabilities concerning the value of unknown parameters.

Figure V-2 presents the decision tree for the picnic problem with the

appropriate probabilities entered. (The labels on the nodes are discussed

below. )

The probability values are summarized in Table V-3. Recall that

prior probabilities are the probabilities attached to the unknown parameters

prior to any experimentation. The likelihoods are the probability of an

experiment outcome given the value of the unknown parameter. Both of

these (the priors and the likelihoods) are known before the formal decision

analysis. Computed probabilities are the joint probabilities (the probability
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Table V-3

Summary of Probabilities for the Picnic Decision

Probabilities Known Before Analysis

a. Prior Probabilities: Pr(0.)

Pr(fair weather) = Pr (Q ) = . 8; Pr(rain) =

b. Likelihoods: P r (z . | 0 . )

= .2

Probability
Forecaster
,-,. says
Given -

Fair Weather

Rainy Weather

Fair Rain

. 75

! -4

. 25 '

,6

Computed Probabilities

a. Joint Probabilities: Pr^, z.) = Pr(z. | $.) : Pr(0 )

b.

•1

Marginal Probabilities Pr(z.) =
i=0

c.

Probability --Jjf
ano~

Day ia Sunny (9Q)

Day ia Rainy (dj)

Marginal Proba-
bility for Forecasts

No Weather Information
Sought («„) .

No Forecast (ZQ)

.3

.Z

Pr(zQ) = 1.0

Weather Information Sought (e,)

"Fair" Forecast (z.)

.6

.08

Pr(Z j )= .68

"Rain" Forecast (z,)

. Z

. 12

Pr (z 2 )= .3Z

Posterior Probabilities: Pr(0".|z.) = Pr(0., z . ) /P r (z . )

Probability -~fi£_^
given

No Forecast (ZQ)

1!Fair" Forecast (r, )

"Rain" Forecast (z, )
2

Fair (Q )
Weather0

• 8 .

.33

.62

Rainy (5,)
Weather l

.2

.12

.38
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that a particular unknown, parameter and experiment outcome both occur),

the marginals, or pre-posteriors, (the probabilities of each of the

experiment outcomes), and the posteriors (the probability of the unknown

parameters given the experiment outcome). In the picnic problem,

remember, the unknown parameters are "rain" and "sun" while the

experiment outcomes are "rainy forecast" and sunny forecasts."

3. Backward Calculation

We conclude the analysis of our illustrative decision problem

in extensive form by first computing expected payoffs for each possible

action, conditional upon performing a given experiment and observing a

particular outcome (nodes A in Figure V-2). The optimal action given an

experiment and outcome is that which produces the highest expected

payoff. (Recall that payoffs need not be in monetary terms.) We then

compute the expected payoff conditional on the choice of an experi-

ment (node B in Figure V-2). The optimal experiment is that with the

highest expected payoff.

This process can be seen in Figure V-3. There, the numbers

above each of the nodes represent the expected value to the decision-

maker as a result of being at that node. As expected value is the

weighted average of all possible values that the decision maker could

receive as a result of his decision. The weights are simply the

probabilities of receiving that payoff. A simple example is the case of
**,-.

rolling a die and receiving $30 if the number 1 or 2 appears and nothing

otherwise. In this case, the expected value is just:
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Figure V-3

The Decision Computation

imerxt Outcome Action Decision
Unknown Parameter

. S_

Payoff

100

r~j = decision aode

= chance aode
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EV = 2/6 ($30) H- 4/6 ($0) = $10

For the picnic problem, the expected value at node (1) in Figure V-3 is

EV = . 62 ($20) + . 38 ($45) = $29. 50

and at node (2) , it is

EV = .68 ($83) + .32 ($57) = $75

The double slashes indicate non-optimal decisions. Therefore, the optimal

decisions are (1) to go on the picnic and (2) not to obtain weather informa-

tion.

The reason for this second decision is clear. Given that weather

information is costly ($5) and given that it is not used (decision (1) ), the

information costs more than it is worth.

4. . The Expected Value of Perfect Information

Suppose now that the decision maker was offered the following opportunity:

he could buy the services of a "clairvoyant" who would tell him, with no

possible mistake, what the weather would be on a specific day. The

question becomes, how much would the decision maker be willing to pay

for the clairvoyant's services? This amount is called the "expected value

of perfect information. " This numbe'r is important because it provides

an upper bound on the amount of money the decision maker will be willing

to spend for weather forecasts that are less than perfect.
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The answer to the question can be determined by forming a new

tree representing this decision. Consider the tree in Figure V-4.

Figure V-4

The Decision Tree For Clairvoyance

^<*v-
Xk?'

Take Picnic 100

Stay Home 50

At the first node, chance decides what the weather will be. This is just

Pr( #Q) and Pr( 0^) for the probabilities of sunshine and rain, respectively.

If the individual finds out that it will be sunny, he will go on the picnic.

The payoff associated with this event is 100. If he finds out that it will

rain, he will stay home and the payoff will be 50. The expected payoff,

•7T,,, with clairvoyance then is:

"•c = Pr(0 0 ) (100) + P r ( 0 1 ) ( 5 0 ) = . 8(100) -s- . 2 (50) = 90

Without clairvoyance, but with the prior information discussed in

the previous section, the decision maker faces an expected payoff of 80.
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The increase in expected payoff due to the clairvoyant, or the expected

value of perfect information is then, just;

EVPI = *_ - V = 90 - 30 = 10
(-<

The EVPI represents the maximum amount the decision maker would be

willing-to-pay for better information about the weather. The reason is

simple. If the forecast cost the individual, say, 15, he knows that even

if the forecast is perfect, his expected payoff is

TTC - 15 = 75

which is less than the expected payoff if he always went on the picnic (30).

Therefore, he would not even consider obtaining a forecast. However, since

the actual cost of the forecast is only 5, we know that for some improvement

in the forecast accuracy, the optimal decision will be to obtain weather

information.

C. Valuing Payoffs

In assigning or determining the payoffs for a decision problem,

three separate problems often arise. First, we must determine those

costs that are relevant to the decision maker. Second, the payoffs and

experiment costs must be made commensurate. Third, a way must

be found to represent accurately the decision maker's relative valuation of

different payoffs. The purpose of this.section is to discuss these pro-

blems and possible treatments for them. In a properly performed statistical

decision analysis, assumptions about the payoffs are explicit and the sensi-

tivity of the optimal decision to assumptions about the payoffs can be

analyzed.
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The first step in assigning payoffs is the determination of the

relevant costs and benefits. Thus, it is important that a distinction be

made in the analysis of which costs and/or benefits are to be considered. li-

the decision maker is the government, the costs and benefits to be considered

would be social costs and benefits. That is, they would include private

costs and benefits and also the costs and benefits of externalities associated

with the decision. If, on the other hand, the decision maker is

a private individual the relevant costs and benefits would be his

own private costs and he would not consider costs borne by others as a

result of his actions. All costs must, of course, represent true opportunity

costs. For example, sunk costs (costs which result from immutable past

decisions) should not be considered.

Second, for the analysis to be meaningful, the payoffs and the

experiment costs must be commensurate. This is particularly difficult

when analyzing disaster warning systems since loss of life is included

in the payoffs. For loss of life to be on comparable terms with monetary

costs, some estimate of how the decision-maker values changes in his

survival probability, even if implicit, must be made. Objections are often

raised that this value is infinite (or at Least very, very great). Casual

observation of human behavior suggests that this is not so. We take risks

continually ranging from driving to not spending three continuous months

during the tornado season in the cellar, and such risk taking would

constitute irrational behavior if people truly placed an infinite value on

increasing their chances for survival.
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Given that there is such a finite value, how could (or should) we go

about measuring it? The methods that have been suggested include both explicit

and implicit approaches. Methods of the explicit type include the disco-anted

future earnings approach, the loss to society approach, and the insurance

approach. - These methods might be expected to lead to an underestimate of

the value an individual places on changes in his survival probability since market

transactions reflect only a part (although it could be a major part) of the

individual's life.

The implicit methods are based on the concept that an individual

reveals the value he places on small changes in survival probability

through risky actions he voluntarily takes. Most recently applied by

Conley [l], and Thaler and Rosen [11], this method is based on an individual's

willingness-to-pay for marginal changes in the probability of survival.

While these methods do not provide such straightforward measures for the

value attached to changes in risk as do the explicit methods, Conley shows

that, in general, the discounted future earnings approach underestimates

it. As suggested above, the discounted earnings approach therefore places

a floor on the estimate to be used in calculations.

The third problem is associated with attitudes toward risk on the

part of the decision maker. Recognizing that many, if not most, individuals

are averse to risk (i. e. , they are willing to pay an actuarially unfair

premium to insure against a "large" loss), there must be some way to

incoporate this behavior into our analysis. Recall that in Section B we

assumed that the individual acted to maximize expected utility. There-

fore, we can postulate a utility function for the individual, translate the

J7 These methods are discussed in [5].
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payoffs and information costs into "utils" and solve the decision problem

in exactly the same way as before.

An individual who is ",isk neutral" or a "risk preferer" can have

a suitable utility function and, therefore , this aoproach is more general than an

expected money value (EMV) approach. - The effect of assuming a particular

functional, form can be illustrated with the curves shown in Figure V-5. There,

three different functions have been drawn. The first, A. A, exhibits risk

aversion (we see why in a moment). The second, 3B, is a utility function

for an EMV'er, i.e., it exhibits risk neutrality. Finally, CC is the utility

function of a risk preferer.

Figure V-5

Utility "^actions and Risk Aversion

•J(-L/2)
u ( - L ) / 2

RISK HEUT3AI.

A RISK AVSRTSa.

Chaisres ia
Wealth

Returning no-w to AA, we can see what risk aversion means.

Suppose the individual is faced with a 50-50 chance of incurring a loss of

L, (assumed to be large relative to his net worth). From the function AA,
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we see that his loss in utility would be U(-L) if this loss occurred. His

expected loss is (-L/2) with utility U(-L/2) . However, his expected

utility loss is U ( - L / ) / 2 which is greater than U ( - L / 2 ) . (We can assume,

without loss of generality, that U(0) = 0 . ) Since the individual

is assumed to maximize expected utility, he will be willing to

pay a premium to avoid the risk. This premium can be found by finding

that amount of money whose utility is U( -L /2 ) . We find, from AA, that

this is [ ( -L/2)-P] and taking the difference, the premium is equal

to P . In other words, the individual is willing to pay an amount P in

excess of his expected loss in order to avoid the risk of incurring the

total loss. If we did the same thing for functions BB and CC, we would

find that, for the EMV'er (with function BB) the risk premium, P ,

would be zero. For the risk preferer, P would actually be negative,

i. e. , the individual is willing to pay to be given the gamble.

The application of this concept to decisions which include

outcomes with large wealth consequences is clear. Facing the risk of

large property damages, where the probabilities are small, the "average"

individual is likely to be willing to pay in excess of the expected loss

(which may be negligible) in order to lower the probability of such a

loss. The utility concept is not so easily applied empirically when the

outcome involves death o.r other consequences resulting in changes in

an individual's well-being. In this case, the individual's utility function

will involve two arguments, wealth and "health. " (The value of a

given amount of wealth varies depending on the individual's well-being. )

We know of no attempts to estimate functions of this type that have

been reported in the literature.
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Therefore, in the example application of Section D (in which death is the

outcome) we do not use a utility function. However, we provide an

example of its use for outcomes involving wealth losses in the appendix.

D.. An Illustration of the Methodology

1. Introduction

In this section, we apply the statistical decision theory described

above to analyze the decision-making process an individual might go

through (at least implicitly) when deciding whether or not to purchase a

demutable receiver. Although the receiver would, of course, transmit

all warnings, we restrict this analysis to tornadoes. Further, we

consider only deaths resulting from tornadoes. This allows us to illustrate

the application of the methodology without making the calculations

extremely complicated. This application uses data currently available

to the extent possible, but it is not intended to provide accurate demand

forecasts. There are several reasons,why this is so;

• Most areas of the country are subject to more than

one natural disaster. We consider a single household

exposed to one type of disaster -- tornadoes.

• We have made several simplifying assumptions about

the probabilities of different events, both through time

and over large geographic areas.

• Our estimates of the payoffs are open to question for

many of the reasons discussed in Section C.

• No allowance is made for the provision of daily weather

forecasts, which are also a service obtained from a
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demutable receiver that can receive NOAA Weather

Radio transmissions. (For a description of the NOAA

Weather Radio System, see Chapter IT above. )

The sections are arranged in the same sequence in which an

actual analysis would be performed. The sections therefore provide a

step-by-step guide to actual implementation of the method.

In Section 2, the decision problem facing a representative individual

is described. In Section 3, we develop estimates of the event

probabi.LLti.es Ln a form in which the avaLlabLe data can be used. The

likelihoods (those probabilities dealing with forecasting accuracy) are

caLculated Ln Section 4. The calculation, formulae are developed

to extract the maximum amount of information from the available data.

In Section 5, we calculate the joint and posterior probabilities that

are derived from the priors and the Likelihoods. Section 6 is concerned

with deveLoping cost estimates for the experiment, the action costs and

the payoffs. The optimal decision is determined in Section 7.

2. The Decision Problem

Our decison maker is faced with the following problem. On any

particular day he must decide •whether or not to rent a home receiver

designed to receive a warning signal from a DWS.— With this receiver,

we assume that the decision maker is certain to receive any warnings

that are issued. Without the receiver, other sources of information (e .g. ,

radio and television) are available to him, but he may not be listening.

_!_/ The reason for using rental instead of purchase as the relevant
decision is solely to simplify the probability calculations.
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Therefore, if he does not have a DWS receiver, the probability that he

•will receive any one warning is less than one. We also know that weather

forecasting is an imprecise science so that there are cases of both

issuing warnings when there is no tornado (false alarms) and issuing

no warning when there is a tornado (failure to warn). The use of a receiver

clearly does not affect the quality of the forecast.

When our decision maker receives a warning, he decides

whether or not to take some form of preventative action. The preventa-

tive action he takes (whatever its form) is assumed to alter the

probability of death in his family given that there is a fatal tornado.— —

The decision tree representing this mode is shown in Figure V-6.

The structure of the tree is most easily understood by looking at a

representative node at each stage. First, at node A, the decision maker

decides whether or not to rent the demutable receiver. If he chooses to

rent (e, ), there is a cost to that decision as noted by the single slash

through the branch. At node B, a chance node, we find the probabilistic

event of the issuance of a (tornado) warning. (In this application we do not

make a distinction between watches and warnings since the NWS demutes

for both. ) Although the issuance of a warning is not affected by the previous

receiver decision, we will see shortly the respective conditional probabilities

of the receipt of a warning are indeed affected. At node C, following the

I/ A fatal tornado is defined here as the joint event "tornado occurs" and
~" "at least one death results" where the one death need not be in the

decision maker's family.

2/ Ln the general decision problem, one form of action might be to
obtain more information. Because we are using tornadoes in this
example, the swiftness with which the disaster strikes is assumed
to preclude this option.
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Figure V-6

The Decision Tree

.Receiver Warning .Action Fatal i Death in .No. of Deaths
[Decision | Received | Decision Tornado? |Household? Jin Household j

•NO
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issuance of a warning, the decision maker decides whether or not to

take action. Notice that this decision only arises if the warning is issued.

(It is possible to think of the decision maker taking action without

any warning, but such behavior would appear uncommon and we ignore the

possibility here. ) Again, there is a cost to making the decision in favor

of action. At node D, the event of interest is the occurrence of a fatal

tornado. Although realism would require all tornadoes (perhaps weighted

by the degree of severity) be included, suitable data is readily available

only for fatal tornadoes. Further, as we shall see below, the payoffs are

in terms of deaths. Therefore, it seems that little is lost (and much

simplicity is gained) by restricting ourselves to fatal tornadoes.

Node E represents the chance event that at least one person in the

decision maker's family is killed as a result of the fatal tornado. Note

that if there is no fatal tornado, there can be no death in the decision

maker's family. At node F, chance determines how many individuals

in the family are killed (M represents the size of the family). The

payoffs and the probabilities associated with each of the chance events

will be added to the decision tree after we discuss some of the data

available for this problem.

Table V-4 provides the notation for this example. Note that we

have separated the occurrence of a fatal tornado from that of a death in the

decision-maker's family. The reason for this is that the data on forecasting

is related to deaths in the forecast box— and not in an individual's family.

This addition provides a link between warnings and deaths in the family.

I/ See Table V-4.
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Table V-4

Notation for the Application

(i) Experiment; e« ; Do not rent receiver

e, ; Rent receiver

(ii) Outcome of experiment; z ; No -warning received

Zj ; Warning received

(iii) Action; a~ ; No action taken

a, ; Preventative action taken

(iv) Unknown parameters; <£. ; No fatal tornadoes in the forecast box

<p • Fatal tornadoes in the forecast box

Of. ; No deaths in decision maker's
household

?, ; At least one death in household

(v) Pavoffs: f fe^ a.^, m)

(vi) Additional Notation; M = number of individuals in the decision
maker's household

m = number of individuals killed in the
household

N = population of a forecast box (an area of
approximately 25, 000 square miles for
which the warning is issued)

n = number of individuals killed in
a forecast box
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3. Event Probabilities

a. Introduction

The first problem, is the calculation of the event probabilities. In

this application, this process is more complicated than in the example

provided in Section B. Referr ing back to Figure V-6, we see that there are

two events of interest, namely:

« the occurence of a fatal tornado (<&,)

e the occurence of a death in the household ($ , )

We will now develop the calculation formulae for each of these events

and, with the existing data, estimate these probabili t ies. (Sections b and c).

In Section d, we develop conditional probabilities for the "household"

events (e. g. , the probabilities of a death in the household given a fatal

tornado.)

b. The Occurrence of a Fatal Tornado

The occurence of a fatal tornado can be viewed in the following

way. By some means, chance assigns each individual in a population of

N individuals either a "1" with probability p or a "0" with probability (1 - p).

These numbers are assigned to each individual independently. The probability

law describing this process is represented by the binomial distribution,—

so the probability that exactly n individuals have been assigned to "1" is, —

l_/ One often uses the Poisson probability law in discussions about the
occurrence of accidents. That is usually done as an approximation for the
binomial law when N is large and p is small because the binomial
requires calculation of, e. g. , N! ( = N • ( N - l ) • • • ( 2 ) ( 1 ) ). In this case,
however, the algebra works out so nicely that the binomial law can be used.

2_/ By definition,

/N\ N!
I n I = n ! ( N - n ) !
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Pr(n) = ( ) p n d - P)N " n (4)

If we think of the assignment of "1" to be "killed by a tornado," then

the probability of n deaths in a population of size N is exactly described

by (4). (Recall that these are prior probabilities, i. e. , prior to any

other information such as the fact that there is a tornado. )

The event "no fatal tornado occurs" (^n) is equivalent to the

event "no deaths" (n = 0). Therefore,

= P r ( n = 0 ) = ( )p°( 1 - p)N " ° = ( l - p ) N (5)

and

(6)

In order to derive an estimate of p, we require data on the number

of tornado fatalities and the population. Because of the way in which the

problem was modeled, we must be careful about the time period we select

for use in this estimation process. The NWS began issuing tornado forecasts

in 1952 [2]. Thus, after that date systematic warnings were available

about the occurrence of a tornado. The probabilities we are attempting to

measure are the unconditional probabilities of fatal tornadoes in the absence

of warnings. Therefore, we want to use data prior to 1952.
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On the other hand, improvements in building construction,

the overall educational level, etc. , may tend to lower this probability

by reducing fatalities. Therefore, we would want to collect data f rom recent

periods. In an arbitrary selection, we chose the period 1936-1955 as the

period over which to average tornado deaths and 1945 as the year for which

population was measured.

The population used in the estimation of the probability is

the population of the forecast box. Since the forecast box is approximately

25,000 square miles [3] and assuming the population is spread uniformly

over the entire area, we estimate N as the total population divided by the

number of forecast boxes (total area divided by 25, 000).

Finally, we restrict the area of concern to those states which are

"prone.to" tornadoes. We use as a discriminator the average annual

number of deaths for the years 1953-1971— and a cutoff of one. Thus,

any state with an average of more than one tornado-related death per

year is included. There are 21 of these states and they are listed

in Table V-5. The total population in 1945 is estimated (based on the

average of 1940 and 1950 Census data [3]) to be 76,074,000 with a

land area of 1, 364, 400 square miles. The NWS statistics show an average

of 182. 55 deaths per year during the period 1936-1955 [14]. This

was revised to 178 using data in [14] to reflect the fact that we are

concerned only with 21 states.

_!_/ The reason for using this later period to determine "tornado-prone"
~ states is that if there has been a geographical shift in the incidence

of tornadoes we want to take our population and land area data from
the states currently affected.
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Table V-5

States With Tornado Threat!/

Ohio Georgia
Indiana Florida
Illinois Kentucky
Michigan Tennessee
Wisconsin Alabama

Minnesota Mississippi
Iowa Arkansas
Missouri Louisiana
Nebraska Oklahoma
Alabama Texas

Massachusetts

\l Annual * V Q * v "?«^i" M4.1
- parson 1953-1971 [14].

V-33



In Table V-6 we perform the relevant calculations. In line a, the

number of forecast boxes is calculated as described above. The average

population in a forecast box is computed in line b. In line c, we divide

the tornado deaths in the forecast box by the population in a forecast box

and then divide this quotient by 365 days to reflect daily deaths. From line d,

we see that the probability of a fatal tornado in a forecast box on any one

day is estimated to be . 009.

c. The Probability of Death in the Household

Given the data in the previous section, we can develop the probability

of death in the decision maker's household. Letting m denote the number

of deaths in the household, we know, by definition, that

N

Pr(m) =y ^ Pr(m|n) • Pr(n) (7)

n=m

The distribution of P r(m|n) can be viewed as follows: given an area with a

population of N individuals, select a sample of size M (family size). If

there are n people dead in the population, what is the probability that there

are m individuals that are dead in the sample? The answer can be found

with the hypergeorr. str ic distribution. Thus,

n\ /N - n\ /N - n\
] JM- n)Pr(mjn) = ^' "" "' , (8)

(M)

Therefore, from (4), (7) and (8)

N (n\ /N - n
—~ i i . j / "X 7\ _. i\ I »•*

(9)
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Table V-6

Calculation of Fatal Tornado Probabilities

a. Number of Forecast Boxes;

F = 1 ,364,400/25,000 = 54.6

b. Forecast Box Population!

N = 76,074,000/F = 1.394x10° .

c. Probability of Individual Death (p);

178/54.6 1

1.394xl06 365

d. Probability of Tornados;.

(1) "No Fatal Tornado"

= 6.41 x 10"9

= Pr(n = 0) = (1 - p)N = .991

and (2) "Fatal Tornado"

Pr(0.) = (1 -Pr t f n ) = .009
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For n > N - M -f- m, Pr(m|n) = 0. (To see this, consider the case

where n = N, m<M. Then, if the entire population is killed, all members

of the family must be killed, so P r ( m < M ) = 0.) From this, (9) can

be rewritten as

N-M-i-m

Pr(m) =

n=m

N - n
M - m N\ n.

)P (
VN - n

(10)

With some algebraic manipulation, we have,

M! m. >M - m
m l ( M . m ) l

K

K\ k. K-k
(11)

where k = n - m and K = N - M. But the term in brackets is one

since it is the sum over the range of a probability distribution. Thus,

_. , . /M\ m.. .M - m
Pr(m) = p (1 - p) (12)

The probability of no deaths in the family ($n) is, therefore (assuming M = 4),

= Pr(m = 0) = (1 - p)M = 1 - 2 .56 x 10"8 = .999999974

and the probability of at least one death in the family is,

= 1 - Fr(0-Q) = 2 . 5 6 x 10
-8
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d. Conditional Event Probabilities

From the decision tree, we see that we are also interested in some

events of the type ''death in the household ( d ^ ) given a ratal tornado (9^). "

These probabilities can be easily calculated from the information above.

First note that

\ _ -nwa I/A M3WA ^ 4- Pr( A. Id). IPrUO.) (13)

But the first term is zero because (by definition) tornado deaths can only occur

if a fatal tornado occurs. Thus:

= 2 . 8 4 x l o'

is the probability of at least one death in the family given a fatal tornado.

While the conditional probabilities of m deaths given a death

in the household could be calculated similarly, that approach would ignore

the useful information that one death in the household makes it more likely

that others are killed (i.e., the independence assumption is faulty for

co-located groups). This merely says that we would expect that the

information that one death has occurred in the family would cause the

decision maker to revise the individual probability of death upwards. This is

intuitively plausible since members of a household would normally be in the

same geographic area when a tornado struck. In an attempt to correct

for this, we make use of the fact that the average area of a tornado path is

2. 5 square miles [3]. We use this to recompute the relevant population

by looking at the average population in an area of 2. 5 square miles, which

is 139.4. Then a revised value for p (call it p1) is p1 = 6.41 x 10"3.
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We could now compute the probability of m deaths in the household given

at least one death in the family. To simplify the calculations

we consider the conditional expectation of lives lost given at least

one is lost. This is simply,

M M

~ *^ 1 ^r^
(15)

where the Pr' represent these revised probabilities (i. e. , using pf instead

of p). For .example, if M = 4, the expected number of lives lost in the

household given at least one is lost is 1. 0001.

Table V-? provides a summary of the results that will be used

in the remainder of the study.

Table V-7

Event Probabilities

Pr(No fatal tornados) = ??!<£«) = .99

Pr(Fatat Tornado) = Pr(<£ ) = .009

Pr(No deaths in household) = ?r(0.) = 1 - 2. 56 x 10"3

a
?r(At least one death in household) = Pr{9,) - 2 . 5 6 x 1 0

Pr(no deaths in household given no fatal tornado) = Pr(9 \ i-.) = 1 . 0

Pr(at least one death in household given no fatal tornado) = Pr(0 |<6.) = 0.0

Pr(no deaths in household given fatal tornado) = Pr ( Q . \ < i > . } = .9999972

Pr(at least one death in household given fatal tornado) = Pr( Q . | <^.) = 2. 34 x 10*°

Expected lives lost in family given at least one life In family is

lost = 1.0001
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4. The Likelihoods

The data that will be used to estimate the likelihoods concerns

warning issuance, not receipt. To move f rom the probabilit ies concerning

warning issuance to warning receipt, we assume that the two events are

independent. Thus, the probability that a warning is issued and received

is the product of the two probabilities. If the receiver is rented, we

assume that the warning is received with certainty, i .e . , the probability

of receipt is 1.

In Table V-8, we provide the data required for the calculation of the

probability of receipt of a warning given that the demutable receiver is

not rented, Rosen and Haimes [ 8] provide data on radio and television

audience. We assume: (1) that the radio and television audience is separate

(i.e. , total audience is the sum of the radio and television audience), and

(2) that this percentage may be interpreted as the percentage of households

that would receive a warning via radio and television if one were issued.

Table V-3

Hourly Audiance Six*

Hour â iania, c"»""« Adult TV „,
i ?!ua ?.adia Audioace^

0000
0100
0200
0300
0400
0300
0600
0700
0800
0900
1000
1100
1200
1300
1400
1500
1600
1700
1300
1900
2000
2100
2200
2300

19
13
3
a
a
3

21
35
34
26
29
23
33
31
33
32
35
36
46
32
55
!6
50
32

Probability

of a Toraada — Aadieoea '
.015
.019
.020
.015
.014
.012
.011
.010
.014
.015
.017
.013
.029
. 040
.073
. 101
.110
.110
.0«8
.076
.061
. 049
.038
.033

. 2"

.25

. 16

. 12

. U

. 13

. 23

. 35

.48

.39

.49

.50

.96
1.24
2.41
3.23
3.23
4. 13
4.51
3.95
3. 36
2. T4

l!l2
1

7at»l
A..

From [14], p. 56.

V-39



If we assume that a warning is issued in the same hour as the

tornado occurs, — then the expected audience size is the sum over the

size of audience in any hour multiplied by the probability of a tornado in

that hour. From Table V-6 we find that this expected value is 37 percent

of the population. Thus, we use . 37 as the probability of receipt of a

warning via radio and television given one is issued.

The bias in this figure is not clear. Because the assumptions made

above tend to overestimate the audience, this figure will tend to be high.

On the other hand, there are other means of obtaining tornado warnings

such as contacting the NWS directly, contacting the news media, etc.

This would tend to increase the probability that any warning issued is

received. Because of the ambiguity in the bias, we 'use . 37 as the relevant

probability.

To estimate the probability of warning receipt we use two pieces

of data found in the literature. First, Gal way [2] has found that the percentage

of fatal tornadoes for which a warning had been issued is « 56. Thus, in

the case of the receiver being rented ( e , )

_!_/ If the tornado warning is issued earlier, the proper way to calculate
the expected audience is to estimate the cumulative audience over
the period from warning issuance to the occurrence of the tornado.
For example, Galway [2] presents data showing the mean lead, time
from warning issuance to impact of the tornado is from 2. 55 - 3. 27
hours. Therefore, the expected audience is (roughly) the percentage
of households that watch television or listen to radios some time in
the period from t-3 to t multiplied by the probability of a tornado at
time t and summed over all possible t's ( i . e . , all 24 hours). The
available data cannot support this calculation. However, if we look
at the one-time audience at t-3 and rework the calculation in the
Table V-8 (i. e. , audience at 0900 times probability of tornado at
1200-r, etc.) the expected audience is 33.4%. The cumulative
audience must be greater but by how much is unknown. Because of
the uncertainty about cumulative audience size, we return to the
original assumption about warning issuance and tornado impact
occurring in the same hour.
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, e j ) = .56

which is the probability of warning given the occurrence of a fatal

tornado. Therefore,

j l ^ . e j ) = .44

Note that this latter number is the "failure to warn!' probability.

Kessler [3] finds that "about 40 percent of affirmative predictions

are correct, i.e., are followed by tornadoes somewhere in the forecast

box. " If we assume that prediction of fatal tornadoes is as accurate as

for all, then the probability that a tornado occurs given the issuance of a

. . I/warning is: — . •

P T ( < J > I \ Z I , S I ) = .40

and

= .60

is the probability of no fatal tornado given a warning.

If It would seem intuitive that fatal tornadoes, being "larger" may
have a higher probability of being detected. If so, better information
is received over both "normal" channels and a demutable receiver.
The effect of better information on the decision is discussed in the
sensitivity analyses of Section E.
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if we combine these two pieces of data with the event probabilities

on the occurance of a fatal tornado (Pr(<z>, )) we will be able to compute all

the Likelihoods. This is accomplished by calculating the false alarm

probability (? r (z , j c i> 0 ) ) . By Bayes1 Rule (we drop the e. notation for

simplicity)

(16)

where

Inserting (17) into (16) we can compute,

Substituting in the values for quantities on the right-hand side, we

obtain

P r < z n f « . ) = . . - . = 7 . 6
i 1 ' 0 1 ( .4) ( .991)

and

, e ) = . 1 - 7 . 6 x l O ' 3 = .9924
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using,

The likelihoods when the receiver is not rented ( e ~ ) are calculated

P r(z. i (£n , en) = P r (z. | <p , e,) • P r (receipt) = 7. 6 x 10" (. 37) = 2. 8 x 10

and

P r(zll^O'eO ) = P^zJ^.ej) • Pr(receipt) = .56( .37) » .21

The complementary probabilities are then one minus these results. The

likelihoods are summarized in Table V-9.

Table V-9

Conditional Probabilities

^^»^Given
ProbaV^^
bility of ̂ ^^^

No Warnings
Received(z )

Warning
Received(z1 )

Without Receiver ( e O )
No Fatal
Tornado (<£o)

.9972

2. 8 x 10"3

Fatal
Tornado (<j>\)

.79

.21

With Receiver ( e i )
No Fatal
Tornado (<£Q)

.9924

7.6 x 10"3

Fatal
Tornado (<£]_)

.44

.56
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5. Joint and Posterior probabilities

Given the prior probabilities and the conditional probabilities,

we can now proceed directly with the calculation of the joint and posterior

probabilities. Since this is done in the same way as described in Section B

only the results are presented here. The joint probabilities are given

in Table V- 10 an<3 the posterior probabilities in Table V-l 1. —

Table V-10

Joint Probabilities

A. No Receiver Rented ( e ~ )
Z0 Zl Marginal

(No Warning Recv'd) (Warning Recv'd) Probabilities

^ (No Fatal Tornadoes)

<t> (Fatal Tornado)

Marginal Probabilities

3. Receiver Rented (e, )

<J>Q (No Fatal Tornadoes)'

<t>l (Fatal Tornado)

Marginal Probabilities

.9883

7.03 x 10~3

.99536

20
(No Warning Recv'd)

.9836

3.9 x 10"3 .

.9875

2.8 x 10"3

1.87 x 10"3

4.64 x 10~

21
(Warnins Recv'd)

7.5 x 10"3

5.0 x 10"3

1.25 xlO"2

.9911

. 0089

Marginal
Probabilities

.9911

. 0089

_!/ The numbers presented in this report were rounded only at the end of the
of the computation. Rounding at each step will, of course, result in minor
variations from these results.
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Table V-H

Posterior Probabilities

A. No Receiver Rented (e-)

\Probability of: 0 1
Given\ (No Fatal Tornadoes) (Fatal Tornado)

_ 3
z (No Warning Received) .99293 7 . 0 6 x 1 0

z (Warning Received) .5977 .4023

B. Receiver Rented ( e , )

Probability of: 0 . 1
(No Fatal Tornadoes) (Fatal Tornado)

Z Q (No Warning Received) .99604 3 .96 x l O "

Z (Warning Received) .6019 .3981
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The effect of the receiver is seen in the probabilities conditioned

on no warning (zn) . Having the receiver leads to fewer errors of the

second type (i. e. , failure to receive a warning) and more errors of the

first type (i. e. , the receipt of false warnings). From this, it is clear that,

in the model, the decision as to whether to rent a receiver or not hinges

on the relative costs of these two types of errors.

The probabilities just calculated are shown on the appropriate

branches of the decision tree in Figure V- 7. -On the tree, we assume now that

taking action (a.) results in a reduction of the probability of a death in the

family by 90%, i. e. ,

; a )

for either decision (e.) about the receiver. This is an arbitrary assumption

that accounts for the motivation to take action while recognizing that such

action is not a perfect guarantee against disaster.

6. Payoffs

With all of the probabilities calculated, the only thing that

remains is the calculation of the payoffs on the decision tree.

The first step is determining the equivalent daily rental for a

receiver (Table V-12). This ia done to facilitate the comparison between

the payoffs, which occur dally and the experiment cost. Using an 8% rate

of discount,— the factor by which to multiply the $15 receiver cost is

calculated as:

_!_/ Again, the choice of a discount rate depends to a large degree on the
particular problem or administrative guidelines. The 8% used here is
designed to reflect a private individual's discount rate (after tax) in his
cost benefit calculus.
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Figure V-7

Probabilities of Following Alternative Paths Emanating

From the Chance Nodes

Receiver Decision Warning Received? j_/ Action Decision 1 Fatal Tornado ? J/
1

Death in Family ? -£./

—N No 1.0

— — Decision Coat, .Action Cost

Q Decision Node

Q Glance Node

Notes: I/ From Table V-10.
5 From Table V-U.
J7 From Table V> 7and aaaumption of 90 percent redaction in probability of death
~~ when action i* taJcea.
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C = S15

where i is the daily equivalent of 8% and n is the life of the receiver

in days. (Li this case, 2, 555 days. ) No allowance for maintenance has

been included in the rental. Thus, our value of $. 0077 per diem under-

estimates the cost that would be incurred.

Table V-i2

Receiver Cost (@ 8%/Year)

= . 0 0 0 5 1 2 x $15 = $.0077/day

7 years,
365 days

The action cost has already been arbitrarily set at SI. While

some may feel that really there is no cost to taking action, observation

of people's behavior in the face of disaster warnings again tends to suggest

that there must be at Least a minimal cost, for often no action is taken. If

life were valued at all, rational behavior would always suggest costless

action be taken when the probability of death is positive.

Assignment of costs to changes in survival probabilities is by far

the most controversial step in the analysis. However, a recent empirical

study by two economists provides us with a usable estimate that can be justified

on theoretical grounds. The two economists, Richard Thaler and Sherwin Rosen

[11 ], use data from the labor market to estimate the risk premium that workers

in "risky" jobs require in order to be induced to enter the risky occupation.
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This is more satisfying since people often make decisions over probability

distributions that only alter their risks marginally. The number they

arrive at is 5176 per . 001 change in the probability of death, —

Thaler and Rosen's interpretation of this result is as follows:

Suppose 1,000 men are employed on a job entailing an extra
death risk of .001 per year. Then, on average, one man out of
1,000 will die during the year. The regression indicates that
each man would be willing to work for $176 per year less if
the extra death probability were reduced from . 001 to . 0. Hence,
they would together pay $176,000 to eliminate that death: the
value of the life saved must be $176, 000. Furthermore, it must
also be true that those firms actually offering jobs involving .001
extra death probabilities must have to spend more than $176, 000
to reduce the death probability to zero, because there is a
clear-cut gain from risk -reduction if coses were less than this
amount.

If the figure is adjusted to 1976 dollars, the result is approximately

$300, 000. Incorporating this figure into our statistical decision

framework is equivalent to assessing the changes in risk associated with

various decisions and then checking to see whether or not the costs of the

decision is greater than the individual's revealed willingness-to-pay. There-

fore, our analysis uses these estimates on the individual's witiingness-

tc-pay for small increments in the probability of survival adjusted

to be comparable with the state of nature, i.e., death. For

decisions that make marginal changes in the probability of survival, we also

need not worry about utility functions since they have been incorporated by

the estimates of willingness-to-pay.

In order to make the computations easier we will truncate the

tree before the final node In the following way. Since the -decision maker

I/ In 1967 dollars.
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maximizes expected value, the value at the final node (before the

arcs indicating the number of deaths in the family) can be calculated

from the expected lives lost multiplied by the value of increased survival

probability. Letting E^ be the expected value at the last node, we know,

M M

Pr(m = k|d1)($300, 000)(k) = $300, 000

k=l k=l

But the summation has already been calculated and is 1.0001. Therefore;

= $300,030

7. Decision Computation

With the information on probabilities and payoffs, we are now

ready to proceed with the analysis. The decision maker's decision tree

Ls presented in Figure V-8. As described in Section B, we begin on the right

side of the tree and work backwards. We first calculate the expected loss

given the decision on the receiver, the receipt or nonreceipt of a warning,

and the decision on taking preventative action. Comparing the two cases

where no warning had been received (ZQ) and no action taken (a^) , the effect

of the 100 percent "coverage" of the demutable receiver is apparent.

Without such a receiver, the expected loss is -$.006 while with the receiver

the loss is -$'. 0034.
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Figure V-8

The Decision Computation for the EMV'er

Receiver Decision Warning Received? Action Decision

A A «

Fatal Tornado?

in"5 /"

Death in Family?

-\ No

Payoff

n

-6.0 x 10 -3

-7.7 x 10
-3

-. 34

Decision Coat

Decision Node
Chance No<ie

-.034

$301.500

$301.500
0

$301, 500

-.035
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Moving one step back, we determine the optimal decision on

taking action by minimizing the expected loss of that decision. To the

values calculated in the previous paragraph, we add $1 if the decision to

take action (a. ) is made. From Figure V-8, we See that if a warning is

received (z ) , it is never optimal to take preventative action. (The

double bar through an arc indicates a nonoptimal decision. )

Because the receipt of the warning message is probabilistic, we

next calculate the expected loss given the receiver decision. Here, we

have what may be a surprise -- the expected value is the same regardless

of the receiver decision. The reason, naturally, is to be found at the

action decision. Since receipt of the warning did not lead to any change

in behavior, it's to be expected that the implicit value of the receiver is

zero.

In the final (and now seen to be unnecessary) step, the receiver

costs are added which makes the decision to rent the receiver more costly

(in terms of expected losses) than the decision not to rent the receiver. —'

E. Sensitivity Analyses

1. Results of the Sensitivity Analyses

The results of the analysis in the previous section indicate that

a demutable receiver which receives information on warning alone (or

over which other information, valueless to the decision-maker, is

received), will not be purchased by our representative decision-maker.

_!_/ The fact that the receiver cost is the same as the expected values
given the receiver decision is only coincidental.
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In the analysis, many assumptions were made that directly affect the

decision. In this section, we address the sensitivity of our results to

the following assumptions:

• The size of radio and television audience that may

receive any warning issued

• The failure-to-warn probabilities

• The false alarm probabilities
t-

• The assumed value associated with increased survivability

• The number of individuals in a household

• The reduction in losses from taking action

• The revised probability given at least one. family death

• The cost of action

• The cost of a demutable receiver

• The population assumed to be subject to tornadoes

Table V-13 presents the results of these analyses. Column A is

the variable being tested. — Column B is the value used in the base case

reported in the previous section (and used for the other sensitivity

analyses and Column C contains the new value (both high and low). The

effect on the action decision (both with and without the receiver) Is shown

in Column D while the result on the receiver decision is in Column.E.

If The perfect forecast test means both no cases of "failure to warn" or
of "false alarms. "
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As is evident from Table 11, the decision maker generally neither

takes action nor rents the receiver. (Obviously, if he never takes action,

it will not be in his interest to rent the receiver. ) This suggests that the

problem, in the sensitivity analysis here, is that the cost of action is

the stumbling block (or, at least, the first of two). Therefore, a new

set of sensitivity analyses were developed under the assumption that

action costs nothing. The alternatives were not so extensive since we are no

longer are concerned with the values for assumptions that only make the

decision Less favorable. We have also consolidated the false alarm and

failure to warn alternatives and consider only the perfect forecasting

option. In addition, we consider the effects when the expected lives lost

is changed or the receiver cost is varied.

The results from this new set of analyses as shown in Table V-14

indicate that only in the case of the revised probability of an individuals

death, given that at least one in the household is dead, is one. That is,

when the expected number of lives lost (given that at least one lost) is exactly

four, the receiver Is rented. (Naturally, action is always taken when a

warning is issued because that action is now considered "free". )

Table V-14

Sensitivities Assuming Action Costs Nothing

Alternative

Perfect Forecasting

Expected Lives Lost

Receiver Cost

Value

N. A.

4

S5

Receiver Decision

Do Not Rent

Rent

Do Not Rent
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The net result of these sensitivity analyses is that given the

assumptions and the data that were used la. this chapter the demutable home

receiver, providing tornado warnings only, would reach a small percentage

of the total national market. "We must repeat here that this analysis was

designed to illustrate the method and not to be used as accurate estimate of

the market for home receivers. Clearly, as the analysis in this part has

shown, the method can be applied to this type of problem. In the following

section, we examine another study related to our results to see if the

method we have suggested has implications that are compatible.

2. Comparison With Other Results

The Opinion Research Corporation (ORC) conducted a survey [7]

to determine the market for home warning devices. Using a market

survey approach, they found: —

As the detailed tabulations show, overt consumer interest
in the various options, at or exceeding expected retail price
levels, ranges from 12 percent of U.S. households for the
basic automobile warning receiver to 21 percent of U. S.
households for the home disaster/attack option (May 1974).
Expressed interest in other options ranges from 17 percent
to 21 percent (statistically similar within survey sampling
tolerances).

It would, however, be foolhardy to accept this strong level
of demand as manifest. As pointed out by Siri Nehevajsa
consumer demand measured through a personal or telephone
interview possesses many of the characteristics of direct,
individualized sales methods.

When a product such as the contemplated warning receiver
is introduced, it is highly unlikely that such direct one-on-

. one techniques will be used. . .

J./ In [7], p. 10.
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Viewed another way, the lowest percentage of respondents
who indicate that they are very likely to buy a receiver is the
6 percent responding in this manner to the basic automobile
device. Those stating that they are very likely to buy the
receiver are at the 9 to 17 percent level for all home warning
device options, and 14 percent for the automobile device with
the accident/hazard option. . . . .

One interesting implication of the ORC study is that their addition

of a non-natural disaster warning feature (in this case, warning of poor

road conditions) significantly increases the market for the automobile

receiver. If we consider the decision tree developed in this example

again and visualize the addition of branches to indicate the provision of

information of higher probability, lower cost events (such as poor road

conditions) it is likely that the receiver may become worth the cost for

a larger market.

F. Estimating the Demand Curve

Using the statistical decision theory approach, any one individual

will, of course, decide either to buy or not to buy. Therefore, attempts

to apply directly the results of our analysis in this part to the population

would necessarily result in a conclusion that either the entire population

would rent (purchase) the receiver or none would. Given the variation in

human tastes for safety and the less than perfect market for tornado safety

that currently exists, both of these extremes appear unlikely.

Such variations in taste can be used to estimate a demand curve

for home receivers with the aid of the decision theory approach described in

this chapter. This section illustrates the derivation of

a demand curve for home receivers based on the variation in tastes for

risks as expressed by individuals' willingness-to-pay to increase their
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probability of survival. From the discussion of the Thaler and Rosen

article [ll ] in section D. 6 above, we know that there is a simple one-to-

one relationship between this willingness-to-pay and the "value of life. "

Specifically, because of the way the Thaler and Rosen model was

estimated, the value of life is one thousand times the willingness-to-pay

figure. Thus, the $300, 000 value of life used in the example of section D

corresponds to a willingness-to-pay of $300 for an increase in the

survival probability of . 001 . In this section, we continue using the

"value of life" figure for consistency but the proper interpretation is in

terms of willingness-to-pay.

With all other assumptions remaining the same as they were for

the example analysis of section D, it can be shown— that the minimum value

of life required to make the individual just willing to buy the receiver

(which is assumed to cost $15) is $2 million. Therefore, if this were

the only characteristic that varied among individuals, all individuals

who value their lives at more than $2 million would buy the receiver.

As the price of the receiver is allowed to vary, this minimum

value of life will also change. For example, if the price of the receiver

is lowered, it is reasonable to believe that it will take less (in terms of

value of life) to induce the individual to acquire the receiver. We can use

the model developed in section D to find the minimum, value of life

required to induce purchase for various receiver prices. In Table V-15,

the minimum values of life associated with several different receiver

prices are presented.

_!/ Using the decision analysis just illustrated.
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Table V-15

Relationship Between Price of Home Receiver

and Willingness-to-Pay to Increase Probability of Survival

Receiver
Price

$15. 00
10.00
7. 50
5. 00
3. 00
2. 00

Minimum
Values-of-Live ($M)

$2.0
1.7
1.5
1.3
1.2
1. 1

We observe that, as expected, at lower prices the minimum value

of life required for receiver purchase is also lower. Now, since these

are minimum values of life, individuals with a value of life sufficiently

high for them to buy a receiver at, say, $15 will buy one at all lower

prices. This suggests that in order to derive a demand curve for home

receivers, there must be some way to estimate the proportion of

households with sufficiently high values of life at different receiver prices.

One method that can be used for this procedure is to consider the

probability distribution that depicts the variation in people's tastes toward

risk. For example, suppose that the underlying probability distribution

is of the form shown in Figure V-16. The function Pr(v) is the probability

density function that indicates the probability that an. individual has a

value of life in some interval. For example, the probability that the

value of life, say Pr(v*), is between v, and v^ is the integral,

Pr(v*} =
V-

Pr(v)dv
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Figure V-16

Estimating the Proportion of Households

Acquiring Receiver Given the Value of Life

Probability

Value of
Life

Now, because this is a probability distribution, we know that

v)dv = 1

I /

-oo

Now, let v reoresent the minimum value of life required to induce an
P

individual to purchase a receiver when the receiver price is p . Then the

probability that a random individual will have a value of life in excess of

this minimum is just

Pr(vV ' L1pr(v)dv

which is the shaded area in Figure V-16. Thus, the proportion of house-

holds that would acquire the receiver is, according to this model, just

Pr(v*) .

\_l Although the probability density in Figure V-16 starts at 0 , we can
assume that Pr(v) = 0 for v < 0 .
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The next step is to determine the proper probability function to

use in the analysis.since, to our knowledge, there have been no

empirical studies of distaste toward risk. However, the following

characteristics of such a probability distribution seem reasonable. First,

the domain of the function is the positive real line. This assumes that

no one is willing to pay to be exposed to a fatal tornado. The only other

piece of information that we "know" is the average value of life as

estimated by Thaler and Rosen [11 ]. With only these two bits of informa-

tion, Tribus [l2J has shown that the "maximum entropy" probability

distribution is the exponential. The reason for using a maximum entropy

distribution is that it incorporates the knowledge we do have while

otherwise allowing for the most uncetainty about other information.—

The exponential probability distribution has the form,

p(x) = A e ~ X x A, x ^ 0

and is the distribution illustrated in Figure V-16 above. The mean of the

distribution is 1 /A and in our example the parameter A is the

reciprocal of the "average" survival probability value. Although we used

$300 in our example, this is biased downward since the sample will have

more "adventurous" individuals in it. Therefore, we assume that the

average value is $500 so that A = 2 (in thousands of dollars). Then, the

probability of an individual having a value of life greater than $2, 000 is

_!_/ The interested reader is referred to Tribus [ 12] for a formal discussion
of the principle of maximum entropy. The idea, however, is easy to
understand. Suppose we know only a few things about the random variable
described by the distribution. (For example, in this case we know only
the domain of definition and the mean value. ) We would like to select a
probability distribution that reflects our lack of knowledge by being as
"spread-out" as possible. Tribus shows that a quantity called the entropy,
measures how spread-out a probability distribution is. Thus, a "maximum-
entropy" distribution has the highest level of entropy consistent with our
knowledge. If we know only the domain and mean, as is the case here,
then the exponential distribution has the maximum entropy.
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Pr(x ^ 2) ='f' dx •f"
Thus, an estimate of the percentage of households with a willingness-to-

pay for increasing survival probability sufficiently great to induce them

to buy a $15 home receiver is 1.83%. (Recall that in this example the

only disaster considered is a tornado. With the addition of other disasters

and local continuous weather forecasts , the estimate of the market would

be greater. ) For each of the values in Table V-15, we can compute a

similar figure and the results are shown in Table V-17.

Table V-17

Estimated Market For Home

Receivers at Different Prices

Figure V-17

Estimated Demand Curve

Price

$15. 00
10.00
7. 50
5. 00
3. 00
2. 00

Market (%)

1. 83
3. 33
4.98
7.43
9. 07

11.08

Receiver
Price

'Consumers' Surplus

. Demand

4 6 8 10

% of Households

(Note that the market consists of households in the twenty-one state area

defined in Table V-5. ) A demand curve is then estimated from the data

in Table V-17. The estimated demand curve (and the associated consumers'

surplus indicated by the shading) is shown in Figure V-17. The funtional

form of the demand curve illustrated in Figure V-17 is:

N = .2381p.'- .865
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where N is the fraction of households that will purchase a receiver when

the price is p. Using the same procedures described in Chapter IV,

the annual consumers' suplus per household (assuming immediate system

activation and immediate market penetration) is

100

CS = / ( . 08 ) ( .2381)p ~ ' O U J c / p= J (.08)(.

As
r 13 - i l O O

= (. 019048) I P
 135 I

= . 0 1 9 0 4 8 ( 1 3 . 7 9 3 2 3 8 - 1 0 . 6 7 6 7 3 7 )

= .019048 (3. 116501)

= .059363

Total annual consumers' surplus is then found by multiplying the value

per household by the number of households in the market. The number of

households was estimated by using the ratio of population in the 21 states

(76 million) to total population in 1945 — (133 million) and Rosen and

Haimes figure of 70 million households in the U. S. Then total annual

consumers' surplus is

CS = . 059363 (70 x 106) (76/133) = $2. 37 x 106

Over a twenty year period, total consumers' surplus is

CS. = 2 .37 x 10 , „
at

"0

l_l The reason for using 1945 is discussed on page V-32,
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.20
, 1 - . U O U

= 2 .37 x 106 "e

L ' J0

= 2. 37 x 106 (9 .976294)

= $23.69 x 106

Incorporation of assumptions about system activation and market

penetration can now be performed in exactly the same manner as in

Chapter IV.

G. Remarks and Extensions

In this chapter we have presented a method that appears to suitable

for analyzing the decision process of the customers of the information

transmitted over a DWS. Further, we applied this method to actual data

(where available) to examine the implications. Finally, we compared

the results with other information on the market for DWS receivers and

safety.

Two observations can be made as a result of this analysis. First, the

statistical decision theory methodology can be successfully applied to

the disaster warning receiver problem. Second, the results obtained

are not contradicted by existing studies of related problems.

From the existing studies, two further remarks appear

warranted. First, a fruitful avenue of investigation is a determination

of other information that could be transmitted over the DWS (broadly

I/
conceived) and which is valued by the consumer. Second, the

— A related problem is the determination of specific groups that
might face sufficiently different circumstances that purchase of a
receiver is worthwhile. Such a group might be the rural pupulation
in poor coverage areas.
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incorporation of information concerning the distribution of individual

characteristics (e .g . , willingness-to-pay for safety) will provide a more

detailed assessment of market potential (and benefit/cost considerations).

Both of these should be investigated in any application of this methodology.

Finally, it should be observed that there are other disasters for

which an individual may desire a means of obtaining warnings. Table V-17

lists property and life losses associated with three common types of

disasters, tornadoes, floods and hurricanes. Of the three, tornados

appear to be associated with the greatest loss of life (with a few exceptions).

Floods and hurricanes, however, represent more extensive phenomena,

that affect larger areas. A tornado appears, strikes, and is

over quickly while floods (except flash floods) and hurricanes

develop more slowly. _ ^

Table V-17

Statistics on Tornadoes, Floods, and Hurricanes

No. 289. TORNADOES, FLOODS, AND TROPICAL CYCLONES: 1936 TO 1972

rrZM

TornartnM, -ii;mh»r
Lives lost, total

Most in & single tornado... .
With property loss of JiOO.OOO and over..

Floods:
Lives lost.
Property loss mfl. del..

North Atlantic tropical cyclones and
hurricanes: '

Number reaching U.S. coast_
Hurricanes only • .

Lives lost In 0.S

1936-
1945

1,314
1,896

316
96

953
1,484

41
19

788

1945-
1955

2,989
1,753

233
130

308
3. 330

40
21

495

1356-
1366

6,381
927
88

174

157
2,721

33
15

692

1966-
1971

4,233
647
133
!»'

603
2,247

34
•x

356

1963

604
66
32
19

297
903

3
2

256

1»70

649
73
28
18

133
223

14
9

11

1971

388
156
58
35

75
288

S
3
g

1*TI
est

;o
3
1
»

(Si)
fltt)

1
1

13

NA Not available.
• ' Tropical cyclones have maximum winds of 39 to 73 miles per hoar; hurricanes have marimnm windi of 74
mU«s per hour or higher.

Source: 0.S. National Oceanic and Atmospheric Administration, dimatotatieai Data.- Setionol SumnoT-
Monthly with annual summary.

Source: [ 14] .
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This suggests that in a. comprehensive study of demand for home

receivers using decision theoretic approaches, some modification of the

decision tree may be necessary to take account of the differences in

disasters. For example, with a hurricane sufficient warning time is

almost always available. However, an individual may be unsure of the exact

extent, location and time of the disaster. Therefore, the use of a home

receiver may allow for postponement of an action decision (the individual

can remain at home for a longer time) because he is "certain" to receive

the latest forecast. The decision tree may then have "action" nodes that

reflect such a postponement leading, ultimately, to lower action costs.

Thus, for slowly developing disasters such as hurricanes, the value of a

home receiver may be more in the area of better planning capability and

not in the reduction of disaster losses.
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APPENDIX

USING UTILITY FUNCTIONS IN STATISTICAL DECISION ANALYSES

In this appendix, we indicate first the theoretical foundations for

employing specific utility functions and then show how the utility functions

can be applied to calculate revised payoffs. We assume that the

only impact of a disaster is on financial wealth. In order to minimize

the burden on the reader's part, we use exactly the same model and assump-

tions as above but we now assume that $50, 000 is the total financial

wealth of the household and that 10 percent of that wealth will be lost in the

event a disaster strikes. Thus, we assume that the payoff associated with a

disasterous outcome (call it 6 ) is $5,000.

The next step In the analysis is to determine an appropriate utility

function with which to compute the utility equivalents of the experiment costs,

the action costs, and the payoffs. In choosing a utility function for use in

this analysis two criteria become important: (1) the choice of a functional

form, and (2) the "reasonableness" of the parameters in the function.

As far as the functional form, utility functions can be generally

described in terms of their f i rs t two derivatives. Thus, a reasonable restric-

tion on the form is that;

U » ( w ) > 0

i. e. , the marginal utility of wealth is positive. Simply put, each individual

is assumed to prefer more to less wealth. Absolute risk aversion can be

defined at a given wealth, w, as 6j

/ \ U"(w)r(w) = - fp fa j

Positive risk aversion is assumed to obtain in this analysis which

implies U" (w) < 0. Pratt [6] also defines proportional (or relative) risk aversion,



r*(w), as

r*(w) = r(w) • w .

Two distinct classes of functions are often used in discussions of behavior

under risk. These are constant (absolute) risk aversion and constant relative

(proportional) risk aversion. These two concepts can be easily illustrated with

the following examples. Let the degree of risk aversion be represented by the

premium an individual is willing to pay to avoid a risky situation (the P of

Figure V-5 in Section C). Then, with constant absolute risk aversion and- for

risky situations involving an absolute wealth change (e. g. , $100), the risk

premium is unchanged regardless of the individual's wealth. Constant relative

risk aversion implies that risk premium will be constant for risky situations

involving constant proportional wealth changes (e.g. , 10 percent of total

wealth). Generally, decreasing absolute risk aversion is taken to be a desir-

able characteristic, since it is believed that such behavior is the rule.

The form of the utility function we use in this example application is

a modification of a function used by Malkiel and Quandt 4 . Thus, we assume

, -sx
U(x) = s

e

where x represents relative wealth loss. The utility function has been

normalized so that

U (0) = 0

and

U (-1) = -1
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Taking the appropriate derivitives,

-sx .

s
e

and U"(x) = "S e
2 -sx

s
e

Thus

U"(x) s e"SX

'U'(x) ~ -sx , .v se -r 1

To see that this function exhibits decreasing absolute risk aversion, we

calculate

3 -sx . -sx.,,. 2 -sx . 2 -sx.
,, , -s e (se +1) + s e (s e )r1 (x) = » ' * i '—

/ ~sx i \ 2(se + 1)

3 -sx
-^-S , < o .

Given that the form of the utility function is reasonable, what can we

say about the value of the parameter (s) that we use in deriving actual

payoffs? Although our choice of 2. 3 as the value of s in the utility function

is due to Malkiel and Quandt [4], our functional form has been modified

from theirs to obtain to be relevant in the range from (-1, 0). Their use of

2. 3 results (apparently) not from empirical work but from some other con-

siderations not stated. (Others have attempted to estimate utility

functions but these have been generally defined on consumption and not on

wealth. ) The sensitivity of the results to the particular choice of a para-

V-69



meter is lessened substantially by our use of relative wealth changes instead

of absolute changes. Since all numbers are Ln the range -1 to 0, the results

are all of comparable magnitude and depend directly on the degree of curvature

(the parameter, s). The sensitivity of the results could be tested directly by

varying the value used for s.

With the utility function completely specified, we now can compute

the utility equivalents for each of the costs associated with the decision

problem. These are shown in table A-l. With these numbers now in the

relevant portions of the decision tree, the computation of the optimal decision

proceeds in exactly the same way as for the EMV case. (We are not concerned

here with the actual decisions since the preventable property damage in the

case of tornadoes is quite small. )

Table A-l

Costs and Payoffs for a Risk Averter

Utility Function:

. - s x
TTC \U(w) = s

e

w = loss/total wealth

s = 2.3

-8
(1) Receiver cost: - 5 . 0 9 x 1 0 "

(2) Action cost: - 6 . 6 2 x 1 0 "

(3) Payoffs; (e., z[f 0 J = -3.06 x 10"2
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