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EVAIUATION OF SUBGRID-SCALE TURBULENCE MODELS
USING A FULLY SIMULATED TURBULENT FLOW

Abstract

Numerous models have been proposed for approximating the subgrid-
scale Reynolds stresses 1n numerical simulations of turbulent fluad flow.
Unt1l now, the only way to verify such approximations has been to observe
the resultaing behavior of the large-scale flow. If the entire turbulent
flow field were known, 1t would be possible to make direct comparisons
between the exact Reynolds stresses and a given model. We have calcula-
ted an "exact" turbulent flow field on a three-dimensional grid with 64
points on a side. The flow simulates grad-generated turbulence from wind
tunnel experiments. In this simulation, the grid spacing 1s small enough
to include essentially all of the viscous energy dissipatron and the box
1s large enough to contain the largest eddy in the flow. The method 1s
lmmited to low-turbulence Reynolds numbers, in our case RA = 36.6.

In order to complete the calculation using a reasonable amount of
computer time with reasonable accuracy, we developed a third-order time~
integration scheme which runs at about the same speed as a simple first-
order scheme. It obtains this accuracy by saving the velocity field and
its first-time derivative at each time step. TFourth—order accurate space-
differencing is used.

The results of this simulation were treated as an experimental reali-
zation of physical turbulence. We then superimpesed an 8 x 8 x 8 coarse
mesh over the origindl fine mesh and defined a filtered velocity field

E;(E) as the local spatial average of u . From these we defined the

subgrid~scale velocity f£ield v by u, = E; + u;. The filterang process
gives rise to three terms in the Navier-Stokes equations. These are the
Reynolds stress, u;us, the Leonard term, E;ﬁ; —HG;ES, and the cross

term, u'ﬁh + E;ui. We demonstrated that the cross term is non-zero and
1s, 1n fact, dissipative; we also developed a model for it. The Leonard
term and the cross term can be combined into a single term which can be
modeled by (%E;)-(%E;). This reduces, in one dimension, to a quadratic

artificial viscosity frequently used in compressible flow calculatrons

vili



The relationship between the filtering process and artificial viscosity
1s shown.

Finally we calculated each of the above terms within each cell on
the coarse mesh, and we attempted to model them using the faltered veloc-
ity field. For each model we calculated the correlation between the model
and its "exact" value. We found the correlation between the Leonard and
cross terms and their models to be excellent, around ninety percent. The
correlation between model and experiment for the Reynolds stress is not
as good, but we did achieve about seventy percent correlation between the
dissipation produced by the Reynolds stress and its model. We found no
model that 1s significantly better than the standard Smagorinsky model.
We found that models using the subgrid-—scale turbulent kinetic energy are
no better than Smagorinsky’s, even when we had the exact subgrid-scale
kinetic energy to work with. All of these conclusions must be qualified
by stating that we were working at very low turbulent Reynolds numbers,
and the results cannot necessarily be extrapolated to higher Reynolds num-

bers.
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Chapter I

INTRODUCTION

We begin with a brief discussion of the genexral approach to the
numerical simulatzon of turbulent flows. Tt is generally not possible to
calculate a turbulent flow in complete detail, because the range of length
scales involved 1s so large that the amount of data that would have to be
handled 1s orders of magnitude greater than the capacity of any existing
or projected computer. For this reason, the traditaonal approaches to
such problems have been based on Reynolds' original idea of averaging the
Navier-Stokes equations over an ensemble of identical flows or an approp-
riate interval of time or space. One then has equations for an averaged
welocity field u{(x,t), where the overbar denotes averaging according to
whatever definztion is employed. If we then define a fluctuating velocity
component by u(x,t) = ulx,t) + u'(x,t), the averaged equations can be

written (for an incompressible flow with constant viscosity)

3 —— _ _ % 2= 3
ot 9%, 2%j 3%, +vWu, ax Ri] ? (1.1)
3 J
aEl
= - o , (1.2)
= u'u' , (1.3)
1] ]

since E; = Ei and El = 0 as a consequence of the definition of aver-
agang. To formally close this system of equations 1t 1s necessary to find
an expression for Rij (the Reynolds stress) in terms of 'E;.

The search for such expressioms (closure models) has been a major

direction in turbulence work for many decades. Prior to the advent of
computers, only very simple models could be used, 1.e., those which yielded
equations to which one could obtain solutions analytically. These models,
which assume that the Reynolds stresses, like viscous stresses, are propor-

tional to the local strain rate of the fluad, give acceptable results

1



provided the range of flows they are required to predict 1S not too

large These models (eddy viscosity models) can be adjusted for partic-—

ular flows to produce excellent results. The problem is that this type
of model must be adjusted to experimental data and can therefore be used
only in an interpolative manner

More advanced models have been proposed since the introduction of
large digital computers. These include models in which the eddy vis-

cosity 1s a function of space and/or time (turbulence kinetic energy and

two-equation models) and still more advanced models which utilize par-

tial differential equations for the Reynolds stresses are currently beang
developed. It 18 too early to predict the success of these approaches,
but there 1s reason to believe that their range of application will be
limited. By this we mean that the model parameters will probably need

to be adjusted for each type of flow.

To see why this might_be the case and what might be dome about 1it,
consider the overall nature of a turbulent flow field. The range in
length scales between the largest and smallest turbulent structures 1is
many orders of magnitude 1n most flows of interest The largest turbu-
lent structures draw energy from the mean flow. This energy is thought
to cascade through an intermediate range of eddy sizes to eventually
reach the smallest turbulent eddies. The smallest eddies then dissipate
the kinetic energy to internal energy by viscous effects. There is rea-
son to believe that the largest structures in a turbulent flow are much
more dependent on the origin of the turbulence, 1.e., the type of flow
under consideraticn, than either the intermediate or small-scale struc—
tures. This could explain the failure of any single model to predict a
wide variety of flows when the large-scale turbulence 1s included in
Gzﬁj. It appears more likely that a universal model might be found if
only the intermediate and small-scale turbulence i1s modeled. This ap-

proach (large eddy simulation) requires that the large-scale turbulence

be calculated explicitly and that the small scales (the "subgrid" scale
turbulence) be modeled. With the recent advances in hagh-speed computing
machinery, this approach has become increasingly practical in the last

several years (Hirt, 1969; Deardorff, 1970; Fox and Lilly, 1972).



In large eddy simulation, one averages the Navier-5tckes equations
over a small spatzal region 1n order to remove the small-scale fluctua-
tions. The resulting equation for the large-scale field contains a term
similar to, but more complicated than, the Reynolds stress Ri of Egs.
(1 1) and (1.3}, and this term (the subgrid scale Reynolds stress) must
be modeled.

Several models for the subgrid scale le have been proposed. The
problem has been how to verify a proposed model. The best that could be
done until now was to compare the evolution of the large-scale structures
n a compufétlon to those 1n an experiment. This will not reveal whether
or not the actual subgrid scale Reynolds stress 1s being accurately mod-
eled, but only whether or not the subgrid scale Reynolds stress and the
model have the same net effect on the large-scale motions for the particu-
lar type of flow in question. In addition, virtually all models contain
at least one adjustable constant which must be set by some ad hoc assump-
tion or by adjusting the constant to fit some important aspect of an ex-
periment. On the othex hand, 1f there were a physical experiment which
measured everything of interest in a turbulent flow field, from the larg-
est turbulent structure to the smallest eddy, 1t would then be possible
to compute the subgrid scale RIJ exactly, and then compare 1ts value at
each point in space to the prediction of a model. Unfortunately, there
1s no laboratory experiment capable of such measurements. But 1f we could
compute the evolution of a turbulent flow field on a sufficiemntly fine
gr1d (fine enough to include all of the turbulent structures) numerically,
then we would have all the information necessary to make direct compari-
sons between measured values of the subgrid RiJ and the model predictions.

The objectives of this work were to accurately calculate a three-
dimensional turbulent flow field on a fine grad by directly integrating
the Navier-Stokes equations using no approximations with respect to the
structure of the turbulence, 1.e., without having to average the equationms,
and then to use the results of that calculation to examine subgrid scale
models on a coarse m;sh overlayed on the original fine mesh. Practical
limitatirons require that this be done at a low Reynolds number, since at
high Reynolds numbers the difference i1n scale between the largest and
smallest eddies 1s so great that computer simulation 1s impractical. Also,

the flow should be as physically simple as possible (see below)
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In Chapter II we describe the numerical integration method which was
used to compute the flow field on the fine mes-h. A third-order time
scheme 1s introduced which has not previously been used in this applica-
tion  Because this i1s the first attempt at model verification, we have
chosen the simplest possible turbulent flow field for our caleculation,
homogeneous isotropic turbulence  This avoids any problems of anisotropy,
but restricts the results to problems in which the subgrid scale turbu-
lence can be assumed 1sotropic In Chapter III we describe 1in detail how
the main calculation was performed, including some programming techniques
we empleyed to greatly speed up the calculation In Chapter IV we discuss
the general problem of modeling subgrid scale turbulence with emphasis on
methods which could be wverified by our calculations. TIn Chapter V we
demonstrate that the results of our main calculation do in fact have the
properties of real turbulent flow. We then make the comparisons of the
numerzcally calculated values of le and the predictions of various
models and show that, although the models currently used are not as accu~
rate as one would like, they are difficult to improve upon 1n a simple

manner.



Chapter II1

THE NUMERICAL METHOD

2.1 General

The finite-difference scheme chosen for the main calculation 1s
fourth-order accurate 1in space and third-order accurate in time. The
rationale for this choice 1s worth a brief discussion.

In many large computer simulations a major effort i1s made to keep
the problem small enough to be contained entirely in the main memory of
the computer. This 1s done to avoid the use of the disk memory and 1ts
relatively slow rate of data transfer. The problem we shall try to solve
has three velocity components at each of 262,144 grid points, for a total
of 786,432 words necessary to specify the velocity field at ome time step.
This number alone exceeds the roughly 400,000 words of memory available
in our CDC 7600 large—core memory. Since we are forced to utilize disk
memory, waiting times for the completion of data transfer to and from
disk become a major consideration. Large amounts of data must be trans—
ferred from disk to main memory, processed in main memory, then transferred
back to disk. If the processing time 1s too short, the data transfer time
will determine the running time of the problem. In our case, using
fourth-order differencing 1n space, we found that only about five percent
of the total running time was spent in waiting for data transfer to be
completed. This means that the data were processed slightly faster than
1t could be transferred, even though a double-buffering scheme was used
Had we used second-order space differencing, we would not have gained any-
thing in running time, since the data—transfer time would still be the
same  Reducing the processing time would have simply increased the per-—
centage of wait taime. This means that we have used fourth-order space
differencing with no increase in computer charges with respect to second-
order dafferencing, 1.e., increased accuracy 1$ obtained at essentially
no cost. We emphasize that this choice 1is not made for accuracy reasomns,

but 1s a result of being forced to use the disk memory.



Having settled on fourth-order accuracy in space, we must next decide
how to handle the time differencing. In any numerical method, common
sense dictates that the truncation error due to the time differencing
should be roughly the same as the truncation error due to the space dif-
ferencing This can be done even with first-order time differencing 1f
the taime step used 1s sufficiently small. The criterion for choosing a
time-differencing scheme now becomes cost, 1.e., computer running time.

If a second-order time scheme were to take twice the computing time per
time step as a first-order scheme but allowed us to increase the time step
by more than a factor of two, the total running time would be reduced and
the second-order scheme would be justified.

You generally get what you pay for with numerical methods. If greater
accuracy 1s desired, you must pay for it. However, there can sometimes be
more than one method of payment The most common method of payment 1s i1n
increased running time. For example, the simplest two-step, second-order
schemes (Roache, 1972) obtain second~accuracy by essentially performing a
simple first-order scheme twice, thus doubling the running time. Another
method of payment can be in increased storage requirements. The leap-frog
scheme performs essentially the same calculations as a fixst-order scheme,
but 1t obtains second-order accuracy by saving an extra time step an the
calculation, hence doubling the étorage requirements. On most present-—
day computing systems, the extra charge for doubling the storage require-
ment 18 small 1n comparison to the savings resulting from halving the CPU
time. On thais basis the second-order accuracy of the leap-frog method
appears to be obtained almost for free. Another way to look at i1t 1s that
the user 1s usually charged for most of the available storage, and if he
does not use 1t he is short-changing himselif.

With the sbove n mind, we note that since our problem requires use
of the disk the storage available is, for all practical purposes, unlimi-
ted. As noted above, the leap~frog scheme obtains its second-order accu-
racy by saving the velocity field at an extra time step. We have developed
a time-differencing schéme that obtains third-order accuracy by saving the
first time derivative of the velocity field, as well as the velocity field
itself. With this method the running time per time step 15 essentially

unchanged from first—order methods, ot from the leap-frog method, but the

6



time step can be increased while maintaining the same truncation error.

This reduces the total running taime of the problem without reducing the

acecuracy.

2.2 The Time-Differencing Scheme
Y

*
We now develop the third-order method that we will use. It 15 essen-

tially a predictor-corrector method with a second-order leap-frog predic-
tor and a thaird-order Adams-Moulton corrector. To explain the method we

deal wath the ordinary differential equation
u, = au (2 1)

which has the exact solution u = exp(at). Suppose that we are given u

at times nét and (n-1)6t to third-oxder accuracy, 1.e.,
n &
v = explandt] 4 0(6t") (2.2a)
n-1

WP o exple(n-1)8t] + ose™) (2. 2b)

%
and (u )t at time nsét and (n-1)8t to second-order accuracy, l.e.,

(u*)z = o explondt] + 0(6t3) (2.3a
(u*)z—1 = « exploe(n-1)8t] + O(6t3) (2.3b)

Thus,\ (u*)n and u" represent two numerical approximations to the exact
solution; they are, respectively, the predicted and corrected values. Let
us first approximate the solution to equation (2.1) at time (nt+l)6t

using the standard leap~frog method.

X — *
T H™ = e 26e] (2.4)

Using a Taylor series expansion to get exp(o(n+l)6t) 1in terms of

exp(andt) and introducing the notation vy = adt, we have
%

For a general discussion of methods of this type, see Appendix A
7



2 3 4
expla(nil)se] = (l ty + %f-i %;-+ %Z * ..) explandt] (2.5)

from which 1t 1s easy to show that

3

%
@O = explamrl)ér] - L explamst] + o(st®) (2.6)
% *
Hence, (u )n+l and {u )n+l al(u )n+l are accurate to second-order.
n+l . n * n-1
Now that we have ( ) (u )t’ and (u )t to second-order, we
%
can evaluate (u ) to first-order and (u )Ett to zeroth order.
%
*.n (u )z+l ~ (u ): * 2 2
(u) = = o exp{andt) + 0(8t7) (z.7)
tt
26t
% % * m—
. n @Y 2@t s @HIT
(u) = = @& exp(onét) + 0(8t) (2.8)
ttt 5t2
1

n+
Next we evaluate the corrected value u to third-order accuracy by

using the expansion (2.5) 1n the form

2 3
ntl _  n St % n §t
u = u + dt(u ) + (u )t + ———-(u )ttt (2.9)
which is identical to
o™ o lexp(onst) + 0(5tM] + stlo explanst) + 0(5t3)] (2.10)

2 3
+ E%— [az exp (onét) + 0(6t2)] +-§%— [u3 exp(andt) + 0(St)]

Comparing (2.5) and (2.10), we see that

T o expla(nrl)se] + o(sed

Summarizing the method, the predictor step zs leap frog
* ol n-1

W™ . 26t(u*)2 2 11)

and the corrector step in simplified form is



ntl

n 2
u = u + 3

3

1 5 * n+]
St(u )t + 13 dt(u )t

n-1

¢ (2 12)

1 *
“1z )
which will be recognized as an impljcit Adams-Moulton method. It is; 1in

fact, possible to produce a fourth-order method 1in thas way, but the extra

advantage 1s minimal.

2.3 Numerical Stability of the Third-Order Method

Following standard Von Neumann analysis (Richtmyer, 1967), we seek

solutions to equations (2.11) and (2.12) of the form

o = A (2.13a)
F3
@) = A% (2.13h)

where A 1s 1n general a complex constant. The numerical method will be
stable 1f we can ensure that |A|.§ 1 for Re(a) < 0. First, we replace

*.n *.n
(u )t by au ) an Bgq. (2.11) to get

*n
u = u) - 2y(u ) (2.14)

where again y = odt. Changing the 1ndex, we have

* n+l

k2 _ 2v(u ) (2 15a)

o= (u)
and

* nt2

%
nt+l o3 2y(u) (2 15b)

u = (u)

%
Substituting (2.15a) and (2.15b) znto (2 12) and again replacing (u )2

% n
by afu ) yields

% % * % %
(u )n+3 - 2y(u )n+2 - (u )n+2 ~ 2y (u )n+l + % v(u )n
(2 16)
5 *n+l 1, * n-1
+ 7 v = 5y



Substituting (2.13b) 1nto (2.16) and multiplying by A *T0 yields a
quartic equation for A:
At - (o)A’ + % a2 -2+ = o (2.17)

The stability of the numerical solution 1$ now determined by finding
the maximum value of |y| = |e|dt with Re(a) < 0 Ffor which all four
roots of Eq. (2.17) have magnitudes less than 1. This ensures that the
solutions given by Eg. (2 13) will not increase exponentially with in-
creasing n 1n cases in which they should not. The resulting region of
stabality 1is shown in Fig. 2.1. The cufve shown in Fig. 2.1 15 the cuxve
of neutral stability on which the magnitude of the largest A 1s 1.
Thas curve was found by computing the roots of Eq. (2.17) for fixed Y,
noting the value of [Yr] for which one of the roots becomes unity.
Other methods are available, but the simplicity of this calculatzon does

not warrant their use.

2.4 Accuracy of the Third—Order Method

We again consider the ordinary differential equation
u, = ou (2.18)

which has the exact solution

u = exp(at) = exp(yn) (2.19)
One of the roots of Eq. (2.17) will be an accurate approximation to
exp(y). The others are parasitic or computaticnal roots. It turmns out
that the three parasatic roots are highly damped (yr—negatlve and large
in comparison to the non—parasitic root), so that the solution obtained

w1ll be

u(ndt)

A (2.20)

10
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Fig. 2.1  Stabaility of thard-oxrder method



where Al 1s the desired root of Eq (2.17). Let Y, = Re(y) and

Y, = Im(y). The accuracy of the solution 1s determined by how well Al
approximates exp(y). We separate the numerical error into the phase

and amplitide errors. The phase error 1s given by

Ayl = {yi - Im[Q.n(Al)]} (2.21)

and the amplitude error 1s given by

Ayt = {Yr - Re[Rn(AZ)]} (2.22)

We have computed Al for the leap-frog and third-order schemes. In
Table 2.1 we list some values of Yy and the error in the computed value
of Yoo Ayl, for the leap-frog and third-order schemes with Yy = 0. 1Im
Table 2.2 we list some values of Yy and the error in the computed value
of Yo Ayr, for the two schemes with Y, " 0. The range of Y, and Y,
listed in the tables covers the range of interest in our main calculatzion.

A sample linear equation which is sometimes used as a model fér test-
ing numerical approximations to the Navier-Stokes equations 1s the convec-
ted diffusaon equation:

su Ju 82 ‘

_ 3%
st %% - V2
9x

Assuming a solution to this equation of the form wu(x,t) = u(t)elkx, we

have

v, = (-1ck - vkz)u (2.23)
The values for mean velccity, viscosity, spatial increment, and time step
which éorr93pond to the main calculation described in Chapter III are

c = 5.5 ecm/sec, v = 0.14 cmzlsec, &x = 20/64& cm, §t = 0.0073 sec, and

0 < k < 1/8x Using these values, we have calculated Y, = —ckdt and

Yy = ~vk26t for use in Tables 2.1 and 2.2.

The Ay's 1isted in the tables are the errors per time step. Take,

for example, Y, = 0.201 (this 1s equivalent to a wave with wavelength

12 -



Phase Error Comparilison

Table

2.1

K ‘Yl
.503 020
1.005 .040
1.508 040
2.011 .080
2 513 .100
3.016 .120
3.519 141
4 021 .161
4.524 .181
5.027 .201
5.529 .221
6.032 .241
6.535 261
7.037 .281
7 540 .302
8.042 .322
8.545 .342
9 048 .362
9.550 380
10.053 402

2nd 3rd
Order Order
Ayl Ayl
14x10° 6 x 1077
1.1 x 107> 5% 1078
3.7 x 107 9 x 107/
8.8 x 107° 0 % 1077
1.7 x 107 4 % 1070
3.0 x 107 0 x 107°
48 x 102 2 % 107
7.2 x 107% 5% 107°
1.0 x 1073 4 x 1070
1.4 x 1070 6 x 1077
1.8 x 1073 2 x 1074
2 4 x 1073 8 x 10°%
3.1 % 107> 7 x 107
3.8 x 102 g x 10°%
4.8 x 103 2 x 107%
6.0 x 1072 6 x 107°
7.6 x 107> 0 x 1072
8 4 x 102 3 x 107
10 x 1072 7 x 1073
i.2 x 1072 1x 1070
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Amplitude Error Comparison

Table 2

.2

2nd 3rd
Order Order
K2 -¥ GYr ﬁyr
252 82 x 1074 3.8 x10%% 3.8 x 1073
1.011 13 x 10° 2.5 x 1070 4.8 x 1073
2.274 55 x 107> 2.8 x 1077 1.2 x 10741
4.043 .53 x 1075 1.6 x 1073 1.2 x 1071
6.312 07 x 1070 5.9 x 1070 7.4 x 10710
9.096 02 x 202 1.8 x 1077 3.1 x 107
12.380 .39 x 1072 4.5 x 107/ 1.1 x 1072
16.170 81 x 1002 9.9 x 1077 3.1 x 1078
20.465 .29 x 1072 2.0 x 107° 8.2 x 1070
25.266 .83 x 1072 3.8 x 1070 19 x 107’
30.572 42 x 1072 6.7 x 1070 4.1 x 1077
36.383 07 x 102 1.1x 107 6.3 x 107
42.700 78 x 1072 1.8 x 1070 1.6 x 107°
49.522 55 x 1072 2.8 x 1070 2.8 x 10°°
56. 849 37 x 1072 43 x 107 5.0 x 107°
64. 681 24 x 1002 6.3 x 1070 8.5 x 107°
73.020 07 x 1072 91 x 107 1.3 x 107°
81.862 A7 %1002 1.2 x 1077 2.1 x 1077
91.211 02 x 100 1.8 x 107 35 x 107
101.065 13 <10 2.4 x 107 5.3 x 1070
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48x 1n our main calculation). For Y, = 0.201, the phase error per

time step 15 18 times larger for the leap-frog scheme than for the third-
order scheme. This means that if both schemes used the same time étep the
accumulated error at a given point in time would be 18 times greater using
leap frog. This 1s not the whole story The relevant question to ask is
how much would you have to reduce the time step using the leap-frog scheme
1n order to get the same error as wath the third-order scheme? Suppose we
are using the third-order scheme with a &8t such that Y, = 0.201; thas
value 1s typical of the problem that we actually ran. If we reduce the
time step by a factor of 4.4 and use the leap-frog scheme, the phase error
per time step will be 1.9 x 10_5, but we will have to run 4.4 times as
many time steps so that the phase error per originagl time step will be

4.4 x 1.9 x 107°

7.6 % 10,5 for the third-order scheme. For smaller Y, the factors are

= 8.36 x 10_5, which 1s slightly larger than the

larger than 4.4, and for larger Y, the factors are smaller than 4.4 Our
conclusion 1s that for the leap—frog scheme to achieve the same accuracy
as the third-order scheme the time step would have to be reduced by at
least a factor of four, thus increasing the running time of the problem
by nearly a factor of four.

To further demonstrate the accuracy of the thlrd-o;der scheme, we pre—
sent, in Fig. 2.2, the results of a numerical test on the one-dimensional

wave equation:
U, + cux = 0 (2.24)

u _ was calculated by the use of Fourier tramsforms so that the only error
1in the numerical solution i1s due to the time-differencing scheme. u was
defined at 64 evenly spaced points and was initially zero, except for the
triangle shown near the cemter. Periodic boundary conditions were applied,
and we set udt/6x = 0.2, 1In the exact solution, the triangle moves from
left to right at the constant speed ¢ so that after 1600 time steps the
triangle should have swept across the grid five times and the exact solu-
tion 1s zdentaical to the initial conditions  The third-order calculation
used 3% more computing time than the leap-frog calculation and twice the

amount of storage. The starting conditions in each case were exact  This
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was done by calculating the Fourier transform of the initial conditions,
multiplying each Fourier component by the appropriate Al(lckét) and

inverting the resulting Fourier field to get the value of u at time d&t.

2.5 Starting the Third-Order Method

Given the initial conditions for a problem at time t = 0, we can~
not get the solution at tame t = 8t by the third-order method. The
field at t = §t must be found by ancother method. The technique we used
1s to divide the inmitial time step &t 1nto three increments of 6&t/3
and use a two-step predictor corrector method to obtain u(dt) to second-
order accuracy. We tested this.method by again solving the equation
u, +ou = 0 as above, except that rather than using the exact numerical
solution for t = 8t we used the second-order predictor corrector scheme
to get the second time step. After continuing for 1600 time steps, the two
solutions agreed at every point to three significant figures.

Although no diffaculties are encountered in starting the scheme in
the linear case, we found a weak nonlinear instability while solving the
Navier-Stokes equations. Its onset could be detected by the values of ut
and (u*)n slowly diverging. The problem was cured by settfhg (u*)g =
uz at the end of the first few time steps. The calculation of uz (which
1s not needed elsewhere) almost doubles the computing time for each time
step where 1t is needed TIn a test calculation on a 16 x 16 x 16 mesh,
we found 1t was sufficient to make this correction after the first four
“time steps after which no further evidence of instability was seen for the
next 130 time steps. In the main 64 x 64 x 64 calculattron, we alter-
nately‘furned the correction on for four time steps and off for four tame
steps throughout the problem. An examination of the skewness of the wveloc-

1ty field as a function of time (Section 5.1) leads us to believe that the

correction could have been turned off permanently after eight applications.

2.6 Space Differencing

The time—~integration scheme has been presented in terms of the oxdi-

nary differential equation

17



It 1s equally applicable to the system of incompressible Navier-Stokes

equations

_r, 3 - _ 3P 2
T + - (uluj) 5% + vV uy (2.25a)
3 = i
su,
= = 0 (2.25b)
1

1f the spatial derivatives are calculated at least as accurately as the
time derivatives. The method for calculating Bul/at and maintaining
zero numerical divergence will be discussed in Chapter IIT. The spatial
derivatives were approximated by fourth-order accurate spatial differenc-

ing. This means that the equations we are actually solving are

du 3 3 2 3 4
3ot _ax_:l (uluj) = - —E—axl + vWu + 0(8t7) + 0(8x ) (2.26a)
Ju
s = 08D + 0(8x) (2.26b)
I

To properly compare error terms, we must lnclude the velocity c¢ to be
dimensionally consistent. When we compare terms of 0(6tn) to terms of
O(Gxn), we really need to look at terms like (cé‘t)n and 6x". The
choice of the appropriate value of ¢ to use 1n the nonlinear case 1s
somewhat unclear in a turbulent flow simulation, but the r.m.s. velocity
1s probably a reasonable guess. However, the stability condition gives
essentially an upper laimit on ¢dt/éx, the Courant number, where now the
maximum value of u must be used for c¢ to assure safety. The result 1is
that &t 1s normally chosen so that the time~differencing error is in
fact somewhat smaller than the space-differencing error.

Now we consider conservatzon of momentum and energy. For simplicity
we have chosen to use centered, fourth-order spatial differencing in space
with all quantities cell-centered. The scheme which was used i1n the main
calculation was

(ul)t P (DJu llj uJDJul) D P \JD] u (
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where

DB = a fourth-order approximation to B/ij,
u (3-2) + 8lu, (341} - u, (3-D] - v (§+2)
D3u1 = T75% (2.28)
- 3
and
2 2
Dk = a fourth-order approximation to ¥ !
2
Dku:L = {16[ul(i+l) + ul(l—l) + u1(3+1) + ul(J—l)

+ ul(k+l) + ul(k 1)1 ul(1+2) - ul(l 2) 2.29)
- u1(3+2) - u1(3~2) - ul(k+2) - ul(k—Z)
- 90 u_}/126x°
In both cases the derivatives are approximated at (i,J,ky and obvious
indices are suppressed. Kwak (1975) has shown that the term -~ %—(DluJ +
ujDJul) 1s conservative of both momentum ard energy  This means that
no momentun or energy are introduced as a result of the spatial differ-

encing, i.e.,
Z(DiuJ-HlJD:;ui) =0 Zul(Dlu]+uJDJul) =0
where the summation 1s over all griad points. The method can be called

seml—conservative, because some error is introduced by the time-integration

scheme.
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Chapter ITI

THE MAIN CALCULATION

3.1 The Basic Eguations

The purpose of the main calculation 1s to obtain, as accurately as
possible, the solution of the equations of motion for homogeneous iso-
tropic turbulence an an ancompressible fluiad. Physically, thzs flow 1s
produced by passing a uniform stream of fluid through a mesh to produce
the turbulence and then observing its decay as the turbulence proceeds
downstream Special care 15 necessary to assure isotropy, but the ex-
periment has been successfully carried out several times: the most re—
cent such experiment 1s that of Comte-Bellot and Corrsin (1971). An
alternative to grid turbulence 1s box turbulence, in which the fluid an
a box is stirred up and allowed to return to rest. To simulate grid tur-
bulence we will use the Navier—Stokes equations (3.1l.a), together with —

the continuity equation for an incompressible fluad (3.1.b):

aul ) 5 2

vl (uluJ) = - _"B_ax. + Wiy (3.1.a)
Bul
SE = 0 (3.1.1)

where we use the summation convention.

We shall attempt to simulate the grid turbulence experiment by se-
lecting a cube of fluid and following its history as it passes downstream
from the grid, 1 e., we are following 1t i1n a Lagrangian sense by invok-
ing Taylor's hypothesis. 1In order to do this successfully, we must assure
that the cube of fluid we select 1s large enough that all correlations
are essentially zeroc at distances equal to the side of the box. From a
practical point of view, this means that the box must be large compared
to the integral scale of the turbulence. On the other hand, the box
should also be small enough that, under the conditions of the experiment,
no saignificant changes in important integral properties occur over a dis-

tance equal to the size of the computational cube. If these conditions
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are met, we may simulate the experiment by following the time history
of the cube of fluid using pericdic boundary conditions 1n all three
spatial dimenszons.
Equation (3.1.b) can be replaced by an equation for the pressure
p. We apply the divergence operator te Eq. (3.1.a) and note from Eq.
(3.1.b) that
2

du V 3u.
i

a — e
gt 9Xx =0 and axl =0

Vp = - —L (3.2)

In general terms, the method of solution 1s to start with the veloc-
ity field at tame nét, solve Egq. (3 2) for the pressure field at time
nét, then use Eq. (3 1.a) to faind Bullat at ndt and advance the so-
lution te time (n+l)8t using the method described in the previous
chapter. Thus we insure continuity at time (o+l)8t by properly choosing

the pressure at time nbt.

3.2 Derivation of the Pressure Equation

The Poisson equation (3.2) for the pressure is exact. no approxima-
tions are invelved in i1ts derivation. It is, nonetheless, instructive to
exarine the origin of the pressure equation from a numerical viewpoint.
The final expression we arrived at in Chapter II for the velocaty field

at time (ntl)St was

ntl _ n 1l ,*%n-1,2  %mn 5 . %ol
u = u + 6t|: 17 ul)t + 3 (ul)t + i3 (ul)t :l (3.3)
ntl
Now we require that the numerical divergence of U be zero, 1.e.,

Dluf:+l = (, where D1 denotes the fourth-order numeracal difference

approximation to B/BXI, defined by Eq. (2 28).

Suppose that at this point in the calculation we have already evalu-
*. n— * * *x1
ated (ul)z 1, (ul):, and (ul)n+l but mot p . We have from the

Navier—Stokes equations
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* i *
(u )n+1 = 1 D.u u + u B uf]-+ szu - Dp (3.4)

1t T 2173 i7; k! k1

*
where all missing time indices are assumed to be ntl. This leaves p

as the only unknown. We now substitute Eq. (3.4) into Eq. (3.3), apply

the numerical divergence operator to the result, and requilre that Di 2+1
be identically zero. This yields
* 12 #n-1 , 8 , %*n
D (Dp) = ST Du u” + Dil: (w), ~+73 (ul)t
(3.5)
Lo u*® + o *)+vD2*
) 5 { Juluj u:I :Iu:L N
n+1
If Eq. (3.5) is solved exactly, the numerical divergence of v will

be adentacally zero (within computer round-off error). The operator Di
in Eqg (3.5) is the fourth-order numerical difference approximation to
the Laplacian defined by Eq. (2.29). T:e operation Dl(Dlp*) wmplies
two sequential operations of D1 on p . In one dimension, Dk is a

five-point operator,
DIE(K) = [-E(k-2) + 16£(k-1) - 30£(k) + L6£(lHl) - £(k+2)]/126%"
and D1D1 15 a nine-point operator given by

Dl(le(l)) = [£(2-4) - 16f(1-3) + 64Ff(1—-2) + 16f(x-1) -~ 130£(1)

+ 16£(aH+1) + 64E(142) - 16£(i+3) + £(1th)]/1446x>

Note that this is not the simplest fourth-order approximation to leaxi,
but one must use this operator (and none other) to insure that the contin-
ulty equation 1s satisfied exactly.

Depending on how the in:ttial conditions are set up, the first two
time steps may or may not have velocity fields whose divergences are
Ldentically zero. In our case the divergences were small but not zero.

If we retain all of the terms in Eq. (3.5), including the non-zero diver-
gences, the next two time steps will have identically zero divergences.
As we explained ain Chapter II, for the first few time steps of a calcula-

*n
tion we set (u )t = at the end of the time step for stability reasons.

ol
t
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All we normally have at the end of a cycle is un, not ug. To calcu-
late ui we need the pressure field pn, which 1s not normally calcu-

lated. The pressure field pn 1s calculated by requiring that D (u )

= 0. After doing this twice, we have made D un l, Dlul, D ( )n—l -
and D (u ) all adentically zerc. By referrlng to Eq. (3.3), we see
that the only additional requirement needed to make D u:+l = 0 1s that
Dl( l):+l 0. To satisfy this requirement, we apply the divergence opera-
tor to Eq. (3.4) and we obtain
D(Dp) = -D [i (. + ):I (3.6)
1 71 12 Y37i] 1 3 Yy

which 1s con51derably easrer to work with than Eq. (3.5). Since the temm

* *

-.(D.u u + u D u ) forms a part of u,, we do the actual calculations
Jx] J1z t

in the following sequence.

%
1. Calculate (u )n+l using standard leap frog, as described in
Chapter II.
— * 9 *—-n+1
2, Calculate - —-(D u 11:I + uJDJul) + kal and store the re-
sult in the disk flle, whaich will later contain (u )n+l.
3. Using the result from step 2, solve Eq. (3.6) for p (Note

A
that the inclusion of Diul does not affect this calculation,

L
since D, [?kul_‘— 0.}
%
4 FEwvaluate -D p and add the result to the results of step 2,
%
thus leaving (u )E+l on disk.

n+l

5. Calculate u from Eq. (3.3). We have now completed one time

step.

3.3 Solution of the Pressure Equation

The Poisson equatzon for the pressure 1s solved with the help of dis-
crete Fourier series. Any one dimensional set of N -numbers which repre-
sent the values of a function f at N evenly spaced grid points x =
1hx, 3= -8/2 ... N/2 -1, can be uniquely represented by a discrete

Fourier series s LeBay
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K=5-1
1 -2
£(1) = § ZN F(k) EXP( N Jk) (3.6.a)
K='—'§
The Fourier coefficaents are given by
_N
I=5-1 )
F(k) = 2, £(3) exp(—z—;}-;]k) (3.6.b)
N
1==5

In these equations, £(3) represents the value of the function £(x) at
the poant x = 38x. Likewise, let p(j) represent the value of the un-
known function p(x) at x = 36x. Then the solution to the discretized

Polsson equation is

DxDxp(x) = £{x) (3.7)
where
o £(3-2) - 8f(j-1) + 8£f(3+Ll) - £(3+2)
Dxf(J) - 128x%

can be found by substituting discrete Fourier series for pf{j) and £(7)

into Eq. (3.7):

DXDX%P(k) exp(—zﬂﬂl jk) = Zk;F(k) exp(‘zb;” jk) (3.8)

where
P(k) = i) exp(g-gi— Jk)
1

and

p(3) = %%P(k) exp(-zgi :lk)

It 15 easy to show that

~27i ~ =2n1
DxDx exp( N Jk) = g(k) exp( ~ Jk) (3.9)
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where

g(k) = - 130 + 32cos(2;k) + lZBcos(ﬁﬁk) - 32cos(é%3) + 2cos(§%£)

Applying (3.9) to (3.8), we get from the linear independence of the com-

plex exponentials

& (k)P (k) exp(_i:1 Jk) = F(k) exp(_i?1 Jk) (3.10)
Now we multiply Eq. (3.10) by exp(ggi Jkﬁ), and, noting that for k # k'
k=3-1 _
> exp[‘i}flg(k-k')_] - 0
g=-3
2

which leaves us wtith

- E(k)
PR = 0 (3.11)

With the above in mind, we see that the equation

lﬁggﬁ) = i(3)

can be solved by the feollowing three steps.

1. Transform £(3), 1.e., compute F(k)= D £(3) exP(zgl Jk)

2. Calculate P(k) = E(k)

g(k)
3. Invert P(k), 1.e., compute p(j) =% ZP(k) exp (—2111

)

The extension of the method to three dimensions 1s straightforward.

The solution to the equation

D D _+D D +D D P(I1335:34) = £(3515s39)
( X 1 x, Xo 3 3) 1°-2°73 1°-2°-3
1s obtained as follows:

1. Transform f(31,32,33), 1.e , compute

F(kl’RZ’kB) ? JE JZ f(JlstaJ3) eXP[ (‘]lkl+']2k2+‘]3k3)]
1+-2-3
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2. Calculate P(kl,kz,kB) = F(kl’k2:k3)/g(klsk29k3)
3. Invert P(kl’k2’k3)’ 1.e., compute
1

N ki k2 k3

-27nd
eXPI: N (31k1+32k2+33k3)]

The use of the fast Fourier transform (FFT) algorithm (Cochran,
1967), which requires CN 1og2 N operations to perform the one-dimensional
Fourier transform of N data points, makes the above method of solution

practical.

3.4 Modifications to Reduce the Running Time

*

(a) Solving a Two~Dimensional Poisson Equatiocn Using a One-

Dimensional Fourier Transform

The two-dimensional Fourier transform of data on an N x N grad is
normally accomplished by performing N one-dimensional transforms in one
direction followed by N one-dimensional transforms in the second direc-—
tion, for a total of 2N one-dimensional transforms each of length N.
Since each one-dimensional transform of length N reguires CN log2 N
operations, the method just described requires a total of 2CN2 log2 N
operations. The constant C represents four multiplications and two
additions. Suppose we could do the same thing with a single one-dimensional
transform on N2 points. This would require CN2 log2 N2 = ZCN2 log2 N
operations, 1.e., exactly the same number as before. It turns out, how-
ever, that the machine language fast Fourier transform routine used for
our problem is twice as efficilent (in computing time per point) in calcu-
lating a 4096-point transform as i1t 1s in calculating a- 64~point transform.
Thus, if we can solve the two-dimensional Poisson equation on a 64 X 64
grid by using a single 4096-point transform, we can reduce the running
time for that part of the problem by 50%, -

In order to see how we might take advantage of this, consider the
4 x 4 grids 1llustrated in Fig. 3 1. The points in parentheses represent

the virtual points which are used to provide the boundary conditions. The
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Fig. 3.1l.a. Normal periodic boundary condition
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Fig. 3.1.b. Modified periodic boundary condition
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periodic boundary conditions which are normally used are 1llustrated in
Fig 3.1.a. The required virtual data on each line are taken from the
opposite end of the same line. A modified or staggered periodic arrange-
ment 1s shown in Fig. 3.1.b, here the virtual data on the horizontal
lines are taken from the opposite end of the succeeding or prior line.
The only difference in the two cases 1s that the modified conditions of
Fig. 3.1.b have the left and right boundaries offset vertically by one
cell. The arrangement of Fig. 3.1l.b allows use of the single N2 point
transform and 1s therefore desirable. This raises the question of what
we should require of the boundary conditions for the box turbulence prob-
lem. The first requirement is that the virtual data must have no correla-
tion to the adjacent points. This means that the correlation of the veloe-
1ty field across the box must be negligible (assuming the virtual points
are taken from the opposite end of the box). This requirement is met since,
as noted earlier, the box-turbulence problem must have a velocity field
which 1s uncorrelated half way across the box xf 1t zs to make physical
sense. Secondly, the row of vairtual points must represent turbulence.
This requirement can be met by equating the data at the virtual poants to
those of some other row of points in the problem. As Ilong as the order of
the points 1s retained (1.e., the statistzcs in the vertical direction are
unchanged), they may be shifted vertically with no effect. Either of the
boundary conditions illustrated in Fig. 3.1 satisfies the above require-
ments The advantage of the boundary condition illustrated in Fig. 3.1.b
will soon be apparent.

Suppose we combine the four rows in Fig. 3.1 into one row of 16 points
numbered 3 = 1,2,3,...,15,16. TFor purposes of the Fourier transform, 1t

is more convenient to use an index m = j - 9 so that:

m=7 271
P - Y e 2 m) =9
m=-38 N
1 -271 =
f(m) = —:?-ZF(k) exp( 7 mk) (N = 4)
N k N

Now we let 3J = 3¢ + NJZ. Then f(31+l,32) = f{3+1) for all points on the
grid. Referring back to our derivation of g(k} in the preceding section,

we see that 1f x = Jq Gx’
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1 =271
DD f(m) = 53 g(k) F(k) exp( 5 mk)
N x N
where

4k 6 81k

gl(k) = - 130 + 32cos(g%§) + lZScos(—Zr) - 32c05(*%§) + 2cos(—7r)
N N N N

f(Jl,Jz-Fl) can be written f(j+N), with N = 4 in this case, and it
mmnedlately follows that 1f y = Jzﬁy,

_ 1 =211
where
_ 27k {41k 6k 8rk
gz(k) = - 130 + 32cos( N ) + 128cos\ N ) 32cos( " ) + 2cos( N )

2
Thus, wherever N occurs 1m gl(k), 1t becomes ¥ 1in gz(k), since a
difference of one grid point in the x direction 1s the same as a differ-
ence of one unit 1n the 3, but a difference of one grid point i1n the vy

direction 1s the %ame as a difference of N un%ts in j. Hence,
N N

k=2 _1 k=-1
2 =273, 2 [ '1
(DXDxi-DyDy) E:ﬁz P(k)exp( N2 mk) = EZNZ Lgl(k)4-82(k)4
k—-——z— k—-—T
- P(k) exp(_zgl mk)
N
and the two-dimensional Poisson equation,
(DXDX+DyDy) p(x,y) = £(x,y)
is equivalent to
N2 N2
i k=—2——l sz
=271 ) (—2ﬂ1 )
DD +D D k) ex mk] = f(k) ex mk
@D 420 X e p(Nz ZNZ() 23
By k==

and can be solved by the following steps:

1 F(k)==§:f(m) exp(g%%-mk), where m = 3 + N3, - (N2/2 + 1)
m N
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2. P(k) = F(k)/{gy (k) +g,(k)]

3. p(m) —:LQ-EP(k) exp(_zgi mk)
N k N

Exactly the same methods could be applied to reducing & three-
dimensional transform to a one-dimensional transform, but the CDC 7600
large-core memory 1s not large enough to hold all of the necessary data,
and the full advantage of this method is unattainable. The three-
dimensional transform 1s therefore done by a series of modified two-
dimensional transforms on each plane of data followed by a one-dimensional
transform 1n the third direction. This reduces the running time of the
Poissen solver by ome~thard (a 50% savings on twe thirds of the trans-
forms). Since the Poisson solver takes roughly half of the total running

time, this makes the overall saving about 167 of the total.

(b) Savings from Simplified Indexing

The modified boundary conditions described in the preceding section
have the additional advantage of allowing us to write all of our differ-
encing equations in terms of oneée~dimensional arrays. To illustrate this,
we show how a two-dimensional case can be reduced to a one-dimensional
problem. Suppose we have a 64 x 64 array, u(64,64), and we wish to
calculate i1ts Laplacian to second-order at each point. The easiest way
to program this would be to define a new array v{(64,66) with v(z,1) =
u(x,64), v{1,3) = u(1,3-1) for 31 =2, ..., 65, and w{(1,66) = u(z,l);
each of these relations holding for 1 =1, ..., 64. This takes care of
periodicarty in the 3 direction, and we could then write cur FORTRAN
program as

do 10 i=1,64

1pl=1+1

1f(ipl.eq.65)1pl=1

iml=21-1

1f(1ml. eq.0)iml=64

do 10 3=2,65

10 ulap(i,j-1)=v{1pl,3)4+v(aml,)+v{x,3+1)+v{z,j-1)~4 . *v{(1,])
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There are two difficultizes with the above coding  Firstly, the
"1f" statements used to calculate 1pl and iml slow the egecution of
the loop. With the modified pericdic boundary conditions, we can simply
write 1-1 for iml and 31+l for 1pl and we will be using the cor-
rect points even at the ends of the rows, thus eliminating the "if"
statements. This reduces the running time of a typical loop by 10%.
Secondly, time 15 required by the computer to find the address of the
variable wu(i,j}). To find this address it must calculate m = 1+64%].
Simalarly, 1n the case of a three dimensional array, to find the address
of ufx,3,k) i1t must calculate m=1+64%34+4096%k., With our modified

boundary condations, 1t 1s possible to code the above loop as follows.
do 10 n=1,4096
10 ulap(w)=v{(m+129)+v(m+l127)+v (mtl92)+v (mt+64) -4, *v (mt128)

Use of single subscripting resulted in an additional 30% savaings in the
typical loop. Thus, the use of staggered periodic boundary conditions
allows a reduction in the running time of all the differencing calcula-
tions (x.e., virtually all the calculations other than the fast Fourier
transforms) by a net 40%Z. 1In fact, it was this savings which prompted
the investigation of the modified Poisson solver
The combination of the modafied Poisson solver, the singly subscrip-

ted arrays, and the thaird-order time scheme which allowed an increased
time step reduced the total running time of the main calculation by a
factor of six. Whereas we initially anticipated the problem would use

nine hours of computer time, the f£final version used only 90 minutes.
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Chapter IV

TURBULENCE MODELING

4.1 The Equations of Motion

For an incompressible fluid, the Navier-Stokes equations {4.1)
together with the continuity equation (4.2) describe the motion of a

turbulent flow. These equations are

i, 3 - _.9p 2
T + o uiuJ - + vy uy (4.1)
3 i
du .
3;; = 0 (4.2)

The term (E)/E):&:J)uiu.J in Eq. (4.1) accounts for the change in uy )
at a point in space due to the advection of momentum. The term vV u
accounts for the change in uy at a point in space due to viscous
forces.

Consider an eddy of size L whose typical velocity is U. For
such an eddy, the advective term is of order UZ/L and the dissipa-
tive term is of order vU/Lz. The ratio of the advective term to the
viscous term is of order UL/v, whidh is the (non-dimensional) Reynolds
number Re. An eddy with Re << 1 is dominated by wviscous dissipation
and will rapidly die out. An eddy with Re >> 1 is dominated by ad-
vection and will remain in the flow for a relatively long period of time
before it will die out. Hence, Re = 1 gives an estimate of the small-
est eddy one would expect to find in the flow. We assign to the small-
est eddy the size n and the velocity un, and since BRe = 1 for this
eddy

n_ = v T (4.3)

In order to get another relationship between the velocity and
length scales of the smallest eddy, we multiply Eq. (4.1) by u_, which
gives the equation for the kinetic energy
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u,u
3 3 i _ _  ap 2
5T 9%y + ij u ( 5 ) = u axl + uivV uy (4.4)

Integratang Eg. (4.4) over a volume V, applying the incompressibil-

ity requirement (4.2), and ignoring contributions from the boundary

- u.u
R A T 2
Lat L gy v fulV u,dv (4.5)

v

vields

The right-hand side of Eq. (4.5), when integrated by parts, 1s seen to
be negative definite and thus represents the energy-dissipation rate.
Letting & be this energy dissipation per unit volume and noting that
the dissipation occurs mainly in the eddies of size n, we have
2
u v
v _
2
n

£ = (4.6)
Now, since the energy dissipated by the small eddies comes from the
large eddies, the dissipation rate e 1s really determined by the large
eddies and can be regarded as given. Then the only unknowns in Egs.
(4.3) and (4.6) are the turbulent microscales n and un. Solving for
these we get the Kolmogoroff (1941) expressions for the turbulent ma-

croscales.
3
n = ("?) . ey 4 (4.7)

A more detailed dxscussion of the Kolmogoroff microscales can be found
in Tennekes and Lumley (1972).

In a2 typical problem involving turbulence, the length scale of the
largest eddies which we want to simulate 1s several orders of magnitude
larger than n. In fact, L/n, where 1 dis the largest scale in the
2/4. Hence we would need R.ei/4
in each direction, but the largest number of grid points in each dimen-

problem, 1s of order Re gri? points
sion which one could squeeze nto present-day computers for a three—
dimensional calculation is of the order of 100. On the other hand,
typical Reynolds numbers of engineering and scientafic interest are in
the range 104—108. Consequently, the grid point separation 1is, 1n
general, orders of magnitude larger than n. Hence the eddies of size
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n, in which the energy dissipation is occurring, cannot be calculated

directly. We attempt to resolve this problem by defining a new veloecity

field Gi where the overbar denotes some sort of averaging process.

It could denote a temporal average, a space average, or an ensemble

average ovey many realizations. We then define ui by uy = Ei + ui.
Leonard (1973) has suggested that the appropriate averaging proc-

ess for large-eddy simulation should be a local spatial average of the

form
Ei(zf) = %-/v' G(f-f')ui(:f‘)dV' (4.8)

where V d1s a volume surrounding the poant =x over whach u is to
be averaged and G is a weighting function as yet unspecified. This
process may be called filtering, as its effect is to remove the small-
scale fluctuations from u;, forming :i. We call ;i the filtered
or large-scale field and ui the subgrid scale field.

The simplest averaging operation is to let G =1 and V be the
cubic volume with sides of length Aa whose center is at x. Then

Aa Aa Aa
1T Xt xS

u = L o i ! L
ui(zc) 3 f f f ui(xl X13%, =%y %5 x3)dxldx2dx3
a

Xy~ X, =5 X, —— (4.9

-~

Unless otherwise noted we will take Eq. (4.9) to be the definition of

Gﬁ throughout the remainder of this dissertation.

We now take Egqs. (4.1) and (4.2) and obtain their filtered counter-
parts by multiplying each by the weighting function G =1 and integ-

rating over the cubie volume V to obtain

3 -—

= S _ __°p 2—

% +'Bx uiuJ = % + vy uy (4.10)
| i
du,
B (4.11)
axi

We now make the substitution u =1, + u;

1 in the nonlinear advective

term and obtain
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J ]
where
= 17 11! L (]
nij uluJ + u 4 + uluJ (4.13)

is the subgrid scale counterpart of the Reynolds stress.

We stress the fact that Eq. (4.12) 1s exact. We have defined new
variables, but so far we have made no approximations. We also point out
that .El and ui are continuous variables defined at all points In

space and tame, and they are in no way tied to the finlte grid of points,
which will be introduced later.

4,2 Approximations to Solve the Filtered Navier-Stokes Equations

In order to solve Eqs. (4.12) it is now necessary to make some ap-
proximations. The testing of these approximations is the purpose of
our main numerical simulation., The three most common approximations

used are

1Y, = uluJ (4.14)
ot (. ~
uiu:1 + ulu] = Q (4.15)
— S
uluJ = f(ul,uj) (4.16)

One of our major purposes 1in this work 1s to i1nvestigate these approxi-
mations, test their wvalidaty, and suggest improvements. Numerical

tests are given in Chapter V. We give a discussion of each of these

approximations below.

4.3 The Approximation (4.14) u.lu:l = u :

Leonard has shown that Eq. (4.14) 1s probably a poor approximation

in a turbulent flow. Consider a function £(x) defined i1n some region
of space. If f 1s fairly smooth, we can approximate f£(x) locally
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by its Taylor series expansion about the point X which is taken to
be the center of the filter volume, V, over which f will be inte-
grated to obtain Efgo). Substituting the expansion of f into Eq.
(4.9), we obtain.

62 3 ] 4
= a
FHe) = F) + 30 G 3, F i F O (41D

where Aa is che length of one side of the cubic volume V. Letting

f = E;E s We have immediately the Leonard approximation

h|
8 == —— b s 5 o~
Lig = uiuJ - uluj = 3% e (uluj) (4.18)

The last term in Eq. (4.18) will henceforth be referred to as the
Leonard term. There can be little doubt that Eq. (4.18) is a better
approximation than E}G; = E;E&. We now ask: What 1s the magnitude of
the Leonard term in relation to the other terms in Eq. (4.12)7?

We can get some idea of 1ts size by considering the simple, one-
dimensional Fourier wave u = exp(ikx) and the 1indar filter of this

wave defined by

A
x 42
ax) = J-L—f w(x")dx' (4.19)
A
a A
e
2

from which 1t is easy to show that for u = exp(aikx):

2 kAa
sin (—H—) sin(kAa)

—_— 2 2 sin kAa _—
u(x)ulx) T A u(x) = g wvu (4.20)
(__é) a a

2

We can now quickly test the accuracy of approximation (4.18). If we
approximate 32/8x2 by a second-order space-centered finite difference

on a grid with spacing Ag and apply it to a Fourier wave, we have

82 L [cos(Zka ) ~1] _ _
= () = Zg uu (4.21)
3x Ag

36



We are interested in the ratio o = u u/u u. The exact value 1s
seen from Eq. (4.20) to be (kﬂa)_l sin kAa. In Table 4.1 we have
given o for various values of kAa. The first column shows the exact
result. The second column gives the approxXimation (4.14) for which ¢©
18 always unity. The third column is the result obtained from Eq.
(4.18) 1f exact (Fourier) differentiation is used, while the fourth col-
umn is the result obtained by using second-order finite differences,
Eq. (4.21), with a grid spacing equal to Aa/Z, a value which wall
later be shown to be appropriate.

Table 4.1

The Leonard Term

XA Exact No Leonard Term  Fourier Second-Order
a Eq. (4.20) (Eq., (4.14) Eq. (4.18) Eq. (4.21) Gaussizn
0 1. 1. 1, 1. 1,
w/4  0.9003 1, 0.8972 0.9024 .9023
/2 0.6366 1. 0.5888 0.6667 .6628
ﬁ 0.0000 1. -0, 6449 0.3333 .1930
3r/2 -0.2122 1. -2,7011 0. 6667 0247
27 0.0000 1. ~5.5791 1.06000 . 0014

[t

We see from the table that for kAa /4, a wave whose wavelength
1s eight times the averaging volume or sixteen times the grid spacing,
the effect of the Leonard term 1s approximately ten percent and the ef-
fect increases at shorter wavelengths. Waves wzith kAa > T are poorly
treated by any of the approximations. However, the filter removes most
of these waves {(as it must to avoid the numerical problem of aliasing),
so the problem is not as severe as 1t might seem. The oscillatory beha—
vior of the filter at high wave number has caused some workers to re-
place 1t with a Gaussian filter. 1Its values are shown in the last column,
and we see that Eq. (4.21) does an excellent job of matching 1t,

We emphasize that the error being discussed here is not related to

"subgrid scale turbulence," but arises from incorrect handling of the

interaction between waves which are supported by the grid.
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4.4 The Approximation (4.15) -Elu; =0

(a) A Model for the Cross Term

We again consider the one-~dimensional wave u(x) = exp(akx) and

tfhe filter defined by Eq. (4.1%). It is easy to show that

kAa kAa

:TT 31n(~§—) 51n(—§—) sin kAa u2

uu = A 1 - KA A (4.22)
a a a
2 2

We will now develop a model for the term G;ui. From the definition

of ué we have u5 = uJ - E;. Using the expression (4.17) for Gg,

2
Aa 2 4
1 . 2 .
uj 5% v uj + O(Aa) (4.23)
which implies
- AZ— 2 4
' = — — .
uluJ 5% ulV uj + O(Aa) (4.24)

i

Now we substitute uJ u - us into Eq (4.24).

J
= by (T =
T = o= L
uluJ o (ulv uJ + ulv uJ) {(4.25)

The use of Eq. (4.17) to obtain Eq. (4.23) assumes that uJ 1s "fairly
smooth'". This will be true if u:J 15 reasonably close to s 1.e., if
u'! does not fluctuate too rapidly. This implies that we are only model-
ing that portion of u; which 1s nearly resolvable on the grid and not
that portzon which 1is entirely subgrid scale.

. Since V2u; fluctuates rapidly throughout the averaging volume and

has a mean value of approximately zero, whereas V255 1s relatively con-
stant throughout the averaging volume, we expect that Eivzus << E;vzﬁh,
and we can neglect the last term in Eq. (4 25). The lowest-order approxi—
mation to E;vzﬁﬁ is just E;VZE;, so the lowest-order approximation to

Eq. (&.25) is

Az o
= - E% u Va (4.26)



Eq. (4.26) 1s our model for the cross term. Clearly there 1s no physics
built into this model.

In Table 4 2 we compare the values of the cross term in the same
manner as we did for the Leonard term in Table 4.1. The values given in
the table are-E'E'/E u. In comparing the magnitudes of the Leonard and
cross terms, we should recall, first, that for the values in Table 4.1
1t 1s the difference from unity that i1s important, and second, that the
cross term will appear with a coefficient of two in the equation. Thus
we see that for kAA = /4 the cross term has approximately half the im-
portance of the Leonard term. As a function of k, the cross term
increases 1n size and then decreases. The approximation (4.26) for the
cross term 1s not as accurate as the corresponding approximation for the
Leonard term. These conclusions will be borne out by the results presen-

ted in Chapter V

Table 4.2

The Cross Term

kA Exact Fourier Second Order
Eq. (4.22) Eq. (4.26) (Eg. (4 26) Gaussian
0 0. 0. 0. 0.
/4 0.0236 0.0257 0.0254 .0235
w/2 0.0705 0.1028 0 0976 . 0718
i 0. 0 4112 0.3333 .0982
3nf2  -0.4949 0.9253 0.5690 .0376
2n 0. 1. 6449 0 6667 . 0058

L}

(b) Leonard and Cross Term Energy Dissipation

Assuming that the model given by Eq. (4 18) 1s correct, the energy

dissipation due to the Leonard term 1s given by

2
Aa - 3 2,— —
= —_— — —— 1)
E:L = R -/v- u BXJ v (uluJ)dV 4.27)
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Carrying through the differentiation B/ij and notaing that E)uJ/E)x.:| =0,

we obtain
2

€. = - 57 u - — [u dv' (4.28)
L 24 v axk 3xk 1 ij

Now we integrate by parts twice with respect to a/axk, giving

Aaz — 2 u1 2—
= — — 1
el 7 A uJ SES-A uldV (4.29)

Leonard (1973) has shown that (4.29) can be approxamated zn the case of

homogeneous isotropic turbulence by

3

du

35 2 1
€. T %8 Aa<:(8x ):> (4.30)

1

For the cross~term energy dissipation we can write

% — 3 [= g2 Aa ) 2
— = - i 1 -_ _ —_ '
A 4 ug ¥, (“:.V “J)dv M2 e o, (“JV ui)dv (4.31)

The first integral in Eg. (4.31) 1s identically zero, since by carrying

out the differentiation B/BXJ we have

du,
T 2T vimav = fu vig it (4.32)
1 an A | v * 3 axJ

where we have again used aGﬁ/axJ = 0, and by integration by parts we

have
du.
fula%(ulvzu )dV' - -—fulvzu == av’ (4.33)
v 3 ] v 3 9%
Since the right-hand sides of Egs. (4.32) and (4.33) are negatives of each
other,
fE 2 Ty lav = o (4.34)
v 1 ij 1 |

We take the second integral in Eq. (4.31) and integrate by parts to ob-
tain
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s f— 3 (—- P by [ o B
-— u o [u Vv )dv' = - o u V'u av' (4.35)
24 A 3xu ] 1 24 v 1 3Xj

Comparing Eq (4.35) to Eq. (4.29) we see that the cross—-term energy dis-
sipation and the Leonard term energy dissipation are the same. Further-

more, since the skewmess
3
< (aul/Bxl) >
2..3/2
<<(3ul/831) >

1s known to be negative, both terms remove energy from the flow. Thas

will be verified by our numerzical experiments.

4.5 Models for the Subgrad Scale Reynolds Stress uiui

Having developed models, for the Leonard term and the cross term, we

are left with the equations

Ju ”
1 —— . _ .°p 2= 3
7ﬁ?'+ 5;—-(uiuj) oy + vV Uy iy (Llj4-ClJ~FTlJ) (4 36)
J 1 J
u,
L - 9 (4.37)
9x
ud
where
by - by — o — o
by = om Gy Ciy = T Tyt Ty)
-‘ l = 1 .
Tu nm 3“M§ﬁ nu ufﬁ
n
A = kk
p = p+—3~

We have indicated that L13 and Clj’ while important, are really the
result of interactions of the resolvable scale flow field with itself.
Conversely, le is solely the result of the effects of the subgrid scale
motions which cannot be resolved. Our only hope for modeling le 1s
that the subgrad scale effects, averaged over the filter volume, are some-
how functions of the resolvable part of the flow, 1.e., the filtered vel-

ocity field ;;. The most obvious condition that such a model must satisfy
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1s that, since it represents the energy transfer from the resolved large—

eddy field to the small subgrid scale eddies which are dissipative,

Cl '
_lulax‘] 13 o< 0

The simplest model which satisfies this requirement 1s the eddy viscosity

model

-
1l

2
ax 13 - vTV Yy

|
where the eddy vilscosity Vp 18 an adjustable constant. Alternatavely,

we can model directly by

1]
aﬁl Ju
Ty T T Vp (‘a’% + Bxi) (4.38)

where Vep could be a constant or a function of position. The term which

appears in the momentum equation is (B/BXJ)TIJ which can be written

B . Bui . 3uJ
ox T\ 9% 9x
J J i

-3

If Vp 18 always positive, then this term can be shown to be dissipative.
Since the time scale for the small-scale turbulence 1s much shorter than
that for the resolvable scale, we expect that the small-scale eddies will
adjust to the large-scale ones. It 1s therefore reasonable to suppose
that the local subgrid scale Reynolds stress should be a function of the
local level of resolvable scale turbulence. Pursuing this line of reason-
ing, we let vo 1n Eg. {(4.38) depend on the local flow variables. We
require that it be positive and have units of (length)2 X (tlme)“l. The
most popular such model, due to Smagorinsky (1963), uses

2|1 aul auJ aul auJ 1/2
Vp T (CAa) 2 BXJ * Bxl 3x T axl (4.39)

J

Unt1l now the only way to verify a model such as Smagorinsky's has
been to cobserve i1ts overall effect on the resclvable scale turbulence.

With our numerical simulation we can directly compare TiJ with the

42


http:VT(-kj+~)a(4.38

results of the model at each point 1in space. It will be seen later that,
although the Smagorinsky model of TlJ 1s not as good as the models
which have been developed for the Leonard term and the ¢ross term, 1t 1S

still reasonably accurate. We will also consider other possible models.

4.6 Combaining the Leonard Term and the Cross Term

When the models for the Lecnard term and the cross term are added
together, we obtain
AZ
= & FT .
L, + Gy 75 (V)" (V) (4 40)

It 1s notable that in one dimension Bq. (4.40) reduces to
Aa Ju 2
+ C = EZ-(E;) (4.41)

This expression 1s equivalbknt to the quadratic form of the artificial
viscosity sometimes used in compressible flow calculations which was

first proposed by Von Neumann (1950). The purpose of the artificial vis-—
cosity in compressible flow calculations i1s to smear a shock front over
several cells. We note that this 1s precisely the effect of filtering

the velocity fiaeld. TIf the field u has a step discontinuity, u will
appear as a ramp of length 2Aa, which is exactly what the artificial
viscosity attempts to do. A majoxr difference 1s that we are proposing
that this term be included everywhere in the calculation, whereas the
traditional use of the artaificial viscosity 1s only in regions of compres-—
sion. Furthermore, the present approach provides a more rational approach
to the development of this model. Since in any flow calculation one can-
not resolve detail smaller than one to two meshes, we believe that this
term should always be included in a calculation. Of course, 1n flows

with relataively small gradients, 1ts effect will be small
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Chapter V

NUMERICAL RESULTS

5 1 Results of the Main Calculation

The purpose of the main calculation was to simulate a low Reynolds
number turbulent flow field on a 64 x 64 x 64 mesh which represents,
as accurately as possible, a realization of a true turbulent flow. The
computed flow can then be considered as experimental data which can be
used as i1nput for the analysis of various schemes to model the effects
of turbulence. In this section we will show that the computed field 1s
in fact a good representation of real turbulence

The experiment on which our simulation is based was reported by
Comte-Bellot and Corrsin (1971). The physical experiment was the measure-
ment of the decay of grid-generated "isotropiec™ turbulence in a wind tun-—
nel A time history of the decay 1s obtained by employing the Taylor
hypothesis This eliminates the mean flow f£ield by assuming that the
flow variables at two points in the wind tunnel separated by a distance
L 1in the direction of the mean veloczity Uo are equivalent to the flow
variables at two times separated by the time ¢t = L/U0 of a flow with no
mean velocity at the same point in space.

The conditions chosen to be numerically simulated are given in Table
5.1. U0 1s the mean flow velocity, 10 m/sec, and M 18 the size of the
mesh which originally generated the turbulence, 2.54 cm. The initial con~
ditions for the numerical simulation were set up to coincide with the data
at Uot/M = 240 The 1nitaal condltlons were given the same total energy
and energy spectrum as the experimental data, and a zero divergence, but
were otherwise random The data are in the form of a one-dimensional
energy spectrum, Ell(k), from which we computed the three-dimensional

spectrum from the relationship (Batchelor (1953)).
13212
B) = 7k o l:k 7k Ell(k)] (5 1)
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Table 5 1

Gross Properties of the Turbulent Flow

UO = 10 m/sec, M = 2.54 cm

Dissipation Kolmogorov Taylor RA
UZ Rate Micro-Scale Micro-Scale
1 2 2
UT cm U, A
= (_c_rgl__) ( 3 ) (cm) (cm) L
M sec sec v
240 6 75 145 .069 845 38 1
385 5.03 48.5 .091 109 36.6
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where E(k) 1s the three—dimensional energy spectrum. The initial field
does not represent true turbulence since 1t contains none of the local
velocity correlations that exist in a physical field. It 1s these corre-
lations which give rise to the subgrid scale Reynolds stresses which we
hope to model. We also note that the skewness, which 1s an andication of
the presence of turbulence, 1s 1nitially zero. The expectation 1s_that
as the equations of motion are integrated in time, a representation of a
true turbulent flow will develop.

Given the fixed number of mesh points in each direction, N, the
physical size of the box of fluid must be determaned. The box must be
large enough that the velocity correlation at L/2 is negligible, and
1t must be small enough that the highest wavenumber kmax =N /L is large
enough to include essentially all of the energy dissipation spectrum. The
size of the box was chosen to be 20 em X 20 em x 20 ecm. Fag. 5.1 gives

the experimental velocity correlatzon function Rll(rl,0,0) where

p,(r ,0,0)
1171
Ry (50,0,0) = Sl (5.2)
11
and
pll(rl’o’o) = < ul(xlax25x3)ul(xl+ rl’XZ’XB) >

We see that a 20 cm length 1s sufficient to meet the condition that the
correlation at L/2 be small.

Figure 5.2 shows the three-dimensional energy spectrum E(k) and
the dissipation spectrum 2vk2E(k) of the initial condations. Since
kmax = 10 cmfl, we do andeed capture most of the energy and dissipation.
In Fig. 5.3 we show the three—-dimensional energy spectrum E(k), the
dissipation spectrum D(k), and the energy transfer spectrum T(k) of
the final numerical flow field DP(k) is simply kazE(k). T(k) as

calculated from

LB = T() + D) (5.3)
3 3 *
5E-E(k) was calculated using the numerical values of u, and 3c (ul).
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Fig. 5.1.
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We now examine the results of the numerical simulation. We look
first at the energy, as a function of time and i1ts rate of change, the
dissipation rate We are solving the exact Navier-Stokes equations with
no model for turbulent energy dissipation. The only dissipation present
in the equations 1s a result of the physical viscosity v = 0.14 cmzsec—l.
If we have chosen a sufficiently fine grad the energy decay of the numeri-
cal caleulation will match the experimental data. As can be seen in Fag.
5.4 this 1s the case With At = 0 0073 seconds, 50 time steps equal
0 365 seconds, which 1s the elapsed time between Uot/M = 240 and
Uot/M = 385. The total energy in the numerical simulation at time step
50 18 3 2% low. The dissipation rate, which 15 a more sensitive indica-
tor, 1s 11 3% high. This 1s the result of too high a numeracal transfer
of energy from low to high wavenumbers. A shift to high wavenumbers will
increase the dissipation, which is given by _rvsz(k)dk, more than the
total energy, which 15 given by fE(k)dk..

So far, we have seen that our box 1s large enough teo contain a sam-
ple of fluid whose velocities are uncorrelated across the box and is small
enough to calculate essentially all of the real dissipation  The only
question remaining 15, ''Has the flow field developed into a truly turbu-
lent field?" The skewness of low Reynolds number wind tumnel turbulence
has been shown experimentally to be approximately ~0.4 {(Batchelor (1953)).

The skewness 8 158 defined as
s = - — L/ (5.4}

where < > 1indicates an ensemble average, The skewness of the numerical
flow field, with the average taken to be the average over all of the graid
points, is shown in Fig. 5 5. The skewness starts at zero, since the
initaal flow field does not represent true turbulence. The skewness plot
indicates that after only 15 time steps we appear to have stabilized the
skewness. The slight dips in the skewness which cccur every eight tame
steps were mentioned in the discussion of the third-order time-differencang
scheme  The third-order scheme has a weak imstability which must be cor-

rected for occasiocnally. 1In this run the correction was alternately
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turned on for four time steps then off for four time steps throughout

the calculation. The periodic dips in the skewness coincide wath the
turning off of the correction. It appears that after about 30 time steps
the correction was probably no longer needed.

The tailing up of the skewness near the end of the problem 1s prob-
ably due to the continuing accumulation of energy in the high wave num-
bers. ZLooking at the skewness, we decided that time step n = 40 would
probably be our best representaiton of true turbulence, and this time
step was chosen fbr the analysis to be described imn the following section.

Ancther, much more convincing, argument that the flow is truly tur-

bulent will be given 2an Section 5.4.

5.2 Testing of Subgrid Scale Modeling

Having completed the main calculation, we now have a realization of
a flow field which has the characteristics of physical turbulence  The
data, which we treat as 1f it were from a physical experiment, 15 given
on a 64 x 64 % 64 mesh within a box which 1s 20 cm on a side. We now
imagine placing a coarse 8 x 8 x 8 mesh over the physical space cccu-
pred by the original fine mesh, i.e., each side of the coarse mesh is
eight times a side of the original fine mesh The relation between the
fine mesh and the coarse mesh 1s 1llustrated in Fig. 5.6. Within each
cell of the coarse mesh we have the experimental value of the veloecity -
field u at 512 evenly spaced points. Now we need to know the value of
the filtered velocity fluid u, at each poant in the fine mesh. Recall
that the filtered veloeity field 1s a continuous function defined at all
points in space and 1s independent of the defination of the coarse mesh.
We use a simple box filter with sides of length 17A/8, where A 1s the
mesh spacing of the coarse grid. In order to get an average at a point,
we use the value at that point and an equal number of points on either
side. This means the number of points we sum over must be odd, hence
17A/8 a1nstead of 2A. The value of the filtered velocity component
Eﬁ(l,g,k), where 1,3,k are the coordinates of the point on the fine
grid, is given by

1 148 748 k+8

w0,k = =5 2 ¥ 20 uw(at,yt,k) (5.5)
177 1'=1-8 j'=7-8 k'=k-B
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This equation 1s equivalent tc a box filter with sides of length 17A/8
where A 1s the mesh spacing of the coarse mesh. Calculations will also
be made using an averaging volume with sides of length 9A/8. Having

calculated E;, we also have ui from 1ts defination u, = u, = u'.
For 1llustration purposes we have randomly chosen a line of 64 points in
the Xy direction and have plotted ul(xl) and Ei(xl) for these 64
points 1in Fig. 5 7,

The remaining quantaties in which we are interested are

—_——— l _—

uu = — u 5.6a
2 m 173§32'§ 2"m ( )

Tl o= T (5.6b)
2™ m 173 IR Lm

u'un' = —i—-z: u'u! (5.6¢)
% m 173 raleri % m

We now restrict our attention to the quantities E;, E;Eg, E;ug, and
u;u; at the centers of the 512 cells defined by the coarse mesh. The

claim made for the turbulence models under investigation i1s that the vari-

ables uu, uau, and u'u' can be expressed as functionals of u We
1] 1] 1] 1
will now demonstrate the extent to which this 1s true for the case of low

Reynolds number, isotropic, homogeneous turbulence of an incompressibie
fluad.

5.3 The Energy Dissipation

The equation for the kinetic energy of the filtered velocity field
may be obtained by taking the scalar product of Eq. (4.3b) with G; We

obtain

13 —= - 3 == — 3p 2 — 3

== e = - v — +C _+

2 3t (ulul) + Y 9x (uluj) Y1 9% v Yy + Y Bx (Llj Clj T13)
(5.7)

For our purposes the dissipaticn due to the real viscosity can be ignored

since we find that 1t represents less than five percent of the total dis-

sipation on the coarse grid. When Eq (5.2) 1s integrated over all space
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the contributions from the pressure gradient and the nonlinear advective

term vanish, leaving

L2 aiyar = - 3 22 . f 2 .
2 _£3t (un.ul)dv ful ax L:l.;}dv . Yy Bx Cl_]dv
v | v k| (5 8)
-./.E; o T AV (5.8)
v h| J
Using our experimental values of L__, C._, and = for each point in
1] 1] 13

the coarse mesh, we can calculate the dissipation rate due te each term.

L S22,
) ., = 312 T E Dy (5-92)
n=1 ]
512
_ 1 _ T 3
€c T 312 Z 19x. 13 (5.90)
n=1 i
512
R -5 2
1 T F12 & Y1 3% a3 (5.9¢)
n=1 |

The results are plotted in Fig, 5.8 for g, at four time steps, using
the averaging volume of 9A/8 on a side. Some comments on Fig. 5.8 are
in order. First, we note that at time step n =1, =x.e., the 1nitial
condition, the dissipation due to the subgrid scale Reynolds stresses

15 zero., This is what we expect, since the 1mitial conditions do not
represent true turbulence. As the flow develops and becomes more physi-
cal, the dissipation term from the subgrid scale Reynolds stress rises
raprdly before falling off as the energy of the flowdecreases. This is the
evidence referred to i1n Section 5.2 which indicates the flow has devel-
oped a truly turbulent nature. The finite differences used to obtain
Fig 5.8 were taken on the. coarse mesh to conserve computing time. It 1s
more accurate to take differences of the filtered quantities on the fine
mesh (recall that the filtered quantities are defimed at all points 1in
space}, and this was done at the final time step to obtain the dissipa-
tion from the cross and Leonard terms as well as the subgrid scale Rey-
nolds stress. At time step 41 the dissipation rate due to the subgrid
scale Reynolds stresses found in this way 1s 5.32 cm2/sec3, which 1s

a bat less than that found by coarse mesh dafferencing, that from the
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cross term 1is 3.95 cmzlsec3, and that from the Leonard term 1s 2 82
cmzlsecs. We recall that the models predicted that the dissipation
from the cross and Leonard terms should be equal. Though not equal,
they are reasonably close.

The dissipation for the large (174/8) filter case was also calcu-
lated at time step n = 41. The major difference from the previous case
15 a decrease in the dissipation due to the cross and Leonard terms.
This 1s because increasing the size of the filter smooths the resultant
field, causing a decrease 1n skewness and hence a décrease in cross—term

dissipation.

5.4 Correlations Between the Models and the Numerical Experiment

We are now 1n the position of being able to make direct comparisons
between the models for subgrid-scale turbulence terms and their numerical
experimental values. We define the correlation coefficient C(M,X) be-

tween the values of the model M and the experiment X as

<MY >
C(M,X) (5.10)
<Mz>1/2<X2>1/2
where
, 512
<MX> = =5 ‘; M(n)X(n) (5.11a)
n=1
512
2. 1 2
<M= 5 ¥, M) (5 11b)
n=1
512
2 1 2
<X°> = mnz::l X (m) (5.11c)

If M and X are totally unrelated, themn C(M,X) =0 If M 1s a con-
stant multiple of X, 1.e., 1f the model 1s exact, C(M,X) = 1.

There are three levels at which comparisons can be made, and these
correspond to how the terms appear in the equations  For the moment we
restrict ourselves to discussing the subgrid-scale Reynolds stress T

The most direct comparison 1s at the tensor level, 1.e , between the
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experimental and modeled values of le However, the term which actu-
ally occurs in the momentum equation 1s an acceleration vector 3TIJ/3X3
We define the vector level of comparison to be that between the experimen-
tal and modeled values of aTlJ/BxJ. The scalar level of comparison re-
fers to the energy dissipation E;(BlelaxJ) produced at each cell in

the coarse mesh by the experamental le and the modeled TlJ. The pri-
mary purpose of the subgrid-scale model 1s to remove kinetic energy at

the correct porticn of the flow, so the scalar level of comparison is
important, and we will find 1t to be comsiderably better than the other

two

5.5 Tensor~Level Comparisons

(a) The Leonard Term

The Leonard term is defined as

i

Llj T My T3 nkk613 ; L T e L (5.12) -
and the model we use 1is
1 Ai p J——
nlJ = u1J - g-akkﬁlj : a1J = S v (uluj) (15.13)

Fourth~order differencing has been used i1n evaluating all of the models
which we will be discussing. Fourth-order space differencing gives one
to three percent better correlations than second-order differencing. The
differencing was done on the coarse mesh, because this 1s the mesh which
would be available i1n a real simulation. We note that we can do better
in this case, since we have E; on the fine mesh as well as on the coarse
mesh and can get a better approximation of the actual derivatives. We
compared the results obtained by d1fférenc1ng on the fine mesh to those
obtained on the coarse mesh and found the differences to be minor (the
correlations for the Leonard, cross, and Reynclds terms an the case of

the small filter changed from 0.909, 0.790, and 0.277 to 0.934, 0.744, and
0.297, respectively).

60



We find that the correlation between the model (5 13) and the ex-
periment (5.12) 1s 0.935 for the large (17A/8) falter and 0.909 for
the small (9A/8) filter. The ratios of the r.m.s. value of the model
to the r.m.s. value of the experiment 1s 1.60 for the large filter and
0.788 for the small filter; the reason why these values differ from
each other and from unity are not understood. Since the model for the
Leonard term involves the fewest approximations of the three terms we
are considering, we expect 1t to be the best, which it 1s. Also, since
the model 1s based on a Taylor series expansion of the filtered velocity
field, we expect the smoother velocity field produced by the larger fil-
ter to give better results, and i1t does. The correlations as functions
of 1,3 are detailed in Table 5.2. Only small differences are observed

throughout the table.

(b) The Cross Tern

The cross term 1s defined as

= _i . = e ot 1
ClJ h nlj 3 nkkalj ? nlj iuJ + Uy | (5.14)
and the model we use 1s
i by o o
MIJ = 313 -3 ukk613 : ulJ = - EZ-(UIV uJﬂ-uJV ul) (5 15)

In thais case we find that the correlation i1s better for the smaller f£il-
ter than for the larger filter. This 1s probably because the experimen—
tal values are smaller for the large filter than for the small filter,
due to the smoother flow field. The correlations of 0.685 and 0.790 are
less than for the Leonard term, but the r.m.s. ratios of model to experi-

ment are better, 2.e., 1.23 and 0.96. Details are in Table 5.3.

(c) The Subgrid-Scale Reynolds Stress

The definition of the subgrid-scale Reynolds stress is
\

- _ 1 . -
113 = nlj 3 nkkﬁlj H nlj u,u (5.16)

T
J
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Table 5.2

Correlation Between Exact and Modeled Leonard Terms

_ 174 _9A
by ™73 By =73
1 2 3 i 1 2
N N 3
1| .92 .94 .94 1 90 .91 .93
21 .94 .93 .93 2 91 .89 .92
3| .9 .93 .94 3|l .93 .92 .90
Average = .935 Average = .909
;1!5:;&13 = 1.60 <?s 2 788
2_1/2 ~ 2 1/2

<" > <L >
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Table 5.3

Correlation Between Exact and Modeled Cross Term

;\1 1 2 3 ;\1 1 2 3

1] .69 .67 .72 11 .78 76 82

2 67 . 64 .70 2] .76 78 80

3 72 .70 .65 3 82 .80 .78
Average = ,685 Average = ,790
<M2>l/2 <M2>1/2
17 1.23 — 5 173 = -9

< 0° > <C >



The four models we use are

1 Bul au
M:LJ - %473 0tkkﬁlj ? ®1 T K(WH}' axl) (5.17)
where K 1s given by
AV R Y
model 1 K = (CAa) 0 (ax + v )(Bx + Y ) (5.18a)
] 1 J 1
2 —— .1/2
model 2 K = (CAa) (mlwl) (5.18b)
_ 1 == 1/2
model 3 K = (CAa) 3 (ukuk) {5 18c)
model 4 K = C (5.184d)

In Eqg. (5.18b), w ~ Tepresents the vorticity w = sljk(Buk/BXJ) All
four models were found to be equally valid waith the best correlations found
to be 0.363 for the large filter and 0.303 for the small falter. In model
3 the value for E;EE 1s taken from the experimental data. Although these
correlations are considerably below those for the cross term and the
Leonard term, they are clearly significant. The constants i1n the models
were obtained by matching the r.m.s. value of the exact quantity waith that

of the model prediction. Detailed comparisons for the Smagorinsky model

are shown an Table 5 4, and a summary for all models 1s given 1n Table 5 5

5.6 Vector-Level Comparison

(a) The Leonard and Cross Terms

In the previous section we compared the models darectly with the cor-
responding stress tensors. Here we make the comparison with the terms

which actually enter the momentum equatiomns, 1.e.,
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Table 5.4

Correlation of Subgrid-Scale Reynolds Stresses

with Smagorinsky Model

J\l 1 2 3 J\l 1 2 3

1] .20 51 .38 1 18 41 .32

21 .51 .23 .39 21 .41 21 .28

3 .38 39 .26 31 .32 .28 .26
Average = ,346 Average = 277

c = .269 C = 247



Table 5 5

Summary of Correlations between Exact Subgrid Scale

Reynolds Stresses and Models

Term Model T ga | Fal g
Ri] Smagorinsky (5.18a) . 346 .277 270 L 247
Vorticity (5.18b) .344 .260 .294 .275
T.K.E. (5.18¢) .363 .303 .196 .175

Eddy viscosity (5.18d)} .352 . 295

3R

?Xl'l Smagorinsky 425 + 346 . 240 .264
? Vorticity . 408 .327 .220 247
T.K.E. L4634 .362 .138 .155

Eddy viscosity 426 .356

3R

u a—;'l Smagorainsky .710 .580 .186 171
Vorticity 700 | .582 | .202 | .191
T.K.E. .723 . 606 .085 .095

Eddy viscosity 716 . 605
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The results for the large filter show that the correlations range from
0.935 to 0.947 for the Leonard term and from 0.685 to 0.689 for the cross
term. For all practical purposes these are the same as for the direct

comparison.

(b) The Subgrid-Scale Reynolds Stress

In contrast to the case for the Leonard and cross terms, we find a
significant increase in the correlations between ale/aXJ and its ex-—
periumental value over the direct correlation between the stress tensors.
The results shown 1n Table 5.5 show that all models are again equally
good, but the correlation has typically 1ncreased from 0.35 to 0.42 for
the large filter. Comparable 1increases are seen in the small filter re-
sults. The reason for this increase 1s not understood. We note also
that the model constants decrease, wath one exception; again the reason

15 not understood.

5.7 Scalar-Level Comparilsocon

(a) The Leonard and Cross Terms

Here we make ocur comparisons based on the terms which enter the
energy equatiom, 1.e., G; (BLljlaxJ) and ;; (BClJ/BxJ). Summaries
for the three levels of comparison are given in Table 5 . We see a small
decrease 1n the correlations from the vector to the scalar level for both
the Leonard and the cross terms. The relatively large disagreement in the
magnitude of the dissipation due to the Leonard term and model are not
considered serious, since the dissipation due to the Leonard term 1s

relatively small

(b) The Subgrid-Scale Reynolds Stress

We see a very sharp increase in the correlatzons for the subgrid-
scale Reynolds stress at the scalar level. For example, at the vector
level the Smagorinsky model with Aa = 17A/8 had a correlation of 0.425,
but at the scalar level it 1s 0.710. Part of the increase may be due to
the fact that both the experimental and modeled terms have mean values

which are significantly positive. Even so, when the mean values of both
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are subtracted out, the correlation between the fluctuating components
of the exact and model values 1s still 0.535. We also note a further

decrease in the model constant.

5.8 The Subgrid-Scale Eddy Coefficient

The models (5.18) contain constants which are usually called the
subgrid-scale eddy coefficient. The value of the constant has no effect
on the correlation between model and experiment  As mentioned above, we
can, however, adjust the constant to match the r m.s. values of the model
to experaiment. The values of the comstants found in this way are given
in Table 5.5 and were mentioned earlier. The constants cbtained decrease
as we pass from the tensor level of comparison to the scalar level.

Since the primary function of these models 1s to represent the transfer

of energy from large to small scales, which acts like a dissipation in

the large scales, we recommend that the values given for the scalar level
of comparison be used. For the Smagorinsky model, these values are in
excellent agreement with theoretical and experimental values which range
from around 0.13 to 0 21 (Deardorff (1971)). We note that when the Sma-~
gorinsky model 1s formulated using the term (CAa)z, the value of C is
nearly independent of Aa; this would not be the case 1f the grid spac-
ing Ag were used. It is encouraging that we have obtained about the
same value fer € as 1s obtained by theoretical arguments assuming an
rnertial sub-range and by numerical experiments at high Reynolds numbers,
even though we are at low Reynolds number and have no discernible inertial
range Thas leads us to speculate that C 1s relatavely independent of
the spectrum of turbulence, at least in the isotropic case The values we
obtain are within ten percent of those found by Kwak et al. (1975) and
Shaanan et al. (1975) by matching model calculations to experimental
energy decay. Since a change 1n numerical method can result in a ten
percent change 1n the conmstant, we can say that we have indeed predicted

the model constant without reference to experiment
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5.9 Comments on the Correlations

A striking result that can be reached from looking at Table 5.5 1s
that all four of the proposed models are essentially equally valid.
Since all of the models use a positive scalar times (BE;/SXJ + aE&/axl),
wg_checked FS see how often the sign af le concided with the sign of
(Bullaxj + Bujlaxl) and found 1t to be only 68%. We also ran a calcula-
tion with K being arbitrarily adjusted at each poaint in space s0 as to
give the best possible correlation. At the temsor level of comparison,
we achieved a correlation of 0.51, versus numbers around 0.35 for the
models considered above. We conclude that no model of the form (5.17) can
do significantly better than Smagorinsky's. This aincludes models which
attempt to calculate the transport of turbulent kinetic energy and models
whach attempt to calciilate both the turbulent kinetic energy and a length
scale or the dissipation (so-called two—equation models). This 1s pax-
tially verified by the results of model (5.18c¢), which show that even 1if
one could calculate exactly the turbulent kimetic energy in each cell
thHis would not give a significant improvement.

We also 1nclude in Table 5.5, at the vector level, a modified Smago-

rinsky model where, instead of

we used
KV u_ (5 19)

The correlation decreased only slightly. The Smagorinsky model has the
disadvantage that 1ts finite-difference form does not detect a wave with
k =%/A, 2.e , a sawtooth, since its first deraivative is always calcu-
lated as zero. This can result in the failure to dissipate sufficient
energy at high wave numbers. The modified Smagorinsky model does detect
and dissipate these waves by using the finite-difference approximation
to Vz. Model (5.19) has the disadvantage that one cannot rigorously

prove that i1t 1s dissipative
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5.10 Other Models, Which Were Discarded

All of the models considered above are reasonably good We list
here some of the more reasonable-looking models which were tried but dis-
carded. The following three tensor eddy viscosrty @édéls all had corre-

lations of less than 0.02 with the numerical experiment.

_ 2
TIJ = CAa leDkJ (5.20a)
= c?l@®.p +r D ) (5.20b)
ET 2 “M1k'ky T gk ka .
. = atlo op +r ) (5.20c)
1] 2 Yik'kg JkBkl :

-

where D13 15 the strain rate tensor,

1 /%y, du
D = o=+ =L
1] 2 \3x 9x
1 1
and Rl:l is the rotation tensor,
S O
1] 2 \ox 9%

The next three models were proposed because of their similarity to the

Leonard term, and all had correlations with TlJ of less than 0.02.

- 9 9 ==
g - Bxk Bxk uluJ (5 21a)
3 9 ——
By B ow, Kk (5-21b)
1
N B T e SO N et
17 2 Bxl 3Xk (ujuk) + 3xJ Bxk (uluk?J (5 21e)
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Chapter VI

CONCLUSTONS AND RECOMMENDATIONS

Most of the following conclusions are strictly wvalid only in the
case of low Reynolds number homogeneous 1sotropic turbulence. TFor some
of them, the range of validity extends beyond the range for which 1t has
been proven; for others the wvaladity of such extensions 1s unclear.

Qur fairst conclusions and recommendations are concerned with the
smmulation 1tself.

1. With the present computer capacity i1t 1s possible to simulate
homogeneous 1sotropic turbulence accurately in three dimensions. The
lmaitation to a 64 X 64 x 64 grad restricts the Reynolds number based
on Taylor microscale to RA < 40.

2. The use of the third-order time method that we have developed
allows a considerably greater time step to be used with very lattle sacri-
fice 1n computational time or accuracy. We recommend the use of thard-
or fourth-order methods in future simulations, and some work should be
done to find the optimum such method.

3 The use of staggered periodic boundary conditions allows a con-
siderable increase 1n computational efficiency at no cost whatsoever.

4. The results of our simulation agree with the results of the cor-
responding experiment in all significant statistical quantities, and we
are confident that they may be used for model testing.

5. With larger computers that will be available in a short time, 1t
will be possible to use 256 x 256 % 256 grids and increase the Reynolds
numbers consldered by a factor of four. We believe that these computations
are important and should be done

The next set of conclusions and recommendations is concerned with the
models used to represent the subgrid scale turbulence.

6. The Leonard term is indeed of considerable importance 1in the pre-

diction of turbulent flows and should be included 1n any saimulation. The

approximation to (G;GA -I%;%) suggested by Leonard 1s fairly accurate,
although some adjustment of the constant may be desirable. An alterna-

tive 1s direct computation of the terms.
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7. The cross term, (G;E; + E“Eg), whach has been neglected by
many previous authors, i1s also important, although less so than the
Leonard term. We have suggested a model of this term whach appears to
do an adequate job of approximating 1it.

8 Eddy viscosity models do only a fair job of matching the actual
subgrid-scale Reynolds stresses, but they do a better job in matching
the acceleration produced by the stresses and they are rather good at
predicting the dissipation or energy transfer to the small scales.

9. All models of the eddy-viscosity class that we tested seem to be
approximately equally good, and we are unable to choose among them on the
basis of this study. The constant eddy-viscosity model 1s essentially
what has been used by Orszag and co-workers, and our results partially
explain their success. Thas point 1s probably closely related to the
Reynolds-number independence of the large eddies.

10. Further improvements in subgrid-scale modeling are not likely
to result from attempts to find improved formulas for the eddy viscosity.
We have shown that the best any eddy-viscosity model could do 1s a rela—
tively small improvement on the Smagorinsky model. Thus, turbulent ki-
netic energy and two-equation models which have been popular methods for
time—-average modeling are not promising approaches to subgrid-scale
modeling.

11. We were unable to find improved models for the subgrad-scale
Reynolds stresses, although a number of possibilities were tried. Further
work in this direction could be fruitful.

Other recommendations that we would like to make are:

13. The effects of strain and shear on turbulence are very impor-
tant, as they occur in essentially every flow of technological interest.
The approach of this report cught to be extended to include those cases,

14. The subgrid-scale Reynolds stresses play a role in large—eddy
sumulations similar to that which the usual Reynolds stresses play in
time- or ensemble-average calculations. We therefore suspect that analo-
gous models ought to be equally valid in the two cases. Further work ais
needed to substantiate this suspicion, but, should 1t prove to be the case,
our work would have important consequences for turbulence modeling ian gen-
eral,
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15. One can derive exact equations for the subgrid scale Reynolds
stresses. Using the approach of the present report, we can evaluate all
of the terms in this equation and thus determine their importance and
examine methods of modeling them.

16. The approach used in this report can be applied directly to the
testing of time- and ensemble-average models. If we can compute flows in
which the modeled effects are present, we could test the models in a man-

ner similar to that used in the present work.
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Appendax A

Higher-Order Time Methods

In Chapter 2 we developed a third-order time-advancement procedure.
This method 1s a predictor-corrector method which requires only one eval-
uvation of the time derivative per time step. In this appendix we look
at two families of related methods in a more general way. Since the equa-
tions we deal with are parabolic with respect to the time variable, 1t
1s sufficient for initial study to consider only the ordinary differen-
tial equation

4 = au (A.1)

where the dot denotes time differentiation and ¢ may be complex.

The two most important questions relative to a numerical method are
accuracy and stabalaty. Accuracy is usually defined by assuming that 1f
u(0) were known exactly then the computed value of u{Ad), which we call
G(A), 1s related to the exact value by

o+l u(n—l—l)

a(d) = u(d) + const. A (A.2)

(n+1) 1s the {nt+l)st derivative of u. A method with this

where u
property is called nth order. Loosely defined, stability means that
the computation does not blow up. One common definition is that when
the method 1t applied to Eq. (A.1) with « having negative real part,
it does not produce a growing solution. For most methods, stability de-

pends on the size of the step chosen, 1.e., 1t 1s conditionally stable.

Tmplacat metho&s may be unconditionally stable, but they are diffacult
to apply to nonlinear problems.

An approach to these questions is to look at the solutions of the
difference equations. Although Eq. (A.1l) has only one solution eat,
the difference equations may have multiple solutions. COne of these ap-

proximates the solution of the differential equation with the desired
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accuracy, the others are called parasitic solutions. All roots must

have magnitude <1 for stability.
For our purposes we want a method with the following properties

1. Haigh accuracy -- thais allows a large time step with acceptable error.

2. Stabilaity —— the method must be stable for time steps as big as nec-
essary for the accuracy requirement.

3. Few function evaluations —— in parfial differential equation solving,
the "functions" are partial derivatives and are costly to evaluate.

4. Minimum number of different values of variables required —-~ i1n par-
t1al differential equation solving, the "variables" are large arrays
which require considerable memory See Chapter 2 on this point.

The popular Runge-Kutta method has the first two properties but not the

last two. Essentrally what we will do s accept poorer (but sufficient)

stabaility in exchange for properties 3 and 4.

Two Evaluation Methods

The proposed methods are two-step (two previous values required)

predictor—-corrector type methods. The most general such method 1s

u, = alun + azﬂﬁn + aSun_l + aaﬂﬁn_l ,
(A.3)
Uyl = Blun + BZAun + 83un—l + BéAun-l + Bsu* + B6Au* .
These can be combined to give
u = au +a Al +a s’ +b + b.Au_. + boa’
n+1 0'n 21%%n 29 n 0 n=1 1%%n=1 2° Yp1
(A.4)
where
3y = Byt By bp = B3t agly
a, = ay8g By = 48

Thus, although there are ten constants (al,Bl), only six combinations

actually matter, four constants can be chosen arbitrarily to make the
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method as simple as possible. By choosing the ai, b1 properly, it 1s
possible to obtain a fifth-order method, the method so obtained 1s highly
unstable. So we will give up one order of accuracy to obtain stabilaty.
Applying the method (A.3) to Eq. (A.l) and looking for solutions of the

type u = pn, we find that p must be a root of the quadratic equation.
p2 - (a (aA)2 + a_(oA) + a)p - (b (cm)2 + by(aA) + b)) = 0 (A.6)
2 1 0 2 1 0 .

For the method to be stable at all, i.e., for both roots of this equation
to be smaller than unity as A + 0, we must have

bl < 1

ol

For minimal accuracy, 1.e., that one root approach unity as A > 0, we

must have

a0 = 1 - b0

To obtain higher-order accuracy, we match the coefficients of the Taylor

A
series of one of the roots to that of eu and fand:

1st order - ap + bo - b1 = -1

2nd order - 2a2 = Zal + b0o - 2b2 = -_;
3rd order 6a2 + 3al - b0 = 7

4th order 12a2 + 4al - bO = 15

Solving, we have

_ by - 1 i 17 - by
S 2 ’ 2y 7 12 >
1 2 s 2 12 ‘

By choosing wvalues of bO within the allowed range, we can generate a
family of methods. It turns out that bO = 1 has the poorest stabaility
properties, while b, = -1 has the least accuracy

0
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The stability bounds for selected values of bo are given in Table
A.l They were computed 1in the manner described in Chapter 2. We see
that maximum stability 1s obtalined at b0 = .25, and the allowable time
step 18 considerably below that of the fourth~order Runge Kutta method,
for which [aAlmax = 3 8. However, 1n our calculations the effective
value of |oA] 1s approximately 0.2-0.3 for accuracy reasons, so this

stabilzty limit causes no problem.

Table A.1

Stability Bounds

b | A |

_ 0 max
-1. ., 0
0. 51
0.2 .60
0.3 .60
0.5 .55
1.0 0.

We also solved Eq (A.1) using this method wath b0 = (0, with two
different sets of constants., Within roundoff error, both methods pro-
duced 1dentical results. It should be noted that, to minimize roundoff
errors, one should choose sets of (al,Bl) with the smallest wvalues pos-

sible.

One-Evaluation Methods

The methods described above require two evaluations of derivatives
per step; 1.e., ﬁ* and ﬁn both need to be computed. To avoid this
we would need either 86 =0 or 0, = @, = 82 = 84 = (0, either of which
1S 1ncompatible with Egs. (A.5). In order to obtain a single-evaluation
method, we therefore use
W1 = %qUy + azﬂﬁ*n + aqu g -+ a4Aﬁ*n_l
. . . &7
Unpl T Byl T OBpluyy ot Bauy o+ BuAuL gt Boligyg F Bellany
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Which requires the evaluation of wu, only. We now assume solutions of

the form

and find that p satisfies a quartic equation

p - (“1 + nzuab)) 03 - (n3 + né(cm))p + ns(aﬂ)p + n6(0tA) = 0
(A.8)
where
n By * By s N, = T 0gBy ta, tagBy tasBe
Ny = 0y B N, = 0By touBy - B, - agBy , (A.9)
N3 = By ¥ o8y Mg = By —agf, -

So, again, fifth-order is the maximum possible. The method so obtained
1s again unstable, so we must settle for fourth-order. We now find that
for stabilaty

0 < n

and accuracy requires that the other parameters be related to Ny by.

. 8_3 . _4_ 3

Ny = 378N » Mg, ~ IR I
_ _ 1,1

ng = -7y g = 3ty -
. _3_1B

A 3”25 M1 >

The stability limits for these methods is shown 1n Table A.2. Maximum
stability 1s obtained waith ny = 2, and the allowable time step 1s only
slightly smaller than that for the two—evaluation method

In testing these methods, however, we found that these methods do
not always produce the accuracy that one maght expect. In particular, af
an arbitrary version of this method 1s used rather poor results are ob-
tained unless the method 1s started carefully. The problem can be cured
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Table A.2

Stability Limits

_El; IDE'Alinax
0. 0.

1. 0.30
1.5 0.42
2.0 0.53

by requiring that the predictor step be accurate. The predictor can be
made third-order accurate, but only if ny = 0, which results in insta-
bility. We therefore recommend that the method be used with second-order
predictors. For these the method 15 uniquely defined by the predictor
step. Two possibalities are (1) using the leap-frog method as a predic-

tor (ng = 16/9).

Yentl un—l + 2Aun+l
(A.10)
- _ l _ “é- - _ " -
Yl T 9 (16un 7u*n+1) + 27 (46u*n 1lu*n—l + l3u*n+1)
and (2) using Adams Bashforth as the predictor (nl = 20/11):
u = w +2 @, -a, )
*ntl n 2 *n *n-1
(A.11)
_ —l_ _ A - . . .
T ( gu*n—l + 20u*n+1} + 33 { 86u*n+16u*n_l + l6u*n+l)

Good results were obtained with both of these methods. However, we note
that both methods contain some large coefficients in the corrector steps
which is undesirable from the point of view of roundoff error propagation,
and we have used the safer third-order method described ain Chapter 2 in

our calculataon.,



Appendix B

PROGRAMS AND FLOW CHART

Flow Chart of Main Program

Location in
Listing

Inatialize
- * n * n-—1

e @H L @HE

will be in dask fales

W1,W2,W3,Ws

Main. 1 - 1001

(1)
%
o Recalculate (u )29

Yes

TSET = O

1
Calculate new (u )t

¥

% -
Read (u )E’ u® 1 from disk.

*® —_ *
Caleulate (u )0l = y" Liose™P Main 1166-1541

T
ok -
Write (u )" 1 to disk over ull.

Ho > (2)
Time step less than 47

Calculate contribution to
%*
V' p from non-zero diver- Main: 1543-2407

n n-1
gences of u and u

5|
]
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!

*
Read (u )n+l from disk,
% . A —
calculate (u )n+l without Main: 2411-2555
t and subroutine
the pressure term, and DVDTMP

write to disk file W8.

Read from W8, calculate RHS
of Poisson equation for pressure,
forward Fourier Eransform in X,V
directions, write V P(kl,kz,z) to disk.

Main. 3533-4301
and subroutines
CALCPR and FFTFXY

Read V2P(kl,k2,z) from disk

forward transform in z direction, Main: 4303-5053
drvide by kz, backward- and subroutine
transform in z directiocn, DBLSQ

write P(kl,kz,z) to disk.

l

o
Read (u )2+l without pres-

Main. 5251-6137
sure term from disk file W8.

Read P(kl’k2’z) from dask,

backward-transform to Main: 5251-6137
o i and subroutines

P(%,y,2), calculate (u ) FFTBXY ,DVDT

*
and write to disk over (u )"tt,

Calculate un+1 to thard

* - - —
order from u", (u)%71, Main: 6141-10374
*. n % t and subroutine
(u )t and (u )E+l. Write ADVNC
% p—
result to disk over (u ): l.
Terminate?
E Yes
Savé/data. Main: 10376-11547




(1)

(2)

*n
For stability reasons we sometimes recalculate (u )

c using the

n
corrected third-order u .
For the first three time steps only, the divergences of the previous
time steps are not necessarily zero.

System Subroutines Used in Main and Start

MEMREQ

Call MEMREQ(NWORDS) request NWORDS of LCM space for this program.
FORQTS

Call FORQTS(W1,RQl) reserves space at RQl for references to disk
file W1.

CREATE

Call CREATE(W1,,,,,,,,NSECT) creates the disk file W1 with length
NSECT sectors where a sector is 512 words.

TDONE

The statement T=IDONE(W2) sets I = 0 if there is outstanding I/0
to be completed to or from file W1, otherwise I = 1.

IRANR

The statement T=IRANR(RQ1,A{N),NWORDS,NSECT,Wl) causes NWORDS to
be transferred from disk file W2 starting with sector NSECT (Sector
number 0 1s tﬂe start of the file; there are 512 words per sector),
to LCM starting at address A(N).

IRANW .
I=TRANW 1s analogous write statement to IRANR.

FFT2

Call FFT2(A(I1),B(Z2),N, INC) performs a fast-Fourier transform of
length N on the real data startang at locataon A(Il) and the
imaginary data starting at location B(I2) The data are incremen-
ted by INC, -INC 1implies a forward transform and +£ﬁC wmplies a

backward transform.

The Main Program

time steps, 11.e., u N

The main program assumes that disk files containing the first two

- * n- %
-l (u )z 1, un, and (u ): ., ex1st
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LU VLY

™

n N NN

™

RUNwt CH89 14711714 16,32437  VSCLARKIHA  PAGE NO, 1

OO000a0O0 007

PROGRAM GAP (OUT+FSETSsFSET6sFSETT+FSET8+FSETY)

IMPLICIT INTEGER (2, -

LCM/8B1/DUME (98304)

LCM/BB2/DUM2 (98304)

LCM/BB3/DUM3 65536}

MAX LCH BLOCK=126976

UIMENSION VI.G(40969398) +DLG(E416444) yPLGI40962244) sPZ1 (2048124240
ZPZ2IRV4B9242%) yPZ3 (21481 2116) sFHAT (41965296 PC(64+6446] yWLG(4096y
33,8} 4 DULG(4096,3,2), PHATA (4096242} ,DYLG(4Y9013,8)

DIMENSION UTNMI (24516) sUTN (245761 4UTNP1(24576) vuN(24576),
2VTNM1(8192) ¢ VTNIB192) s VINPT [8192) 4 VN(B192)

DIMENSION WTNML(24576) sWTN(c 4576) o WTNPI (24576) 4WN (24576}

DIMENSION USM{64,20,5)sVSM(64v2045) +WSM(6%+2045), Pi6&4s6
4921 1PZ(25690492) bPul4,9692 ) 1PR{BT9G4) s DU(O4910)4 DV(64116)y
I0W(69¢12) yU(B&20,5) 9V (6442045110 {64205} 9pPD(64,20,5)

DIMENSION RQI(20) +RU2({20}»RQA3(20),RA4 (20} 1RQS(2D) yRA6 1201 ,RAT{20)
2+RAB120) +SPRI64) ,SPI (64)

DIMENSION $(255) 2oL (255} 1564 {255) +L64 (255}

DIMENSION ITAPE(2)9I0STAPE(S) »I06TAPE(S) rI1TAPE(S) + IRTAPE(S) »
2I3TAPE(S) s I4TAPE (5) y ISTARPE(S) 1 IOTARE(S) 2 ITTAPE (5) v IBTAPE(S) »
3I07TAPE(S) y J0BTARE (5)

DISK FILES

W1 CONTAINS 64 PLANES OF V.VeW. EACH PLANE CONSISTS OF 24 SECTIONS=32288

WORDS, IE 1536 SECTIONS, PLANE 63 STARTS AT NSECT=0s PLANE I STARTS Al

Baw(I+ly, IF((26#141),67,1512)NSECT=248(]0])1536

W2 1S IDENTICAL Tp Wl

D1 CONSgITS OF 64 PLANES OF DIve EACH PLANE CONTAINS 8 SECTIONS=4096 WORDS

IE 512 SECTIONS. PLANE 1| STARTS AT NSECT=0, PLANE I STARTS AT

NSECT=88({Iw~}1)

PUPR GCONTAINE 64 PLANES OF UPPER HALF OF Js EACH PLANES CONSISTS OF 8

SECTIONS=4096 WoapS, PLANE 63 STARTS AT NSgCT®ns PLANE I STARTS AT NSECT

288 ([el)s IF(1el}88,67,5804)NSECT=NGECT-E12

PLWR IS SAME AS PUPR

COMMON DUMSM (32788}

EQUIVALENCE(VLGI])oDUMlIlJ1otDVLG(11-OUHZ(I)JI(PLG(I);DUMS(I));
2TDLG (1Y o DUNI (327601 } » (WLG(1) o DUMR (1))

EQUIVALENCE (PZ1 (1) sDUML (L)) o (PZ2(1}oDUME(1) ) (PZ3(1)+DUM3IL))

BQUIVALENCE (pULG(117DUMY (73729) ), (PHAT (1) spUMZ (1)) s (PHATA (L) rDUMR
2(32769) ) (PCI1)sDUMZ(49153})

EQUIVALENCE {UTNM1 (1) sDUML (1) }» {UTN (1} sDUML (245T77)) 5 (UTNPL (1)
20UMY (491535 19 (UN{11+DUML {537€9) ) 0 (YN(E ) oDUMSM{L) ) v (VTNML (1) #DUMSMI
340970+ (VTNI1)+pUMSH(B193) ) o (VINPL (1) +DUMSM(L22E9))

EQUIVALENCE tWTNMY (1} yDUM2 (T} {WTN (1) WDUM2 (245771 ) 5 (WTNPL (1)
2DUMB (491537 19 {WN (1) DUMR(73729))

EQUIVALENCE T olpUMSM (L) eSpr{l))e tpil
27 yspuMsM(I 1 9tPZ{Lelsl  1oDUMSMILID o {PACLe] ) pUMSM (40071 91
PRI 2 i) 4DUMSM (1)) o (USM (L) »pUMSME408T 1) » (VSMI1) +DUMSM{104g7) ),
4(WsML1) sDUMSM(LBB9T1) s DU{Ll,1)oDUMSML 130 ( DV(1s1) s DUMSM
5¢1ne233 41 DW{L,1)sDUMSM( 2049) ), ty(dslsd)spumsut 307314 (Vilel,1)
6sDUMSM {9473 )3, (W(19le))yDUMSM(15873))+(PD(1+101)DUMSM(22273))

DATA Rollggﬁs./.ioalgsﬂg./-neafggﬁ o/ RQA/20%0 /2 RAS/20%0,/

OATA RQ6/2060,/,2pT7/2080, sy rqB/20s0,/

DATA WlsHW2s0lsPUPRIFPLWR/SLW] y2LW2 42101 +4LPUPR 4LPLWR/

OATA W3 WG WB/2LA3+2L W42 WEY

DATA ITAPE/lp4LTaPE/s10BTAPE/40380,8LXX014477/4106TAPE/ 4,320,
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10
12
14
16
20
22
24
31
34
46
61
73
106
120
133
145
160
172
205
217
232
2646
257
271
304

332
334
337
341
343
347
351
354
38l
3e2
an
371
400
402
404
408
407
42e

422
436
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RUN=_CMB9 GAD 14711714

16,32,37

VBCLARK]HA

2BLXX014883/ 9 I1TAPE/ 493008 AX005112/ [2TAPE/ 493408 XX005769/

DATA I3TAPE/4438.,BLXX005663/y 14TAPE/6,300,8LXX0083272/¢ISTAPE/6,
23809 BLXX00T039/ 2 I6TAPE/4? 300 8LXX009091/* LTTAPE/S*0/
3 IBTAPE/Su0/

DATA 10TTAPE/SHU/JUBTAPE/S#0/

CALL MEMREQTZ621%441}

CALL FORQTS{wl,rall

CALL FORQTS{NZ2yRaE}

TALL FORQTS{W3,rad)

CALIL. FORGTS{W&ysRa#%)

CALL FORQTS (WB,R38}

CALL FORQTS(pl,rab5}

CALL FORQTS{PUPRsRUG}

CALL FORQTS (PLWR,RQT)

00 3 Ial,8

DUML (I} =g,

CALL CREATE(W1 +U3eRTs0904090¢00041536}
ISIRANWIRGIspUMI (1) 4191537 ,W1}

CALL CREATE(WZ sU'RT»040,0404050,1538)
I=TRANN (RQ2ZepUM] (2) + 29 1537, W2}

QALL CREATE(N3 yUsRT10s0,0+05090,1538)
T=IRANW{RQ3,pUML (3) +151537,W2)

LALL CREATE(W& +UsRT»030¢0+0+0+0,1538)
I=IRANW (RQ3 4 pUM] (4) ¢ 191037, w4)

CALL CREATE(HS ,UshT1040,040,0,0,1538)
T=IRANW{RQB,pUML (B) y1,1535,u8)

CALL CREATE(DL +UsRT#0+0+0405050,512)
I=IRANW{RQ5,DUM] (5) » 14511spsy

CALL CREATE{PUPRyUsRT50,0,047y0,0,512)
I=TRANH (RQB,0UMI 16) 414511 ,puUpR)

CALL CREATE (PLWR+UsAT1040,040,5,0,512)
T=IRANW(RQTDUML (T} 414511, pLWR)

gla2 ttIDONE(N1)+iDDNEtH$ItIDUNEtHBI*IDONE(W4l*IDONE(HBIOIDONE(DI)
?+IDONE (PUPR) « TDONE (PLWR)

9,9
glg
911

Y

IF{1.NE,B)G0 T0 912 .

CALL OPEN(S5LFSETS+0,2340008)

D0 920 ksl,8

NSECT={K=1}#l92 =~

M=MOD {Ks2)

D0 9l: J=ls3

JK= {J=l1 23276841

READ (%) (DUMSM (1) +1=1+32768)
IF(MsEQ4D) GO TO 909

SMaLL OUT{BUMSM (1) 3pUMI (UK} +32768)
60 TO 91¢

SMALL OUT (DUMSM (1) +DUMZ LJK) +32768)
CONTINUE

I=IDONE(W1)

IF(1.NE.1)G0 To 911

IF(M.EQ.0)GO TO 919
T=IRANW{RGL »DUM1 (1) y98304 4+NSECT v W1}
60 TO 920
I=IRANN{RQLsDUMZ (1} 98304 NSECT W}
CONTINUE

IFIRSTap
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441
443
444
446
452
454
457
464
465
474
474
503
505
512
514
518
530
53¢
544
546
550
553
555
557
563
565
570
575
57¢
605
605
6l4
616
623
625
626
641
641
655
657
66l
663
665
671
673
6To
703
T04
713
713
722
724
731
723
734

RUN=L CMB9 GAP T4/11/14

929
930
931

939
940
941

949
51
95y

959
60

969
97n
971

~
IF(IFIRST,EQ,1160 TO 941
DO 940 Kxl,8
NSECTa(K=~1)#192
M=MOL (K9 2)
00 93, Jsl3
JKz{Je1)#32768+1
READ (%) (DUMSM{I) »1%1932768)
IF (MsEQ, 016D TO 929
sHaLL QUTIDUMSM(1) +DUMI{UK) #32768)
GO TO 930
SMALL OUT (DUMSM(1)9DUMZ{JK} ¥32T68)
CONTINUE
ISIDONE (W2) + IDONE (W1}
IF{1+NE.2)G0 TO 831
IF (MsER.01GO TO 939
ITIRANW{RQZy DUML (1) 98304 4NSECTIWZ)
G0 TO 940
I=TRANK (RQ2+DUM2( 1) 198304 +NSECTIW2)
CONTINUE
CALL AFSREL(SLFSETS)
CALL OPEN(SLFSET610+2340008)
0O 960 Ksly8
NSECTs{K=1) %162
M=MOL (K9 2)
PO 95_ J=l.3
JKE(Jn1)#327684+]
READU6) (DUMSH(I) +1%1 932768}
IF{Ms+EQ. 0G0 TO 94%
SMaLk OUT(DUMSM(1}+DUMI (UK} »32768)
60 TO 950
SMALL OQUT({DUMSM(1) »DUMZIUK) 32768}
CONT INUE
ISIDONE (W3} +IDONE (W2}
IF(I+NE.2}GO TO 95!
IF(MeER.0)GO TO 359
I=IRANN (RO3 s DUML (11198304 4NSECTIW3)
G0 TO 990
IS IRANW[RQ3yDUM2 (1) 998304 NSECT+W3)
CONTINUE
IF{IFIRST.EQ.1)60 TO 981
B0 980 K=l:8
NSECTz {K=l}ul52
M3MOU (K92)
00 97. J=1,3
JKa {J=1)%32768+1
READ(G) (DUMSM{T) ¢ 131 232768)
L1FIMsEG.S)BD TO 96Y
SMALL OUT(DUMSHM(1}3pUML(JK) »32768)
60 TO 970
SMALL QUT (DUMSM{1) #DUMZ(JK) »32768)
CONTINUE
I=ID0ONE (Ws) + IDONE (W3}
IF(IsNE,2)60 TO 97!
IF (HQEQ:D}GO T0 979
I=TRANWTRQA yDUML €1) +98304 yNSECT aWa )

86
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767

747

763

765

767

T4

176

777
1001
1plo
1921
102e
1024
1033
1045
1046
1047
1051
1053
1055
1057
1u6l
los2
1o64
166
1o7l
1073
1074
1075
1077
1077
1104
105
1113
1114
1121
1122
1123
1123
1124
1125
1125
1126
1126
1127
1127
113u
1130
1131
1131
1132
1132

RUN=-L.CMBY GA> Talizle 16,32,37
GO TO 980
979 IzIRANW{RQ4,DUME(1) 198304,NSECTyW4)
98n CONTINUE
981 CALL AFSREL(SLFSETSH)

a0

1

1001

873

DO 1 Iel,32768
DUMSM{T) =0,
W=3,1415926535898/2048,
U0 4 I=14255
SIIISSINUII=1)8W)
CI{IY=CcDS (({fe«]l)twW)
W=23,Ll4159265358vR/32,
U0 5 I=1+255

864 (1}=SINS(T=1) nM)
COG(IISCOST(I=1) W)
DELT=IOO73
OToT=bELY/12.
TTOT#2,,%DELT/3,
DELZ=20,/64,
Cl=1./012,*DELD)
X=20,
Lb=T456540¢ 442/ X002
craaél

Ch=,la53
CT72l2./ (5. %DELT)
CBxl,/ (12, ,¥DEL D)
£l1si,/(124#DELZR®2)
TDT=L,,wpELT ~
ITIME=40

ISETs

CONTINUE

IMaMOD (ITIMEs4) +]
IF(ITIME«LTs /160 TO 400
IF(MOD{ITIMEYB) 4 BT«3)15ETH1
IF (ISET,EQe 0160 To aY0
DO 873 Iales?

SPRIi1) =0,

SPI(Ijtﬁu

RMSD=_»

RMSU=0,

RMSV=p,

RMSW=0,

SKlmz,

SK2s=u,

UMAX=l

VMAX=D,

WMAXZ0,

CRMsU=g,

CRMSV=0,

CRMSW=g,

CUMAX=D,

CvMaX=g,

CWMAK=0,

ARpaNIRGHION PHASE I Bensapsobeandion
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c START WITH PLANES 63,64451,2939895,6 [N LCM

C V{]) AT SEGMENT s V{2) AT SEGMENT 249 VIN} AT SEGMENT p¢®N=1J
C V(64) AT SEGMENT 15i24 E,cH V CONTAINS 42288 WORDS

C vnnIABLE LOCATIONS AS FOLLOWS AT START OF TIME STEP

¢ TiHES 3 2 3

¢ Nl U(N=1} uTIN UT (N=1) utN)

C W2 UTIN=1) Uiy} U{N=1) UT(N)

c W3 UN) UtN=1}) UT(N) UT (N=1)

c W& UTIND UTIN®1)  UIN) yiN=1)

1133 400 I=IDONE(W1)+IDONE(W2)+IDONE (W3) +IDONE (W4)+IDONE(WB) +IDONE {D1)
»+*IDONE {PUPR) *1DONE {PLWR)

1161 IF({INE.8}GO TO 4g0

1163 IF(ITIMELLT,0)GO TO 1901

1165 IF(ISET.EQs¢)G0 TO 1902

1166 00 155 NElsB

1167 NSECT= (N=1)#192

1172 13n TSIPDONE(W1)+IDONE (W2} +IDONE (W3) ¢ IDONE (W)}
1205 IF{I«NE,4)60 TD 13V

1207 GO TO (L1317132,133,134)1IM

1217 131 I=IRANR(RQL,VLG{1)»9B3V4sNSECT+W]}
1232 I=IRANR{RQ4+DVLG (1) +9830% +NSECT»W4)
1246 G0 TD 139

1246 132 I=IRANRTRO3¢VLG (1) 198304+ NSECT W3}
1261 I=IRANR(RQLypVLG (1} 998307 +NSECTIWI)
1275 G0 TO 139

1275 133 ISIRANR{RQZsYLG (1) +9B8304¢NSECT W2}
13i0 IHIRﬂNR(RQS,DVLG{l)o983UZ'NSECTcH3)
1324 Go 1O 139

1324 136 [=IRANR(RG4, VLG (1) 998304 NSECT W4}
1337 I=IRANR(RGZsDVLGI1) 398307 ¢ NSECTIWE)
1353 139 I=IDONE(W1)+IDONE{WE)+IRONE (W3) ¢ IpONE (WE)
1366 IF(IWNE.416G0 TO 139

1370 PO 14} Kz=lyg

1372 SMALL IN{DUMSM())+VLG(]1, 13K1012388i
1401 SMALL IN{QUMSM({1€286),0VLR{ +1lsK),12288)
1410 00 1%y 1=1,1%288

1415 l4n ouusunxl=DUH5M¢1)+TOT°DUM§Mt1¢12293}
1420 141 SMALL OUT(DUMSM(1)svLG{1sd,K) 12288}
15430 GO TO(151,152,153,1494)1H

1440 151 ISIRANW{RQleVLG(1) 9198304 sNSECT W)
1456 GO TO 195

1454 3152 I=IRANW(RG3+VLG(1)+98304sNSECTsW3)
1470 GO TO 195

1470 153 I=IRANW(RQ2,VLG(]1) s9B8304+NSECTsW2)
1504 GO0 TO 199

1504 154 ISIRANWIRQ4sVLG(1) 198304 sNSECTsW4)
1520 155 CONTINUE
1522 156 ISIDONE{"ll+IDONE{H2)¢IDONEIHS)*IDUNE(N4)

1535 IF (14NE,4)GO TO 156
1537 157 ISIDONE(DLY

1541 IFITWNE,1)GO _TO 187
1543 IF(ITIME.GT.3)30 TO 600
1547 Ipel

1547 IHp=IM

1551 GO TO 499

38


http:I:IRANR(RQOVLG(1).98304,NSECT.W2

1552
1553
1554
15565
156)
1564
1567
1572
1575
1576
1576
1613
1623
1637
1637
1653
1653
1667
1667
1703
1721
1123
1724
1730
1731
1733
1734
1137
1752
1754
1764
2000
2000
2014
2014
2030
2030
2044
2053
2053
2054
2055
2057
2061
2063
2063
2067
207u
2075
2111
2111
2113
2118
2130
2132

RUN=LCME9 GAP T4/11/714 16,32,37

19n}

i902

499

46)
¥

462
463

464
465

475

* 491
492
493

494
473

479

480

476

IMPr&

D=1

GO TO 459

IF(ITINE.GT,.3}G0 TO 600

IF(IM.EQal) IMPE4

IF(IMeEG«2) IMP=L

IF{IMeEQe3) IMPa2

IF {IMeEQe4) IMP=3

I1D=1

CONTINUE

IF{I0LNE«1]1 I=IRANRIROSsDUMI (1) 9327684001}

GO TH(A61,666,463,468)1Mp _

ISIRANR (RG3 S DUML (1) 4983044 0aW3)

GO TO 465

I=TRANR{RQ2,DUMI (1) v98304snrW2)

G0 TO &4B5

I=IRANRTRG4yDUME (1) ¢ 98304y neWé)

GO TD 465

ISIRANR(RGL sDUM] (1) #983049n1W1}

I=2IDONE(D1) + TDONE (Wh) + IDONE (W2) ¢ IDONE (W3} «IDONE (W4}
IF(I«NE45)60 TO 465

Do 440 Mrlyls .
IF(MOD(Me2) ,E0.,0)GO TO 480
NSECT=M#96

NWORUS=9B8304

Jul

IF{MsEQ 15 NWORDSE4G152

IXIDONE {W1) + IDONE (W2) + IDONE (W3} ¢ IDONE { W& )
IF(T.NE,#)G0 TO 475

60 TO (4917492+493,694)IMP
I=IRAN§:§Q3|DUM2(J)yNNORDS.NSECT.N3}

0 &/
I=IRANRTROZ2,.DUMZ [ J) + NWORDS ¢ NSECT o W2)
6o 7O 473
I=IRANR (RQ4» DUM2 (J) s NWORDS,NSECT 4 W4)
GO TO 473 ~
I=IRANR (RQ]¢DUMZ (J} ¢+ NWORDS yNSECT, Wy )
IF [ (MuNE.15) ,OR, INSECT«EQe"}) GO TO 979
NSECT=0 -

J=49153

60 TO 475

I=TDONE(D])

IF{I.NEL.1}6G0 TO 479

IF{MEQ11G0 TO 477

NETTEYS

NSECT= (J/2w2) P64

10asd

IF(MOD(Jes) JNELu) I0a®32769

I=IRANN (RQ5,OUM3 (104} +327681NSECT,01)
GO TO &17

NSECT=Mé9g

NWORUS=9B304

I=1D0NE (WL} +IDONE (W2} +IDONE (W3) +IDONE (We)
IF(1.NE.4)B0 TO 475

IF(M.EG-lﬁ)GO TO 477

89
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2134
2144
2160
2160
2174
2174
z2zlo
22la
e2es
2226
2e30
2232
2234
2234
za42
2245
2261
2261

2277
2301
2303
23905
2320
2336
2340
2341
2342
2351
235¢
2355
2360
2363
2366
2367
2370
23713
2376
2401
2404
2405
2405
2405
2407
2411

2437
2641
2448
2452
2462
2476
2476
2512
2512

RUN=| CMB9 GAP Ta/11/714 16,32,37 VSCLARKIHA

495
496
497

498
478

417

GO TO{495+496+497,498) IMP
I=zIRANR(RG3,DUM] (1) ,NWORDS,NSECT ,W3)
GO TO 478

LaIRANR (RQ240DUM1 (1) 1NWORDS + NSECT +W32)
G0 TO 478
I=IRANR(RQ4 s DUM1 ¢ 1) s NWORDS s NSECT o W4 )
60 TO 478
[=IRANR{RG1 4DUML {1) s NWORDSsNSECT 9 W1)
ISIDONE(DI)

IF{I+NE,1)GD TO 478

IFUIVLEGelIGD TO 477

IF(MeEQe161G0 TO 477

I0amé

IF (MOD (M34} oNE, D) I0A=32769

NSECT= (M/2) 264

I=IRANR(RQ5yDUM3{I0A) y327684NSECTyD1)
LONT INUE

CALL DVRGNC (C12+QMSDsRMSU,RMSYIRMSH e SK1 +SK2 4 UMAX s VMAX yWMAX s Ms ID 4 DE

2LT)

49p
484

489

5p3
100
46n

600

CONTINUE

I=IDONE (DY)

IF(1.NE,1160 TO &84

I=IAANW [RQ5 yDUMI (32769] #327689448,D1)
I=IDONE (W1)+IDONE (W2) +IDONE (W3) + TDONE {Wé) ¢ LpONE (D)
IF{I+NE.5)G0 TO &89

IF(ITIME.LT.D1GO TO 601
IF{ISET.EQeg)B0 TO 508

G0 TO{501+502+503) I

ID=2

IF({IML,EQ. 1) IMP22

IF(IM-EIQ.E) IMP=3

IF(IMyEQe3) IMPR4

IF(IMeFQed} TMPaL

GO TO 499

ID=3

IF(IMsEQel ) IMP=3

IF(IM,EQ.2) IMPR4

IF{IM,EG.3) IMPEL

IF (1M, EQ, 4} IMP=2

GO TD 499

CONTINUE

CONTINUE

I=IDONE (D])

IF({1«NE,1)GO TO 46&0

ISIDONE (W1) + IDONE (WE) + IDONE {W3) ¢+ IDONE (W&} + IDONE (WB) + IDONE (D] )

»+IDONE {PUPR) +IDONE {PLWR)

608
601

602

603

IF(1eNELBIGO TO 60
IF{ISETJEQs0) GO TO o008

GO TO({6_1,608,603,604)IM

80 TO (6027603,6041601) 1M
I=TRANR(RQL,VLG(1)»983Y4,0,W]1)
GO TD 605
I=IRANR({RQ3+VLG (1) 198304s0+W3)
GO TO 605

I=IRANR(RG24YLG(1) 99830440+ ¥2)

90
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2526
2%26
2542
2555
25587
2560
2561

2562
2563
2563
2564
2565
2566
2579
2578
2573
2576
2612
2626
2644
2654

2704
2714
2723
2732
2733
2734
2736
2752
2754
2755

2763
2763
2764
2765
2766
2767
2770

3020
3030
3037
3046
3055
3064

3073
3073
3074
3075
3076
3100

RUN=L

604
605

613

621
622

614

623

cue9 GAp T4/11/14 16,32,37 VBCLARK1HA

G0 TO 805

I=IRANR (RQ4,VLG (1) 298304, 04W4)

I=YTUONE (W) ) +IDONE (W2) + IDONE (W3} ¢ IDONE (W& )
IF {1 NE,4}80 TO 605

ZMa=1

10A=1

00 620 IPLANE=ls+54

TRANSFER ROWS 45 TO 64 TO CALCULATE 47 TO 62
N2=2817

N3z1280

Ng=j

NEXT=1

M=t

K=ZM2=]

00 621 7Z=115

KaKel

IF{KeGT,8)Ka}

SMALL INU U(1soN$4Z}oVLGINZs1sK) ¢N3}
SMALL IN{ V{1y4M4,Z219VLG({N2925K} N3}
SMALL IN( W{leN4sZ)sVLGINPr3sK)+N3)
GO TD{622+6225624962°)NEXT

CALL DVDTMP(UsVaWsDUsDVeDWaMaCNICBr G111 CL2 e ITIMEIRMSDs RMSUSRMSY
2RMSHISKI 3 SK2sUMAX s VMAX s WMAX s SPR ISET)
SMALL OUT{DU(1) ¢ DVLG(2945,1,10A} 1024
SMALL OUT(DV{1)+DVLB{2945,2+I0A),1024)
SMALL OUT(DW(1l}+DVLG{2945s3,10A)4+1024)
DO 614 J=ly%

JduJ+ 16

DO 614 I=lybé

DO 614 2Z=1s5

IR IYAET IS S NATY ]!

ViTedaZ)zV{IrJdJs )

WiTlodeZ}=W{IoJJeZ)

CALCULATE ROWS ©3.64 AND 1 To 14

N2el

N3z1024

Né4=g

NEXT=2

M=2

50 TO 613

CALL DVDTMP [UsVsAsDUIDVeDHMgCNICBsC119C129 I TIME »RHSD s RMSUSIRMSY,
PRAMSWISKL sSKEpUMAX ¢ YMAK s WMAX 9 SPRISET)
SMALL OQUT(DU(L) +DVLG{3965s1s10A)4128)
SMALL OUT(DVI1}+DVLG(396992,10A)+128)
SMALL OQUT(DW{l)»DVLG(3969,43+104)4+128)
SMALL 0ur¢0u¢129).DvLth.i.on:-896)
SMALL OUT(DV({129),DVLG¢(),2,10A}+896)
SMALL OUT(DW!129),0VLG(1,3,10A1896)
CALCULATE RoWS 15 To 32U

N2e769

N3=1280

Ng=]l

NEX T=3

Mz3

80 TO 613
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319¢

31390
3140
3147

3156
3186
3187
3160
3161
3163
3163

3213
3223
3232
3241

3244
3246
326é
3266
3270
3271
3272
3275
asoo
3304
3306
3307
3317
3327
3344
3344
3351

3386)]
3376
3376
3413
34156
3417
3423
3440
3442
3445
3446
345!

3453
347!

3473
3511

3525
asay
3531

3532

RUNe|,

cM89 @as 76711 /14

ZRMSWSKIsSKZyUMAX s YMAX s WHAX 1 SPRY ISET)
SMALL OUT{(DU{1)+DVLG(B9T,1,I0A)»1024)
SMALL OUT(DV{1}.DVLG(897,2,10A) 1024
SMALL OUT(DW(1)+DVLG{B97,3410A)v1024)
CALCULATE ROWS 31 TO %6
N2=1793
N3=1280
N4=]

NEXT=4
Mas
GO TO 613

16,32,37  VSCLARKIHA  PAGE NO,
624 CALL DVDTMP {UyV4#yDUsDV,DH,H,CN1CByC115C12y ITIME ,RMSD,RMSY, RHSY,

625 CALL DVDTMP (UsVsWsDUsOVaDWoMyCNICBeC111CL29 [TIME sRMSD +RMSUSRMSY,y
2RMSW1ISKY 1SKSyUMaX s VMAX ) WHAX 1 SPRY ISET)

&3n
631

632
633

634
616

6lyg

&2n
626

SMALL OUT{DU(1)+DVLG(152151,10A1,102%)
SMALL OUTIDV(I)|DVLG(1921D2$IOA)vlo?#i
SMALL OQUT(DW{1),DVLBI192143+T10A) 1024}
I=a MOD(IPLANL,Z)

IF(1+NEL0)GO"TO 619

ISIDONE (W1} +IDONE (W2) ¢+ IDONE (W3) ¢ IDONE (W) + IDONE (W8)

IF(1.NE.5160 TO 606

IF{IPLANE.EQ.64150 TO 616

10B=ZMZ=1

I=IPLANE+S

IF(1.GT484) Iclwbg

NSECT=24#(Iel)

IF INSECT«GT+1512INSECTONSECT=1536
IF{ITIMELLT+0)60 TO 631

IFUISET.EGe0)GO TO 630

GD TO{631,632,633,634) IM

G0 TO(632, 633.634 6311

I=IRANR (RGLeVLG(1s1910B) ,24576sNSECTewW1}
GO TO 616

I=IRANR {(RQ3sVLG (1919 108) 424576 +NSECTWS)
GO TO 616

I=IRANR (RG2ZsVL.G(191910B) 4245T6sNSECT#W2)
60 TO 616

I=]IRANR (RG4IVLG (191 vI0B) 4245769 NSECTwW4)
108=10A=~1

NSECT=IPLANE%#z4
IF(NSECT+6T,1512)NSECT=NSECT-1536

I=IRANW (RQ8,DVLG (1512 I0B) 324576+ NSECT s WB)
10aA=10As]

IF(10A,GE,5)10A=1

ZMZ:ZM2+I

IF(ZqusElg)ZMatl

CONTINUE

I3 IDONE (W} +TDONE {%2) « IDONE {W3) + IDONE (W4) + IDONE (W8)

IF(1«NE,5160 TQ

IF(ITIAt.
I=IRANRTRQB,vLG (1) 4983Y6,0,Ws)
I=IDONE(WB)

rFtI.NE.l)Go To lu9

Zhe=4

I0a=l

9z

0 526
LE.3) I=IRANR(RGS,DLG (1) +1638440+D1}

REPRODUL
ORIGINAL

a
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3533

3534
3537
3540
3546
3553
3555
3555
3556
3857
35560
3561
3562
3564
3566
3567
as72
3606
3622
3640
3650
3653
3663
3666
3670
3671
3673
7oy
3711
3712

3720
3aT20
arel
ataz
3re3
3724
3725
3730
3740

3743
3744
3745
3746
3747
3750
3750
3753
3763

3766
3767

armo

RUN=1 CMB9 GAP T4/11/14 16,32,37

1]
27
28

13

21
22

14

23

24

DO 20 IPLANE=®l,6%

TRANIFER ROWS 45 TO 64 TO CALCULATE 47 TO 62
IF{ITIME.BT,.3)G0 10 26

SMALL IN(P(1)sDLG{Ye19]10A) 4096}
80 TO 28

DO 2¢ I=144096

P({1)®0,

CONTINUE

N222817

N3:1280

N4z

NEXT=1

Mel

KaZME=1

DO 21 Z=145

KeKsl

IF K+ GT . 8)K=1

SMALL IN{USM{1l4N&sZ}9VLG(NZe1eK) sN3)
SMALL IN(VSM{1¢N&4+Z}+VLB(NZ2921K) N3}
SMALL IN{WSMU14NG4Z) VLG IN2e3pK) #N3)
GO TO(22+23+C4925) NEXT
IF{ISETEQ+0}C7=1,/7DT

CALL CALCPR (USMsVSHsWSHIP«MeCLsCT)
CT’]E./ (S'GUELT)

00 14 Jmles™"

JsJ+l6

00 14 I=is64

DO 14 Zal,5

USM(IoJeZ)SUSHM(TvJdeZ)
VSMITsJyZ1=VEM(Tsbde2)
WSMIIrJeZ)SWSM (T e JsZ)

CALCULATE ROWS 63464 AND 1 ToO 14
N2=l

N3z10D24

N4a5

NEXT=2

H=p

Go 10 13

IF(ISET.EQe}CT721,/1D7

CALL CALCPR{USMsVSMaWSMePMaC12CT)
E7=124/(5.90ELT)

CALCULATE ROWRS 15 TO 30

N2=769

N3=1280

N4=1

NEXT=3

Ma3

B0 TO 13

IF{ISET 4EQe0)CTR]1,/TDT

CALL CALCPR(USMyVSHIWSMePM+C14CT)
E7=12.7{5.,7VELT)

CALCULATE ROWS 31 To 46

Ng=1793

N3=1280

N4=1

93
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377l
3772
3773
3773
3776
40808
4011
4013
4017
4020
4022
4031
4040
4047
40586
4056
4060
4067
4076
4105
4114

4114
4120
4121
4126
4130
4132
4133
4136

4140
4148
4162
4164
4167
4172

4176
4200
4203
4220
sz2e
4224
4226
4230
4232

4236
4240
4253
4270
4270
4272
4278

RUN~-1 CME9 GAp T4/11/14 1s,32,37

25

i6

17

113

116

lig
19

NEXT=4

M4

B0 TO 13

IFIISET.EQepiC721,/TDT

CALL CALCPR{USMsVSHsWSMIP4M1C1sCT)
CT=12,/(5,P0ELT)

CALL FFTFXYIP)

I=M00 (10442}

IF{IWNELDYGO TO 18

10p=I0A=1

SMALL OUTI(P(1s1 v1)sPLG(L1_ +2+108)+2048)
SMALL OUTtP(1,1 ,2).PLG(204992,108)y2048}
SMALL OUTP(1+33,41)4PLG(] s21104) 92048}
SHALL OUT(P (193342} +PLG(204942+104) 12048}
G0 7O 17

10B=10A+1

SMALL OUTIP(lsl +1)}sPLB(1  +19104})92068)
SHALL OUTIP(1+) +2)+PLG(204F¢1410A)92048])
SMALL OUT(P(1,33,1)14PLGI(1 11,I0R)+2048)
SMALL DUT(P{1433,2)sPLG(204%41+108)2048)
GONTINUE

PAUSE IF THERE IS ANY OUTSTANDING I1/0
I=MOD{IPLANE,2)

IF{I+NE,0}B0 TO 19

IZIDONE (D17 +IDONE(WS]

IF{I+NE,2)6G0 TO 113

IF (IPLANE,EQ.64)60 1O 1l6

I=IPLANE+3

IF(146T,66)Ix1=64

NSECT=8#(]~1)

READ DIV OF PLANE*2 INTO LgM DIVIlsls104)
108=19A-1
IF{ITIME,LE.3} I IRANR (RO5yDLG(1+1+J0B) »BLl9R24NSECT DY)
I=IPLANE+S

IE(14GT,64) Irl=64

NSECT=2%%({I+l)

IFINSECT.GT41512) NSECTaNSECcT-1536

READ VELOCITIES OF PLANE+& INTO LCM VEL{40969»1rZM2)
[0BEZM2=]

IF{IDB.LELO}STOP

I=IRANR{RQEsVLG{Ll+s1¢I0B} +24576+NSECT + WE)
I=IPONE(PUPR)

IF(I+NELL)IGO TO 116

I=1DONE (PLER)

IF(I.NE.1IGO TO 117

NSECT=8#{IPLANE=~2}

TF {NSECT«GT.504) VSECTSNSECT=512
WRITE(PLGB{1l,1,I0A) FROM LcM TO DISK

108z [0Ael

ISIRANW (RABsPLG(1ri »sI0B) 81921 NSECT s PUPR)
I=IRANW (RAT+PLG{191+I0A) ,8192:NSECTsPLWR)
CONTINUE

Icaz10h+)

IF(10A,GE,5}I0A=]

IM2eZMEe ]
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4276 IF (ZM2,GE.9)ZM2=1
4301 20 CONTINYE
c
e HoBpOBROn LG PHASE I BESEABaBRORIESY
o
[ WAIT FOR CUTSTANDING I/0

4303 144 ISIDONE (PUPR) +IDONE {PLWR) $IDONE(D1)+IDONE (W) ) +IDONE (W21 + JDONE (W3} ¢
P IDONE (W%} ¢ IDONE (48}

4331 IF(I«NE.BIGO TD 149
o READ INTO PZ1sPZ24PZ3+ PRESSURES FOR Ia3lsbé, sle3242m1464
4333 I=IRANR (RQA6+PZ1(19191)998304 20 ,PUPR}
4346 261 I=IDONE (PUPR!}
4350 IF(T+NE.1)G0 To 26l
4352 ISIRANR {RQ6+PZ2{ls191)958304 s1924PUPR)
4365 262 1=1DONE (PUPR}
4367 IF{I+NEL1)GO TO 262
437) ISIRANR (RQ6sPZ3119191) 965536 »1384+PUPRIY
c WAIT FOR OUTSTANDING 1/0
4506 263 [=IDONE (PUFR)
4406 IF{I.NE.11GC TO 263
44lo MM=g
4411 38 M=)
4412 00 30 Jels8
G418 Kz (J=1) 25641
4417 00 32 g=l,24
442} KKzK+24
4422 SMALL IN(PZ(lsK »114PZ1(JKe 14K} 1256)
4433 SMALL IN(PZ{lsK +2)ePZ1{JKs2yK) ¢+256)
4443 SHALL IN(PZ(laKKs1)4PZ2(JKy LsK)v2586)
4454 32 SHALL IN(PZ(LekKe2} rPZ2(JKs24K)1256)
4666 Do 33 k=lylg
4467 KK=K*48
4470 SMALL INIPZ{1+KKel) +PZ3(JK419K) 9256}
4501 33 SMALL INIPZ(lekKK+2}1PZI(JKe24K)1256)
4512 CALL DELSQIPZ+CoC691595641MIMM,CE)
4522 fo 34 k=l.24
4524 KK=K+*24&
4525 SMALL QUTIPZ(1+K #1) #PZ1{JK*L 1K) +256)
4536 SMALL OUTIPZ{1sK +2) ¢PZ1(JK124K) 9256)
4546 SMALL OYTY (PZ(1,KKy1) sPZR{JKy 19K} +256)
4557 34 SMALL QUT(PZ(14KK42)sPZ2 (JK124K},256)
457} DO 3 Kalslb
4572 KKK +4 8
4573 SMaLL OUT(PZ(1+KXs1) sPZ3(JK*1+K} ¢256)
4604 35 SMALL OUTIPZ{14KXs2)91PZ3{ Ke2sK} 9255)
4615 In Mamed
4621 IF (MM, EGQ.32)160 TO 34
c WRITE PZ14+PZesPZ3 TO PRESSURES FOR IslsbsrJ=1132:Z%1064
4623 ISIRANW (RAS4PZL(1e143)098304 40 H»PUPR)
4636 161 I=IDONE (PUPR)
4640 IF(I.NE,1)G0 TO 16l
4642 IZTRANW {RQ6+PZ2(1s1+1)+98304 »1924PUPR)
4655 162 I=IDONE (PUPR}
4657 IFCIWNE.1}GO TO 162
4661 I=IRANY (RQasPZ3(1v111) 965536 +384+PUPR)
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< WAIT FOR QUTSTANDING 1/0
4674 163 I=IDONE (PUPR)
4676 IF{I.NEL1IGO TO 163
c READ INTO PZlspPZ2+PZ3+ PRESSURES FOR 1=lv64,J=33+64s2zleb4
4700 [=IRANR {RQTyPZl{Lslyl}s98304 o0 pPLWR)
4713 171 I=IDONE [PLWR) _
4715 IF{I+NEL1}G60 Tp 171
4717 ISIRANR (RQT+PZ2(1¢1+1)958304 ¢11924PLWR)
4732 172 I=I1DONE (PLWR)
4734 IF(TeNELLIGO TO 1728
4736 I=IRANR [RATyPZ3(1+1+1) 165536 +384+PLWR)
c WAIT FOR QUTSTaANDING I/0
4751 173 I=1DONE (PLWR)
4753 IF{I«NEL1)GO TO 173
4755 MM=32
4756 0 TO 3s
4757 38 CONTINUE
¢ WRITE P214PZ2+PZ3 TG PRESSURES FOR Im]i64sJx]s32¢251+64
4757 I IRANW (Rg"uPZl(lolQI!o?Bf!Ok 20 »PLWR)
4773 181 I=IDONE (PLWR)
4775 IF(1+NE.1}80 TO 181
4TT7 I=IRANN (ROTePZ2(19141) 998304 11924PLWR)
50z 182 I1=1DONE (PLWR}
5pla IF(I.NEL1)60 TO 182
50l6 I=IRANY (RQ7+PZ3(11141) 965536 +384+PLWR)
c WAIT FOR OUTSTANDING I1/0
5031 183 I=IDONE {PLWR)
5033 IF(I+NE, )60 TO 183
5035 191 I=IDONE{(D1)¢IDONEHW] ) «IDONE (W2} +InONE (W3 )+ IDONE (W4}
5053 IF(I+NELSIG0 TO 191
E BUOLANODLRNE PHASE 111 rryyer s ST EYY)
¢
5055 ZMzzl
5055 l0asl
5056 150 I=IDONE{PUPR) + IDONE(PLWR}+JDONE{D]) +IDONE (W]) ¢ IDONE (W2) + IDONE{W3)
2IDONE(W2) +IDONE (W8)
5104 IF{I+NE.8}G0 TO 15+
< READ PHAT OF PLANES 63 TO 4 INTO PHAT(12818496) IN LCM
c READ VELOCITIES OF PLANES 63 TO & INTO VLO(49958,396) IN LCM
¢ READ OLD VELOCITIES OF PLANES 1+2 INTO YNF1{4090+3+2) IN LCM
gl06 L=TRANR(RGBsVLG{1) »49152,48+WB)
5121 256 I=[DONE {W8)
5123 IF({I.NE,1)GO TO 256
5125 NSECTak g6
5126 uo 205 zZzlse
5130 203 I=IDONE{(PUPR)
5132 . IFtl«NE.116¢ TO 203
5134 234 I=1DONE (PLWR)
5136 IF{1.NE.11G0 TO 204
5140 IZIRUNR {RQOsPHAT(L1ed 1Z)14V969NSECTPUPR)
5154 I=IRANR (RGT»PHAT(L42 42} ,4u964NSECTPLNR]
5170 NSECT=NSECT+Y
5172 IF(NSECT.GE.512) VSECT=NSECT=512

5176 295 CONTINOE
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5177
5201
5210
5217
5226
5235

5236
5246

5250
525l
5252

5253
5253
8254
5255
5256
5257
5261
5263
5264
5267
5306
5320
5330
5340
5350
5367
5370
5371
8372
5404
5413
5422
£433
5435
5436
5440
5454
5456
5457
5460

5466
5466
5467
5470
5471
5473
5473
5512
5513
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4n

&0

61

&2

69

72

52

63

DO 40 Z=1,5

SMALL IN{PA{] v1)9PHAT(Y  9le2)4+20648})
SMALL IN{PA{Z208941)+PHAT(1 +2127) 42048}
SMALL IN(PA(L +2) sPHAT (20494147} ,2048)
SMALL IN(PA{2049+2)sPHAT(2R49¢202) 42048}
CALL FFTBXY(PA) o
FFTBXY LEAVES THE REAL PRESSURE IN PR{64984) WHICH IS EQUIVALENCED
TO woLD(1.141)

SMALL OUT(Patl)  sPC(lelyZye4096)

CONT INUE

LAST DIMENSION FOR PC IS g

I10B=]

DO 50 IPLANE=1,64

M=1

TRANSFER ROWS 45 TO 64 TO CALCULATE 47 TO 62
Nju45

N2=2817

N3=l280

Né=1

NEXTz]

KeZMd=]

DO &1 Zmls5

Kegsl

IF(KeGY6)}K=]

SMALL IN(PDI14N4+Z}+PC{LeNLoK) 1N3}

SMALL IN(U(L NG 3 sVLG (NS 1eI0P) 4NT)

SMALL IN(VI1eNG s3I sVLGIN242+I0B) s NI)

SMALL INIW({LsN®e3}9VLGIN2,3+108)+N3}

GO TO (62¢63164965)NEXT .

CALL DVDT (Us Vs DUsDIVeDWePDIMsCNeCBaC119RMSURMSV RMSW)
N122945

N2=1024

N3=1

SMALL OUT{DU(N3) sDULGIN1»1,I0A) 1N}

SMALL OUT(DVINI)4DULG{N1s2yI0A) WN2)

SMALL OUT (DW{N3)sDULG(NL 3, 10A) WN2)

GO TO(T2973914,T5,TEINEXT ,

00 52 Jel,é

JU=Jj+16

00 52 I=l464

DO 52 zez1,5

UITeJsZI=U(LsdJe T}

V{ledsZIRVIIoddeZ)

CASENIY AL AD T NNLY S

PD{TeJeZ}2PD{IsJdrZ)

CALCULATE ROWS 6364 AND 1 To 14

N4a5

Nl=}

N2z

N3=1024

NEXT=2

GO TU 60 - ) . }
CALL OVOT(UsVeWrDUsDVsDWoPD M CNeCB2C1 1 e RMSUyRMUSVRMEW)
Nl=z39&5

N2=128
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5514
5515
5516
S517
5520
5521
5522
5523

5524
5525
5526
5527
5530
5547
5550
5551
5552
5553
5554

5555
5556
5557
5560
5561
5600
5601
560¢
5603
5604
5605

5605
5623
5625
5627
5633
5635
5636
5646
5656
S673
5673
S7l¢
5714
5725
5725
5742
5746
5750
5751

RUN=| CMED GAp Té/11/14 16,32,37 VSCLARKIHA

oo O

73

74

64

75

65

76

21n

211
22)

222
223

224
220

N3=z]

GG TO 69
NEXT=3
Nl=)
N2x896
N3=129
GO TO &9
N1=33
CALCULATE ROWS 15 To 30
N22T769
N3=1280
N4zl

w0 TO 60

CALL DVDT{UsVsWeDUrDVsDW,PDMeCN+CBC1 ]+ RMSUIRMSV 4 RMSH)
NEXT®24

Nl=ng?7

N2=1024

N3=)

60 TO &9

Nl=29

CALCULATE ROWS 31 TO 46
N2x1793

N3=1280

Ng=y

B0 T0 60

CALL DVDT(UsVaWsDUsDVsOW,PDsMICNyCBC1] 9 RMSUIRMSY sRMSH)
NEXT=5

Nim}¥2] .
N2=1024&

N3=]

60 TO 69

CONTINUE

FAIT FOR ANY QUTSTANDING 1,0

WRITE bU+DVsDW T DISK

READ PHAT OF IPLANE+4 TO PHATA(IOA}
READVLG OF IPLANE+4 TO V| S(ZM2)

I=TDONE {W1) «IDONE (W2 ) +1DONE (W3) + IDONE (W6 ) *IDONE (W8}
IF(I«NE+51GO To 21v

NSECT=2%% (IPLANE+])

IF{NSECT+GT,1512) NSECTaNSECT»1536
IFIITIME L. T.0)G0 TO 223

IF(ISET,tQ.0)60 To 211

G0 TO(2E14+2224223+4224)1IM

B0 TO (2242214222223} M
I=IRANW(ROL4DULG (121 +I0A) ¢ 12288 +NSECTsW1)
G0 TO 220

I=IRANW (RQ3yDULG (19 19I0A) » 12288+ NSECT W3}
GO TO 220 )
I=IRANW{RQ2+DULG(1+19104)9122BBeNSECToWR]
GO TO 2£0
I=IRANW(RQ4yDULG{]1+19]0A) 5 12258WNSECT W)
IF(MODT08C) JNELOIGO TQ T15
IF(IPLANEEQ.64)1G0 TO 50

10c=10B~1

NSECT={IPLANE+é&) 824
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5754
5760
5775
5777
6003
6005
6007
601l
6013
6027
6044
6046
60540
6053
60596
6060
6070
6077
6106

6115
6li6
6lzu
6123
6133
6134
6137

6141

6167
6l7!
6173
6174
6175
6175
6205
6220
6233
6246
6262
6262
6275
6310
6323
6337
6337
635¢
6365
6400
6414
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O OO

215
217

218

2lg

IF (NSECT+6T,1512)NSECT=NSECT=1536
I=IRANR(RQB,YLG(1414I0C},24576,NSECT W)
NSECT=g# (IPLANE+3)

IFINSECT.6T.504) NSECT=NSECT=512

1=IDONE (PUPR)

IF(T.NE,1)G0O TO 217

I=100NE (PLWR)

IF{I+NE.LIGO TO 218

I=IRANR [RQ&sPHATALY+] +104) 940964 NSECTIPUPR)
I=IRANR (RQTIPHATA{L$Z 2I0A) 14096 NSECTPLWR)
1042]0A+1

IF{IPLANE.EQ.64) B0 TO S0

IFt IUA.GT.2) 10Aa=1

108=108¢1

IF{108,6E.5) 10B=1 A

SMALL IN(PA(lys1}sPHATA(L,)1+I0A)12048)

SMALL IN(PA{2049,1)+PHATA(1s2+104)+2048)
SMALL IN(PA(l+2}+PHaTAI20%911+104),2048)
SMALL IN{PA(2049,2) 4yPHATA (20492, 10A} 2048}
EQUIVALENCE PHATA(1»145),PHATA({L1,1)

CALL FFYBXY(Pa)

ZP3=ZM24+5

IF{ZP3.GT.6)2P3=ZP3=6

SMALL OUT(PA(L) +PC(lelyeZRp3)s409s)
IM2z=iME el

IF {2M2,GE, 7) ZM2=]

CONTINUE

EEEEY FY Ty e PHASE v YT ey 3y 2.y 3

PAGEL No. 16

4p7 T=IDONE (W1} +IDONE (W2} +IDONE (W3 )+ IDONE (W4 )+ IDONE (W8 ) « IDONE (D1} + IDON

401

4y2

403

oE {PUPR) + IDONE (PLWR)
IF(I«NE.B)GO TO 407
IF{ITIME.LT,0)50 TO 1000
IF{ISET.NED!GO TO 408
1SET#1
G0 TU 10401
GO TO (401+402+4037404) IM
I2IRANR(RG2 UTNMI (13 428578,0,W2}
I=IRANR (RA&sUTN (1) 12457g sWS)
I=SIRANR(RG3+UN  (1)424575,0,W3)
IZIRANR(ROLIUTNPL(1}+24576s sW1)
GO TO 465
ISIRANR (RG4 s UTNMY (1) 124576004 Wé)
IZIRANR(RGLIUTN (11424576, "W}
I=IRANR {RQ2,UN t1)924976,0,4W2)
I=IRANR({RQIsUTNPL (1) 424576, 4W3)
G0 TO 405
I=IRANR{RQ1sUTNM1 (1) 9245769 0sW1!}
I=IRANR{RG3sUTN (1)424576,9,W3)
I=IRANR (RQ4yUN (1)924576,0,W6)
ITIRANR{RG2,UTNPI (1) 224576, 44W2)
GO TO 405
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6414
6427
6442
6455
6471
6471
6507
6511
6521
6536
6547
6562
6576
6576
6611
6624
6637
6653
6653
6666
6701
6714
6730
6734
6743
6756
6771
7005
7005
7007
7613
7014
7032
T034
7034
7040
7050
T064
Tob4
7lB0
7100
7114
7114
Tl3u
7130
Ti31
7133
71386
7145
7183
Tisl
7167
T177
T2086
722%
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4046 ISTRANR{RQG34UTNM1 (1) 924576,0,W3}
ISIRANR(RQZIUTN (1) 124576 vsW2)
I=IRANR{RQLsUN  {1}+24576,0,W1)
I=IRANR IRQ# s UTNP]L (1) 2245764 49 W4)

435 CONTINUE

ap6 I=IDONE (W1) «IDONE (W2) 4 1DONE (W3} +IDONE (W&} + IDONE (W8)
IF(IaNE45) GO TO &40%

GO TOI4L194120413,414)1IM

411 I=TRANR(RQ2sWTNML (1)1 124576,48:+W2)
I=IRANR(RQ%sWTN (1) 124576 ,484W%)
I=JRANR (RQIyWN (1} 124576+480W3)
ISIRANR(RQLsWTNPL (1) +24576+48sW1)

GO TO 415

412 [ZTRANR(RG4sWTNM] (1) 32457648 1W4)
I=ETRANR(RQLsWTN (1) +24576,489W1)
I=IRANR (RQ2, WN (1) 224575048942}
IZIRANR(RG3sWTNPL (1} 924576+48sW3)

GO TO %415

413 ISTRANR{RQ]sWTNML (1)9245T6¢4BsW])
I=IRANR{RO3WWTN (1) 9245754484 W3)
1= IRANR (RQ4 s Wi (1) 124576448+ W4)
I=IRANR(RQ2ZsWTNPL (1) 124576,48,WE)

GO TO 415

414 T=IRANR(RQ3sWTNM] (1) 1245764481 W3)
IEIRANR(RQBeWTN (11124574,48+1W2)
I=IRANR{RQ1sWN (1142457644801}
ISTRANR (RO s WTNPL (1) #2455 74480 W4)

41% CONTINUE
00 «5p N=1jr32 )

IF (MOD(Ns2) ,EQ, 2360 TO 433
IF (NaEQe13GO0 TO 217

416 I=IDONE (W17 +IDONE (W2} +IDONE (W3) ¢ IDONE (W4 )+ IGONE (W8}
IF (I.NE.SIGO TO 416
Jan
NSECT=Z (N=2)}#45
G0 TO(42144€2+4230424) 1M

421 I=TRANWIRQZIWN (1) e295764NSECTW2)
G0 TO 425

422 [=IRANW{RG4sWN (1) 9245764NSECTaW4)
GO TO 425

423 I=IRANW(RQ]yWN (119265764NSECToWE)
GO T0 425

424 ITIRANW{RR3,WN (1) e24576,NSECTsW3)
GO TO 425

417 J=1

425 U0 429 M=116
Ke (Me=l)#4095641
SMALL IN(VTNML(I},UTNM](K)+4066)
SMALL IN(VIN {11 UTN {K) 4096}
SMALL IN(VINPl(1l},UTNPL(k),4006)
SMALL INIVN {11 4UN (K) + 4096}
CALL ADVNC(TDTsMsCRMSUyCRMSY yCRMSW s CUMAX s CYMAXy CHMAK)
SMALL OUT(VN{1F ¢ JINIK) v%096)

428 [=IOONE{Wi)+JDONE(W2) +IDONE (W3} «IDONE (W) +JDONE (%8}
IF({{IoNE+5) ANDa{J,EQe0) ) +aNDy (M, EQ,6))160 TO 428

VSCLARK1RA
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1236
T245
7245
7250
7260
7273
7306
7321
7335
7335
7350
7363
7376
7612
7412
7625
T449
7453
7467
7467
7552
7515
7530
1564
7544
7546
7567
7565
7567
7567
7573
7603
7617
7617
7633
7633
7647
T647
7663
7663
7665
7670
7677
7705
7713
7721
7731
7740
7756
7770
7717
1777
10002
10004

10014
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43)

432

433

434

427
429

430

441
442
443
444

446
445

448

451

IF((I.NE.5),0R, {J,ER.1) 160 TO 429

Jxt

NSECT=N#4R

GO TO {43)194329433+434)IM

I=IRANR (RQGZ)WTNML (1] +245764NSECTW2)
ISIRANR(RQEsWTN (1) 924575 +NSECT WG )
IHIRANR (RG3 ¢ WK t1) #245T764NSECToWI)
I2IRANR(RULeWTNPL(1) 424576+ NSECT WY}

GO TO 427 ~

ISTRANR (RQ49WTNML (1) + 24576 ¢NSECT ¢ W4}
I=IRANR{RGLsWTN (1} 245764 NSECTeWI}
I=IRANR{RG2+WN (1} 924576 4NSECTsW2)
ISIRANR{RQ3sWTINRPI (1) s245T6,NSECT +W31}

GO TO 427

I=TRANR (RO +WTNM) (1) 924576 +NSECTe W}
I=IRANR(RQIyWTN (11924575 +NSECT+WI)
I=IRANR (R4 s WN {11324578«NSECT W 4)
ISIRANRI(RQ2sWTNPL{L1} +24575sNSECTrW2)

GO TO 427
I=]RANR{RQIsWTNM1{1) 424576 /NSECTIW3)
I=IRANR(RQ2sWTN (1) 924575y NSECT oW2}
ISIRANR(RQLeWN  {1)+245764NSECTW])
ISIRANR{RQ4IWTNPI (L) s24576sNSECT e Ws)
CONTINUE

CONTINUE

GO TO 450

[=IDONE(W1) +IDONE (W2} TDONE (W3] ¢ IDONE (W6 ) *IDONE (W8}
IF(I.NE,5)60 7O &3v

J=0

NSECT= (N=2) #48

G0 TO(441+6%29443+444) 1M

ISTRANK (RQ2,UN (1) 92%576,NSECT»W2)

GO TG 446

IaIRANWIRQ4UN (1) 924576 +NSECT s Wy}

GO TO 446

I=IRANW (RGL 4 UN (11 9245764NSECTW1)

GO TO 446

IaIRANWIRQ3sUN (1) +245764NSECT W3}
CONTINUE

DO 459 M=116

Ke (Mel) %409641

SMALL IN(YTNMI{1}sWTNMI(K) +4096)

SMALL IN(VTN (L1 sWTN  (K) 4096}

SMALL IN{VINPL(2)4WTNPL(K] +4096)

SMALL IN(VN  (11aWN  {K} 4096}

CALL ADVNC({TDTsMsCRMSUsCRMSY 1 CRMSW s CUMAK 1CYMAX I CWMAX)
SMALL OUT{VN(1)sWN{K)%09g) -
I=IDONE (W1) +IDONE (W2) # IDONE (W3) + IDONE (W4 ) ¢ IDONE (W8)
TF{{{INELS) yAND (J,EQe0) } 4 AND W (M EQ. 61160 TO 448
IF{ {1 NEWS) ,OR, (J.EQ41} 00 TO 459 !
J=l

IF(NeEQ.32)G0 TO 459

NSECTanN#4g

LG TO (451 4452,4539454) In

I=IRANR (RQZ sUTNMY () 9245764 NSECT W)

101

VSCLARKLHA
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10027
10042
10055
10071
o071
10104
10117
lpl3e
10146
10146
10ksl
10174
10207
10223
10223
10236
10251
lg264
10300
13300
10302
10304
10314
1033¢
10330
1p3eh
10344
10360
10364
106374
10374
10376
10377
10377
10403
10407
10613
10417
10421
16423
10425
10431
10435
16441
10443
10445
10447
10456

10473

10505
o517

RUN=L

452

453

454

457
459
45¢
511
512
513
514

515
1000

899

éss

89S

cM8% GAp Té4/71r/14

IsIRANR{RQApUTN (1) 124576 /NSECT W4
IzIRANR(RO3,UN  (1),24576,NSECT,W3)
I=IRANRIRQLsUTNP] (1} #2457 yNSECT+W])
GO TO 457
I=IRANR{RG4sUTNM1 {1} s 24576 NSECT 1 W4)
IZIRANR{RQIsUTN (11924574 /NSECT W)
I=IRANRIRG2sUN  TLl) 24576 NSECT W)
I=IRANRIRQI2UTNFL (1) » 24576« NSECTIW3)
GO TO 457
I=IRANR[RG1oUTNM] (1) 924576+ NSECT o W]}
I=IRANR{RQISUTN (1) +24576+NSECT+W3)
IRIRANR{RQ&yUN (1) 9126576 NSECTW4)
I=TRANR{RGZ s UTNPY (1) 124576 NSECT W2}
GO TO 457

I=IRANR (RG3 s UTNM] (1) 924576 NSECTW3)
IZIRANR(RQEsUTN (1) s24576,NSECTW2)
IIRANR{ROLyUN (1) 924576 +NSECT+W1)
IZIRANR(RQ4+UTNPL (1) 124576 NSECT 1W4)
CONTINUE

CONTINUE

CONT INUE

b0 TO(511+512+5134514) 1M

I=IRANW (RG2yWN  {1)+29576,14884W2)
G0 TO 515

I=IRANWIRQ4 o WN (1) 924576.1488+W4)
0 TO 515

I=IRANW(RQI+WN  11)s24576,1488,W}
GO TO 515

I=IRANW(RG3 o Wh [1)+24576+14B8¢W3}
CONTINUE

ITIMEZITIME»]

IF(ITIMELEQ.01G0 TO 1061

ISET=0

AMSD=SQRT (RMSD) /512,

RMSURSQRT (RMSU) /512,
RMSV=SQRT{RMSV) /512,

RMSW=SQRT (RMSW} /512,

UMAXESART (UMAX)

VMAXZSQRT (VMAX)

WHAX=SART (WMAX}

CRAMSU=SGRT (CRMSU) /512,

CRMSV=SQRT (CRMSV) /512,

CRMSW=SQRT (CRMSH) /512,

CUMAX=SQRT (CUMAX)

CVMAX=SQRT (CVMAX)

CWMAX=SQRT {CWMAX)
SK1=SK1/S5QRT{5K2rn3)#]128,

PRINT BY93RM3D+RUSUsRMSVIRMSH SKI
FORMAT (% RMSDa®EQS,7# RMSUaoEla, e
2SKEWNESS=HELY. )

PRINT BBBsOMAXsVUAX ) WMAX

16,32,37  ySCLARKiHA

RMSYBoEl4, 7%  RMSWoiEl4, 7w

FORMAT (# UMAX=a#EL4,T7¢ YMAXE®EL4, 70 WMAXK®4EL&,T)

PRINT 895+ CRMSUs CRMSV s CRMSW

PRINT 888CUMAXCYHAX»CWMAX

FORMAT {# RMSUR®EL4 T8 RMSYaHEL4,TH RMSWa®*Els,7)

102
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10531
19533
19541
10542
10543
10566

19552

lo560
10562

195740
10800
10é00

10604
10605
10607
10623
10625
10627
10631
10634
10643
10650
10654
10657
19661
10675
10675

19701
lo702
10704
10720
lpree
10724
10726
io731
10740
10745
lp751
10754
10756
lo772
10775
10776
11001
lip02
11005
11006
1101l
11012
11015

RUN-LCMBY GAP 74/11714 16,32.37 YBCLARK1HA

889

as7
886

19900

1200

1291

121 ¢

1300

1301

1310

l4pt
1402
1403
l4p4
1405

XX3204/13,1415927064,215360.)

DO B89 Ixl.6%

SPI{I)=q,

SPR{I)3XX*SPRIL}

CALL FFTZ2U(SPRI1)+SPI{L1+64,-1)
PRINT 887

FORMAT (# E}]=#)

PRINT eaa.1spatz)-1-1.32:
FORMATI1X48E12,5)

CALL SECONDITX)

PRINT 1900#TX

FORMAT(® Cpl TIWE =%El4,7)

G0 10(1500-1200.150n.130v;IM
CONTLINUE

IF(IDONE(N#).NE'llGU T0 1240

SAVE TIME STEP 3 FROM W& IN FSET?
DO 1210 K=1+8

NSECT={K~1)e192

IsYRANR (RG3sDUML (1) 998304 4NSECT 144}
I=IDONE (W4)

IF{I.NE,1)B0 TO 1201

DO 1210 J=le3

JKS (Jul) 83276841

SHMALL IN{DUMSM(1) s DUML (UK} +32768)
WRITE(7) {DUMSHM(I) +1=1+32758)
LONTINUE

Re (ITIME=4D) /72

END FILE 7

GO TO(140193402916034140491405¢1406+140791408)M
CONTINUE

IF (IDONE(W3) sNEL1)G60 TGO 1300

SAVE TIME STEP 5 FROM W3 IN FSET?
DO 1310 Kelig

NSECT=({K=1) #1928

I=IRANR (RG3+DUMI (1) 998304 yNSECT¢V3)
I=I00NE (W3}

IF(I.NE.1)80 TO 1301

D0 1310 J=1,3

JK=(Jel) 23276841

SMALL IN(DUMSM(1)+DUML (UK} +32768)
WRITE(T) (DUMSMI{T) »IR1932788)
LONTINUE

Me (ITIME=40) /2

END FILE 7

B0 TO{140191402+14030140641405+14069140721408)H
CALL AFSREL (SLFSETT+0¢+I1TAPE)

30 10 1269

CALL AFSREL (SLFSET7+0+I2TAPE)

50 TO l269

CALL AFSRELcSLFSETT.OorsrApE)

66 TO 1269

CALL AFSREL(SLFSETT,0¢I4TAPE)

80 TO 1269

CALL AFSREL(SLFSET?-ovISTAPE)

to TO 1269

103
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11016
11021
110dé
11025
11p26
11931
11932
11¢32
1103&
11046
11059
11gs52
11066
1107V
11072
11074
11077
11106
11113
11117
1112¢
11120
irles
11134
11136
11140
11154
11186
11160
11lla2
111685
11174
1124l
11205
11210

11236
11240
11250
11252
11254
11270
11272
11274
11276
11301
11310
11315
11321
11323
11325
11341
11343
11345
11347

RUN=LCHMB9 BAP 74711714 16,32.37 VSCLARKIHA

1406
1497
14p8

1500

1501

1510

ié00

1610
1269
1100

1lo2

112n

1101

CALL AFSREL (SLFSETT+0+16TAPE)

60 TO 1269

CALL AFSREL(SLFSETT+0e17TAPE)

G0 TD 1269

CALL AFSREL(SLFSETT.09I18TAPE)

G0 TG 1289

CONTINUE

IFIIDONE (W2] 4NE. 1160 TO 1500

CALL OPEN(SLFSETT7+0.2340008+0+0¢04320041ITAPE)
00 1510 Kal,s

NSECT={K=1}¢1g2

I=JRANR {RQZ»DUML (1} +98304)NSECT W2}
I=TOONE (W2}

IF{I.NE,1}G0 TO 1501

DO 1510 Jele3

JKE (Jul)#3I2T6Be]

SMal.L INIDUMSM(1) +DUML (JK) + 32768}
WRITE(T) (DUMSM(I) s Imly327/8)
LONTINUE

60 TO 1269

CONTINUE

IF {IDONE (W1) 4NE.1)G0 TO 1606

LALL OPEN{SLFSET7+0+2340008+0+010+3200,ITAPE)
00 1810 Ksl,3

NSECT=(K~1) 4192

I=FRANR {RQ1+DUML (1) $98304 yNSECTIW1)
I=IpONE (W)

IF{I+NEL1)GD TO 1601

DO 1610 J=@.3

JK= (J=l} 93276841

SMALL IN(DUMSHM(1),DUML LJK) 432768}
WRITE(7) (DUMSM (T} Iule327880)
LONTINUE

IF(ITIME.LT,52)60 T¢ 1001
I=IDDNE(01)0IDONEIH1)*IDONE(HE)‘IDDNEINBI¢IDDNE(H4)¢IDONE(H8!

2+ IDONE (PUPR)} « IDONE (PLWR)

IFL1+NE.8)G0 TO 110u .

CALL OPEN(SLFSETS,»0+2340008r04070+3200+ITAPE)
D0 1120 Kel,s

NSECT®(K=1) #1092

I=IRANR (RQ1+DUML{1) 198304 4NSECT W1}
ISTDONE (W1)

IF(I.NE,1)G0 TO 1102

D0 1120 Jsl,3

JKE(J=1)#32768+]

SMALL IN(DUMSM(1},DUMY{JK}32768)
WRITE(5) (DUMSM(I)y1als32768)
CONTINUE

00 111p K=l,8

NSECT=({K=1)#])52
I=IRANR{RGZsDUML (1} 196304 ,NSECT+H2)
I=1DONE {W2)

IF(1+NE.1)G0O TO 1101

00 1410 Js=l,3

JK=(Jrd ) 03276801

104
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11352 SMALL IN(DUMSM(1)+0UML (JK)+32768)
11361 WRITE(S) [DUMSM(I),1x1,32768)
11366 1ilo CONTINUE
11372 END FILE 5
11374 CALL AFSREL (ELFSETS+0+ 105TAPE}
11377 CALL OPENI(SLFSETBs0:23400,810+0¢093200+ITAPE)
11407 po 1140 k=l,g
11411 NSECT= (K=1) %192
11413 I=TRANR (RG3¢DUMI (1} 198304, NSECT»¥W3)
11427 1164 I=I0ONE(W3)
11431 IF(T.NE, 1160 TO 1104
11433 po 1440 Jxl,3
11435 gxxtdol)!3276aol
11440 SMALL IN{DUMSM{1)+DUM1(JK} +32768)
11447 WRITE(6) (DUMSMI1) +121s32768)
11456¢ 1140 CONTINUE
11460 B0 113p K=1+8
11462 NSECT=(K=1)®192
11464 I=TRANR (RQ4 s DUMY (1) 198304 4NSECT v W4}
11500 1103 I=IDONE(W4]
11502 IF({I.NE,1)G0 TO 1103
11504 00 1130 J=ls3
11506 JKz {(J=1)}#32768+1
11511 SMALL IN(DUMSM(1)sDUML{JK) »32T68)
11520 WRITE (&) (DUMSM(I)oI%14+32768)
11525 1130 CONTINUE
11531 END FILE &
11533 CALL AFSREL {5LFSET6+0+10&6TAPE}
11536 00 3131 I=l,5
11544 I0STAPE(IIRIOTTARPEL])
11545 1131 ICGTAPEtI)=I08TAREL(ID)
11547 IFUITIMEsERe24)60 TO 1001
11551 sSToP
11553 END
PROGRAM LENGTH INCLUDING I,0 REQUESY TABLES = GAP
18131
STATEMENT ASSIGNMENTS
STMT NOa LOCATION STMT NO» LOCATION STMT NOp LOCATION
13 » 3563 1% » 4957 17 » 4125
20 » 43p2 22 » 3851 23 P a7ee
25 - aTTe 26 » 647 28 " 3556
38 . 4760 54 » €140 &0 N 5260
62 o 5351 63 » 5474 6% » 553)
69 » 5373 T2 » 5434 73 S 5517
75 » 5555 76 » 5606 100 » 2406
113 . 4122 116 P 4221 117 p 4225
130 o 1173 131 ~ 1220 132 » 1247
134 o 1375 139 » 1354 149 » 4304
151 » 1441 152 » 1455 153 » 1473
158 » 1524 156 » 1523 157 » 1540
162 N 4656 163 » 4875 171 " 4714

105
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STMT NC
19
24
36
61
65
74
109
118
133
150
154
161
172
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SUBROUTINE ADVNC(TDTsMaRMSU2RMSY s RMEW» UMAX e VMAX s WHAX)

20 COMMON U(32768)
C CI’ll/‘En'DEL?)
20 cl=l./TOT
c C2c=ls/{2.%DE| TR¥2}
2l C2324/TDT#R2
c C3zpELT
23 C3%.52TDT
C C4sDELTH#®2/2,
25 Cém,1250TDTRA2 |
c C5=DELT®#%3/6,
21 CS=TOTH#E3 /24,
30 CoxcasCl
3z CTach* (2
35 DO 10 [=1.+4096
&3 ULTIsytI)«(38U(1+8192 }4CaalUtl+12288)=U(I44006) ) eCTRIU(T+12288)~
22,0U{T+8l092 JeU(1+4396))
53 10 CONTINUE
54 GO TO(20+309400209300G0)H
71 20 DO 25 I=ledlo6
73 A=yir) ez
75 RMSUSRMSU+X
16 IF(XaBT UMAXIUMAXRX
10l 25 CONTINUE
103 G0 TO Sg
104 30 00 35 I=1+4p96
106 Xay{1)eee
110 RMSVERMSV+X
11} IF(XeGT,VMAX) VMARXX
114 35 CONTINUE
116 50 10 53
117 4n DD 43 Imle4p9s
121 X=y(1) neg
123 RHUSNIRMSWeX
124 IF(XeGT WMAX) WMAXEX
127 45 CONTINUE
131 Sn RETURN
132 END

SUBPROGRAM LENGTH = ADVNC
le2

STATEMENT ASSIGNMENTS

STMT NU» (LOCATION
20 » 72
40 » 12¢

BLOCK NAMES AND LENGTHS
+ 100000

VARIABLE &aSSIGNMENTS
NAME * LOCATION

STHT NO»

25
45

NaME

LOCATION STMT NO» LOCATION
30 » 195
50 » 132

LOCATION NAME » LOCATION

106
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25
25
25
2%

25
25

5
31
33
as
40
41
50
57
57
67
71
72
T4
75

104
n
124
133
133
143
150
152
le2
166
176
204
205
206
222
223
233
234
237
237
241
251
2582
255
263
271
215
3iu
azo
325
azv

QUNwL

10

13
14
15
16

2o

25
23

26
24
30

32

36

cHB9 Ta/llrl4 16,32,37 VECLARK1HA

SUBROUTINE DVRGNC (C12+RMSD s RMSURMSY yRMSWSK] ¢ SK2UMAX s VMAK s WMAX 4 M
2+1D40ELT)

LCM/BB1/VLG

LEM/382/HLG

LCM/BB3/0L6

ngMENSION VLG(46096+398) pWLG(409693,8) +DLG{64+64016)+AC20480),D(819

}

COMMDN DUMSM(32768)

EQUIVALENCE (A{1)+DUMSM{1}19(D{1)+pDUMSMI204R1})
DISPLAY OFF

NEMOD (Mg 4}

IF (NeEQ. D) N=#

OTDTaDELT/12.

TTDT=2.8DELT/ 3,

DO 5, K=3:6

IF{(NeEQe2} +0Re (Y, EQ.4)}G0 YO 2

SMALL INCA{3)»VLG{191sK]},4096)

GO 10 3

SMALL IN{A{3)sWLGL1e19K} 14n96)

A1) 2A (4097

A{2)=A(4098)

A(4n¥9)2A(3)

A{4100)=A(4)

DO 10 I=n)ls4096

pin= AlL)=A(T*4)+B#(A{I+3)=A(T+1))
TF((NyE@s2) s OR, Ny EQe4) 100 TG 13

SMALL IN(A(1201 VLG (192+K) s4096)

GO TO 14

SMALL IN{A(129) +ALG({I92sK) +4096)

00 1% Isl,1lZ8

A({I)RA(1+4006)

DO 16 I=422594352

A(I1=A({I=4099)

DO 2U I=l+4096

D(I):D(I)o A1) wA(T#+256) 4B, H{ALI+192) =A (14564} )
JEK=

JJ=)

IF({NeEQa2) +OR4 (N, ERes} )0 TO 23

00 2% I=l,5

SMALL INTALJI) sVEGB{Le3ed) e4036)

NENTY

NNENNEYY TS

GO TO 24

Do 2zt I=1+5

SMALL IN(ALJJ) sWLGT) 9390} 94096}

Je g+l

JdzJJr 4096

00 30 I=1,4096 -
D{I)eCl26 (D(I)+A(T)wA(1+163BA) B, a(A(I+122BR)-A[1+40561})
ngpdo(N-1)¢§

GO TO(40432933)1ID

SMALL IN(D(4097)+pLGI1a1,0104096)

DO 36 I=1,4096

DI ==w0TDTHD{1)+D (14096

CONTINUE

107
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330 GO TO 40

334 33 SMALL IN(D(409T)+0LG(1lel0J) 14096}
364 po 37 Inl 4096

asl O(I)=TTDTRDII) +D(+a 056}

353 37 CONTINUE

357 4n SMALL OUTH(D(1)sDLG{1s10J) 446096}
367 50 gogx;yue

37 ETURN

are END

SUBPROGRAM LENGTH = OVRGNC

424

STATEMENT ASSIGNMENTS

STMT NO» LOCATION STMT NO# LOCATION STMT NOs LOCATION STMT NO

2 » 60 3 » 79 13 3 134 14

23 . 240 24 o 256 az » 311 33

40 ) 36d

BLOCK NAMES aND LENGTHS

? loaon0

VARIABLE aSSIGNMENTS

NAME » LOCATION NAME @ LOCATION NAME # (OCATION NAME

A #R 0ce1 ci12 PR o D rR  S6000C01 DELT

UUMSM R 0Cop1l 1 ml 415 in a1 13 J

JJ -] 17 K el 420 M 31 12 N

0TDT  aR 422 RMSD  »R 1 RMSU AR 2 RMSV

HMSW  #R 4 5%1 #R s SKp oR 6 T7pT

UmMaX R 4 Vg X »R 10 WMa X PR 11

LCM BLOCK NAMES AND LENGTHS

BB} » 300000 s * 300000 BB3 * 200000

LCM VAKIABLE ASSIGNHENTS .

NAME » LOCATION NaME # LOCATION NAME » LOCATION

VLG R oLo3 VLB #R oLo1 wLG »R Loz

EXTERNAL ASSIGNMENTS

ACGOER #R -

START OF - CONSTANTS TEMPORARIES INDIRECTS - UNusED CoMpl
374 403 413 733

108
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SUBROUTINE FFTFXY (P}

3 DIMENSION P{4p9er2!

3 00 1 1=14409p

7 1 pr1s€yed,

11 CALL FFTZ2IP{1911«P(192)0409b6s~])
15 RETURN

16 END

SURPROGRAM LENGTH - FFTFXY

30
VARTABLE ASSIGNMENTS

NAME s+ LOCATION NAME » LOCATION

1 a1 27 B R 0
EXTERNAL ASSIGNMENTS

FFT2 »R

START OF - CONSTANTS TEMPORARIES

29 ee

109

16,32.37 VSCLARK]IHA
INDIRECTS -
26
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SUBROUTINE FFTBXY (P)

DIMENSION P1409ss2)
CALL FFT2(P(ls1)sP (19211409641}

Ta/11/14

RETURN
END
c0 Fus

D ol

SUBPROGRAM LENGTH = FFTBXY
20

VARIABLE ASSIGNMENTS
NAME + LOCATION

P R 1]

EXTERNAL ASS1GNMENTS

FFTp »R

START OF - CONSTANTS

12

TEMPORARIES
14

110

16, 32,37 V5CLARKIHA

INDIRECTS -
16

PAGE ND. 1

UNUSED compl
T46
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SUBROUTINE DELSQ(PsCrCE4SeSE4sLINsCE)

20 DIMENSION P ([2564564,2) 0 (255} 4S({855) 4C64 (255) 4584 (255)
¢ DISPLAY OFF

20 0O 10 M=)s2586

2l CALL FFTZ(P(Msls1)oP(Mely2)964r=254)

34 1n CONTINUE

36 00 20 K=1464

37 K2u2éKel

40 K3a3dfKeZ

LY4 Kénd #Ke3

45 VO 2Y Jslys

46 Jlz g+ eN=1

S0 JEsz#gl=l

53 J3a38 412

55 NITTL NG B

57 00 2Y [wlebé

61 [2n2t(al

&2 I3a3N]a2

6% ICELAR K

66 XSCOB (2, % (C(I14) 0064 (J4)=S(14) %S4 (J4) +C64{14)+Co4{Ka))+)128,2(C{I2)

24C66 {J2) ~ST12) 9564 (U2) +Co4 (12) +CH4 (KR) ) =32, 0 (L (13)7C66{J3)=5(12)R
3564 (JIY+CO4 (I +C64{KI) 143240 {0 (1)#CE4 LUl ) =S (T} HSHA (J1)+COG LT+
4C84(K)1=390,)

151 Acle{del)nbs

155 IFLAOSIX) 4L T4 14E=05)80 To 17

161 Xz]e/X

162 GO TO la

163 17 X320,

171 18 P{MyKylysxaP (MyK,y1) _
¢ DISPLAY ON IF{(K,EQ,1}«AND.{I,EQ,1))

172 P{MsKs2)2XFD (MesK»2)
c BISPLAY OFF
c IF(({KeEQel) s ANDu (TaEQe 1) IPRINT 51sKsIsP{MIKy1)
C 51 FORMAT(# P (MsKel)=#EL4.T)

176 20 CONTINUE

204 DO 30 M=x1+256

206 CALL FFTZ{P(Mslsl)sp{Msd,2) 164,856}

22l 39 CONTINUE

223 RETURN

224 END

SURPROGRAM LENGTH = DELSQ

300
STATEMENT ASSIGNMENTS
STMT NOs LOCATION STMT NOs LOCATION
17 - 164 18 » 165
VARIABLE ASSIGNMENTS
NAME + LOCATION NAME » [ OCATION NAME » LOCATION NAME
. #R 1 o]} #R 7 co4 oR 2 1
Iz sl 262 13 sl 263 I4 sl 264 J

i11
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SUBROUTINE DVDT(JpV.WeDUsDV1OWsPaMyCNyCBoCL 1o RMSU+RMSY ¢ RMSH)

26 DIMENSTION Ui6400) sV (6400) +W (64000 DULI024)9DVIL024)sDWI1024)
2p (6400
26 DO 10 I=lslD24
=1 DU =U(1+2688)=CBRIP{1+24R6)»P (142690} +8.*(P1I+2689)=P(I+2687))}
66 DV(Il=V(1026883-CB°(PII*ESQQ,'P(IOEBlél*So!jPIIOZTSZl-Pf102624)))
77 10 DW(I)mW{1+2688)~CBYIP{I+128T=P{1+5248) +B*(P(1+3968)1~P(1+1408)))
141 RETURN
142 END

SUBPROGRAM LENGTH = DVDT

203
VARIABLE aSSIGNMENTS
NAME + LOCATION NAME
CN R 10 Cl1
v »R 4 Dn
P AR [ RYSU
u +R ] v
START OF - CONSTANTS

154

»

»R
PR
#R
»R

LOCATION

12
5
13
1

TEMPORARIES
145

112

NAME »  LOCATION

[o1:] R
1 el
RMSY rR
W PR

INDIRECTS
163

11

202
14

2

PAGE NO. 1
NAME L
Dy ]
M ]
RMSW

UNUSED COMPI|
T631L
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17

17
20
21
ee
25
30
33
a7
40

65
67
74
74
75
76
77
100
102
103
104
108
106
107

HUN=L

1n

-3

30

So

cMBe 74711714 l6,32,37 VSCLARK1HA

SUBROUTINE CALCPR(UsViWsPyMeC34CT)

DIMENSION U(6400)sV{6400) ,W16400)4pP(4096)

DISPLAY OFF

IF (MuEQ.2)580 TO 2

Ii=1

[2=1024

IFIMeER]) J=p PGk

IF(M+EG.3) JFE9E

IF (MsEGa4&)Jm1 920

DO 1¥ 1=Ile12

JJu1sy

PLJIISCTRP LU +C38{U(T+2686) =l (1426901 +V{I+2560)aV ([+2816)+W{[+128
PIeW(1+5268) 48,8 (J(1+2689)){1+5687)+VII+<T52) =V (]+2624)+W ([+3968)
AW {4408} )}

CONT INUE
IF(MsNE,2)BO TD 50
g0 TO 3,

I1=1

12=128

J*3968

G0 TG B
IF(J.EQ,=128)60 TO 50
11=129

12=1024

JEx=lZ28

GO TO 5

RETURN

END

SUBPROGRAM LENGTH = CALCPR

142

STATEMENT aSSIGNMENTS

STMT NO»
5 L

VARIABLE ASSIGNMENTS

NAME »
c3 PR
12 al
P aR
START OF

LOCATION STMT NOP  LOCATION STMT No»  LOCATION
34 20 L4 75 30 » 101
LOCATION NaME *  LOCATION NAME #  LOCATION
5 cr *R 6 I pl 135
137 J ol 140 JJ »l 141
3 ] #R 0 v »R 1
- CONSTANTS TEMPORARIES INDIRECTS -

111 112 120

113

PAGE NO» )

STHMT NO»
50 +
NAME  *
Il -
M -
L] a

UNUSED CoMPI{
743
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37

37
41
43
46
67

107

224

356

537
541
S41
563

503

RUN=L

in

cM89 Térs11714 16,32,37 VSCLARKIHA

SUBROUTINE DVDTMPIUsVeWsDUsDV DN o MyCNaCBICL119C12 ITIME yRMSD s RMSU»
2RMSVRMSH 1 SK1 4 SK2, UMAX 9 VMAX yWMAX .5, ISET)

DIMENSION Ui64s20451VIi66002sWl6a00! »OULE0R4)2DVII0246) 4DWIL024),
2P 16609 25(64)

cla,54cs

CeaClingN

IFtISET.EQe 1) 60 TO 20

U0 1v Islyl024

DIVaY(142686) =U{1e26G0)+y(1+2560)=y{I+E2Bl0)eW(I+128)=-WII+5248)
2B, #IU(I+2689)=UlT+268T)+VI142752) «V (T+2624) ¢W(1+398B8} =W (1+1408))
DUCI)S=Cle (U {]+24BB B (Y (]+2686)«i(]+2690)+8, 4 {U{I+2689)U{1+2687))
2Yey(I+268B1 (U (I+2560)=U(7+2816) 48,8 (U{I+2TS2)my(I+262%}1))
3+W{I+2688)% (U[1+128) =0 (T145248)+p,#(U(I+3T68)=U{T+1408)))
4PU{I+2686)02m{T424F0)322,8,%(U(1+2689)°H#2.y(J+268T)#u2}
S+U(I+2560)0Y (142560)nU(1¢2816)0Y (142816)+B, o (UIT+2752)%y {1+2752)
6=U(T+2624) 6V (T+2624))+U(T+128) oW (14128)-U(145268) AW [1+D248) 48, %
TIU(I+396B)I W (T+3968)~U T+ 4081 W (T+1408) ) +U(26B8) #*0TV)
QsCRH{16, ¥ (U(Le26BF14U(I+C687I+U(T+2TS2)4U{1+2626)+U(1+3968)+U(1+
21408) )~} (14€686) +U(1+2650) <UL +SB16)wU(I+2560)=U(1+128) ~U{1+5248)
Be90.*U(]+2688))
OVIIIBnClaTY([+26881 0 (VIT+2686]1=V{[+2690)+8,#(V{I+2689)=y{I+2687))
P4y {I+26B8) 0ty ([+2560)aV (142816} +8, M (VII+27521 =V (1+2624))}
3eN(I+C0BBI R (V(I#12B) =V (1+5248) +8,4(V(143968)wV(]+1408)))
4V (142686} Y ([+2686) =V (I+Z6901PU{TI+2690)38,2(VI[+2689)%U(1+2689)
SV (I+26ATIMU(TI+26B7) )4V (142560047 (1+2816) 08848, # (Y (1+3T752) #0802
bV (142824 #0E) oy T+ 168 HWIT+128) @y (1+B24B) FYW (T5248) 48,0 (Y (I+3958)
TEW(I1+3058) =V ([+1408)8W (I+ts B8))+v(26BBI*DIV)
QIC2R (26,2 (V(142689) vV (I+CgaT)eVII+2T52) ¢V {Ie2824)4V (143568} +V (e
ALONR) 1wy {142686) «W {42690 )uVII+Ta16)-VII+2560) =y (16]20)-V{]45248)
B~90,*V(1+2688))
UW(I)==CleTU(T+2588) 7 (WII+2686) »W(I+2690) *B, *(W(1+2880)=W(I*26B7))
)4V IT1+2688)4 (M {14256V )= (F+2816) 48,8 (W{I+2T752)=W{1s2624)))
3ow(I*abasi*tu(lolzsz-w(I;gPﬂs)*B.G!N(103V68)-H(It1408)))
4% W(I+Z2686)4UII+26B6)=W(147690)0U(1+2690)+8, #(W(I+2689) 4L (I+2689)
S-W{ 14268710 (T+2687))¢W{1+2560) 8y (142560} ~n(T+2816)0y(T+2810)48,0
GIH{T427S2)HVIT42TE2) =W II+2624) 8V ([+2624) )+ W{I+128) 2wl {T+5248) 842
T+B P IW(1+3968) 502 (1+2408) #52) +W (2688) #UIV)
GC2H {16, TN {I+RERG) ¢W{To268T )+ W (T+2T52) +W (142624) +W (I+3968) +W {1+
AL40B) e (I42686) aW{I+209D ) =W (I+681 )« WII42560) =W (I+128) w4 {]+5248)
a=90 . PW (1+2688))

CONTINUE

G0 10 5o

20 DO 2> I=lslg24

DIVEU{1+2686) =y (1+2690) ¢y (7+42560) ay(]+2816) ¢W(I+128)ul (145248}
2B (U(14268F)wl{T+268T)+V(T+2752)=V([+2624)+W(1+3968) =W (1+1408))

DUIT}s=Cle{y(1+2688)# (UII*2086) =i {I+26901+8,#(U{1+2689)-U(I+2687))
21V ([+2688)2 (U(I1+2560) =U(I+2B16) 45, ¢ (UII+E752) =U(I+262%)))
BIW(T4€688) 4 (UIT+128)~U{T+5P48) +8,#(U(T+396B)=U{I+1408)))
4*U(1+2686) PHE=UIT+2490) #4048, #(U(J+2689) #82-({I+2687)962)
BoULI+2660) BV (1+25601=~U(142816) 8V (142816)+B,0(U{I¢2TS2) Y (142752}
6=U(1+2624) 8V (14262411 eU(1+128)0W (1+4128)=U(1+52%8)8W(T1+D248)+8,.%
TIU(T*35968) *W(1+3968)=UTTe Ls08)aW (141408) ) +U(2688) #DTV)
L2 (164 * {U{I+Z26B9) ¢tU{1eCaaT)+UlT+2TS2) +U(I+2624) +UT+3968) vU{l+
41308))=U(I1+2686) =U{142690)~U (145816} =U(142560)=U(I+128)-U(1+5248)
B=90.%J(]1+2688)) '
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RUN=|_CMB9 DYDT MR

720 DV(I}==CLoly({I+26881#(V(1+26R6) =y (T¢2690)+8, #{VI[+2689)~Vv(1¢268T))
2)‘ViI*EGaBJ“(V(I¢2560)'V(It3816)48 #(ViIe2752) 0V (142624)))
ILW(I+268B)#(V{I+1pB}=V(Is+5248) "
ﬁ*Vt1‘2686)“u(102686)-V(142690)¢U1102690)08 o (V{1+2689)#)(1+2689)
Sey (I426BT)RU{T1+2587)) ¢V (1+2560) 482y (1+2516)an2s8,8(y(1+5758) #82
6-Vt1*2624)ﬂﬁ¢)bVlI*}‘SJ“w(1*12“)-vcl+524a)*u(!05248106.“(VGI‘3968)
7*Nt1*3963)-V(I#I408)“H{1¢14 8))+V(2688)%DIV}

QECRH {16,V {I+260G) $VII+EERTI+V(T+2752)+V (I+2624) +V(I+3968) +V(I+
81408} ) wy (I1+2686) oV {[+2690) ey (1+2816) =V (I+2560) =V{I+128)~y(1+5248)
B=90.9V{142688)}

1057 DH(1)==C1#{U(I+268B} 9 (W{I+2686)=W(I1+2650)¢B,%(W(1+26B9)=K{I+26B7}}
2)+VII+268B) 9 (W(I+256Y ) mW(142816)+8,%(WII+2752) W {I+262%}))
B*H(1*¢688)°(H(1+128)-H(1052431*3.*(ﬂ(1o3968}-wlz*l#oa)))
6+ WiI+2686)#U(1+2686) =W (1+2690)0U(1+2690)+8, »:wczozeeqanut{°2589:
Sl (12687120 7+26B8T) ) +W(1+2560)*V (1425601 =W (1+2816)8v(1+28
GIN{T*2TS2IVII+2752)~W (1+R624) 0V (126241 ) +W(I+128)P02uW(]1+5268) au2
748,#(W{1+396B) 382 (I+1408)#02) +W (2688) %UIV)
9'C2*(16.“(W{I‘2659)0H(I*2687}*W¢1*2752)'ﬁ(102624)*HII*3968)*NIIt
ALADB) 1 «W (T+2086) aW (I+2690) =W (1+5816) =W (1425601~ (1+128) =W (I¢+5248)
B=90,%W{1+268R))

1177 RMSDIRMsDeDIVRO2

1200 X=U(l+2688] 4u2

1202 RMSUIRMSU+ X

1204 IF {XeGT ,UMAX) UMAXRX

1213 A=y (1+208p) w62

12158 RMSV#RMSV+ X

1217 IF {XeGTVMAX) VMAX=X

1223 X=w (142088} ip

1225 RMSWERMSH+X

1227 IF (XeGT . WMAX) WMAXFEX

1234 A=C12P(U(I+2086) = ([+2690) +8,#(U(1+26B9)=U(1+268T) 1))

1243 SK1eSK1+X843

12646 SK2=SK2eX#b2

1253 25 CONTINUE

1255 27 IEz=IE+)

1257 IF(MOD(IEv16) +NE412GO TO Sn

1263 po 30 J=3,18

1264 po 30 Iel,éa

1265 DO 30 L=1,64

1266 LlsL+]=1

1270 IF(LL+GT+64)LL=LLIGS

1273 30 S{IISSIIIsULLaJr3)SULLYJ»3)

1312 50 RETURN

1313 END

SUBPROGRAM LENGTH =~ DVDTMP

T4/11/714

16,32,37

8 “(V(I*3968)‘V¢I‘1¢08)))

VSCLARKIHA

16172
STATEMENT ASSIGNMENTS
STMT NO+ LOCATION STMT NO» LOCATION STMT NOs LOCATION
20 » 542 27 » 1256 30 s 1204

VARIABLE ASSIGNMENTS
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START
The program START creates the initial velocity field with the

correct total energy and energy spectrum and a small {but not zero)

divergence.
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LI 3 0 0 00 AP W

ot et s

12

13

PROGRAM gTART (OUT+FSETT)

IMPLICIT INTEGER (Z)

LCM/BRY sUR

LLM/bHK/U]

DIMENSION wp (2560404 ,y1 (250,64,

DIMENSION 0164, 6:,B!,nnliao).nn?t20).

PVRs (64, 54-33»V15t°4 64,3 DG (B4, 04416 U (6a,18464) UT (64,

316, 64)15155)0KK(55)

DIMENSION ITTAPE(2)2ITAPE (2}

EQUIVALENCE fVR5(1).UR11:)v¢v14t1),u1(1a),tnLGf1).nRt1))

EGUIVALEMCF (@t1312VR (1)), (9 (1A3R51 VT (11)

DATA AK/ .31 90448949 (5260,TU,TH6+,83r,ARs,.0411.597+1, 086!1.175’
21.256,1 35 1.45,1,55,1,65,1,75,1,85,2,0,2,2,2,4,2,6,2,8,3,0,3,2,
33.4.3.613, 8 .0,4-2-4 byhs 6,¢ 8,5 0.5.5.6..6 5,7.37.5 B.. LT
410..11-!12..130!140’15-!16-!17-|lﬂa’190|?ﬂo'30./

DATA E/0,950:7912 ab9101.4¢B7,5¢79¢1467.9,59.61451.514521439_8,
22910224691 T7.T9013021 104979146, 32.5 0644 +0943402.0701.3%41409
3.88,,70s, 53,.48y.395.32g.2 ’-E?!-l ralbeall 1.0985 062|0039|,0P5!
4, 016--011o.nDH..0057..0042o-00?4;.00149.00087-.00ﬂq3--00014.
SeU(0RE2 200149+ 0UL084 4000047+ 0Q00O023+sn 0001/

DATA Wlaw2yn)/2LA112LW2s2LD1/

DATA ROL,20%#04,9RU2, 20080,/

DATA 11APE/1.4LTAPE/.177APE/4.3*0.3Lxx003593/

CAL| MEMREQ(313)(7«9])

CALL FORQTS (W1,Ka1)

CALL FORQTS (W2.RUL)

CALL CREATF (Ww1sUsRT+0,0+03020,041536)

CALL CREATE (W2,UsNT40,04040+0,041536)

C=SORT (3 1415927/t20 #4096, ’3*3 141592743 5859

CC=6.28318/70

RIS=(.

I X=0

A=0 -

CALL UPEN(SLFSETT+0,2340008+0,0,0:3200.7TAPE}

Do qﬂ Z=1464

X3

IF(x3 6T.31, 1) x3=x3-64,

DO 20 Jd=1, 64

Xag=Jd=1

IF (X2.67,31 1) xd=hab4,

DG 20 Iz).64

X%=I-1
TE(¥1.6GT,32,11x1=Xxl64,
BESORT (X 14424 X284L)
IF(R.LT..0p1160 TO 12
pe=x1/8

Pl==%2/8

BeSORTIIX3I6p1 ) 442+ (X3aP2)HHle (XPHPL) #8622, 4 X1 8 X2upT#P2+ (X1 0p2) #02)
Rl==P2#X3/B

Pe=P1#X3 /8
Qa={pakxy=pi#xp) /B

GO TO 13

Plzl,

P€=ﬂ.

01300

Q¢=1|

03=nu
YoCCHSORT (X1 622+ XE0a2 . X3uu2)
DO 14 N=1458
IFtYGTeXK(N}YIGD TO 14

117


http:48*9J-'�32-'.26
http:8,.7L.58
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14

15
16

2g

3p

33
31
32

47

48

81
a2

80

MEN
6o

co
A=
GO
A=
Co
iTH,
TH
Cl
cé
sl
(34
Q

Q
Q
@
Q
[¢]
Cu
no

Kk
Do

TO 1S
NT INUE

Da

T 16
SQART(E (M)
NTINUE
ETAL=RANMF (0.) #6,2831854
ETAZ:R#MF(o.)ﬂ6.283]354
=CoS{THETA])
=G0S(THETAZ)
=SIN(THETA1)
=SIN{THETAZ)
(Tedol)=Au(Cleplegiagly
tTrda21=An(CrapP2es5yn02)y
(1yde3y=huglen3
(Tedety=hnC2opyeszuny)
(1+Js5)1=8u (ConPees2002)
(I4J96y=Aps2603

NT INUE

30 K=le3
=K+3
30 J=]laba

CALL FFTo tQ{1+JsK) 2R (1 9deKK) y64a7)

Co
Do

NT INUE
33 K=14973

KK=K+3

0o

13 1=1,64

CALL FFT200Q(Iv1sK) 20 {Ts]KK) 54,64

Co
NS
I=
1F
I=
IF

NT INUE
ECT=(Z=1} 524
INONE (W1}
{T.NE,1}G0 To 31
INDONE (W)

{1.NE, 1)6p To 32

SMALL OUT(Qt1+19l1sDLG(1419%),12268)
SMALL OUT(Q (191941 sDLG(14187) 432288

ISTRANW (RG] LG (19141472288
I=IRANWIROEZ,DLG (11147412288 nsFCT w2

CONT INUE

i=
IF
1=
if

READ 64 7 5 BY 16 J 5 By 64 7 5 INTO LARGE CORE

NI
Bo
NS
0o
NS
DO

IDONE (w])
(I.NE,1)6G60 To 47
IDONE (w2y
(1.NE,})Gn TO 48

NC=0

2u0 N=l.a
ECTy=NINC
156G M=1,43
ECT=NSECT,
RO 7=1464

+NSECT,wy )

1:19ANR(RG1,UR(111|Z)!1024rN5ECToW1!
I=IRANR{RQ2,UI (141923 ,1024 vnSFCT 442y

I=
IF
I=
IF

TNDONE (W1)
t1.NE.1)6n Tp 81
INUNE (W23
{1.NEs1)Gn Tp 82

NSECT=NSECT+24%

Do
DG

95 Jsl,la,.t
90 Z=1o6&
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121
lep
123
124
125
128
127
128
129
13n
131
132
133
134
135
136
137
138
139
14g
141
142
143
144
145
146
147
147
149
150
15]
152
153
1‘54
1n5

50

91

95

141
100
1320
200

32

399
319
320

350

SFaLl IN (VP (le2)sUR{1,J,2) 4256}
SMALL IN (VT(lad)sUI(14J,2)9256)
DO 91 I=},2s6

CALL FFT2{vptlsl)aVI(T+1)+6%,256)
DL 92 Z=1464

SMALL OUTI(VRI1s2)9UR[ sdeZ) 1256)
SMALL QUTHIVT (192} tUl(70JeZ}2256)
COMTINUE

NSECTENSECT,

DO 107 £2=1.a4

I=IRANW (ROY WUR19192) 4192%9NGECT oW1}
I=IDNO~E (W)

IF(1.¥Ee1dGn TO 101
NSECTSNSECT+2+

NSECTl=nNgeECT1+B

NINC=WINCs?

po 3é9 K:lg]?-

NSECT={K=1)#128
I=SIRANR{RA1,UR{1) »565536,NSECT,¥1}
I=100NE (wly

IF{I.NE )Gy To 324

DO 310 M=1,?

112327684 (May) 4]

SMALL IN{Q({1)sUR(IT) 32768)

bo 35 I=) 432768

QUIy=Cuu(ly

RNS=RMS+Q (T4
WRITE(T) 4t (1) 4121432768,
CONTINUE

RuS=SuRT (Ryss3.1 /512,

pRINT 350erHMS

FURMAT (5 RMS=uEl4eT)

CALL AFSREL {SLFSET7,4.I7TAPE)
sToP

END
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