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.0 INTRODUCTION

Recent shortages in the supply of clean energy, coupled with increasing costs

of fuel, have forced the nation to reassess all forms of energy, including wind

power, to determine their practicality. The national wind energy program, which

originated at the National Science Foundation and is now directed by the Energy

Research and Development Administration (ERDA), includes research and develop-

ment on the many applications and concepts of wind-energy systems.

As part of this program, the NASA Lewis Research Center was assigned the project

responsibility of designing and constructing a wind turbine generator large

enough to assess the technological requirements and engineering problems of large

wind turbine generators. The 100-kW wind turbine was assembled for this purpose

at the NASA-Lewis Plum Brook Station in Sandusky, Ohio. While the design and

assembly of the wind turbine was conducted by NASA-Lewis, the detail design,

analyses, fabrication, and test, of the 60-foot-long metal blades were performed

by the Lockheed Aircraft Corporation under NASA contract NAS 3-19?35.

This report presents the results of the dynamic analyses conducted on the metal

wind turbine blades, of the weight and balance tests conducted en each of the

three blades delivered to NASA, of the static stiffness tests, and of the struc-

tural vibration tests conducted on the first manufactured blade. The results of

this report show the metal wind turbine blades to be free from structural or

dynamic resonance at the wind turbine design speed. Also, the results indicate

the blades to be free from aeroelastic instability within the normal operating

range of the wind turbine.

STAR category hh 1~1
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2.0 DYNAMIC ANALYSIS

Several dynamic analyses have been performed on the wind turbine blade and

coupled wind turbine-tower system. The analyses include blade frequency

determination, blade flutter and divergence, whirl mode stability and rotor

blade transient response. The analytical results presented show the system

to be free from any aeroelastic stability or dynamic response problem. Addi-

tionally, panel flutter has been precluded by the selection of the skin

thicknesses and spar rib spacings. The results of the various dynamic studies

conducted are now presented.

2.1 FLUTTER AND DIVERGENCE

Aeroelastic stability analyses have been performed and have shown the wind

turbine system to be free from flutter and divergence throughout the entire

range of operation of the system. These analyses have included examination

of effect of rotor shaft and blade feathering constraint, rotor speed,

collective blade angle, wind speed and direction, and control system flexibility.

Using the NASA furnished tower data and drawings to establish appropriate

tower flexibility data, analyses were performed for the cantilever, anti-

symmetric or cyclic, and symmetric or collective boundary conditions. The

collective feathering stiffness was based on data supplied by NASA however,

no data was available on the cyclic or antisymmetric feathering stiffness so

its nominal value was assumed to be twice the collective value.

The cantilever boundary condition is an artificial condition in that because

of the two-bladed nature of the wind turbine, the relatively low drive system

torsional impedance characteristics and the tower flexibility, the cantilever

constraint cannot exist. Data is presented for this condition however just

to provide a frame of reference for the effect of introducing the flexible

tower and control system.

The cyclic or antisymmetric boundary condition is one where the rotor intro-

duces shears into the tower normal to the rotor shaft axis and overturning

2-1



moments onto the shaft, or moment vectors perpendicular to the shaft axis. The

rotor hub due to combined mast and tower flexibility is also allowed to move

in these directions. The rotor hub is constrained not to move angularly in

the direction of rotation nor translationally along the shaft axis.

For the collective or symmetric boundary condition, the rotor hub is allowed

to have motion translationally along the shaft axis and angularly in the direction

of rotation. Translation and angular motion perpendicular to the shaft axis

is constrained not to occur. The collective blade feathering constraint is

such that feathering loads are transmitted to the collective actuator and

blade feathering is symmetric or in the same direction on both blades. For

the cyclic case, the feathering moments are reacted across the feathering gear

and no loads are transmitted to the collective actuator.

The basic rotor, hub and blade stiffness and inertial data used in the analyses

presented herein are given in Reference 1 . The tower and control flexibilities

used are tabulated in Table 1.

Table 1 . - TOWER AND CONTROL FLEXIBILITY DATA

Description

Tower Lateral Flexibility at Hub

Tower Vertical Flexibility at Hub

Tower Flexibility Along Shaft Axis

Tower Pitch Flexibility at Hub

Tower Yaw Flexibility at Hub

Tower Angular Flexibility About Shaft Axis

Collective Control Flexibility (Total)

Cyclic Control Flexibility (Total)

Flexibility

38.2 x 10~6 in/lb.

3.95 x 10~6 in/lb.

3^.6 x 10~6 in/lb.

3.66 x 10-9 rad/in-lb.

9.12 x 10~9 rad/in-lb.

5.96 x 10"9 rad/in-lb.

5.13 x 10~8 rad/in-lb.

2.56 x 10~8 rad/in-lb.

The data presented in this table represent the combined flexibility of the

tower, pylon and rotor shaft. The tower data was obtained from the tower

NASTRAN data supplied by NASA-LeRC and the pylon and shaft flexibilities were
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deriveo iron UASA-LeRC furniEned arav/ings. In the analyses presented herein

rms values of the stiffnesses of the corresponding flexibilities in the table

for the lateral-vertical axes and for the pitch-yaw axis were used.

The following table summarizes the conditions analyzed and for which data are

presented. The table gives a definition of each condition and also indicates

the figures presented in the following discussion in which the corresponding

aeroelastic stability data are given.

Table 2. SUMMARY OF AEROELASTIC STABILITY CONDITIONS PRESENTED

rpm

0-80

0-80

0- 80

0-80

0-80

0.0

0.0

O o O

0.0

0.0

0.0

0.0

0.0

93AR

0°

0°

0°

-18°
-28°
-90°
-90°
-90°
-90°

-90°

-90°

-90°
-90°

Vw-mph

0.

18

18

50
80

0-1 IK)
l l fO

0-1^0
O-lltO

0-200

0-200

1UO

11+0

Wind
Direction

(D

(D

(D

(D

(D

(D

(2)

(2)

(3)
(3)
(3)
(3)

Control
Stiffness

Nominal

Nominal

kO% Nominal

Nominal

Nominal

Nominal

Variable

Nominal

hO% Nominal

Nominal

Nominal

Variable

Variable

Rotor
Brake On

No

No

No

No

No

No

No

No

No

No

Yes

No

Yes

Reference
Figure (s)

3 & k

5, 6, & 7
8 & 9

10, 11, & 12

13, 14, & 15
16, 17, &. 18

19
20 & 21

22

23, 24, & 25

26

27 & 28

29

(1 ) Wind blowing along shaft axis

(2) Wind blowing over trailing edge of blade

(3) Wind blowing over trailing edge of blade at skewed angle of
worst case for static divergence

degrees -
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2.1.1 Blade Frequencies

Presented first are cantilever and cyclic blade frequency spectrums as a

function of rotor speed. Referring to Figure 1 it is seen that for the canti-

lever blade the dirst flap frequency is located just below 3P or the third

order crossing line and the first inplane mode is between 3P and f̂P. The next

higher frequency mode is the second flap mode with a frequency above 7?- The

cantilever blade torsion frequency is at 3^-6 cps or at approximately 52-P.

The effect of introducing the tower and control flexibilities on the blade

natural frequencies for the cyclic boundary condition is seen in Figure 2.

Note a reduction in the first flap and first inplane modes. Also note the

torsion frequency is reduced to 22.6 cps or approximately 3^— P. The other

modes are similarly affected. These data have been presented to give a general

overview of the dynamics of the wind turbine system prior to presentation of

the aeroelastic stability results. Additional analytical frequency and mode

shape data are given in Reference 1 and experimental data are given in

Section 3.2 of this report.

2.1.2 Rotating Flutter and Divergence Results

Figures 3 through 15 present flutter solutions for the cantilever, cyclic, and

collective boundary conditions for rotor speeds from zero to 80 rpm (kO in

normal) and for wind speeds from 0 to 80 mph and collective blade angles for

0 to -28 degrees respectively. Figures 3 and ^ are for zero blade and zero

wind speed, a powered condition, for the cyclic and collective boundary condition

respectively. Note that all modes with the exception of mode 5 in each case

increase in stability with increasing rotor speed. Mode 5 as indicated is

the second inplane mode for the cyclic condition and the first inplane or pin-

wheel mode for the collective condition and therefore would be expected to

be little influenced by the aerodynamic effects associated with rotor rotation.

Figures 5, 6, and 7 give results of the flutter analyses conducted at the

nominal design wind speed of 18 mph for the cantilever, cyclic and collective

boundary conditions respectively. The data shown in these and the figures to

follow are presented for a constant tip speed ratio which is associated with

2-lf
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the indicated wind speed and the ^0 rpm normal rotational speed. Again all

modes are shown to be stable. Note however in Figure 6 that Mode 2, the first

cyclic inplane mode damping is fairly independent of rotor speed in contrast

to the effect of rotor speed on this mode at zero wind speed in Figure 3«

Figures 8 and 9 show the results at the same 18 mph wind speed blade angle

condition for control system stiffnesses of hO% of the nominal values. Com-

paring these results with those on Figures 6 and 7 show a reduction in the

first torsion mode frequencies but no real significant changes in stability

characteristics. The damping of all the modes are still shown to be stable

and with the exception of the inplane modes, shown an increase in damping with

increasing rotational speed.

Figures 10 through 15 show the effect of increased windspeed and corresponding

change in blade angle. For the cantilever, cyclic, and collective boundary

conditions stability data are shown in Figures 10, 11, and 12 respectively for

a 50 mph wind speed and -18 degree collective blade angle and in Figures

13, Ik, and 15 for an 80 rnph wind speed and a -28 degree collective blade

angle. The collective blade angles were selected to maintain the angle of

attack at the 3/4 radius at a value approximating that for the 18 mph speed

condition.

In review of these figures and Figures 5> 6, and 7? it is seen that the most

significantly affected modes again are the inplane modes. The change in

blade angle has the effect of reorienting the principal axes of the blade so

as to cause the flapping modes at the low blade angles to become the inplane

modes at the higher blade angles and visa versa, for the cantilever blade case.

Referring to Figures 11 and 14 it is seen that the combined effect of the

influence of the tower and the lowering of the inplane frequency has a

significant effect on the stability of the first cyclic inplane mode as it

couples with the first cyclic flapping mode. Also note that at -18 degrees

of collective, the firs t cyclic inplane mode frequency is setting right on 3P,

the third order crossing line. It is noted that many more combinations of

blade angle and wind speed are possible than those analyzed and for which
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data are presented. These conditions could be more or less critical than the

stability data presented.

Therefore, even though the data presented does not show any instability within

the operating range, it will be extremely important to proceed with due caution

in expanding the rotor rpm, blade angle, wind speed envelope. Continuous

monitoring of the measured loads and vibration levels must be maintained to

assure no divergent oscillation occurs. It is also important to distinguish

between powered and non-powered operation of the rotor system as far as

inplane mode stability is concerned, since this also influences the sign of

certain aerodynamic coupling terms which are important in establishing the

stability of the inplane mode.

During the envelope expansion of the rotor every effort should also be made

to locate the fundamental blade frequency crossings and to identify if any

resonances occur in the normal operating rpm collective blade travel range.

It would be very desirable to supplement these analyses with additional points

within the possible rpm, blade angle wind speed envelope, the wind turbine

system might be subjected too. It would also be very desirable to actually

excite the coupled tower-cyclic inplane mode during the envelope expansion

of the wind turbine in order to obtain actual experimentally determined

frequency and damping values of this mode.

Figures 13j 1^> and 15 represent extreme conditions which in fact will never

happen since it is planned to feather the rotor at wind speeds above 60 mph.

As indicated before, for the cyclic case, the first inplane, tower-first

flapwise bending mode couple and cause a reduction in the damping of the

inplane mode at rotor overspeed. Also, in Figure 15 it is seen that the

tower bending-first collective flapping modes couple with increase in rotor

speed. There is no indication though of any potential stability problem as

a result of this coupling. There merely appears to be an exchange of energy

between the two modes.

One other thing should be noted. Since these analyses are performed at a

constant tip speed ratio as a function of rpm, then 10 rpm corresponds to a
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20 mph wind speed, 20 rpm corresponds to a UO mph wind speed, and so on.

The effect then of windspeed at zero rpm has been examined in an independent

study, the results of which are presented in the following section.

2.1.3 Non-Rotating Flutter and Divergence Results

In Figures 16 through 29, data are presented as a function of wind speed and

as a function of control flexibility at different wind conditions. Data are

shov/n for the condition of the wind blowing directly at the leading edge of

the blade, directly at the trailing edge of the blade and at the trailing edge

but skewed at ^5 degrees to give a most critical static divergence condition.

For the wind blowing directly over the leading or trailing edge of the blade,

wind velocities from zero to 1^0 mph have been examined. For the most

critical static divergence case, wind velocities to 200 mph have been

examined.

Figures 16, 17, and 18 present the results of these studies in terms of

frequencies and damping of the various rotor blade/coupled rotor-tower modes

as a function of wind speed with the wind blowing directly over the blade

leading edge. Figure 16 is for the cantilever blade boundary condition and

Figures 17 and 18 are for the cyclic and collective boundary conditions

respectively. The data is shown with the rotor brake off and with the blades

feathered into the wind.

As can be seen, all modes are shown to be stable and, with the exception of

the chordwise mode, show increasing stability with wind speed. For the 1̂ -0

mph wind speed condition, a variation in the collective control stiffness was

made. The effects of this are shown in Figure 19- The stiffness is varied

from its nominal value of 9-7 x 10 inch-pounds per radian to approximately

one-quarter the nominal value of 2-k x 10 inch-pounds per radian. No

significant degradation is seen in damping of any of the modes due to the

reduction in control system stiffness at the 1^0 mph wind speed, zero rotor

speed condition.

Figures 20, 21, and 22 show the predicted frequency and damping as a function

of windspeed for the condition of zero rotor speed and of the wind blowing
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directly over the trailing edge. These results are again shown for the canti-

lever, cyclic and collective boundary conditions. The cyclic case is shown

with a control system stiffness of kO percent of the assumed value. The

data show some reduction in the torsion mode frequency with wind speed but

the system if definitely predicted to be free from any static instability

for this windspeed/rotor speed condition.

Figures 23 through 29 present data all for the condition of the wind blowing

over the trailing edge but in a most critical static divergence direction of

at ^5 degrees towards the blade root as the wind progresses from the blade

trailing edge to the blade leading edge.

Figure 23 shows the effect of windspeed on the frequency and damping for the

cantilever blade boundary condition. Note that the first flatwise mode is

dropping in frequency with increasing wind speed. However, even at 200 mph

there is only a 25$ drop in the frequency of this mode, indicating the basic

blade is completely free from any potential static divergence problem.

Figure 2k is for the cyclic boundary condition and as can be seen, the

chracteristic behavior of the first flatwise mode is the same as for the

cantilever boundary condition.

Figure 25 and 26 are for the collective boundary condition. Figure 25 is with

the rotor brake off and Figure 26 is with the rotor brake engaged. With the

rotor brake disengaged there is no significant effect of windspeed except to

increase the damping of all the flatwise and torsion modes and to lower the

frequency of the torsion mode.

With the rotor brake locked however, the rotor yaw mode is predicted to

statically diverge at approximately 200 mph. It is noted that the strength

of the tower is well above the capacity of the rotor brake so even if a

divergence tendency did occur the rotor brake would slip and act like a

coulomb damper.

For this wind condition, the wind blowing over the trailing edge at a V? degree

skewed angle, the effect of control system flexibility on frequency and
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damping of the coupled rotor blade-tower modes at a windspeed of 1^0 mph has

been examined. The results of this study are shown in Figures 27, 23, and 29

for the cyclic and collective,- with and without the rotor brake engaged,

respectively.

These figures show that even for an approximate eight fold reduction in the

control system stiffnesses from the nominal value the system is free from

flutter and divergence. However, from Figure 29, it is seen that for a

collective feather stiffness of approximately 1.1 x 10 inch-pounds per

radian at 14-0 mph, the system would statically diverge in the rotor yaw/tower

bending mode.

Again however, it is understood the capacity of the brake is below the load

limit of the tower, &o the brake would act as a coulomb damper in this mode.

2.2 TRANSIENT AND DYNAMIC RESPONSE ANALYSIS

A limited transient response and steady state time history analysis was

performed on the windmill blades using the REXOR computer program the results

of which are reported in Figures 30 and 3"! • Figure 30 is a plot of time

histories of blade flapping, chordwise and torsion loads as a function of

rotor azimuth at several spanwise stations along the rotor blade. The

condition analyzed is at 4-0 rpm, zero blade angle at the three-quarter

radius and 18 mph windspeed.

Figures 30a and 30b give the computed blade root moments and shears, the

blade feathering moment and the blade tip twist. Figures 30c through 30e

present the computed flapping moments at twelve stations along the span of

the blade. Figures 30f through 30h present the computed flapping moments and

the computed blade torsion moments are presented in Figures 30i through 30k.

Transient blade responses to a small step input in each mode are shown in

Figures 31a through 31c. These data are shown to give a visual indication

of the expected blade transient response due to a small disturbance while

operating close to the design point condition.
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2.3 VrrilRL MODE ANALYSIS

A whirl mode stability analysis has been conducted on the windmill system

using the method of propeller-nacelle whirl flutter by Houbolt and Reed,

Reference 2. The rotor was assumed to be symmetric.

The unsteady aerodynamic rotor coefficients used in this analysis are plotted

in Figure 32. Figure 33 shows the variation of roots with varying the pitch

and yaw support spring rates symmetrically from a value of 2 x 10' ft-lb/radian

to a value of 1 x 10^ ft-lb/radian. Figure 3^ presents the effect of the

variation of the yaw stiffness while holding the pitch stiffness at 1.072 x

106 ft-lb/radian.

No pivot offset was used in either of these analyses. Zero structural damping

was assumed. Also, since the rotor was treated as symmetric and no pivot

offset was used, the analysis does not treat the potential mechanical insta-

bility associated with an unsymmetric rotor mounted on a flexible support.

The results due show however that as far as classical propeller whirl flutter

is concerned the systems stiffness characteristics preclude the phenomenon

in that the tower stiffness pylon mast stiffness at the rotor head is of the
7 7

order of 1 x 10' to 2 x 10' ft-lb per radian.

2.1+ STALL FLUTTER

Stall flutter is associated with operation of the rotor blade in the stall

regime and it has been shown to be principally involved with the change in

pitch damping characteristics in the stall region. It has been demonstrated

by harmonically oscillating airfoils in forced motion that under stalled

conditions the average damping in pitch over a cycle can become substantially

negative and is strongly dependent on airfoil mean angle of attack, the

reduced frequency of harmonic motion, the oscillation amplitude, and the air-

foil configuration.

The stall flutter phenomenon is generally an amplitude-limited oscillation

and exhibits itself primarily as a loads problem rather than a stability
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problem per se. Figure 35> data extracted from Reference 3 , is a plot of

amplitude of limit cycle oscillation versus reduced frequency for a model

tested. The minimum expected torsion mode reduced frequency for the vind

turbine blade at the three-quarter radius is indicated on this figure. The

data indicates the wind turbine blade should not be critical as far as stall

flutter is concerned due to the placement of the blade torsional frequency.
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3.0 STRUCTURAL TEST RESULTS

Static deflection and shake tests were conducted on the blades to verify

their predicted stiffness and frequency characteristics. The results

of these tests are presented in the following sections.

3.1 VTBRATIOM SHAKE TEST RESULTS
i

To verify blade-frequency response characteristics, a test setup that

incorporated a blade mounted on a simulated rotor hub was utilized

and bench shake tests were conducted. Tests were conducted with the

blades at zero degree and parallel to the ground.

Electromechanical shaker(s) were used to shake the blade and conduct

frequency sweeps from 1.5 to ̂ 0 Hz to identify natural frequencies.

Vibration pickups were located both fixed and roving to the blade at

sufficient locations and directions to identify desired modes, i.e»:

o 1st and 2nd flatwise bending frequency

o 1st and 2nd edgewise bending frequency

o 1st torsional frequency.

Each of these modes were surveyed to obtain amplitude and phase versus

blade radius to define the mode shape.

Tests were conducted at two pitch settings to cover the blade angle

operating range, including feathered.

The results of the tests in terms of response amplitudes at different

locations as a function of excitation frequency are plotted in Figures

36 through 56* These figures show response data both flap and chordwise

at stations 301 and 750. Excitation forces were applied at stations

301 and 370 in flap, chord and torsion.

Blades were shaken in four configurations. These four configurations

are described below with the abreviated nomenclature used on the figures

to describe the configuration tested:
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Nomenclature

STD + TW

STD

Configuration A -

Configuration B -

Configuration Description

Standard Blade with full tip weight

Standard blade with zero tip weight

Standard blade with zero tip weight and loading
block at Sta 301

Configuration A plus addition 75-lA pounds
of shot bags at mid chord at Sta 301
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3.2 COMPARISON OF MEASURED AND STATIC INFLUENCE COEFFICIENTS

The test to measure the static deflection of the blade under load was com-

bined with the blade loading to calibrate the bending moment strain gage

bridges. The same setup as assembled for the blade frequency test was used

except that a restraint will be added opposite the one being loaded to react

the load.

Airfoil contour fitting blocks were fabricated from wood and clamped around

each of the three spanwise stations that were loaded. The blocks were felt

padded and wide enough to present a distributed load and not damage the

blade skin. Loads were applied through load cells to the wooden blocks on

the blade. The loads were monitored by visual load cell readout available

to the operator. Gages were attached along the blade at several spanwise

stations to measure the blade deflection under load.

For these tests, the three stations were loaded individually. The loading

was progressively increased in approximately five increments or until suf-

ficient data was collected to define deflection versus force and deflection

versus span.

Loads were applied at stations 301, 521 and 69?. Likewise deflection measure-

ments were recorded at these same stations as well as in the blade root area.

These data were reduced in terms of static influence coefficient data for the

blade and a comparison of these measured data and of the predicted blade

influence coefficients is given in Table 3«
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TABLE 3

COMPARISON OF MEASURED AND CALCULATED
BLADE STATIC INFLUENCE COEFFICIENTS

INFLUENCE COEFFICIENTS

FLAP LOAD @
301 521

FL
A

PP
IN

G
 D

EF
L.

1

11

STATION

301 CALC

301 MEAS

521 CALC

521 MEAS

697 CALC

697 MEAS

301 CALC

301 MEAS

521 CALC

521 MEAS

697 CALC

697 MEAS

.00051*5

.000559

.001257

.001156

.001727

.001689

-.000032

.000091*

-.00009

.000308

-.000131*

-.000022

.001276

.00189

.001*61*6

.001*59

.008011*

.00833

-.000089

.153E-5

-.00031*1*

-.000276

-.000551

-.000096

STA
697

.001793

.00223

-008056

.008338

.021592

.0191*58

-.000136

-.00065

-.000551

-.000622

-.0009

.000501

- IN/IB.

INPIANE LOAD @
301 521

-.000032

.00011*8

-.00009

.000271

-.000131*

.oooi*

.0001*42

.0001*09

.000951*

.000961*

.001379

.00121*2

-.000089

.0001*1

-.00031*1*

.000531

-.000551

.000615

.000951*

.000971*

.002685

.002057

.001*259

.003118

STA
697

-.000136

.00031*

-.000551

.00091*1

-.0009

.001165

.0013262

.001231

.00l*2l*7

.003272

.008003

.005516
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h.Q WEIGHT AND BALANCE

Each of the three windmill blades has been weighed and balance data has been

determined. The measured weights and center of gravity data are summarized

in Table 1* for the three blades as delivered.

TABLE 1*

MEASURED WEIGHT AND CENTER OF GRAVITY DATA
OF BLADES AS DELIVERED

Blade
Number

1

2

3

Weight
Ibs

1981.3

1999-6

2012.5

Spanwise
e.g. -in.

270.18

269.27

266.67

Chordwise
in. aft of

1.26

1.1*0

1.56

e.g.
1/kc

Reasons for the manufacturing variation between blades have been studied and

attributed to one or more of the following:

o Material tolerance is ±.013 for .250 stock and ±.00k for .01*0
stock. This could amount to ±1*7 pounds for the entire blade.

o Paint thickness is shown by previous experience to typically
vary by 2 't' (where 'V is spec paint system thickness).

o Fit and function variation between blades is due to dimen-
sional tolerance of individual parts and trimming on assembly.

o Scale accuracy is -0.1%.

Balance provisions at the root rib (Sta 1*8) and the tip rib (Sta 750) have

been provided in each blade for the required operational blade/rotor

balance. Two balance pockets have been permanently installed at each of

the two locations, each capable of 3.6 pounds when utilizing the steel

ballast which has been provided. Since latitude exists in the way in which

the blade/rotor assemblies can be ballasted, although in general it is

desirable to minimize the use of ballast in the outboard pockets, the



summary given on Table 5 is but one possible method. This ballast provision

is, however, entirely satisfactory and is recommended based on current

static and dynamic test information.

A synoptic overview of this evaluation is briefly given in the following

paragraphs.

The natural frequencies of the first two (fundamental) bending modes of the

nonrotating blade have been obtained from oscillograph time histories of a

freely decaying motion of the blade following hand excitation using an

instrumentation accelerometer were as follows.

Natural Frequencies (No Tip Weight)
Experimentally Obtained from Oscillograph Records

Blade Frequencies (cpm)

Mode Shape #1001 #1002 #1003

1st Inplane 159-6 160.0 160.0

1st Flapping 103.8 103.5 103.2

These results show excellent agreement which indicates that the dynamic

properties are for practical purposes identical. Relative to the use of

tip ballast for rotor assembly balance the following test results are of

interest.

Experimental Measurement of Tip Weight Effect
on Blade Frequency

Full Tip Weight
No Tip Weight (7.2 Ibs/blade)

103.8 cpm (2.59P) 97.8 cpm (2.45P)

159.6 cpm (3.99P) 1̂ 1.0 cpm (3-53P)

Since the primary excitation of the system is at hO cpm (IP), the modest

variation of the nonrotating blade natural frequencies due to the ballast

arrangement given on Table 5 is judged entirely satisfactory.
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TABLE 5

WINDMILL BLADE BALANCE

ITEM

BLADES 1 AND 2
BLADE 1 (NO TRIM WEIGHT)
INBD FWD POCKET (FULL)
INED AFT POCKET (FULL)
OUTBD FWD POCKET
OUTBD AFT POCKET
WEIGHT ON STA 48 RIB

BLADE 1 (BALANCED)

BLADE 2 (NO TRIM WEIGHT)

DIFFERENCE

BLADES 1 AND 3
BLADE 1 (NO TRIM WEIGHT)
INBD FWD POCKET (FULL)
INBD AFT POCKET (FULL)
WEIGHT ON STA 48 RIB

BLADE 1 (BALANCED)

BLADE 3 (NO TRIM WEIGHT)

DIFFERENCE

BLADES 2 AND 3
BLADE 2 (NO TRIM WEIGHT)

INBD FWD POCKET (FULL)
INBD AFT POCKET (FULL)
WEIGHT ON STA 48 RIB

BLADE 2 (BALANCED)

BLADE 3 (NO TRIM WEIGHT)
OUTBD FWD POCKET
OUTBD AFT POCKET

BLADE 3 (BALANCED)

DIFFERENCji

WEIGHT

SPANWISE

ARM MOMENT

CHOKDWISE

ARM MOMENT

1,981.3
3.6
3.6
1.2
1.2
5.0

1,995.9

1,999-6

3.7

270.18
57.00
57.00
741.00
741.00
48.00
269.̂ 2

269.27

0.15

535,316
205
205
889
889
240

537,744

538,1*1*0

696

1.26
-12.00
+17.00
- 2.70
+ 2.70
+25.00
1.32

1.1*0

0.08

2,1*96
- 1*3
+ 61
- 3
+ 3
+ 125
2,639

2,799

160

1,981.3
3.6
3.6
23.2

2,011.7

2,012.5

0.8

270.18
57.00
57-00
48.00
266.86

266.67

0.19

535,316
205
205

1,114
536,840

536,669

171

1.26
-12.00
+17.00
+25.00
1.54

1.56

0.02

2,496
- 43
+ 61
+ 580
3,094

3,140

46

1,999.6
3.6
3.6
8.7

2,015.5

2,012.5
1.5
1.5

2,015.0

269.27
57.00
57.00
48.00
267.56

266.67
741.00
741.00
267.37

538,440
205
205
418

539,268

536,669
1,112
1,112

538,893

1.1*0
-12.00
+17.00
+25.00

1.51

1.56
- 2.70
+ 2.70
1.56

2,799
- 43
+ 61
+ 218
3,035

3,140
- 4
+ 4
3,U*0

0.0 0.19 375 0.05 105

SPECIFICATION REQUIREMENT IS THAT THE BLADES BE MATCHED IN WEIGHT WITHIN 5 POUNDS
AND THE CENTER OF GRAVITY LOCATIONS SHALL BE WITHIN.0.2 INCH.
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5.0 STRUCTURAL TEST RESULTS SUMMARY

Wonrotating structural tests have been conducted on the first metal wind

turbine blade mounted on a test fixture. This support fixture simulated

the hub/spindle stiffness of the 100-kW experimental wind turbine generator.

The test/analysis frequency summary comparison presented in Table 6 shows

that excellent correlation was obtained. The frequencies of the flapping

modes and the inplane modes are both slightly higher than calculated which

is largely attributed to higher blade bending stiffness levels being

obtained. The first torsion mode was slightly lower than predicted, but

for a 2000 cpm mode this as good correlation. It is concluded that the

mass and stiffness distribution properties calculated by computer graphics,

see figure 57, are accurate descriptions of the basic properties of the

blade.

During the calibration test loading of the strain gage instrumentation,

deflection measurements were taken concurrent with loading applications.

Structural influence coefficients determined from these measurements are

compared with theoretical predication on Table 7. These results show

excellent correlation with the flapping and inplane measurements. The

flapping is 1.06 times stiffer than theory and the inplane is 1.10 times

stiffer than theory at blade station 301. These values when compared with

the nonrotating first blade mode frequencies would explain the higher

frequency results obtained between test and theory on Table 6.
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R = 62.5 FT

METAL WIND-TURBINE BLADE
LUMPED PARAMETER WEIGHT DISTRIBUTION

WEIGHT XAflM V ARM Z ARM 'XX IYY 'zz pxz

138.77
188.99
257.64
130.17
135.68
117.69
114.95
55.04
68.96

131.45
108.01
109.09
98.48
84.39
79.11
56.05
20.08
15.43
28.58
17.28

0.00

3.11

3.23

1.54

1.58

2.40

1.77

1.62

-0.18
-0.36
-0.10
-0.28
-0.27
-0.22
-0.16
-0.21
•0.26
413
-0.04
•0.29

37.31
54.96
79.01

124.89
171.27
213.81
257.66
290.65
312.58
345.96
389.04
433.14
477.18
521.19
564.96
608.22
642.34
663.66
698.11
736.45

3.00

0.69

0.74

0.40

0.23

0.36

0.11

0.51

-0.46
-0.12
-0.16
-0.11
-0.08
-0.08
-0.01
0.01

0.00

-0.07
-0.04
-0.04

7676
15453
33631
29574
28538
23323
21717

3513

4144

23018
18656
18561
16432
14358
13032

9172

841
643

5512

1057

9244
25732
19668
26988
26697
21834
17184

7180

9664
15446
10265
8864
6823
4273
3132

2281

673
706

1007

398

7676
19117
46594
39414
41962
36461
32556

8106

11084
34842
26461
25503
22070
17494
15624
11195

1453

1307

6470
1444

0
3612

7757
3905
3387
2381

1381

413
700
871
328
178
78

-21
-35
-71

•23
-20
-36
-19

1955.54 1.13 269.97 0.63 215264289 225307 215387656 26587

ROTATION TO PRINCIPAL AXES
11.66 DEGREES

1955.54 1 13 269.97 0.63 215258803 225307 215393142 0

ABOUT CENTROID

1955.54 1.13 269.97 1.63 72734079 222029 72866694 0

UNITS: IBS, INCHES, LB-IN2
n .2 A .6 .8 1.0

NONOIMENSIONAL BLADE STATION ~ r/R

Wind-Turbine Blade Stiffness Distribution

Figure 57. Weight and Stiffness Distribution of IOO-KW Metal Wind Turbine Blade
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