
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



I	 - -_

NASA TECHNICAL
MEMORANDUM

NASA TM X-73372

"	 (NISI-Tlf-X-73372) OFIBITICNS hZSEDACB	 N77-21547
INYXSTIGATIGbS Cf SATELLITE PCMEB STATICNS
(NASA) 41 p BC 103/flF A01	 CSCL 10A

+	 Unclas
G3/44 22916

OPERATIONS RESEARCH INVESTIGATIONS OF
SATELLITE POWER STATIONS

By John W. Cole and John L. Ballard
Program Development

"A^gpS1CH

December 1976

NASA

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

MBFC • Form 3190 (Rev Iw» 1971)



TECHNICAL REPORT STANDARD TITLE PAGE
i	 REPORT NO. 2. GOVERNMENT ACCESSION NO. 3.	 RECIPIENT'S CATALOG NO.
NASA TM X-73372

4	 TITLE AND SUBTITLE

Operations Research Investigations
5.	 REPORT DATE

December 1976
6.	 PERFORMING ORGANIZATION CODEof Satellite Power Stations

7,	 AUTHORIS) g,PERFORMING ORGANIZATION REPORT #
John W. Cole and John L. Ballard*

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10.	 WORK UNIT NO.

George C. Marshall Space Flight Center
11.	 CONTRACT OR GRANT NO.Marshall Space Flight Center, Alabama 35812

13, TYPE OF REPORT Q PERIOD COVERED
12	 SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration
Washington, D. C.	 20546 14,	 SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES *Dr. Ballard is an Assistant Professor, Department of Industrial
and Management Systems Engineering, University of Nebraska, Lincoln, Nebraska. 	 H
was a member of the 1976 NASA-ASEE Summer Faculty Fellowship Program.

16.	 ABSTRACT

A systems model reflecting the current "in-house" design concepts of Satellite Power
Stations (SPS) was developed. 	 The model is of sufficient scope to include: the inter-
relationships of the following major design parameters: the transportation to and
between orbits; assembly of the SPS; and maintenance of the SPS.

The systems model is composed of a set of equations that are nonlinear with respect
to the system parameters and decision variables. 	 The model determines a "figure of
merit" from which alternative concepts concerning transportation, assembly, and
maintenance of satellite power stations can be studied. 	 A hybrid optimization model
was developed to optimize the system's decision variables.	 The optimization model
consists of a random search procedure and the optimal-steepest descent method. 	 A
FORTRAN computer program was developed to enable the user to optimize nonlinear
functions using the model.	 Specifically, the computer program was used to optimize
Satellite Power Station system components.

17,	 KEY WORDS )g,	 DISTRIBUTION STATEMENT

Unc la s sified- Unlimited

19.	 SECURITY CLASSIF. (at this repartl 20,	 SCCURITY CL ASSIF. (of t' to pap) 21.	 NO. OF PAGES 22.	 PRICE

Unclassified Unclassified 42 N TIS
MSFC - Form 3292 (Rev December 1972) 	 For sale by National Technical Information Service, Sdringfieid, Virginia 221 St



TABLE OF CONTENTS

Page

INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . 1

DESCRIPTION OF RESEARCH . . . . . . . . . 4

STUDYSTATUS . . . . . . . . . . . . . . . . . . . . . . . 4

RESEARCH OBJECTIVES AND PROCEDURES . . . . . . . 6

Satellite Power System Model . . . . 	 . . . . . . . 7

NONLINEAR OPTIMIZATION METHODS . . . . . . . . . . 11

Classical Optimization Methods . . . . . . . . . . . . 11

Unconstrained optimization Search Techniques 	 14

A Computerized Optimization Program . . . 20

CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . 27

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . 28

APPENDIXA . . . . . . . . . . . . . . . . . . . . . . . . . A-1

ii



1 -	 _. i	 __	 -_.,1	 _ ._	 - 4-	 1	 ,

Technical Memorandum X-73372

OPERATIONS RESEARCH INVESTIGATIONS OF
SATELLITE POWER STATIONS

INTRODUCTION	 ON.. M

Several concepts have been proposed for generating electric

power in space, transmitting the energy to Earth, and using the

energy as useful power. Initial analyses of these concepts indicate

that they may be competitive with future commercial power rates;

however, ldvances in technology are required well beyond the cur-

rent state-of-the-art to make the concepts cost effective.

Three basic concepts have been identified as possible cost ef-

fective candidates: the photovoltaic, the thermal concentrator, and

the nuclear. The photovoltaic designs typically consist of solar cells

arranged with a lightweight concentrator into a large, essentially

flat array of 10 by 20 kilometers producing on the order of 18 giga-

watts of electricity. Such a satellite will weigh in excess of 100

million kilograms. To be of significant benefit to the U.S. energy

requirements, at least one must be placed in synchronous orbit

each year for 30 years.

The thermal concentrator system typically consists of many

large concentrating mirrors built of smaller flat facets which con-



i
centrate the solar flux onto thermionic diodes, thermal absorbers

for some working fluid, or a combination of both. This concept is

typically one-third the dimension of the photovoltaic, but twice the

weight.

The nuclear concept, using high temperature gas reactors,

seems to provide the best nuclear option and is considerably

smaller than the other concepts, but is much heavier.

Many concept and design questions are still open. The eco-

nomic availability of the SPS program will be strongly dependent on

the technical design, logistics, assembly, maintenance, and opera-

tions philosophies selected. There is a desperate need for techniques

that will search out the optimum answers to complex and involved

relationships of design, construction, and operation. To this end

the following research was proposed.

DESCRIPTION OF RESEARCH

Develop a systems model of the current in ' cruse design of the

satellite power stations of both the photovoltaic type and the solar

concentrator with a thermal engine type. The models should be of

sufficient scope to include the interrelationships of the major design

parameters, the transportation to and between orbits, assembly and

maintenance, and power benefits throughout the useful life of the

system. Define a figure of merit describing the power benefits, and

1
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develop a method for finding the benefit partial derivatives with	 i

respect to the significant design variables. Investigate nonlinear

programming methods for optimizing the model design for maximum

benefit subject to linear design constraints. Implement an appro-
.r. A

priate optimization method.

Develop a systems model of a reasonably equivalent ground-

based solar power station and apply the above techniques to optimize

the design. Evaluate and compare the power concepts investigated.

The level of depth of model fidelity should be limited to the

extent necessary to prove the analysis technique. Sufficient depth

should be included, however, to facilitate expansion of the models

for more detailed in-house investigations.

This research is intended to be performed during two 10-week

terms of activity, specifically, summer 1976 and summer 1977.

STUDY STATUS

During the first term, investigation of contractor descriptions

and NASA descriptions of Satellite Power Systems indicated that

the model eq rations could be described by nonlinear equations con-

strained by bounded variables. An optimization procedure was

developed to solve a set of equations subject to such conditions and

was applied to an expanded version of the ECON sizing equations

, (reference 1). The program was debugged and applied to the low

3



Earth orbit (LEO) vs. the geosynchronous Earth orbit (GEO) assem-

bly questions and to the photovoltaic and thermal concentrator

design. The fidelity and extent of the model. equation was not suf-

ficient, however, to adequately investigate the pertinent question,

but was quite adequate to verify the optimization techniques and

procedures.

The following term will bring the model equation into consis-

tency with current concepts and will expand them to be able to ade-

quately address some of the critical problem areas previously men-

tioned. Comparative analyses of alternative concepts will be con-

ducted and, if time permits, an equivalent ground-based solar

concept will be modeled to provide a more firm basis of comparison.

1
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RESEARCH OBJECTIVES AND PROCEDURES

The objective of this research was to investigate the potential

of using operation research techniques in planning the logistic re-

quirements for the construction of a Satellite Power Station (SPS).

As in most operations research studies development of a mathematical

system model was a necessity. Specific attention was given to

developing a model of the transportation to and from orbit and of the

as sembly subsystems. The modeling approach taken was to define

the pertinent decision variables in the system. The values of these

variables are of prime interest and will be directly determined through

the solution procedure. An existing mathematical model was modified

in order to integrate the decision variables, system parameters, and

system restrictions into one model. The final product of the modeling

was the determination of an objective function that defines a measure

of the effectiveness of the system. This objective function provides a

means of comparing alternative feasible solutions.

The second step in the research activity was the investigation of

optimization techniques that could be applicable to the analysis of the

existing mathematical model. Optimization techniques fall into two

major classes - linear and nonlinear optimization methods. If a

mathematical model contains only linear interrelationships between the

5
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decision variables and system parameters in both the objective

function, as well as, in all the constraints, the model is classified

as a linear optimization model. Otherwise, the model is categorized

as a nonlinear optimization model. Solution techniques applicable

to practical nonlinear optimization models are not as well developed

as those used to solve linear optimization problems.

Most solution techniques used to solve optimization problems

are iterative. That is, the optimal solution is found in a step-wise

fashion. Each successive iteration provides a new set of decision

variable values that produces a superior value of the objective function,

and the optimal solution is determined at the final iteration. The final

product of this research was the implementation of a computerized

algorithm that can be used to numerically solve a bounded nonlinear

optimization problem.

Satellite Power System Model

The Satellite Power System model consists of the following

subsystems: (1) the satellite sizing subsystem; (2) the assembly

•	 equipment sizing subsystem; (3) the transportation subsystem; (4) the

ground station support subsystem; and, (5) the cost subsystem. Figure

1 depicts the five subsystems and their interrelationships. The satellite

sizing subsystem for the photovoltaic SPS concept consists of the

6
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Figure 1.

Satellite Power System
Subsystem Schematic
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following output variables:

(1) Power output at rectenna (kw)
(2) Aera of the solar blanket (km2)
(3) Aera of the solar concentrator (km2)
(4) Mass of the solar blankets (kg)
(5) Mass of the solar concentrator (kg)
(b) Mass of the conducting structure (kg)
(7) Mass of the non-conducting structure (kg)
(8) Mass of the central mast (kg)
(9) Total mass of the antenna structure (kg)

(10) Total mass of the do-rf converters (kd)
(11) Total mass of the antenna interface (kg)
(12) Total mass of the phase control electronics (kg)
(13) Total mass of the antenna (kg)
(14) Miscellaneous mass (kg)
(15) Total mass of the operational satellite (kg)

The fifteen preceeding satellite sizing variables provide inputs to the

four other subsystems.

The assembly equipment sizing subsystem determines the

individual and total mass of assembly equipment and personnel required

for the construction of one SPS. Certain decision variables found in this

subsystem are the percentage of total satellite mass to be assembled

by man input, total man-days of construction time, rate of manned-

assembly, rate of remote controlled assembly, and the productivity

of operations in space. Outputs of the assembly equipment sizing

subsystem are total mass of the satellite to be assembled by man input,

total mass of the satellite to be constructed by remote construction,

total man-days of construction time, total machine days of construction

time, number of on orbit personnel, number of on-orbit teleoperators,

8



total number rf fabrication modules, total number of manned

manipulators, total number of LEO space stations, total mass of

the fabrication units, total mass of the celeoperator units, total

mass of the Low Earth Orbit (LEO) support vehicles, total mass of •	 —

the extra-vehicular activity, total mass of the manned manupulator

units, total mass of the LEO space stations, total mass of the

assembly equipment propellant, and total mass of the space station

resupply. The outputs of the assembly subsystem provide inputs to

the transportation requirements subsystem and the cost subsystem.

The transportation subsystem computes the sizing of the

components necessary to transport the crew modules between the

LEO and geosynchronous (GEO) space stations. Among the required

inputs are the mass of the crew modules, the mass of the orbital

transfer vehicles propellants, total construction time, and the time

between crew rotations. Also, an advanced ion stage is sized to

transport an assembled SPS from LEO to GEO. if other alternatives

than LEO assembly are to be considered, this subsystem would be

substantially modified. Other significant factors computed by the

transportation subsystem are the heavy lift launch vehicle require-

meats for tl-.e construction and equipment support for the assembly of

one SPS and the Shuttle requirements for the transportation of

personnel to LEO and vehicle requirements for transfer to GEO.

9



The cost subsystem utilizes the output of all the previous

subsystems and the ground station support subsystem. The final

product of the model is the output of the cost subsystem, and is

an expression for total production cost of one SPS. The cost

expression is composed of the total LEO launch cost, total space

station and assembly cost, total satellite procurement cost, and

the total ground station procurement cost. Presently, the cost

model is an aggregation of an earlier model developed for NASA by

ECON (1) and current MSFC concepts. The model has been trans-

formed into a FORTRAN subroutine consisting of 169 decision

variables and parameters. Many of the interrelationships between

the variables are nonlinear.

NONLINEAR OPTIMIZATION METHODS

Classical Optimization Methods

Classical nonlinear optimization tech%iques are based upon

theoretical mathematical analyses that invc lve an application of the

principles of calculus to problems involving maxima and minima.

In order to apply the classical optimization techniques to the minimization

(maximization) of a function, the function must be shown to be continuous

and differentiable within a region (R) and to have a minimum (maximum)

within the region. The well-known theorem of Weierstrass (3) states:

10



"Every function which is continuous in a closed region R of variables

(Xi, X 2 , ... , Xn) possesses a largest and a smallest value within

the interior or on the boundary of that region. " Therefore, this

theorem asserts that an extreme point exists within or on the boundary

of a region R. Gottfried and Weisman (4), Hadley ( 5), and Taha (b)

among others present discussions of the application of classical

optimization techniques to single - dimensional and multi-dimensional

unconstrained functions. These techniques are based upon satisfying

certain necessary and sufficient conditions. The necessary condition

for a function, f(X 1 , X 2 , ... , Xn), to pass through an extremum at

the point (X 10• X 20 ► • • • , Xno) is that the partial derivate of f(Xl, X2,

... , Xn) vanishes at (X 1 0, X20 , ... , Xno)• The extremum may be

a relative maximum, relative minimum, or a saddle point. The

sufficient condition for the characterization of an extremism as a

relative maximum, or a saddle point. The sufficient condition for the

characterization of an extremum as a relative maximum or minimum

is restated by Gottfried and Weisman (4) as follows:

Let f(X l , X 2 , ... , Xn) vary continuously in an open region R. Consider

the set of determinants D i , i= 1, 2, ... , n, where

of	 a f	 ...	 a f
)X 1 4  X 1 2X 2	-)X12Xn

o f	 ^ f	 ...	 o f
aX22X 1 X22	 X22XnDi =

Ob-

11



f	 ...	 o f

c?Xn2X1 aXn2X2	 aXn2

evaluated at (X 10 , X 20, - • • . Xno)

If lf/ ax, = of = ... = of f = 0 at (X10, X20,..., Xno) then
o^X2	 aXn

(1) Di less than 0 for L = 1, 3, 5, ... and Di greater than 0 for

2, 4, 6.... indicate the presence of a relative maximum at (X10, X20,

... , Xno).

(2) Di greater than 0 for L = 1, 2.... n indicates the presence of a

relative minimum at (X 10, X20, • • •, Xno)-

(3) The failure to satisfy conditions ( 1) or (2) indicates a saddle point

at (X l 0, X 20, ... Xno) •

Although the preceding conditions are satisfied, the classical approach

to solving maxima and .minima problems can only guarantee local

minima and maxima and does not provide a direct means of finding

the global or absolute minimum (maximum).

Classical optimization theory has been extended to minimizing

(maximizing) a function f(X 1 , X2, ... , Xn) subject to n equality con-

straints of the form g i (X l , X 2.... , Xn) = 0. The technique. employe'

is the method of Langrangian Multipliers. Kuhn and Tucker (7) derived

the necessary and sufficient conditions for the Langrangian function to

possess a saddle point at (X 10 , X20, ... , Xno, X 10 p A 20 o • • •	 mo)•

In principle, classical optimization methods maybe applied to a

dO-I
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general class of nonlinear problems (either constrained or unconstrained);

however, severe computational difficulties arise when solving high-

dimensional problems. In fact, Hadley (5) asserts that classical

methods are best suited for theoretical analyses or especially simple

situations. They are not suited for numerical computations. Gottfried

and Weisman (4) state that while classical theory serves to provide

insight into the characteristics and problems associated with ex-

tremizing continuous functions, it does not provide efficient computational

procedures for optimizing practical problems. However, classical

theory provides a basis for the development of more efficient

computational algorithms.

Unconstrained Optimization Search Techniques

Since classical optimization methods have been proven an inadequate

means of solving practical nonlinear optimization problems, several

numerical searching algorithms will be discussed as potential problem

solving methods. Many numerical techniques operate in a sequential

fashion. The algorithms search for the optimum by generating a

succession of search points, and most use past information (previous

search points) to determine a new search point with a corresponding

improvement in the objective function. If the objective function is

unimodal, sequential search techniques will yield an absolute optimum;

otherwise, the procedure may only yield a local minimum (maximum)

or a saddle point. Gottfried and Weisman (4) state that although many

13
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practical engineering problems contain multi-modal objective

functions, one can usually determine a subregion over which the.

function is unimodal and sequential search techniques provide a

useful means for locating the optimum.

The simplest forms of search techniques are known as direct-

search techniques. Such methods evaluate a function at several data points

within a region in order to estimate the location of the minimum

(maximum). A typical one-dimensional function is depicted below;

LIL

The function f(X) is unimodal on the interval (L, U). The minimum

of f(X) lies at X*. The goal of a direct search technique is to isolate

the absolute minimum of f(X) in the interval Ln after the evaluation of

seven data points. The more powerful of two search techniques is the

one that produces the smallest interval of uncertainty, Ln. Typical

examples of one dimensional search techniques are the half-interval

method, symmetrical two-point search, three-point search, Fibonacci

search, and the golden-ratio search. Gottfried and Weisman (4) suggest

14
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that the Fibonacci and golden-ratio search techniques are among the

best available one-dimensional algorithms.

The golden-ratio search is based upon the golden ratio (P=1.6180'34).

The procedure used by the golden-ratio search on tle interval width

L O is as follows:

(1) Locate two search points a distance Lp/P from the end of the

orginal interval, L0.
F
	

LO 
FP	 ^CP,^ L-FCPJ

(2) The new search interval becomes:

c---- L 2- ---y

L	 pa_
(3) Locate two search points within the interval L 2 , 1 /P units from

the new end points and evaluate the function at each point.

(4) Continue the procedure outlined in step 3 for M iterations.

(5) The estimation of the value of X that provides the optimal

value of f(X) lies at the center of LM, the last interval of uncertainty.

The golden-ratio search procedure is an efficient technique and

possesses decided computational advantages over Fibonacci search

method. The algorithm is easily programmed on a digital computer

and can become one of the components of a multi-dimensional gradient

algorithm.

w
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In order to minimize (maximize) a multi-dimensional continuous

function f(X I , X2,..., Xn) that is differentiable and unimodal, a class of

numerical techniques known as gradient methods can be utilized.

These methods are based upon classical optimization theory and employ

numerical procedures to locate the point (X 1 , X2, ... , Xn) that

optimizes f(X 1, X2,..., Xn). Among these procedures are the method

of steepest descent, the conjugate gradient procedure, and the

variable-metric algorithm.

The method of steepest descent utilizes numerical techniques for

minimizing the function f(X I , X2, ... , Xn). An algorithm for the

method of steepest descent outlined by Gottfried and Weisman (4)

is as follows:

(1) Find an initial point (X 10' X 20, - • -, Xno) within the region

and evaluate f(X10, X20, ... , Xno)•

(2) Evaluate the gradient vector V f(X1, X2, ... , Xno) at the

point (X 10, X 20• • • . , Xno) . The partial derivate evaluated

numerically is as follows:

3 f	 ti	 f(X 1, X2, ... , Xi + D/2,...) - f( X l, X2,. .. , Xi-D/2, ... N

C1 Xi	 D

i = 1, 2, ... , n

66

(3) Anew point (X 11' X21'''" Xnl) is found by

(X11' X 210 ..., Xnl ) = (X100 X 20 , ... , Xno ) -

f(X 10, X20,..., Xno) T



The new point is found by proceeding in the direction of the negative

gradient an arbitrarily small distance indicated by T. (T may be a

scalar or a vector of dimension n).

(4) Let (X 10 • X20 • • • • ► Xno) _ (X 11 • X 21 ► • • • • Xnl ) and return to

Step 2.

(5) The procedure ends when:

o f	 L	 E ot. 0 for all i
a Xi

and the last point determined is the stationary value of f(X 1 , X2'.

X..,o). The method of steepest descent may lead to a saddle point

rather than an extremum, although this is unlikely (8). Nevertheless, the

characteristics of the stationary point can be analyzed by using random

search techniques.

The steepest-decent algorithm can be improved if T is chosen

in an optimal fashion, such that, F(X i , X20 ..., Xn ) possesses a

relative minimum along the line joining XK and XK+1. where,

XK = (X1K ► X ZK , ... , XNK)

XK+1 = X K - •0 fT

A one-dimensional search technique can be utilized to find the optimal

distance to move along the line joining X K and XK+1' The point

is XK+1 "Where, XK+1 = OK X K + (1 - OK) XK+1• The value of O K is

found using a one-dimensional optimal search technique.

17



f(X1{+l) less than f(XK) and,

f(XK+I) less than f(XK+1)•

The steepest descent method works well if the computation occurs

on the interior of the regions; however, if the search region is

bounded a S X S b and the gradient vector is directed out of the region, the

one-dimensional search may proceed to move outside of the region. The

move should terminate at the region boundary. Another difficulty

arises when the gradient vector is calculated at the boundary and

some components point outside the boundary. Gottfried and Weisman

(4) state when this occurs, it is generally satisfactory to set these

components equal to zero and search in the direction of the modified

search vector. The optimal steepest-descent procedure terminates when

the modified gradient vector is sufficiently small.

Although the method of steepest-descent is one of the most straight-

forward of all the gradient techniques, it still possesses some numerical

difficulties. The number of computations required to extremize a

function depends upon the degree of the function's sensitivity to changes

in the independent variables. Also, the steepest descent method may

"zig-zag" toward the optimum and require many steps of decreasing

size as the optimum is approached.

In contrast to sequential optimization techniques, random search



a more general classification of optimization problems. The functions

need not be continuous, differentiable, or unimodal; therefore, the

rationale behind the random search technique is not mathematically

sophisticated. A point within the region of interest is chosen at 	 ...

random and the function is evaluated. The procedure continues until

n points have been evaluated. At the termination of the search, the

point found yielding the best value of the function is the extreme point.

Random search techniques are useful in evaluating discontinuous

functions and for terminal explorations when using sequential optimization

techniques. Gottfried and Weisman (4) note that random search

procedures offer a practical approach to the initial exploration of a

function that may be multimodal and that their use in combination with

sequential methods is often highly effective.

A Computerized Optimization Program

In order to achieve a flexible nonlinear optimization routine, a

computer program that combines a random search procedure and an

optimal - steepest descent algorithm was written in FORTRAN. The

theoretical background for these numerical procedures employed by

the program was presented in the previous section of this report. The

program was designed to be a modular program consisting of a generalized

main program and collection of specialized subroutines. A simplified

19



chart for the main program is depicted in Figure 2. The main

program performs input and output activities. Specific input require-

ments are discussed in detail at the end of this section. Also, it

conducts the random search, and monitors the sequential search

procedure.

The random search segment examines a specified number (NINT) of

points within the region of interest. The procedure is to determine at

random a value for each bounded independent variable and evaluate

a user defined objective function called FUNCTN at this point. Upon

completion of this segment, a current "best" set of values for the

independent variables has been found. This point is an estimate of the

extremum and serves as the initial search point for the steepest - descent-

algorithm.

As in the random search segment, the optimal - steepest descent

segment minimizes a user defined function that is provided to the main

program through the subroutine FUNCTN. All independent variables

used by FUNCTN have their values stored as elements of the array X.

Also, system parameter values may be stored as elements of X. In

this research the :form of FUNCTN is the modified ECON cost model

(discussed previously) consisting of 169 independent variables and

parameters. Specifically, the steps taken in the optimal - steepest

descent segment are as follows:

(1) At the point X evaluate numerically the partial derivatives.

of FUNCTN with respect to the independent variables.

20



Figure 2.

Simplified Main Program Flow-Chart
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(2) Normalize the vector of partial derivatives.

(3) Find a point XNEW in the direction such that the value

returned by FUNCTN can be improved.

(4) Perform a one-dimensional search for the point that

provides the minimum value of the objective function and lies on the

line connecting X and XNEW .

(5) Continue steps 1 through 4 for a specified number (NMAX) of

iterations. A complete FORTRAN listing of this program can be

found in the Appendix to this report.

Example - Preliminary Results
Extremum

Extremum	 found by
Initial	 found by	 100 Point

Decision Variable	 Point	 Random Search Sequential Search

Total Construction Time 330	 330	 330
(Days)

Time Between Crew
Rotation (Days)	 90	 177	 330

Turn Around Time for
HLLV (Days)	 14	 14	 14

No. of Personnel that
can be carried Per
Shuttle Flight	 68	 55	 99

Turn Around Time for
Shuttle (Days)	 14	 19	 14

Fraction of Total
Satellite Mass to be
Assembled by Manned
Input	 .20	 .66	 .79

Total System Cost 	 $69G	 $64.3G
	

$60G

22



Input Variable Definitions

Variable Description

IX Initial random number seed - any odd
integer.

KIN Number of independent variables and
parameters, i.e., total number of active
X array elements.

KI Number of independent variables.

NMAX Total number of optimal - steepest
descent iterations.

NINT Total number of initial random search
iterations.

NPRINT Intermediate printout factor, i.e., print
every NPRINT iterations.

X Array of independent variables and
parameters, KIN elements.

INVPT	 Array of the subscripts of the independent
variables, KI elements. INVPT(L) indicates
the location in X of the Lth independent
variable.

BNDLW	 Array of lower bounds of the independent
variables. BNDLW (INVPT(L)) is the lower
bound of the Lth independent variable.

BNDUP	 Array of upper bounds of the independent
variable with subscripts determined as in
BNDLW.

SCALE	 Array of scaling factor for the independent
variables. Scale (INVPT(L)) should posses.
a value between zero and one.
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ENUF	 The minimum improvement in the
objective function that is acceptable
between successive iterations for the
optimal - steepest descent search to
continue.

Input Data Cards

Card Type 1

Format Type

I
I
I
I
I

Variable Columns

KIN 1.5
NMAX 6.10
NINT 11-15
IX I6-20
NPRINT 21-25

Card Type 2

ENUF Punched in E10.6 format.

Card Type 3

X	 5 entries per card in E15.8 format and a total of KIN
entries.

Card Type 4

KI	 Number of independent variables pundhed in interger
format in columns 1-3.

Card Type 5

INVPT 25 entries per card in 13 format and a total of KI entries.

Card Type 6

BNDUP 5 entries per card in E15.8 format and a total of KI data
entries.

Card Type 7

BNDLW 5 entries per card in E15.8 format and a total of KI data
entries.
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Card Type 8

SCALE 5 entries per card in E15.8 format and a total of KI
data entries.

Program Subroutine Descriptions

NEWPT (X, XNEW, DIFF, EPS): Locates a point XNEW (J)
a distance EPS(J)*DIFF(J) from X(J)inthe direction of DIFF(J),
the partial derivative of FUNCTN with respect to X(J).

GRAD (X, XNEW, DIFF, Y): Performs a sequential search using
the optimal - steepest descent method on the line joining X and
XNEW. Returns to the calling routine the current estimate of the
extremum (XNEW) and Y, the value of FUNCTN determined at
XNEW.

POINT (X, X1, D, XO): Determines a point (XO) that lies on the
line joining the points X and XI. D (O less than D less than 1) and
provides a means of locating the point.

RANDU (IX, IY, YFL): Returns a random number, YFL, on the
interval between zero and one. IX is the preceding "seed" number
and IY is succeeding "seed" number.

INI7 - .L: Provides a nominal upper and lower bound for all non-
independent v iriables.

FUNCTN (X, DEL2A, ICOL, COSTMD): This is the user defined
function that is to be optimized. This subroutine operates with
two options.

Optionion 1 - ICOi, equals 0. The function is evaluated at the
point defined by the array X and the value is returned to the calling
routine as COSTMD.

Option 2 - ICOL greater than 0. The function is evaluated at
the point X(1), X(2), .. , , X(ICOL-1), X(ICOL) + DELTA, X(ICOL +
1),—, and the value is ret —ned by COSTMD. This option allows the
user to numerically evaluate partial derivatives of FUNCTN with
respect to the independent variable represented in array location
ICOL.
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CONCLUSIONS AND RECOMMENDATIONS

As a result of this research, the following can be concluded:

(1) A systems model describing the transportation and assem-
bly requirements for the construction of a Satellite Power System
can take the form of a multidimensional cost function consisting of
bounded decision variables.

(2) The characteristics of the decision variables at a "point
design" can be analyzed by evaluating the partial derivatives. This
information is one method of determining the significant variables
and can provide valuable information to system planners and
designers.

(3) The controllable variables can be adjusted within the
appropriate bounds such that the total system cost can be minimized
using a general computerized routine that was written to minimize
a nonlinear function in the presence of bounded variables. The pro-
cedure uses random and sequential search methods.

It is recommended that future research be directed toward

correlation with improved cost models with special attention given

to the definition of the interrelationships between system variables

and parameters. Further work should include the study or the appro-

priate systems model using the nonlinear optimization program

developed as a result of this research. A logical extension of this

research would be the development of an algorithm for the optimiza-

tion of a nonlinear objective function in the presence of linear con-

straints.
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