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EVALUATION OF SUBGRID-SCALE TURBULENCE MODELS



USING A FULLY SIMULATED TURBULENT FLOW



Abstract



Numerous models have been proposed for approximating the subgrid­


scale Reynolds stresses in numerical simulations of turbulent fluid flow.



Until now, the only way to verify such approximations has been to observe



the resulting behavior of the large-scale flow. If the entire turbulent 

flow field were known, it would be possible to make direct comparisons 

between the exact Reynolds stresses and a given model. We have calcula­

ted an "exact" turbulent flow field on a three-dimensional grid with 64 

points on a side. The flow simulates grid-generated turbulence from wind 

tunnel experiments. In this simulation, the grid spacing is small enough 

to include essentially all of the viscous energy dissipation and the box 

is large enough to contain the largest eddy in the flow. The method is 

limited to low-turbulence Reynolds numbers, in our case R = 36.6. 

In order to complete the calculation using a reasonable amount of



computer time with reasonable accuracy, we developed a third-order time­


integration scheme which runs at about the same speed as a simple first­


order scheme. It obtains this accuracy by saving the velocity field and



its first-time derivative at each time step. Fourth-order accurate space­


differencing is used.



The results of this simulation were treated as an experimental reali­

zation of physical turbulence. We then superimposed an 8 x 8 x 8 coarse 

mesh over the originl fine mesh and defined a filtered velocity field 

u (x) as the local spatial average of u From these we defined the 

subgrid-scale velocity field u by u = u + u'. The filtering process 

gives rise to three terms in the Navier-Stokes equations. These are the 

Reynolds stress, u'u', the Leonard term, ulu - uu3, and the cross 

term, u'u + Wu'. We demonstrated that the cross term is non-zero and 

is, in fact, dissipative; we also developed a model for it. The Leonard 

term and the cross term can be combined into a single term which can be 

modeled by (u I)-(Vu). This reduces, in one dimension, to a quadratic 

artificial viscosity frequently used in compressible flow calculations 
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The relationship between the filtering process and artificial viscosity



is shown.



Finally we calculated each of the above terms within each cell on



the coarse mesh, and we attempted to model them using the flItered veloc­


ity field. For each model we calculated the correlation between the model



and its "exact" value. We found the correlation between the Leonard and



cross terms and their models to be excellent, around ninety percent. The



correlation between model and experiment for the Reynolds stress is not



as good, but we did achieve about seventy percent correlation between the



dissipation produced by the Reynolds stress and its model. We found no



model that is significantly better than the standard Smagorinsky model.



We found that models using the subgrid-scale turbulent kinetic energy are



no better than Smagorinsky's, even when we had the exact subgrid-scale



kinetic energy to work with. All of these conclusions must be qualified



by stating that we were working at very low turbulent Reynolds numbers,



and the results cannot necessarily be extrapolated to higher Reynolds num­


bers.
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Chapter I



INTRODUCTION



We begin with a brief discussion of the general approach to the



numerical simulation of turbulent flows. It is generally not'possible to



calculate a turbulent flow in complete detail, because the range of length



scales involved is so large that the amount of data that would have to be



handled is orders of magnitude greater than the capacity of any existing



or projected computer. For this reason, the traditional approaches to



such problems have been based on Reynolds' original idea of averaging the



Navier-Stokes equations over an ensemble of identical flows or an approp­


riate interval of time or space. One then has equations for an averaged



velocity field u(x,t), where the overbar denotes averaging according to



whatever definition is employed. If we then define a fluctuating velocity



component by u(x,t) = u(x,t) + u'(x,t), the averaged equations can be



written (for an incompressible flow with constant viscosity)



au

- + a - @P vV3 - a R 
at ax Ui +v-u -a-x-- ' ('.1) 

3au


1 0 (1.2) 

1 

(1.3)
R = u'u' , 
ij ij3 

since u = u. and u' = 0 as a consequence of the definition of aver­
1 1 

aging. To formally close this system of equations it is necessary to find



an expression for R. (the Reynolds stress) in terms of u



The search for such expressions (closure models) has been a major



direction in turbulence work for many decades. Prior to the advent of



computers, only very simple models could be used, i*e., those which yielded



equations to which one could obtain solutions analytically. These models,



which assume that the Reynolds stresses, like viscous stresses, are propor­


tional to the local strain rate of the fluid, give acceptable results
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provided the range of flows they are required to predict is not too



large These models (eddy viscosity models) can be adjusted for partic­


ular flows to produce excellent results. The problem is that this type



of model must be adjusted to experimental data and can therefore be used



only in an interpolative manner



More advanced models have been proposed since the introduction of



large digital computers. These include models in which the eddy vis­


cosity is a function of space and/or time (turbulence kinetic energy and



two-equation models) and still more advanced models which utilize par­


tial differential equations for the Reynolds stresses are currently being



developed. It is too early to predict the success of these approaches,



but there is reason to believe that their range of application will be



limited. By this we mean that the model parameters will probably need



to be adjusted for each type of flow.



To see why this might be the case and what might be done about it,



consider the overall nature of a turbulent flow field. The range in



length scales between the largest and smallest turbulent structures is



many orders of magnitude in most flows of interest The largest turbu­


lent structures draw energy from the mean flow. This energy is thought



to cascade through an intermediate range of eddy sizes to eventually



reach the smallest turbulent eddies. The smallest eddies then dissipate



the kinetic energy to internal energy by viscous effects. There is rea­


son to believe that the largest structures in a turbulent flow are much
 


more dependent on the origin of the turbulence, i.e., the type of flow



under consideration, than either the intermediate or small-scale struc­


tures. This could explain the failure of any single model to predict a



wide variety of flows when the large-scale turbulence is included in



u'u'. It appears more likely that a universal model might be found if


Ij



only the intermediate and small-scale turbulence is modeled. This ap­


proach (large eddy simulation) requires that the large-scale turbulence



be calculated explicitly and that the small scales (the "subgrid" scale



turbulence) be modeled. With the recent advances in high-speed computing



machinery, this approach has become increasingly practical in the last



several years (Hirt, 1969; Deardorff, 1970; Fox and Lilly, 1972).
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In large eddy simulation, one averages the Navier-Stokes equations



over a small spatial region in order to remove the small-scale fluctua­


tions. The resulting equation for the large-scale field contains a term



similar to, but more complicated than, the Reynolds stress R. of Eqs.
ij



(1 1) and (1.3), and this term (the subgrid scale Reynolds stress) must



be modeled.



Several models for the subgrid scale R have been proposed. The
ij



problem has been how to verify a proposed model. The best that could be



done until now was to compare the evolution of the large-scale structures



in a computation to those in an experiment. This will not reveal whether



or not the actual subgrid scale Reynolds stress is being accurately mod­


eled, but only whether or not the subgrid scale Reynolds stress and the



model have the same net effect on the large-scale motions for the particu­


lar type of flow in question. In addition, virtually all models contain



at least one adjustable constant which must be set by some ad hoc assump­


tion or by adjusting the constant to fit some important aspect of an ex­


periment. On the other hand, if there were a physical experiment which



measured everything of interest in a turbulent flow field, from the larg­


est turbulent structure to the smallest eddy, it would then be possible



to compute the subgrid scale R exactly, and then compare its value at
ij



each point in space to the prediction of a model. Unfortunately, there



is no laboratory experiment capable of such measurements. But if we could



compute the evolution of a turbulent flow field on a sufficiently fine



grid (fine enough to include all of the turbulent structures) numerically,



then we would have all the information necessary to make direct compari­


sons between measured values of the subgrid R and the model predictions.
ij



The objectives of this work were to accurately calculate a three­


dimensional turbulent flow field on a fine grid by directly integrating



the Navier-Stokes equations using no approximations with respect to the



structure of the turbulence, i.e., without having to average the equations,



and then to use the results of that calculation to examine subgrid scale



models on a coarse mesh overlayed on the original fine mesh. Practical



limitations require that this be done at a low Reynolds number, since at



high Reynolds numbers the difference in scale between the largest and



smallest eddies is so great that computer simulation is impractical. Also,



the flow should be as physically simple as possible (see below)
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In Chapter II we describe the numerical integration method which was



used to compute the flow field on the fine mesh. A third-order time



scheme is introduced which has not previously been used in this applica­


tion Because this is the first attempt at model verification, we have



chosen the simplest possible turbulent flow field for our calculation,



homogeneous isotropic turbulence This avoids any problems of anisotropy,



but restricts the results to problems in which the subgrmd scale turbu­


lence can be assumed isotropic In Chapter III we describe in detail how



the main calculation was performed, including some programming techniques



we employed to greatly speed up the calculation In Chapter IV we discuss



the general problem of modeling subgrid scale turbulence with emphasis on



methods which could be verified by our calculations. In Chapter V we
 


demonstrate that the results of our main calculation do in fact have the



properties of real turbulent flow. We then make the comparisons of the



numerically calculated values of R and the predictions of various
iJ



models and show that, although the models currently used are not as accu­


rate as one would like, they are difficult to improve upon in a simple



manner.
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Chapter II



THE NUMERICAL METHOD



2.1 General



The finite-difference scheme chosen for the main calculation is



fourth-order accurate in space and third-order accurate in time. The



rationale for this choice is worth a brief discussion.



In many large computer simulations a major effort is made to keep



the problem small enough to be contained entirely in the main memory of



the computer. This is done to avoid the use of the disk memory and its



relatively slow rate of data transfer. The problem we shall try to solve



has three velocity components at each of 262,144 grid points, for a total



of 786,432 words necessary to specify the velocity field at one time step.



This number alone exceeds the roughly 400,000 words of memory available



in our CDC 7600 large-core memory. Since we are forced to utilize disk



memory, waiting times for the completion of data transfer to and from



disk become a major consideration. Large amounts of data must be trans­


ferred from disk to main memory, processed in main memory, then transferred



back to disk. If the processing time is too short, the data transfer time



will determine the running time of the problem. In our case, using



fourth-order differencing in space, we found that only about five percent



of the total running time was spent in waiting for data transfer to be



completed. This means that the data were processed slightly faster than



it could be transferred, even though a double-buffering scheme was used



Had we used second-order space differencing, we would not have gained any­


thing in running time, since the data-transfer time would still be the



same Reducing the processing time would have simply increased the per­


centage of wait time. This means that we have used fourth-order space



differencing with no increase in computer charges with respect to second­


order differencing, i.e., increased accuracy is obtained at essentially



no cost. We emphasize that this choice is not made for accuracy reasons,



but is a result of being forced to use the disk memory.
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Having settled on fourth-order accuracy in space, we must next decide



how to handle the time differencing. In any numerical method, common



sense dictates that the truncation error due to the time differencing



should be roughly the same as the truncation error due to the space dif­


ferencing This can be done even with first-order time dafferencing if



the time step used is sufficiently small. The criterion for choosing a



time-differencing scheme now becomes cost, i.e., computer running time.



If a second-order time scheme were to take twice the computing time per



tame step as a first-order scheme but allowed us to increase the time step



by more than a factor of two, the total running time would be reduced and



the second-order scheme would be justified.



You generally get what you pay for with numerical methods. If greater



accuracy is desired, you must pay for it. However, there can sometimes be



more than one method of payment The most common method of payment is in



increased running time. For example, the simplest two-step, second-order
 


schemes (Roache, 1972) obtain second-accuracy by essentially performing a
 


simple first-order scheme twice, thus doubling the running time. Another



method of payment can be in increased storage requirements. The leap-frog



scheme performs essentially the same calculations as a first-order scheme,



but it obtains second-order accuracy by saving an extra time step in the



calculation, hence doubling the storage requirements. On most present­


day computing systems, the extra charge for doubling the storage require­


ment is small in comparison to the savings resulting from halving the CPU



time. On this basis the second-order accuracy of the leap-frog method



appears to be obtained almost for free. Another way to look at it is that



the user is usually charged for most of the available storage, and if he



does not use it he is short-changing himself.



With the above in mind, we note that since our problem requires use



of the disk the storage available is, for all practical purposes, unlimi­


ted. As noted above, the leap-frog scheme obtains its second-order accu­


racy by saving the velocity field at an extra time step. We have developed



a time-differencing schdme that obtains third-order accuracy by saving the



first time derivative of the velocity field, as well as the velocity field



itself. With this method the running time per time step is essentially



unchanged from first-order methods, ot from the leap-frog method, but the
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time step can be increased while maintaining the same truncation error.



This reduces the total running time of the problem without reducing the



accuracy.



2.2 The Time-Differencing Scheme



We now develop the third-order method that we will use. It is essen­


tially a predictor-corrector method with a second-order leap-frog predic­


tor and a third-order Adams-Moulton corrector. To explain the method we



deal with the ordinary differential equation



ut = au (2 1)



which has the exact solution u = exp(at). Suppose that we are given u



at tmes n6t and (n-l)6t to third-order accuracy, i.e.,



u = exp[cn6t] + O(6t4) (2.2a) 
n-4 

un- exp[c(n-l)6t] + O(6t ) (2.2b) 

and (u ) at time ndt and (n-l)St to second-order accuracy, i.e., 
**



(u ) = a exp[an6t] + O(6t ) (2.3a 
t



*n-i 3


(u)t = a exp[a(n-l)dt] + O(6t 3 ) (2.3b)



Thus, (u ) and u represent two numerical approximations to the exact 

solution; they are, respectively, the predicted and corrected values. Let



us first approximate the solution to equation (2.1) at time (n+l)6t



using the standard leap-frog method.



- * n+l n-i 24 

(u ) = u + 26t(u*)t (2.4) 

Using a Taylor series expansion to get exp(a(n+l)6t) in terms of



exp(an6t) and introducing the notation y = a6t, we have



For a general discussion of methods of this type, see Appendix A
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2 3 4


exp[a(n±l)6t] = ± + L ± + k ± ... exp[an6t] (2.5) 

from which it is easy to show that



(u* n+ l 
 = exp[a(n+l)6t] -3 exp[an6t] + O(6t ) (2.6) 

*)n+1 n+1 * n+3



Hence, (u ) and (u ) = a(u ) 
 are accurate to second-order.



Now that we have (u )t, (u ) and (u ) to second-order, we



can evaluate (u)t to first-order and (u ttt to zeroth order.



(u)* n+l - (u)22* n-i 

(u ) t = 2 exp(n6t) + 0(6t ) (2.7)
tt 
 26t



n + l

*n(u* -2(u*) n + (u* n-1



n-t ()t

(u)ttt u 

6t2

2 - 3 exp(an6t) + 0(6t) (2.8) 

n + l
Next we evaluate the corrected value u to third-order accuracy by



using the expansion (2.5) in the form



an+l u ++ +-- (u)tnt(u*)
+6--(u)t (2.9)



which is identical to



un+l [exp(an~t) + 0(6t 4)] + 6t[ exp(an6t) + O(t 3)] (2.10)


t2 3



A2[2 +Oa [3
St 2x~nt St3
±_-_ [2 exp(6n~t) ± O(St2)] +- [a exp(andt) + 0(6t)]



Comparing (2.5) and (2.10), we see that



4
n+l = exp[a(n+1)6t] + 0(6t 

Summarizing the method, the predictor step is leap frog



(*)n+1 n-i f 21



(u 2t(u*) (2 1)



and the corrector step in simplified form is
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un+ = un + 2 6t(u ) + _ t(u ) -12 (1 )I (2 12) 

which will be recognized as an implicit Adams-Moulton method. It is, in



fact, possible to produce a fourth-order method in this way, but the extra



advantage is minimal.



2.3 Numerical Stability of the Third-Order Method



Following standard Von Neumann analysis (Richtmyer, 1967), we seek



solutions to equations (2.11) and (2.12) of the form
 


n Anu (2.13a) 

A n
(u) n = u (2.13b)



where A is in general a complex constant. The numerical method will be 

stable if we can ensure that JAI < 1 for Re() < 0. First, we replace 

(u ) by a(u*)n in Eq. (2.11) to get 

n-l (u n+l 2y(*)n (2.14) 


where again y = c6t. Changing the index, we have 


Un (u*)n+2 -2y(u*) n+l (2 15a) 


and 


u = 2y(u) n±2 (2 15b) 

(2 12) and again replacing (un
Substituting (2.15a) and (2.15b) into 
 

by a(u*) yields



•n+3 *n+2 *n+2 *n+l 2 T
(un) - 2y(u ) (u) -2y(u ) +-y(u) (216) 

-y(u)+l - y(u*) n 

9 



-n+ l
Substituting (2.13b) into (2.16) and multiplying by A yields a



quartic equation for A:



A4 3
~I2) ~ + 1 a- 3 y 12
A - (l+2y)A LyA2+2 = 0 (2.17) 

The stability of the numerical solution is now determined by finding 

the maximum value of rij = lIl6t with Re() < 0 for which all four 

roots of Eq. (2.17) have magnitudes less than 1. This ensures that the 

solutions given by Eq. (2 13) will not increase exponentially with in­

creasing n in cases in which they should not. The resulting region of 

stability is shown in Fig. 2.1. The curve shown in Fig. 2.1 is the curve 

of neutral stability on which the magnitude of the largest A is 1. 

This curve was found by computing the roots of Eq. (2.17) for fixed y 

noting the value of yrI for which one of the roots becomes unity. 

Other methods are available, but the simplicity of this calculation does



not warrant their use.



2.4 Accuracy of the Third-Order Method



We again consider the ordinary differential equation



ut = au (2.18) 

which has the exact solution



u = exp(at) = exp(yn) (2.19)



One of the roots of Eq. (2.17) will be an accurate approximation to



exp(y). The others are parasitic or computational roots. It turns out
 


that the three parasitic roots are highly damped (yr-negative and large



in comparison to the non-parasitic root), so that the solution obtained



will be



u(ndt) = An (2.20)



A1
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0.4 

Unstable 

IYRI 
H 

H 0.2 
Stable 

0.1 0.2 0.3 0.4 0 5 0.6 0.7 

Fig. 2.1 Stability of third-order method 



where A1 is the desired root of Eq (2.17). Let yr = Re(y) and



Y = Im(y). The accuracy of the solution is determined by how well A1



approximates exp(y). We separate the numerical error into the phase



and amplitide errors. The phase error is given by



AY = {yi - Im[in(A)]} (2.21) 

and the amplitude error is given by



Ayt = {yr - Re[Zn(A2 )]} (2.22)



We have computed for the leap-frog and third-order schemes. In
AI 

Table 2.1 we list some values of yi and the error in the computed value 

of y , AY , for the leap-frog and third-order schemes with yr = 0. In 

Table 2.2 we list some values of yr and the error in the computed value 

of Yi' AYr' for the two schemes with yi = 0. The range of y and yr 

listed in the tables covers the range of interest in our main calculation. 

A simple linear equation which is sometimes used as a model for test­

ing numerical approximations to the Navier-Stokes equabons is the convec­

ted diffusion equation: 

Du au a2u


7- + C = v ­

tx 2 

Assuming a solution to this equation of the form u(x,t) = u(t)eik x , we 

have 

= (-ick - vk2)u (2.23)
ut 
 

The values for mean velocity, viscosity, spatial increment, and time step



which correspond to the main calculation described in Chapter III are



c = 5.5 cm/sec, v = 0.14 cm2/sec, Sx = 20/64 cm, 6t = 0.0073 sec, and



0 < k < w/6x Using these values, we have calculated y= -ck6t and



r = -vk26t for use in Tables 2.1 and 2.2.



The Ay's listed in the tables are the errors per time step. Take,



for example, yi = 0.201 (this is equivalent to a wave with wavelength
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Table 2.1 

Phase Error Comparison



2nd 3rd 

Order Order 


K 	 -Y Ay Ay 

1 4 x 10 ­6 7.6 x 	 10 - 9 
020 

2 5 x 10 ­ 8 

.503 

.040 	 1.1 x 10 ­5 
1.005 

1.9 x 10 -	 7 

1.508 	 040 3.7 x 10 ­ 5 

- 5 8.0 x 10 ­7 
x2.011 	 .080 8.8 10 

­ 4x 10 2.4 x 10 ­6 

2 513 .100 1.7 

x 10 6.0 x 10 ­6
.120 	 3.0 - 4 

4 8 x 10 ­ 4 1.2 x 10 ­5 

3.'016 

.1413.519 

4 021 .161 7.2 x 10 ­ 4 2 5 x 10 - 5 

- 54.4 x 104.524 	 .181 1.0 x 10 ­ 3 

x - 3 7.6 x 10 - 5 

5.027 	 .201 1.4 10

­ 4 
1.8 x 10 - 3 1.2 x 	 10

5.529 	 .221 


x 
 10 ­ 3 	 1.8 x 10 ­ 4 
.241 2 4 

­ 4 

6.032 

261 3.1 x 10 - 3 2 7 x 10 

­ 4 

6.535 

3.8 x 10 ­3 3.8 x 	 10
.281 

10 ­3 5.2 x 10 - 4 

7.037 

7 540 .302 4.8 x 

­ 4 
.322 	 6.0 x 10 - 3 7.6 x 10 

8.042 
3 


x 1.0 x lo ­
8.545 	 .342 7.6 10 ­ 3 

4 10 - 1.3 x 10 ­3 

9 048 .362 8 x 3 

0 lo - 1.7 x 10 ­3 

9.550 	 380 1 x 2 

x 10 ­2 2.1 x 10 ­ 3 
402 1.210.053 
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Table 2.2 

Amplitude Error Comparison



2nd 3rd 
Order Order 

K 2 -yr Syr 6yr 

.252 2.82 x 10 ­ 4 3.8 x 10 ­ 1 2  3.8 x 10-15 

1.011 1.13 x 10-3 2.5 x 10-10 4.8 x 10 ­13 

2.274 2 55 x 10 - 3 2.8 x 10-9 1.2 x 10-11 

4.043 4.53 x 10 - 3 1.6 x 10 ­8 1.2 x 10-10 

6.312 7.07 x 10 ­3 5.9 x 10-8 7.4 x 10-10 

9.096 1.02 x 102 1.8 x 10 7 3.1 x 10 

12.380 1.39 x 10-2 4.5 x 10- 7 1.1 x 10 ­8 

16.170 1.81 x 10 - 2 9.9 x 10- 7 3.1 x 10- 8 

20.465 2.29 x 10 ­ 2 2.0 x 10 ­6 8.2 x 10 ­8 

25.266 2.83 x 10-2 3.8 x 10 ­ 6 1 9 x 10 ­ 7 

30.572 3.42 x 10 ­ 2 6.7 x 10- 6 4.1 x 10- 7 

36.383 4.07 x 10 ­ 2 1.1 x 10 ­5 6.3 x 10- 7 

42.700 4.78 x 10 ­ 2 1.8 x 10- 5 1.6 x 10- 6 

49.522 5.55 x 10 ­ 2 2.8 x 10-5 2.8 x 10 ­6 

56.849 6.37 x 10 ­ 2 4 3 x 10 ­ 5 5.0 x 10 ­6 

64.681 7.24 x 10 ­ 2 6.3 x 10- 5 8.5 x 10 ­6 

73.020 8 07 x 10 ­ 2 9 1 x 10- 5 1.3 x 10-5 

81.862 9.17 x 10 ­ 2 1.2 x 10 ­ 4 2.1 x 10-5 

91.211 1 02 x 10-1 1.8 x 10 ­ 4 3 5 x 10-5 

101.065 1.13 x 10-1 2.4 x 10 ­ 4 5.3 x 10-5 
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46
x in our main calculation). For Y= 0.201, the phase error per



time step is 18 times larger for the leap-frog scheme than for the third­


order scheme. This means that if both schemes used the same time step the



accumulated error at a given point in time would be 18 times greater using



leap frog. This is not the whole story The relevant question to ask is



how much would you have to reduce the time step using the leap-frog scheme



in order to get the same error as with the third-order scheme? Suppose we



are using the third-order scheme with a St such that y = 0.201; this



value is typical of the problem that we actually ran. If we reduce the



time step by a factor of 4.4 and use the leap-frog scheme, the phase error



per time step will be 1.9 x 10- 5 , but we will have to run 4.4 times as



many time steps so that the phase error per original time step will be


- 5 	 5
4.4 	 x 1.9 x 10 = 8.36 x 10- , which is slightly larger than the



5
7.6 x 10- for the third-order scheme. For smaller yi the factors are



larger than 4.4, and for larger yI the factors are smaller than 4.4 Our



conclusion is that for the leap-frog scheme to achieve the same accuracy



as the third-order scheme the time step would have to be reduced by at



least a factor of four, thus increasing the running time of the problem



by nearly a factor of four.



To further demonstrate the accuracy of the third-order scheme, we pre­


sent, in Fig. 2.2, the results of a numerical test on the one-dimensional



wave equation:



ut + cu. 0 	 (2.24)



u was calculated by the use of Fourier transforms so that the only error



in the numerical solution is due to the time-differencing scheme. u was



defined at 6C evenly spaced points and was initially zero, except for the



triangle shown near the center. Periodic boundary conditions were applied,



and we set u6t/6x = 0.2. In the exact solution, the triangle moves from



left to right at the constant speed c so that after 1600 time steps the



triangle should have swept across the grid five times and the exact solu­


tion is identical to the initial conditions The third-order calculation



used 3% more computing time than the leap-frog calculation and twice the



amount of storage. The starting conditions in each case were exact This
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Fig 2 2 Solutions to u~ + cu C. 
t x 



was done by calculating the Fourier transform of the initial conditions,



multiplying each Fourier component by the appropriate A1 (ick6t) and



inverting the resulting Fourier field to get the value of u at time St.



2.5 Starting the Third-Order Method



Given the initial conditions for a problem at time t = 0, we can­


not get the solution at time t = 6t by the third-order method. The



field at t = 6t must be found by another method. The technique we used



is to divide the initial time step 6t into three increments of 8t/3



and use a two-step predictor corrector method to obtain u(&t) to second­


order accuracy. We tested this.method by again solving the equation



ut + cux = 0 as above, except that rather than using the exact numerical



solution for t = 6t we used the second-order predictor corrector scheme



to get the second time step. After continuing for 1600 time steps, the two



solutions agreed at every point to three significant figures.



Although no difficulties are encountered in starting the scheme in



the linear case, we found a weak nonlinear instability while solving the


nu
Its onset could be detected by the values of
Navier-Stokes equations. 

n The problem was cured by setting 
 (u*) = 
and (u ) slowly diverging.
n n t 
unat the end of the first few time steps. The calculation of ut (which



is not needed elsewhere) almost doubles the computing time for each time
 


step where it is needed In a test calculation on a 16 x 16 x 16 mesh, 

we found it was sufficient to make this correction after the first four 

time steps after which no further evidence of instability was seen for the



next 130 time steps. In the main 64 x 64 x 64 calculation, we alter­


nately turned the correction on for four time steps and off for four time



steps throughout the problem. An examination of the skewness of the veloc­


ity field as a function of time (Section 5.1) leads us to believe that the



correction could have been turned off permanently after eight applications.



2.6 Space Differencing



The time-integration scheme has been presented in terms of the ordi­


nary differential equation
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It is equally applicable to the system of incompressible Navier-Stokes



equations



at a
 (u 1­at ax i u3 aax + vV2ui (2.25a)



au. 

ax 1 0 (2.25b) 
1 

if the spatial derivatives are calculated at least as accurately as the



time derivatives. The method for calculating auI/at and maintaining



zero numerical divergence will be discussed in Chapter III. The spatial



derivatives were approximated by fourth-order accurate spatial differenc­


ing. This means that the equations we are actually solving are



an I 
-u 

) + O(x4 )
+ vV2u + O(t3 

(2.26a)
at ax Ij) ax 1 

33 4 

u = O(St 3 ) + O(6x ) 
(2.26b)
ax 

To properly compare error terms, we must include the velocity c to be
 


dimensionally consistent. When we compare terms of O(6tn ) to terms of



O(dxn), we really need to look at terms like (c6t)n and 6xn . The



choice of the appropriate value of c to use in the nonlinear case is



somewhat unclear in a turbulent flow simulation, but the r.m.s, velocity



is probably a reasonable guess. However, the stability condition gives



essentially an upper limit on cdt/6x, the Courant number, where now the



maximum value of u must be used for c to assure safety. The result is



that St is normally chosen so that the time-differencing error is in 

fact somewhat smaller than the space-differencing error.



Now we consider conservation of momentum and energy. For simplicity



we have chosen to use centered, fourth-order spatial differencing in space
 


with all quantities cell-centered. The scheme which was used in the main



calculation was
 


(U t (Duu + ufDu)-fp+vDu (2.27)


2 3 j j iu k (2 
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where 

D = a fourth-order approximation to 3/ax 

Dlu 
3 I126x 

uI(j-2) + 8[uia(+l) - u (3-1)] 
3 

- u (j+2) (2.28) 

and 
2 2 

D 
k 

a fourth-order approximation to V2 

Dku {16[u (i+l) + u (i-1) + u (j+l) + u (-1)
k .1 1 1 1 

+ u (k+l) + u (k- )] u ( +2) - ( -2) 
(2.29) 

- uI(j+2) - u3(j- 2 ) - u3(k+2) - uI(k-2) 
2 

90 u 1/126x
-


In both cases the derivatives are approximated at (i,j,k) and obvious 

indices are suppressed. Kwak (1975) has shown that the term - - (D u1 + 

u Du ) is conservative of both momentum arid energy This means that 

no momentu4 or energy are introduced as a result of the spatial differ­

encang, i.e., 

E(Diu 3 + u3Du) 0 ; Zu(Diu3 + ufnDu ) = 0 

where the summation is over all grid points. The method can be called



semi-conservative, because some error is introduced by the time-integration



scheme.
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Chapter III



THE MAIN CALCULATION



3.1 The Basic Equations



The purpose of the main calculation is to obtain, as accurately as



possible, the solution of the equations of motion for homogeneous iso­


tropic turbulence in an incompressible fluid. Physically, this flow is



produced by passing a uniform stream of fluid through a mesh to produce



the turbulence and then observing its decay as the turbulence proceeds



downstream Special care is necessary to assure isotropy, but the ex­


periment has been successfully carried out several timesz the most re­


cent such experiment is that of Comte-Bellot and Corrsin (1971). An



alternative to grid turbulence is box turbulence, in which the fluid in



a box is stirred up and allowed to return to rest. To simulate grid tur­


bulence we will use the Navier-Stokes equations (3.l.a), together with



the continuity equation for an incompressible fluid (3.l.b)'
 


:+ a _2_1 + vV2u. (3.l.a)
at ax Ij ax. IJ 1 

3. 0( .15 

where we use the summation convention.



We shall attempt to simulate the grid turbulence experiment by se­


lecting a cube of fluid and following its history as it passes downstream



from the grid, i e., we are following it in a Lagrangian sense by invok­


ing Taylor's hypothesis. In order to do this successfully, we must assure



that the cube of fluid we select is large enough that all correlations



are essentially zero at distances equal to the side of the box. From a



practical point of view, this means that the box must be large compared



to the integral scale of the turbulence. On the other hand, the box



should also be small enough that, under the conditions of the experiment,



no significant changes in important integral properties occur over a dis­


tance equal to the size of the computational cube. If these conditions
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are met, we may simulate the experiment by following the time history



of the cube of fluid using periodic boundary conditions in all three



spatial dimensions.
 


Equation (3.l.b) can be replaced by an equation for the pressure



p. We apply the divergence operator to Eq. (3.l.a) and note from Eq.



(3.l.b) that



a@u V23u.
a D- 0 and 0 
atax 3x 

1 3 

We are then left with a Poisson equation for the pressure.



3
Du u 
V1p = _ax (3.2) 

ax 3



In general terms, the method of solution is to start with the veloc­


ity field at time n6t, solve Eq. (3 2) for the pressure field at time



n6t, then use Eq. (3 l.a) to find u I/3t at n6t and advance the so­


lution to time (n+l)dt using the method described in the previous



chapter. Thus we insure continuity at time (n+l)St by properly choosing



the pressure at time n6t.



3.2 Derivation of the Pressure Equation



The Poisson equation (3.2) for the pressure is exact, no approxima­


tions are involved in its derivation. It is, nonetheless, instructive to



examine the origin of the pressure equation from a numerical viewpoint.



The final expression we arrived at in Chapter II for the velocity field



at time (n+l)dt was



un+ = un + at (* n-1 2 * n 5 * n+l (3.3) 

(u (t.
u1 1 12(u + (ut+ 2 

n+ln

Du = 0, where D denotes the fourth-order numerical difference 

approximation to 8/9xl, defined by Eq. (2 28). 

Suppose that at this point in the calculation we have already evalu­

-
* n l * n * n+l *n 

ated Cu) , (u )t, and (u) but not p We have from the 

Navier-Stokes equations
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1
(u*)n+l lD** +uDu* 2 * (3.4) 

i t j1 u j1 VDkU iP1 

where all missing time indices are assumed to be n+l. This leaves p



as the only unknown. We now substitute Eq. (3.4) into Eq. (3.3), apply


Diun+l


the numerical divergence operator to the result, and require that 
 

be identically zero. This yields



• 12 n + _ *)n-i 8 *fn
DI(Dip) 5- DI uI + D 5 1t 5 (lt1 
(3.5)


1 ** * * 2*1- (Dlu + ufDu + VDkfU 
J i3-j j j I ki 4* 

n+l


If Eq. (3.5) is solved exactly, the numerical divergence of u1 will


2


be identically zero (within computer round-off error). The operator Dk



in Eq (3.5) is the fourth-order numerical difference approximation to



the Laplacian defined by Eq. (2.29). The operation
* 

D (D p ) implies 
2 

two sequential operations of Di on p . In one dimension, Dk is a 

five-point operator, 

- 30f(k) + 16f(k+l) - f(k+2)]/126x2



D2f(k) = [-f(k-2) + 16f(k-l) 

and DIDi is a nine-point operator given by



DI(D f(i)) = [f(i-4) - 16f(i-3) + 64f(i-2) + 16f(i-l) - 130f(i) 

2 
+ 16f(i+l) + 64f(i+2) - 16f(i+3) + f(i+4)]/1446x
 

Note that this is not the simplest fourth-order approximation to @2/x2,



but one must use this operator (and none other) to insure that the contin­


uity equation is satisfied exactly.



Depending on how the initial conditions are set up, the first two



time steps may or may not have velocity fields whose divergences are



identically zero. In our case the divergences were small but not zero.



If we retain all of the terms in Eq. (3.5), including the non-zero diver­


gences, the next two time steps will have identically zero divergences.



As we explained in Chapter II, for the first few tme steps of a calcula­

•nn



tion we set (u ) = ut at the end of the time step for stability reasons. 
t 2 
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n
All 	 we normally have at the end of a cycle is u , not un . To calcu­


late un we need the pressure 
nn*n

field' pn, which is not normally calcu­

lated. The pressure field p is calculated by requiring that D(u ) 
n *,- I*
n-i 

0. 	 After doing this twice, we have made D un, Dln, ul)t 
fl 	 u j* n 
 

and DI(ui)t all identically zero. By referring to Eq. (3.3), we see



that the only additional requirement needed to make Du m = 0 is that


* n+l 

Di u )t = 0. To satisfy this requirement, we apply the divergence opera­

tor 	 to Eq. (3.4) and we obtain



D1DI 	 (D~iL~uiu3 3 j
D ) - (D * * + uD u*) 	 (3.6)DI 

which is considerably easier to work with than Eq. (3.5). Since the term

**
* ** 
 

-- (D3uIu 3 + u3D u1 ) forms a part of ut, we do the actual calculations 

in the following sequence. 
* n+l 

1. 	 Calculate (u ) using standard leap frog, as described in 

Chapter II.F-. 1 n l
(D** * 2 

2. Calculate (D u + u*D u) + DikU and store the re-

L-	 J * n+l4



sult in the disk file, which will later contain (u )t



3. Using the result from step 2, solve Eq. (3.6) for p (Note
' 2 
 

that the inclusion of DkU does not affect this calculation, 

since D uj = 0.) 

4 Evaluate -Dip and add the result to the results of step 2,



thus leaving (u ) on disk. 
t



5. Calculate un + l from Eq. (3.3). We have now completed one time



step.



3.3 Solution of the Pressure Equation



The Poisson equation for the pressure is solved with the help of dis­

crete Fourier series. Any one dimensional set of N *numbers which repre­


sent the values of a function f at N evenly spaced grid points x =



JAx, 3 = -N/2 ... N/2 - 1, can be uniquely represented by a discrete



Fourier series, i.e.,
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K=N -1 \/-211i (36a 

N_ E F(k) exp N (3.6s)
N K=-	 N 

2 

The Fourier coeffic-ients are given by


J



2 ~2 Ti )(3 6 b


F(k) = E f(j) exp(3.6.b) 

3 N2 

In these equations, f(j) represents the value of the function f(x) at



the point x = j3x. Likewise, let p(j) represent the value of the un­


known function p(x) at x = j6x. Then the solution to the discretized



Poisson equation is



DxDp(x) = f(x) 	 (3.7)



where



D f/3 = f(j-2) - 8f(j-1) + 8f(j+l) - f(j+2) 
Dfj 126x 

can be 	 found by substituting discrete Fourier series for p(j) and f(j)



into Eq. (3.7):



DxD E 	 P(k) exp-2---jk) = ZF(k) exp(---r- ikj (3.8) 

where



P(k) = Ep(j) ex( j 1k) 

and



p(j) = IZP(k) exp 2ji 3k) 

It is easy to show that



DD ex (-7-- k = 'g(k) exp (- 2, jk) 	 (3.9) 
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where 

g) -130 + 32c05(3 K + l28cos(±j!S) _ 32cos (6Tis) + 2cos?'Tk) 

Applying (3.9) to (3.8), we get from the linear independence of the com­


plex exponentials



3.0
/-27Ti/-27T 
g(k)P(k) exp(N Jk) = F(k) exp( T 2 k) (3.10) 

Now 	we multiply Eq. (3.10) by exp 2I k' , and, noting that for k # k'-


N 
 1 	F-2 i 

E exp --- J (k-k') 0 
N 

k=2 

which leaves us with 

P(k) = F(k) (3.11) 

g(k) 

With the above in mind, we see that the equation 

Dx P(j) = f(j) 

can be solved by the following three steps. 

1. Transform f(3), i.e., compute F(k)= DOf) exp -N jk 

2. Calculate P(k) 
= F(k) 

g(k) 

3. Invert P(k), i.e., compute p(j) = 1 (-2 k 

The extension of the method to three dimensions is straightforward.



The solution to the equation



(DxlDxI + Dx2Dx2 + D x3Dx3)P( 1j, 2 J3 ) = f(31,32,33) 

is 	obtained as follows:



1. 	Transform f(31,j2,j3), i.e , compute 

F(kl,k2 ,k 3 ) = 1 22,j ) expPLN (lk 1+J 2k2 + 3 k3)]f( 0 ,j 3 
31 	 32 33 
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2. 	 Calculate P(kl,k2,k3) = F(kl,k2,k3)/g(kl,k2,k 3)



3. 	 Invert P(kl,k2,k3), i.e., compute



P(31,32,33) 	 P (k- k2k3 
N3 
 23 P(k31k2,k3)



)exp F-N (jk 1 + j 2 k2 + jk3 

The use of the fast Fourier transform (FFT) algorithm (Cochran,



1967), which requires CN log2 N operations to perform the one-dimensional



Fourier transform of N data points, makes the above method of solution



practical.



3.4 	 Modifications to Reduce the Running Time



(a) 	 Solving a Two-Dimensional Poisson Equation Using a One-


Dimensional Fourier Transform



The 	 two-dimensional Fourier transform of data on an N x N grid is



normally accomplished by performing N one-dimensional transforms in one 

direction followed by N one-dimensional transforms in the second direc­

tion, for a total of 2N one-dimensional transforms each of length N. 

Since each one-dimensional transform of length N requires CN log 2 N 

operations, the method just described requires a total of 2CN2 log 2 N



operations. The constant C represents four multiplications and two



additions. Suppose we could do the same thing with a single one-dimensional



N2 	 N2
transform on points. This would require CN2 log 2 = 2CN 2 log 2 N



operations, i.e., exactly the same number as before. It turns out, how­


ever, that the machine language fast Fourier transform routine used for



our problem is twice as efficient (in computing time per point) in calcu­


lating a 4096-point transform as it is in calculating a-64-point transform.



Thus, if we can solve the two-dimensional Poisson equation on a 64 x 64



grid by using a single 4096-point transform, we can reduce the running



time for that part of the problem by 50%1



In order to see how we might take advantage of this, consider the



4 x 4 grids illustrated in Fig. 3 1. The points in parentheses represent



the virtual points which are used to provide the boundary conditions. The
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(9) (10) (11) (12) 

(13) (14) (15) (16) 

(3) (4) 1 2 3 4 (1) (2) 

(7) (8) 5 6 7 8 (5) (6) 

(11) (12) 9 10 11 12 (9) (10) 

(15) (16) 13 14 15 16 (13) (14) 

(1) (2) (3) (4) 

(5) (6) (7) (8) 

Fig. 3.1.a. Normal periodic boundary condition



(9) (10) (11) (12)



(13) (14) (15) (16)



(15) (16) 1 2 3 4 (5) (6)



(3) (4) 5 6 7 8 (9) (10)



(7) (8) 9 10 11 12 (13) (14)



(11) (12) 13 14 15 16 (1) (2)



(1) (2) (3) (4)



(5) (6) (7) (8)



Fig. 3.1.b. Modified periodic boundary condition
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periodic boundary conditions which are normally used are illustrated in



Fig 3.l.a. The required virtual data on each line are taken from the



opposite end of the same line. A modified or staggered periodic arrange­


ment is shown in Fig. 3.l.b, here the virtual data on the horizontal



lines are taken from the opposite end of the succeeding or prior line.



The only difference in the two cases is that the modified conditions of



Fig. 3.l.b have the left and right boundaries offset vertically by one



N2
cell. The arrangement of Fig. 3.l.b allows use of the single point



transform and is therefore desirable. This raises the question of what



we should require of the boundary conditions for the box turbulence prob­


lem. The first requirement is that the virtual data must have no correla­


tion to the adjacent points. This means that the correlation of the veloc­


ity field across the box must be negligible (assuming the virtual points



are taken from the opposite end of the box). This requirement is met since,



as noted earlier, the box-turbulence problem must have a velocity field



which is uncorrelated half way across the box if it is to make physical



sense. Secondly, the row of virtual points must represent turbulence.



This requirement can be met by equating the data at the virtual points to



those of some other row of points in the problem. As long as the order of



the points is retained (i.e., the statistics in the vertical direction are



unchanged), they may be shifted vertically with no effect. Either of the



boundary conditions illustrated in Fig. 3.1 satisfies the above require­


ments The advantage of the boundary condition illustrated in Fig. 3.l.b



will soon be apparent.



Suppose we combine the four rows in Fig. 3.1 into one row of 16 points



numbered j = 1,2,3,...,15,16. For purposes of the Fourier transform, it



is more convenient to use an index m = j - 9 so that:



= Z f(m) exp 27- ik) (N = 4)F(k) ( N 2

m = ­


f(m) = -L F(k) exp2r mk\ (N = 4) 
N
N2k k) ep 2



Now we let j = j1 + N32. Then f(j1+lJ 2) = f(j+1) for all points on the



grid. Referring back to our derivation of g(k) in the preceding section,
 


we see that if x =j 1 6x'
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xxN ) ° -2 kNg(k) Fk exp(;­ m,)2 

where



2
g1(k) =-130 + 32cos1Tk+ 2Cos "k) 3 ' 2co k



f(j1 , 2 +l) can be written f(j+N), with N = 4 in this case, and it 

immediately follows that if y = 326Y , 

DyDyf(m) = 1- 92(k)F(k) expl- mk 

y"y N k (N2 

where



92(k) =-130 + 32cos (zm)k + i2scos(141)k 32cos( )+2cos(N )k 
N2
Thus, wherever occurs in g1 (k), it becomes N in g2(k), since a



difference of one grid point in the x direction is the same as a differ­

ence of one unit in the j, but a difference of one grid point in the y 

direction is the same as a difference of N units in j. Hence,
2



(D+D =EN'kp(i k = Z_
(Dy y+ E F~~p/-2 mk N2 L(k) +g2 (k)] 

k=--2 k=---f 

P(k) exp 2 mk) 

and the two-dimensional Poisson equation,



(DxDx+D D p(x,y) f(x,y)y) = 

is equivalent to N2 
N2 

k=-2­ 2i2
 2
(DxD x+DD) EN p(k) exp -2 
2 

N2 f(kexpN -­

2 2 

and can be solved by the following steps:



1 F(k) = f(m) exp 2 mk), where m = + N - N2 /2 + 1) 
(N(N 2 
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2. P(k) = 	 F(k)/[gl(k)+g 2 (k)] 

3. 	 p(m) = -I EP(k) exp(21"i mk) 

N k 
 (N2
 

Exactly the same methods could be applied to reducing a three­


dimensional transform to a one-dimensional transform, but the CDC 7600



large-core memory is not large enough to hold all of the necessary data,



and the full advantage of this method is unattainable. The three­


dimensional transform is therefore done by a series of modified two­


dimensional transforms on each plane of data followed by a one-dimensional



transform in the third direction. This reduces the running time of the



Poisson solver by one-third (a 50% savings on two thirds of the trans­


forms). Since the Poisson solver takes roughly half of the total running



time, this 	makes the overall saving about 16% of the total.



(b) Savings from Simplified Indexing



The modified boundary conditions described in the preceding section



have the additional advantage of allowing us to write all of our differ­


encing equations in terms of one-dimensional arrays. To illustrate this,



we show how a two-dimensional case can be reduced to a one-dimensional



problem. Suppose we have a 64 x 64 array, u(64,64), and we wish to



calculate its Laplacian to second-order at each point. The easiest way 

to program this would be to define a new array v(64,66) with v(i,l) = 

u(i,64), v(i,j) = u(3-,j-1) for j = 2, ..., 65, and v(i,66) = u(i,l); 

each of these relations holding for i = 1, ..., 64. This takes care of 

periodicity in the j direction, and we could then write our FORTRAN 

program as



do 10 i=1,64



ipl=i+l 

if(ipl.eq. 65) apl=l



iml=lil



if(iml.eq.0)iml=64



do 10 j=2,65



10 ulap(i,j-l)=v(ipl,)+v(iml,j)+v(i,j+l)+v(,j-l)-4.*v(i,j)
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There are two difficulties with the above coding Firstly, the


"if" statements used to calculate ipl and iml slow the execution of



the loop. With the modified periodic boundary conditions, we can simply



write i-l for iml and i+l for ipl and we will be using the cor­


rect points even at the ends of the rows, thus eliminating the "if"



statements. This reduces the running time of a typical loop by 10%.



Secondly, time is required by the computer to find the address of the



variable u(i,j). To find this address it must calculate m = i+64*j.



Similarly, in the case of a three dimensional array, to find the address



of u(i,j,k) it must calculate mri+64*3+4096Ak. With our modified



boundary conditions, it is possible to code the above loop as follows.



do 10 m=1, 4096



10 ulap(m)=v(m+129)+v(m+127)+v(m+192)+v(m+64)-4.*v(m+1 28)



Use of single subscripting resulted in an additional 30% savings in the



typical loop. Thus, the use of staggered periodic boundary conditions



allows a reduction in the running time of all the differencing calcula­


tions (i.e., virtually all the calculations other than the fast Fourier



transforms) by a net 40%. In fact, it was this savings which prompted



the investigation of the modified Poisson solver



The combination of the modified Poisson solver, the singly subscrip­


ted arrays, and the third-order time scheme which allowed an increased



time step reduced the total running time of the main calculation by a



factor of six. Whereas we initially anticipated the problem would use



nine hours of computer time, the final version used only 90 minutes.
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Chapter IV



TURBULENCE MODELING



4.1 The Equations of Motion



For an incompressible fluid, the Navier-Stokes equations (4.1)



together with the continuity equation (4.2) describe the motion of a



turbulent flow. These equations are



au _ _ - - + 2 u (4.1) 

auui



(4.2)
x 
 
3 

The term (/ax3)uiu j in Eq. (4.1) accounts for the change in i 

at a point in space due to the advection of momentum. The term vV2u


accounts for the change in ui at a point in space due to viscous


forces.


Consider an eddy of size L whose typical velocity is U. For


such an eddy, the advective term is of order U2/L and the dissipa­
2tive term is of order vU/L2. The ratio of the advective term to the



viscous term is of order UL/v, which is the (non-dimensional) Reynolds



number Re. An eddy with Re << 1 is dominated by viscous dissipation



and will rapidly die out. An eddy with Re >> 1 is dominated by ad­


vection and will remain in the flow for a relatively long period of time



before it will die out. Hence, Re = I gives an estimate of the small­


est eddy one would expect to find in the flow. We assign to the small­


est eddy the size n and the velocity u, and since Re = I for this



eddy



flu = v (4.3) 

In order to get another relationship between the velocity and



length scales of the smallest eddy, we multiply Eq. (4.1) by u, which



gives the equation for the kinetic energy
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a uiu + u (Ui uP + uiuvV 2 ui (4.4) 
at ii x - ±2±



Integrating Eq. (4.4) over a volume V, applying the incompressibil­


ity requirement (4.2), and ignoring contributions from the boundary



yields



un dV' = 2 (4.5)



The right-hand side of Eq. (4.5), when integrated by parts, is seen to



be negative definite and thus represents the energy-dissipation rate.



Letting e be this energy dissipation per unit volume and noting that



the dissipation occurs mainly in the eddies of size n, we have



uv2 
= (4.6)

= 2 

Now, since the energy dissipated by the small eddies comes from the



-large eddies, the dissipation rate s is really determined by the large



eddies and can be regarded as given. Then the only unknowns in Eqs.



(4.3) and (4.6) are the turbulent microscales ii and u . Solving for 

these we get the Kolmogoroff (1941) expressions for the turbulent mi­

croscales. 

1/41/ 
U1 (Le-)U11 (VC)l1 (4.7) 

A more detailed discussion of the Kolmogoroff microscales can be found



in Tennekes and Lumley (1972).



In a typical problem involving turbulence, the length scale of the



largest eddies which we want to simulate is several orders of magnitude



larger than n. In fact, L/n, where L is the largest scale in the


3/4 3/4


problem, is of order Re . Hence we would need Re grid points

LL 

in each direction, but the largest number of grid points in each dimen­


sion which one could squeeze into present-day computers for a three­


dimensional calculation is of the order of 100. On the other hand,



typical Reynolds numbers of engineering and scientific interest are in


48
the range 10 -108. Consequently, the grid point separation is, in



general, orders of magnitude larger than n. Hence the eddies of size
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n, in which the energy dissipation is occurring, cannot be calculated
 

directly. We attempt to resolve this problem by defining a new velocity



field ui where the overbar denotes some sort of averaging process.



It could denote a temporal average, a space average, or an ensemble



+ u
average over many realizations. We then define ui by ui = u .



Leonard (1973) has suggested that the appropriate averaging proc­


ess for large-eddy simulation should be a local spatial average of the
 


form



u = G(x-x')ui(x')dV' (4.8) 

where V is a volume surrounding the point x over which uI is to
 


be averaged and G is a weighting function as yet unspecified. This



process may be called filtering, as its effect is to remove the small­


scale fluctuations from ui in forming ui. We call ui the filtered



or large-scale field and u' the subgrid scale field.
 
i 

The simplest averaging operation is to let G = 1 and V be the



cubic volume with sides of length A whose center is at x. Then
a 

Aa
 

u~ ~ (x) x +- S;d d' 
1 --2x2 2 x3 2(.9 

Aa 
a Aa 
 

ui~ A3- f f f u 1 (x 1 -x{,x2 -xx 3 -x dx dxd
 
a x -Aa x - a x - a 
 (4.9)


1 2 2 2 3 2 

Unless otherwise noted we will take Eq. (4.9) to be the definition of 

ui throughout the remainder of this dissertation. 

We now take Eqs. (4.1) and (4.2) and obtain their filtered counter­

parts by multiplying each by the weighting function G = 1 and integ­

rating over the cubic volume V to obtain 

+ - p + V2- (4 .1 0 ) 

at ax i'j axii 

-- =0 (4.11)



axi



We now make the substitution u = ui + u' in the nonlinear advective 
±i



term and obtain 
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_ i + --- = + VV2-i 

ax ij (4.12)at ax - uiu@3 - X 
3 1 J 

where



=i u' + u'u.~ 12(.3ulu+ 
 + u'u' (4.13)
 

is the subgrid scale counterpart of the Reynolds stress.



We stress the fact that Eq. (4.12) is exact. We have defined new



variables, but so far we have made no approximations. We also point out



that u and u' are continuous variables defined at all points in



space and time, and they are in no way tied to the finite grid of points,



which will be introduced later.



4.2 Approximations to Solve the Filtered Navier-Stokes Equations



In order to solve Eqs. (4.12) it is now necessary to make some ap­


proximations. The testing of these approximations is the purpose of



our main numerical simulation. The three most common approximations



used are



uu u u (4.14)13 13 

uu' + u'u = 0 (4.15) 

u'u = f(u,u ) (4.16)_ 3 

One of our major purposes in this work is to investigate these approxi­


mations, test their validity, and suggest improvements. Numerical



tests are given in Chapter V. We give a discussion of each of these



approximations below.



4.3 The Approximation (4.14) u I = u u 

Leonard has shown that Eq. (4.14) is probably a poor approximation



in a turbulent flow. Consider a function f(x) defined in some region



of space. If f is fairly smooth, we can approximate f(x) locally
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by its Taylor series expansion about the point Xo, which is taken to 


be the center of the filter volume, V, over which f will be inte­


grated to obtain f(x ). Substituting the expansion of f into Eq. 

(4.9), we obtain. 


A2 

af )ffx)-Xo 4f (X f 24 x x ) + o(A) (4.17)
-0 -0 24 Dxk axCk ­

where Aa is che length of 
 one side of the cubic volume V. Letting



f = U , we have immediately the Leonard approximation



A --- A2 a - - ) (4.18) 
i ij - 1 24 8 k xk (ulu ) 

The last term in Eq. (4.18) will henceforth be referred to as the 


Leonard term. 
There can be little doubt that Eq. (4.18) is a better 


approximation than uu = u.u.. We now ask: 
 What is the magnitude of 


the Leonard term in relation to the other terms in Eq. (4.12)9 


We can get some idea of its size by considering the simple, one­

dimensional Fourier wave u = exp(ikx) and the linfar filter of this 

wave defined by 


A 
a

x +-

2 

" Ad A u(x')dx' (4.19) 

a 
2 

from which t is easy to show that for u = exp(:kx): 

sin2(!) sin(kAd sn kA a _ 
u(x)u(x) = ux) = a u u (4.20) 

We can now quickly test the accuracy of approximation (4.18). If we



approximate a2/ax 2 by a second-order space-centered finite difference



on a grid with spacing A and apply it to a Fourier wave, we have



2 -- [eos(2kA R)- I] _ _ 
-- (uu) uu (4.21) 

A2
2 
ax


g
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We are interested in the ratio a = u u/u u. The exact value is 

seen from Eq. (4.20) to be (kAa)- sin kA . In Table 4.1 we have 

given a for various values of kA . The first column shows the exacta



result. The second column gives the approximation (4.14) for which a



is always unity. The third column is the result obtained from Eq.



(4.18) if exact (Fourier) differentiation is used, while the fourth col­


umn is the result obtained by using second-order finite differences,



Eq. (4.21), with a grid spacing equal to A /2, a value which will

a



later be shown to be appropriate.



Table 4.1



The Leonard Term



No Leonard Term Fourier Second-Order 
a Eq. (4.20) (Eq. (4.14) Eq. (4.18) Eq. (4.21) Gaussian 

kA Exact 
 

0 1. 1. 1. 1. 1.



7r/4 0.9003 1. 0.8972 0.9024 .9023



w/2 0.6366 1. 0.5888 0.,6667 .6628



0.0000 1. -0.6449 0.3333 .1930



37r/2 -0.2122 1. -2.7011 0.6667 .0247



2Z 0.0000 1. -5.5791 1.0000 .0014



We see from the table that for kAa = w/4, a wave whose wavelength 

is eight times the averaging volume or sixteen times the grid spacing, 

the effect of the Leonard term is approximately ten percent and the ef­

fect increases at shorter wavelengths. Waves with kAa > r are poorly 

treated by any of the approximations. However, the filter removes most 

of these waves (as it must to avoid the numerical problem of aliasing),


so the problem is not as severe as it might seem. The oscillatory beha­

vior of the filter at high wave number has caused some workers to re­

place it with a Gaussian filter. Its values are shown in the last column,


and we see that Eq. (4.21) does an excellent job of matching it.


We emphasize that the error being discussed here is not related to


"subgrid scale turbulence," but arises from incorrect handling of the



interaction between waves which are supported by the grid.
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4.4 The Approximation (4.15) u u' = 0
13 

(a) A Model for the Cross Term



We again consider the one-dimensional wave u(x) = exp(ikx) and



the filter defined by Eq. (4.19). It is easy to show that



kisln(" aI sin kA


----- sl -) snk a u

2 (.2



uu' k a 
 ( kA6 ) kA 	 (4.22)
a 	 a a 

We will now develop a model for the term u u'. From the definition



of u' we have u' = u u. Using the expression (4.17) for u



2

A
 

u'= -a V2u + O(A4) (4.23)

24 a



which implies



A2



u' a- 2 + O(A4 ) 	 (4.24)
1 j - 24u1 j a



Now we substitute u = u - u' 	 into Eq (4.24). 
2 

a ta aVA 
 

u 3(24 	 + u(4.25)



The use of Eq. (4.17) to obtain Eq. (4.23) assumes that u is "fairly



smooth". This will be true if u3 is reasonably close to u, i.e., if



u'a does not fluctuate too rapidly. This implies that we are only model­


ing that portion of u'a which is nearly resolvable on the grid and not



that portion which is entirely subgrid scale.
 


Since V2u' fluctuates rapidly throughout the averaging volume and


a 2­


has a mean value of approximately zero, whereas V u is relativelycon­

- 2 << 2­


stant throughout the averaging volume, we expect that u V u I< uIV u,



and we can neglect the last term in Eq. (4 25). The lowest-order approxi­

mation to u V is just u V , so the lowest-order approximation to 

Eq. (4.25) is 

2

A


A - = a - 2-	 (4.26)
ij = ulu24 u. j 
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Eq. (4.26) is our model for the cross term. Clearly there is no physics



built into this model.



In Table 4 2 we compare the values of the cross term in the same



manner as we did for the Leonard term in Table 4.1. The values given in



the table are u ut/u u. In comparing the magnitudes of the Leonard and



cross terms, we should recall, first, that for the values in Table 4.1



it is the difference from unity that is important, and second, that the



cross term will appear with a coefficient of two in the equation. Thus



we see that for kAA = w/4 the cross term has approximately half the i­


portance of the Leonard term. As a function of k, the cross term



increases in size and then decreases. The approximation (4.26) for the



cross term is not as accurate as the corresponding approximation for the



Leonard term. These conclusions will be borne out by the results presen­


ted in Chapter V



Table 4.2



The Cross Term



kA Exact Fourier Second Order



a Eq. (4.22) Eq. (4.26) (Eq. (4 26) Gaussian



0 0. 0. 0. 0.



7/4 0.0236 0.0257 0.0254 .0235



x/2 0.0705 0.1028 0 0976 .0718



0. 0 4112 0.3333 .0982



3'a/2 -0.4949 0.9253 0.5690 .0376



27 0. 1.6449 0 6667 .0058



(b) Leonard and Cross Term Energy Dissipation



Assuming that the model given by Eq. (4 18) is correct, the energy



dissipation due to the Leonard term is given by



A2



a V2 (uu )dv' (4.27)
L - f Uax d 
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Carrying through the differentiation a/ax and noting that au /3x = 0,



we obtain



2 \ 
. _ 2 f I aa d' (4.28) 

V k k ax 

Now we integrate by parts twice with respect to a/axk' giving 

A2 a;

Aa DU: A2u dV'L 2--$T- '
 (4.29) 


V j 

Leonard (1973) has shown that (4.29) can be approximated in the case of



homogeneous isotropic turbulence by



= 2 1 
 (4.30)



For the cross-term energy dissipation we can write


2
A A2



= (-vjdVt 
 + A f v dv' (4.31) 
3 V j 

The first integral in Eq. (4.31) is identically zero, since by carrying
 


out the differentiation a/ax we have



4 -ju dV' fV2u 3 (4.32) 

where we have again used 3u /ax = 0, and by integration by parts we



have



JuV u 1 V 3 dV' = -j v .. d!(.3 
' (4.33)dV 

V UV2-a3I 

Since the right-hand sides of Eqs. (4.32) and (4.33) are negatives of each
 


other,



I TT (4.34)
(V2 )dV' = 0 

We take the second integral in Eq. (4.31) and integrate by parts to ob­


tain
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A2 
 V A u
aj1 Uvu dV' = - a dV' (4.35) 

24 \ i/1 24 JV J " a 

Comparing Eq (4.35) to Eq. (4.29) we see that the cross-term energy dis­


sipation and the Leonard term energy dissipation are the same. Further­


more, since the skewness



< au1/ax1 3> 

< auy/ax4 2>3/2 

is known to be negative, both terms remove energy from the flow. This



will be verified by our numerical experiments.



4.5 Models for the Subgrid Scale Reynolds Stress u'u'



j3



Having developed models,for the Leonard term and the cross term, we



are left with the equations



+-- - uu = -(u + vVxu (LIJ +CJ +TI) (4 36)at a ijax 1 ax i i i3 1 3 

au 0 
 (4.37)


ax



1



where



A2 A2
2 u u 2u-2 
 
= L13 _a 2 C - _ a V + V u24 
 1 - +24uI 

ij 1i ij Iu3kk
 = 

= - kkp = p+- 3 

We have indicated that L and C.i, while important, are really the



result of interactions of the resolvable scale flow field with itself.



Conversely, T is solely the result of the effects of the subgrid scale



motions which cannot be resolved. Our only hope for modeling s
133 T1] 


that the subgrid scale effects, averaged over ,the filter volume, are some­


how functions of the resolvable part of the flow, i.e., the filtered vel­


ocity field u The most obvious condition that such a model must satisfy
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is that, since it represents the energy transfer from the resolved large­


eddy field to the small subgrid scale eddies which are dissipative,



- fu x- T3 dV' < 0 

The simplest model which satisfies this requirement is the eddy viscosity



model



3 2-

axLI 3 = VTVU 

where the eddy viscosity vT is an adjustable constant. Alternatively,



we can model T directly by



] = -VT(-kj+~)a(4.38) 

where vT could be a constant or a function of position. The term which
 


appears in the momentum equation is (D/x )T I which can be written



j i



If VT is always positive, then this term can be shown to be dissipative.



Since the time scale for the small-scale turbulence is much shorter than



that for the resolvable scale, we expect that the small-scale eddies will



adjust to the large-scale ones. It is therefore reasonable to suppose



that the local subgrid scale Reynolds stress should be a function of the



local level of resolvable scale turbulence. Pursuing this line of reason­


ing, we let VT in Eq. (4.38) depend on the local flow variables. We



-
require that it be positive and have units of (length) x (time) . The



most popular such model, due to Smagorinsky (1963), uses



V (CA) 2 ( + Ks . 1/2 (4.39) 
Ta 12ax axi) ax ax i 

Until now the only way to verify a model such as Smagorinsky's has
 


been to observe its overall effect on the resolvable scale turbulence.



With our numerical simulation we can directly compare T. with the
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results of the model at each point in space. It will be seen later that,



although the Smagorinsky model of T is not as good as the models

ij



which have been developed for the Leonard term and the cross term, it is



still reasonably accurate. We will also consider other possible models.



4.6 	 Combining the Leonard Term and the Cross Term
 


When the models for the Leonard term and the cross term are added



together, we obtain 

2 

L j + C13 (Vu ).(Vu (4 40) 

It is notable that in one dimension Eq. (4.40) reduces to



A2, 
L + C = a j u (4.41)

ij Ij 24 \ @x/ 
This 	 expression is equival nt to the quadratic form of the artificial



viscosity sometimes used in compressible flow calculations which was



first proposed by Von Neumann (1950). The purpose of the artificial vis­


cosity in compressible flow calculations is to smear a shock front over



several cells. We note that this is precisely the effect of filtering



the velocity field. If the field u has a step discontinuity, u will



appear as a ramp of length 2Aa, which is exactly what the artificial



viscosity attempts to do. A major difference is that we are proposing



that this term be included everywhere in the calculation, whereas the



traditional use of the artificial viscosity is only in regions of compres­


sion. Furthermore, the present approach provides a more rational approach



to the development of this model. Since in any flow calculation one can­


not resolve detail smaller than one to two meshes, we believe that this



term should always be included in a calculation. Of course, in flows



with relatively small gradients, its effect will be small
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Chapter V



NUMERICAL RESULTS



5 1 Results of the Main Calculation



The purpose of the main calculation was to simulate a low Reynolds



number turbulent flow field on a 64 x 64 x 64 mesh which represents,



as accurately as possible, a realization of a true turbulent flow. The



computed flow can then be considered as experimental data which can be



used as input for the analysis of various schemes to model the effects



of turbulence. In this section we will show that the computed field is



in fact a good representation of real turbulence



The experiment on which our simulation is based was reported by



Comte-Bellot and Corrsin (1971). The physical experiment was the measure­


ment of the decay of grid-generated "isotropic" turbulence in a wind tun­


nel A time history of the decay is obtained by employing the Taylor



hypothesis This eliminates the mean flow field by assuming that the



flow variables at two points in the wind tunnel separated by a distance



in the direction of the mean velocity U are equivalent to the flow

o 

variables at two times separated by the time t = L/U of a flow with no



mean velocity at the same point in space.



The conditions chosen to be numerically simulated are given in Table



5.1. U° is the mean flow velocity, 10 m/sec, and M is the size of the



mesh which originally generated the turbulence, 2.54 cm. The initial con­


ditions for the numerical simulation were set up to coincide with the data



at U t/M = 240 The initial conditions were given the same total energy



and energy spectrum as the experimental data, and a zero divergence, but



were otherwise random The data are in the form of a one-dimensional



energy spectrum, E1 1 (k), from which we computed the three-dimensional



spectrum from the relationship (Batchelor (1953)).



E(k) - k13-2 L ± E (k) (5 1)2 2k Lk 2k 111 

44





Table 5 1 

Gross Properties of the Turbulent Flow 

U = 10 m/sec, M = 2.54 cm 
o 

Dissipation Kolmogorov Taylor Rx


2 Rate Micro-Scale Micro-Scale



S c "sec 3 (cm) (cm) 

240 6 75 145 .069 .845 38 1



385 5.03 48.5 .091 1 09 36.6
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where E(k) is the three-dimensional energy spectrum. The initial field
 


does not represent true turbulence since it contains none of the local



velocity correlations that exist in a physical field. It is these corre­


lations which give rise to the subgrid scale Reynolds stresses which we



hope to model. We also note that the skewness, which is an indication of



the presence of turbulence, is initially zero. The expectation is that



as the equations of motion are integrated in time, a representation of a



true turbulent flow will develop.
 


Given the fixed number of mesh points in each direction, N, the



physical size of the box of fluid must be determined. The box must be 

large enough that the velocity correlation at L/2 is negligible, and 

it must be small enough that the highest wavenumber k = N IL is largemax



enough to include essentially all of the energy dissipation spectrum. The



size of the box was chosen to be 20 cm x 20 cm x 20 cm. Fig. 5.1 gives



the experimental velocity correlation function R1 1 (rl,0,0) where



Pl(rl ,0,0) 
 (5.2)
Rll1 (rl,,0
) Pill(0,0,0)(



and



+ 
 
Pill(rl,0,0)= < u 1 (x1 ,x2 ,x3)U(x 1 rl1,x2 ,x 3 ) > 

We see that a 20 cm length is sufficient to meet the condition that the



correlation at L/2 be small.



Figure 5.2 shows the three-dimensional energy spectrum E(k) and



the dissipation spectrum 2vk2E(k) of the initial conditions. Since


-i



k = 0 cm , we do indeed capture most of the energy and dissipation.
max



In Fig. 5.3 we show the three-dimensional energy spectrum E(k), the



dissipation spectrum D(k), and the energy transfer spectrum T(k) of



the final numerical flow field D(k) is simply 2k2E(k). T(k) is



calculated from



Et = T(k) + D(k) (5.3)



E(k) was calculated using the numerical values of u and - (u*).
I a6 
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We now examine the results of the numerical simulation. We look



first at the energy as a function of time and its rate of change, the



dissipation rate We are solving the exact Navier-Stokes equations with



no model for turbulent energy dissipation. The only dissipation present

2 -i



a result of the physical viscosity v = 0.14 cm sec
in the equations is 
 

If we have chosen a sufficiently fine grid the energy decay of the numeri­


cal calculation will match the experimental data. As can be seen in Fig.



5.4 this is the case With At = 0 0073 seconds, 50 time steps equal



0 365 seconds, which is the elapsed time between U t/M = 240 and

o



U t/M - 385. The total energy in the numerical simulation at time step



50 is 3 2% low. The dissipation rate, which is a more sensitive indica­


tor, is 11 3% high. This is the result of too high a numerical transfer



of energy from low to high wavenumbers. A shift to high wavenumbers will



increase the dissipation, which is given by fvk2E(k)dk, more than the



total energy, which is given by fE(k)dk.



So far, we have seen that our box is large enough to contain a sam­


ple of fluid whose velocities are uncorrelated across the box and is small



enough to calculate essentially all of the real dissipation The only



question remaining is, "Has the flow field developed into a truly turbu­


lent field ?' The skewness of low Reynolds number wind tunnel turbulence



has been shown experimentally to be approximately -0.4 (Batchelor (1953)).



The skewness S is defined as (au3 
S 2 (5.4) 

~ > 

where < > indicates an ensemble average. The skewness of the numerical



flow field, with the average taken to be the average over all of the grid



points, is shown in Fig. 5 5. The skewness starts at zero, since the



initial flow field does not represent true turbulence. The skewness plot
 


indicates that after only 15 time steps we appear to have stabilized the



skewness. The slight dips in the skewness which occur every eight time
 


steps were mentioned in the discussion of the third-order time-differencing



scheme The third-order scheme has a weak instability which must be cor­


rected for occasionally. In this run the correction was alternately
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turned on for four time steps then off for four time steps throughout



the calculation. The periodic dips in the skewness coincide with the



turning off of the correction. It appears that after about 30 time steps



the correction was probably no longer needed.



The tailing up of the skewness near the end of the problem is prob­


ably due to the continuing accumulation of energy in the high wave num­


bers. Looking at the skewness, we decided that time step n = 40 would



probably be our best representaiton of true turbulence, and this time



step was chosen for the analysis to be described in the following section.



Another, much more convincing, argument that the flow is truly tur­


bulent will be given in Section 5.4.



5.2 Testing of SubgrTd Scale Modeling



Having completed the main calculation, we now have a realization of



a flow field which has the characteristics of physical turbulence The



data, which we treat as if it were from a physical experiment, is given



on a 64 x 64 x 64 mesh within a box which is 20 cm on a side. We now



imagine placing a coarse 8 x 8 x 8 mesh over the physical space occu­


pied by the original fine mesh, i.e., each side of the coarse mesh is



eight times a side of the original fine mesh The relation between the



fine mesh and the coarse mesh is illustrated in Fig. 5.6. Within each



cell of the coarse mesh we have the experimental value of the velocity ­


field u at 512 evenly spaced points. Now we need to know the value of



the filtered velocity fluid uI at each point in the fine mesh. Recall



that the filtered velocity field is a continuous function defined at all
 


points in space and is independent of the definition of the coarse mesh.



We use a simple box filter with sides of length 17A/8, where A is the



mesh spacing of the coarse grid. In order to get an average at a point,



we use the value at that point and an equal number of points on either



side. This means the number of points we sum over must be odd, hence



17A/8 instead of 2A. The value of the filtered velocity component 

uk(-,j,k), where i,j,k are the coordinates of the point on the fine 

grid, is given by 

i+8 J+8 k+8


u (i,3,k) = -- E ZE E u(ji',j',k') (5.5)



8
173 i'=i-8 j'=j- k'=k-8
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Fig. 5.6. Illustration of fine mesh inside coarse mesh
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This equation is equivalent to a box filter with sides of length 17A/8



where A is the mesh spacing of the coarse mesh. Calculations will also



be made using an averaging volume with sides of length 9A/8. Having



calculated u, we also have u! from its definition u = u = u'.


1 	 1 1 l 

For illustration purposes we have randomly chosen a line of 64 points in



the x1 direction and have plotted u1(x1 ) and u1 (xl) for these 64



points in Fig. 5 7.



The remaining quantities in which we are interested are



1

 FSu, 	 (5.6a)
u~~u­


u~~u'-j S F UF 	 (5.6b)


z 17 3 %i' ' Y'



uu'm 	 = 3 i, E u'u' (5.6c) 
m 17 3 jfi' m 

We now restrict our attention to the quantities u1 , u u1 , u u and
, 
 

u'u' 	 at the centers of the 512 cells defined by the coarse mesh. The


IJ


clam made for the turbulence models under investigation is that the vari­


ables uu, uu', and u'u' can be expressed as functionals of u We


i 	 I



will now demonstrate the extent to which this is true for the case of low



Reynolds number, isotropic, homogeneous turbulence of an incompressible



fluid.



5.3 The Energy Dissipation



The equation for the kinetic energy of the filtered velocity field



may be obtained by taking the scalar product of Eq. (4.3b) with uI We



obtain



ulua) ---	 U V2u + - (L +C ++ 	 P- + uu a 	Ulu I ax I i ax ~ I I ax ij ij tj 

(5.7) 

For our purposes the dissipation due to the real viscosity can be ignored



since we find that it represents less than five percent of the total dis­


sipation on the coarse grid. When Eq (5.2) is integrated over all space
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the contributions from the pressure gradient and the nonlinear advective



term vanish, leaving



1 (UlUldV' - u -- L11 dV' - ju l y- CljdV t 
Sj3 (5 8) 

f dV' (5.8)
V j 

Using our experimental values of L , Ci3, and T for each point in


the coarse mesh, we can calculate the dissipation rate due to each term.


512


=L 512 _ _ - - L (5.9a) 
n=l j 

1 512 _ -­ (5.9b)



1
512


S 1 -T (5.9c) 

The results are plotted in Fig, 5.8 for 6T at four time steps, using



the averaging volume of 9A/8 on a side. Some comments on Fig. 5.8 are



in order. First, we note that at time step n = 1, i.e., the initial



condition, the dissipation due to the subgrid scale Reynolds stresses



is zero. This is what we expect, since the initial conditions do not



represent true turbulence. As the flow develops and becomes more physi­


cal, the dissipation term from the subgrid scale Reynolds stress rises
 


rapidly before falling off as the energyof the flowdecreases. This is the



evidence referred to in Section 5.2 which indicates the flow has devel­


oped a truly turbulent nature. The finite differences used to obtain



Fig 5.8 were taken on the-coarse mesh to conserve computing time. It is



more accurate to take differences of the filtered quantities on the fine



mesh (recall that the filtered quantities are defined at all points in



space), and this was done at the final time step to obtain the dissipa­


tion from the cross and Leonard terms as well as the subgrid scale Rey­


nolds stress. At time step 41 the dissipation rate due to the subgrid


2 3 

scale Reynolds stresses found in this way is 5.32 cm /sec , which is



a bit less than that found by coarse mesh differencing, that from the
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cross term is 3.95 cm2/sec3 , and that from the Leonard term is 2 82


2 	 3 cm /sec . We recall that the models predicted that the dissipation



from 	 the cross and Leonard terms should be equal. Though not equal,



they are reasonably close.



The dissipation for the large (17A/8) filter case was also calcu­


lated at time step n = 41. The major difference from the previous case



is a decrease in the dissipation due to the cross and Leonard terms.



This is because increasing the size of the filter smooths the resultant



field, causing a decrease in skewness and hence a decrease in cross-term



dissipation.



5.4 	 Correlations Between the Models and the Numerical Experiment



We are now in the position of being able to make direct comparisons



between the models for subgrid-scale turbulence terms and their numerical



experimental values. We define the correlation coefficient C(M,X) be­


tween the values of the model M and the experiment X as



C(MX) >/< >2 (5.10) 
< M 2 >1/2 <X > 1/2 

where



512
"<MX> = 51--2E M(n)X(n) (5.11a) 

n--l 

> 5­< M 2 M2 (n) 	 (5 llb)


n­


>= 1 	 512 X2 	 (5.11c)

<X2> 5-n=l 

512 n1 (n



If M and X are totally unrelated, then C(M,X) = 0 If M is a con­

stant multiple of X, i.e., if the model is exact, C(M,X) = 1. 

There are three levels at which comparisons can be made, and these



correspond to how the terms appear in the equations For the moment we



restrict ourselves to discussing the subgrid-scale Reynolds stress 
 Tij



The most direct comparison is at the tensor level, i.e , between the
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experimental and modeled values of T However, the term which actu­

13



ally occurs in the momentum equation is an acceleration vector 8T ,/3x



We define the vector level of comparison to be that between the experimen­


tal and modeled values of T 3/axj . The scalar level of comparison re­


fers to the energy dissipation U (1 i3x ) produced at each cell in 

the coarse mesh by the experimental TI3 and the modeled TI 3. The pri­


mary purpose of the subgrid-scale model is to remove kinetic energy at



the correct portion of the flow, so the scalar level of comparison is



important, and we will find it to be considerably better than the other



two



5.5 Tensor-Level Comparisons



(a) The Leonard Term



The Leonard term is defined as



L = = u u - uu (5.12) 

and the model we use is



2
SA 
a 2-­
nl = - a 6 ; a = -V(Uu) (15.13)

ij i33kk1 24 i 

Fourth-order differencing has been used in evaluating all of the models



which we will be discussing. Fourth-order space differencing gives one



to three percent better correlations than second-order differencing. The 

differencing was done on the coarse mesh, because this is the mesh which



would be available in a real simulation. We note that we can do better



in this case, since we have u on the fine mesh as well as on the coarse



mesh and can get a better approximation of the actual derivatives. We



compared the results obtained by differencing on the fine mesh to those



obtained on the coarse mesh and found the differences to be minor (the



correlations for the Leonard, cross, and Reynolds terms in the case of



the small filter changed from 0.909, 0.790, and 0.277 to 0.934, 0.744, and



0.297, respectively).
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We find that the correlation between the model (5 13) and the ex­


periment (5.12) is 0.935 for the large (17A/8) filter and 0.909 for



the small (9A/8) filter. The ratios of the r.m.s. value of the model



to the r.m.s. value of the experiment is 1.60 for the large filter and



0.788 for the small filter; the reason why these values differ from



each other and from unity are not understood. Since the model for the



Leonard term involves the fewest approximations of the three terms we



are considering, we expect it to be the best, which it is. Also, since
 


the model is based on a Taylor series expansion of the filtered velocity



field, we expect the smoother velocity field produced by the larger fil­


ter to give better results, and it does. The correlations as functions



of i,j are detailed in Table 5.2. Only small differences are observed



throughout the table.



(b) The Cross Term



The cross term is defined as



C 1-kk = u.u' + u'u (5.14)
ij1 3'ki ' ij ij 1ji
 

and the model we use is



A2



S I 
 - a 2- 2-

M =a -a 6 a = - _ -(U Vu + uV u) (5 15)

ij ij 3 kk ij ij j4 j iI 

In this case we find that the correlation is better for the smaller fil­


ter than for the larger filter. This is probably because the experimen­


tal values are smaller for the large filter than for the small filter,



due to the smoother flow field. The correlations of 0.685 and 0.790 are



less than for the Leonard term, but the r.m.s. ratios of model to experi­


ment are better, i.e., 1.23 and 0.96. Details are in Table 5.3.



(c) The Subgrid-Scale Reynolds Stress



The definition of the sdbgrid-scale Reynolds stress is



1 kk6=3 n = u'u' (5.16)
T1 T1ij 3 ;kkij ij ij
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Table 5.2 

Correlation Between Exact and Modeled Leonard Terms



17AA 9A



AA 8 A 8 

1 2 3 J 1 2 3 

1 .92 .94 .94 1 90 .91 .93



2 .94 .93 .93 2 91 .89 .92



3 
 .94 .93 .94 3 .93 .92 .90



Average = .935 Average = .909 

<M2 1/2 <M2> 1/2 

2 <L 2 >1/ 2 788 
< L2 > 1/ 1.60 



Table 5.3



Correlation Between Exact and Modeled Cross Term



1 1 2 3 1 2 3 

1 .69 .67 .72 1 .78 76 82



2 67 .64 .70 2 .76 78 80



3 72 .70 .65 3 82 .80 .78



Average = .685 Average = .790 

<M 2 > 1 /2 <M2> 1/2 

< C2> 1/2 1.23< C2> 1/2 = .96 



The four models we use are



M1 3  = 1 3  3kal = K + a (5.17)Q-) 


where K is given by

 I2
1/
 
2 au \/au au ~ /

model 1 K (CA) IF2/ 1x + I- + x Jj (5.18a)
mdl1 K= a L2\x~ axi) \9x axj 

model 2 K = (CA) 2 (to IW1/2 (5.18b) 

1 18/) (5 

model 3 K = (CAa ) (uu/ (518c) 

model 4 K= C (5.18d)



k(
In Eq. (5.18b), w represents the vorticity w = E: u /x ) All 

four models were found to be equally valid with the best correlations found 

to be 0.363 for the large filter and 0.303 for the small filter. In model 

3 the value for u' ' is taken from the experimental data. Although these 
k



correlations are considerably below those for the cross term and the



Leonard term, they are clearly significant. The constants in the models



were obtained by matching the r.m.s. value of the exact quantity with that



of the model prediction. Detailed comparisons for the Smagorinsky model



are shown in Table 5 4, and a summary for all models is given in Table 5 5



5.6 Vector-Level Comparison



(a) The Leonard and Cross Terms



In the previous section we compared the models directly with the cor­


responding stress tensors. Here we make the comparison with the terms



which actually enter the momentum equations, i.e.,



a L
 

aija
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Table 5.4
 


Correlation of Subgrid-Scale Reynolds Stresses
 


with Smagorinsky Model



11 2 3 3 1 2 3 

1 .20 51 .38 1 18 .41 .32



2 .51 .23 .39 2 .41 21 .28



3 .38 39 .26 3 .32 .28 .26



Average = .346 Average = 277 

C = .269 C = .247 



Table 5 5



Summary of Correlations between Exact Subgrid Scale



Reynolds Stresses and Models 

Term Model 
17 
-8A 

9 
-A 

17 
i­

9 A 
-

R. Smagorinsky (5.18a) .346 .277 270 .247 

Vorticity (5.18b) .344 .260 .294 .275 

T.K.E. (5.18c) .363 .303 .196 .175 

aR 

1-

Eddy viscosity (5.18d' .352 

Smagorinsky .425 

.295 

.346 .240 .264 

Vorticity .408 .327 .220 .247 

T.K.E. .434 .362 .138 .155 

Eddy viscosity .426 .356 

U 

3R 

-
iax 

Smagorinsky 

Vorticity 

.710 

700 

.580 

.582 

.186 

.202 

.171 

.191 

T.K.E. .723 .606 .085 .095 

Eddy viscosity 716 .605 
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The results for the large filter show that the correlations range from



0.935 to 0.947 for the Leonard term and from 0.685 to 0.689 for the cross



term. For all practical purposes these are the same as for the direct



comparison.



(b) The Subgrid-Scale Reynolds Stress



In contrast to the case for the Leonard and cross terms, we find a



significant increase in the correlations between @T 13/x and its ex­


perimental value over the direct correlation between the stress tensors.
 


The results shown in Table 5.5 show that all models are again equally



good, but the correlation has typically increased from 0.35 to 0.42 for



the large filter. Comparable increases are seen in the small filter re­


sults. The reason for this increase is not understood. We note also



that the model constants decrease, with one exception; again the reason



is not understood.



5.7 Scalar-Level Comparison



(a) The Leonard and Cross Terms



Here we make our comparisons based on the terms which enter the 

energy equation, i.e., u1 (3 i13/x3) and u (C 13/ x ). Summaries 

for the three levels of comparison are given in Table 5 We see a small 

decrease in the correlations from the vector to the scalar level for both 

the Leonard and the cross terms. The relatively large disagreement in the 

magnitude of the dissipation due to the Leonard term and model are not 

considered serious, since the dissipation due to the Leonard term is 

relatively small 

(b) The Subgrid-Scale Reynolds Stress



We see a very sharp increase in the correlations for the subgrid­


scale Reynolds stress at the scalar level. For example, at the vector



level the Smagorinsky model with Aa = 17A/8 had a correlation of 0.425,



but at the scalar level it is 0.710. Part of the increase may be due to



the fact that both the experimental and modeled terms have mean values



which are significantly positive. Even so, when the mean values of both
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are subtracted out, the correlation between the fluctuating components



of the exact and model values is still 0.535. We also note a further



decrease in the model constant.



5.8 The Subgrid-Scale Eddy Coefficient



The models (5.18) contain constants which are usually called the



subgrid-scale eddy coefficient. The value of the constant has no effect



on the correlation between model and experiment As mentioned above, we



can, however, adjust the constant to match the r m.s. values of the model



to experiment. The values of the constants found in this way are given



in Table 5.5 and were mentioned earlier. The constants obtained decrease
 


as we pass from the tensor level of comparison to the scalar level.



Since the primary function of these models is to represent the transfer



of energy from large to small scales, which acts like a dissipation in



the large scales, we recommend that the values given for the scalar level
 


of comparison be used. For the Smagorinsky model, these values are in



excellent agreement with theoretical and experimental values which range



from around 0.13 to 0 21 (Deardorff (1971)). We note that when the Sma­

2
gorinsky model is formulated using the term (CAa), the value of C is



nearly independent of Aa; this would not be the case if the grid spac­


ing A were used. It is encouraging that we have obtained about the

g



same value for C as is obtained by theoretical arguments assuming an



inertial sub-range and by numerical experiments at high Reynolds numbers,



even though we are at low Reynolds number and have no discernible inertial
 


range This leads us to speculate that C is relatively independent of



the spectrum of turbulence, at least in the isotropic case The values we



obtain are within ten percent of those found by Kwak et al. (1975) and
 


Shaanan et al. (1975) by matching model calculations to experimental



energy decay. Since a change in numerical method can result in a ten



-percent change in the constant, we can say that we have indeed predicted



the model constant without reference to experiment
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5.9 Comments on the Correlations



A striking result that can be reached from looking at Table 5.5 is 

that all four of the proposed models are essentially equally valid. 

Since all of the models use a positive scalar times (3u/x + au /xl), 

we checked to see how often the sign if i concided with the sign of
ij


(a;I ax + u la/@x and found it to be only 68%. We also ran a calcula­

tion with K being arbitrarily adjusted at each point in space so as to 

give the best possible correlation. At the tensor level of comparison, 

we achieved a correlation of 0.51, versus numbers around 0.35 for the 

models considered above. We conclude that no model of the form (5.17) can 

do significantly better than Smagorinsky's. This includes models which 

attempt to calculate the transport of turbulent kinetic energy and models 

which attempt to calculate both the turbulent kinetic energy and a length 

scale or the dissipation (so-called two-equation models). This is par­

tially verified by the results of model (5.18c), which show that even if 

one could calculate exactly the turbulent kinetic energy in each cell 

this would not give a significant improvement. 

We also include in Table 5.5, at the vector level, a modified Smago­

rinsky model where, instead of 

0i ii 
axKx 

we used



KV2u (5 19)



The correlation decreased only slightly. The Smagorinsky model has the



disadvantage that its finite-difference form does not detect a wave with



k = 1/A, i.e , a sawtooth, since its first derivative is always calcu­


lated as zero. This can result in the failure to dissipate sufficient



energy at high wave numbers. The modified Smagorinsky model does detect



and dissipate these waves by using the finite-difference approximation


2



to V . Model (5.19) has the disadvantage that one cannot rigorously 

prove that it is dissipative 
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5.10 	 Other Models, Which Were Discarded



All of the models considered above are reasonably good We list



here some of the more reasonable-looking models which were tried but dis­


carded. The following three tensor eddy viscosrty models all had corre­


lations of less than 0.02 with the numerical experiment.



T CA2 D D 	 (5.20a)
i a ikkj 

T2 = CA' (RIkDk +RkD (5.20b) 

Ti7 = CA 21 (D Dkk +R k ) (5.20c) 

where D is the strain rate tensor, 

iGJ 

ij 2 ax ax, 

and R is the rotation tensor,
JJ



The next three models were proposed because of their similarity to the



Leonard term, and all had correlations with T of less than 0.02.
 

iJ 

T u u 	 (5 21a)iJ 3xk Txk I j 

a aU (5.21) 
3
ij x ax kuk

i J 

1iw-w- (u u +r-r (u 	 (5 21c)ij 2 1 axk k XaxO xk i 
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Chapter VI



CONCLUSIONS AND RECOMMENDATIONS



Most of the following conclusions are strictly valid only in the
 


case of low Reynolds number homogeneous isotropic turbulence. For some



of them, the range of validity extends beyond the range for which it has



been proven; for others the validity of such extensions is unclear.



Our first conclusions and recommendations are concerned with the



simulation itself.



1. With the present computer capacity it is possible to simulate



homogeneous isotropic turbulence accurately in three dimensions. The



limitation to a 64 x 64 x 64 grid restricts the Reynolds number based
 


on Taylor microscale to Rx < 40.



2. The use of the third-order time method that we have developed



allows a considerably greater time step to be used with very little sacri­


fice in computational time or accuracy. We recommend the use of third­


or fourth-order methods in future simulations, and some work should be



done to find the optimum such method.



3 The use of staggered periodic boundary conditions allows a con­


siderable increase in computational efficiency at no cost whatsoever.



4. The results of our simulation agree with the results of the cor­


responding experiment in all significant statistical quantities, and we



are confident that they may be used for model testing.



5. With larger computers that will be available in a short time, it



will be possible to use 256 x 256 x 256 grids and increase the Reynolds



numbers considered by a factor of four. We believe that these computations



are important and should be done



The next set of conclusions and recommendations is concerned with the



models used to represent the subgrid scale turbulence.



6. The Leonard term is indeed of considerable importance in the pre­

diction of turbulent flows and should be included in any simulation. The 

approximation to (u U - uIu) suggested by Leonard is fairly accurate, 

although some adjustment of the constant may be desirable. An alterna­

tive is direct computation of the terms. 
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7. The cross term, (u u' + u'u ), which has been neglected by 

many previous authors, is also important, although less so than the 

Leonard term. We have suggested a model of this term which appears to 

do 	 an adequate job of approximating it.



8 
 Eddy viscosity models do only a fair job of matching the actual



subgrid-scale Reynolds stresses, but they do a better job in matching



the acceleration produced by the stresses and they are rather good at



predicting the dissipation or energy transfer to the small scales.



9. All models of the eddy-viscosity class that we tested seem to be



approximately equally good, and we are unable to choose among them on the
 


basis of this study. The constant eddy-viscosity model is essentially



what has been used by Orszag and co-workers, and our results partially



explain their success. This point is probably closely related to the



Reynolds-number independence of the large eddies.



10. Further improvements in subgrid-scale modeling are not likely



to result from attempts to find improved formulas for the eddy viscosity.



We have shown that the best any eddy-viscosity model could do is a rela­


tively small improvement on the Smagorinsky model. Thus, turbulent ki­


netic energy and two-equation models which have been popular methods for



time-average modeling are not promising approaches to subgrid-scale



modeling.



11. We were unable to find improved models for the subgrid-scale



Reynolds stresses, although a number of possibilities were tried. Further



work in this direction could be fruitful.



Other recommendations that we would like to make are:



13. The effects of strain and shear on turbulence are very impor­


tant, as they occur in essentially every flow of technological interest.



The approach of this report ought to be extended to include those cases,



14. The subgrid-scale Reynolds stresses play a role in large-eddy



simulations similar to that which the usual Reynolds stresses play in



tame- or ensemble-average calculations. We therefore suspect that analo­


gous models ought to be equally valid in the two cases. Further work is



needed to substantiate this suspicion, but, should it prove to be the case,



our work would have important consequences for turbulence modeling in gen­


eral.
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15. One can derive exact equations for the subgrid scale Reynolds



stresses. Using the approach of the present report, we can evaluate all



of the terms in this equation and thus determine their importance and



examine methods of modeling them.



16. The approach used in this report can be applied directly to the



testing of tme- and ensemble-average models. If we can compute flows in



which the modeled effects are present, we could test the models in a man­


ner similar to that used in the present work.
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Appendix A



Higher-Order Time Methods



In Chapter 2 we developed a third-order time-advancement procedure.



This method is a predictor-corrector method which requires only one eval­


uation of the time derivative per tme step. In this appendix we look



at two families of related methods in a more general way. Since the equa­


tions we deal with are parabolic with respect to the time variable, it



is sufficient for initial study to consider only the ordinary differen­


tial equation



= (A.1)



where the dot denotes time differentiation and a may be complex.



The two most important questions relative to a numerical method are



accuracy and stability. Accuracy is usually defined by assuming that if



u(O) were known exactly then the computed value of u(A), which we call



u(A), is related to the exact value by



u(A) u(A) + const. An+l u(n+l) (A.2)



where u (n+l) is the (n+l)st derivative of u. A method with this


th



property is called n order. Loosely defined, stability means that



the computation does not blow up. One common definition is that when



the method it applied to Eq. (A.1) with a having negative real part,
 


it does not produce a growing solution. For most methods, stability de­


pends on the size of the step chosen, i.e., it is conditionally stable.



Implicit methods may be unconditionally stable, but they are difficult



to apply to nonlinear problems.
 


An approach to these questions is to look at the solutions of the


at



difference equations. Although Eq. (A.1) has only one solution e ,



the difference equations may have multiple solutions. One of these ap­


proximates the solution of the differential equation with the desired
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accuracy, the others are called parasitic solutions. All roots must



have magnitude < 1 for stability.



For our purposes we want a method with the following properties



1. 	 High accuracy -- this allows a large time step with accep-table error­


2. 	 Stability -- the method must be stable for time steps as big as nec­

essary for the accuracy requirement. 

3. 	 Few function evaluations -- in partial differential equation solving,



the "functions" are partial derivatives and are costly to evaluate.



4. 	 Minimum number of different values of variables required -- in par­


tial differential equation solving, the "variables" are large arrays



which require considerable memory See Chapter 2 on this point.



The popular Runge-Kutta method has the first two properties but not the



last two. Essentially what we will do is accept poorer (but sufficient)



stability in exchange for properties 3 and 4.



Two 	 Evaluation Methods



The proposed methods are two-step (two previous values required)
 


predictor-corrector type methods. The most general such method is



u, = alun + a2Aun + a3Un-1 + a4A;n-1 '


(A.3) 

Un+l = 1un + 2Aun + 83Un_1 + a4 Aun 1 + a5u. + S6Au* 

These can be combined to give



2 	 2 
un+1 aoun + a1Aun + a2Aun+ b0un l + b1 AUn + b2A un-1



(A.4)



where



a0 S31 + ai 5 	 b0 = 03 + 305 

a1 = g2 + a2 5 +a 1 6 b1 = 4 + 5% 4 + a6ca3 (A.5)



a2 = 2a6 	 b2 a06 

Thus, although there are ten constants (a ,B1), only six combinations



actually matter, four constants can be chosen arbitrarily to make the
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method as simple as possible. By choosing the ai, bI properly, it is



possible to obtain a fifth-order method, the method so obtained is highly



unstable. So we will give up one order of accuracy to obtain stability.



Applying the method (A.3) to Eq. (A.1) and looking for solutions of the
 

n 

type un = p , we find that p must be a root of the quadratic equation. 

P - (a2(aA)2 + a1 (aA) + a0)P - (b2(A)2 + bl(aA) + b0 ) = 0 (A.6)



For the method to be stable at all, i.e., for both roots of this equation 

to be smaller than unity as A + 0, we must have 

1b0! < 1 

For minimal accuracy, i.e., that one root approach unity as A + 0, we 

must have 

= 1-ba 0 0 

To obtain higher-order accuracy, we match the coefficients of the Taylor 
czA 

series of one of the roots to that of e and find: 

Ist order - - = - 1a 1 + b 0 bI 
 

2nd order - 2a2 = 2a1 + h - 2b 2 3



3rd order 6a2 + 3a1 - = 7b 0 
 

4th order 12a2 + 4a -b = 15 

Solving, we have 

- 1 17 - b
b0 0


a- 2 = 12a 2 

b0 + 3 b 0 + 7 

S 2 b 2 = 12 

By choosing values of b0 within the allowed range, we can generate a 

family of methods. It turns out that b 0 = 1 has the poorest stability 

properties, while b 0 = -1 has the least accuracy 
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The stability bounds for selected values of b0 are given in Table



A.l They were computed in the manner described in Chapter 2. We see 

that maximum stability is obtained at b 0 = .25, and the allowable time 

step is considerably below that of the fourth-order Runge Kutta method, 

for which max = 3 8. However, in our calculations the effective 

value of IQAI is approximately 0.2-0.3 for accuracy reasons, so this 

stability limit causes no problem. 

Table A.l
 


Stability Bounds



b0 
 JaA max



-1. 0



0. 51



0.2 .60



0.3 .60



0.5 .55



1.0 0.



We also solved Eq (A.l) using this method with b° 0, with two



different sets of constants. Within roundoff error, both methods pro­


duced identical results. It should be noted that, to minmize roundoff



errors, one should choose sets of (a11 ) with the smallest values pos­


sible.



One-Evaluation Methods



The methods described above require two evaluations of derivatives



per step; i.e., and un both need to be computed. To avoid this



we would need either 6 0 or a2 = a4 = B2 = B4 = 0, either of which



is incompatible with Eqs. (A.5). In order to obtain a single-evaluation



method, we therefore use



Salun + A 
 n +3nl 
 4+
4*An-l


(A 7) 

Un+1 Slu n + B2AU n + 83 un_ 1 + B4AU*n-1 + a5u*n+I + 86AU n+l
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Which requires the evaluation of u, only. We now assume solutions of



the form



= pn
(:rU 
U
n



and find that p satisfies a quartic equation



S- (l + 2A) P3 ( 3 + 4 (aA))P + n5 (aA)p + n6(VaA)= 0


where



n 
 += ' 4 - a2 I + a4 + aiB2 + a3a6 

f2 = a 2 + aIB6 '4 = 2a3 + cAc4 
 - - a3 a2 , (A.9) 

= + 38 , 4'3 - 34
3 3 5 6 
 

So, again, fifth-order is the maximum possible. The method so obtained



is again unstable, so we must settle for fourth-order. We now find that
 


for stability



0< <2,



and accuracy requires that the other parameters be related to n, by.



8 3 4 5


2 _-3 8 ' T4, -3 24 l'



1 1


n 3 i , 66 =1 4



5 19


n4 3 24 l'



The stability limits for these methods is shown in Table A.2. Maximum



stability is obtained with n1 2, and the allowable time step is only



slightly smaller than that for the two-evaluation method



In testing these methods, however, we found that these methods do



not always produce the accuracy that one might expect. In particular, if



an arbitrary version of this method is used rather poor results are ob­


tained unless the method is started carefully. The problem can be cured
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Table A.2



Stability Limits



I 1Almax 

0. 0. 

1. 0.30



1.5 0.42



2.0 0.53 

by requiring that the predictor step be accurate. The predictor can be



made third-order accurate, but only if n = 0, which results in insta­

bility. We therefore recommend that the method be used with second-order



predictors. For these the method is uniquely defined by the predictor



step. Two possibilities are (1) using the leap-frog method as a predic­


tor (nI1 = 16/9).



u*n+I un-1 + 2Aun+I 

(A.10)

= (6 + -L (46*n -+1* 

7U*n+l) - _Un+ 13U*n+l)n+l 9=n ­

and (2) using Adams Bashforth as the predictor (q1 = 20/11): 

U = + A (3u - Unl)n 
 

(A.ll)


Un+l = 1 9U + 20unl) + A% ( - 86U +16u*n-I + 16u*+l) 

Good results were obtained with both of these methods. However, we note



that both methods contain some large coefficients in the corrector steps



which is undesirable from the point of view of roundoff error propagation,



and we have used the safer third-order method described in Chapter 2 in



our calculation.,
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Appendix B



PROGRAMS AND FLOW CHART



Flow Chart of Main Program



---l Recalculate (u* t() 
Yes 

ISET =0I



n
(u

new 
 

Calculate 
 

Read (u nt' unlfrom disk.



n+lt



n - 1 .Write (u ) to disk over u 

(2)

NoTime step less than 491



Calculate contributin to


from non-zero diver-


n n-i


gences of u and u
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Location in


Listing 

Main. 1 1
1001



Main: 1543-2407





l
Read (u* n+ from disk,

**n+1 

calculate (u ) without 

the pressure term, and 
 

write to disk file W8.



Read from W8, calculate R-S
FMain. 
 
of Poisson equation for pressure, 
 
forward Fourier ransform in x,y



directions, write V P(kl,k2,z) to disk.



. I



Read V2P(kl,k2,z) from disk



forward transform in z direction, 
 

divide by k 2, backward-

transform in z direction, 
 
write P(k1 ,k2,z) to disk.



I * n+1 
Read (u ) without pres­

tMan. 
sure term from disk file W8.



Read P(kl,k 2,z) from disk,



backward-transform to 
 
* n+l 

P(x,y,z), calculate (u ) 

and write to disk over (u )n+l.
 


I

n+l



Calculate u to third


n *n-i 
 

order from u , (u t 
 
* n 

(u ) and (u )tl. Write 
-result to disk over (u*



IYes



Save data.[ 
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an aI25


Main: 2611-2555


and subroutine



fVDTMP



-4301
3533-40


and subroutines



Main: 4303-5053


and subroutine



DBLSQ



5


5251-6137 

Main: 5251-6137


and subroutines


FFTBXY,DVDT



Main: 6141-10374


and subroutine


ndtb t



ADVNC



Main: 10376-11547





(1) 	 For stability reasons we sometimes recalculate (u ) using the 
n 

corrected third-order u .



(2) 	 For the first three time steps only, the divergences of the previous



time steps are not necessarily zero.



System Subroutines Used in Main and Start



1. 	 MEMREQ



Call MEMREQ(NWORDS) request NWORDS of LCM space for this program.



2. 	 FORQTS



Call FORQTS(W1,RQl) reserves space 	 at RQl for references to disk



file 	 Wl.



3 	 CREATE



Call CREATE(Wl,,,,,,,,NSECT) creates the disk file Wi with length



NSECT sectors where a sector is 512 words.


4. 	 IDONE



The statement I=IDONE(W2) sets I = 0 if there is outstanding I/0



to be completed to or from file Wl, otherwise I = 1.



5. 	 IRANR



The statement I=IRANR(RQl,A(N),NWORDS,NSECT,Wl) causes NWORDS to



be transferred from disk file W2 starting with sector NSECT (Sector



number 0 is the start of the file; there are 512 words per sector),



to LCM starting at address A(N).



6. 	 IRANW



I=IRANW is analogous write statement to IRANR.



7. 	 FFT2



Call FFT2(A(Il),B(Z2),N, INC) performs a fast-Fourier transform of



length N on the real data starting at location A(Il) and the



imaginary data starting at location B(12) The data are incremen­


ted by INC, -INC implies a forward transform and +INC implies a



backward transform.



The 	 Main Program



The main program assumes that disk files containing the first two 
n-i *n-l n *n

time steps, i.e., u (u 	 u , and (u )t, exist 

83 



9

RUN-LCMS	 74/11/14 16.32.37 VSCLARKiHA PAGL NO. 1



PROGRAM GAP(OUT,FSETSFSETA.FSET7FSET8OFSET9)


2 	 IMPLICIT INTEGER (Z)


2 LCM/eBl/DUMI(98304)


2 LCM/B62/DUH2(98304)


2 LCM/883/DUM3(65536)



C MAX LCH BLOCKmI26976


2 UIMENSION VLG(4096t3,S8)DLG(6464,4),PLG(

4 096,2,4),PZ1(2048224)9

4	 4 4 4



2pZ2(?48,2,2 ) .PZ3(2fl482,161 ,PHAT( 296I 6)tPC[64,64,6),WLG( 096


3
4 0 3	 4
 

33,8) OULG( 96, ,2), 	 PHATA( 096,22Z).DVLG(4jbq, .8)


6


2 DIMENSION UTNM1(24St6),UTN(24S? ).UTNP1(2S76),UN(245761.


2VTNMI(8192) ,VTN(819),VTNPI(8192 )VNfR192)



a DIMENSION WTNM1(24576) ,WTN(C4S76hWTNPI(24576),WN(24576)

64
 


2 	 DIMENSION USM(64,20,5),VSm(64,ZO.S)tWSM( ,2OS). p(64,6

6
 

,4,2),pZ(256,64,2),PA(4.962 ),PR(64,64), UU(6 4 ,16). DV(64.1 ),



30W(64.IR),U(64,2OG,),V(642 ,S),W(64,2O.5),PD(64,2 ,5)


2 DIMENSION RQa(20).RQ2(2O),RO3(2O),RQ4(20).RQS(2O),RO6(2u),RQ7(2o)



2.RQR(20),SPR(64),SPI(64)

2DIMENSION S(25S).C(25S)9S64(Z55),C64(255)


z DIMENSION ITAPE(2),IOSTAPE(S),IO6TAPE(SICIlTAPE(5)tI2TAPE(5)*



I3TAPE(5),I4TAPE(5).ISTAPE(S),I6TAPE(5)tI7TAPE(5),I8TAPE(5)0


3107TAPE(S),IO8TAPE(!)



r DISK FILES


C W1 CONTAINS 64 PLANES OF VV,W. EACH PLANE CONSISTS OF 24 SECTIONS=12288


C WORDS. IE-1536 SECTIONS. PLANE 63 STARTS AT NSECT=O, PLANE I STARTS A!



C 2 4*(I.1). IF((244i.1).6T.1512)NSECTr24$(I*l)-1536


C W2 IS IDENTICAL TO wl


C Dl CONSSITS OF 64 PLANES OF DIV, EACH PLANE CONTAINS 8 SECTIONS=40

9 6 WORDS


C IE 512 SECTIONS. PLANE 1 STARTS AT NSECT=0o PLANE I STARTS AT


C NSECTSO(I-1)


C PUPR CONTAINL 64 PLANES OF UPPER HALF OF J. EACH PLANES CONSISTS OF 8



PLANE I STARTS AT NSECT
C SECTIONS=4096 WORDS. -PLANE 63 STARTS AT NSECTVn1 
 
C r8*(I-l), IF(I+1)*.GT.504 )NSECT=NSECT-512


C PLWR IS SAME AS PUPR



2 	 COMMON DUMSM(32768)


LQUIVALENCE(VLG( ),DUMI(!) (DVLG(1),DUMZ(1)),(PLG(1),DUM3(1)),


'?DLG(1h)DU(3769)) (WLG(l)pDUM2(1))



2 LQUIVALLNCE (PZI(1),JUUMI()).(PZ2(1}hUMZ(I)),(PZ3(1)DUM3')) 2


2 EQUIVALENCE (DULG(1)CDUMT(73729)),(PHAT(1)IDUM(1)),(PHATA(X)'DUM



2(32769)),(PC(I),DUM2(4915))


2 EQUIVALENCE(UTNMI1I).DUM1(l)). (UTN(1)hDUMI(24S77)).(UTNPI(1).



2UMI(491S53);(UN(I)DUM1(;3729)),(VN(1)OUMSM(l))l(VTNMIfl()DUMSM(

34097))f (VTN(1),DUMSM(8193)),(VTNP1(I)DUMSM(ZS89))



2 EQUIVALENCE(WTNM1(I)OUM(1)). (WTN(I).oUM2(ZS77)),(WTNPL(I)t

2


2DUM2(49153f),IWN(I)DUM(737 9))


2 EQUIVALENCE - (DUMSM(1)OSPI(l)) (P(U


1 1 0
 1 (

2 ),DUMSM(I )),(PZ(1I-,1 )DUMSMd()U.(PA( . ),DUMSM(4 97f

)
 

3PR(1,i),DUMSM(1)),(USM(l)hDUMSM(4097 ))h(VSM(l).DUMSM(lOqf)),

1


4(WSM(l) ,DUMSm( 6897)),( OUI1)DUMSM( 1)),( DV(II)IUMSM


5(1flO)),( DW(1.l)1DUMSM( 2049)).(U(I.I,I),OUMSM( 3073f)lCV(Ipll)


6.DUMSM(9473 )),(4(II),DUMSM(15873 *)).(PD(#IlI),DUMSM(22273))



DATA RQIi~8:/:R02/8 :/.RO3/ 33:/.RO4/2DO./.R5/2O*O./
DATA R 61/ 
 u / koT/98 **,/ R 
 / W .,/


4


DATA W1,W2,DIPUPR.PLWR/ELWI0,ZLWE,2LD1.4LPUPR9 LPLWR/

3	 4 2


6ATA W ,W4,WB/2L43,2LW , LWB/


DATA ITAPE/I,4LTAPEt#IOSTAPE/4,3*O.8LXXO14477/,IO6TAPE/4,300,
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28LXX014883/,I1TAPE/4.3*0O8LXXOOS112/,I2TAPE/4,3*0SLXX005769/



OATA I3TAPE/4,3.J,8LXX005 663/,I4TAPE/4.3*0,8LXX00532?/I5!APE/4,


2J40,BLXXOO7039/*I6TAPE/4t3O,8LXXOOO9l/tI7TAPE/5*0/


3,ITAPE/5*O/


UATA IO7TAPL/5*U/,I4OTAPE/5*0/



2 CALL MEMREQ(2621f4.1)


4 CALL FORQTS(WlRQll


6 eALL FORQT$(,2,RQ2)



10 CALL FOROTS(W3,R3)


12 CALL FORQTS(W4,R2A)


14 CALL FOROTS(W8,R28)


16 CALL FORQTS(oIRQ5)


20 CALL FORQTS(PUPR.RQb)


22 CALL FOROTS(PLWRRQ7)


24 00 3 1-1,8


31 3 OUMI(I)=O.


34 CALL CREATECW1 ,U.HT,9O909O9090,1536)


46 I-IRANW(ROIDUMI(1).1.1S30fW1)


61 CALL CREATE(W2 .UtRT,,OO O,0,1536)


73 L=IRANW(RQ2.oUMl(2),1,153' W2)



106 CALL CREATE(W3 ,URT9O9.00,,O 1536)


3


120 YCIRANW(RQ ,DUMI(3) ,1I534*W3)


133 GALL CREATE(W4 ,URT,0,O OOOOO1536)


145 IfIRANV(Ro4,OUMI(4),1,1b3?,W4) 5
 
160 CALL CREATE(W8 ,UkTOOO,0O,,O,1 36)


172 I=IRANW(RQ8,DUMl(8)o1l535,W8)



1
 
205 CALL CREATE(D1 *URTtOO,0,OPO,0,5 2



)

217 l=IRANW(RQSOUM1(S1).Ijli5fD


232 CALL CREATE(PUPR.URT,0,,OOO,512)


6


244 I=IRANW(RO ,DUmI(6),S511,PUPR)


257 GALL CREATE(PLWR.U,RTOO O9OZO,512)


1 5 1 1

271 IXIRANW(RQTOUMl(7)h .PLWR)


304 912 tSIOONE(W1) ?D0N tv,)*IDONE(W3)*IoONE(W4*IOONE(WS) IDONE(Di)



P*IDONE(PUPR) IDONE(PLWR) 
332 IF(I.NE.8)GO TO 912 
334 CALL OPEN(SLFSETS,0.23400 8) 
337 Do 920 Role8 
341 NSECT=(K-1);192


343 M=MOO(K,

2 )


347 0 9I J=1,3


351 JK=(J-1)*3a768+1


354 AEAD(b)(DUMSM(I),I-1,32768)


361 1F(M.EQO)G0 TO 909



362 SMALC OUT(DUMSM(1);OUM1(JK),32768)


371 60 TO 910



9
371 j9 SMALL OUT(OUMSN(1)HOUM2(JK),32T68)


400 910 CONTINUE


402 911 I=IDONE(WI)


404 IF(I.NE.1)GO TO 911


406 IF(M.EQ.O)GO TO 919


407 I=IRANW(RIlOUM(1h98304NSECTW1)


422 60 TO 9$O



422 9 9 I=IRANW(RQ1,DUM2(l 198304,NSECTW)


436 9 0 CONTINUE


440 IFIRST.o



F-,85wDuciBITJTY3 
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441 
 
443 
 
444 
 
446 
 
452 
 
45A 
 
457 
 
464 
 
465 
 
474 
 
474 
 
503 
 
505 
 
512 
 
514 
 
515 
 
530 
 
530 
 
544 
 
546 
 
550 
 
553 
 
555 
 
557 
 
563 
 
565 
 
570 
 
575 
 
576 
 
605 
 
605 
 
614 
 
616 
 
623 
 
625 
 
626 
 
641 
 
641 
 
655 
 
657 
 
661 
 
663 
 
665 
 
671 
 
673 
 
676 
 
703 
 
704 
 
713 
 
713 
 
722 
 
724 
 
731 
 
733 
 
734 
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IF(IFIRST.EQ.1)G0 TO 941


DO 940 K.lt8



0

NSECT=(K-l') 192


M=MOLf(K,2)


o0 93. Jrlt3


JKz(J-1)*32768,1



2

READ(6I (DUMSM(I).IS1.3 768)


IF(M.EQ.O)GO TO 929


SHALL OUT(CUMSM(I) DUMI(JK) 32768)


60 TO 930



929 SMALL OUT(OUMSM(I),DUM2(JK)f32768)


930 CONTINUE


931 	 I=IOONE(W2)+IDONE(Wi)



IF(I.NE.2)GO TO 931


IF(MEQ.O)GO TO 939


I=IRANW(RQZDUM1(1).98304,NSECTW2)


G TO 940



939 ICTRANW(RQ2,DUM2(1),98304,NSECTW2)


940 CONTINUE


941 	CALL AFSREL(SLFSETS)



CALL OPEN(SLFSETS,0,234OOOB)


00 960 K-1,8


NSECT-{K-I) 192


M=MOU(K2)


U0 96 Jsi,3


3K,(J-1)*32768+1


AEAO(b)(DUMSM(I).ISL.327681

IF(M.EQO.)GO TO 949


SMALL OUT(OUMSM(I),DUMI(JK).32768)


60 TO 950



949 SMALL OUT(OUMSM()OUM2(JK).32768)


951 CONTINUE


951 IZIDONE(W3)IDONE(W2)



IF(INE.2)GO TO 951


F(M.EQ.O)60 TO 959


I=IRANW(RQ3sDUMI(l)s98304,NSECTW3)


Go TO 9 0
 


959 I=IRANWCRQ3,DUM2(1),98304.NSECT.W3)


969 CONTINUE



IF(IFIRST.EQ.1)GO TO 981


0 980 K=18


NSECT-(K-1 )*1 92



M*MOU(K,
2 )



00 97:J l,3



JK*(J-1)*32768+1


READ(6)(DUMSM(I) .I-332768)


IF(N.EQ.O)O0 TO 961


SMALL OUT(DUMSM(1);oUM(JK).32768)


bO TO 970



969 SMALL OUT(DUMSMCI)IOUM2(JK)132768)


97n CONTINUE


971 	 I=IOONE(W4)4IDONE(W3)



IF(I.NE.2)GO TO 971


IF(M.EQ.O)GO TO 979


I=IRANI4(RQ4,OUMI(l),98304,NSECTtW4)
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747 60 TO 980 
747 979 I=IRANW(RQ4,0U42( 1),98304,NSECTW4) 
763 980 CONTINUE 
765 981 CALL AFSREL(5LFSETB) 
767 O0 1 1-1,32768 
774 1 OUMSM(I)=O. 
776 
777 

W-3.1415926535898/2,AjS.
UO 4 11,255 

1001 
1010 

S(I)SSIN(fI-I)WW)
4 C(I)-COS ((l-I}OW) 

1021 W=3.14159265f58V8/32. 
102e UO 5 I=1,255 
1024 S64Ann=SIN(h-I)W) 
1o33 
1045 

5 C641I)=COS(I-1 W) 
0ELT=.007 3 

1046 OTDT'DELT/12. 
1047 TTDT*2.*DELT/3. 
1051 OELZ=20./64. 
1053 C1=I./(12.*DELz) 
1055 =21,. 
1057 6 7456540O.442/X**2 
1061 C12. I 
1062 
1064 

CNr.1453 
e712./5. 6 DELT) 

1066 C8I.,/(12.aOELZ) 
1071 C1:l.l/(12,*DELZ**2I 
1073 TDTS4*oELT -

1074 ITIME=40 
1075 ISET-. 
1077 1001 CONTINUE 
1077 
1104 

IM=MOD(ITIMEW4)41 
IF(ITIME.LT.j)Go TO 400 

1105 IF(MOO(ITIME;e).3T.3)ISETI 
1113 IF(ISET.EQ.0)Go To 4.0 
1114 00 873 I=1964 
1121 SPR(I)O. 
1122 873 SPI(I)=O. 
1123 RMSD=. 
1123 RMSUso. 
1124 RMSV-o. 
1125 RMSW=O. 
1125 SKI:. 
1126 SK2=U. 
1126 UMAXXO. 
1127 VNAX'O. 
1127 WMAX*O. 
113u CRMSU=O. 
1130 CRMSV=O. 
1131 CRMSW-o. 
1131 CUMAXnO. 
1132 CVMAX=O. 
1132 CWMAX=O. 

C 
C PHASE 18 
C 
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C START WITH PLANES 63.64,1,2.3,4,5.6 IN LCM


C V(1) AT SEGMENT o, V(2) AT SEGMENT 24' V(N) AT SEGMENT 24*N-IJ


C V(64) AT SEGMENT 1512f EACH V CONTAINS '2288 WOROS


C VARIABLE LOCATIONS AS FOLLOWS AT START OF TIME STEP


C TIME. 1 2 3 4


C WI U(N-1) UT(N) UT(N-1) U(N)


C W2 UT(N-I) U(10 U(N'l) UT(N)


C W3 U(N) U(C'f1) UT(N) UT(N-1)


C W4 UT(N) UT(N1) U(N) U(N-1)



1133 00 ItIDONE(W1).IDONE(W2) IDONE(W3) IDONE(W4)+IDONE(W8)+IOONE(DI)


?*IDONE(PUPR)*IDONE(PLWR)



1161 IF(I.NE.8)GO TO 400


1163 IF(ITIML.LT.O)GO TO 1901


1165 IF(ISET;EQO.O)GO TO 1902


1166 00 155 N-198


1167 NSECTS(N-)*192


1172 13t, ItIDONE(W1)+IDONEfWe)*IDONE(W3)*IDONE(W4 )


1205 IF(I.NE 4)GO TO 130


1207 GO TO (131.132,133,134)IM


1217 131 InIRANR(RQ1,VLG(1)'B304,NSECTW1)


1232 I=IRANR(RQ4,OVLG(13)98OZ.NSECTW4)


1246 GO TO 149


1246 132 I:IRANR(RQ3,VLG(1),98304,NSECTW3)


1261 I=IRANR(RQ1,oVLG(I).9830'6NSECTW1)


1275 60 TO lJ9


1275 133 I:IRANR(RQOVLG(1).98304,NSECT.W2


1310 IaIRANR(RQ3,DVLG(1).9830,NSECTW3)


1324 GO TO 139


1324 )34 IfIRANR(R04,VLG(1),98304,NSECTW4)

133? I=IRANR(RQ2,DVL6(1},9830,NSECTW2)


1353 [39 I=IOONE(W1),IDONE(WC)fIDONE(W3)*IOONE(W4 )


1366 IF(I.N.4IGO TO 139


1370 DO 141 Kn,9


1372 SMALL IN(DUMSM()),VLG(1,.K),122818


1401 SMALL IN(OUMSM(I28Q),DVLC( ,1,K).12288)

141U DO 140 I=1,14288


1415 14r OUMSM(II.DUMSM(I).TOT*OUM$M(Il 2288)

1420 141 SMALL OUT(DUMSM(1)#VLG(.,K),12288)


1430 GO TO(1511,52,153,±b4)IM

1440 151 I-IRANW(RQ1.VLG(1),98304,NSECTW1)


1454 GO TO 15


1454 152 I=IRANW(RG3,VLG()98304,NSECTW3)

1470 GO TO lbS


1470 153 ISIRANW(RQ2,VLG(1h)983 04,NSECTW2


1504 GO TO 1S


1504 154 I=IRANW(RQ4,VLG(1).98304,NSECTW4)


1520 155 CONTINUE


1522 156 rtIOONE(Wl)+IDONE(W2)+IOONE(W3)*IDONE(W4)

1535 IF(I.NE.4)GO TO 156


1537 157 IflDONE(OYI


1541 IF(I.N.I)GO TO 151


1543 IP(ITIME.GT.3)GO TO 600


1547 ID11


1547 IMPuIM


1551 GO TO 499
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1552 1911 IMPn4 
1553 IDO1 
1554 GO TO 499 
1555 1902 IF(ITIME.GT.3GO TO 600 
1561 IF(IM.EQ.I)IMP=4 
1564 IF(IM.EQ.2)IMPSI 
1567 IF(IM.EQ.3)IMPZ2 
1572 rF(IM.EQ.4)IMP=3 
1575 ID.l 
1576 499 CONTINUE 
1576 
1613 

IF(I0.NE.1)ZZIRAVR(RQ05DUM3(1).32768,o.D1) 
GO TO(461,46f,463,

4 64)lMP 
1623 461 I=IRANR(RQ3UM(1),98O ,FW3) 
1637 GO TO 465 
1637 462 I=IRANRlRQZDUM1(1),98304oW21 
1653 0 TO 4b5 
1653 463 I=IRANR(RQ4,DUMI (1)98304.n,W4) 
1667 60 TO 465 
1667 464 IUIRANR(RQI.DUlM1(1),98304,nW) 
1703 465 I=IDONE(Dl)kIDONE(W&)+IOONE(W2).IDONE(W3*IDONEW4) 
1721 IFrI.NE.5)GO TO 465 
1723 00 490 Ma1.16 
1724 IF(MOD(M,2).EG.0)G0 TO 480 
1730 
1731 

NSECT=M*96 
NWORUS=9 

3 04 
1733 J=l 
1734 IFIM.EQ.1S)NWORDSn49X52 
1737 475 ISIDONE(WI)+IOONE(W2)+IDONEIW3).IOONE(W4) 
1752 
1754 

IF(I.NE.4)GO TO 475 
G6 TO (C91i492,

4 93,4 9 4 )IMP 
1764 
2000 

491 ISIRANR(RQ3,DUM2(J),NWORDSNSECTW3) 
GO TO 4(3 

2000 
2014 

492 I-IRANR(R2,ODUM(J) ,NWORDSNSECT.WaJ 
GO TO 473 

2814 
2030 

493 I=IRANRCRQ4,DUM2(J),NWORDSNSECTtW4)
GO TO 473 -

2030 494 ItIRANR(RQDUM2(J),NWORDS.NSECTWi) 
2044 473 IF((M.NE15).OR.(NSECT.EQO*))GO TO 479 
2053 NSECT=O 
2053 J-49453 
2054 GO TO 475 
2055 479 IIDONE(DI) 
2057 IF(I.NE.)GQ TO 479 
2061 IF(M.EQ.I)6O TO 477 
2063 JsM.l 
2063 NSECT-(J/2-2)064 
2067 IOA-4 
2070 
2075 
2111 

IF(MOD(J,41.NE.,)IOA=32769 
ISIRANW(RQ5,OUM3(IOA),32768,NSECTDol
G0 TO 417 

2111 48,, NSECTmM696 
2113 NWORUS=98304 
2115 476 IIDONE(W) IDONE(W2)+IDONE(W3)4IDONE(W4) 
2130 IF(I.Nt.4)G0 to 476 
2132 IF(M.EQ.16fG0 TO 477 
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2134 60 TO(495,496.497,498)IMP 
2144 495 IzIRANR(RQ3,DUMI(l),NWORD,NSECTW3) 
2160 60 TO 478 
2160 496 I=IRANR(RQ2,DUM1(1),NWORDSNSECTW2) 
2174 60 TO 478 
2174 
2210 

497 I.IRANR-(RQ4,ODUMI(1).NWORDS,NSECT.W4) 
SO TO 4f8 

2210 498 I=IRANR(RQ1ODUMI(1),NWORDS.NSECTW) 
2224 478 L=IDONE(Dl) 
2226 
2230 

IF(I.NEI)GO TO 478 
IF(IU.EQ,IFG TO 477 

2232 
2234 

IF(M;Et.I6)GO TO 477 
IOAOI 

2234 IF(MOO(M,4).NE.O)IOA=32769 
2242 
2245 

NSECT=(M/2)*64 
I=IRANR(RQ5,OUM3(IOA),32768,NSECTD1) 

2261 477 LONTINUE 
2261 eALL DVRONC(C12,qMSDRMSURMSVRMSW.SKI*SKiUMAXtVMAXWNAXMIODE



'LT)

2277 49r CONTINUE


2301 484 1IIOONE(O1)


2303 IF(I.N.1)60 TO 484
 

2305 I=IRANW(RQODUM3(32769),32768,448.O1)


2320 489 I=IOENE(W OE(W2) IDONE{W3)+IOONEIW4)+oONE(DI)


2336 IF(I.NE.S)GO TO 489
 

2340 IF(ITIME.LT.QRGO TO 601


2341 IF(ISET;EQ.o)60 TO 608


2342 60 T0(5U1.502O503)Iu


2351 51 ID*2


235e IF(IM.EQ.I)IMP=2

2355 IF(IM.EQ.2)IMP-3


2360 IF(IM.EQ.3)IMP-4


2363 IF(IM.EQ.4)IMP#1


2366 60 TO 499
 

2367 Sj ID.3


2370 IF(IM,EQ.1I)IMP=3

2373 IF(IMtQ.2)IMPu4


2376 IF(IM.EQ.3)IMPnl


2401 IF(IMEQ,4)IMP=2


2404 60 TO 499


2405 503 CONTINUE


2405 100 CONTINUE


2405 46n I-IDONE(O1)

2407 IF(I.NE.1)GO TO 460


2411 600 IiIDONE(W1) IDOOE(W2)*IDONE(W3)*IOONE(W4)*IDONE;WS|*IOONEtD1)



P#IDONE(PUPR)+IDONE(PLWR)


2437 IF(I.NE.8)GO TO 60)


2441 IFISET.EQ;o)GO To o08


244! GO TO(6 l,60i,603.604)IM

2452 608 60 TO (602,663,604,601)IM


2462 601 t3IRANR(RQlVLG(1),983 4,0,W1)

2476 GO TO 605


2476 662 IMIRANR(RQ3*VLG(l),98304o.W3)

2512 GO TO 605


2512 603 I=IRANR(RQ29VLG(I),98304oW2)
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2526 GO TO 605 
2526 604 I=IRANR(RQ4,VLG(1)9834O.W4) 
2542 605 I=IUONE(WI).IDONE(W2) IDONE(W3)*IDONE(W4) 
2555 
2557 

IF(I.NE.4)GO 
ZM2=1 

TO 605 

2560 IOA.1 
2561 00 620 IPLANEuI.64 

C tRANSFER ROWS 45 TO 64 TO CALCULATE 47 TO 62 
2562 NZ-2c27 
2563 N3=1280 
2563 N4=1 
2564 NEXT'1 
2565 M:1 
2566 613 KcZM2-1 
2570 00 621 Zs1,5 
2572 K=K+I 
2573 IF(K.GT.8}K21 
2576 SMALL IN( U(1.N4,ZIVLG(N2,9K),N3) 
2612 SMALL IN( V(lN4,Z),VLG(N2,2,K),N3) 
2626 621 SMALL IN( W(1,N4.Z)eVLG(N?,3.K),N3) 
2644 bO TO(622.62 ,624,62?)NEXT 
2654 622 CALL DVDTMP(UVW.OUDV,DW.M,CNCS.CllC1ZITIHERMSORMSU.RMSV 

2RMSW.SKItSK2.UMAXVMAXWMAX.SPRISET) 
2704 SMALL OUT(DU(1).OVL.6(294519IOA),1024) 
2714 SMALL OUT(OVC1).QVLG(2945p,,IOA),1024) 
2723 SMALL OUT(DW(1),DVLG(294S,3.IOA)l1024) 
2732 O 614 j=l, 
2733 
2734 

jj=j.16 
00 614 I11,64 

2736 DO 614 Z.1,5 
2752 U(I.J.Z)=UCI.JJtZ) 
2754 V(ItJZ)=V(IJJZJ 
2755 614 W(Ij.Z)=W(IJJZ) 

C 'ALCULATE ROWS b3.64 AND I TO 14 
2763 N2.1 
2763 N3z1024 
2764 N4-S 
2765 NEXTC2 
2766 M-2 
2767 60 TO 613 
2770 623 CALL DVDTMP(U,V,dDUDVDW,M,CNC8,CllC12.ITIME.RMSDRMSURMSV 

PRMSW.SKISK2.UMAXVMAX.WMAXSPRISETI 
3020 SMALL OUT(DU(1),DVLG(3969q1vIOA),128) 
3030 
3037 

SMALL 
SMALL 

OUT(DV(1}hOVLG(3969v2,IOA),128)
OUT(DW(I)hDVLG(3969 3.IOA).I28) 

3046 SMALL OUT(0U(l29)qDVLG(I,IOA,896) 
3055 SMALL OUT(DV(129),DVLG(1.2,IOA),8961 
3064 SMALL OUT(DW{I29)hDVLG(,3,IOAI,896) 

C CALCULATE ROWS lb TO 3Y 
3073 N2-769 
3073 N3-1280 
3074 N4-1 
3075 NEXTP3 
3076 M 3 
3100 60 TO 613 
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3100 624 CALL DVOTMP(U,VOOUDV,DWMCNC8,Cll,C12,ITIME.RMSD,RMSURMSV 
2RMSW.SKISK2,UMAX.VMAXWMAXSPRISET) 

3130 
3140 

SMALL OUT(DU(1).DVLG(897,!.OA),1024) 
SMALL OUT(DV(1).DVLG(897,2,IOA)11024 ) 

3147 SMALL OUT(DW(1),DVLG(897,3.IOA).1024) 
C CALCULATE ROWS 31 To 46 

3156 A2-093 
3156 N3l28O 
3157 N4-3 
3160 EXT'4 
3161 M-4 
3163 60 TO 613 
3163 

3213 

625 CALL DVOTMP(UV,.,DUDVDW.MCN.C8,C11.CI2ITIME,RMSD.RMSURMSV
2RMSW.SK1.SKeUMAXVMAXWMAXSPRISET) 
SMALL OUT(DU(1),DVLG(192,1.lIOAI,1024 J 

3223 
3232 

SMALL OUT(DV(I),DVL(192]t2,IOA),1O24) 
SMALL OUT(DW(1),DVLG(L921.3.IOA).1024) 

3241 In MOO(IPLANL,2) 
3244 tF(I.NE.O)GO TO 619 
3246 6E6 I=IDONE(Wl.IDONE(W2)4IDONE(W3)*IDONE(W4)*IDONECW8) 
3Z64 ZF(I.NE.5)GO TO 606 
3266 IF(IPLANE.EQ.64)GO TO 616 
3270 IOB=ZM2-1 
3271 1I-PLAWE*5 
3272 IF(I.GT.64)II-64 
3275 
3300 

MSECT.2*(I+I) 
IF(NSECT.GT.1512)NSECTrNSECT-1536 

3304 IF(ITIME.LT.O)GO TO 631 
3306 IF(ISET.EG.O)GO TO 630 
3307 GO TO{(6l,63C,633,634)IM 
3317 63n GO TO(632,63t634,631)IM 
3327 
3344 

631 I=IRANR (RQdVLG(ll,1OB),24576.NSECTW) 
GO TO 616 

3344 632 I=IRANR (RQ3,VLG(lI,108),24576NSECTW3) 
3361 GO TO 616 
3361 633 I=IRANR (RO2,VLG(1,tlOB),24576,NSECT w2) 
3376 S0 TO 616 
3376 634 I=IRANR (R04,VLG(,lIIOB),24576,NSECTW4) 
3413 616 IO=IOA-1 
3415 NSECT=IPLANE*24 
3417 
3423 

IF(NSECT.GT.1512)NSECT=NSECT-1S36 
I=IRANW(RQ8,DVLG(C l.IOB),24576NSECTW8) 

3440 619 IOARIOA*. -
3442 IF(IOA.GE.S)IOA=I 
3445 ZM2nZM2.1 
3446 IF(ZM2.GE.9)ZM2= 
3451 62n CONTINUE 
3453 626 1.IDONE(W1 )*IOONE(W2)*IDONE(W3)+IDONECW4)* IONE(W8) 
3471 IF(I,NE 5)GO TO 626 
3473 rF(ITIMELLE.3)1-IRANR(RQS,DLG(1),16384,0,01) 
3511 I=rRANR(RQ0,VLG(1)98324,OW8) 
3525 1'9 I=IDONE(WS) 
3527 IF(I.NE.1)GO TO 1J9 
3531 ZA21 " 
3532 IOA-i 
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3533 00 20 IPLANES1,64 
C TRANFER ROWS 45 TO 64 TO CALCULATE 47 TO 62 

3534 IF(ITIME.GT.3)G0 TO 26 
3537 
354b 

SMALL IN(P(i),DLG(IIIOA),4096)
GO TO 28 

3546 26 00 2( 1-1,4o96 
3553 27 P(U)=O. 
3555 28 CONTINUE 
3555 N2E2017 
3556 N3=lzo 
3557 N4=1 
3560 NEXT=1 
3561 Ml1 
3562 13 KPZM2-1 
3564\ D0 21 Z-l,5 
3566 K=K+1 
3567 
3572 

IF(K.GT.8)K=1
SMALL IN(USM(1,N4,Z),VLG(N2t1,KN3) 

3606 SMALL IN(VSM(1.N4,Z).VLS(N2,2,K),N3) 
3622 21 SMALL IN(WSM(1,N4,Z),VLG(N2,3pK),N3) 
3640 30 TO(22,23,'4.25)NLXT 
3650 22 IF(ISET.EQ.0)C7=s,/TDT 
3653 
3663 

CALL CALCPR(USHVSMIWSMPMCIICT) 
e7=12./(5.*UELT) 

3666 00 14 J=1,4" 
3670 JJ=J;16 
3671 00 14 1=1,64 
3673 00 14 Z.lS 
3707 
3711 
3712 

USM(IJZ)=USM(I,JJ.Z)
VSM(IJIZ)=VSM(IJJZ)

14 WSM(IJ.Z)WSM(I,.JJ.Z) 

C CALCULATE ROWS 63,64 AND 1 TO 14 
3720 A2.1 
3720 N3.1024 
3721 N4=5 
3722 NEXT2 
3723 M-2 
3724 GO TO 13 
3725 23 !F(ISET.EQ.O)CTcI./TDT 
3730 CALL CALCPR(USmtVSM.WSM.PMC,C7) 
3740 elI2/(5.*UELT) 

C CALCULATE R6S 15 TO 30 
3743 42-769 
3744 N3-1 2 80 
3745 N4-1 
3746 NEXTS3 
3747 4=3 
3750 b0 TO 13 
3750 
3753 
3763 

24 IF(ISET.EQ.O)C7I./TDT 
CALL CALCPR(USMVSMWSM PM,C1IC7)
7=-1./(5.*UELT) 

C CALCULATE ROWS 31 To 46 
3766 N2-1793 
3767 N3.1480 
3770 N4=1 
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3771 NEXT-4 
3772 M.4 
3773 0 TO 13 
3773 
3776 

25 IF(ISET.EQ.O)C7d1./TDT 
CALL CALCPR(USMVSMWSMYp,M,C1,CT) 

4006 CT-12./(S.*UELT) 
4011 CALL FFTFXY(P) 
4013 I=MOD(IOA,2) 
4017 IF(I.NE.O)GO To 16 
4020 IOB=IOA-l 
4022 
4031 
4040 
4047 

SMALL OUTIP(1.1 .1):PLG(1 *2IOB)2048) 
SMALL OUTIP(ll 1 2 ).PLG(2o49,2 ,108),2048) 
SMALL OUT(P(I,33,1)PLG(1 , 2 ,1OA)92048)
SMALL OUT(P(1,33,2).PLG(20492,2IOA).2048) 

4056 60 TO 17 
4U5 6 

4060 
16 IOBUIOA,1 

SMALL OUTIP(I, 1).PLG(1 ,1,IOA)Zo048) 
4067 
4076 
4105 

SMALL OUT(P(1tl 2)tPLG(2049,lIOA)#2048) 
SMALL OUT(P(I,33,1),PLG(1 ,1O), 2 04 8) 
SMALL OUT(P(1,33,2)PLG(2049tl,1Io )2048) 

4114 17 CONTINUE 
C PAUSE IF THERE IS ANY OUTSTANDING I/O 

4114 I=MOD(IPLANE,21 
4120 IF(I.NE.O)GO TO 19 
4121 
4126 

113 I=IOONE(DI*IDONE,(W) 
IF(I.NE.2)GO TO 113 

4130 IF(IPLANE.EQ.64)GO TO 116 
4132 I=IPLANE.3 
4133 
4136 

IF(I.GT.64)IzI-64 
NSECT=8(I1-1) 

4140 
C BEAO DIV OF PLANE.2 INTO LCM oIV(1,1,IOA)

IOB=IOA-1 
4142 IF(ITIME.LE.3)I.IRANR(RQSDLG(1tlIO),8192,NSECTDI) 
4162 Z=IPLANE.5 
4164 IF(I.GT.64)IMI-64 
4167 
4172 

NSECTS2Z*(I,1) 
IF(NSECT.GT. 1512)NSECTONSECT-IS36 

4176 
C READ VELOCITIES OF PLANE*4 INTO LCM VEL(4096,1,ZME)L6BOZM2-1 

4200 
4203 

tF(IOB.LE.O)STOP 
I=IRANR(RQBVLG(1,I9O) ,24576.NSECTW8) 

4220 116 IrIDONE(PUPR) 
4222 IF(I.Nt.I)GO TO 116 
4224 117 I=IDONE(PLWR) 
4226 IF(I.NE.I)GO TO 117 
4230 
4232 

NSECT=B*(IPLANE.2) 
SF(NSECT.GT.504)SECT=NSECT-512 

4236 
C dRITE(0LG(1IIIOA) FROM LCH TO DISK 

IOBIOA-1 
4240 I=IRANW (RQ6.PLG(ll .IOB),8192.NSECTPUPR) 
4253 IUIRANW (R07,PLG(lPIIOA),8192,NSECTPLWR) 
4270 118 CONTINUE 
4270 19 IOA=IOA.1 
4272 
4275 

IFVIOA.GE.5)IOA=1 
ZM2nZM2*1 
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4276 IF(ZM2.GE.9)ZM2=1


4301 20 CONTINUE 

C 
r PHASE II ***o**i 
C


C WAIT FOR OUTSTANDING I/O



4303 149 I=IDONE(PUPR)+IDONE(PLWR) IDONE(D1)+IDONE(Wi)+IDONE(W21.IDONE(W3)}
 

PIDONE(Wt),IDONE(08S



4331 IF(I,NE.8)6O TO 149


C READ INTO PZlPZ2,PZ3# PRESSURES FOR Ia1,64,J=1.32,Zml,64



4333 IZIRANR (RQ6,pZI(1,1I1),98304 0 ,PUPR)


4346 261 I-IDONE(PUPR)


4350 IF(I.NE.1IGO TO 261
 

4352 I3IRANR (RQ6,PZ2(ll.),98304 ,192,PUPR)


4365 262 I-IDNE(PUPR)


4367 IFCI.NE.l)GO TO 262


4371 I=IRNR (RQ6PZ3(1Ix1h)65536 ,384,PUPR)



C WAIT-FOR OUTSTANDINU 1/0


4404 263 IfIOONE(PUPR)


4406 IF(I.NE.1)GO TO 263


4410 MM=O


4411 36 Mt]


4412 DO 30 Jtl,8


4414 JKX(J-1)*2561


4417 o 32 K-1.24


4421 KKmK*24


4422 SMALL IN(PZ(19K *1),PZ1(JK.1,K)9256)


4433 SMALL IN(PZ(IK 2PZl(JK.2,K),256)


4443 SMALL IN(PZ(1,K. l)PZZ(JKIK)2S6)


4454 32 SMALL IN(PZ(1,KK,2),PZ2(JKo2tK),256)


4466 DO 33 KSI,16


4467 KKSK*48


4470 SMALL INIPZ(IKKI).PZ3(JK.1,K)ZS6)


4501 33 SMALL IN(PZ(lKK,2)*PZ3(JK2,K),2S6)


4512 CALL DELSO(PZCC64,S,564,M.HM.C6)


4522 Do 34 K=1, 2 4


4524 KKoK*24


4525 SMALL OUT(PZ(1,K tljPZ1(JKtlK),2S6)

4536 SMALL OUT(PZ(1,K ?)oPZI(JK,2,K),256)


4546 SHALL OVT(PZ(IKKI,1),PZ2(JKIK).2561


4557 34 SMALL OUT(PZ(CKK.2)PZ2(JK02K),256)


4571 DO 3* K=1,16


4572 KKK*48


4573 SMALL OUT(PZ(1,KKI.)PZ3(JK1.K),256)


4604 35 SMALL OUT(PZ(I1KK.2)PZ3(JK2,K)o256)


4615 3A mHm.4


4621 IF(MM.EQ.32)G0 TO 3$



C WRITE PZIPZC.PZ3 TO PRESSURES FOR In1.64*J=.32,Zwl,64


4623 I=IRANW (R06 ,Pz(III) 98304 .0 *PUPR)


4636 161 I=IOONE(PUPR)


4640 IF(I.NE.1)GO TO 161


464e IiIRANW (RQ6,PZ2(ll,1),98304 ,192,PUPR)


4655 162 IfIDONE(PUPR)


4657 IF(I.NE.I)GO TO 162


4661 I=IRANW (RQ6P23fl,1l)65536 ,384.PUPR)
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C WAIT FOR OUTSTANDING I/O


467 163 ISIDONE(PUPR)


4676 IF(I.NE.I)Go TO 163



C READ INTO PZIPZ2,PZ3t PRESSURES FOR Is1064.J433,64.Z.l.64


4700 I=IRANR (RQ7TpZI(IItl,98304 *0 .PLWR)


4713 171 It1DONE(PLWR)


4715 IF(I.NE.1)GO TO 171


4717 I-lRANA (RQ7,PZZ(llt).98304 ,192PPLWR)


4732 172 I=IDNE(PLWR)


4734 IF(I.NEI)GO TO 172


4736 I-IRM NR RQ7,PZ3(1,),.1h65536 ,384,PLWR)



C WAIT FOR OUTSTANDING I/O 
4751 173 I=IDONE(PLWR) 
4753 IF(I.NE.l)GO TO 173 
4755 MM.32 
4756 (,0 TO 36


4757 38 CONTINUE



C WRITE PZIPZ2,PZ3 TO PRESSURES FOR I1s64, IJt32,Z=1,64


4757 ISIRANW (RQ7,PZI(1,I),98304 90 tPLWR)


4773 181 I=IDONE(PLWR)


4775 IF(I.NE.I)GO TO 181


4777 I=IRANW (RQ07PZ2(1lt)983C4 ,192,PLWR)


5012 182 I=IDONE(PLWR)


5014 IF(I.NE.1)GO TO 182
 

5016 IIRANW (R07,PZ3(1#.1.).65S36 *384rPLWR)



C WAIT FOR OUTSTANDING I/O


5031 183 I=IDONE(PLWR)


5033 IFCI.NE.I)GO TO 183


5035 191 I=IDONE(O1).IOONEI(W])*IDONE(W2)*IoONE(W3)+IDONE(W4)


5053 IF(I.NE.S)GO TO 191



C


C 00**000 PHASE III ,**,***



C


5055 ZMZ.1


5055 IOAml


5056 150 I=IDONEPUPR).IDONEIPLWR*IDONE(DI)*IDONE(W1)*IDONE(W2)IDONE(W3)-


21DONE(W*)*IDONE(WS)


5104 IF(INE.OIGo TO 15t



C READ PHAT OF PLANES 63 TO 4 INTO PHATIaS.64,s) IN LCM


C READ VELOCITIES OF PLANES 63 TO 4 INTO VLb(4?96,3.6) IN LCM


C READ OLD VELOCITIES OF PLANES 1.2 INTO VNMI(409A 3i2) IN LCM



5106 I-IRANR(RQBVLG(1),49152,48iW8)


5121 256 I=IDONE(W8)


5123 IF(I.NE.1)GO TO 256


5125 NSECT496 ­

5126 DO 205 2116


5130 203 I=IDONE(PUPR)


5132 TF(I.NE.1)GO TO 203


5134 204 In=DONE(PLWR)


5136 IF(I.NE.1)GO TO 2n4


5140 IiIRANR (RQ6,PHAT(,I ,Z)tAU6,tNSECTPUPR)
 

5154 I=IRANR (RQTPHATII.2 ,Z),4'196'NSECT,PLWR)


5170 NSECT=NSECT+P


5172 IFCNSECT.GE.512)SECTONSECT-512


5175 205 CONTINUE
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5177 DO 40 Z=1,5 
5201 
5210 

SMALL INiPA(1 *1),PHAT(I 
SMALL INIPA(2049.1).PHATt1 

,1Z)92048) 
.21z),2048) 

5217 
5226 

SMALL IN(PA(I *2),PHATI2O49,IZ),2048) 
SMALL IN(PA(2049,2).PHAT(2049,2,Z),204 8) 

5235 CALL FFTBXY(PA) 
C FFTBXY LEAVES THE REAL PRESSURE IN PR(64.64) WHICH IS EQUIVALENCED 
C TO WOLD(ll;1l 

5236 SMALL OUT(PA(l) ,PC(ItlZ),4n96) 
5246 4r, CONTINUE 

C LAST DIMENSION FOR PC IS 6 
5250 IOB1 
5251 DO 50 IPLANE=1,64 
5252 M-1 

C IRAN§FER ROWS 45 TO 64 TO CALCULATE 47 TO 62 
5253 N1 =45 
5253 N2r2817 
5254 N3=128U 
5255 N4=1 
5256 NEXTxI 
5257 6n K=ZM4-1 
5261 DO 61 Z:1,5 
5263 KuK-1 
5264 IF(K.GT.6)Ktl 
5267 
5306 

61 SMALL IN(PD(lN4.Z).PC(1,N,K)IN3) 
SMALL IN(U( 1 N4,3)hVLG(N',l.IOd),N3) 

5320 SMALL IN(V(1.N4,3)*VLG(N292IO8).N3) 
5330 
5340 

SHALL 
60 TO 

INIW(l.N4,3)vVLG(N23IOB,)N3) 
(62,63,64,6S)NEXT 

5350 62 CALL DVDT(UVW.DUDVOWPDOtCN CC11.RMSURMSVRMSW) 
5367 N1.2945 
5370 N210Z4 
5371 N3=1 
5372 69 SMALL OUT(OU(N3),OULG(NllIOA)N2) 
5404 SMALL OUT(DV(N3)9DULG(Nl,2,IOA)oN2) 
5413 SMALL OUT(DW(N3),DULG(NIl3,IOA)hN2) 
5422 00 TO(72,73,4.75,76)NEXT 
5433 72 0 52 Jpl,4 
5435 JJ+j.16 
5436 O0 5 I1l,64 
5440 DO 52 z01,5 
5454 tICJ.Z)U(I,JJZ) 
5456 V(I.JZ)=V(IJJ,Z) 
5457 W{Ij.Z)=W(IqJJZ) 
5460 52 PD(IJZ)=PD(IJJZi 

C CALCULATE ROWS 63,t;4 AND I TO 14 
5466 N4a5 
5466 NI1i 
5467 N2=i 
5470 N3=1024 
5471 NEXT-2 
5473 GO TO 60 
5473 63 CALL OVDT(U.VWDUOVDWPDMCN.CSClRMSURMSVRMSW) 
5512 1.3969 
5513 N2=128 
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5514 43-1


5515 GO TO 69


5516 73 NEXTm3


5517 N-is


5520 N2.896


5521 N33129


5522 90 TO 69


5523 74 N1.13



C CALCULATE ROWS 15 TO 30


5524 N2-769


5525 N3.1280 
5526 N4.1


5527 'O TO 60


5530 64 CALL DVDT(UVWDU.OVDWPDMCN,CBCIiRMSURMSVRMSW)


5547 NEXTv4


5550 NI.8V7


5551 N2.O24


5552 N3.) 
5553 G0 TO 69 
5554 75 N1.29 

C CALCULATE ROWS 31 TO 46


5555 N21793


5556 N3-1280


555? N4u1


5560 G0 TO 60


5561 6r CALL DVDT(UVWDUDV.DWpD,MCNC8,ClI,RMSURMSVRMSW)


5600 NEXTC5


5601 N1-1 21


560e N2-1024


5603 N3-1


5604 60 TO 69


5605 76 CONTINUE



C WAIT FOR ANY OUTSTANDING 1/0


r WRITE DUDV.OW TO DISK


C READ PHAT OF IPLANE+4 TO PHATA(IOA)


C READVLG OF IPLANE*4 TO VLQ(ZM2)



5605 21n I=IDONE(W1)IDONE(W2)+IDONE(W3) IDONE(W4)*IDONE(WS)


5623 IF(1.NE.5)GO TO 2lu


5625 NSECT=2t*(IPLANE.I)

5627 ZF(NSECT.GT.1512)NSECTSNSECT-1536


5633 IF(ITI&E.LT.O)GO TO 223
 

5635 IF(ISET.tQ.0)GO TO 211


5636 00 TO(241*22d.223,224)IM


2 4 2 2 2
5646 211 0 TO (2 , 1,222, 23)IM


5656 221 13IRANW(RQlDULG(ll,IOA),12288,NSECT,W1)


5673 GO TO 220


5673 222 I=IRANW(RO3,DULSCllIlOA) 12288.NSECTW3)


5710 GO TO 2,O


5710 223 I=IRANW(ROZDULG c1.1,IOA) 1228NSECT.W2I


5725 GO TO 2eO


5725 224 I=IRANW(RQ4,DULGCIlIOAI. 1 2288,NSECT.W41


5742 22n IF(mODiIOB;,).NE.O)GO TO '15


5746 IF(IPLANE.EQ.64)GO TO 50


5750 IOCI108-l


5751 NSECTn(IPLANE*4)*24
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5754 IF(NSECT.GT.1512)NSECT=NSECT1536 
5760 
5775 

I=IRANR(RQ8,VLG(I,,IOC),24516,NSECTW8)
215 NSECTSBO(IPLANE#3) 

5777 IF(NSECT.GT.504)4SECTONSECT-512 
6003 217 ZInDONE(PUPR) 
6005 IF(I.NE.1)GO TO 217 
6007 218 IsIOONE(PLWR) 
6011 IF(I.NE.1)O TO 218 
6013 I=IRANR (RQ6PHATA0t1 10A)t4096,NSECTPPUPR) 
6027 I=IRANR (RQ7,PHATA(1,2 .IOA),4O96,NSECT.PLWR) 
6044 219 IOAfIOA*1 
6046 
6050 

IF(IPLANE.EQ.64)G0 TO 50 
IF(IOA.GT.2) IOA=1 

6053 LO=I08*1 
6055 IF(IDB.GE.5)1081 
6060 
6070 

SMALL IN(PA(1,1hPHATA(1,1,IOA),248 
SMALL IN(PA(2049,1h)PH TA(1,2,IOA),20

4 8 
6077 
6106 

SMALL IN(PA(l,2),PHATAI204g91I0OA),O48) 
SMALL IN(PA(2049.2),PHATA(2049. 2 ,I0A)h2b48) 

C EQUIVALENCE PHATA(i1,S),PHATA(I1,I1) 
6115 CALL FFTBXV(PA) 
6116 2P3=ZM2*5 
6120 
6123 

IF(ZP3.GT.6)ZP3=ZP3.6 
SMALL OUT(PA(1) ,PC(lIZP3)94096) 

6133 ZM2=ZM2*1 
6134 IF(ZM2,GE.7)ZM2=1 
6137 Sn CONTINUE 

C 
C 

r 

6141 407 I=IDONE(W).IDONE(W#), IO0NE(W3).IDONE(W4).IDONECWG),IDONE(O1)}IDON 
,E(PUPR) IDONE(PLR) 

6167 IF(I.NE.8)GO TO 407 
6171 
6173 

IF(ITIlE.LT,0)QO TO 1000 
IF(ISET NE.O)GO TO 408 

6174 ISETSI 
6175 GO TU 1001 
6175 408 GO TO (401,402,403,404)IM 
6205 401 IIRANR(RQAUTNM1(Ih)24576.OW2) 
6220 
6233 

IZIRANR(R4,UTN 
I=IRANR(RQ3,6N 

(1),24576, ,W4) 
( 2),4576.0,W3) 

6246 
6262 

IIRANR(ROZUTNP1l(1)24576, 
GO TO 465 -

W1) 

6262 402 I-IRANR(RQ4,UTNMI(1),24576,JW4) 
6275 
6310 

IZIRANR(RQIUTN 
IsIRANR(RQ2,ON 

(1)24576. ,W1)
C1),2 4 5 76,0,W 2 ) 

6323 I=IRANR(RQ3,YTNP1(1),24576, ,W3) 
6337 0 TO 405 
6337 403 I.IRANR(RQ1.UTNMI(1).24576OW1) 
6352 I=IRANR(RQ3,UTN (1),24576.0,W3) 
6365 I.IRANR(RQ4,UN (1)#24576.09W0) 
6400 I=IRANR(RQ2,UTNPIl),2A76,W2) 
6414 60 TO 405 
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6414 404 ISIRANR(RQ3,UTNMI1C),24576,OW3| 

6427 I=IRANR(RQ2,UTN (1)P24576',W2) 

6442 IeIRANR(RQ1,UN (1l,24576,0,W1) 

6455 I=IRANR(RQ4,UTNP(lI),2 4 576.,,W 4 ) 

6471 435 CONTINUE 

6471 406 IUIDONE(W1)*IOONE(WZ)*IDONE(W3)*IDONE(W4).IONE(WS) 

6507 IF(I.NE.5)6O To 40Q6 

6511 60 TO(411,412,413.414)IM 

6521 411 I-TRANR(RQ2,WTNM1(1j,24576,48.W2) 

6534 IZIRANR(RQ4,WTN (1),24576,48,W4) 

6547 I=IRANR(RQ3,WN (1),2457 6 ,48,W3) 

6562 I=IRANR(RQI.WTNP1(1),2457 6,48,W1) 

6576 60 TO 415 

6576 412 IIRANR(RQ4.WTNM1(1)h24576.48W4) 

6611 I=IRANR(RQIWTN ti),24576.48,Wl) 

6624 IvIRANh(R2,WN (1),24676,48tW2) 

6637 I=IRANR(RQ3,WTNP1(1)24576,48,W3) 

6653 60 TO 415 

6653 413 I-TRANR(RQlPWTNMIl),2476.48,W1) 

6666 ItIRANR(RQ3,WTN (1),2457 6 ,43tW3) 

6701 I-IRANR(R04,WN (1) 24576,48,W4) 

6714 I=IRANA(RQ2,WTNP1(1).24576.48,W2) 

6730 60 TO 415 

6730 414 I=lRANRCRQ3.WTNMI(1)t24576,48,W3 

6743 ItIRANR(RQ2,WTN (1),24576 ,48,W2) 

6756 I=IRANR(RQIWN (3.I24576 04OW1) 

6771 I=IRANR(RQ4.WTNPL(1)24576,48,W4) 

7005 415 CONTINUE 

7005 O0 450 N=1.32 

7007 IF(MOD(N2)EQ.J)GO TO 438 

7013 IF(N.EQ.I)GO TO 417 

7014 416 I=IDONE(WIYIOONE(W2)IDONE(W3)*IOONE(W4).IDONE(W8I 

7032 IF(I.NE.5)GO TO 416 

7034 J-O 

7034 NSECTS(N.2)*48 

7040 GO TO(4214dt2 423.424)IM 

7050 421 I=IRANW(RQ2,WN (1)24576,NSECTW2) 

7064 GO TO 425 

7064 422 IfIRANW(RQ4,WN (1).24576.NSECTW4) 

7100 G0 TO 4!5 

7100 423 I=IRANW(RQIWN (11h24576,NSECT,Wl) 

7114 G0 TO 425 

7114 424 I=IRANW(RQ3,WN (11,24576,NSECTW3) 

713o GO TO 425 

7130 417 J=I 

7131 425 0 429 M-l6 

7133 KRM-1l).4096+1 

7136 SMALL IN(VTNHM(]),UTNM1(K).4096) 

7145 SMALL IN(VTN (1).UTN (K),4 096) 

7153 SMALL IN(VTNPl(l).UTNPlCK),409 6 ) 

7161 SMALL IN(VN (1),UN (K),4096 1 

7167 CALL AOVNC(TDT.M,CRMSUCRMSVCRMSWCUMAXtCVMAX.CWMAX) 

7177 SMALL OUTCVN(L}hJN(K)O96)

7206 428 I=IOONE(WI)+I0ONEW 2 ) IDONE(W3*IDONE(W4)+DONE(W8) 

7224 IF((I.NE.5).AN.(J.EO.)).ANO,(MEQ.6f)O0 TO 428 
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7236 IF((I.NE.5).OR,(J.EQ.I)IGO To 429 
7245 J=1 
7245 NSECTWN*48 
7250 
7260 

GO TO (431432,433,434)IM 
431 IflRANR(Ro2,WTNM1(I),24576,NSECTW2) 

7273 I=IRANR(R04,WTN (1),24576,NSECT.W4) 
7306 IcIRANR(Ro3tWN (1)324576,NSECTW3) 
7321 IRIRANR(RO1.WTNPI(1) 24576,NSEcT.WI) 
7335 60 TO 427 
7335 432 I=IRANR(RQO4WTNM1(1),24576,NSECTW4) 
735C I=RANR(ROIWTN (1)w24576,NSECTW1) 
7363 
7376 

I=IRANR(R02,WN (1),24576,NSECToW2) 
I=IRANR(RQ3,WTNP1(1) 24576,NSECTW3) 

7412 GO TO 427 
7412 433 I.IRANR(RO1.WTNM1( 1 )224576.NSECTWlQ 
742b I=IRANR(RQ3.WTN (12,24576,NSEcT.W3) 
7440 
7453 

I-IRANR(R04,WN (1o)24576,NSECT.W4)
InIRANR(RQ2,WTNP1(1)#24576,NSECT.W2) 

7467 GO TO 427 
7467 434 I=IRANRfRQ3,WTNMI(1)tz4576,NSECTW3) 
7502 I=IRANR(RQ2,WTN (1) 24576,NSECTW2 
7515 I=IRANR(RQIWN (U.,24576.NSECTW1) 
7530 IfIRANR(RQ4,WTNP1l()124576,NSECTW4) 
7544 427 CONTINUE 
7544 429 CONTINUE 
7546 GO TO 450 
7547 43o I=IOONE(WI)+IDONE(W2)*IDONE(W3)*IDONE(W4) IDONE(WS) 
7565 IF(I.NE.5)GO TO 43u 
7567 J=O 
7567 
7573 
7603 441 

NSECT=(N.2)448 
SO TO(441,4 4 2,443,444)IM 
IRANW(R02.UN (1),2 4576,NSECT.W2) 

7617 G0 TO 446 
7617 442 IPIRANW(RQ4,UN (1).24576.NSECTW4) 
7633 60 TO 446 
7633 
7647 

443 I-IRANW(RQIUN 
GO TO 446 

(1),24576,NSECTWI) 

7647 444 I.IRANW(RQ3,UN (1)324576.NSECTW3) 
7663 446 CONTINUE 
7663 445 DO 459 M-196 
7665 K(M.-1)*4096*. 
7670 SMALL IN(VTNMI(1IWTNM1(K),4096) 
7677 SMALL IN(VTN (1).WTN (K),4096) 
7705 
7713 
7721 

SMALL IN(VTNP1(1)9WTNP(K),4096) 
SMALL IN(VN (1),WN (K),4 0 9 6) 
CALL AOVNC(TDTMCRMSUCRHSVCRMSWCUMAXICVMAX9CWMAX) 

7731 
7740 

SMALL OUT(VN(1),WN(K),409 6 ) 
448 IIDONE(Wi)*IDONE(W2)*IDONE(W3 ) IDONEeWA) IDONE(WS) 

7756 rF((lI.NE.5).AND.(J.EQO)).ANDM.EQ.6)GO TO 448 
7770 iF(.INE.).,OR.(J.EQ.1)bO TO 459 
7777 Jm1 
7777 

10002 
IF(N.EQ.32)GO TO 459 
NSECTmN*48 

10004 ,o TO (451.452,453,454)I1 
10014 451 I=IRANR(RO2,UTNMl(1),24576,NSECTW2) 
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10027 I.IRANR(RQ4,UTN (i).24576.NSECTw4)


10042 I.IPANR(R03,UN (1),24576,NSECT.W3)


10055 I=IRANR(RO1.UTNP1(1),24576,NSECTW)


10071 GO TO 457


10071 452 ICIRANR(RQ4.UTNM1(1),24576.NSECTW4)


10104 I=IRANR(RQGIUTN (1),24576,NSECT.W1)


10117 I'IRANR(RQ2,UN I),2576.NSECT.W2)


10132 ItIRANR(RQ3.UTNPl(1),24576.NSECTtW3)


10146 60 TO 457



I01o46 453 I&IRANR(ROtUTNMl(1)*24576,NSECTWl)

10161 I-IRANR(RQ3,UTN (I)t24576.NSECTW3)


10174 IMRANR(RQ4,UN (1)24576,NSECTtW4)


10207 I=IRANRCRQ2 tUTNP1(I,24576,NSECTiW2)


10223 GO TO 457


10223 454 I=IRANR(RQ3.UTNM1(1).24576,NSECTW3)


10236 I=IRANR(RQ2,UTN (i)t24576,NSECTW2)


10251 ISIRANR(ROI.UN (1)924576.NSECT.WI)


10264 I-IRANR(RQO4UTNPI(I),24576,NsECToW4)


10300 457 CONTINUE


10300 459 CONTINUE


10302 450 CONTINUE


10304 GO TO(511,512.513,514)IM


10314 511 !-IRANW(RG2,WN (1)#24576,1488,W2)


10330 G0 TO 515


10330 512 I=IRANW(RQ4,WN (1).24576.1488,W4)


10344 GO TO 515


10344 513 I=IRANW(RQIWN t1).24576,1488.WI)


10360 GO TO 515


10360 514 ISIRANW(RQ3.WN (1)24576,1488,W3)


10374 515 CONTINUE


io374 1000 ITIMEmITIME.1


10376 IF(ItIME.EQ.O)GO TO 1001


10377 ISET'O


10377 RMSD=SORTRMSD)/5 12.

10403 RHSU-SQRT(RMSU)/512.


10407 RMSVtSQRT(RMSV)/512.


10413 RMSW'SQRT(RMSWL/S12.


10417 JMAXSQRT(UNAX)


10421 VMAXZSQRT(VHAX)


10423 WMAXtSQRT(WHAX)


10425 CRMSU=SQRT(CRMSU)/512,


10431 CRMSV-SORT(CRSV)/512.


10435 CRMSW=SQRT(CRMSW)/512.


10441 CUMAX=SORT(CUMAX)

10443 CVHAX=SQRT(CVMAX)


10445 CWHAX-SORT(CWMAX)


10447 SKluSK1/SQRTfSK2Q93)128,

10456 PRINT 899,RMSOR4SU.RMSV.RMSW.SK1



899 FORMAT(; RMSD-*E04.7* RMSUU*E14.70 RMSV-*E14.7* RMSW* E14.7*


2SKEWNESS=*EI.7)



10473 PRINT 888#OMAXIVMAX.WMAX


888 FORMAT(* UMAXN*E44.7* VMAX-*El4.7* WMAX=*E14.7)



10505 PRINT 095,CRMSU,CRMSVoCRMSW


10517 PRINT 888,CUMAX.CVNAXCWMAX



895 FORMAT(* RMSUP*E1 4 .7* RMSV.*E14.7* RMSW-OE14.7)
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20 

10531 

10533 

10541 

10542 

1o543 

10546 


10552 


10560 

10562 


10570 

10600 

10600 


10604 

10605 

10607 

10623 

10625 

10627 

106 1 

10634 

10643 

10650 

10654 

10657 

10661 

10675 

10675 


10701 

10702 

10704 

10720 

10722 

10724 

10726 

10731 

10740 

10745 

1o751 

10754 


10756 

10772 

10775 

10776 

11001 

11002 

11005 

11006 

11011 

11012 

11015 
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XXa20./(3.141S9q?*74.*15360.) 

00 889 I11,64 

SPI(I)CO. 


889 SPR(I)vXX*SPR(I) 

CALL PFT2fSPR(l).SPI(l).641-l) 

PRINT 887 


887 FORMAT(* Ella*) 

PRINT 8861ISPR(I)lml32) 


886 	FORMAT[IX,8E12.5) 

CALL SECOND(TX) 

PRINT l900tTX 


1900 FORMAT(* CPU TIAE -*E14.7 

dO TO(500l,0o,1600130)IM 


1200 CONTINUE 

IF(IIONE(W4).NE'j)GO TO 1200 


C 	 SAVE TIME STLP 3 FROM W4 IN FSET7 

DO 1210 K=l, 

NSECTS(K-1)*192 

IfIRANR(RQ3,DUM1(1),98304.NSECT.W4) 


1201 I'IDONE(W4) 

IF(I.NE.I)GO TO 1201 

00 1210 Jil,3 

JK=(J-I)*32768+1 


3 2 

SMALL 	IN(DUMSM(1),DUMl(JK), 768) 

WRITE(?)(DUMSM(I) .=1,32768) 


1210 	CONTINUE 

Rf(ITIME-40)/2 

END FILE 7 

GO T6C1401, 1402,1403,1404,140 5,14 0 6,14O7,1408)M 


1300 CONTINUE 

iF(IOONE(W3)jNE.I)$0 TO 1300 


C SAVE TIME STEP 5 FROM W3 IN FSET7 

DO 1310 K-l,8 

NSECTV(K-I)*192 

I:IRANR(RQ3DUl1(1),98304,NSECTW3) 


1301 1IOONE(W3) 

IF(I.NE.1)G0 TO 1301 

DO 1310 Jl,3 

JKs(J.1)*3 2 76841 

SMALL IN(DUMSM(l),OUM1(JK),32768) 

RRITE(7)(OUMSM(I),IflZ327W8) 


1310 	 ONTINUE 

Mn(ITIME-40/2

END VILE 7 

5O TO(1401.1402,14031404,1405,1406.140791408)M 


1401 CALL RFSREL(5LFSET7.O.I1TAPE) 

6O TO 1269 


1402 CALL AFSREL(SLFSET7,OI2TAPE) 

GO TO 1269 


1403 CALL AFSREL(SLFSET7.0I3TAPE) 

GO TO 1269 


1404 CALL AFSREL(5LFSET7,OI4TAPE) 

SO TO 1269 


1405 CALL AFSREL(5LFSET7,0TI5TAPE) 

60 TO 1269 


103
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11016 1406 CALL AF5REL(SLFSET7,0I6TAPE) 
11021 GO TO 1269 
11022 
11025 

1407 CALL AFSREL(SLFSET7,OiI7TAPZ) 
GO TO 1269 

110 6 1408 CALL AFSREL(SLFSET7,09ISTAPE 
11031 60 TO 1269 
1IO.2 1500 CONTINUE 
11o32 
11036 

IFPIDONE(W21.NE.I)GO TO 1500 
CALL OPEN(SLFSETT,0.2340008,OOO 0,3200,ITAPE) 

11046 60 1510 K.1.s 
11050 NSECTz(K-1)*192 
11052 I=IRANR(RQ2,OUMl(1198304,NSECTW2) 
11066 1501 I=IONE(W2) 
1107U IF(I.NE.I)GO TO 1501 
11072 DO 1510 J-1#3 
11074 JKs(J-1)*32768.1 
11077 SMALL IN(DUMSMI1).DUM1(JK),32768) 
11106 WRITE(T)(OUMSM(1).1.19327j81 
11113 1510 LONTINUE 
11117 O TO 1269 
11120 1600 CONTINUE 
11120 
11124 

IF1IDONE(W1).NE.1)GO TO 1600 
LALL OPEN(SLrSET7,0,234000809O0,3200,ITAPE) 

11134 60 1610 K-1l8 
11136 
11140 

NSECT=(K-1)*192
I=IRANR(RQ1DUM1(1)98304,NSECTW1) 

11154 16CI I=IDObNE(W) 
11156 IF(I.NE.1)GO TO 1601 
11160 00 1610 Jd=,3 
11162 
11165 

JK=(J-1)03276S*1 
SMALL IN(DUMSA(1),DLJ1I(JK) 3 2768) 

11174 WRITE(7)W(UMSM(1),InI132 728) 
11201 1610 LONTINUE 
11205 1269 IF(ITIME.LT.52)GO 70 1001 
11210 1100 I-IOONE(01)IOONE(Wl) IDONE(W2)*IDONE(W3).IDONE(W4)4IONE(WB)



2*IDONE(PUPR)+1OONE(PLWR)


11236 IF(I.NE.8)GO TO IIOU


11240 CALL OPEN(SLFSETS.0,234oobBao,0oa32OO.ITAPE)


11250 00 1120"Kc1,


11252 NSECTt(K-I)*192


11254 I-IRANR(RQ1,DUMl(1),98304,NSECTPW1)


11270 1102 I=IDONE(WI)


11272 IF(I.NE.1)GO TO 1102


11274 00 1120 Jl,3


11276 JK-(J-1)*32768.1


11301 SMALL IN(DUMSM(1),DUM1(JK).32768)


11310 WRITE(S(DUMSM(I),1,3278)


11315 112' LONTINUE


11321 00 1110 K-1,8


11323 NSECTPCK-I) 4 192


11325 IPIRANR(RQZDUMl(1).98304NSECTW2)


11341 1101 IOD6NEW2)


11343 IF(INE.I)GO TO 1101


11345 00 1110 J-1,3


11347 JK=(J' )*32768.1
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11352 SMALL IN(DUMSM(1),OUMI(JK),32768)



11361 WRITE(5)(DUMSM(I),I;1,32768)


11366 111 CONTINUE


11372 END FILE 5


11374 CALL AFSREL(SLFSETSo0IO5TAPE)


11377 CALL OPEN(5LFSET6,O.23400.BOOtO,3200,ITAPE)


11407 50 1140 Kal8


11411 NSECT=[K-1)*192


11413 I=IRANR(RQ3DUM1(1),98304,NSECT.W3)


11427 1104 I=IOONE(W3)


11431 IF(I.NC.I)GO TO 1104


11433 DO 1140 J=I,3


11435 JK(J-1)032 768.1


11440 SMALL IN(DUMSM(1),OUM1(JK),32768)


11447 WRITE(6)(DUMSMI),IX1,32768)


11454 1140 LONTINUE


11460 §0 1130 Kl.8


11462 NSECTZ(K.1)fl92


11464 I=IRANR(RQ4DUMI(1})t98304,NSECT.W4)


11500 1103 IZIDONE(W4)


11502 IF(I.Nt.I)GO TO 1103


11504 00 1130 J193


I150b JK=(J-1)032768+1


11511 SMALL IN(DUMSM(1),DUMI(JK),32768


11520 WRITEC6)DUmSm(IhIl,32768)


11525 1130 CONTINUE


11531 END FILE 6


11533 CALL AFSREL(5LFSET6'0.IO6TAPE)


11536 DO 1131 101,5


11544 IOSTAPE(I)PIO7TAPE(I)


11545 1131 I06TAPE(I)SIO8TAPE(I)


11547 IF(ITIME.EQ.24)GO To 1001


11551 SToP


11553 END



PROGRAM LENGTH INCLUDING 1/0 REQUEST TABLES - GAP


15131



STATEMENT ASSIGNMENTS


STMT NO. LOCATION STMT NO& LOCATION STMT NO, LOCATION STMT NC 

13 
20 
25 
38 

. 
p 

* 

3563 
43P2 
3774 
4766 

16 
22 
26 
Sa 

p 
p 

4057 
3651 
3547 
140 

17 
23 
28 
60 

. 
r) 
i 
p. 

4115 
376 
3556 
5260 

19 
24 
36 
61 

62 
69 . 

5351 
5373 

63 
72 

p 

. 

5474 
5434 

64 
73 

p 

p 

5531 
5517 

65 
14 

75 p 5555 76 , 5606 190 2406 109 

113 
13n 
134 

p 
0 

4122 
1173 
13?5 

116 
131 
139 

. 
, 
p 

4221 
1220 
1354 

17 
132 
149 

. 
p 
, 

4225 
1247 
4304 

118 
133 
150 

152 
155 

p 1441 
11521 

152 
156 

p 1455 
1523 

153 
157 

* 
p 

14f1 
1540 

154 
161 

162 . 4656 163 p 4675 171 p 4714 172 

105
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SUBROUTINE ADVNC(TDT,M,RMSIRMSV.RMSW,UMAXVMAXWMAX) 
20 COMMON UC32 768) 

C CIal./(2.*DELT) 
20 CII./TOT 

C CZCI./{2.*DELT**2) 
21 C2.2./TDT*02 

C C3-DELT 
23 C3S.5*TDT 

C C4cDELT**2/2. 
25 C4..125*TDTP*2 

27 
C C5tOELT**3/6. 

CST0T**3/4. 
30 C6.C4*Cl 
32 C7-C5*C2 
35 00 10 1.1h4096 
43 U(I)=UfI).t3tU(I+8192 )*C6*(U(*12288)-U(14096))*C7*tU(I+12288)­

22.*U{I8192 )#U(1*4396)) 
53 10 CONTINUE 
54 GO TO(2o.30,40,o,30.4O)M 
71 20 0 2b I.1,4U96 
73 XOU(I)*2 
75 RMSU=RMSU.X 
76 IF(X.GT.UMAX)UMAKX 

101 25 CONTINUE 
1o3 SO TO So 
104 30 DO 3 1-1,4096 
106 X.U()**2 
110 RMSV'RMSV*X 
III IF(X.GT.VMAX)VMA=X 
114 35 CONTINUE 
116 0 TO 50 
117 4o 60 45 I1.,4096 
121 X=U(II*2 
123 RMSWSRMSW*X 
124 IF(X.GT.WMAX)WMAXtX 
127 45 CONTINUE 
131 5n RETURN 
132 END 

SUBPROGRAM LENGTH - ADVNC 

162 

STATEMENT ASSIGNMENTS 
5TMT NO. LOCATION STMT NO# LOCATION STMT NO& LOCATION STMT N( 
g'0
4 0 

. 
0 

72 
120 

25 
45 

& 
0 

102 
130 

30 
50 

A 
. 

lOS 
132 

35 

BLOCK NAMES AND LENGTHS 
100000 

VARIABLE SSIGNENTS 
NAME 4 LOCATION NAME 0 LOCATION NAME 0 LOCATION NAME 

106
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SUBROUTINE DVRGNC(C129RMSDRMSURMSV.RMSWPSK1VSK2UMAXVMAXWMAXM


PIDOELT)



25 LCM/8B1/VLG


25 LCM/IB2/WLG


25 LCM/083/DLG


25 DIMENSION VLG(409613,8),WLG(4096,3,8),DLG(64,64,16).A(20480).D(819



22) 
25 
25 

COMMON DUMSH(32768) 
EQUIVALENCE (A(])DUMSM(I)).(D(1).DUMSM(20481)) 

C bISPLAY OFP 
25 
31 

N=MOO(M,4) 
IF(NCG0.O)NO4 

33 OTDT=DELT/12. 
35 tTDTS2.*OELT/3. 
40 
41 

O0 5. K=3,6 
IF((N.EQ.2.OR.(J.EQ.4)}GO TO 2 

SO SMALL IN(A(3),VLG(IlK),4096) 
57 GO TO 3 
57 p SMALL IN(A(3).WLG(1.j.K).4n96) 
67 
71 

3 A(1)SA(4097) 
A(2)CA(4098) 

72 A(4099)-A(3) 
74 A(4100)=A(4) 
75 O0 10 [114096 

104 
111 
124 

10 D(I)= A(l)-A(I*4)+B.*(A(I*3)-A(I41)) 
IF((N.EQ.2).OR.(N,.EQ.4))b0 TO 1 
SMALL IN(A(I29),VLG1102RK),

4 096) 
133 GO TO 14 
133 13 SMALL IN(A(129)n-LG(1,2.K),4096) 
143 14 00 1 1=1,128 
150 15 A(I).A(I*4096) 

152 DO 16 I=4225,4352 
162 16 A(I)=A(I-409 ) 

164 
176 

00 2" 1=14096 
20 0(l)O(I)+

-
A(!).A(I4+Z6)+B.*(A(I*19)-A(Id 

6 4 )) 
204 J=K 4 
205 JJ=1 
206 IF((N.EQ.2).OR.(4.E(J.4))GO TO 23


222 00 2t 1=1.5


223 SMALL IN(A(JJ),VLG(1,3J),4096)


233 JmJ~ l
 

234 25 JJ=JJ*4096


237 60 TO 24


237 23 DO 2 1-1.5 3 4


241 SMALL IN(A(JJ),WL,(19 ,J), 096)


251 Jj*l


252 26 JJ=JJ*4096


255 24 00 30 1=1,4096


263 30 D(I)cC12*(D(I).A().A(I16384).B.*(ACItlZZS8-A(I*40 

9 6)))

4



271 J=KC*(N.I)0
 
275 GO TO(40,32,33)ID


310 32 SMALL. IN(D(4b97),DLG(1,1,J)94096)


320 00 36 1=1,4096



9
 
325 O(I)*-OTDT*O(I).0(I*40 6)


327 36 CONTINUE
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330 50 TO 40 

334 
344 
351 
353 
357 
367 
371 
372 

33 SMALL IN(D(4097),DLG(1,1,J).4096) 
O0 37 I114096 
O(I)=TTDT*D(I) D(1*4096) 

37 CONTINUE 
4n SMALL OUT(0(1)OLO(tlJ),4096) 
50 ONTINUE 

ETURN 
ENO 

SUBPROGRAM LENGTH - OVRGNC 

424 

STATEMENT ASSIGNMENTS 
STMT NO. LOCATION 
2 60 
23 240 

40 36b 

STMT NO# 
3 0 
24 0 

LOCATION 
70 

256 

STMT NO* 
13 0 
32 , 

LOCATION 
134 
311 

STMT 
14 
33 

NO 

ULOCK NAMES AND LENGTHS 

100000 

VARIABLE ASSIGNMENTS 
NAME 0 LOCATION NAME ' LOCATION NAME A LOCATION NAME 

A 
UUMSM 
JJ 
OTDT 
RMSW 
UMAX 

,R 
1 

aR 
OR 
OR 

GROCo1 
OCOl 

4j7 
422 

4 
? 

C12 
I 
K 
R'SD 
SKI 
VMAX 

OR 
*1 
tI 
OR 
*R 
rR 

0 
415 
420 

I 
5 

10 

D 
ID 
M 
RPSU 
SK2 
WMAX 

OR 
o1 
16I 
OR 
OR 
OR 

50000C0 
13 
12 
2 
6 

11 

DELT 
1 
N 
RMSV 
TTDT 

LCM BLOCK NAMES AND LENGTHS 
B8I - 3000oO 882 300000 83 , 200000 

LCM VAkIABLE ASSIGNMENTS 

NAME A LOCATION NAME t LOCATION NAME A LOCATION 

ULG ,R OLo3 VLG rR OLO wLG .R OL02 

EXTERNAL ASSIGNMENTS 
ACGOER OR 

5TART OF . CONSTANTS 
374 

TEMPORARIES 
403 

INDIRECTS 
413 

UNusED COMPI 
733 
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SUBROUTINE FFTFXYCP) 


3 DIMENSION P(4 096 ,2) 

.3 00 1 I11,4096 

7 I P I.,?)fO. 


11 CALL FFT2IP(II.P(i,2).40gb.-I) 

15 RETURN 

16 END 


SUBPROGRAM LENGTH - FFTFXY 

30 


VARIABLE ASSIGNMENTS 
NAME 4 LOCATION NAME - LOCATION 

1 .1 27 P .R 0 


LXTERNAL ASSIGNMENTS 

FFT2 ,R 

STAPT OF CONSTANTS TEMPORARIES INDIRECTS UNUSED COMPI 


20 22 
 24 746 
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3 
3 
7 

10 

SUBROUTINE FFTBXY(P) 
DIMENSION PC4096,2 
CALL FFT2(P(Il),P(1,2)4096,l) 
RETURN 
END 

CD Fus 

SUBPROGRAM LENGTH 

20 

- FFTBXY 

VARIABLE ASSIGNMENTS 
NAME * LOCATION 

P .R 0 

EXTERNAL ASSIGNMENTS 
FFT2 &R 

START OF CONSTANTS 

12 
TEMPORARIES 

14 
INDIRECTS 

16 
UNUSED COMPI 

746 
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SUBROUTINE DELSG(PvCC64,sS64.L.NC6)


20 DIMENSION P(256,54,2,)C(255 ,S(2S5),C64(255).S64(255)



C DISPLAY OFF


20 DO 10 M=l2 5 6


21 CALL FFT2(P(M,1,1),P(M,1,2}h64.-2S6


34 in CONTINUE


36 00 20 K=1,64


37 K2n28 K-1


40 K3m3*K-2


42 K4n4*K-3


45 UO 20 J=1,4
4b JI-J;L*N-I



53 J33*412


55 J44*j1.3 

57 UO 2v Islx,4 

61 12.2;-1 

62 13.3*1-2 
64 14=4*1.3 

66 X=Cb*(2.*(C(141*C64{J4)-S(14)*S64(41}*C64(14)*C64(K4)),128.*(C(I2)


4

2*C64(J2)-S(I2)*S64(j2)*C6 (I)IC64CK2))-32.*(C(13)OC64J3)-S(13)*


3S64(J3).C64(I3A)+064K3)).32.o((I)*C64(JI)-S(I)*56(J1).C64(I)+


4C64(K))-390.



151 R=I.(J-H)64


155 IF(AdS(X).LT.1.E-O5)GO TO 17


161 X-I./X


162 60 TO 18


163 17 X-O.


171 18 P(MKI)zx*PIM,K.1)



C DISPLAY ON IF((K.EQ.I).AND(I.EQ.l1))


172 P(MK2)-X*P(MK,2)



C DISPLAY OFF


C IF((K.EQ.1).AND.(I.EQ.i))PRINT 51,KIP(M.K1)


C 51 FORMAT(* P(MKI)s4EI4.)



176 20 CONTINUE


204 D0 30 M1v1256

 2

e06 CALL FFTZ(P(M,11),P(MHl.),64. 56)


221 30 CONTINUE


223 RETURN


224 END



SUBPROGRAM LENGTH - DELSO 


300 


STATEMENT ASSIGNMENTS 

STMT NO. LOCATION STMT NOt LOCATION 

17 A 164 18 A 165 


VARIABLE ASSIGNMENTS 

NAME . LOCATION NAME 0 LOCATION NAME r LOCATION NAME 


L OR 1 C6 OR 7 C64 OR 2 1 


12 O1 262 13 *1 263 14 tI 264 1 
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SUBROUTINE UVDT(JiV.WDUDVOWP.MCNCBCII.RMSURMSV.RMSW)


DIMENSION U(64Oo)V(6400),W(6400.DU(1024)tDVfo24),DW(1024)



2P (6400)


26 Do 10 I191024

56 DU(I)XLU(I¢2688)-CB t({I2686}°Pf1#2690)+8.*(P(I+2689)-P(1+268T))|



66 DV(I)=V(I+2688:CB*(P(I*2560).P(!*2816i*t8SP(I+2752)P(I*2624)f)


77 10 DW(I})W(I.2688-Ce-PI*128)-P(I*5240) 8.S(P(I+3968).P(I1tOl8|))



141 RETURN


142 END



SUBPROGRAM LENGTH - OVDT


203



VARIABLE ASSIGNMENTS


NAME . LOCATION NAME t LOCATION NAME o LOCATION NAME 

CN OR 10 Cli ,R 12 C8 OR 11 DU 
UV 
P 

R 
*R 

4 
6 

O 
RMSU 

p.R 
OR 

5 
13 

I 
RMSV 

01 
OR 

202 
14 

M 
RMSW 

U *R 0 V OR I W OR 2 

START OF CONSTANTS TEMPORARIES INDIRECTS UNUSED CO4PI 

144 145 163 743( 
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SUBROUTINE CALCPR(U,V,W,P,M,CS,C7)


17 DIMENSION U(6400Vt6400),Wl64O0),P(4096)



C DISPLAY OFF


17 I(M.EQ.2)Go TO 20


20 II=l


21 12*1024


22 IF(M.EQ.1LJ=2944


25 IF(M.EG.3)JP896


30 1F(M.EQ.4 J=192P


33 5 O 10 IvIIlI2 
37 JJ=I4J 
40 P(JJ)=C7*P(JJ) C3*(U(I 2686)-U(I*2690)+VC12560)-V

( I 2816) W(I*128 
,).W(*5248),8.*(J(I*d6l9)..(I;687)V(I1-752)-V(I.2624).W(I*39

68)


3-W(I4i4OS)8)



65 If.CONTINUE


67 IF(M.NE.2)GO TO 50


74 GO TO 3


74 2, 11=1


75 r2-128


76 JX3968


77 GO TO 5


lo0 30 IF(J.EQ,-128)60 TO 60


102 11129


103 I2.1024


104 J-1z8


105 GO TO 5


10o So RETURN


107 END



SUBPROGRAM LENGTH - CALCPR



142



STATEMENT ASSIGNMENTS 
STMT NO* LOCATION STMT NO LOCATION STMT NO# LOCATION STMT NO+ 

5 34 20 A 75 30 $ 101 50 

VARIABLE ASSIGNMENTS



NAME . LOCATION NAME 0 LOCATION NAME 0 LOCATION NAME 

C3 OR 5 C? $R 6 I ot 135 I1 

12 
P 

AI 
,R 

137 J 
U 

01 
OR 

140 
0 

JJ 
V 

4I 
OR 

141 
I 

M 
W 

START OF CONSTANTS TEMPORARIES INDIRECTS UNUSED COMPIt 

111 112 120 7431 

113
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SUBROUTINE DVDTMPI(UVW.DUDVDWMCNCSCllCI2,ITIMERMSDRMSU,


2RMSVRMSWSK1,SK2,UMAXVMAXWMAXSISET)



37 DIMENSION U(64,ZD.S),V(6400),W(6400),DU(IOZ4),DV(1024),DW(1024)I


2P(6400),S(64)



37 cl..5acs


41 C2.CIL*CN


43 lF(rSET.EQ.I)GD TO 20


46 UO I ImlolOZ4


67 DIV'U(J-2686)-u 1.2690)*v(1+2560)-V(I*aBlb)*W(1-1?8)-W(1#5248)



P+8.*(U(1*2689)-U(1+2687)*V(1*27521-V(1-2624)*W(I-3969)-W(1*1408))


107 UU(j).-Cl*(UII+2688)*(U(1*2686).U(1*2690)+8.*(U(I-2609)-t)(l*a6$7))



2f*V(1-268El)*(t)(I+256L')-U( .2al6)+B.*(U 1+2752)-ij(1+2624)))


3-W(I.2688)*(U(1*128)'U(1+5248)48 ,*jU(I*3968)-U(I.1408)j)


4*U(1+26a6)**2-U(I*2690)**2+80*(U(I+2689)6*2-U(l#R687)**R)


5*U(1+2560)*V(1+2560)-U(1+2816)*V(1+2916)+8.*(U(1+2752)*V(l.z752)


6-U(I*2624):VCI*2624))+Utl*128)*W(1*128)-U(1*5248)*Wfl+ 248)*S.*


7(U(113968) W I+3968)-uii*i4o8)*W(1+1408))+U(2688)*DIV)


9*C2*tl6.*(U(1+2689)*U(l*e687)*U(I+?752)*U(1+2624)-U(1+3968)+U(I+


AL408))-U(112686)-U(1+2690)-U(I+4816)-U(1*2560)-U(I+128)-U(1.5248)


13-90.*U(1+268i))



224 UV(I)R-CI*IU(142688)*(V(1#2686)-V(1+2690)+B.O(VII*2689)-V(I*2687))


Pi'V(1+2688)*(V(1+256?)-V(I+2816)+B.*(V(142752)-V(1-2624)))


3*W(1*9688)*(V(1#128)-V(I+5248)*S.O(V(I*3968).V(I*1408)))


4+V(1#2686)*U(I-2686)-V(I+Z690)*U(1*2690);B.*(V(1-2689)*U(1+2689)


5-V(1*268T)*U(I.2667))#V(I#2560)0*?-Vil.2dl6)0*4.8.*(V(I. 752)**2


6-V(I$2624)**C)+V(I*if8)*W(I*12 ).V(1*5248)*W(I*i248)48.*(V(I*3968)


7*W(I+3968)-V(1+1408)*W(1+14 8))*V(2688)*DIV)


9*C2*(16.*(V(142689)*V(l'c687)-V(I+2752)*V(I*2624)*V(1+3968)*V(I*


A14n8))-V(1026861-V(I#2690)-V 14'816)-V(I*2560)-Vtr*128)-VII+5248)


B-90.*V(162684))



356 UWCI)=-Cl*IU(1+26a8 *(W(1+2686)-W(1426901*8.*(W(1-2689)-W(I*E6B7)J


2)*V(I,2688)*(W(14256U)-W(i.2816)*R.O(W(I+2752)-W(1+2624)))


3-W(l#Z6aB) ;148)*8.*(W(I,3Y6B)-W(I,1408)))


4+ W(I*2686)*U(I+2686)-W(1+7690)*U(1#2690)+8.*(w(1*2689)*U(I*2689)


S-W(1496871*U(142687))*W(1*25601*V(112560i-w(1*2816)*v(I+281b)+a.*


6(W(1-2752)*V(1-2752)-Wil42624)*V(1+1!624))+W(I+IL>S)**2-W(1*5 445)**2


7+8.*(W(J.3968)**2-W(I+!408)**2)+W(2688)*UIV)


9*C2*(16.*(W(J.2689)#W(142687)#W(l+2TS2)+i(I*2624)*W(143968)*W(l+


AL408))-W(I*2b86)-W(1#26-90)-W(Ilf8)6)-W(I*2560)-W(14128)-W(1*5248)


B-90.*W(J-2685))



s37 111LONTINUE


541 GO TO So


541 2o 00 2 1-111024


563 DIV-U(1*2686)-U(1*2690)+V(7-2S60).V(1.2816)+W(1+128)-W(1*5248)



2*8.4(U(I+2689)-U(1#2687)+V(1+2752).V(1.2624)*W(143968)-W(I+1408))


603 DU(T)=-Cl*(U(1-2688)*(U(I'2b86)-U(1*2690)+B.*(Li(1*2689)-U(1*2687))



2)-V(1*2688)*(U(142560)-U(1+2816)40.*(U(I*2752)-U(1*2624)))


3+W(l*e688)*(U(I+128);U(1,5748)+8.*(V(1*3968)-U(1+1408)))


4'U(I+26861**ZwU(1+2690)**2+8.*(U(J.2689)i*2-U(I+2687)**?)


S*U(1+2560)*V(1425601-U(162816)*V(1*2§16)+$.*(U(1*27S2)*v(r*275a)


6-U(162624)*V(I+L'624))*U(1+128)*W(1#128)-U(I*5248)*W(l+b248)+B.*


7(U(J-3§68)*W(I+39(,S)-UI.L408)*W(J-1408))*U(2608)*DIV)


9-C2*(16.*(U(I+2689)*U(1'4687)+U(1+2752)+U(I-2624)+U(1+3968)*U(I­

A14D8))-U(1"2686)-U(I*2696)-U(I-'816)-U(I-2560)-U(I-128)-U(I-!)248)


B-90.*U(10268i))
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7 0 ov(I)Z.C1*c(I.12688l*(V(I,2686)-V(I.2690l+8.*(VI268q).V4I*26e7))


2).V(I,2688)*(VCI2560)-V(I,28161,8.*(V(I12752h-V(1264))l


3.W(1*2688j*(v(I*128).VI.248*8.*(VCI*3968)-VU*14o8)))


4-V(!,2686)*U(I.2686p.V(I,269O)*IJ(I260h8.*(V(I*2689)*U(I+268


9 )
 
5.V(I,2687)*U(I.2s87)).V(I,256O)**P-v(I.2"l6)**2.8.*(VII.;75z)**2



7*W(1 3968)..V(I-14O8)*Wf1,L4 8))*V(268fi)*DIV)I


94C2 *(j6.*(V(1,2689).V(I+c6R37).Vfl.37S2)4V(I.26E4).V(I.3968)*V(I+

A14oofl.V(1.26e6).Vfl.269Q).VCI+Z816)-V(It2560)-V(I*128-V(I$2


4 3
 
8-9O.*Vt 1+26881)



1o57 DW(I)=Cl*U(1.2688)*CW(I,2686).W(I* 69OI8S.*IW(I+2689)-W(IL2687))


2[,V(142688)*(WtI+2562)rW(I*28l6),8.-* W(I+2152)W(I+2624f))
4
 
3*W(I-d688)*(WCI+I28l-W I.B#248[8B.*CbJ(1*3268)4UI1+I OR)))



4+.2I-686) *UCI.26863-WC1.2690) OU(I.2690 .8.*cw(I.2689)*u(f;2689)



6 (W(I,2752)*V(1+272)..W(I~d624)*V(1.Z624)fl(1*128)**2.W(1*5248)*o2


7+a.*(W(I.3968t**2-HI*i4O8 1**2)1+W2688 VLIV) 
9,C2*(16.*(W(t269)W(I2687hW(+27S2)CZ(12624)*WI3968)*W(I-
A14OSI ).w(y-eb36).W(I269Q3.d(If816)-WtI*25601aW(I+128)-WCI+5248) 
R-9O.*W(Il.688)) ­

1177 RM OURMSD+DIV**2


12D0 X=UJ(I.26882**2


120Z RNSU2RI4SU+X


1204 1F(X.GT.UMAX)UMAX.X


1213 xrV{I+2()88)**2


1215 RMSVURMSV.X


1217 1r(X.GT.VMAXIVMAX-X


1223 X=w(I+2688)**P


1225 RMSW*RMSW+X


1227 IF(X.GT.WMAX)WMAKX


1234 X=C1Z*(U(I.2286).U(i*269o).8.*(U(I.2689)-U(I+2687)))


1243 SKISSK1*X*03


1246 SK2.SK24X**2


1253 25 CONTINUE


1255 27 IE.IE*1


1257 IF(mOD(IE,16).NE.1)GO TO Sn


1263 Do 30 j.3.18


1264 D0 30 1:1,644

1265 DO 30 Ln1.6



1
1266 LL-L*I­

1270 IF(LL.GT.64)LLzLLP64

1273 30 5(I) 05(I) .U(L.J.3) 'U(LL.J,3)


131 50 RETURN


1313 END



SUBPROGRAM LENGTH - DVDTMP 
16172 

STATEMENT ASSIGNMENTS 
STMt NO. LOCATION STIMT NOr LOCATION STINT NOt LOCATION STMT NO 

20 0 542 27 t 1256 30 1.214 50 

VARIABLE ASSIGNMENTS



115



http:16.32.37


START



The program START createa-the initial velocity field with the



correct total energy and energy spectrum and a small (but not zero)



divergence.
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1 PnOrRAM STApT(OUT.FSET7)


2 IMPLICIT INTEGER (Z)


3 LCM/BHI/uR


4 LLM/bHt/UI


q DIMENSION Vp(25b,b4),VI(p56 6 4)


6 DIMENI1ON 0t64St,8),RI(20),P0?(2oI,


6 6 6 6 4 ,
 

7 ?VkS( 4, 4,3),VIS(b 4 4,3) ,DLG(64.64,16).Uit64,,64),Ul(
 
s 3 1 6,64),EeSS5), XK(bS)


9 DIMENSION I7TAPLS.ITTAPn(2)



) )
 

10 EOUIVALENCF (VRS(U),UR(1)) (VTS(1),U (I1).(DLG(1).IIR(1


i EQUIVALENCF ((1) ,VP(I)).(g(1A3R51 V1 (i))


12 DATA XK/.31,o44,.b4. .26,.70,.766,.83,,.A. .q41,.q99?1.086.1.175.


13 21.216,1.35,1 .AbK.55,1.65,1.7,lA5,2,0,4o2.2,4,2.6.2.8,3.0,3.2,


14 33.4.3.b,3.8,4.0,4.2.4.4,4.6,4.8,5.0.5.5.6.t6.r.7.7.5,8..15,9.. 

16 DATA E/O.,5?.7,1 1.6,101.4.87.5.79.1.67.9.59.4,51.q.45.1,39.8.


17 229.1,22.6,17.7,13.2iio.,7.91,6.32,5.06 .09.3.,2.n07,1.39,1.9,
 

IR 3.88,.7L.58, 48*9J-'°32-'.26, .2?'.1,4. 118, g018.156039,.0p5
..



4.016,.O11,.l08,.UO57..0042,.00?4,.004,.0087,.000q3,.0o034.


20 5.00022,'OOO,4..OuO084..000047.000023..rO001/


/
21 DATA WIw2,nl/?L*1,2LW2,2LD1
 
?2 DATA ROI/0*O,/,RU2/20O0./


23 DATA IIAPE/I,4LTAPE/.I7TAPE/4,3*0,BLXXn63593/


e4 CALL NEMREOQ13 1 0 7z91)


25 CALL FORQTSvWI,Roj)


26 CALL FOROTSW2,RIle)


27 CALL CREATF(WIURT,.00,0,00., 5 36)


28 CALL CkEATE(W2,U,IT,0,O,O*p,O,1536)


29 C=SQRT(3.14 1 5927/(20.*4096. l*3.ll45q27*3o585)


30 CC=6.28318/PO.

31 RtlS=o,



32 IX=O


33 X=O, 3 2
 
34 CALL OPEN(SLFSETTO,2340008O0,0,0. 00.ITAPE)



35 DO SO Z=1,64


36 X3=7-I


J7 IF(X3.T.31.)x3=X3 -64.


3A DO 2o J=1,64


39 X2=1-l


4n IFlX?.GT. 3 ].j)X==X2-64.


41 0D?0 I=1,64
42 X=­

43 (X1GT.31.l)XI=xa-64.



44 =So~l (xl*4*2+X2*4C) 
45 IF(R.LT..o 0 1 )60 TO I?


46 p2=x Ix/8


47 P1=-Xl/B


48 B=QST((x3*pl)**2*(X3*P2)**2+(X?*P1)**?-2.*X]*X2*Pi*P2 lXl*p2)**2)

49 Ol=-p2*x3/R



so O2=PI*x3/ 
51 O3=(P2*xl-Pl x2)/8


5? GO TO 13


53 12 P1=1.


54 P=o.


55 01=0.

56 Oe=l,


57 O3
=0.
 
58 13 Y=CC*$SQRT(XI**2XZ**2+X3**Z)

59 DO 14 N=1,5



60 IF(Y.GT.XK(N)IGO TO 14



117



http:48*9J-'�32-'.26
http:8,.7L.58
http:229.1,22.6,17.7,13.2iio.,7.91,6.32,5.06
http:XK/.31,o44,.b4


61 M=N 
b? GO To 15 
63 14 CONTINUE 
64 A=. 
6 GO TO 16 
66 15 A=SRT(E(N)) 
67 16 CONTINUE 

b8 
6970 

THETAI=RANF(0.)*6.2831854 
TI1ETA2=RANF(o.)* 6 .283 1 854C=COS(THETA) 

71 
72 
73
74 

C2=COS(THETA2 )
S]=SIV(THETAI) 
S2 0 =IN(THETA2)(IJ.I)=A*cCl*Pl+Sl*ol) 

75 
76 

Q (TJ,2 )=A*(ClOP2S*ol2) 
Q (IJ,3)=A*SI*3 

77 0 (T,J,4)=A(Ce*p] 8S2 0 1 
18 ,(IJ,5)=A*(C2*Pt 5 2 *02) 
79 0 (IJ,6)=A*s2*03 
a0 2o CONTINUE 
81 IU030 K=1,3 
8? KK=K+3 
83 DO 30 J=164 
84 CALL FFT2(Q(1,JK),Q(1,J,KK),64,J) 
8 3D CONTINUE 
86 
87 

DO 13 K=t,3 
KK=K+3 

88 DO 13 I=1.64 
89 CALL FFT 2 (0(IjIK) Q(T.I.KK),64,64) 
90 33 CONTINUE 
91 NSECT=(Z-1)*24 
92 
93 
94 

31 I=IONE(WI) 
IF(T.NE.NGO To 31 

32 :IDONE(w2i 
9; 
96 

IF(I°NE°I)G 0 To 32 
SMALL OUT(O(91I.)OLGCI0,14).12288) 

97 
9A 
99 

SMALL OUT(Q(1 I'4) OLC(,IT),]2288) 
I=IRANW(RQ1.DLG(l,±,4),

1 2 2
8 8,NSECTwJ) 

IrIpANw(RO2.OLG(III,7),122 8 8.NSFCTw2I 
1O0 50 CONTINUE 
101 47 I=IDONE(WI) 
102 IF(I.NE.InGO To 47 
103 48 I=IDONE(w2) 
104 
105 C 

IF(I.NE.I)Gn TO 48 
READ6 4 1T S BY 16 J S By 64 Z S INTO LARGE CORE 

106 NINC=(' 
107 DO 2u0 N=1,4 
108 NSECTi=NINC 
109 DO 15(, Mt=l, 
110 NSECT=NSECTI 
111 DO PO Z=164 

112 
113 

I=IPANR(RQ,UR(1 ,1,Z), 1 02 4,NSECT,WI)I=IRANR(RQ2.UICIIZ),1024,NSFCTW2) 
114 81 I=TOONE(WI) 
l1; IF(I.NE.1)Go To 81 
116 82 I=IOUNE(W2) 
117 
118 

IF(r.NE.I)Gn To 82 
80 NSECT=NSECT.24 

119 DO 95 Jcl,IA. 4 

120 DO 90 Z=1,64 

118





121 SPALL IN (VP(I,Z),UQ(1,J.Z)26

1

12? 90 SMALL IN (VT(tZ),UI(1,JZ),Pr6)


123 DO 91 I1.2 6
124 91 CALL FFT2(Vp(I,1),VI(T.1j,64,256)


1'5 DO 2 Z=1.64
 


3d6 
 SMALL OUT(VP(IZ):UR(1 ,JZ),56)


127 92 SMALL OUT(VT(1.Z)tUI( 1 ,J.Z). 63


128 95 CONTINUE



I29 NSECT=NSECTI

13n DO 109 Z=1,64



131 I=IRANW(RO1.UR(I,,Z),Iop4,NSECTWI)


132 101 I=IPONE(W1)


133 IF(I.NL.1)Go To 1o


134 100 NSECT=NSECT+24


135 150 NSECTI=NSECTI8


136 eUO NINCnJINC.2



137 DO 320 K=1,12


138 NSET= (K-1 11i2B


139 I=IRAqJR(RQI.UR(1),65536NSECTW)


140 321 I=IDO'JE(wi)


141 IF(T.4E.I)G To 321
0
142 Do 31 MIP



14; 11=3266 *(M.l),l

144 SMALL IN(O(l)tUR(II),32768)
145 DO 308.1=1,32768



146 0(1}= *fI) 
147 300 RIIS=RMS.(1)3 *2


14A 310 WRITE(7),(Q(T), n1,3 2 768 
149 3?0 CONTINUE 

1 

ISO RmS=S0RT(RMS/3.)/51?. 
151 pRINT 35o,Ris 
152 350 FORMAI(4 RMS=*E14.7) 
153 CALL AFSRE (5LFSETI,).ITTAPE)


154 sTop


155 NO
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