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MEASUREMENT, ESTIMATION, AND PREDICTION
OF SOFTWARE RELIABILITI

Herbert Hecht
The Aerospace Corporation

SUMMARY

Quantitative indices of software reliability are required

for project management, management of the software function, and

for research aimed at achieving more reliable software, e.g.,

through test tools and special languages. The purpose of this

report is to clarify the applicability of reliability

measurement, estimation, and prediction to software development

and to describe state-of-the-art techniques for each of these

procedures.

For reliability measurement, the software is operated over a

period of time, segments of the operation are scored as failure

or success, and from these scores a single indicator of measured

reliability is generated. The most obvious application of

software reliability measurement is to determine compliance with

a reliability requirement that may have been imposed by contract

or specification.

Estimation is performed by taking software reliability

measurements on an existing program and modifying the result to

represent the reliability in a different operating environment.
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A typical application for reliability estimation is to determine

during test whether an operational reliability goal can be met.

Reliability prediction is a statement about the reliability

of a program based on size, complexity, or similar factors.

Prediction of reliability can be made early in the project. It

can be used for resource allocation to modules among the total

software and for hardware/software tradeoffs.

Data requirements methods for data acquisition and

computational techniques for all procedures are discussed.

Failure classifications and other documentation for comprehensive

software reliability evaluation are described.
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INTRODUCTION

In the rapidly growing literature on the reliability of

computer programs, and in several symposia specifically dedicated

to this subject (Refs. 1,2) there has been comparatively little

emphasis on quantitative indices of software reliability. Yet,

any rational approach to software management requires

quantifiable data on failure frequency, the cost of failures, and

the cost and effectiveness of remedial measures. In addition,

current research in fields of computer languages, development

methodology, and test tools proceeds on the underlying assumption

that it will produce improvements in reliability. Measurement of

these improvements is therefore essential for evaluation of this

research. Thus, while software reliability measurement by itself

does not "solve" the software failure problem, it is an essential

tcol for the direction of management activities and for

demonstrating the accomplishments of research. This report aims

to clarify some of the essential concepts in the numerical

evaluation of software reliability and to introduce the reader to

simple mathematical relations that have been found useful in the

wield.

It might be well to start here with a statement of what we

mean by reliable software: It is software that is correct

(capable of execution and yields correct results) and that meets

3



other requirements imposed by the user such as timing and

interfacing with the environment. This concept is consistent

with an earlier statement "Software possesses reliability to the

extent that it can be expected to perform its intended functions

satisfactorily" (Ref. 3). The legalistically inclined reader

will be justifiably concerned about any attempt to base

measurement on "intended functions" but more restrictive

formulations tend to prevent recognition of reliability problems

arising from poorly drawn specifications. we see a need to

evaluate software reliability against formally specified as well

as against more loosely defined (and particularly implied)

requirements and will attempt to deal with both of these

conditions in the development of numerical indices in the

following.

For reliability measurement the software is operated over a

period of time, segments of the operation are scored as failure

or success by the qualitative criteria cited above, and from

these scores a single indicator of measured reliability is

generated. Typically, the software will not be modified during

the period of measurement, and the developed reliability numeric

is applicable to the measurement period and then existing

software configuration only.

Estimation of software reliability is performed by taking

reliability measurements (as above) on an existing program and

4



modifying the result to represent the reliability in a different

operating environment. Estimation requires some quantifiable

relationship between the measurement environment and the

environment for which the estimate is to be valid.

Prediction of software reliability is any statement about

the reliability of a computer program that is not based on

measurement taken on that particular program. While this terse

definition may permit predictions based on casting of dice or

even less respectable methods (which, according to rumors, are

sometimes utilized for that purpose), prediction is normally

based on comparison of program length, complexity and

environmental requirements with those of a program for which

measurements exist.

Practical applications of the software reliability numerics

are discussed in the next section. This is followed by three

sections dealing with specific techniques of measurement,

estimation, and prediction, respectively. The final section

discusses classifications of software failure in relation to

quantitative statements about software reliability.

5



APLICATIONS OP MEASUREMENT, ESTIMATION, AND PREDICTION

Prediction of software reliability as it has been defined in

the introduction is possible before the program has been written

or even specified in much detail. Estimation of software

reliability requires that the program exist but it may not

necessarily be ready for operation in the intended environment.

Software reliability measurement requires a "full up"

availability of the program. In terms of the software life-

cycle, it is therefore seen that the processes of measurement,

estimation, and prediction occur in reverse sequence. However.

any significant technical discussion of these subjects should

proceed in the order listed because estimation of a quantity is

best discussed after there is agreement on how the quantity is

finally going to be measured. And a prediction made without a

clear understanding of the quantitative formulation of software

reliability in subsequent stages of the life cycle may be worse

than useless.

Since software reliability measurement results in a

quantitative index of reliability for software in its intended

operating environment, the most obvious .application of software

reliability measurement is to determine compliance with a

reliability requirement that may have been imposed by contract or

specification. Another use of software reliability measurement

7



is to determine in an already installed program that no

deterioration of the reliability has taken place. Since software

does not wear out, this latter application needs some

explanation. Software failures are not necessarily due to

obvious program errors. They can be due to unusual input data

(out of range, unexpected data type), the computing ,nvironment,

and to systems loading. To the extent that these factors can

vary with time, it is therefore possible to see deterioration or

improvement in the measured reliability. Reliability measurement

may also be undertaken in support of research, e.g., to determine

the value of new programming or test methods. A particularly

important research application of reliability measurement is that

necessary to develop and substantiate methods for reliability

estimation and for reliability prediction.

A typical application for reliability estimation is to

determine during development of a computer program whether the

reliability goal expected for it can be attained. For this

purpose, measurements will be taken over a limited period of time

or with a limited set of test cases, and the results of this

sample measurement will be interpreted in terms of a reliability

measure at a future time (assuming reliability growth due to

further testing and correction) and in a fu*_ure.operating

environment. Reliability estimation may also be used to

translate reliability measures from one computing environment

8



into another one. A typical example in this area involves

estimating the reliability of the operating system of a computer

when new peripherals are to be added.

Reliability prediction is a numerical statement about the

reliability of a computer program based on length, complexity of

control structure, and other general characteristics rather than

on data obtained from the program itself. Software reliability

prediction can therefore be made very early in the program

development cycle before the program itself is in existence. A

typical application of software reliability prediction is for

^roject management purposes: to scope the test and correction

A fort that may be involved for a specific program module or for

an entire software system. Software reliability prediction

furnishes one of the required inputs for forecasting operational

down time that should be expected for a new software system. It

would also seem appropriate to use software reliability

prediction to guide program design to meet stated reliability

requirements (in the sense that hardware reliabi "':y prediction

is used to guide parts selection). However, this seems ti, be

beyond the present state of the art. Some research in that area

is just getting slCarted and is referenced later.

In connection with thesfl applications it is now possible to

discuss whether the quantit<<tive index of software reliability

should be obtained with respect to a computer program

9



sf—cification or with respect to user requirements. When

software measurement is being undertaken in order to determine .

compliance with a specific reliability requirement it is quite

obvious that only deviations from the specification can be

counted as failures. It would be rather unreasonable to expect

anyone to undertake a contractual obligation with regard to ill—

defined user expectations. On the other hand, if reliability

measurement is being undertaken to select the best math package

among a number of such programs, it may be quite appropriate to

score as failure any deviation from an output which the user

finds acceptable for the given input.. parameters. That the

unacceptable output may conform to the program specification is

rather immaterial in this case. Similarly, reliability

estimation and reliability prediction may in some cases be made

with respect to deviations from a specification where in other

cases it might be with regard to satisfaction of user

requirements. Rather than to champion one of these bases or the

other, it is important to insist that the selected basis be

clearly stated: Reliability with regard to the software

specification, or reliability with regard to user requirements.

The specifics of reliability measurement, estimation and

prediction, are discussed in the following sections.

10



SOFTWARE RELIABILITY MEASUREMENT

In the most general sense, software reliability measurement

is the identification of successful trials (S) among a

predetermined total number of trials (N). The numerical index of

software reliability obtained from this measurement is the ratio

of successful trials to the total, or

R = SIN	(1)

The unreliability or failure ratio may be expressed as

U = FIN	(1 a)

where r is the number of failures(1). This general definition

can be directly applied in a conventional batch processing

environment and in real-time systems dealing with discrete

operations (e.g., telephone switching). For real-time systems

dealing with continuous data streams (e.g., electric power

distribution) a more natural and practical index is the mean-

time-between-failures expressed as the predetermined total

(1)Although in keeping with common usage the title speaks of
reliability measurement, etc., the numerical indices based on
Failures (as in Eq. (la)) are frequently more useful: they have
a natural origin at zero, can be more conveniently expressed as
powers of 10, and have meaningful ratio relationships, e.g., the
statement that one program is twice as reliable as another one
usually implies an expectation of one-half the failure frequency.

11
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MTBF = t/F	(2)

The reciprocal of this quantity is the failure rate

u = F/t	(2a)

When no failure is observed in a predetermined time interval,

one-third failure may be arbitrarily assigned in accordance with

the hardware convention (Ref. 4). For software executing in an

interactive manner, either the discrete or the continuous indices

may be appropriate, depending on the application. Where

essentially repetitive data sets are input into such a program,

Eq. (1) may be applicable with S denoting the successfully

processed data sets and N denoting the total number of data sets

submitted. Where diverse data, involving different processing

requirements, are submitted to an interactive system the second

equation will be more applicable, with t here denoting CPU time.

The discrete and continuous process equations can be related to

each other when processing speed and associated factors are

known. However, the failure mechanisms in the two environments

are in most cases quite different so that commingling of their

failure statistics is not desirable.
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The reliability measures discussed above are meaningful only

in the immediate environment in which they were obtained. If a

contractual requirement calls for no more than one failure in

1000 runs on batch program ABLE, then the compliance or non-

compliance with that requirement can indeed be determined from

the reliability measurement described above. On the other hand,

if the issue revolves about deficiencies in program BAKER where

there have been 15 failures in the last 1000 runs, the

reliability measurement of one failure per 1000 runs on program

ABLE is not necessarily pertinent. ABLE might have been a very

short program executing on a 16-bit minicomputer, while BAKER

might be a very much longer program executing on a 60-bit

scientific processor. If the quantitative indices obtained from

reliability measurement are to be useful in the broader cantext,

they must be normalized to account for such differences in

exposure to failure between programs. A simple heuristic

normalizing factor is program length. Corresponding to the

elementary measured unreliability given in Eq. (la) we can

establish a normalized or global index of unreliability by adding

a factor denoting program length (L) to the denominator, as shown

in

U'	= F1 (N x L)
	

(3)
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The preferred numeric for L is the number of machine instructions

submitted. The normalized measured reliability is then given by

R'	1 - U'.

If normalization for both program length and word length (W)

is intended, Eq. (3) can be modified to

U" = F/(N x L x W)
	

(4)

The value for W shall represent the average number of bits per

instruction. In this formulation the index of unreliability in

effect measures failures per bit submitted in the instruction

deck.

For real-time systems operating in a continuous mode, a

heuristic normalizing factor is the number of instructions

executed per unit time (n). It permits meaningful comparison

between, failure frequencies on slow and fast machines on the

basis cf a normalized failure rate given by

u' = F/ (t x n)
	

(5)

If identical units of time are used to express t and n, then the

dimension of the denominator in Eq. (5) is simply instructions

executed. The normalized failure index given by Eq. (3) is based

on failures per instruction submitted. This is related to, but

not identical with, the normalized failure of Eq. (5). A further

14



normalization for word length can also be incorporated for the

continuous case. This yields

u" = F/ (t x n x W)
	

(6)

which has the dimensions of failure per bit processed and is

related to the index established for the discrete case in

Eq. (4) .

It has been suggested that numerical software reliability be

defined as the ratio of all input data sets correctly processed

to the total of all possible input data sets (Ref. 5). While the

number of all possible data sets is less than infinite (due to

the finite computer word length) it is still in many cases so

large that measurement of software reliability by this method is

not practical. Whether a specific set of input data results in

correct or incorrect output depends on the specific path of

program execution taken for that data set. Therefore,

reliability measurement could also be based on a ratio of correct

code segments (defined as non-branching sequences of statements)

to the total number of segments. Note, however, that executing a

code segment with one set of data does not assure correctness for

all data, and one is again faced with the impossibility of

comprehensive measurement. At present, the approaches based on

input data classification are useful primarily for software

reliability estimation and are discussed in that section.
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Formal reliability measurement (e.g., for determining

compliance with reliability provisiCt;) will normally be based on

Eqs. (1) or (2). In these circumstances the recordkeeping for

both successful and unsuccessful runs may be required in any case

and thus does not represent an obstacle to implementation of

software reliability measurement. Normalizing factors may or may

not be applied to the published data. In many other applications

there is, however, an approach that yields normalized data

directly and that avoids most or all of the recordkeeping

associated with successful runs. Keeping track of the number of

unsuccessful runs is still required but this is a less time-

consuming task and will usually be necessary to comply with

configuration management pr-.;visions. The simplified method makes

use of a feature in the operating system of most large-scale

computing installations that lists cumulative CPU time by job

numbers. If a job number is assigned exclusively for operation

.f a given module (specifically excluding compilation, editing,

etc.) then the number of instructions processed can be

approximated to a fair degree by multiplying the CPU time by the

nominal instruction speed for the given computer. When the

number of observed failures is divided by this product, a

normalized unreliability index corresponding to Eq. (5) is

obtained. This can be converted to the form of Eq. (3) by

multiplying by the ratio of instructions submitted to

16



instructions executed, a factor that can usually be estimated for

a given program. This procedure is particularly attractive for

periodic monitoring of the reliability of computer programs.

In many applications it is desired to express the

reliability of the total computing system. For these purposes it

is significant that the measures of software reliability

discussed here are in principle compatible with hardware

reliability measures. For example, the expected number of

failures for a specified time interval, obtainable from Eq. (2a),

can be combined with the expected number of hardware failures for

the same interval to yield a metric of total computer system

reliability.

3
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SOFTWARE RELIABILITY ESTIMATION

Data acquisition for software reliability estimation is

almost indistinguishable from that for software reliability

measurement. The significant difference is that in software

f	
reliability estimation the reliability (or failure) index is

modified so as to yield the probability of failure of the

functional software under test in a different environment or at a

different time. The actual software reliability measurement is

therefore interpreted as a sample measurement with the test runs

representing a sample of operational runs.

If the test runs are completely representative of

operational runs and if the software under test is expected to be

used unmodified in the operational environment, then the

reliability indices obtained by use of Eqs. (1) or (2) can be

considered unbiased estimators of the reliability in the intended

environment. In practice, of course, test cases are deliberately

selected to stress the software more than the actual operating

environment is expected to, and software will undergo changes

(debugging) that presumably will reduce the likelihood of

failure. Therefore the failure ratio (Eq. (la)) or the failure

rate (Eq. (2a)) obtained during test are pessimistic estimators

•	of the equivalent indices that can be expected for the

operational environment. Separate procedures for accounting for

19
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the severity of the test conditions and for the reliability

growth expected due to debugging have been described in the

literature and are synopsized below. A method for combining the

two techniques is then presented.

A procedure for removing bias due to test data severity has

been proposed by Brown and Lipow (Ref. 6). The probability of

failure is ascribed to selection of input data. The total input

data space is partitioned into subsets, Zi, which are assumed

to be homogeneous with regard to their failure-inducing

properties. If, during test, Ni runs were made that used

data from subset Z  and produced F  failures, then the

estimated unreliability for data from this data set is given by

U^ = F^IN^	(7)

The probability that failures due to data from Z  will be

observed in the operational environment will depend of course on

the probability of then accessing data from Z  which is given

as P(Z
i
). An estimator of the operational unreliability U is

therefore the sum over all data partitions of the unreliability

index for a given partition multiplied by the probability that

data from this partition will be encountered in the operational

environment. This estimator is given by

U = E(Fi
INi)P(Z^)	(a)

i

20



An equivalent estimator for continuous real-time programs can*be

formulated as

•	u	E(FiIt^) P(Z^)	($a)

where t
i
 represents the time spent in processing data from

partition Zj.

The Brown and Lipow paper (Ref. 6) illustrates this

technique on a Triangle Type Determination Program, that accepts

input data sets consisting of three numbers. The program

determines whether these numbers (interpreted as lengths of the

sides) denote an equilateral, an isosceles, or a scalene

triangle, or possibly no triangle at all. The data set

partitioning is based on the type of triangle defined by the

triad of numbers, e.g., Z1 may represent all data sets that

define an equilateral triangle. The application of this

technique during test represents no particular problems, the only

requirements above those for reliability measurement outlined in

the preceding section are the typing of each data set to

associate it with the appropriate Z
j
. For proper estimation

of the operational reliability, it is of course required that the

probability of occurrence of the various input types, P(Zi),

be accurately known. However, even under some mismatch of actual

•

	

	versus estimated probabilities, the resulting reliability will

still be an acceptable estimate. The authors also point out some
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methods for selecting test cases that tend to desensitize the

result against uncertainties in the usage probabilities.

Normal limitations on test budget and schedule, and the need

to have a reasonable number of test cases in each category,

obviously place limits on the number of categories that can be

established. The question then arises whether all test cases

falling within a given category are truly homogeneous with regard

to failure probability. Even in terms of the simple Triangle

Type Determination Program one must question whether integers,

real numbers, very large or very small numbers all represent

equally likely failure probabilities for the actual

implementation of the routine that examines input data sets.

Uncertainties in this regard can be removed by considering more

detailed input set properties, although difficulties of

determining probabilities of occurrence in the operational data

set will obviously increase. An approach for more detailed

analysis of the input data sets is described by Goodenough and

Gerhart (Ref. 7)(2).

An implicit assumption in this technique is that the

software itself will be *_ransitioned without change from the test

to the operational environment. in most situations, however,

errors discovered during test will be corrected, causing failure

(2)A related partitioning of the input space based on access to
specific paths in the program has been described by Shooman (Ref. 21).

22

i



estimates based on Eq. (8) to be unrealistically high. The

amount of bias introduced intt -tae estimate is obviously a

function of the correction opportunities that will exist between

the time of the sample measurements (Eq. (7)) and the time for

which the reliability estimate is to be valid. So far, the

b	
techniques for modeling this reliability growth have been

restricted to a homogeneous input data population, i.e., they

regard all test data submitted during the sampling period to be

as likely as leading to failure as data that might be submitted

in the target environment (Refs. 8,9).

The reliability growth model assumes that the failure rate

is directly proportional to the number of errors in a program (E)

leading to the expression

u 	= kE(t)	(9)

It is emphasized here that both u and E are expected to decrease

during the testing process which is quantified in terms of

program run time t. Specifically, at the beginning of test we

may experience a high failure rate

u0 = kE0	(10)

and at a later time, after C errors have been corrected, a lower

•	failure rate

u 	- k (E0 - C)
	

(11)
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Test records are depended on to furnish data on u0, Ulf

and C. Subtracting (Eq. 11) from (Eq. 10) we can then estimate k

as

n
k	

(u0 - u
l)/C
	

(12)

Further, by substituting the resulting value of k in (10) we

obtain

E0	110C/(u0 - ul)
	

(13)

n
There is some temptation to interpret E0 as a test

termination criterion (i.e., to test until indeed E0 errors

have been found). This should be discouraged because of the

possible errors in the estimate that is obtained from a

d;fference of two rates, and also because of the implicit

assumption of homogeneity of error types in this technique which

we have already mentioned. It is very difficult to hold that all

errors will be of the same type (in terms of constant k),

particularly as very low failure rates are approached. Instead,

we would like to utilize these equations for estimation of

failure rates at some future time at which the error types may

still be expected to be reasonably close to those observed in the

test conditions (particularly at the determination of ul).

To keep the essentials of the approach in focus wp introduce two

simplifying assumptions:

24



a.Every software failure results in removal of an error,
and

b.No new errors are introduced (in making corrections or
by any other means).

Removal of these assumptions does not invalidate the methodology

but leads to considerably more complex mathematical expressions

(Ref. 10). The assumptions permit equating the failure rate with

the correction or error removal rate

u = -dE/dt	(14)

This can be combined with (9) to yield

dE/dt = -kE(t)	(15)

which has the solution

E 	= c0 a
-kt	(16)

The constant of integration co can be equated to E0 and

estimated by reference to the t- .t res-A ts, e.g., u0 or

u1. It is advisable to maintain records of total software

operation time (t) during test to validate this estimation

process. With k and c0 known, Eqs. (14) and (15) can be

combined to yield an estimate of failure rate as a function of

operating time

.	u(t) = k E0 a-kt	(17)

25



Again, it is cautioned that k is here not a "natural" constant

(as in the discharge of a capacitor) and that the estimate should

therefore not be projected too far in time or to a vastly

different operating environment.

The above is a simplified estimation of the effect of error

removal on software failure rate, and the cited references should

be consulted for further detail. One area of simplification is

due to our using operating time as the independent variable while

the references predominantly use calendar time. Historically,

failure data were only available in calendar sequence but current

software support systems make operating time easily available,

and this parameter should be used since it is much more

indicative of the failure exposure than calendar time.

The accuracy of estimates obtained by this software

reliability growth model will probably be improved if it is

applied separately to each of the data partitions of the

preceding discussion. Specifically, the concepts of Eqs. (8a)

and (17) can be combined to furnish a composite estimate that

accounts for differences in data mix and the effects of error

removal as software is transitioned from test to operation:

n
-k.t.

U =	kj E 0 e 7 7 p(Zj)	(lg)

J

26



To conclude this section we mention briefly a method for

estimating the total error content of a program from the success

ratio in finding seeded or tagged errors. Total error content

per se is a measure of software quality rather than reliability,

but it may have a fairly direct relationship to failure rate

(e.g., as shown in Eq. (10)).

The estimation procedure (Ref. 11,12) rests on the

assumption that the ratio of seeded errors (E s) to total

errors (E + Es) in a software program is the same as the

ratio of seeded errors found (C s) to total errors found (C +

Cs) at a given time in the debugging process.

Thus,

Es/(E + Es) = CS/(C + Cs)
	

(19)

The unknown is the number of non-seeded errors, E, and this can

be estimated by

E = CE /C
	

(20)

The accuracy of the estimate depends of course on seeded errors

and naturally occurring ones being equally likely to be found.

In most practical circumstances this cannot be assured a priori,

and it will therefore be a major area of concern until the

program is operationally proven, i.e., until better estimates of

reliability are available. The equivalence (in likelihood of
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being found) of seeded and natural errors can be increased if the

seeded errors are taken from the population of errors that were

in the program to start. This can be done by having two

independent test or debugging facilities, one of which furnishes

"tagged" errors (equivalent to Es) while the other one

furnishes "total" errors (equivalent to E + Es). Obviously,	V_

the debugging cost will be increased, but this may be offset by a

more error-free program at the end of the process.
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SOFTWARE RELIABILITY PREDICTION

The aim of reliability prediction in general is to make

meaningful statements about the expected failure frequency of a

device based on construction features and usage. This technique

'	is widely practiced for predicting the reliability of electronic

equipment based on parts population, individual parts stress

factors, and overall equipment application factors (Ref. 13).

These predictions are used to control equipment design (e.g., in

limiting parts count or reducing the stress level on individual

parts) and in application (e.g., in providing redundancy or in

restricting the operating time of critical components). If

similar predictive statements could be made with regard to

software reliability they will obviously be valuable to the

developer as well as to the user.

In trying to carry over hardware reliability prediction

techniques into the software field one is of course confronted

with the essential differences between the two areas. To the

hardware reliability engineer, a computer is an assembly of

semiconductor devices, capacitors, c(.nnectors, etc., all of which

can be tested separately and for which failure rates and stress

factors are published. The software engineer is confronted with

the fact that (except in trivial cases) no two lines of code are

alike, and, therefore, published failure data about elements of
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computer code will not be meaningful. Nevertheless, there is a

feeling that the failure ratio must be affected by factors such

as program size, complexity, and user environment. However,

because of the inability to make meaningful tests on individual

lines of code these relationships must be explored by regression

analysis on existing programs that differ with regard to the

independent variables that are to be explored.

A fairly extensive study of variables affecting software

reliability was undertaken by TRW in support of an Air Force

study of Command, Communication, and Information Processing

Requirements in the 1980s (CCIP-85), and the results are

discussed in Ref. 14. This study covered 88 software routines

and considered 22 variables that might affect program

reliability. As index of unreliability, the study used the total

number of Software Problem Reports (SPRs) that were issued during

the software test and operational phases. This is not a true

reliability numeric(3), and a number of efforts are currently

under way to establish an improved data base for software

reliability prediction. The only statistically significant

relationship identified in the CCIP-85 study was the dependence

of number of SPRs on the number of instructions in the routine.

The specific regression listed has the form

(3)Because it does not consider exposure to failure and thus
ftLrnishes none of the denominators used in Eqs. (1) or (2).
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SPR = 2.14 + 0.00672 x Number of instructions

other variables considered, including number of logical

instructions, number of input/output instructions, number of

interfaces, program difficulty rating, and several factors

relating to programmers' experience all had a negligible effect

on the number of SPRs written. Differences by program type were

also investigated, and Ref. 14 concludes "there is no significant

difference in the SPRs found as a function of routine type."

However, routines that were classified as primary computational

algorithms had only about eight SPRs per 1000 instructions while

(	control routines had almost 15.

A number of investigators have published data on error

density (the number of errors per thousand instructions)

(Refs. 15,16,17). Many of these results cluster around 10 to 20

errors per 1000 instructions although a wider range is reported

in Ref. 16. One of the limitations of this present data base is

that very few of the authors identify over which phase of the

program development these error totals are obtained. A recent

theoretical study suggests a decided effect of program complexity

(branches, loops) on error content (Ref. 18). This is also borne

out by a high correlation of SPRs (that resulted in code change)

with branching found in a recent analysis of a software data base

(Ref. 19). The regression established there is
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SFR - 0.060 x Number of Branches

with a correlation coefficient of 0.98.

It may also be possible to predict error content from the

scope of decisions and number of decisions in a computer program.

The scope of decisions for an individual statement is determined

by the number of operators and operands accessible to the

programmer at that time which Funami and Halstead (Ref. 20) term

the "vocabulary". The number of decisions is determined by the

program length. The reference shows excellent agreement between

computed and observed errors in post-facto analysis.

V

32



SOFTWARE FAILURE CLASSIFICATIONS

To permit useful inferences to be drawn from software

reliability data it is required that the numerical reliability'

indices discussed in the preceding sections be supplemented by a

methodology for failure classification. At least three

descriptors are held to be necessary for meaningful

interpretation of software failure data: time in the software

life cycle during which failure occurred; manifestation of

failure; and cause of failure.

Classification by time of failure occurrence should consider

at least four categories: Initial debug; test and integration by

developer; postdevelopment test; and operation. Each of these

life cycle stages does not only have a characteristic level of

failure incidence tin general, decreasing in the order listed

here) but also the manifestations and causes of failures may

conceivably be quite different. Merging of failure data,

therefore, may obscure significant cause-and-effect

relationships.

In terms of manifestation of failure, suggested

classifications are: Abort of software system; abort of

application program; persistent gross output errors; temporary

gross output errors; inaccurate output; and other manifestations.

From such a classification the developer and user can construct a
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scale of failure consequences that is particularly applicable to

their environment. In a batch process environment the

consequences of an application program abort and an inaccurate

output may be almost the same, requiring rerun after correction

of the program. On the other hand, in a real-time control system

the consequences of an abort may be vastly more serious than

those of a temporary incorrect output. By emphasizing the more

universal classifications rather than a user-specific severity

scale, we hope tc facilitate interchange and merging of software

reliability data from various sources, a step that is essential

in order to further our understandinq of the manifestations of

software failures. In some environments the loss of computer

system availability may be of more consequence than the event of

C
ailure. In such cases a severity index based on loss of

computer time may be desirable. It cannot be directly

constructed from the categories listed here because it is a

function of manifestation of the failure as well as of the

corrective effort that is available (manpower., backup programs,

restart technique). However, even for thc-sc needs which are

really somewhat apart from software reliability proper, the

classifications proposed here may at least furnish some valuable

insight.

Classification by cause of failure is desirable in order to

organize remedial measures. This information is of value for the
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management of the immediate project on which it is obtained, for

overall software management (e.g., in guiding the allocation of

resources), and fo; the development of improved software

y	engineering tools and procedures (language processors, test

tools). With these users in mind at least the following

categories should be established.

Specification errors

Conceptual errors in implementing the specification

Algorithmic errors (insufficient accuracy or neglect of
singularities)

Logic and control errors

Exceedance of constraints (timing, memory, etc.)

Coding errors

Data structure errors

In the local environment and for specific attacks on the causes

of software failures a more detailed classification of causes of

software failure may be desirable (Ref. 19). It is believed,

however, that for general reporting purposes the above categories

will be found sufficiently comprehensive and that interchange of

data among organizations and dissemination to the general

software community will be facilitated by considering only a

small number of categories.

The classification of software failures has been discussed

here primarily with reference to reporting current or past

events, i.e., in the context of software reliability measurement.
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The use of the data, however, is primarily future oriented. On

one hand, by virtue of the knowledge of the point in the life

cycle at'. which failures can be expected and of knowledge of the

immediate manifestation of the malfunction, the software

r=	
development effort can be better organized and an acceptable

r
product can be delivered in spite of the less than perfect

performance of each line of code. On the other hand, knowledge

of failure frequency and of causes of failure will permit

improvement efforts to be concentrated on the functionally and

economically most significant areas.

A
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CORCUISTONS

This. then, is the overall aim of software reliability

measurement, estimation, and prediction: To permit better

ut-lization of software capabilities that exist, and to help us

a	
guie?e the expenditure of limited resources `nr improvements where

they are most needed.

The Aerospace Corporation

P. 0. Box 92957

Los Anqeles, CA 90009

15 November 1976
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