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Figure 1. Heavy line is monthly mean variation of GASP ozone at 11-12 Ian, 
36-42'~ from March, 1975, through March, 1976. A 1-2-1 smoothing 
has been applied. Dotted lines are ozonesonde means at 4 0 ' ~  from 

3 Wilcox, et a1 (1975). Units: l0I1 molecules cm- . 
F i g u r e  2 .  Distance lagged autocorrelation coefficients of ozone along east- 

west flight legs, based on 33 flights. See text. 

i gu re  3 .  Distance lagged autocorrelation coefficients of ozone along east- 
west flight legs, for all data and by season. The dotted line on 
each chart is the least squares fit o f  R(L) = exp(VL) to the 
t 1 average" data and the solid lines are the fits to the seasonal 
data. N is the number of flights and d is the integral space 
scale of R ( L ) .  See text. 

Figure 4. Monthly "zonal" means of ozone (ppbv) at 11-12 km. The d o t t e d  
lines show the latitudes of the monthly mean tropopause at 11.5km. 
Note that the Flattery tropopause model was used until December, 
1975, and the Gustafson model thereafter. 

0 
Figure 5. Solid l i n e s  are "zonal" means of ozone (ppbv) of 10 latitude belts 

for combined March data (1975 and 1976). The dashed line is mean 
tropopause location, and the dotted l ines  a r e  "zonal" means of 
potential vorticity deg hpaal s-'), for each belt. 

Figu re  6. Correlation c o e f f i c i e n t s  of ozone with temperature for combined 
March data (1975 and 1976). The d o t t e d  line is mean tropopause 
location. 

Figure 7. Correlation coefficients of ozone with temperature at 11-12 h by 
month. The dotted lines show the latitudes of the monthly mean 
tropopause at 11.5 km. 

Figure 8. Correlation coefficients of ozone with potential vorticity for 
combined March data (1975 and 1976). The dotted line is mean 
tropopause location. 

Figure 9. Correlation coefficients of ozone with potential vorticity at 
11-12 km by month. The dotted lines show the latitudes of the 
monthly mean tropopause at 11.5 km. 

F i g u r e l o .  Northward flux of ozone by transient eddies at 11-12 km by month 
(units: 10'9~ s-1). The dotted lines show the latitudes of 
the monthly mean t ropopause at 11.5 lun. To avoid confusion, 
isoline labels are underlined. 



F i g u r e I l .  Northward flux of ozone by transient eddies for combined March 
data (1975 and 1976). Units: lo-' g s-I. The dotted line is 
mean tropopause location, and isoline labels have been underlined 
to avoid confusion. 



I. INTRODUCTION 

This report surmnarizes the results of an analysis of the first year of 

Global Atmospheric Sampling Program (GASP) data. GASP is an ongoing effort 

to measure ozone and other trace consrituents with instruments placed on 

commercial airliners. Details on instrumentation, routes, etc., can be found 

elsewhere (Holdeman, et al, 1976, and references therein). A case study of 

one series of flights, including examples of the data obtained has been made 

by Falconer and Holdeman (1976). Although the present data span only 

thirteen months, they should serve to establish the basic seasonal patterns. 

11. DATA 

All ozone data used here are from the GASP measurements archived on 

tapes VL001-VL004 (Holdeman, et al, 1976). A monthly summary of the amount 

of data and the limits of its geographical distribution is in Table 1, and 

examples of the number of observations are in Table 2. Although there were a 

few flights around the world or into the Southern Hemisphere, the bulk of the 

flights were within the contiguous United States, from the mainland to Hawaii, 

and from the United States to Europe. The $n situ ozone mixing ratio, 

measured by an ultraviolet absorption photometer, is reported every five 

minutes (i.e., about every 75 la), but about three observations per hour are 

missed because the instrument is in a calibration mode. Although data are 

taken at all flight altitudes above 6 km, most observations are taken between 

10 and 12 km altitude. Flight level pressure, temperature, wind velocity, 

and an indicator from the aircraft accelerometer of turbulence occurrence 

are reported with each ozone observation. Whenever the accelerometer 

reading exceeds a critical value, ozone amount is given every five seconds 



for the next 60 seconds; but in these cases the data were averaged over one 

minute intervals and each average was counted as only one observation. 

Supplementary parameters were computed for each ozone observation from 

the NMC Northern Hemisphere grids of isobaric height fields and tropopause 

pressure fields, which are available at 00 and 12 GMT. The map time nearest 

the mid-time of each flight was used to compute aircraft altitude, tropopause 

separation pressure (P Trop - '~ircraft ) ,  geostrophic winds and vorticity, 

potential vorticity, and the algebraic sign of the vertical velocity from the 

diagnostic omega equation (definitions and discussion of the latter four 

parameters are given in most t e x t s ,  e.g., Holron (1972) on pages 36, 66, 69, 

and 112, respectively). Linear interpolation between NMC grid points along 

isobaric surfaces and with height was used to estimate the needed parameters 

at the aircraft's location for each ozone observation. An exception is that 

the lapse of potential temperature used in computing the potential vorticity 

was determined from the three pressure surfaces centered nearest the flight 

level pressure. All derivatives were estimated by finite differences. 

In an effort to establish confidence in the GASP data, mean ozone values 

from GASP are compared with those from North American ozonesondes (from 

Wilcox, et al, 1975) in Figure 1. As most of the GASP data at 40-50'~ were 

taken over North America, differences due to longitude should be small. 

March data from 1975 and 1976 have been averaged although individual values 

are also shown. Linear interpolation was used for November's absent data, 

and a 1-2-1 smoothing has been applied. The GASP data appear to provide mean 

values comparable to those from ozonesondes, as the small seeming discrepan- 

cies found in Figure I will likely be resolved with more data. 



111. RESULTS 

A. VARIABILITY OF OZONE 

1. Small-Scale Variability Wear the Tropopause. Before discussing 

the large-scale variability of ozone, it is interesting to examine the spatial 

autocorrelation of ozone along individual flight legs. A total of 33 flight 

legs was found which are at constant pressure level throughout, at least 1200 

km long, oriented nearly east-west, at least half the data at 5-minute 

intervals, turbulence free, and do not intersect the tropopause. The lagged 

autocorrelation coefficients were computed over each flight leg, and the 

average of the 33 values is given in Figure 2. The vertical lines in the 

figure extend one standard error of the mean above and below the mean at 

selected lags. The curve in Figure 2 can be crudely approximated as the 

product of an exponential decay (i.e., red-noise persistence) and a cosine 

variation with half-wavelength near 950 km (wavelength near 1900 Ian), Note 

that red-noise persistence is characteristic of all atmospheric variables, 

and that 1900 km is about the distance across intense troughs or ridges. A 

three-point parabolic curve-fit of the power spectrum of the data in Figure 2 

places the peak power at 2150 km wavelength. 

Variations with latitude, season, or altitude showed significant 

differences only between late s m e r  and late winter. The first portion of 

each autocorrelation function is given in Figure 3, and the least squares 

fit of R(L)  = e x p ( V L ) ,  where L is the lag and V is the slope in natural 

logarithmic coordinates, appears as a straight, solid line on each chart. 

The corresponding least squares fit of the autocorrelation function over all 

33 flights is shown by the dotted lines for comparison. The autocorrelation 

function falls off less rapidly in winter than in summer, perhaps reflecting 



the greater organization of atmospheric motion patterns in winter. Parallel 

seasonal behavior of the autocorrelation function of wind has been found by 

Buell (1972). 

A characteristic scale of ozone variability can be estimated by 

The resulting values of d for each season, based on R(L)  = exp(VL), are given 

in Figure 3. The east-west distance between independent observations taken 

at the same pressure level is thus 2d (Leith, 1973). These estimates may be 

useful to others using ozone data collected at constant pressure levels, or 

as a lower bound for the independence of total ozone data. They should not 

be used to estimate the number of independent observations of the present 

GASP data set because the criteria employed to select the 33 flight legs 

used here are not fulfilled on most flights. Especially important is that 

many flight legs are not east-west, and the correlation function of ozone is 

expected to be non-isotropic (as the correlation function of wind is; Buell, 

1972). It is planned to compute the north-south autocorrelation function 

after suitable data have been collected, but it was not possible with the 

present sample. 

The results given in Figure 2 may be of interest to those analyzing 

other types of ozone data. It is well-known from sampling theory that 

measurements should be taken at twice the highest frequency of variability 

to be resolved. Thus, measurements of ozone near the tropopause should be 

spaced no more than 950 km in the east-west direction or significant aliasing 

will occur. Because total ozone is highly correlated with the height of the 



100 hPa su r f ace ,  i t  probably has a  similar s c a l e  of p re fe r r ed  v a r i a b i l i t y .  

I n  t h a t  c a s e ,  widely spaced d a t a  ( e .g . ,  t he  Nimbus I V  o r b i t s  which a r e  about 

2000 km a p a r t  a t  45 '~)  may be u s e f u l  only f o r  making zonal o r  monthly means 

because synopt ic  analyses  may be severe ly  a l i a s e d .  There do not  seem t o  have 

been any s t u d i e s  on t h i s  problem. 

2.  Mean Ozone Amounts. The average ozone amount by month between 

11 and 12 km is  shown i n  Figure 4, where d a t a  i n  each l a t i t u d e  zone have been 

averaged r ega rd l e s s  of longi tude,  a s  i n  a  zonal mean. The i n t e r s e c t i o n  of 

t he  NMC tropopause with t h e  11.5 km height  su r f ace  i s  shown by t h e  do t t ed  

l i n e s .  Note t h a t  NMC used the  so-ca l led  F l a t t e r y  method f o r  l o c a t i n g  t h e  

tropopause before  December 15, 1975, and t h e  Gustafson method t h e r e a f t e r .  

Prel iminary comparisons (Holdeman, e t  a l ,  1976) i n d i c a t e  t h a t  t he  Gustafson 

method o f t e n  appears t o  l o c a t e  t h e  tropopause a t  lower a l t i t u d e s .  Thus, t h e  

more souther ly  tropopause l i n e  i n  March, 1976,  compared with 1975, may be  an  

a r t i f a c t  of t he  NMC ana lys i s  scheme. Fur ther  d i scuss ion  of  t h e  tropopause 

ana lys i s  schemes is  beyond the  scope of t h i s  r e p o r t ,  and i n  t he  r e s u l t s  

presented here any poss ib l e  d i f f e r ences  were neglected unless  s t a t e d  o therwise  

I n  Figure 4 ,  t h e  ozone i sop le ths  a r e  nea r ly  p a r a l l e l  w i t h  the tropopause l i n e ,  

e spec i a l ly  near  the  tropopause l i n e ,  with Largest ozone va lues  i n  t h e  s t r a t o -  

sphere.  A corresponding r e l a t i o n  wi th  the  tropopause i s  found on the  

h e i g h t - l a t i t u d e  sec t ion  of average ozone i n  March, 1975 and 1976 (Figure 5 ) .  

Also evident  i n  Figures  4 and 5 i s  the  small  v a r i a b i l i t y  of mean t ropospher ic  

ozone, except near t he  tropopause, with l a t i t u d e  a s  wel l  a s  h e i g h t ,  sugges t ing  

t h a t  ozone i n  t h e  upper troposphere is  wel l  mixed. The l a r g e  v a r i a t i o n s  of 

ozone nea re s t  the  tropopause a r e  probably assoc ia ted  wi th  s t r a t o s p h e r i c -  

t ropospheric  exchange, discussed i n  d e t a i l  l a t e r .  



B. RELATIONSHIP OF OZONE TO OTHER VARIABLES 

The v a r i a t i o n s  i n  ozone amount a t  a given l o c a t i o n  a r e  c l o s e l y  r e l a t e d  t o  

the v a r i a t i o n s  i n  many o the r  atmospheric parameters .  The r e l a t i o n s h i p s  

d i scussed  h e r e  a r e  those  wi th  d i s t a n c e  f r o m  t h e  t ropopause,  p o t e n t i a l  v o r t i -  

c i t y ,  and temperature ,  a l though o t h e r  parameters could a l s o  have been used. 

The first two parameters were s e l e c t e d  because they a r e  coupled wi th  ozone 

t r a n s p o r t  whi le  temperature  was s e l e c t e d  p r imar i l y  because i t  h i s t o r i c a l l y  

ha s  been used. 

In F igures  4 and .5, it w a s  seen t h a t  mean ozone amount i s  re la ted t o  t he  

tropopause l oca t i on .  Th is  r e l a t i o n s h i p  i s  shown f u r t h e r  by t h e  data i n  Table 

3 ,  where observa t ions  axe s t r a t i f i e d  both by he igh t  and by t ropopause separa-  

t i o n  p r e s su re  (P Trop - ' ~ i r c r a f t  
) Severa l  p o i n t s  can be  no ted :  (1) t he  

mean ozone may decrease  o r  i nc r ea se  wi th  he igh t  i n  Table 3a, b u t  always 

i nc r ea se s  wi th  i nc r ea s ing  p o s i t i v e  p r e s su re  d i f f e r e n c e  i n  Table  3b; ( 2 )  t h e  

average va r i ance  about the l e v e l  mean va lues  i n  Table 3b i s  reduced about 40%, 

60%, and 5% i n  March 1975 ,  1976, and October, r e s p e c t i v e l y ,  compared w i th  

Table 3a; (3) t he  frequency d i s t r i b u t i o n s  of ozone mixing r a t i o s  i n  March 

a r e  o f t e n  multi-modal i n  Table  3a, b u t  not  i n  Table  3b. The modal d i f f e r e n c e s  

for the 0 t o  50 hPa l a y e r  between March 1975 and March 1976 may be a conse- 

quence of the  NMC tropopause models used,  a l though t h e r e  may b e  other explana- 

t i ons .  F i n a l l y ,  ( 4 )  t h e r e  i s  a close correspondence i n  Table  3a between t h e  

number of observa t ions  below t h e  tropopause a t  each l e v e l  and t h e  frequency 

of occurrence of <lOOppbv. 

The c o r r e l a t i o n  of ozone w i th  temperature as a func t i on  of he igh t  and 

l a t i t u d e  during March i s  g iven  i n  F igure  6 .  Large p o s i t i v e  c o r r e l a t i o n s  are 



found in the stratosphere while the correlations are generally negative and 

small in the troposphere, reflecting the change in sign in the vertical 

gradient of temperature at the tropopause. (It is expected that the 

tropopause line near 3 5 ' ~  would more nearly parallel the isolines if the 

Flattery tropopause model had been used in 1976.) Largest magnitudes are 

in the stratosphere in Figure 6 because in the stratosphere both ozone and 

temperature have large vertical gradients, while in the upper troposphere 

the vertical gradient of ozone is small. The zero correlation line occurs 

slightly below, rather than at, the NMC tropopause at mid-latitudes, 

presumably because near the tropopause descending air, which contains high 

ozone, is adiabatically warmed. Thus, sufficiently far from the tropopause 

the correlations arise primarily from the mean vertical structure of tempera- 

ture and ozone, while near the tropopause the correlations arise from eddy 

activity. These results compare fairly well with those from ozonesondes 

(~ltsch, et al, 1970), although close comparison is not warranted because 

sonde data always refer to a particular level while the present results are 

for 1 km height intervals. Thus, interpretation in terms of vertical gradi- 

ents does not apply to sonde results. 

A similar pattern is found in Figure 7 where correlation coefficients of 

temperature and ozone at 11-12 km are given by month. The annual cycle in 

tropopause height induces an annual cycle in the correlation coefficients at 

11-12 h in mid-latitudes. 

The relationship between ozone and potential vorticity has been studied 

by Hering (1966) and Danielson (1968), among others. In adiabatic, friction- 

less flow, potential vorticity is conserved by an air parcel, just as ozone 



would be if it were chemically inert. Monthly mean values of ozone and 

potential vorticity are compared in Figure 5. The close correspondence of 

the two fields (correlation coefficient=0.95) is similar to that found by 

Hering, but the present results show much more detail. In particular, note 

the apparent intrusions of ozone and potential vorticity below the tropo- 

0 
pause near 40 N. 

In the stratosphere, the srnall-scale variations of ozone also correlate 

well with potential vorticity variations as shown inFigures8 and 9. The 

large annual cycle of the correlation coefficients (Figure 9) at 11-12 km at 

45'~ is induced by the annual cycle in tropopause height. An unexpected 

0 
feature i n  F igure  9 is a small semiannual variation near 25 N, which may 

merit study if verified by further data. 

C. FLUX OF OZONE: 

I .  Vertical Ozone Flux. In an effort to estimate stratospheric- 

tropospheric exchange from the present data, all ozone observations taken 

w i t h i n  50 hPa of the tropopause and north of 30'~ were sorted according to 

the sign of t h e  associated vertical motion. The mean ozone in each motion 

group is given in Table 4, where it will be noted that the ozone associated 

with downward motion is always greater than that associated with upward motion. 

Assuming no net mass transfer across the tropopause, this implies there is a 

net downward flux of ozone, but to estimate the magnitude of the flux the 

mean magnitude of the vertical velocity at the tropopause is needed. 

Case studies of the vertical velocity field suggest that near the 

tropopause its mean magnitude is a few tenths of a centimeter per second 

(palm& and Newton, 1969), but d e t a i l e d  statistics for t h e  Northern Hemisphere 



do not appear to be available. In the statistical study by Angel1 (1975), 

based on Southern Hemisphere EOLE data, the cumulative frequency distribution 

50% line is at 0.5 crn s-l. Angell's results show a small variation with 

season, but that is neglected here  as his model is probably valid only for 

guidance, e.g., it assumes a constant temperature lapse rate. The 

net flux of ozone across the tropopause, based on = 0.5 cm s-I, is given 

in Table 4.  The estimates of uncertainty in Table 4 are the root-sum-square 

of the standard errors of the mean of the two motion groups for each season. 

-2 -1 
The average yearly value, 7.8~10" molecules cm s , compares well with the 

results of Fabian and Pruchniewicz (1976) who, using surface ozone data, 

estimate the flux to be 7.9 and 8.6 units at 35' and 4 5 ' ~ ,  respectively. 

This very close agreement supports the hypothesis that the amount of ozone 

in the troposphere is essentially controlled by injection from the strato- 

sphere. 

The use of the layer Trop - + 50 hPa is admittedly arbitrary, but not 

critical. When the layers Trop to Trop-100 or Trop to Trop+lOO are used, 

the average yearly flux estimates are 9.2 and 7.4 units, respectively. It 

is interesting that the vertical flux is larger above the txopopause than 

below it. While the present results are  too uncertain to draw any conclu- 

sions regarding possible vert ical  flux divergence, additional years of data 

may support computations of vertical flux divergence. 

The vertical ozone transport estimates presented in Table 4 reflect only 

the transport by motions whose wavelength is longer than about 700 la, i . e . ,  

twice the spacing of the NMC grid at mid-latitudes. The transport of ozone 

by disturbances smaller than about 700 km can be estimated by assuming the 



flux is the product of an eddy diffusion coefficient and the gradient of 

ozone across the tropopause. The diffusion coefficient at the tropopause 

3 2 -1 used by Cunnold, et a1 (1975), 3x10 cm s , is adopted here, and the gradi- 

ent of ozone is estimated by finite differences of mean values of layers 50 

hPa thick and centered 25 hPa above and below the tropopause. The resulting 

estimates of the diffusive flux (Table 4) are only about 3% as large as the 

corresponding fluxes by large-scale motions. The diffusive flux in winter is 

based on layer mean values centered 75 and 25 hPa above the'tropopause for 

two reasons. The vertical gradient of ozone changes rapidly near the 

tropopause. Also, the NMC tropopause model used after December 15, L975, 

apparently yields consistently high estimates of the tropopause pressure 

(Holdeman, et al, 1976). 

It is interesting to compare the present estimates of ozone transport 

across the tropopause with the model results of Cunnold, et a1 (1975), 

keeping in mind that the latitude band 30-50'~ may only poorly represent 

global mean values and that the results in Table 4 do not include transport 

by zonal mean motions. Using 10 km as the mean global tropopause height, 

- 1 
the transport by large scale eddies is 31.4 metric tons s , and that by 

diffusion is 0.7 ton S-'. Cunnold, et a1 (1975), give corresponding values 

of 27 and 5 tons s-I, respectively. Thus, although the total flux is the 

same (perhaps fortuitously) it is distributed differently. This may be due 

to their model's truncation at zonal wavenmber 6, for significant ozone 

variations near the tropopause are associated with wavelengths near 1900 km 

(wavenumber 16 at 40°~), as shown in Figure 2. This suggests that if dynami- 

cal models are truncated at a low wavenumber, the proper flux of ozone into 

the tropospheric sink must be accomodated by parameterized diffusion. 



The preceding results are apparently the first direct estimates of ozone 

flux across the tropopause. The detailed mechanism whereby this flux occurs 

has been shown to be tropopause folding (Danielson, 1968). The folds, or 

ruptures, of the tropopause are mesoscale phenomena which are not retained on 

most global-scale analyses, so their effect has been parameterized by a 

cyclone index (Reiter, 1975) in the past. However, as Cunnold, et a1 (1975), 

point out, knowledge of the detailed transfer mechanism is not necessary for 

global models if the downward transport of ozone is associated with large- 

scale motions. The'close agreement of the present estimates with those of 

Fabian and Pruchniewicz (1976), from surface ozone data, supporrs the latter 

hypothesis because the NMC grid can resolve only large-scale systems and is 

too coarse to resolve folds in the tropopause, 

2. Horizontal Ozone Flux. Estimates of the ozone flux by transient 

eddies are given in Figures 10 and 11. Largest fluxes are generally found in 

the stratosphere during late winter although negative values occurred in 

March - May, 1975, at mid-latitudes. The latter fact is contrary to expecta- 
tions, as studies of the transient eddy flux based on ozonesonde data (e.g., 

Hering, 1966; Hutchings and Farkas, 1971) have found positive fluxes through- 

out the lower stratosphere. This seeming discrepancy may be related to 

sampling deficiencies or 1975 may have been a very unusual year. A further 

explanation is the differing length of period over which the transients are 

computed. Hering combined all data over half-year periods, and Hutchings and 

Farkas combined all data regardless of season, while in the present study 

monthly periods have been used. The correlation of the annual cycles in 

ozone and meridional wind thus contributes very little to the present monthly 

flux estimates. To illustrate the effect of using differing time periods 



for defining "transient" motions, imagine the rneridional wind and the ozone 

amount to change from month to month, but to have a constant value within 

each month. If one then computes transient eddy fluxes over monthly intervals, 

the results would be zero, but if periods longer than a month were used to 

compute fluxes, large results would be obtained. The annual cycle in 

meridional wind at a given location arises primarily from the growth and 

collapse of standing spatial waves. Standing waves induce a flux of ozone 

only if ozone also has a standing wave pattern, but the magnitude, or even 

the algebraic sign, of the standing eddy flux cannot be determined from 

single station data. Because the annual cycles in ozone and meridional wind 

at one location are not truly transients in the desired sense, they should 

be removed be fo re  computing t r a n s i e n t  eddy fluxes. 

Indeed, the "transient" eddy flux at 11-12 km at 40-50'~ based on all 

- 2  -1 GASP data from December - May is 49.5~10-~ g cm s , and in June - October 
it is 2.3 units, in good agreement with Hering's values (40 and 8 units, 

respectively), while the averages of the monthly fluxes are 9.3 and 5.3 

units, respectively. In computing the latter value, the July and November 

fluxes were estimated from Figure 10 to be 0 and 6 units, respectively. The 

difference between the seasonal (49.5, 2.3) and monthly average (9.3, 5.3) 

values is we11 accounted for by the correlation of the monthly means of ozone 

and meridional wind. When monthly means of ozone and meridional wind are 

used to compute seasonal fluxes, the values 42.3 and -1.6 units result. 

Clearly, the averages of the monthly fluxes (9.3, 5.3) are the most physically 

meaningful estimates. 



Although the  inf luence  of seasonal  v a r i a t i o n s  i s  minimized i n  F igures  

10 and 11, these  r e s u l t s  have noteworthy shortcomings. They may con ta in  a 

con t r ibu t ion  from poss ib l e  s tanding eddy f luxes  because a l l  d a t a  have been 

used i n  t h i s  f i r s t  e f f o r t ,  r ega rd l e s s  of longi tude.  However, most da t a  a r e  

taken from 65 - 120°w, so these  r e s u l t s  a r e  not t r u e  zonal mean va lues ,  and 

the re  i s  no reason t o  expect zonal symmetry of t r a n s i e n t  eddy f luxes .  I n  

f a c t ,  because synoptic  d is turbances  a r e  known t o  have p re fe r r ed  t r a c k s ,  

d i s t i n c t  asymmetry of the  t r a n s i e n t  eddy f l u x  should be expected. This 

hypothesis  i s  supported by t h e  l imi t ed  d a t a  during March i n  Table 5 ,  where 

0 
t r a n s i e n t  eddy f luxes  a t  40-50 N a r e  given f o r  60' longi tude zones. A s  

add i t i ona l  d a t a  become ava i l ab l e ,  t he  zonal v a r i a t i o n s  of eddy f l u x  can be 

s tud ied  i n  more d e t a i l .  

IV. CONCLUSIONS AND RECOMMENDATIONS 

The f i r s t  year  of GASP ozone d a t a  has  been summarized. The p a t t e r n s  

of ozone v a r i a b i l i t y  given he re  a r e  very s i m i l a r  t o  previous r e s u l t s  based 

on ozonesondes. I t  i s  v e r i f i e d  t h a t  ozone i s  we l l - co r r e l a t ed  wi th  d i s t a n c e  

f r o m  the  tropopause (more so i n  spr ing  than i n  aumumn), temperature,  and 

p o t e n t i a l  v o r t i c i t y .  A few o t h e r  p o i n t s  seem warranted: 

1. A s i g n i f i c a n t  s c a l e  of east-west  ozone v a r i a b i l i t y  near  t h e  

tropopause (about 1900 km) i s  very  c l o s e  t o  the synoptic  d is turbance  s c a l e .  

Detect ion of t h i s  f e a t u r e  from ground based o r  s a t e l l i t e  d a t a  would be  

un l ike ly ,  bu t  i s  poss ib l e  from GASP da t a  because i t  i s  homogeneous, l o c a l ,  

and has high s p a t i a l  observa t iona l  frequency. 

2. The cu r ren t  d a t a  a r e  we l l  s u i t e d  f o r  studying ozone t r a n s p o r t  

across  the  tropopause a s  we l l  a s  by t r a n s i e n t  eddys. The r e l a t i v e l y  l a r g e  



volume of GASP data permit computing monthly fluxes, thus minimizing the 

contribution from correlations of the annual cycles. 

3. It is suggested the transient eddy flux varies substantially with 

longitude. 

4 .  If the GASP route structure is expanded to include the Soviet 

Union, it may be possible to also compute standing eddy fluxes of ozone near 

the tropopause. 

5. Continued data collection will permit refining and expanding the 

present results. In particular, relatively large quantities of data from 

Australia and Southern Asia will soon be available, which may help better 

understand ozone transport by tropical circulation systems. 
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Table  1. Summary of  GASP d a t a .  

Month 

Mar 1975 

A P ~  

May 

J u n  

J u  1 

Aug 

S ep 

Oct 

Dec 

J a n  1976 

Feb 

Mar 

T o t a l  
F l i g h t s  

T o t a l  
Obs. 

L a t i t u d e  
Range 

Longi tude 
Range 



0 
Table 2.  Number of ozone observa t ions  i n  10 l a t i t u d e  i n t e r v a l s  centered 

a t  t h e  i nd i ca t ed  l a t i t u d e s  f o r  a l l  longi tudes  (Nc 15 i s  b l ank ) .  

a. A s  a func t ion  of he igh t  for combined March, 1975, and March, 1976. 

Height La t i  tude 
55 '~  45 35 25 15 

12-13 km 79 45 

b. A s  a func t ion  of time a t  11-12 km. 

Month: M A M J J A  S O D J  F M 

La t i t ude  
1975 1976 

5 5 O ~  22 32 25 



Table 3. Mean, temporal standard deviation, and frequency 
distribution of GASP ozone data at 40-50°~. The mode 
is underlined at each level. 

Number of Obs. by Mixing Ratio 
Mean St. Dev No. Obs No. Obs <I00 ~ 2 0 0  <300 <400 >LtOOppbv 
hbv) below Trop - 

( a )  Stratified by height 

March 1975 

March 1976 

11-12 km 305.0 198.7 140 1 35 18 13 27 - 47 
10-11 187.8 172.5 131 5 0 - 67 21 13 LO 2 0 
9- 10 277.7 163.9 57 7 11 9 11 7 19 
8-9 113.4 123.7 9 8 - 6 2 0 0 1 

Av 166.9 
October 1975 

(b) Stratified by tropopause separation (hPa) (P - Trop '~ircraf t ) 

March 1975 

March 1976 

October 1975 



Table 4 .  Ozone mixing r a t i o ,  Trop-50 hPa to  Trop+50 hPa, sorted according to 

the s ign o f  w. Only data  north of 30'~ are used h e r e .  The number 

o f  observat ions  i s  given i n  parentheses .  The d i f f u s i v e  flux is 
3 - 1 based on K=3x10 crn2 s . See t e x t .  

Mean Ozone (ppbv) Net Flux (based - Diffusive 

Winter 
(D,J,F) 

Spring 
(M,A,M)  

Summer 
(J ,  J,A) 

Autumn 
( S , O , N )  

Upward 

Mot i o n  

Downward on EZ = 0 . 5  can s-l) - Flux  

Motion (10'' molec crn -2  (1010 molec cm - 2  s - l )  

7 9 . 6  9 . 0  2 2 . 5  

(907) 

227 .3  9 . 5  2 4 . 9  

(758) 

155.0  7 . 9  2 8 . 2  

(126) 

8 0 . 6  4 . 7  2 3 . 3  

(151) 

Average 7 .8  



Table 5. North-south flux of ozone by transient eddies at 40°-50O~ and 11-12 km 
0 with data divided into 60 longitude sets. The number of observations 

-9 -2 -1 in each case is given in parentheses. Units are 10 g cm s . 

60°~-0 0-60°w 60- 1 2 0 ~ ~  120-180~~ 180-120~~ 

March 1975 -0.1 (2) 12.0 (8) 6.6 (21) 30.2 (27) - - -  
March 1976 -4.6 (9) 24.5 (29) 8.0 (54) 30.5 (30) -48.4 (18) 

Combined March -7.8 ( 1  28.1 (37) 8.2 (75) 40.1 (57) -48.4 (18) 



Figure 1.  Heavy line is monthly mean variation of GASP ozorre at 11-12 
h, 3 6 - 4 2 O ~  from Elarc5, 1975 through March, 1976. A 1-2 -1  
smoothing has been applied. Dotted lines are ozonesonde means 
at 40°~ from Wilcox, et a1 (1975). Units: 1 0 ~ 1  mclecules ~ r n - ~ .  



Figure 2. Distance lagged autocorrelation coeff ic ients  of ozone along east- 
west f l i gh t  l egs ,  based on 33 f l i gh t s .  See text.  



Figure 3. Distance lagged autocorrelation coefficients of ozone along 
east-west flight legs, for all data and by season. The dotted 
line on each chart is the least squares fit of R(L) = exp(VL) 
to the "average" data and the solid lines are the fits to the 
seasonal data. N is the number of flights and d is the integral 
space scale of R(L) .  See text. 



Figure 4 .  Monthly "zonal" means of ozone (ppbv) at 11-12 km. The dotted 
lines show the latitudes of the monthly mean tropopausr a t  1 1 . 5  
lun. Note that the Flattery tropopause model w a s  used u n t i l  
December, 1975,  and t h e  Gustafson model thereafter. 



Figure 5. Sol id  l i n e s  a r e  "zonal" means of ozone (ppbv) of  10' l a t i t u d e  b e l t s  
f o r  combined March da ta  (1975 and 1976). The dashed l i n e  is  mean 
tropopause loca t ion ,  and the  dot ted  l i n e s  a r e  "zonal" means of 
p o t e n t i a l  v o r t i c i t y  deg hpa-l s ) ,  f o r  each b e l t .  

Figure 6. Corre la t ion  c o e f f i c i e n t s  of ozone with temperature f o r  combined 
March d a t a  (1975 and 1976). The do t t ed  l i n e  is  mean rropopause 
locat ion .  



M A M J J A S O N D J F M  

Figure 7 .  Correlation coefficients of ozone with temperature at  11-12 
km by month. The dotted l ines show the latitudes of the monthly 
mean tropopause a t  11.5 km. 



Figure 8. Correlation coefficients of ozone with potential vorticity for 
combined March data (1975 and 1976). The dotted line is nean 
tropopause location. 

Figure 9. Correlation coefficients of ozone with potential vorticity at 
11-12 km by month. The dotted lines show the latitudes of the 
monthly mean tropopause at 11.5 Ian. 



M A M J J  A . S O N D J  F M  

Figure 10. Northward flux of gzone by transient eddies at 11-12 krn by 
month (units: 10- g cm-* so l ) .  The dotted lines show the  
latitudes of the  monthly mean tropopause at 11.5 km. To 
avoid confusion, isoline labels are underlined, 



F i g u r e l l .  Northward flux of ozone by transient eddies for combined Xarch 
data (1975 and 1976). Units: 10" g s-I. The dotted line is 
mean tropopause location, and i s o l i n e  labels  have been underl ined 
to avoid confusion. 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

