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SECTION I

INTRODUCTION AND SUMMARY

Over the last three decades there has been considerable interest in the development

of control systems that display insensitivity to variations from the design condition.
During this time, a number of techniques have been proposed which promise to achieve
this desired insensitivity. [1-34] No one technique, however, has réceived widespread
acceptance by control system designers. In fact, new techniques continue to appear in
the literature. One consequence of this proliferation of insensitive controller design
techniques is an absence of critical evaluations as to how well these techniques perform
ag’ainst one another. Specifically, there has been very little comparative analyéis
done on insensitive controller performance for an authentic, complex control problem
(for example, the design of an aircraft flight control system). Recent advancés in
control system technology produce greatly improved performance of certain flight
systems by applying active control and by integrating control system design results

into preliminary configurations of new aircraft designs.

Each control system design is based on a mathematical model of the relevant flight
system. These mathematical models are approximate. They involve uncertain para-
meters and often neglect known dynamics. Key uncertainties often occur with respect
to actuator dynamics, unsteady aerodynamics during transonic and low-speed flight,
and structural dynamics. Even if it were possible to accurately determine the unsteady
aerodynamics and structural dynamics, some approximation of these models would be
required for mathematical tractability in the active control design. Thus, before the
full benefits of active control technology can be realized, a synthesis technique is
needed which produces control systems that exhibit satisfactory performance in the

presence of modeling errors.
PROGRAM OBJECTIVES

In view of the extensive research devoted to insensitive control systems, the objectives
of this program were to determine the capabilities of existing synthesis techniques
with respect to a realistic flight control problem and to develop new techniques applicable

to such a problem. The specific objectives were to:



e Determine meaningful criteria which can be used for the design and evaluation

of insensitive control systems,
e Develop new techniques that can be applied to the aircraft flight control problem,

e Synthesize controllers for a realistic aircraft, using several existing and, if

possible, newly developed insensitive controller design techniques, and

e Evaluate and compare the design techniques on the basis of relative performance

capability and design effort required.

A distinguishing feature of these objectives is the synthesis of controllers for the same
authentic example using different design techniques to provide data for a quantitative

comparison of the techniques,
PROGRAM OVERVIEW

This program was performed under the cost-sharing contract NAS 1-13680, Study of
Synthesis Techniques for Insensitive Aircraft Control Systems. ‘In addition to the
basic program, relevant research was conducted in Honeywell's Independent Research

Program,

The approach used to achieve the program objectives utilized a unique combination of
Honeywell experience and outside consultants. Three university professors were engaged
primarily for the task of developing new insensitive controller design techniques, These
were Professor David L. Kleinman of the University of Connecticut, Professor William A.
Porter of the University of Michigan, and Professor David L. Russell* of the University
of Wisconsin, Early discussions with the consultants and the contract monitor led to

the following set of ground rules for the study:

1, The system to be controlled may be represented by a set of linear, constant

coefficient differential equations.

2. The emphasis in this effort will be on control system sensitivity to uncertain

model parameters and unmodeled dynamics,

'
Professor Russell has been a Honeywell consultant in the past. His previous research
on sensitivity theory and also his research on the work described in this report were
sponsored by Honeywell's Independent Research Program,
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The uncertain model parameter variations are considered to be time invariant

or represented by a time stationary random process.

The unmodeled dynamics can be thought of as either known or unknown dynamics.
The known unmodeled dynamics will represent very low or very high frequency

dynamics.

A1l controller designs will use full state feedback, It is recognized that all
states are not measurable which poses a definite practical. design problem.,
However, since all controllers perform at their "optimum'" with full state feed-
back, the task of comparison and evaluation would be more straightforward

using this approach, The limited measurement problem is an area that is

. highly recommended for further study.

Finally, the cost of complexity in the development of new concepts is not
constrained, recognizing the fact that later refinement could possibly reduce

complexity.

With the consultants selected and the ground rules established, the study then focused

on the following five tasks:

- Criteria Definition

Model Development
Synthesis of Existing Insensitive Controllers
Development and Synthesis of New Insensitive Controllers

Comparison and Evaluation

A summary of these tasks and the significant results of each will now be presented.

Criteria Definition

The first task required defining meaningful criteria which could be used as a measure

of the level of insensitivity a control system possesses., These criteria would then be

used both as a guideline for insensitive controller synthesis technique developments

and finally as a ""'measuring stick' of the quality of the techniques developed. The
g Yy

derivation of these criteria is described in Section III.



The resultant criteria recognize the very real interrelationship between performance .
and sensitivity which is the focal point of good control system design. The criteria

may be summarized as follows:

® A nominal set of performance criteria that would reflect desired performance

characteristics under nominal conditions, assuming everything is known.

e A definition of the type, range, and probability of occurrence of uncertainties:

that the system may experience.

® A minimum acceptable performance criteria for system performance under

specified worst case conditions.

These criteria were used as guidelines for the insensitive technique development.
Though qualitative in nature, they can be easily reduced to quantitative measures,
whether they be stability margins, statistical response criteria, or transient response

criteria,
MODEL DEVELOPMENT

The C-5A in the climb flight condition was chosen to be the design and evaluation model.
The C-5A was chosen for a number of reasons. First, a detailed, authenticated C-5A
data base was available, Second, a set of realistic control system design specifications
had been previously defined. Third, the C-5A model form facilitated the investigétion

of the effect of uncertain parameters and unmodeled dynamics. From the most complete
C-5A representation (79 states, 3 controls, 56 responses), a set of reduced order models

was constructed.

Two procedures, truncation and residualization, were used for this purpose. The
truncated and residualized reduced order models were then used as control system
design models. The objective was to design a controller with no regard to sensitivity
using a reduced order model at the nominal conditions of the uncertain parameters.
The performance of this nominal controller then would serve as a benchmark for
comparison against the insensitive controllers to be designed. The criteria used for
the design had been previously specified for the design of an Active Lift Distribution

Control System (ALDCS).



3y analyzing the performance of controllers designed using truncated and residualized
mnodels, it was determined that controllers designed with residualized models produced
much more consistent results than those designed with truncated models, Hence,

residualized models were used in all insensitive controller designs,

Dynamic pressure, structural frequency and damping, and the stability derivative Mw
were chosen as uncertain model parameters. The range of variations on these parameters
that would be investigated was determined experimentally, This was done by varying
the uncertain parameters until the performance of the nominal controller violated the
design specifications. Two worst case conditions, representing a combination of uncertain

parameters and specification violations, were determined,

The model development is described in Section IV. Appendix A presents the numerical
data for the design and evaluation models. The method used to model the parameter
uncertainties is given in Appendix B, Subtleties of computing state sensitivity equations
and response rates for reduced order models are described in Appendices C and D,

respectively.

Synthesis of Insensitive Controllers - Existing Techniques

Five insensitive controllers were designed based on the following existing techniques:

e Additive Noise

e Minimax

® Multiplant

e Sensitivity Vector Augmentation

e State Dependent Noise
The synthesis of each technique was based on existing theory. However, in many cases,
approximations had to be made in order to make the technique tractable on the C-5A

design model, The details are presented in Section V.,

Development and Synthesis of Insensitive Controllers - New Techniques

Nine new teéhniques were developed or proposed, eight of them by the consultants,

" The consultants'_ contributions were as follows:



Professor Kleinman - Mismatch Estimation

Maximum Difficulty

Professor Porter - Terminal Equivalence
Finite Dimensional Inverse
Model Following
Uncertainty Weighting

Professor Russell -  Specific/Nonspecific Eigenvalue Sensitivity

Eigenvalue/Maneuver Sensitivity

Professor Russell's developments (based on a dual Lyapunov approach presented in
Appendix G) and an additional technique, re-residualization, were developed under
Honeywell's Independent Research Program. The maximum difficulty, terminal
equivalence, finite dimensional inverse, and model-following techniques are described

in Section IX.

Three of the above techniques reached the controller design stage, These were:
e Kleinman's Mismatch Estimation
o Porter's Uncertainty Weighting

® Re-Residualization

Synthesis of controliers based on these three techniques are described in Section V.
The synthesis and comparison with the other controllers was performed as part of
Honeywell's Independent Research Program. Model reduction via re-residualization is

compared with model reduction via the singular perturbation method in Appendix E.

Evaluation and Results

The five existing insensitive controller design concepts--additive noise, minimax,
multiplant, sensitivity vector augmentation, state-dependent noise--and the three newly
developed approaches--mismatch estimation, uncertainty weighting, and re-residualization--
were evaluated against the nominal controller, both qualitatively and quantitatively.
Qualitative judgments were made with respect to user acceptability issues on the insensitive
controller's synthesis technigques themselves, Such practical considerations as computer
memory and time requirements, controller implementatioh requirements, whether the

technique provides insight into design problems, and whether the technique treats all



forms of engineering design specifications were among a set of ten items that we felt
would influence user acceptability. No overall conclusions were drawn based on this
qualitative evaluation; however, it is recommended that a potential user consider the

results presented when selecting an insensitive controller design technique,

Quantitative evaluations were made with respect to the performance of each of the
insensitive controllers designed versus nominal controller performance, A varied
combination of evaluation conditions and evaluation models were used to evaluate the
effects of parameter uncertainty and unmodeled dynamics on controller performance,
Three types of performance evaluation measures were defined. These reflected:

1) a coarse relative rating of each of the insensitive controllers with respect to the
nominal, 2) a finer normalized performance and range rating with respect to the nominal,
and 3) normalized performance specification rating with respect to the nominal. Although
these measures produced slightly different rankings among the insensitive controllers,
two consistent sets of data did appear., First, despite the measure used, the minimax
controller and uncertainty weighting controller always rated better than the nominal
controller. Second, the sensitivity vector augmentation controller always rated worse

than the nominal controller, Section VII presents the evaluation in detail,
OVERALL CONCLUSIONS AND RECOMMENDA TIONS

The overall conclusions must be tempered by the fact that each of the insensitive
controller designs were performed in a limited amount of time. It was felt in all cases
that all designs were acceptable; however each technique could probably have been
modified in some form to produce a different though not necessarily better controller,
This is particularly true of the mismatch estimation concept, the uncertainty weighting
concept, the state dependent noise concept, and the sensitivity vector augmentation
concept. The results of the study do indicate significant improved performance using the
minimax technique or the uncertainty weighting technique, The recommended technique
is uncertainty weighting because of the reduced computational requirements., Also

the sensitivity vector augmentation scheme has no promise for application to a design
problem of this size, The remaining controllers are grouped more closely about the

nominal controller--some indicating slightly better performance, others slightly worse.

Of the new techniques that were developed, the finite dimensional inverse concept, the
maximum difficulty concept, and the dual Lyapunov approach show promise and are

recommended for further research,



SECTION II

SYMBOLS ™

OPERATORS

A Integral operator
Mathematical expectation

G Forward loop compensator

H, ﬁ Causal feedback compensators

i Integral operator

I Identity operator

P Plant operator

P Orthogonal projection

PL Projection onto L

pt Truncation operator

Q Open-loop compensator

R Open-loop compensator

Re(-) | Real part of ()

T Integral operator

TR Trace

v Integral operator

w Integral operator

d Differential

§ Linearized perturbation

A Incremental perturbation

n .
This list is applicable to the main body of the report. Notation in the appendices
may differ,



d Partial differential

o Integral operator

v(_) Gradient with respect to (*)

v(. )e) Matrix of second pa_.rtial derivatives with respect to (* )(=)
") Derivative with respect to time

( )T Transpose

O Adjoint

Ot Inverse

()R Right inverse

( )1' Pseudo inverse

O Closed loop

<o, o> Inner product

SUPERSCRIPTS

i (1) Row vector component index

(2) Iteration stage

SUBSCRIPTS

a (1) Augmented
(2) Aircraft

c Command

£ Factor

g Gust

HT Horizontal taijl

i (1) Column vector component index

(2) Iteration stage
(3) Inboard
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Matrix element index
Column vector component index

(1) 1Initial condition
(2) Nominal condition

(3) Outboard
Steady state
Wing

Partial derivative with respect to (+)

Coefficient matrix
Pole of Wagner dynamics transfer function for the horizontal tail
Pole of Wagner dynamics transfer function for the wing

(1) Bending moment

(2) Coefficient matrix

Normalized projection of (Tlt)t

Pitching moment coefficient

Coefficient matrix of controi vector in response equation
Closed~loop error

Open-loop error

Plant-coefficient matrix

Control input coefficient matrix

Noise input coefficient matrix

Coefficient matrix of state vector in response equation
Hamiltonian

Hilbert space

Identity matrix

Performance index



m

Li(t)

w

M(t)
NSD

N(t)

Rn

S(x, t)

Sensitivity performance index

(1) Mach number correction factor
(2) System gain
(3) Feedback gain matrix

(4) Solution of Lyapunov equation
Linear subspace

Square integrable functions in R™
Continuous matrix

Gust wavelength

(1) Pitching moment

(2) Observability matrix
Measurement matrix

Noise intensity adjustment factor
Grammian matrix

(1) Range of parameter vector

(2) Solution of Ricatti equation

(1) Weighting matrix in performance index

(2) Solution of Lyapunov equation

(1) Weighting matrix in performance index

(2) Response covariance matrix
n-dimensional Euclidean space

(1) Sensitivity matrix
(2) Costate matrix

(3) System
Sensitivity ratio
Sensitivity factors
Sensitivity index
Cost function

(1) Overall transfer function
(2) Torsion moment

(3) Gust distribution time constant

11



U Forward velocity of aircraft

o
V(x, t) Lyapunov function
w (1) Sensitivity index function
(2) Wagner dynamics transfer function
(3) Controllability matrix
X State covariance matrix
Vertical force
LOWER CASE
a(t) Function of time (vector)
b Coefficient vector
b(t) Function of time (vector)
c Wing chord
EHT Horizontal tail chord
d Coefficient vector
e (1) Estimation error
(2) Model-following error
fl First row of F matrix
g . (1) Forward loop gain
(2) Design parameter for estimator
gl Coefficient vector
h Feedback compensation
j -Square root of -1
2 Dimension of subspace
n (1) Dimension of state vector
(2) Integer
n, Scale factor used to normalize pitch rate

12
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p (1) Vector of uncertain parameters
(2) Plant transfer function

(3) Kussner gust states

q (1) System dominant root
(2) Pitch rate
Ei Dynamic pressure
r Response vector
T, T Uncertainty response vectors
TiRIAS Bias on the standard deviation of the ith component of the response vector
8 Laplace transform variable
t Time
u (1) Control input
(2) Sensitivity function
v(t, 7) Kernel of V
w ‘ Vertical velocity
w o Vertical gust velocity
w(t, 8) Kernel of I:\I
w(t, 1) Kernel of W
wT Wagner states representing tail unsteady aerodynamics
wW Wagner states representing wing unsteady aerodynamics
X (1) State vector
(2) Plant parameter
Xlp Residualized state vector
X1RR Re-residualized state vector
Xlp Truncated state vector
y Qutput vector
Z System zero

13



GREEK SYMBOLS

Upper Case

r
3(t, s)

§(t, s)

Lower Case

Y(t)
ba
be
.6aW

'seT

] T/n2

‘sw/ n,

14

Diagonal coefficient matrix
Open-loop transition matrix

Closed~loop transition matrix

Angle of attack

Reciprocal of correlation time of T

Measurement noise

Aileron deflection

Elevator deflection (perturbation from trim)

Control surface Wagner state
Control surface Wagner state
Error criterion

Damping ratio

Structural displacement vector
Gaussian white noise

Normalized projection of b

Vector which satisfies N(t)(’ﬂt)t =L.T]t

Null space of ()

Wagner state representing tail unsteady aerodynamics

Wagner state representing wing unsteady aerodynamics

Pitch attitude

Wagner state representing tail unsteady aerodynamics

Wagner state representing wing unsteady aerodynamics




(1)
(2)
(3)
(4)

Perturbation parameter
Scalar parameter
Response sensitivity vector

Gaussian white noise

Parameter in performance index

(1)
(2)

(1)
(2)

Parameter in performance index

Lagrange multiplier

Gaussian white noise

Filtered white noise

Estimate of €

Kernel of

(1)

Vector of sensitivity states

(2) Response standard deviation vector

Standard deviation of vertical gust velocity, wg

(1)
(2)

Real valued function

Empty set

Frequency

15



SECTION III

CRITERIA DEFINITION

In this section some of the fundamental issues that influence the design of insensitive
control systems are discussed. An alternate measure of system sensitivity, which

is based on system performance, is defined.
SENSITIVITY CONSIDERATIONS

The use of mathematical models in the design of automatic control systems is an

accepted practice among control engineers., The control engineer must be aware,

however, that these mathematical models necessarily involve approximations, It is

his task to evaluate the effects of these approximations on his prime control system design

objective, i.e,, system performance., In other words, he must be able to measure the

Ysensitivity'" of the system!'s performance to characteristics that are not represented

by the mathematical models, This control system design necessity led to the develop-

ment of many concepts and theories which are generally included under the title

"Sensitivity Analysis.'" Tomovic, one of the early contributors to the field of sensitivity

analysis, has summarized the sensitivity information that is most important from the

engineering point of view as follows:[ll
1, Sensitivity to small perturbations of the miodel parameters around a reference

position,

2. Sensitivity to large displacement of the model parameters around a reference

position or global sensifivity,
3. Sensitivity to the reduction of order of the mathematical model,

4, Sensitivity to transition from continuous to discrete mathematical models,

and

5, Structural sensitivity or sensitivity to the influence of various functional blocks

which make up a system.
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The majority of the efforts extended in sensitivity analysis over the past several decades
has been concentrated on the first three of Tomovic's sensitivity considerations, This
study will also confire itself to the first three considerations. The first two we have
chosen to lump under sensitivity to parameter uncertainties. The third we have chosen

to call sensitivity to unmodeled dynamics.

The treatment of system performance sensitivity to parameter uncertainties has
proceeded along several paths that are, in general, functions of the form of the per-
for-mance criteria, The earliest treatments operated in the frequency domain, Feedback,
at that time, was used mainly for sensitivity reduction. Performance requirements

were satisfied through open-loop control. Sensitivity functions were defined to aid

in feedback design. Bode, [2] for example, defined the sensitivity of the overall transfer

function T to the plant parameter x as

T A dx/x _ d4nx
S¢ = GT/T = 2T (1)

[3] 14]

The more accepted definition, employed by Truxal - ° and Horowitz" " is the inverse of

Bode's or

T A dT/T _ d4nT
S = dx/x ° oinx (2)

Feedback was employed if S;f given by Equation (2) could be reduced.

Equation (2) may be extended to apply to dominant root sensitivity as defined by

[4]

Horowitz:

g &
x dx/x

(3)

when q; represents the system's dominant roots and x may be system gain, a pole, or
zero. Reference 5 employs a dominant root sensitivity approach; however, the sensitivity

functions are defined differently as
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when K is the system gain, and p:i and Zj are the system poles and zeros.
If a system is represented by the signal flow diagram given in Figure 1, then the
sensitivity-function defined by Equation (2) is given by
T _ 1
Sg " T+hgp (5)

where g represents the forward loop gain, p is the plant, and h represents the feedback

(6]

tion to the multivariable case where the relationship between open-loop errors, Eo’

compensation, Cruz and Perkins extended the single-input/single~output representa-

and closed-loop errors, Ec, is given by

E =SE
c o
where S is the sensitivity matrix function given by

S=(I+P GH)'1 (6)

where P! differs from P because of parameter variations. This work was in turn

extended by Kriendler in Reference 7,

-h

Figure 1, System Signal Flow Diagram
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(8l [9]

to parameter variations., Pagurek defines performance index sensitivity functions as

In the time domain, Pagurek and Dorato treat the sensitivity of performance indices

bJ(to. X Ps po)

oP; p=p

w (to. X s po) = (7)

where J is the performance index and p represents the uncertain parameters.

[10, 11, 12, 13]

Another time domain approach proposed by Kreindler defines sensitivity

states or

These states are then included in a performance index which is to be minimized., Open-
loop versus closed-loop sensitivity measures or relative sensitivity measures are
typically employed for design purposes., This type of sensitivity analysis falls under

the category of trajectory sensitivity analysis,

Compared to the treatment of sensitivity to parameter uncertainties, the treatment of

sensitivity to unmodeled dynamics has been meager. Prime in the field has been the

[14, 15] i

work of Kokotovic n the development of singular perturbation theory. Kokotovic

examines the behavior of a sensitivity function given by

bxi (t, 1)

DM (9)

ui(t, A)

where A represents a perturbation in the form of the model equations or

X, = ¢i(x1, cees xn;t),i <n (10a)

}\.xn = ¢n (xlp ee ey Xn; t) (10b)

A recent application of this approach is given in Reference 16.

The above review of past development in sensitivity analysis is by no means intended to

[17-22] [23-28]

be exhaustive. Additional developments by Cruz and Perkins, Horowitz,

[29-34]

and the work of Porter are but a few of the outstanding contributions to the field,
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The intent of _t__he review was to indicate the varying sensitivity viewpoints and, in

’ bérticular, the different ways in which sensitivity is measured. Four types of sensitivity
were observed: 1) transfer function sensitivity, 2) dominant root or eigenvalue sensitivity,
3) performance index sensitivity, and 4) trajectory sensitivity. In designing insensitive
controllers related to these types of sensitivities, relative sensitivity measures are
employed., For example, if a performance index sensitivity function is used, the designer
wishes to obtain a controller which reduces this sensitivity function with respect to the
maghi"t-ud'éqof. a sensitivity. function at séme reférence condition. This approach suggests

the following questions:

e What magnitude of sensitivity reduction is desirable?

o How is performance affected?

Let's look at the second question first., In the early stages of sensitivity analysis,
reduqing system sensitivity was synonymous with increasing system performance,

This was due to the fact that the open-loop system was designed to achieve the desired
performance. Feedback was used only to reduce the open-loop system's sensitivity to
possible variations. The design objective was to design a closed-loop system which would
produce open_-loop performance. Today, in many cases, open-loop performance is
unsatisfactory. This is particularly true in the case of modern aircraft. In many

cases it is necessary to use feedback to augment open-loop performance, Thus, if
feedbacl; is used for performance augmentation, can it, at the same time, be used for
sensitivity reduction? If so, what are the tradeoffs? With this in mind, the two

questions may be answered simultaneously., The magnitude of sensitivity reduction

is acceptable until the level of performance is unacceptable., This statement is the

basis for the definition of design criteria used in this study.

The first thing that becomes obvious about the above statement is that a sensitivity
méasuré is not really needed. The prime design objective is to maintain satisfactory
control syste'm performance over both nominal and off-nominal conditions. Nominal
conditions are defined to mean those real world conditions that are represented by the
mathematical model. Off-nominal means that there is some variation (i.e., parameter
uncertainties and/or unmodeled dynamics) between the real world and the mathematical
model. We suggest that what the control engineer really wants in an insensitive
controller is a controller which maximizes performance over a given type and range

of model variations. He does not want a controller that minimizes some sensitivity
funétiohs unless it aléo maximizes performance, The sensitivity measure is important

only as a tool in indicating how performance can be maximized.

20



[ ool
o=

With this as background, we defined the following set of design criteria and specifications

that we felt should be used in the design of an insensitive controller:

1, A nominal set of performance criteria that would reflect desired performan_cé
characteristics under nominal conditions. This gives the designer a peak

performance goal to shoot for.

2, A ininimum acceptable set of performance criteria for system performance
under off-nominal conditions. This gives the designer a lower bound on .
performance which he can use to determine whether or not model variations

will require control system adaptation rather than insensitivity.

3. Type, range, and, if appropriate, the probability of occurrence of known

variations in the model, This gives the designer a design space,

These characteristics can easily be translated into quantitative criteria since they are

not dependent on any specific performance specification.

For this study, Item 1 consisted of designing an optimal controller at the nominal con-
dition with no regard for sensitivity considerations. The performance of this controller

was then defined as the desired performance.

The minimum acceptable performance criteria which the nominal controller satisfied

with margin to spare were typical design specifications and are described in Section IV,

For this study Item 3 was determined experimentally. This is also described in’

Section 1V,

Since these design specifications can be used for the design of an insensitive controller
no matter what technique is used, they also provide excellent means of evaluating .
insensitive controller design techniques and resultant controller performance; thus they

were used for that purpose in this contract.

In summary, we feel that measuring sensitivity in this strictly performance oriented
fashion is realistic, practical, and is directed at the true objective of control system '
design. It eliminates the need for explicitly defining a sensitivity measure and the

resultant complexity of evaluating that measure. We feel that we have returned the focal
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point of insensitive control design to where it began, i.e., performance, as opposed to
pure insensitivity. Finally, this criteria allows us to evaluate a variety of techniques

fairly and consistently.,
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SECTION IV

MODEL DEVELOPMENT

In thié section, the formulation of the C-5A aircraft model is presented. The design of
the nominal controller is also discussed. This controller serves as the benchmark for

evaluation and comparison of the insensitive controllers.
MODEL SELECTION

The model chosen as an authentic aircraft example was the C-5A in the climb condition.,
The characteristics of this flight condition are given in Table 1. The C-5A was chosen"

for the following reasons:

1. A detailed, authenticated data base which was developed in previous program§[35]

was available.

2, It is a comprehensive model including high frequency bending modes and unsteady
aerodynamic effects. These features are exploited in the evaluation stage
where the efficacy of designing controllers with reduced order models is

determined.

3. A set of design specifications which encompassed the full range of types of
flight control system design criteria was defined in a previous program. [35]
These design criteria included statistical response, steady state transient

response, handling quality, and stability margin specifications.

4, The structure of the model permits the modeling of variations as 1) those
which affect the majority of the model elements, 2) those which affect a

selected subset of the model elements, or 3) a single model element variation.

5, Although it was not realized at the time the C-5A was selected as the model,
the flight control system design criteria are given for vehicle response states
which have model variations not completely covered by the vehicle dynamic
state model variations. Thus there can be an additional two classifications of
variations: state equation variations and response equation variations. This
consideration and how it affects insensitive controller design and performance

will be covered in detail in this and subsequent sections.
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TABLE 1. C-5A CLIMB FLIGHT CONDITION |

Total weight, N (Ib) 3,107 x 10° (698,-400)
Mach number . ' 0.448

Altitude, m (ft) o 2.3x 103 (7, 500)
Dynamic pressure, N/m2 (psf) 9.15 x 103 (1915
Airspeed, m/sec (fps) o 1.43 x 102 (468)
Fuel, N (Ib) ' 9.541 x 10° (14, 500)
Cargo, N (Ib) 7.1 x 10° (160, 000)
Center of graﬁty (% mac) 31 _
Trim angle of attack (deg) 5.15 x 10”2 (2. 95)
Load factor 1

MODEL DESCRIPTION

The mathematical model is a comprehensive representation of the linear, longiiudinal
dynamics of the C-5A. In its most complefe form, the model is described by a 79th

order constant coefficient differential equation:
X =Fx+G1u+G2T]

where x is a 79th order state vector, u is a 3rd order control vector, and 1 is a scalar
white-noise gust model driver, A description and order of the states and controls is

given in Table 2. Only two of the controls were used in this study.

As can be seen from Table 2, the aircraft states can be divided into the following sets:
1. Rigid body states X1s X9

2. Bending mode velocities Xg =~ Xiq

-X

18

3. Bending mode displacements x 32
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TABLE

2, CASE 1 STATE AND CONTROL DEFINITION
(79 STATES, 2 CONTROLS)

Stat:es " Dimensions Definition
1 w 0.0254 m/sec (in/sec) Vertical velocity
2 q/nz 0.0254 m/sec (in/sec) Normalized pitch rate
: n, = conversion factor

3-17 'ﬁl i=1, 15 0.0254 m/sec (in/sec) Structural rate of displa_:cement

18-32 M i=1, 15 © 0.0254 m (in) | Structural displacement

33 i&a radian Aileron deflection

34 %_Sei radian Inboard elevator deflection

35 5e° radian Outboard elevator deflection

36-41 §1-p6 -- Kussner gust states

42 wg 0.0254 m/sec (in/séc) Vertical gust

43 Ww(Wing) -- Wagner state representing wing
unsteady aerodynamics

44 <':1(Wing)/n2 -- Wagner state representing wing

_ unsteady aerodynamics

45-59 ‘.ni(Wing) i=1,15 -- Wagner states representing wing
unsteady aerodynamics

60 w(Tail) -- Wagner state representing tail
unsteady aerodynamics

61 <'1(Tai1)/n2 -- Wagner state representing tail
unsteady aerodyhamics

62-76 ’ﬂi(Tail) i=1, 15 -~ Wagner states representing tail
unsteady aerodynamics

(k| .Ga(Wing) -- Control surface Wagner state

78 5ei(Tai1) -- Control surface Wagner state

79 geo(Tail) -- Control surface Wagner state

Controls Dimensions Definition
1 6a radian Aileron command
2 Gei radian Inboard elevator command
c.
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4, .Cohtrol surface displacements x

33~ X

35

- X

5, Gust dynamics‘ x 49

36

6. Wagner dynamics x,, - x

43 79

Following is a brief description of the modeling associated with each set,
Rigid Body

The dynamics of the first two states represent the aircraft short period characteristics,
The low frequency phugoid dynamics are not pertinent to this study and have been

neglected.

Bending Dynamics

A modal representation of the structural dynamics was provided by Lockheed., The
equations of motion were formulated in terms of generalized coordinates. A detailed

description is given in Reference 35.

Control Surfaces and Actuations

The dynamics of the control surface actuators are represented by first order lags

given by

e s +7.5 ei
command

for the inboard elevator.
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Gust Dynamics

Gusts are applied in the vertical axis and are represented in Dryden form[42] by'

Lw
L 1+/8 g~ 8
wW_ =0 A ° M
g w Uo Lw 2
1+ -.[—]— s
o
where
wg = gust velocity, m/sec (fps)
Lw = wavelength, 576 m (1890 ft)
Uo = forward velocity, 143 m/sec (468 fps)
o, = gust magnitude RMS, 0.3048 m/sec (1.0 fps)

For analysis and synthesis the gust magnitude is normalized to unity and the corresponding
specifications on gust response characteristics are normalized accordingly. This may

be represented in state space by

Uo Uo 2 _ Uo 3/2
x41 -2 - (f—) x41 cw (1 - 2/3) ('L——)
w w w

= + 'n

3U

s 1 0 x o o

42 42 w LW

I I [ N S I |

3
First order Kussner dynamics[4 ] representing gust distribution on the wing and tail

are given by

We
1
]

al

+

36 - 36 - Ve

o

% [0
40 = “40 - g
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where

Q1

HT - horizontal tail chord = 4.66 m (15, 28 ft)

¢ = wing chord = 9,429 m (30.934 ft)

K = Mach number correction factor = 1,38

Zero-th over first and first over second Pade approximation are used for wing and tail

transport delays, respectively:

X = :;1__ b:4 + _1_ X
*39 T T ¥*3r U T 40
w w
X, .= x__ = 2 X ’
38 39 THT 36
. . .. 8 . __4 L 14
%39 2 38 © T, *39 2 *36
HT HT
where
_ 54,7
Tw =T sec
(o}
_183.7
THT = T sec
(o]
Wagner Dynamics
(43]

Wagner dynamics represent the lift buildup on the wing, tail, and control surfaces

and are represented by first order lags given by

_ 0.5
VVw(s) =1 s +AW
for the wing and
_ 0.5
Wyrl®) = 1 - 5 aT
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for the tail where

UO
AW = —~
Kc
U
AT = —2-
KcHT

This describes the form of the Wagner dynamics; however, the process required for

[35]

transformation to a state space representation is quite complex and will not be

discussed here,

A set of vehicle responses may also be defined. These may be states or controls or

linear combinations of states and controls, The vector of such responses is given by

r = Hx +Du (12)

The responses of general interest in our example constitute a 56th order response

vector which is defined in Table 3.

The most complete dynamic and response model, which is given by Equations (1) and (2),
will hereafter be referred to as Case 1. The nominal values for matrices F, Gl’ Gz.
H, and D are given in Appendix A together with Case 1 eigenvalues and statistical gust

response data for the free aircraft,
MODEL VARIATIONS

As discussed in Sections I and III, one of the primary objectives of this contract was
the synthesis and evaluation of insensitive controllers which maximize performance
over given types and ranges of model variations. The types of model variations that
are observed in flight control system designs generally fall into one of the following
categories:

1, | Uncertainties associated with model elements of a known model structure.

2. | Dynamics which are known but neglected in constructing a design model.

3. Dyr'w.r_l-lic's which are unknown and which, therefore, cannot be modeled.
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TABLE 3.

CASE 1 RESPONSES (56 RESPONSES)

Response Dimensions Definition
1-10 B, T.i=1, 5 '0.113 Nm Bending and torsion moments at
vl (in-1bs) 5 wing stations
11-20 B, i"i i=1,5 0.113 Nm/sec Rate of change of bending and
* (in-1b/sec) torsion moments at 5 wing stations
21-35 W.i=1, 15 0.0254 m/sec Structural rate of displacement
' (in/sec) for each flexure mode
36-50 'I]1 i=1, 15 0.0254 m Structural displacement for each
(in) flexure mode
51 Ba rad/sec Aileron rate
52 Bei rad/sec Inboard elevator rate
53 éa rad Aileron displacement
54 6ei rad Inboard elevator displacement
55 w 0.0254 m/sec Vertical velocity
(in/sec)
56 q/n2 0.0254 m/sec Normalized pitch rate
(in/sec) n, = 0.606 x 10~3 rad/sec

In general, the known model structure may be linear or nonlinear as may be the neglected

dynamics or unknown dynamics.

Only linear structures and dynamics were treated in this study. In addition, model
variations from the real world produced by such effects as digital flight control system
congiderations (e.g., quantization, transport lag, sampling rates, etc,) were not
treated. We treated what we considered to be realistic, comprehensive variations

that are routinely experienced in flight control system design.

Beginning with Category 1, model variations in the form of parameter uncertainties,

three types of parameter uncertainties were considered, These were:
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Uncertainties in dynamic pressure, a. Dynamic pressure which is a function

of air density and relative velocity can vary as much as 25 percent from nominal
at a particular flight condition. The magnitude of El is directly proportional to
the frequency content of the vehicle dynamics, Since flight control systems

are generally designed on the basis of designs at a set of fixed flight conditic;ns,

dynamic pressure is an extremely important design parameter,

Structural frequency, w, and structural damping, {. Determining accurate

~structural mode shapes and frequency distribution is a very complex problem.

It is very difficult to duplicate flight conditions on the ground for simulating
structural loads and forcing functions., Structural damping ratios of flexure
modes =‘are generally assumed to be small and the same for all modes ({ = 0,02
sec“1 for all 15 C-5A bending modes). The relationship between bending mode
frequencies and rigid body frequencies is an important issue in flight control
system design, particularly if notch filters are used to suppress bending modes
with frequencies in the rigid body range. If active control is to be applied for
maneuver load control or gust load alleviation, variations in structural frequency

and damping must be considered.

Stability derivative, Mw' The stability derivative Mw represents the change

in pitching moment due to a change in vertical velocity or, equivalently,

angle of attack. Together with Zq, the change in vertical force due to pitch
rate, it determines the aircraft's short period frequency. It is typically one

of the most difficult derivatives to predict from wind tunnel tests, During the
early design stages of the C-5A, Mw {(or more correctly Cmd) experienced

the largest variations in magnitude as the aircraft went through design modifica-
tions. Because short period frequency is directly related to handling qualities
and because of the difficulty to predict Cma, variations in MW are considered

to be truly representative of significant uncertainties encountered in flight

control design.

In addition to being representative of realistic model variations, the choice of dynamic
pressure, structura_l frequency and damping, and MW as uncertain parameters covers
a wide range of types of variations., Variations in dynamic pressure affect the majority
of the elements in both the dynamic equations and the response equations, Structural
frequency and damping variations affect particular subsets of the elements of both

equations, Variations in iVIw are limited to single model element effects,
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These uncertain parameter variations were incorporated into the aircraft model given .
by Equations (11) and_ (12) in the following form. The matrix F may be represented in .

the form:

F=F0+qoqua +q0 9 (MW -1)F

f Mw e .
. . : (13)
5 2 15 2 '
+
o e E oo Fpy tlo) Tow T F g
i=l o i i=1 o i
where

Fo is independent of q, [, ., and Nkv
c-;o = nominal dynamic pressure
af = dynamic pressure uncertainty factor
F‘i = dynamic pressure dependent elements with c-l factored out
M = M_ uncertainty factor

Wy w
F = M_ dependent elements with M_ factored out

M w w

W

Co = nominal structural damping ratio
s £ = structural damping ratio uncertainty factor
w, = nominal structural frequency for ith mode

o
we = structural frequency uncertainty factor
F Cw = structural damping and frequency dependent elements with l;wi

1 factored out

Fw' 2 . structural frequency dependent elements with (wi)2 factored out -

The matrix Fo includes actuator, gust, and Wagner dynamics and pure integrations.

The matrix H will have a similar representation:

15
H=H +9q q. H-+C( (. w, £ w H
) o f 'q .o f fi=1 10 Cu)i
9 15 0 . (14) -
+(wf) T w, H
. i W,
i=1 o 1
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The parameter uncertainties related to M_, should also appear in Equation (14). However
the form of the available data did not permit the Mw related elements to be separated
easily. Consequently, Mw uncertainty effects were not evaluated in the response

equations.

The G1 matrix contains only surface actuator gains which in general can have uncertainties

associated with them. Uncertainties in'G1 were not treated in this study.

The G matrix contains the magnitude of the gust intensity which is currently scaled for a
0. 3048 m/sec (1.0 ft/sec) RMS condition. The gust model depends on airspeed and hence on

dynamic pressure. However, uncertainties in the gust model were not applied in this study.

Appendix B contains more specific details on the computation of the uncertain parameter

matrices.

The second category of model variations is neglected dynamics, Standard flight control
system design procedure is to eliminate as many structural modes as possible in the
design process. The C-5A model provides the capability of analyzing the effects of
neglected dynamics through jﬁdicious manipulation of the structural modes, This will

be discussed in more detail under Reduced Order Models.

Finally, the third category of model variations is unknown dynamics. Uncertainties

in G1 were not treated in this study since this would have involved defining an additional
set of uncertain parameters which would have increased computational requirements.

It is felt that the methods for treating F uncertainties would be applicable to the treat-
ment of uncertainties in Gl' Hence, to keep computational requiremenfs at a workable
level, G1 was assumed to be known. However, the unsteady aerodynamics, included

in the C-5A model, could be treated as unknown dynamics for evaluation purposes. No
-attempt was made to include the effect of unsteady aerodynamics in the development of
reduced order models, Thus, for systems designed with reduced order models. that do
not include the effect of unsteady aerodynamics, these dynarfxiés can be interpreted as

unknown,
REDUCED ORDER MODELS

When the size of a model does not facilitate control system design, an attempt is usually

made to approximate the model with a reduced order model that retains the characteristics
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which significantly influenée the control system design. The Case 1 form of the C-5A
model with its 79th order dynamics exemplifies a model that does not facilitate control’
system design, Two techniques have been used to reduce the size of unwieldy models.

These are:
e Truncation

° Residﬁalization

To demonstrate these techniques, consider the partitioned form of Equations (11) and

(12) given by

’_. — —— — —_— — p—
1 Fii Fr2l| [ ® Gy Gy
1 1
x = = + u + 1 (15)
Xq Lle Foo sz LG12 . Gzz
where
;1 = states to be retained in reduced order model
§2 = gtates to be eliminated

A truncated reduced order model is constructed on the premise that

x, = 0 (16)

thus producing a truncated model given by

X &d

1= F11x1 + Gllu + Gz.l'n 17)

A residualized model attempts to retain a steady state effect of the eliminated states

by setting

:.72 =0 (18)
in Equation (15) and solving for ;:'2, which gives

%, = -F22'1_ [Fy, %, +.G1'2u .+.G2’2~n]. o (19)
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Substituting the right-'hand side of Equation (19) for x, in the ;1 equation produces the

residualized reduced order model

-1

x) =[F}; - F15 Fyy

1 Fpl %) +[G

1 2
- (20)

-1
+ [G'z1 - Fi9Fo G22] L

"hoth the truncatidn and residualization techniques were investigated in this study. _
The following reduced order models were constructed:

Case 2 - Truncated 42nd order model

Case 3T - Truncated 24th order model

Case 3R - Residualized 24th order model

Case 4T - Truncated 16th order model

Case 4R - Residualized 16th order model

For the first reduced order model constructed, Case 2, the vector x of Case 1 was.

~

partitioned into ;1 and X, in the notation of Equation (15) as follows:

x, =[x X ]éx2
1 1°°° 742

?

2 = [%43

Ll

ee e x79

The truncation technique was used to construct Case 2. It eliminated all the unsteady
aerodynamics but retained all 15 bending modes, all seven gust states, all three
actuator states, and fhe two rigid body states. Truncation rather than residualization
was used to generate Case 2 to provide the capability of realistically evaluating the
effects of "unknown" dynamics. The residualization process attempts to retain some of
the characteristics of the states that are not included in the reduced order model, It
requires knowing the dynamics of these states; In most cases this is a desirable
feature. However, for purposes of this study, we assumed that the unsteady aero-
dynamics were ''unknown'' so that Case 1 could be used to evaluate the effects of unknown
dynamics in insensitive controller performance. Had we residualized to Case 2, we

would have included the characteristics of "unknown' dyhamics which would have -
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compromised our evaluation procedure. Case 2, then, becomes our most complete
"known' model. The remaining truncation and residualization procedures were applied
to Case 2, (With respect to truncation, this point is imrhaterial.) Fbr both Case' 37T h

and Case 3R, X 2 and X, 2 are defined as follows:

1 2
%2 2 L2, 2 L 2 2 214 .3
1 1 *° ¥gr *yg e Fgg 2 Hgg e Eyy l =X "
2oy 2 L 22 v, 2] :
2 9 **° *i17 2 %gq v %gg

Case 3T and 3R do not contain the nine highest frequency structural modes but retain

all remaining states. For Case 4T and 4R, ;12 and ;1 are

~2 2 2 2 2 2 2 2, & 4

1 cee X3.X5,X18,X20,X33 e

]

[x

¢
N
]

2 2 2 2

Xjq » Xjg » Xgq » eee Xgy' ]

x [x x 2
4’ 6, * e » 17

In Case 4T and 4R, only the first and third structural modes are retainéd. A1l other
structure modes were eliminated. The third mode was retained over the second because

of stability problems associated with that mode observed in previous studies.

Appendix A contains the F, Gl’ G2, H, and D matrices for each of the reduced ofdér

models and ''free aircraft'' eigenvalues and statistical response data for each case,
DESIGN SPECIFICATIONS

The design criteria, which were used for the design of the nominal controller and for
the evaluation of the insensitive controllers, were initially specified for the design of
the Active Lift Distribution Control System (ALDCS). ALDCS was the product .of a
Honeywell-Lockheed study whose objective was to reduce wing loading on the C-5A
through an active application of control surfaces., The design specifications, as supplied
by Lockheed for the ALDCS study, are given in Table 4. As can be seen from Table 4,
the criteria cover the spectrum of flight control design objectives. The maneuver - .
load control specification is a transient response criterion, The gust load alleviation
specifications are statistical response criteria, Handling qualities are specified by

closed-loop root locations. And, finally, there are standard stability margin specifications,
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These criteria, as specified, provide a realistic foundation for nominal control system

desigh coupled with the scope and flexibility needed for insensitive controller evaluation.

TABLE 4. ALDCS DESIGN CRITERIA

Maneuver load control 30% steady state bending moment
reduction at wing root

Gust load alleviation 30% RMS bending moment reduction
at the wing root

No more than 5% increase in RMS
torsional moment at the wing root

Handling qualities. Acceptable as measured by closed-
loop short period roots and transient
response to pilot step input

Stability margins Gain margin 2 6 dB
Phase margin = 0, 7854 rad (45 degrees)

DESIGN OF NOMINAL CONTROLLER

The desjign of the nominal controller utilized Honeywell's developments in "quadratic"
methoddlogy and computer software. ''Quadratic' methodology refers to optimal control
system :_design procedures that minimize a quadratic performance index, For the case
of the tilme-invariant stochastic control problem that the C-5A design represents, the

performance index is given by

- T
‘.J' —’E [rd Q. rd] (21)
where E [ ] is the expected value operator, r p is a vector of design responses whose
form is given by Equation (12), and Q is a symmetric weighting matrix, The r d vector

that was used to design an optimal controller which satisfied the ALDCS design specifica-
tions is given in Table 5.

Only the ailerons and the inboard elevator were used in the controller design., The

outboard elevator is reserved for pilot command inputs, The design approach consists

of the followihg steps:
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TABLE 5. RESPONSE VECTOR AND QUADRATIC WEIGHTS

Response vector Physical quantity Weight
_ s . -10
Ty B1 = bending moment at wing root 1x10
1
T3 T1 = torsion moment at wing root 1x 10"9
2
ry ]:3,1 = rate of change of bending 5.5x 10713
3 moment at wing root
ry ’i‘l = rate of change of torsion moment 1x 10-11
4 at wing root
rs sa = aileron displacement 0.32 x 108
5
ry 6e = inboard elevator displacement 0
6 i
r 5 = function of aileron displacement 1x 108
d a .
7 m  and aileron command
r 5 = inboard elevator rate 1x 106
d e
8 i
7.
r _ r = control follower response 2x 10
d9 CF

. Step 1: Design a full state optimal controller for Case 3T, the 6 bending mode
truncated model, which satisfies the bending and torsion moment statistical
criteria, places short period roots at a frequency greater than 1.6 radians/
second and damping ratio between 0.7 and 0, 8, satisfies bending moment
response to step elevator criteria, satisfies gain and phase margin criteria,
and maintains actuator roots, surface displacements, and surface rates

at realizable values.

Step 2: Using quadratic weights determined in Step 1, obtain optimal gains for

Case 3R and validate that design criteria are satisfied,

38



Step 3: Evaluate Case 3T optimal controller on higher order models, Case 1

and Case 2.

Step 4: Evaluate Case 3R optimal controller on higher order models, Case 1

~and Case 2.

The same four steps are also applicable to the design of the nominal controller for
Case 4 (T and R), the 2 bending mode truncated and residualized model. Controller

design utilized full state feedback or

u=Kx (22)

One of 'the early optimal controller designs, while meeting all other design specifications,
did not meet the 6 dB gain margin criteria for the aileron loop. In fact, frequency
response analysis showed that the controller was very close to a low frequency instability
in the aileron loop, the gain margin being only 1.2 dB. An analysis of the aileron loop

root loci indicated that a root equivalent to the aileron actuator was proceeding into the

right half plane, This was attributed to the presence of positive feedback (Gain K =0.7)

1, 15
of aileron displacement to aileron command in the full state feedback controller.

By arbitrarily setting K to zero and maintaining the remaining gains at their

1, 15
optimally designed values, a gain margin of 15 dB was realized. Since one of the agreed
upon ground rules of this contract was to design the nominal controller using full state

feedback optimal control, an attempt was made to force K to zero through manipula-

1, 15
tion of the quadratic weights. The optimal gains K are obtained via the algebraic

relationship

K = -(0TQD)"! iqu +G1TP) (23)

Where matrixes D and H have been defined in Equation (13), Q is the weighting matrix
of Equation (21) and P is the solution to the Ricatti equation. The Ricatti equation may

be written as

Tp - uTqu

PGI(DTQD)_I GITP -PF-F
-GI(DTQD)-I DT QHP - PGl(DTQD)—l pDlQH (24)

-uT @b QD) ! pTou
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It was determined that the 0,7 value of gain K was produéed in._t'he foilowing mahnei‘:

1, 15 _
" R _ T T. |
Ky 45707 _(DQH), o _(G Py | e
| T T
®'aD), 1o DIRD), o |
whez:e
T _ T _
(D'QH) ;4 = -1.0 ©,'P) 4 = 0.3
T T
(D"@D)y 44 (D"QD), 45

where the subscript 1, 15 is used to indicate the terms of the respective matrix operations
which contribute to the K1 15 gain computation,

»
The first term of Equation (25) can be set to 0.3 by defining a new response variable

which is a modification of the aileron rate response or

6a = -2,00a +6.0 52
m c

This produces a modification of the H matrix and the term DTQH. The second term
will be held at 0.3 if, as a first approximation, it is assumed that the major component
of Equation (24) in the determination of P is the term HTQH. By modifying the weighting

matrix Q such that (HTQH) remains the same, this approximation can be achieved.

1,15
Specifically this requires placing a weight on the aileron response to compensate for

the modified H, This modification led to a satisfactory design,

Another unique feature of the design involved the manner in which the handling quality

criteria were satisfied,

The C-5A aircraft is augmented with a simple SAS system to enhance the handling
qualities of the aircraft. It consists of pitch rate feedback to the inboard elevator
through a gain of 0.5 or

bei =0,5¢q _ (26)

C
m

where the c subscript indicated commanded position.
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This has the effect of moving the short period dynamics from wsp = 1,57 radians _/ second,
gsp = 0,57 to w = 1,78 radians/second, gsp = 0.75.

The incorporation of this SAS system was included in the optimal controller design by
using a control model-following approach., Specifically, one of the system responses

was chosen to be

ral =8 -5 (27)

where Ge is the SAS system of the C-5A aircraft. Substituting (24) into (25), the
e
‘m

eqﬁation reads
=0, - §

i
c

Tcr

Thus by varying the weights on r P the short period roots could be controlled. The

C
final set of weights is' given in Table 5.

CONTROLLER PERFORMANCE

The performance of the controllers designed on the basis of the 6 bending mode and 2 '
bending mode models is given in Table 6, For comparison purposes, the perforinance
of the ALDCS controller on the Case 1 model is also given. The progression of results,

as shown in Table 6 for both the truncated and residualized model controllers, are as

follows:

Truncated (Residualized) Presents performance results of controllers designed

Results (Reduced Model) using the 6-mode and 2-mode truncated (residualized)
models and evaluated on those same models. '

Truncated (Residualized) Presents performance results of controllers designed

Results (Case 2) using the 6-mode and 2-mode truncated (residualized)
models, but evaluated on the Case 2 model.

Truncated (Residualized) Presents performance results of controllers designed

Results (Case 1) using the 6-mode and 2-mode truncated (residualized)

models, but evaluated on the Case 1 model. _
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TABLE 6,

COMPARISON OF CANDIDATE DESIGN MODELS

Residualized Residualized Residualized
Specificati Truncated results | Truncated results | Truncated results results results results
'diescr;pti;gn Criteria ALDCS (reduced model) (case 2) (case 1) (reduced model) (case 2) {case 1)
6 Mode | 2 Mode | 6 Mode 2 Mode 6 Mode | 2 Mode | 6 Mode | 2 Mode | 6™ Mode | 2 Mode 6 Mode 2 Mode
Maneuver
load control B < -30% -30% -34% -31% -34% -30% -36% -33% -40% -41% -40% -40% -43%
% change
Gust load B < -30% -36% -33% -34% -31% -27% -36% -33% -35% -35% -35% -35% -39% -40%
alleviation
% change T < + 5% - 1% -27% -25% -27% -22% -29% -24%, -31% -31% -31% -31% -33% '-32%
Handling w__ (rad/sec) > 1.6 2.30 2,05 2.01 2.00 1.90 2.25 2.08 2,12 2,12 2,13 2.13 2,42 2,40
qualities
3 (sec)~1 0.7-0.8 0.76 0.72 0.70 0.72 0,69 0,74 0.70 0,72 0.72 0.72 0.72 0,73 0.73
Stability Gain > 6 dB Ga 17.2 dB @ L @ o ® © © © ® @ ® ©
margins
Be 15,4 dB 28 dB 43 dB 29 dB L] 28 dB 15 dB 29 dB 29 dB 29 dB 29 dB 28 dB 36 dB
Phase > (45°) 83 1.75 rad *® « «® @ LJ @ @ Y @ @ @ @
0, 7854 (100°)
rad Oe 2,50 rad © @ © @ © ® @ © ® ® ® ©
(143°)
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A number of conclusions may be drawn based on the data presented in Table 6, First,
the residualization technique leads to much more consistent results than truncation. |
This can be demonstrated graphically by considering the deviation in performance that
controllers which are designed and evaluated on lower order models experience when

applied to higher order models., The results are given in Figure 2 in bar graph form,

Shown plotted on the y axes are design criteria deviations in the units of the specification,
The x axis is separated into individual comparison cases, For example, Comparison 1,
Case 3, 3 versus Case 4, 4 represents a comparison in performance between a controller
designed using Case 3 and evaluated using Case 3 and a controller that is designed using
Case 4 and evaluated using Case 4. The first number represents the model case that was
used to design the controller. The second number indicates the model case that it was
evaluated on., Both truncated and residualized results are shown, The results to the

left of the dashed line clearly indicate the consistency in performance of residualization
over truncation. As an example, on Comparison 1 it can be seen that the "residualized"
controllers show a deviation in performance only for the maneuver load performance.
The performance for all other criteria is identical, Truncated results, on the other
hand, show deviations between cases. Similar results are shown for Comparisons 2,

3, and 4.

The deviations in performance between Comparison 3 and Comparison 4 indicate a
reduction in deviation for 'truncated" controllers applied to higher order systems if

more dynamics are retained in the "truncated" controller design model,

The cases shown to the right of the dashed line do not demonstrate comparison evalua-
tions of truncation versus residualization per se., The two comparisons shown represent
Case 3 and 4 controllers applied to Case 1. As was discussed earlier, Case 3R and Case
4R were residualized from Case 2, not Case 1. Thus evaluation of the two techniques

with respect to consistency in performance should be limited to the Comparisons 1

through 4., Comparisons 5 and 6, however, do provide additional information. First,
"residualized" controllers, no matter what reduced order model they were designed with,
exhibit the same trend in performance when applied to higher order models, For example,
bending RMS devia&ions are positive (i.e., better performance on higher o;'der system)
for Comparisons 5 and 6, On the other hand, Controller 3T demonstrates better

performance when applied to Case 1 while Controller 4T does worse,
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Seeend. there is very little difference in mag-nitud.e between "residualized" controller
performance in Comparisons 5 and 6. This is not true for the "truncated" controllers.
ﬁesed on the second observation and also on the '"residualized" cenfroller perferﬁances
shown in Compansons 3 and 4, it was concluded that nothmg was gained by 1nclud1ng '

the higher dynamics of Case 3R in & ‘design model.. The Case 4R controller did Just

as well. Consequently, we decided to use Case 4R, 1.e. » the resuiuahzed 2-mode model,
as the nominal design model and also the model for all insensitive controller des1gns.

The optimal controller designed with Case 4R is defined as the nommal controller. Its .
performance was used as a benchmark in all comparisons and evaluatmns of the msens:.twe
controllers des_1gned. _ The gams for the nominal controller are. g1ven in Table 7

Credd

RANGE OF MODEL VARIATIONS |

As discussed in Section III, the ideal problem statement for use in the design of an
insensitive control system should include a specification of the types and ranges of
variations from real world conditions that the model may. ex_hibit{ 'With respect to the
three categories of types of variations that were discussed preﬁeusly, we definelc;i'

1) a set of uncertain parameters (q, », {, MW), 2) a set of known 'L-mmodeled dynamics
(high frequency structural modes), and 3) a set of assumed "unknpwn" unmodeled dynamics
(unsteady aerodynamiés). The last two categories require no more definition. The first
category, however, still requires e speqification, on the range-of uncertainty fha__f the
uncertain parameters may experience, In general, if the range of parameter uncertainties
is not defined a priori, the control system designer will rely on his experience and
whatever information he can obtain on model efficacy to define a realistic uncertainty
range. For the purposes of this study, we added a third factor. We wished to_define

an uncertainty range in which, for some point or péiniés in that ran-ge.. the performance of
the nominal controller produced a design specification violation. This is' not a necessary
featnre for insensitive controller design. It merely provides an additional dnerffilt’ative _

reference that can be used in subsequent evaluation of insensitive controller performance,

The range of parameter uncerta1nt1es was, determmed expenmentally by varymg the
uncertain parameters and calculatmg the performance of the nommal controller under
these off-nominal conditions, Table 8 ‘presents the results of the evaluation of the effects
of the parameter uncertainties on nominal controller performanc_:e. Run 66 represents
performance under nominal conditions. The factors c-lf, Qf, ,w'f.,' and My were defined

earlier to represent the parameter variations. As a reminder, c'jf = 1.1 represents a 10
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TABLE 7. NOMINAL CONTROLLER GAINS

GAINS MATRIX

ROW 1
2.32077E-06  L18916E-04 .112006-03 .32268E~04 =,34501E-03 -.70350E-03 =,21382E400 .11248E-02 +11472E~04 =,27191€-03
J4T293E-064 L61141E405 =.20954E-03 J13560E-03 ~,13574E-04
ROW 2 :
L13466F~03  J40718E~G3 =.18R09E~03 .26B98E=03 J462THE=03 =,62506E-02 .34005E-02 ~,15227€+00 =.17730E-05 .67391g-03
-.12350E-02 -.69637E-04 ,43997E-03 .85089E-03 .13R45E-02
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TABLE 8, RESULTS OF PARAMETER UNCERTAINTY EVALUATION

Run # 9 Cf o, MWF wsp Csp B T s 6A 5A 6e 6e
dec. dec. dec. GM PM GM PM
66 1.00 1.0 1.00 1.0 2,12 | 0.72000 | 35.00% 31,00% 41.00% © © 29.00 ©
73 1.10 1.0 1,00 1.0 2.35 | 0,72000 | 31.00% 28,.00% 34.00% ® © 30,00 ©
74 1,20 1.0 1.00 1.0 2.60 | 0.73000 | 27.00% 24,00% 28.00% © © 30.00 o
75 0.90 1.0 1.00 1,0 1,89 | 0.71000 | 40.00% 36.00% 46.00% © @ 30.00 ©
76 0.80 1,0 1.00 1,0 1,67 | 0.71000 | 44.00% 40.00% 53.00% © © © ©
84 1.00 0.9 1,00 1.0 2.12 | 0.72000 ;| 35, 00% 37.00% 40.00% ® ® 30,00 ©
90 1.00 1.0 1,10 1.0 2.14 | 0.71000 | 35,60% 31,50% | 40,50% © © 42.00 ©
91 1.00 1.0 0.90 1.0 2.10 | 0.72900 | 34,70% 31.17% 39.50% ® © 27.00 ®
92 1.00 1.0 1,00 1.1 2,17 | 0,69976 | 37.00% 35,00% 40.50% © © 27. 80 ®
93 1.00 1.0 1.00 0.9 2.07 | 0,73690 | 32,76% 27.53% 37. 80% © © 37.35 ®
94 1.20 0.9 0.90 0.9 2.51 | 0.76000 | 23,40% 18.20% 23, 60% © © 25,30 ®
95 1.00 0.5 1,00 1.0 2.12 | 0.71700 ! 34.50% 31.30% 40, 10% © © 35.80 ©
96 0.50 1.0 1,00 1.0 1.03 | 0.70100 | 59.80% 54, 80% 70,70% || « ® ® ©
98 0.50 1.0 1:.00 1.2 1.08 | 0,67100 | 61,30% 51.50% 71.50% @ ® ® @
é?iose 1 1.20 0.9 0.90 0.9 3.13 | 0.77600 | 28,10% 19.10% 35.70% o ® 28.56 ©
101 0.50 | 1,0 | 1.00 | 1.2 | 1.16 | 0.68000 | 68.20% | 57.30% | 74.80% | ® ® ®
Case 1
g;zse 9 1.00 0.5 1.00 1.0 2.13 | 0.71500 | 34,15% 30.07% 40.12% ® © 28.51 ©
103 1.20 0.5 0.75 0.8 2.38 | 0.83000| 19,00% 9.70% 17.13% © © 19.00 ©
104 1.25 0.5 0.75 0.8 2.50 | 0,84300| 16.87% 6.97% 13, 24% o ® 19.56 ©
105 1.25 ¢S 0.75 0.8 3.75 | 0,81000| 21,80% 5.88% 28.10% © ] 21.32 ®

Case 1




percent increase in q from the nominal value, All evaluations were done on Case 4R

unless otherwise designated.

An analysis of Table 8 led to the following ‘conclusions:

1. No combination of uncertainties produced a violation of all five criteria, Run:
104 répresents a combination which violated three of the five criteria. The " :

torsion moment ga.nd the stability margins .are still within specification.. - - . .

2, The nominal controller was insensitive to variations in structural damping as

demonstrated by runs 95 and 102.

3. The effect of unmodeled dynamics as seen when the same perturbations'.wéi'e

applied to Case 4R and Case 1 is to improve performance in all cases.

-4, Two worst case conditions, shown in runs 101 and 105, were defined, “Run 101
produced a violation in only the handling quality specification but it shows the
effect of large variation. Run 105 is worst case in that the largest number of

violations are produced,

Based on the results given in Table 8 the following range on the uncertain parameters

was defined.

Dynamic Pressure Uncertainty 0.5 = if <1,25

- Structural Damping Uncertainty =~ =~ 0.5 S_gf =1,50 -
" Strudtural Frequency Uhcertainty ~ - 0,75 < we < 1. 25
Stability Derivative, Mw’ - 0.8= Mw <1.20

Uncertainty - f

) o

Except for the Iower limit on C-lf: it is felt that the r'nagni‘tude of the range of uncertail'l'l,.i_és
is realistic, The lower if limit was selected to obtain a compromised specification
violation, i.e,, a condition which violates one design specification but gives improved -

performance on the others.
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SECTION V

INSENSITIVE CONTROLLER DESIGN-~
EXISTING TECHNIQUES

In this section the design of insensitive controllers, based on synthesis techniqu‘és

that have appeared in the recent control literature, will be described.

Five synthesis techniques for the design of insensitive control systems that are based

on existing theory were investigated in this study. These have been identified by the

following descriptive titles:

1. Additive Noise

2. Minimax

3. Multiplant

4, Sensitivity Vector Augmentation

- 5, State and Control Dependent Noise

All of these techniques can be formulated as time-invariant stochastic control problems

with the standard quadratic performance index. This formulation introduces the

difficulties associated with selecting quadratic weights. To alleviate these difficulties,

the approach taken was to structure the synthesis technique in such a way that quadratic

weight manipulation was minimal or, at worst, straightforward.

The design of the insensitive controllers utilized full state feedback, as did the design

of the nominal controller. As discussed earlier, the use of full state feedback was a

ground rule for this study.

A description of each synthesis technique and the resulting controller design will now

be presented.

ADDITIVE NOISE

The additive noise concept has been used extensively to design controllers for systems

subject to uncertain ihputs such as gusts and pilot commands. In this study, o'how}ever,
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the effects of uncertainties in aircraft dynamics will be approximated by additional
noise disturbances to the nominal system. Thus, thé ensemble of disturbances which
the design system is expected to encounter is "shaped' by the uncertainties in system .

parameters,

The formulation of the concept for this purpose is as follows. The dynamical system

is represented by the differential equation

X = F(x,u,p, M) (28)

where x is the state vector, u is the control vector, p is a vector of parameters whose
values may be uncertain, and M is a (disturbance) noise vector., The responses of

interest comprise the response vector

r = H(x, u, p) (29)

The nominal value of p is.po. The nominal value of T is zero., It is assumed that a

nominal solution (xo, uo) is known which satisfies

%= F(xo. us P 0) (30)

Then perturbation equations are written as

[:4

U (31)

F 6x+F 6u+F _6p+F
X u p M

6r = H 6x +H 6u+H sp (32)
x u o]

where Fx denotes the matrix of partial derivatives of F evaluated at (xo, us Py 0).
and the remaining coefficient matrices are defined similarly. The vector §p is then

assumed to satisfy the differential equation

5p = Abp + BT, 6p(0) = 5p, (33)

where 6po is a random variable, and 'ﬁ is a white Gaussian noise input vector. A, B,
and the statistics of 6po and T are chosen such that E{sp(6p)'} = 3 £ with £ denoting
the covariance of expected parameter variations and the frequency content of §p being

consistent with physical expectations,
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In our specific example, the matrices Fp and Hp are not known and the cost of determining
them would be excessive, This is probably typical of many control problems. Therefore,

we developed the following formulation.

Consider the nominal plant represented by

X = + +
% F(pc.)xo G u + Gy (34)
where P, represents a vector of uncertain parameters at their nominal values. E&uation
(34) may be partitioned to demonstrate the influence of the gust states, x , on the air-

craft states, xo .

-
Fi1(p) 12(Pg) %o, G 0
= + u+ Ul (35)
0 F22 Xg 0 G2
where x T . [x T, x T].
o o g
a
The response equation may be written as
r, = H(po) xo + D(po) u (36)

For a perturbed system, the plant may be represented in the same partitioned form by

% F,.(p) F.,(p) X G Y
P, 11 12 P,
= + u+ 1 (37)

xg -0 | F22 xg (] G2

and the response by

r_ = H(p)x_ + D(p)u (38)
p - (p ' (p)

where
P=PO+AP
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Equation (37) may be rewritten as

F11(po) F12(po) xpa G1 0
= + u -+ n o+
0 ]5‘22 xg 0 G2
Fll(p) - Fll(po) Fiop) - Flz(po) xpaL
0 0 X
g

The additive noise concept may be viewed as approximating this equation with one of

the form
xp Fll(p ) Flz(p ) xp Gr1 G2
a a
= + u+ L (39)
xg 0 ]5‘22 xg 0 (}2

where the parameter variations are lumped into the 621] term. Thus 62 should be
chosen in such a manner that the noise produces the same effects (in some sense) as

parameter variations produce on system responses.

~

We made three major assumptions in defining G2. They were:
1., The magnitude of 62 should reflect 3c magnitudes of parameter variations,

: 2, 52 should also reflect the "worst case' condition found in the evaluation of the

nominal controller, and

3. The effect of the uncertain parameter variations should be referenced to the
closed-loop system response, Thus 52 should be chosen in such a manner that
the noise produces the same effects as parameter variations produce on closed-

loop system responses.

Given those assumptions, the solution for 62 proceeds by first selecting a worst case

set of uncertain parameter variations. The case selected was taken from the worst
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case conditions discussed in the previous section. It consists of a 25 percent increase. .
in dyﬁamic pressure, a 50 percent decrease in structural damping, a 25 percent decrease
in the structural frequency at all modes, and a 20 percent decrease in the stability -

derivative, M_. The covariance, X,, of the plant under these worst case_condi'tions

. 1
is the solution of the Lyapunov equation which is given by

F'(pl)X1 +X1F'(pl)T + GZGTZ =0

-.-(40).
F'(pl) = F(pl) + GIK = closed-loop state matrix

where p, is the "worst case' uncertain parameter vector, and K represents nominal ;-

system optimal gains.-

Equation (40) may also be written as

T T _
(F'(p,) + AF' )X, + X (F'(p ) + AF' )" +G,G ", = 0

(41)

] = ] !
AF 1 F (pl) F (po)
Partitioning (41) into the gust and non-gust covariances yields
[ F'  + AF! F' +AF! o Tx X, ]
%11 15 %12 11] 1y Lo
+
F! +AF} F!  +AF} x"lf X,
%21 21 O22 22 12 22
— — —
X, X, F!  +AF) F!  +AF) T
11 12 °11 11 %91 21
_ _ L 1 + _ (42)
x'lr X, F! +AF) F!  +AF}
12 22 %12 12 %22 22
L — L —]
0 0
= 0
o GGt
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The covariance of the states associated with Equation (30), X,, is similarly the solution

2
of the Liyapunov equation given by
_ — i -
) 30 X P
%11 O12 241 219
+
F ) Xg' X,
L—_°21 %92 12 22
— | .
P . L . . (43)
~ ~T ~ T
X X ol ol G.G é.a
291 219 °11 21 272 272
=0
+ T
Xg X, B B (E,Gy) GZGg
12 22 12 %29
| ] L | | 1

We can solve for 626'21" by requiring that X1 = X2 and equating Equations (42) and (43)

and simplifying for

6,8 = aF! X, +0F X, +X, OMF] +X AFY (44)
11 111 12 f12 fir it g
Similarly,
~ T
G.GY = aFt X, +AF! X, +X, AF' +X, AF (45)
272 ip hiz iz lae 1yl T lip g

Equation (44) defines the magnitude but not the direction of 62. However, for design
purposes, only the products Gzﬁg and (A}IZGIZ11 are needed since it is the products that

are used in calculating the covariance.

The uncertaintiés in the response equdtions are treated in a like manner. The response

covariance, R,, associated with the worst case condition is given by

1

- T
R1 = [H(pl_) + D(pl)K] X, [H(pl) + D(pl)K] (486)

The response covariance associated with the nominal is

i T '
R, = [H(p,) + Dip JK] X_[H(p ) + Dip )K] (47)
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where

]

Fi(p ) X_+X_F' ()" + GG

9Gg =0

and

' =
F (po) F(po) + GIK
An RMS bias was formed as
riBIAS B \r(rii)l - erii)o (48)

for each of the components of r. This is used to include the effects of the parameter

uncertainties in the design response equations on the RMS responses as

o, = (r..) + r, (49)
'BIas

where oy is the design RMS value for the ith component.

Design Details and Results

The design strategy for this approach was to consider the system given by

Xa Fi1(eg) Fiafpy) *a Gy G,

r = H(po)x + D(po) u

~

as the design system. The G2 represents the effects of parameter uncertainties in the
state equations. An RMS bias was used to represent the effect of parameter uncertainties
in the response equations. The weighting factors were then varied so as to drive the

RMS values of bending and torsion moments back to their nominal values.
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Table 9 presents a comparison of RMS bending and torsion moments, Run 66 is the
9 BIAS © 0. Run 142 and 143

Run 142 is the nominal controller, and run 143 is the

nominal controller at the nominal condition, i.e., G. = 0, r

include nonzero (3'2 and rRIAS’
additive noise controller. The weights and gains associated with run 143 are given

in Tables 10 and 11, respectively,

TABLE 9. ADDITIVE NOISE DESIGN RESULTS

Bending RMS Torsion RMS
Run # Weights 0.113 Nm (in-1b) 0.133 Nm (in-1b)
6 5
66 Nom 0.7210 x 10 1,090 x 10
142 Nom 0.8627 x 10° 1.008 x 10°
143 Table 10 0.7710 x 106 1.026 x 105

MINIMAX DESIGN

The minimax technique is based on a worst case approach, The design goal is to
minimize the worst performance that a system may experience for a given set of para-
meters and parametér ranges by appropriate choice of the controller. foe technique
then requires that the performance of each candidate controller be evaluated at each
permissible set of parameter values in the expected range, Hence, even for a small
parameter set, a direct application of this technique could prove to be computationally
infeasible. However, many systems possess fortunate extreme properties so that

the evaluation may be restricted to the boundary of the parameter range. We relied

on this characteristic in our design.

For this approdch, assume that the systém is represented by

% = F(p)x + Glu + G2'I] (50)

with responses

r = H(p)x + D(p)u (51)

where p is a vector containing the uncertain parameters, and x, u, and 1 are the state,

control, and noise vectors, respectively, The control is to be of the form
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TABLE 10." ADDITIVE NOISE WEIGHTS

Q MATRIX
ROWw 1 . ] I . . - e e
" .10000E-08"0, e T T 0, 0. 0. "~ 0. ' 0. 0 " 0.
RIW 2 ‘ .
0. +10300E-07 0. 0. 0. Oe 0. 0. 0. 0 __ __ _
ROWS T3 - . . .- . . —
d. 0. +55000E~11 0, 0. 0. 0. 0. 0. 0.
ROW g - e e e . e e - e ————— = e o s ot e e [OOSRV U N
0. ) ) 0. N Oe ' «10000E-09 0. 0. [ e o._ 0o
ROW - & . |
6. __. _GCe . N T, . LI «32000E+08 0, [ 0. 0. 0. -
ROW 6
G. 0. 0. 0. 0. 0. 0. 0. 0. G
ROW__ 7 U o o — S P
0. Co 0. 0. 0. O. +10000E+07 0, 0. 0.
ROW 8 "
Mo L0 o W 0 0, 0. 0. «10000F+05 0, _ 0. —
RO 9 .
°‘ 0' G‘ 0. 0. o. 0. 0. °. o.
ROw _1o0 . e ez e e — e e
0. 0. Ge 0. 0. 118 _0. . 0. Qe . .200005007
TABLE 11. ADDITIVE NOISE CONTROLLER GAINS

GAINS MATRIX

ROW |

= 197435-03  o10892E~63 L 74498E=03 L43556E-03 =.16935F-02 =.533156-02 =.53693E+00 =.25895E-01. .59888E~04 -.15004E-02

B60D1E~04" o29408E-06 =-,11768F~u2 ,93911E-03 -.22855E-03 _ :

ROW 2 ,
J12716E=03  (632136=03 =.129775-03 .22622E-03 .23581E~03 =.56483E=02 =,1030/E=-01 ~.136S0E+00 =,26717E~04 o S2193E-03

-.99827E=93 =,59490¢=64 .33436E-03 .89826€-03 13289E-02

TIKE=  7.9220



u = Kx (52)

with K chosen to minimize the performance index

J(K) = max E{rTQr}
(53)
peP

where P is the set of allowable values of the parameter vector, p. In practice, one
might also impose constraints on the set of permissible K's to be allowed in the

minimization process.

Generally, the computational requirements for the solution of this approach are severe,
Salmon[36] has given a general algorithm for the numerical solution of such a problem.

Let J(K,p) denote the value of E{r'Qr} for the controller u =Kx, and let the parameter

vector equal p. Then Salmon's algorithm may be expressed for our problem as given

in Figure 3.

Two theorems in Appendix F give some hope that only one iteration of this algorithm
is required if K° is chosen as the optimal control law for the nominal parameter vector
P, In fact, if the range of parameter variations is sufficiently small and VpJ*(po) #0
and V pJ *(po) > 0, the theorems guarantee that only one iteration is required. Here
J*(p) = min J(K,p). A good a priori estimate of the range of validity is lacking,

K
So, for our problem, we chose to limit the set P of admissible parameter vectors to
those corresponding to the nominal plant and the eight combinations of extreme varia-
tions corresponding to vertices of the ''cube' of parameter variations. They are shown
in Figure 4, The set of permissible controls was also restricted to those which are
optimal for some one of the nine admissible parameter vectors. These two restrictions

were imposed to limit the possible computational expense,.
With the sets of admissible parameters and controllers so restricted, the algorithm

could require nine controller calculations (Ricatti equation solutions) and 81 controller

evaluations (Lyapunov equation solutions). Fortunately, only one iteration was required.
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Figure 4. '"Cube' of Parameter Variations

Design Details and Res ults

Table 12 presents the results of the controller design process which was completed
with one iteration. The weights used for the design of the ug controller and also for
evaluating the performance indices were the nominal controller design weights,

TABLE 12, MINIMAX INSENSITIVE CONTROLLER DESIGN

Cube - © MW
Run No. location qf 1 f Controller J

66 Py 1.00 1.00 1.0 u 88.470
111 Ps 1,25 0.75 0.8 ug 131,948
113 Pg 1.00 1,00 1.0 ug 94,693
118 Py 1.25 1,25 1.2 ug 101,783
117 Py 1.25 0.75 1.2 ug 102,039
115 ' P4 1.25 1.25 0.8 ug 127,266
116 Py 0,50 1.25 0.8 ug 64.470
119 . Pg 0.50 1,25 1.2 ug 52,023
120 Py 0.50 0.75 1.2 ug 53.378
114 Pg 0.50 0.75 0.8 ug 66.597
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As can be seen, U, the optimal controller designed with Py uncertainties and evaluated

with Py uncertainties, had the maximum cost when evaluated over all other sets of

uncertainties, Thus ug is the minimax controller. The'u, controller gains are given

3
in Table 13,

MULTIPLANT DESIGN

The system is assumed to be represented by

%(p) = Fp) x(p) + Gl(p)u + Gz'ﬂ (54)

and the responses are given by

r(p) = H(p) x(p) + D(p)u (55)

where, again, p is a vector of uncertain parameters, The performance index of

interest is

¥ = B{r(p)" Qrp)) (56)

To achieve insensitivity to parameter uncertainty, one may choose M values of the
parameter vector, p, say pl, pz, p3, s pM. Let F' = F(pl), Gl1 = Gl(pl), g = H(pl),
D' = D(pl), x = x(pl), and r’ = (pl). We will be interested in feedback controls of the

form u" = Kx" for each of the resulting plants. Thus the M systems may be represented as

=P+ Gllul + Gy (57)

The performance index will be defined as the average of J over the M plants; i.e.,
M

J= 3 BT Qr) (58)
i=1

This optimization problem can be quickly reduced to an algebraic problem. Assuming

that a gain matrix can be found that will stabilize all M plants, the covariance equation

for each plant is then

0= (F +G KX +X(F + GllK)T +C
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GAINS MATRIX

Row )
-.10563E=-06 L15677E-04
~.59500E=04 -,29503E-35
ROW 2

_ «17972E-03  ,368B39€-03

-.13289g-02 -,94086E£-04
TIME= 22.80390

TABLE 13, Ug CONTROLLER GAINS - MINIMAX CONTROLLER

» 35HTCE~04
-~ 179722~04

-.576655-04
.3G875E-03

. 26535E-04 =.R270RE~04 —.ZAOXQE-OS/L.IBOBIE¢OO -.95071E-021 «26388E=05 =-,B89573g-04

LdusvhrE~03

«139982~03
.11659E-02

JGT7539E~04

262935-03 ~,24839E-02 =.36217E-01 =.15133€+00 =-.49036E-04
.2290BE-02

«2B8258E-03
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R T

Ay

where T is white noise and E[(t)1(1) ] = C & (t-7) and X' = E&% 1),
The cost is
M i i T i1 i i
J= L TR[H +DK) QH +DK)X]
i=1
where TR is the trace operator. Appending the covai-iance equations to J via Lagrange

multipliers, S1 yields the Hamiltonian

2

% = £ TRIE +DK)T Q'@ + DX

i

nmMm

1

g

+ TR{S'[(F" + (3111<:)X’L + XNF + GliK)T +C]}

no™

i=1

Equating derivatives to zero yields

AN to-F el +xiE e it +c (59)
i -1 1

S

0 ”i- =0 =(F + GllK)T s+ s(E + 6K+ + D) @l + DK) (60)
Xt

> N LINT ST R iT i

28 _-0= 3z M QEH +DK) +a. shx (61)
dK i1 1

The algebraic problem is to solve these 2M+1 matrix equations for K, A satisfactory

method of solving Equations (59) through (61) is not available.

An alternate method which could be applied is to treat the problem as a fixed-form

control problem. For this formulation, consider the system
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e Lo ... 0 cl o ... o]l G
1 2
52 o F> ... 0 o a2 ... o |u® G
1 2
. = . . . X + . . . . + |. N
M 0t 0o ... ®V o o .. oM |M] g,
(62)
The fixed-form desired for the controller is
K 0 e 0
0 K . 0
u-= xX (63)
0 0 ces I‘{J
We can introduce a single parameter A and write the control as
__ —_ —, —_
KQ) 0 0 K™ -K(1) 0 0
2
0 K(x) 0 0 K -K(1) ... 0
u(A, x) = X+A X
0 0 cee KO 0 0 oo KK
S JEp— L —_
(64)

where K' denotes the optimal gain matrix for the ith plant. We may choose K(1)
arbitrarily, One possibility is to take K(1) to be the optimal gain matrix for the nominal

plant.
The control, u(A,x), given by Equation (64) may be expressed as
u(, x) = K(\)x (65)
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with

R(\) = AK® + diag [K(\)] (66)

We have chosen K(l) so that the control u(l, x) minimizes the performance index J of
Equation (58); that is, dJ/0K(A) =0 at A = 1, Now, we may proceed to calculate K(})
such that dJ/0K(A) =0 for 1 2 X 2 0, The resulting K (0) is of the desired fixed-form
and satisfies the necessary condition for optimality. The matrix K(A) may be obtained

by integrating the differential equation

dK()\) ‘
= (67)

This equation is derived by use of the implicit function theorem and the constraint

equation

dk [:K(x] » 12220 (68)

In these equations, K(A) may be thought of as a vector. The major drawback to this
approach is the computational requirements associated with computing dJ/2K and
especially sz/sz. This latter requirement can be avoided by using the incremental
gradient method. In this method, one starts with _K(l) as defined above. An increment,
AX > 0, is chosen. Then one considers the controller gain matrix of the form

K =K + (1 - A)\)KO and, starting with K = K(1), uses gradient corrections to achieve
dJ(K)/dK = 0, Then another incremental step in A is taken toward zero, and the

procedure is continued until A = 0,

Design Details and Resulis

For this design we considered two plants, the nominal plant and a perturbed plant. The

plants are described by
X =F +Gu+GyT

where i = 1 for the nominal plant and i = 2 for the perturbed plant. The associated

responses are given by
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! = g + Dl
The performance index is chosen to be
J= E{rlTer} + E{rzTQrZ}

where Q is the weighting matrix used to define the optimal nominal controller. The

contréller of the form

is sought which minimizes J.

This problem may be reformulated by combining the two plants into one system as
— [_ —

}'{1 Fl 0 x1 G1 0 u1 G2 0 n .
= + +
.2 2 2 2
b4 0 F b4 0 C‘w1 u 0 G2 T]z
— h— r'— ’_
r1 H1 0 x1 D1 0 u1
= +
r2 0 H2 x2 0 D2 u2
L — - -
7] [ 1
u1 K 0 xl
u2 0 K x2

where we wish to minimize J with respect to K.
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A gradient procedure was used to perform the minimization, The initial choice for

the matrix K was taken to be the optimal gain matrix for the nominal plant, For the
combined system, the cost, J, for this initial gain matrix was 234,59, The individual
costs for these two plants were previously computed for the nominal controller, They

were 88, 47 for the nominal plant and 144, 28 for the perturbed plant, the sum being

232,75, Also the cost for the perturbed plant with its optimal control had been computed

as 131,95, Thus the sum of the two optimal costs, 220.42, is a lower bound for the optimal
multiplant controller, The multiplant optimization was accomplished in four gradient

steps giving a cost of 228,93, The initial and final gain matrices are shown in Table 14,
SENSIVITITY VECTOR AUGMENTATION

Design of insensitive controllers based on the sensitivity vector augmentation concept

[10,11,12]

has been extensively investigated by Kreindler. The procedure involves the

introduction of the sensitivity vector, the partial derivative of the state vector with
respect to the parameters., The original system is then augmented by appending the
dynamics associated with the sensitivity vector. A controller is then designed for
this augmented system with the magnitude of the sensitivity vector included in the

performance index.
-The information given in References 10 through 12 was used as a basis for the following

formulation of the synthesis and design approach using the sensitivity vector augmenta-

tion concept., Suppose a plant is represented by

X =F(p)x + Gu + G, (69)

with responses

r = H(p)x + D(p)u (70)
where p is a vector containing the uncertain parameters of the system.

Define a sensitivity vector, o, by

o= == (71)
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TABLE 14. MULTIPLANT CONTROLLER GAINS

INITIAL GAINS MATRIX

0.
0.

o.
o.

ROW 1 . L
=3.20776-05 1.8015E-05 1.17007~64 3.2758£-05 =3,450)g~04 -7,0350e-04 -2,1382E~01
4.7293E-05 6.1141E-06 ~2.0954F-94 143560E=05 =1.3574E-05
__O_ C e e e ____.Ga —_— - ___.‘:'.__ R 0. 0.
ROW 2 .
1.36656E-06 4,071BE=04 -1.880GE~54 2.689BE~04 4.6278E-04

— =] .23505=03 =6,9637E~05 _4.3997€-04._ B.5089E-04  _1.3845€-03
[

¢ 0. . C. 0.
ROW 3
—_— e e - ;"._...... ._.._.___O‘ -— 0. 0.
0. 0. C. 0. Ge
=7 .03S0E~04 =2.,1382E~01 1.1248E~33 1.1472E~05 =2.7191£~-04
ROW & _ ——— e e =
o 2. 0. 0. 0.
S [ ne , C. 0.
=6,2506E-03 _3,60C5E-03 -1.5227€-01 ~1.7730E~06 5.7391E-04

FINAL GAINS HATRIX

ROW 1
—=2.9527E-05__2,3996F=05 _ 9.8050F=05  3.1R28E-05 =3.4103c-04
4 S734E~05 6,5798E~06 =2.1024E~04 1.3744E~05 =1.4161£-65

3. O 1% 0. 0.
—PO 2 . .
1. 6317€~04 &,07685=04 =] A)T9E=04 2.6929E~-04 &,6129~-04
-l 2367E-03 «7.6517E~-05 4 ,3266E~-04 8,5130c-04 1,38935€~03
PR S ' ¥ R ' X S 0. 0.
ROW 3 .
0 Do 0, O 0.
.0, 0. . Ce 0. 9.
=7 . 0369E=04 =2.,13826=01 1.1248E=03 1,0859E-05 =2.7287E-04
ROW &4 ’

e Do

-9 Qe 0.
0. 0.

J. e. 0.
=6 2506E~-03 3.4005£-03 =1.5227E=01 =2.9534E-06 6,7238E-04

—_—0a

=6.2506E~03

0.

0.

0.
=3.2077€-05
4,7293E-0S

0.
1.34406E~04
~1.2350£~03

~7.0349E~04
0.
o.

=6.2506£-03
0.

. .o.

o.
-2.9527€-05
4.5784E-05

0.

1.6317E~04

=1.2367E-03

3.4005E-03
0.
0.

o.
1.8016E~05
6.1141E-06

0.
4,071BE~Q4
-6,9637£-05

=2.1382€~01
o.
o.

3.4005€E-023

0.

00
2.3996E=-05
4.5708E~06

0.
4 ,0768E~04
=7.6517E-05

1.1248€-03
0.
0.

=1.5227€E=~01
0.
0.

0'
1.1200E~04
=2.0954E=04

0.
-1,8809€=-04
4,3997E~04

1.1248€-03
0.
0.

~1.5227€~-01
0.
0.

o.
9,8050E-0S
=2.1024E~04

0.
~1.8179€-04
4.3866E-04

1.1472€-05 =2,7191g=-04

0. 0o .
0. 0.
~1.7730E-06 6.7391E-04
0. o.
0. 0.
0. 0.
3.2768E-05 -3.4501E~04
1.3560E-05 =1.3574E=05
0. 0.
2.6R98E-04 4.627Bg-04
8.5989E-04 1.3845€E=03
1.0859E=-05 -2.7287€~-06
0. 0.
o. °.
-2.9534E-06 6.7238E-04
0. 0.
0. 0.
0. 0.
3.1R28E-05 =3,4103E~06
1.3744E=05 =1.4141E-05
°. o.
2.6029E-04 4.6129E-04
8.5130E-04 1.333SE-03
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o=

The dynamics of that sensitivity vector may then be represented by

% _ 2F

o= 3= = x + F(p o 72
5 " o b, P, (72)
where
1 % _ow a1,
op op op op

The approach then proposed by Kreindler is to augment Equation (69) at the nominal

condition with Equation (72) or

N Fp,) 0 x G, G,
X = = + u + 1 (73)
OF
—_ F(p ) o 0 0}
dp po po

where P, represents the nominal value of the uncertain parameter. An optimal

controller

u = K>:<§ (74)

could then be designed which minimized a performance index, J, given by

7= BEY Q% + u'Ru) = TR[(Q + K RK) %] (75)

where X = E{; ;T} and Q, R = weighting matrices,

At this point, three problems are apparent, First, an optimal controller in the form
of Equation (74) places feedback gains on the sensitivity vector states, o, which are

not physical quantities. Second, the formulation given by Equations (73), (74), and (75)
does not address the uncertainties that are present in the response equations which,

generally, contain the design parameters. Third, sensitivity as represented by

Equations (71) and (72) reflects open-loop sensitivity as opposed to the preferred measure

of closed-loop sensitivity. These problems were treated as follows.
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Sensitivity State Feedback

The theoretical size of the sensitivity vector is n x ¢ where n is the order of plant
equations (Equation (64)) and q is the number of parameter uncertainties. An augmented

system is then n{(q+1) in size,

To minimize the dimensionality problem, we took the following approach:

1. Design would be limited fo use of Case 4R model (n = 15), Of those 15 states,
seven are gust states which were assumed to be independent of the parameter
uncertainties. This approximation reduced the order of the augmented system

ton+(n ~ ngust)q'

2. As shown in Section IV, the nominal controller was insensitive to variations
in structural damping. Thus structural damping was eliminated as an uncertainty,
leaving dynamic pressure, structural frequency, and Mw comprising the
uncertainty vector p. The order of the augmented design system is then
15 +(15 - 7) 3 = 39,

The 39-state augmented System contains 24 sensitivity states, all of which

will have gains in the optimal controller design. It was decided that for the
purposes of this contract the sensitivity states could be computed by numerically
integrating Equation (72) with the system states as forcing functions, Kreindler

proposes the same approach in Reference 11,

Response Sensitivity

The effect of parameter uncertainties in the response equations was handled by augmenting

the response variables with response sensitivity states; i.e., define

dr

A= -b—p- (76)
or
dH dx dD
A= — x+H — + —
op IP op op
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Substituting (71) into (76) gives

0H oD
op l1.00 op

With this approach, not only are response equation uncertainties treated, but the designer
now has an excellent way of weighting performance versus sensitivity in selection of
the weighting matrices. The order of the augmented response variables is r(1 + q)

where r is the number of design responses.

Open-Loop versus Closed-Loop Sensitivity

With respect to sensitivity considerations, the designer's ultimate objective is that the
closed-loop system be insensitive. However, the sensitivity vector augmentation

concept requires selecting gains on sensitivity states which are themselves functions

of the plant dynamics, This may result in a closed-loop system that is unrelated to

the system which defined the sensitivity vector. In Reference 11, Kreindler proposes

an iterative solution to the problem by estimating the closed-loop dynamics for sensitivity
vector definition on each iteration, This requires expanding the size of the augmented
system to n(3q+1) which is clearly unrealistic for an aircraft control system design

problem.

The approach taken in this formulation is to consider the nominal closed-loop system
as a reference for sensitivity vector definition. Since the nominal controller produces
optimum performance for the nominal system, it is hypothesized that sensitivity con-

siderations should be referenced to that nominal controller optimum performance,

Using this approach, Equation (73) becomes

F(po) 0 x G G
%= + u+ 7 (78)

OF %
— +
>p B, F(Po) GlKo ] 0 1]

sk
where u = Ko x represents the optimal controller for the nominal system,
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DesigiDetails and Results

The controller design was based on the following state and response equations:

. F(pO) 0 . X
X = _ _
OF %
5 |pu F(po) + G1 KO o)
\
Gy Gy
+ u + Ll
0 0
where x = 15th order state vector - Case 4R
o = 24th order sensitivity vector
) bxl bx8 bxl bx8 bxl
ba ba bwf bwf DMW
u = 2nd order control vector
T = scalar noise driver
P, T (C-l s W, , M )T
0 0 fo WO
. —_ - .
r H(po) 0 X
T = = +
dH D
A — H —
3p |p (Po) o p
T, o J— | L_. — L
where r = 9th order design response (Table 5)
A = 27th oraer response sensitivity vector
) brl br9 brl brg brl
- *°° 2= ' dw dw, ' OM
q q f f w
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The performance index is

J=TRQ R (81)
~s ~ ~T ~s
where R = E (r r ) and Q will be defined in the following manner:
Qnom 0
SFI Qnom
Q=
SF2 Qnom
0 SF3 Qnom

Q is the set of weights determined for the design of the nominal control system

nom

and is given in Table 5. SFl' SFz, and SF, are scalar sensitivity factors which are

3
used to weight sensitivity versus performance, SF1 = SF2 = SF3 = 1,0 could be thought

of as weighting sensitivity equally with performance, Table 15 presents closed-loop
bending and torsion RMS values for different sensitivity factors.,
As can

Table 16 shows the closed-loop roots for run 126 (SF1 = SF2 = SF,_, = 1.0).

3
be seen, it is impossible to distinguish the aircraft roots (e.g., short period) from
the sensitivity roots. This case was chosen as the sensitivity vector augmentation

controller.

Gains for run 126 are given in Table 17,

TABLE 15, SENSITIVITY VECTOR INSENSITIVE
CONTROLLER PERFORMANCE
Sensitivity factor Bending RMS Torsion RMS
Run No.| SF,  SF, SF, |0.113 Nm (in-1b)| 0.113 Nm (in-1b)

66 0.0 0.0 0.0 | o0.7210x 10® | o0.1092 x 10°
126 1.0 1.0 1.0 | 0.5878 x 108 0.1120 x 108
127 0.1 0.1 0.1 | 0.6765 x 10° 0.1097 x 108
128 10.0 | 10.0 | 10.0 | o0.4381x 10% 0.1172 x 108
129 10.0 1.0 1.0 | 0.5879 x 10° 0.1119 x 10°
130 1.0 | 10.0 1.0 | 0.4321 x 106 0.1174 x 108
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TABLE 16, RUN 126 ROOTS

EIGENVALUES

REAL IMAG FREQ DAMP
=, 24680489 0.09000009 .266860489 -1.09000000
-.24843511 0.620000090 .24843511 -1.00000000

=22.,18%5000035 0030000600 22.18500020 =1.50C000G0
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~1,58588053
~s 171244034
-, 717275387
-.9719355¢

~1.4688325Y
~1.0651553¢%
~1.26016511

-2.02824871
~2.56963122

1.48245996
5.40698905
5.40733478
4, 462145088
6.42677522
13,8650G6602
13.86500595
11,8273251%
15.90552027

2417156629
5.,46188563
5.46227224
456676692
6459248883
13.90547810
13.90547792
12:.00047173
l6.10681687

~8.54920000 9.0000G000 8.54926000 -1.000000006
-10.98300600 0.9¢000000 16.98300600 -1,000006090
~5,096006000 3.6033(¢182 5.264123385 -.81650522
-6.90305895 D.660005C0 £.90305595 -1.090006090
~6.,90365395 0. 0000C0G0H 6.90335895 -1.00000000
-6.226360183 £.00000000 6.22636018 -1.060000000
~6,815409790 0 0G00GUGH0 ‘6.81540979 ~1,000600000
~6.,22643472 0.00006230 6.22663472 =1.00000000
-6.70646623 0. 00050000 6. 70646623 -1,00000000
~7.03939%944) £.00005900 7.03935441 -1,00000000
-5.885277)1 0,0089600600 5.88527701 -1.00000000
~1.,63168154 1.58998461 2.27825299 ~.71619870
~1.63393795 }.56905073 2.26%531971 -.721283560
-1,62395229 1.630300352 2.30089607 ~,70579124

-.73029340
-.14142375
- 14167114
-.21282794
-.22280396
-, 07624012
~.07624011
-.1690157%
-. 15953687



TABLE 17,

GAINS MATRIX

ROW !
-+ 18541€-03
-.835432-04
-.13628Z~04
.82Sas5g-02
ROw 2
+31918E-03
~.4975G5-02
.215C4E~04
~.33512E-01
TIMEZ=

« 37071 1E=-64
2 142326~-06
-.25243E-02
- 45T724E-06

«17662E-023
-.13302€£-03
=-.27526E=-21
-.50925E~-905

5744709

+77147€-03
-.10538E-902
.88528£~43
093"9:“':-06

-.67123€-93
»20740E-02
«79702E-02
. 92005E~-65

«35761E-03
«45416E-03
s160a1E-04
=.65169E~00

«343612~02
«54163E-03
.28119£-05
~.41247E=-05

s 14643E=-02
»18388E-03
«21755€-04
+37337E-07

«23643E~02
«61R30E-03
»38910E~04
«14214E-0S

=.85623E£~02
»19880£=-05
«16072E-03
~e04164E-05

~.42657€~01
~.83960£-06
-e15362£-03
~+53149E=-04

=+52548E+00
-e13924E-05
+10830E-93
«34339E~05

~.14607E+00
«22662E=04
«60711E-03
«12753E-04

RUN 126 GAINS - SENSITIVITY VECTOR AUGMENTATION

~.38342€-01
»B82572E~0S
«64851€£-03
~+30331E~-03

~-.82179E+00

o T4410E~04
~.55579E-03
-.15674£-02

0485375-06
-.20889E-05
«57352E-03
-.28432E-03

«18244E-03
-~+82628E~05
»41974E=-02

-.36916E-02

~.14822€-02
.87879€-0S
-.27624E=01

«49749E=-02
=+35959E~04
»30425€-01



STATE AND CONTROL DEPENDENT NOISE[47]

In this concept the parameter uncertainty is modeled as noise. If the parameter appears
in the F matrix, the noise is multiplied by the state; therefore the noise is state dependent,
Similarly if the parameter appears in the Gl matrix, the noise is control dependent,

The modeling of the parameter uncertainty as noise requires a modified form of the state
equation, The quadratic optimization formulation for controller synthesis then leads

to solution of a modified Riccati equation. The design of an insensitive controller based
on the state 'and control dependent noise approach was performed by Professor Kleinman,
Since the control matrix, Gl’ is independent of parameter variations, this technique

reduces to a state dependent noise problem. Consider, again, the representation

% = F(p)x + Gu + Gy _ (82)

where p is the vector of uncertain parameters. Equation (82) may be written

% = F(po)x + [F(p) - F(po)]x +Gyu + Gy (83)

where P, = vector of uncertain parameters at their nominal value. Consider the

definition of a partial derivative

oF . _ Z4im M (84)
op | Ap-o Ap.
p0

where Ap ='p ~ Py
Equation (83) may now be written

%= F(p )x + & Apx + G.u + G T (85)

TP T 5 |p p 1 2
o]

If the perturbation in the uncertain parameter, Ap, is treated as white noise, Equation
(85) represents a state dependent noise formulation. The state dependent noise approach
does not consider the effect of uncertainties in the response equations, No satisfactory'
representation was found for the response uncertainties and consequently they were

neglected in the design process,
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Details of State Dependent Noise Design

In the state dependent noise model approach, the constant Ap is replaced by a zero-

mean, white Gaussian noise g, with standard deviation -* - -

o = M/NSD _ (86)

NSD is a fudge-factor for adjusting the noise intensity in proportion to 'Aplmax.'
Typically NSD =3, It is hypothesized that a systeni whi@:h functions well for arbitrary
time variations in its parameters will also perform well for any constant variation

within the prespecified range.

In order to solve the state dependent noise problem, a suitable Ito équation must be
written for the state equation (83):
3

dx=Fxdt+ ¥ Fixd§i+G1udt (87)
i=1

where i is the index on the vector of uncertain parameters. (pl. Pys p3) = (c-lf, d’f' Mw ),

and F. = d3F/dp,. f
i i
At this point, two different F matrices are possible, depénding on how a certain
stochastic integral is interpreted. The two possibilities'are:[44]
Fo (Fisk-Stratonovitch formula) (88a)
F =
5 2 2
Fo + = Fi a; /2 (Wong-Zakai formula) : . (88b)
i=1 '
In the present effort Equation (88b) will be used since it has been found to be more
consistent with observed system motions in cases when g(t) is wide-band (non-white).
For the C-5A dynamics, this F matrix is slightly more stable than the original F,
matrix. ' '
The optimal linear control for the state depe-ndent noise broblem of minimizing t_he
performance index J given by ' :
J=E {xTQx + uTRu} . o h : ' . (89)
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is

q= -R"} GITPX = Kx

where P satisfies

3
0=PF+F'P+Q - PGIR-IGITP + 3 FiTPFiciz (90)

i=1

An algorithm for solving this equation is given in Reference 39, This algorithm has

been programmed and has been found effective for the present effort,

Numerical Results

The parameter partials bFO/pr were computed numerically fori =1, 2, Fori=3,

E)}-"O/bp3 = 0 except for element 2, 1., The maximum parameter variations Mi were

M1 = 0,25 (i.e., + 25 percent change in dynamic pressure)

M2 = 0,25 (i.e., + 25 percent change in natural frequencies)
= 3 o -+ - 3 1

1\/[3 0.20 (i.e., + 20 percent change in f21 or MW)

The NSDi were all set equal to a common parameter, NSD. Optimal, noise-dependent
gains were computed for NSD = 2, 3, 4, 6, = (corresponding to maximum parameter
deviations of 20, 30, 40, and 60, respectively, and nominal gains alone), Each set of
gains was evaluated in a crude manner--to determine which NSD results in the least
sensitive system--by computing the steady state RMS responses of the perturbed

3
{residualized) system at all 2~ = 8 maximum deviation possibilities or cube vertices.

The perturbed system is

e

i

3|

+
™M W

Ap. x + G u+ Gyl ' (91)

N Fmod X+ Glu * G2ﬂ
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and

oD
5, Ap, u (92)

nMw

1

3 bHo
r = HO+E . Api x + D0+.
i=1 i i

where the response partials 0H0/0p3 = bHo/bpz = bHolbpS = 0. Note that no considera-
tion of the response vector sensitivities are included in the state dependent noise approach
that finds the gains K. This is a very definite drawback with the scheme as presently

formulated.

In order to determine the '"best' NSD, it was found that, with NSD = 1, no linear feedback
control would effectively stabilize the system. With NSD = 2, the optimal gains were
quite large (compared to the nominal gains), indicating that this choice of NSD is too
small, i.e., too pessimistic. On the other hand, NSD = 4, 6 were too large since
closed-loop performance was not very far removed from the case NSD = =, A value

NSD = 3 thus appears to be "best." This is intuitively appealing as the maximum

deviations are thus + 3o.

Plots of RMS r

as the cube center (nominal case) are given in Figures 5 and 6. As can be seen, NSD = 3

1 and r2 (i.e., bending and torsion) for the eight cube vertices as well

does result in less sensitivity in these measures than does the nominal (NSD = «) gains.

Over the range of parameter variations the quantity

(r“l )max B (rl )min

(rl)

nominal

is smaller for NSD = 3 than for NSD = =, Note that this is accomplished by an across-

the-board improvement in performance.

The optimal gains for the case NSD = 3 are given in Table 18. These gains represent

the state dependent noise controller thai was used in subsequent evaluations,-
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RESPONSE 1
NSD = =
NSD = 3 \ (ri)RMS '
'NSD.' =2 0.8.
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oNOISE = N'Sﬁ . . \P
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| |
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w - - -
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Figure 5, Bending RMS Response
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RESPONSE 2 NSD = ,
(rdpus
NSD = 3 \
1.3
: 1.2
\ |
oNOISE = fep \
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1 . _
| ' \\\\\\\\\\\T o _ h
\ - .
1.0 \\\
0.9 \\\
[ R N . . \
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DIFFICULTY DIFFICULTY
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Figure 6, Torsion RMS Response



TABLE 18, STATE DEPENDENT NOISE CONTROLLER GAINS

1 1 =.37134E-04 ) 2 -.37242E-04 1 3 +14723E~03 1 4

«36490E-03
«hHZ51E-05

1.6 =.44409FE=02_1 7 -.28498€+00 1 £ =«79043£-01_1_9
111 -,45715E-03 112 =-.13671E-04 113 =.52992E~04 114

é 1 .18674E-03 2 2 .23950E—63 2 3 =+1800%E-02 2 &4
2 6 -.262026-01 2 7 -.,30204E+00 2 8 -«66785E+00 2 9
211 -,428726-02 212 ~,15782£~-03.213 .12537E-02 214

82

«11236E-03

«25367E-02
« 7T6260FE~04

280272€-03

-.36043E-03

- 2069736204

~+56034E~0a

«953216-03
«31014E-02
L1363RE-02



SECTION VI

INSENSITIVE CONTROLLER DESIGN-~
NEW TECHNIQUES

This section contains a description of the new techniques for the design of insensitive

controllers that were synthesized during this study.

Three of the eight new techniques that were developed for the design of insensitive

controllers were also synthesized in this study. These were:

® Mismatch Estimation -~ developed by Professor Kleinman
e Uncertainty Weighting - suggested by Professor Porter

® Re-Residualization

Each of these techniques, and the resulting insensitive controller designs, will now

be described.
MISMATCH ESTIMATION

In some cases it may be possible to estimate the effects of parameter variations in

key dynamic equations and cancel out their effect., Consider a single-input system

¥ =Fx+ gu+ dg(t) + G, 1 (93)
where E(t) are the combined effects of parameter variations in, say, the Flj elements
of F so that d looks like {100 ... O]T. The question is one of estimating E(t)

on-line and improving the feedback control.

Let us approximate g(t) for control modeling purposes as

E(t) = -YE(t) + A(t) (94)

where A(t) is white noise and 1/¥ is an approximation of the correlation time of E(t),
which will relate to closed-loop time constants in the case of parameter variations.

To solve the optimal control problem of mininﬁzing
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T

J= E{xTQx +u " Ru} (95)

we augment the state vector to work with X = [x, g]T and

$ = |[-—--+--—- x_ + u+ n+ A (96)

and

X 97)

The optimal control is

u-= -Kx+k2§ (98)

where K is the gain matrix for ‘the unaugmented system; i.e.,

-1 T

K=R g1 P11 (99)
where
_ T =1 T
0 = PllF +F P11 +Q - PllglR g, P11 (100)

and k_ are obtained from

2
ky =R g, TET -y P g (101)
where
F=F- glR_l ngPH (102)

These results can be obtained by writing out the matrix partitions of the associated

(n+1) x (n+1) Riccati equation.
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The problem is to estimate E(t) on-line by generating a signal E(t) that "tracks' E(t). If

B <

it is assumed that all states are measurable (except for E(t)), then observer theory can
be used. Taking the first component of vector equation (93) and neglecting the white-
noise driving term Gzﬂ(t), then

%, = flx + g,u + E(t) (103)
where f1 and gl are the first rows of F and gys respectively. Letting € be the
estimate of €, then

~
.

e = error = g(t) - &(t) = -§ +%, - fx -Nglu (104)

1

The estimator equation is obtained by using e(t) as a correction term to Equation (104);

ile‘l

g = -vg +g [-E®) + %, - ;% - & u] (105)

-YE + g [-E(t) + E(t)] = —YE + ge(t)

The error thus satisfies

2(t) = ~(v +g) e(t) +A(t) (106)

Since %, is not available, we implement Equation (105) by defining

1
s(t) = &(t) - g%y (107)
Then
‘ 3= -yE-gle+ix+g,ul
= -(y +g)§ - glf;x + &,ul (108)
= ~(v +g) s(t) - gly +g)x; +f x+§ u
For convenience, define s* = -s/g; so s = ~gs* and
£ =glx; -4 (109)
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and

BH(E) = - (v +g) s¥(t) + [(v +glx, +£,x +7g u) (110)

Application to Insensitivity

In actual situations, the first row of F and G, are assumed to deviate from the nominal

1
values. In this case, E(t) represents the deviations

E(t) ~ M, x + Ag,u : (111)

The actual system is

% Fax+G1 u+G2T] (112)

a

Fx + Glu + dE(t) + G2T\
where Fa = F(p), G1a= Gl(p), F = F(po), and G1 = Gl(po) with control given by Equation
(98) and computed on the assumption of nominal F, Gl’ The estimator is as given in

Equation (110),

Defining an augmented state vector x = col [x, s*], we obtain

. |
X Fa : 0 X Gla GZ
SO P T + u + 7 : (113)
|
5™ 1 I =(y+g) | | s* g 0
1 | 1
I 1
where
f1 =f1+[Y+g 0 0] (114)
with
u(t)=Kx+k2§=Kx+k2g [xl - s*] = Kx (115)
where
K = [K f -kzg] + [kzg o 0 ... 0] (116)

firé t column
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Substituting into Equation (113) gives the closed-loop system

X Fa 0 G1 . x G2

= + K + (L) (117)

Thus, the closed-loop covariance can be 'computed with and without the use of mismatch

estimation. Note that we are only considering parameter variations in the x, equation.

1
The above method is summarized as follows:

a., Compute gains K, k2 by setting up augmented matrices

0
and solving associated (n+1) Riccati equation to get K, kz.
b. Apply parameter variations to F, G1 to get Fa’ G1 .

a

c., Setup F, G1 matrices as in Equation (113) with fl’ g, the nominal system
1

values.,

d. Substitute

A

-~ '
= = l - =
u=Kx+ kzg [K ! kzg] X + kzgx1 Kx

and obtain ""closed-loop' system (117).

e, Compute steady state covariance X and output covariance. (Note: If g >> vy, the

choice of ¥ becomes unimportant.)

Multi-State Insensitivity

The above concept is extended easily to the case where there are £ > 1 states where
parameters are subject to variation. However, a separate first order filter must be
associated with each state variable. For example, suppose we are interested in

"desensitizing'' the first r states. Then write
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I°=
I
|
I

(N
L2
—

=
|°|

[

——

Y

where T = diag (yi), Solve the associated (n x £) x (n + £) Riccati equation to get the feed-

back gains

u=Kx+K2§

where € is an 4-dimensional vector. (This can also be done more efficiently by solving
the original n x n Riccati equation and then solving an associated n x £ linear matrix

*
equation to get K,. )

The estimator is then

§x(t) = -(T+G) s*(t) + {[l"+G]x.c + Fl’x + G, u} . (118)
' L

E(t) = Glx;, - p*] (119)

where G = diag (gi) and Ft’ G1 are the first £ rows of nominal F and Gl’ respectively.

£
X, = col (x1 ere X z). The closed-loop system for purposes of covariance propagation,

‘|

= + k + ey . (120)
-(I'+G) G s* 0

ete,, is then

be
=
=]
0
™

m-

3#*

L= B9
o

where Fa' Gla are the actual system matrices (i.e., with parameter variations) and

~ |
F, =F, +[*G | 0 ... 0]

2 — H__/ ' (121)
) ) n

This is done by expanding the sub-matrix blocks of the (n + £) Riccati equation).
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— (122)

Details of Mismatch Estimation Design

The actual design is a two-step procedure. The first step consists of computing optimal

gains for a design model given by

. 1
x F(po) : _ D x G1 G2
= _____'r__..Q + u+ | ____ n (123)
g 0 : -T 13 0 0
where
o - vector of uncertain parameters at their nominal values
D = a diagonal £ x £ matrix used to modify the magnitude of the perturbations

generated by certain dynamics
4 = the order of state equations affected

Initially D = I

For this design, the state equations that are affected by parameter uncertainties are the
two rigid body equations and the two flexure mode equations. (As earlier stated, all
insensitive controller designs we‘re done on the Case 4R model.) £, then, is equal to 4,
I also is an £ x £ diagonal matrix, The values chosen for the diagonal elements reflect
the dominant frequency characteristics of the affected state equations. The values

chosen were

Yl,l =2,5
Y2,2 =2.5
Y3.3 = 15,0
Y4'4 = 15.0

where the value of 2.5 is directed at the closed-loop short period frequency and the value

15.0 i$ directed at the highest bending mode fréquency in the Case 4R model.
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The second step of the process involved evaluating the performance of the gains computed

in the first step on an "actual' system. The evaluation model is given by

e .

Flp,) 0 G, N x G,
= ) + K + n(t) (124)
& * F(p,) -T+G 0 s % 0
where

p; © vector of uncertain parameters at a worst case condition

=0.75, M_ =0.8)
We

(qf =1,25, wf

~ |
Flp ) = F(po)+[r+G o ... 0]

|
-K,G] + [KZG} 0 ... 0]
|

K = [K

The estimator gains, G, are left to the designer's choice. The procedure followed

in selecting G was based on trial and error. The objective was to select G such that
system performance returned to specifications, It was found, however, that this could
not be achieved without creating unrealistically high bandwidth estimators for the case

of D = I, It was also found that the choice of D = 10I and G = 301 would produce specifica~
tion satisfying performance under worst case conditions. The resulting K gains are

given in Table 19,

TABLE 19, MISMATCH ESTIMATOR GAINS

ROwW 1
JTTI8LIE=03  L21650E-02 L26534E=02 «B83683E-03 -.34501E-03 ~.70350€-03 =.21382E+00 . +11248E-02 11472E-04 ~.27191E-03
«47293E-04 L,61161E«15 =,20954E=23 ,13560E~-03 -.13574E-04 -,.81188E-03 ~.21270E-02 =-,25414E=-n2 -, A0256E=-03

ROW 2
L11505E-01 ,15162E=31 =,38538E=02 .71626E~02 +4627BE~03 =.62506E-02 .34005€-02 -.15227€+00 =-,.17730€-05 L67391g-03
=, 12350E-92 -,69637¢~06 ,63997E-¢3 [85089E-03 .1JR45E-02 =,11371E-01 -.147S5E~01 ,36657E-02 -,68935E-02

It must be noted that an extensive investigation of the effects of varying I', D, and G
was not performed in this study. Although we did obtain a controller which satisfied our

design rules, we recognize the fact that this controller may not be the "optimum"
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/

i

‘mismatch estimation controller. It is our hope that future refinement, based on the

results of this study, could produce the methodology necessary for an "optimal"

controller design,
UNCERTAINTY WEIGHTING

Let us assume that the system of interest is described by

% = Flp)x + Glu + Gzn (125)
r = H(p)x + Du ) (126)

where p represents an uncertain parameter, The case of multiple parameters may be
treated by a straightforward extension. Suppose that P, is the nominal value of p and
that a weighting matrix Q has been found which defines a good nominal controller,

i.e., one that minimizes
J=E{r’ Qr} (127)
o o

Here the subscript indicates the nominal value is used:

xo = F(po)x0 + Glou + G2T], r, H(po)x0 + Du ’ . (128)

The variational equations for perturbations in states and responses caused by variation

in the parameter are
8k = F(p) 8x + 8Fx (129)
6r = H(p) sx + 6on . , (130)
where 8F = F(p) - F(po) and 8H = H(p) - H(po).
To keep 5r small, we may ask that 6x be small and that 6Hx0 be small. To keep 6x

small, we may ask that 6Fxo be small, To accomplish this in the original framework

of the optimization problem, let us introduce
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¥ = 8Fxand T = 5Hx. . (131)

Then instead of minimizing J = E{rT0 Qro} let us minimize

. _ ~T ~ ~T = '
J = E{ro Qr0+xr c)ro+|.1.r Oro} . (132)

The parameters A‘-,_and p are design parameters which are to be suitably selected. We

may rewrite J in our standard form of

-~ _ AT A A
J=E{r"_Qr} . (133)

by defining

r Q 0 0

r=|T7 andQ = | 0 NE 0 (134)
= ~
r 0 0 pl

whereT and [ are appropriately dimensioned identity matrices, There are many
variations that could be made on this theme. For instance, one might choose r-= [F(p)]"1 §Fx
to reflect the steady state variation in the states, or one might wish to weight the variations

in responses with Q to reflect the weighting of the nominal responses.

Details of Uncertainty Weighting Design

The augmented responses, T and r, were computed by defining

§F = ﬁ(pi) - ﬁ(po)_ 135)
sH = Hp,) - ﬁ(po) (136)
where

P; = vector of parameter uncertainties at a worst case condition

=0.75, M = 0.8)
We

(qf =1,25, W,

vector of parameter uncertainties at the nominal condition

T
(o}
]
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F = Fij(pl) - Fij(po) i=1, 4

j=1, 15
H = Hij(pl) - Hij(po) i=1, 4
: j=1, 15

Then the augmented response vector consists of the nine nominal design responses

and the eight augmented uncertainty responses.

The design objective was to reduce the RMS bending response, rys to be less than

[r; ] = [r,(p )] - [ar,]
! jesign RMS 170" rus Y rus
where
{ar.] = [r_ (p)] - [r (p)]
Vrms 1" rMs 1o pums

where [rl(p)]RMS denotes the RMS response with the nominal controller while at the
same time maintaining RMS torsion response and short period roots. The value ¥, given
in Equation (134), was actually chosen to reflect the same weighting magnitudes as the
nominal design responses. A was maintained at 1. The final set of weights used on the

augmented responses which satisfied the design objective were the following:

Q0,10 = 1-0
Qq,q1 - 10
Qyp, 12 = 10
Q3,13 = 1-0
Q. = 0.1x 102
14, 14 .
Q - 0.1x10 8
15,15 .
~ -12
Qg 16 = 0-1% 10
_ -11
Qg 17 = 0.1x10
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The nominal design weights, Q1 1 through Qg 9 remained the same, as shown in Table 5,

The optimal controller gains are given in Table 20,

TABLE 20, UNCERTAINTY WEIGHTING GAINS

GAINS MATRIX

PN 1
- 08570E~L  22229N0E=05  .15210F =23 o11824E-03 =.3913558~03 -.1A7F0E~02 ~e263N0E«00 -.200640FE=01 .73N26E-0S =,26357€-03

=.AT1F0E=06 =.22506K-0b =e23AT0E=03  L14n2]15-03 -o7ah?TE=ns |
EEC I
L2TN9AE=-03  S8TALE=N3 ~,23292F-03 LBARIEI-N3  ,672I2E-03 =,11254E=-01 =~.T77229E-01 -.377326«n) .1SUS9E-nS ,13323E-n2
=e27364E~02 =, 16704F =03 ,78154F~03 L177435=02 ,32957F-n2
RE-RESIDUALIZATION

Of the new techniques developed, re-residualization is the only one which specifically
treats the unmodeled dynamics problem., This process was developed under Honeywell's
Independent Research Program. In this study, we have defined unmodeled dynamics

as either neglected known dynamics or unknown dynamics, The re-residualization
process is an extension of residualization in that it too attempts to include the character-
istics of known unmodeled dynamics in the construction of reduced order models.

Consider a linear system described by the differential equations

H
4
[+

(137)

where x is the state vector [le, xTZ]T and u is the control vector. The state vector
is partitioned into two sub-vectors xy and Xge It is assumed that Xy contains all the
states which we wish to retain in the design or reduced order model and that x, contains

the states to be eliminated. The coefficient matrixes are partitioned into dimeznsionally
consistent sub-matrices, We have taken the control coefficient matrix to have a special
structure, the bottom sub-matrix being zero, This is based on the assumption that at
least first order actuator dynamics will be included in the model and that these dynamics
will be retained in the reduced order model, The assumption is motivated by the fact
that, without it, the re~residualization method gives rise to a control rate term in the

reduced order model.
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For simplicity of discussion, Equation (137) can be written as two equations:

%

1 lel + F2x2 + Glu : (138)

x2 F3x1 + F4x2 - (139)

The truncation method consists of setting x2 = 0 in Equation (138) and ignoring Equation
(139). This yields

The residualization is more sophisticated, It consists of assuming kz = 0. Then if
-1

F4 is nonsingular from Equation (139), X, = -F4 F3x1. This expression is then used
to eliminate x, in Equation (138) giving
% =(F,-F, F, ' F,) +G (140)
1 17 %274 Tl T

The re-residualization method goes one step further. Assuming initially that :':2 =0

leads to X, = -F 4-1 F3 %y and computing :':2 from this expression yields

[ = ) = - -1
x2 = F4 F3 X F4 F?’(le1 + szz + Glu) (141)

Now equating the right-hand sides of Equation (141) and Equation (139) gives

_ -1
F3x1 + F4x2 = -F4 F3 (le1 + F2x2 + Glu) (142)

Solving Equation (142) for x, yields

2

. -1 -1 -1 -1
Xy = (F‘?‘+F4 F3F2) [(F3 +F4 F3F1) X, +F4 F3 Glu] (143)

Substituting this expression for x_ into Equation (138) yields

2

-1 -1, -1
F.F) (F,+F,  F.F)]lx
RR 4 “3'2 3774 1M P o

%y =[F1-F2(F4+F

(144)

-1 -1 _ -1
+[G1-F2(F4+F4 F3F2) F, F3G1]u
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The same substitution may be made in the response equation

r=[H,, H)] x, | +Du 5 (145)

which gives

-1 -1 -1
F,F,) (Fy +F,  F,F )k,

r =[H
4 32 RR

1" H2 (F4 +F
(146)

-1 -1 -1
F.F) F F3G1] u

+[D-Fy (F,+F, FgF,) " F,

The following alternate derivation of the re-residualization procedure was suggested
by the contract monitor, Dr., Ernest S, Armstrong. Computing 'x'2 from Equations (138)

and (139) yields

L] - 2

X, —(F3F1+F4F3) x4 +(F3F2+F4 )x2+F3G1u (147)
Setting 'x'2 = 0 gives

x. = ~(F.F. +F 2! (F.F, +F F,)x, +F.G, ul (14¢

2 372 4 371 473" 71 371

which is equivalent to (143) if ¥, is nonsingular. This alternate form is meaningful

4

if F4 is singular and F3F2 + F42 is nonsingular, Furthermore, this derivation yields

a clearer interpretation of the relationship between truncation, residualization, and

=0, and X, = 0,

=0, x 9

re-residualization &s corresponding to the approximations x

2 2

respectively.
For more details on how re-residualization relates to singular perturbation as far as
the degree to which the characteristics of unmodeled dynamics are reproduced in a

reduced order model, see Appendix E,

Details of Re-Residualization Design

The design of a controller based on a re-residualized model was straightforward,

First Case 4RR, a re-residualized version of Case 4R, was constructed. Secondly,
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an optimal controller was designed using the same response vector and the same set of
weights that was used in the nominal controller design. The re-residualized model and

the optimal gains computed are given in Table 21, -
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SECTION VII

EVALUATION

This section describes the results of a qualitative and guantitative evaluation of the

insensitive controller design techniques that were investigated.

If an insensitive controller design technique is to be acceptable, it must satisfy two
requirements, First, and most obvious, the design technique must produce a controller
that is insensitive. Second, the level of effort that is required in the design, i.e.,

the ease with which the designer can apply the technique, should not compromise the
usefulness of the technique. This second reguirement is directed at techniques which
require, for example, excessive trial and error computations or large computer memory
and time requirements, Techniques which possess characteristics such as these

would have limited acceptance among control system designers. Hence, the approach
that was used to evaluate the insensitive controller synthesis techniques consisted

of the following:

e A qualitative evaluation of the techniques with respect to critical criteria defined

specifically for the controller synthesis stage, and

o A quantitative evaluation of the performance of the insensitive controllers

designed,
SYNTHESIS EVALUATION
Ten criteria, which reflect important capabilities that a synthesis technique should
possess, were defined for evaluation purposes. These ten criteria versus the nine
techniques that were investigated are shown in Table 22, Each of these criteria and

significant benefits or deficiencies in the synthesis techniques will now be discussed.

Treats Unmodeled Dynamics--Item 1

This item refers to whether or not a technique explicitly treats unmodeled dynamics
in the synthesis process, Table 22 indicates that only residualization and re-residualization

treat unmodeled dynamics, Both techniques, of course, treat only known unmodeled
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TABLE 22,

SYNTHESIS EVALUATION

@’rovides $
: @ 5 ® treats Engineering Insight | Weigh' Implementa- i
Treats Treats A Priori dditional omputa~ Design Criteria Into Performance tion Limits i
Unmodeled Response Range Modeling tional Design versus Require- To Growth ~
Technique Dynamics | Uncertainty Required | Required Load |Transient RMS Stability | Problems | Sensitivity ments Potential Remarks;
Additive ® Coarse Yes None if Low A Yes No No Essentially ok Response | very {
Noise approxi=- nonlinear { No Uncertainty aimpﬂstic[
mately model only changes | approach
developed given | weights
otherwise
minimal (+)
Minimax ® Yes Yes Substantial{ High to Yes Only in Some Essentially ek Computa- Can get
very high a gross No | tional I "ucky" to
sense load ' reduce
comp.
' load
Multiplant * Yes Yes Substantial| High to | Yes Only in Some Yes in o ‘ Computa- May
very high a gross theory - tional require
sense ' load many
i plants
Sensitivity # Response No Substantial{ Very Yes with | Yes No No Yes Unrealistic | Computa- No i
Vector sensitivity high model full state plug tional and additional
Augmenta- states response sensitivity | Impl P ol
tion defined included state | tion load needed
feedback ]
Residual- Explicit N/A N/A Minimal Minimal Indirect| Unde- N/A No Decrease Known Proven
ization first | termined complexity linear technique
order I unmodeled
dynamics
State * No Yes Low Low Yes No Some Yes *k Response Required
Dependent uncertainty | new
Noise algorithm
Kleinman's Implicit No No Substantial| High Yes Implicit Some Yes Increased Computa-
Mismatch complexity tional and
Estimation Implementa-
B tion load
Re-Residu- Explicit N/A N/A Minimal Minimal Indirect| Unde- N/A No Decreased | Same as
alization  Second (+) termined complexity | residual
Order '
Porter's * Yes Not Minimal Low \J Yes No Some Yes **x Only
Un- necessary | (+) changes
certainty but weights
Weighting desirable

* No inherent treatment

+% Full state but possibly could be reduced to limited state
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dynamics, The misn;iatch estimatiop technique implicitly treats unmodeled dynamics,
both knowh énd unkno!wn, by, in effe;ct, forcing the real world plant to perform as thle
reduced order model. The remaini‘hg techniques are designed specifically to han_dlé

parameter uncertain;ties. }
| |

Treats Response Uncertainty--Item 2
I i

As discussed in Sectioh VI, some of the existing techniques have not been formulated to
treat uncertainties in the response equation. A modification to handle this problem was
developed for the additive noise concept and the sensitivity vector augmentation technique,
Neither the state dependent noise nor mismatch estimation concepts treat response

uncertainty as currently formulated.

A Priori Range Required--Item 3

This item refers to whether or not the technique requires that the range of the uncertain
parameter variation be specified before design can begin., The sensitivity vector augmenta-
tion concept, since it uses parl:ié.l derivatives, is the only concept that requires no
knowledge of the range of variations. The mismatch estimation concept and uncertainty
weighting technique do not require the complete range of variations., However, they

do require an off-nominal condition for design purposes.

Additional Modeling Required--Item 4.

This item represents the first of several qualitative judgments., It refers to the manner
in which a technique constructs its design model. We have defined the level of additional
modeling required as minimal if the order of the design model remains the same as the
"free'' aircraft model and a minimum of supporf computations are required. The
residualization technique is the only concept that falls in this level since all other
techniques used residualized models, The additive noise, uncertainty weighting, and
re-residualization concepts require only a slight increase in support computations with
the order of the design model remaining the same as the 'free" aircraft model. The
order of the design model for the state dependent noise concept remains the same as the
"free' aircraft model; however, since it requires the computation of partial derivatives,
we felt that the additional modeling required could not be judged to be minimal. The

remaining techniques all require a design model of higher order than the "free' aircraft.
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(Note: This 1s not precisely true for the minimax concept. However it does require
modeling additional off-nominal conditions.) For our example, the sensitiﬁty x‘/_'ectc-)r _
augmentation concept had, by far, the largest additional modeling demands, In'adlait.io'n
to having to compute partial derivatives, the sensitivity vector augmentati(;m'conéf:p't |
required augmenting the aircraft model with 24 additional states. The 24 states were,
in themselves, an approximation to the 45 states that the technique, in theory, rc;(qﬁires'.

/
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Computational Load--Item 5 . | /
Since a11' insensitive controllers were designed via computer using the quadrativ'g/:
methoddlc;gy software, this item refers to the computer requirements of both core

size and time., It is closely related to Item 4 in that higher order design models will
generally require large core requirements and computation times., In this case, too,
the sensitivity vector augmentation concept had the largest computational requireménts.
One important distinction must be made however. The computational requirements

for the sensitivity vector augmentation concept were very high, but they were bounded.
This is not the case for the multiplant or minimax concepts. For this study, we mgde
approximations which i‘esulted in bounding the computer requirements for the two
concepts. However, this may not be possible in other design problems. In short,
although the computational requirements for the multiplant and minimax concepts were
not excessive for this study, they have the potential for creating a very high computa-

tional load.

Treats Engineering Design Criteria--Item 6

The preceding items dealt with the preliminaries to the synthesis process, i.e., data
that must be known before design can begin, This item is directed at the heart of the
control design process--the design criteria. As discussed earlier, there are thrée
types of design criteria specifications: transient response, statistical re sponse, anfi
stability criteria. The design criteria used in this study included all three types of
criteria, though this does not necessarily have to be the case, Ideally, however; a
synthesis technique should have the capability of treating all engineering design cr_ite_ria
since the type of criteria may vary from problem to problem.. Item 6 showé the

performance of the synthesis techniques versus the "ideal" capability.
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Since all techniques utilized quadratic perforrhance minimization designs, then the
inclusion of a response term directed at transient response criteria is a sufficient
approach for this type of criteria, This capability, however, is more consistent with

the .quadratic approach than with the synthesis téchniciues themselves.

The statistical response, criteria, or RMS response is similarly satisfied by specifying
appropriate response terms. The residualization and re-residualization processes
represent an indirect approach in that the characteristics of higher order model

statistical response are approximated with lower order models,

None of the techniques specifically consider typical stability margin criteria in the

design process. The mismatch estimation concept may be considered an implicit
treatment since it forces performance to follow a model which may have stability margins
designed into it. The minimax and multiplant approaches have received a qualifier in

the sense that both techniques produce stable controllers at a number of off-nominal
points, We have judged this to be treating stability in a gross sense. The effect of
residualization and re-residualization on stability is unknown at this time. It is an

area recommended for further study.

Provides Insight into Design Problems--Item 7

This is another extremely qualitative item, We have included this item to pbssibly
identify techniques that provide data in a form that could lead the designer to critical
design problems or provide him with a greater awareness of system operating capability.
This item was not evaluated extensively; however, we felt that it is a necess'ary
characteristic of a synthesis technique., All techniques, except for additive noise and
sensitivity vector augmentation, provide some insight into critical design problems.
This results mainly from the fact that these techniques require analyzing performance
at off-nominal conditions or at different magnitudes of parameter uncertainties. Since
the additive noise concept, as we formulated it, is limited to one design point, we felt
it provided no additional insight. We also felt that the sensitivity vector augmentation
concept had the potential for providing valuable design information. However, as

formulated, it was not in the form that a designer could easily translate.
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Weigh Performance versus Sensitivity--Item 8

It has been stated that an insensitive control system design requires trading off performance
versus sensitivity., This item evaluates the makeup of the synthesis technique as to

whether it contains an explicit means of achieving this tradeoff. The sensitivity vector
augmentation concept and the uncertainty weighting scheme define sensitivity terms

for inclusion in the performance index. These terms can be weighed directly against
performance terms., Thus these two concepts are highly desirable from this point

of view. The other concepis are not as direct. However, except for the additive noise
concept, they all provide a means of measuring the performance variation produced

through sensitivity reduction,

Implementation Requirements--Item 9

This item refers to the practical concern of implementing insensitive controllers designs
in system hardware. The most recognizable constraint lies in the requirement of full
state feedback, All techniques require full state feedback; however, if combined with
residualization or re-residualization, the difficulties of this constraint can be reduced.
In addition, no attempt has been made in this study to investigate the use of limited

state feedback, This would be a worthwhile endeavor and is recommended for future
study. The sensitivity vector augmentation concept and the mismatch estimation concept
require adding states, This does not appear to be a significant problem except in the
case of the sensitivity vector augmentation concept when a 24-state augmentation may

be excessive.

Limits to Growth Potential~~Item 10

This item attempts to identify those characteristics of a synthesis technique that limit

its growth and probability of acceptance. Computational load problems have been
observed in four techmques: minimax, multiplant, sensitivity vector augmentation,

and mismatch estimation, Although they are not as severe in mismatch estimation

as the others, this problem, if not resolved, does limit the concept. One other considera-
tion not directly treated is the manner in which the insensitivity is achieved, The

additive noise approach and the uncertainty weighting approach reduce to a weight change
in the performance index. This approach may prove unacceptable to designers in that

it really does not consider the operating range of the system.
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In summary, no attempt was made to rank the above ten considerations in terms of
relative importance even though some are obviously more important than others.

Table 22 has been constructed to provide a means of quantitizing what are in most
réspects very qualitative criteria. We do not try to rate one technique over another
based on this criteria, However, it is felt that the results presented should be weighed

against the quantitative performance results that follow.
EVALUATION PROCEDURE

The insensitive controllers designed with the techniques described in Sections V and VI

\
were evaluated with respect to the following considerations:

11, The effect of parameter uncertainties on controller performance,
2. The effect of unmodeled dynamics on controller performance, and

3. The effect of parameter uncertainties and unmodeled dynamics on controller

performance.

In order to evaluate the effect o1 parameter uncertainties, critical system response
parameters were computed at six evaluation conditions for each of the insensitive
controllers with the Case 4R model. The critical system response parameters are those
associated with the design criteria, i.,e., steady state bending moment due to maneuvers
(maneuver load), .I_RMS bending moment, RMS torsion moment, short period frequency,
short period damping, and phase and gain margins for both elevator and aileron loop.

In addition, the control activity requirements were monitored through computation

of aileron and elevator RMS deflections. The evaluation conditions chosen were defined

and designated as follows:

e Nominal (N) - (510 =1.0, w, = 1.0, M_ =1.0)

of
e Worst Case 1 (WC1) - (§, = 1.25, w, = 0,75, M_ = 0. 8)
f f W,
e Worst Case 2 (WC2) - (q,.=0.5, w,=1.0, M_ =1,2)
f f wf
e Independent Variation 1 (p;) - (Elf =1,0, w,=1,0, M =0.8)
f wf
e Independent Variation 2 (p,) - (. =1.0, w, = 0,75, M_ = 1,0)
2 f f wf
e Independent Variation 3 (p,) - ((?1 =1.25, w,=1,0, M =1,0)
3 f f W
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The nominal condition was chosen to provide a reference for insensitive controller
performance versus nominal controller performance at the nominal condition and
insensitive controller performance at the other evaluation conditions. The two worst
case cond1t10ns were defined through trial and error procedures as described in Sect1on Iv.
Worst Case 1 represents the most severe condition in that nominal controller performance
violates _the largest number of design specifications at this coridition. Worst Case 2

is a compromised condition which produces improved nominal controller performance
with respect to some design specifications but specification violations for othérs. ‘The
three independent variations were chosen to provide the capabiiity of a_halyzing the effect
of independent variations and also to provide additional evaluation condiitio_ns.t Tables 23
through 28 present the results of the critical response parameter computations. Note -
that, since the purpose of this data is the evaluation of uncertain parameter effects, the
Case 4R model was used for the computations, Comparison of the nominal controller
performance with respect to maneuver load response as given in Tables 23 through 28 .'
versus that given in Section IV shows a discrepancy in maneuver load response values.
The values shown in Section IV represent the steady state maneuver load reduction
computed with respect to a step inboard elevator command, The percentage reduction
was computed by forming the ratio of the open-loop maneuver load response to a step
elevator command to the closed-loop maneuver load response to a step elevator command,
Since a step-elevator command is essentially a pitch rate command, the critical para-
meter than must be included in the evaluation is steady state pitch rate. Unfortunately,
each insensitive control system has a different pitch rate to elevator gain factor.

This could have been avoided only through the use of a complex constrained gain design

or the use of integral control to force the steady state pitch rate to some specified
constant value common for all controllers, An alternate, less complex approach, which

was employed in this study, is to evaluate all maneuver load responses at a prescribed

~ pitch rate. The pitch rate chosen was the steady state pitch rate achieved by the nominal

controller at the nominal condition 0.2164 rad/sec (12.4°/sec). Using this approach
instead of the one used to generate Section IV data produces the discrepancies in the
two tables. In fact, a close observation of the two tables shows that, for the Worst
Case 1 condition, the nominal controller now satisfies the design specification. (Note:
The results given in Section IV aléo assumed the § to 5e ratio was the same for both
the open-loop and closed-loop systems. Application of the same pitch rate criteria
would produce different values for the nominal maneu.ver load response performance,
However, since all insensitive controller performance is meas:ured relative to the

nominal, it was felt that it was unnecessary ‘to modify these vaiues.)
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TABLE 23,

INSENSITIVE CONTROLLER PERFORMANCE - CASE 4R NOMINAL
Evaluation Model ~ Case 4R

Evaluation Condition - Nominal

(qf = 1,0, 0 = 1.0, wa = 1.0)
State
Specification Re~Residual- | Add Multi- Uncertainty | dependent [Sensitivity | Mismatch
description Criteria Nominal ization noise Minimax plant weighting noise vector Estimation
Maneuver load g < -30% -20.1% | -40.1%  |-22.5% | -39.8%  |-40.0% -40. 6% -40.2% | -40.7% | -40.2%
% change
Gust load B < ~30% -35.0% -35.4% ~-44,5% -37. 8% -37.7% -47.6% -39.1% -47,0% -35.3%
alleviation ;
% change T <+ 5% -31.5% -31.6% -21.9% | -37.9% ~34,9% -40.2% ~-33.9% -29,6% -31,5%
Handling ug < 1,6 rad/ 2,12 2.12 2,13 2,30 2,17 2.39 1.99 2.29 2,12
gqualities P sec
gsp 0.7-0.8 sec-1 0.718 0.72 0.729 0.720 0,689 0. 701 0.636 0. 665 0.717
Stability margins
Gain: aileron L © ® @ ® © = @ ®
2 6dB
elevator * * * © © © © © *
Phase: aileron 2 0,7854 rad ® - 1-850 rad - . . - 1.80 rad -
> (45°) (106°) (103, 1°)
elevator - - - 3.08 rad - 2,79 rad - - -
(176, 2°) {160°)
Surface 6a 0,00018 0,00019 0.0010 0.00011 0. 00017 0,00027 0.00023 0. 00075 0.00019
activity . .
RMS 6a 0.00080 0, 00082 0.0035 | 0,00032 0,00075 0.00110 0.00100 0. 00350 0.00083
(rad, NA ] ‘
rad/sec) ée 0.00150 0.00150 0.0014 0.00180 0.00170 0. 00210 0.00170 | 0.00190 0.00150
'6e 0.00370 0.00380 0.0031 | 0.00430 0.00370 0. 00640 0.00470 | 0.00670 0.00370
Run number NA 249 241 234 239 240 243 242 244 247

" Not evaluated
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Evaluation Condition - Worst Case 1

" Evaluation Model - Case 4R

TABLE 24. INSENSITIVE CONTROLLER PERFORMANCE - CASE 4R WCl1

(qf = 1,25, we = 0.75, wa =0,8)
State :
Specification Re-Residual-{ Add Multi- Uncertainty | dependent | Sensivitiy | Mismatch
description Criteria Nominal ization noise Minimax plant weighting noise vector estimation
Maneaver load 5 | < _3qq, -31.3% | -31.3% |-30.9% | -31.6% | -31.3% | -31.7% | -31.7% | -28.4% | -33.7%
% change ]
Gust load B < -30% -17.2% -17.3% -22,0% | -25.2% -23.2% -37.3% -21.6% -11,7% -29,8%
alleviation
% change T <+ 5% -7.1% -7.3% 1.2% | -19.4% -14,8% -24,7% -11.1% +1.1% -14.5%
Handling wg > 1,6 rad/sec |2.51 2,51 2,54 2,63 2,51 3.17 3.16 3.8 2.39
qualities p -1
Csp 0.7-0.8 sec 0. 84 0. 861 0,741 0.749 0,794 0.824 0.823 0,49 0,687
Stability margins
Gain: aileron ® ® ® ® ® ® = 20 dB ®
2 6 dB
elevator 21 dB 19.4 dB 24.4 dB ® * * © 63 dB ©
Phase: aileron 20,7854 rad ® ® L ® ® L] o %,;:703)3‘1 o
= (45°) *
- 2,97 rad 2,87 rad 2,35 rad
elevator ® ® (170. 1°) = (164, 2°) = * (134, 4°)
Surface Ga 0.00031 0.00032 0.0014 0.00012 0.00029 0.00038 0.00039 O. 00186 0.00056
activity
RMS a 0.00140 0.00140 0.0059 0.00048 0.00130 0.00170 0.00180 0.0062 0.00170
(rad, NA
rad/sec) Ge 0.00180 0.00180 0.0017 0.00210 0.00200 0. 00250 0.00190 0.0030 0.00220
‘Ge 0.00450 0.00460 0.0034 0. 00460 0.00450 0,00720 0, 00550 0.0100 0.00480
Run number NA 249 241 234 239 240 243 242 245 246

A
Not evaluated
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TABLE 25,

INSENSITIVE CONTROLLER PERFORMANCE - CASE 4R WC2

Evaluation Condition - Worst Case 2
(q‘f =0.5, w,=1,0, wa =1,2)

Evaluation Model - Case 4R

£
State
Specification Re~Residual-{ Add Multi- Uncertainty [dependent [ Sensitivity | Mismatch
description Criteria Nominal ization noise Minimax plant weighting noise__ | vector estimation|
Maneuver load g < -30% -68.4% | -68.4%  |-70.5% | -68.1% | -68.3% -68. 6% -68.5% | -71.2% | -70.9%
% change
Gust load B < -30% -61.3% -61.6% -69.7% -61.2% -62,2% -66.9% -63.3% ~-71.2% -56, 3%
alleviation .
% change T < +5% -57.5% -57.5% -51.7% -60. 0% -58,6% -60. 1% -57.8% -53.9% ~44,4%
Handling w, > 1.6 rad/sec | 1.08 1.08 1.06 1.16 1,11 1.18 1.02 1,07 1.51
qualities e -1 ! i
C’sp 0.7-0.8 sec 0.67 0.670 10, 701 0.700 } 0.653 0,663 0.574 0. 56 0,237
Stability margins [
1
Gain: aileron . ® @ © © ® © © © © !
2 6 dB
elevator ® ® o © * © ® © 24 dB |
Phase: aileron 20,7854 rad © @ ® © ® © » ® ® ;
= (45°) 2.91rad | 3.02rad| 2.98 rad 5
elevator @ o« ® @ @ .9 Ta . Jara « 90 T3 o
(166, 5°) (173.3°) (171°)
Surface Ga 0.00020 0.00022 0.0012 0.00013 0.00021 0.00032 0,00025 0.00088 0.00066 [
activity . : |
RMS a 0.00057 0.00059 0.0027 0,00025 0.00055 0.00081 0.00073 0.00025 0.00130 |
(rad, NA ,
rad/sec) 6e 0,00140 0.00140 0,0013 0.00170 0,00160 0.00200 0,.00150 0,00180 0. 00500
.5e 0.00300 0.00310 0.0025 0.00380 0,00300 0.00550 0.00410 0,.00530 0.00830 ‘
Run number NA 249 241 234 239 240 243 242 245 247 :

%
Not evaluated
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TABLE 26, INSENSITIVE CONTROLLER PERFORMANCE - CASE 4R P1

" Evaluation Condition -~ P1

Evaluation Model - Case 4R

(qf =1.0, w, = 1.0, wa =0, 8)
State
Specification Re-Residual4 Add Multi- Uncertainty |dependent | Sensitivity | Mismatch
description Criteria Nominal ization noise |Minimax plant weighting noise vector estimation
Maneuver load g < -30% -42.5% | -42.5%  |-44.8% |-42.2% | -42.4% -43.1% -42.7% | -43.2% | -42.0%
% change
Gust load B < -30% -29.9% -30.2% -39.1% | ~-35.0% -33.9% -45,2% -33.6% -41.1% -36. 6%
alleviation
% change T < +5% -22.7% -23.0% -13.9% -32,5% -28.2% -35.6% -24.8% -20.9% -31.5%
Handling g > 1,6 rad/sec | 2,02 2,02 2,02 2.20 2.07 2.30 1.89 2.08 2,12
qualities P -1
gsp 0.7-0.8 sec 0.758 0.760 0.770 0.751 0.725 0.733 0.674 0. 805 0,695
Stability margins
Gain: aileron @ L L ® © @® ® o L]
2 6 dB
elevator ® * * @ * ® @ o 12,7dB
Phase: aileron = 0,7854 rad « ® 1,95 rad ® i . i - 1.34 rad | -
= (45°) (112°) | (77
levator - - - 2,90 rad - 2.72rad | 3.05 rad - 3.04 rad
elevato (166°) (156°) [ (174.7°) (174.3°)
Surface 6, 0.00018 0.00019 0.0010 0.00011 0.00017 0.00027 0,00023 0.00076 0. 00021
activity
RMS 2 0,.00081 0.00082 0,0035 0.00032 0.00075 0.00110 0.00100 0. 00350 0.00082
(rad, NA
rad/sec) ée 0.00170 0.00170 0.0016 | 0.00200 0.00190 0.00240 0.00180 0.00210 0.00200
E‘;e 0.00360 0.00380 0.0031 0.00440 0.00380 0.00640 0.00470 | 0.00670 0,00390
Run number NA 249 241 234 239 240 243 242 245 247

£
Not evaluated
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TABLE 27. INSENSITIVE CONTROLLER PERFORMANCE - CASE 4R P2

Evaluation Condition -~ P2

Evaluation Model - Case 4R

(qf =1.0, w. = 0.75, wa = 1.0)
State
Specification Re-Residual-| Add Multi- Uncertainty | dependent |Sensitivity | Mismatch
description Criteria Nominal | ijzation noise Minimax plant weighting noise vector |estimation
Maneuver load g < -30% -41.9% | -41.9%  |-42.2% | -42.0% |[-41.9% -42,3% -42,2% | -39.9% | -44.0%
% change
Gust load B < -30% -34.6% -34.7% -40.8% | -37.4% -37.2% -46.6% -38.1% -40.0% -38.1%
alleviation .
9 change T < 459 -30.2% -30. 3% -21.0% | -35.9% |-33.5% -38.7% -32.6% -26. 7% -28.1%
Handling g >1.6 rad/sec | 2.05 2,05 2.10 2,19 2,08 2,38 2,03 3.85 2.09
qualities P -1 . : :
Csp 0.7-0.8 sec 0.755 0.764 0,721 0.717 0,722 0. 750 0.728 0,643 0.610
Stability margins
Gain: aileron L i o L © @ L © ®
z 6 dB ,
elevator 24 dB 21,6 dB 25 dB © 20.0 dB @ © 16 dB ©
Phase: aileron z 0,7854 rad @ @ B @ © © © (11.19020)1‘313 o
o
levator = @ ® » © © 3.05 rad ® 1.71 rad 2.86 rad
erev (174. 5°) (98°) (163. 6°)
Surface 6a 0.00027 0.00027 0.0012 0.00012 0.00024 0,00035 0,00034 0,0012 0,00044
activity .
RMS éa 0.00110 0.00110 0.0047 0.00041 0.00110 0.00140 0.00150 0.0050 0.00130
{rad,
rad/sec) 6e NA 0.00160 0.00160 0.0014 0.00180 0,00180 0.00230 0.00170 0. 0025 0,00180
-6e 0.00400 0.00410 0.0031 0.00440 0.00410 0.00670 0.00510 0.0083 0,00430
Run number NA 249 241 234 239 240 243 242 245 2417

* Not evaluated
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TABLE 28, INSENSITIVE CONTROLLER PERFORMANCE - CASE 4R P3

Evaluation Condition - P3

Evaluation Model - Case 4R

(qf =1,25, w, = 1.0, wa =1,0)
[ | State !
Specification Re-Residual-| Add Multi- - Uncertainty ;|dependent | Sensitivity | Mismatch
description Criteria Nominal ization . noise Minimax plant ! weighting noise l vector {estimation
2 I { 5
: )
Maneuver load < ~30% -25.6% | -25.9% . [-27.7% | -25.7% | ~25.7% -26.5% | -26.0% | -25.2% | -26.9%
% change I 1
Gust load B < -30% -24.9% -25,2% -34,0% | -28.8% -28.2% -40.7% -30.0% -37.6% -25, 6%
alleviation ‘
% change T < +5% -21,8% -22,1% -9.99% | -29.7% ~26,0% -33.2% -25.4%: =19, 7% -20.2%
Handling wen | > 1,6 rad/sec| 2,73 2,72 2, T4 2,93 2,76 3.13 2,56 3.69 2,39
qualities P -1 ]
gsp 0.7-0.8 sec 0.1728 0.732 0. 715 0.704 0. 695 0.705 0,658 0.795 0, 834
|
Stability margins
Gain: aileron © © @ © © ) o ® o
2 6 dB
elevator * * * ® * ® L] ® L]
. 1,24 rad 1.99 rad
Phase: aileron | 5 g 7854 rad ® ® (71°) ° ° ) ) (114°) i
= (45°) 2.93 rad 1.33 rad
elevator ® ® ® ® @ (168°) ® (76°) "
Surface Ba 0.00019 0.00020 0.0010 0.00011 0.00018 0.00028 0.00025 0.00085 0.00028
activity . .
RMS 2 0.00095 0.00096 0. 0040 0.00035 0.00088 0.00120 0.00120 0.00420 0.00110
{rad,
rad/sec) 6e NA 0.00150 0.00150 0.0014 0.00180 0.00170 0.00210 0,00170 0.00200 0, 00150
Be 0.00400 0.00410 0.0032 0.00450 0.00410 0.00670 0.00500 0.00750 0.00440
Run number- . NA 249 241 234 239 240 243 242 245 247

* Not evaluated




The data contained in Tables 23 through 28 have been plotted to better illustrate the
‘performance of the insensitive controllers versus the design criteria and the evaluation

conditions. These plots are given in Figures 7 through 11.

The effect of unmodeled dynamics on controller performance was evaluated with respect
to two considerations. First, only two of the techniques are specifically directed at
unmodeled dynamics effects. These are 1) residualization, which was used in the design
of the nominal controller, and 2) re-residualization, a newly developed technique,

Both techniques attempt to approximate higher order dynamic systems with lower

order systems. Of course, the higher order dynamic system must be known, The
higher order model that was used for both techniques was the Case 2 model which included
15 bending modes, To generate comparison data, the nominal controller, which was
designed on a Case 4R residualized model, and the re-residualized controller, which
was designed on a Case 4RR re-residualized model, were evaluated on the Case 2 model.
Table 29 presents the results of these evaluations at three evaluation conditions. As

can be seen, the performance of the two controllers is almost identical. This indicates
that a residualized model was sufficient for design purposes for this aircraft example.
Since a comparison of this nature is the true test of the re-residualization process,

the re~residualization techniques will not be included in the comparative evaluations

that follow.

The second consideration is how well the other insensitive controllers handle unmodeled
dynamics since the synthesis technique with which each controller was designed does not
explicitly treat the problem. For this evaluation, both known and unknown unmodeled
dynamics can be included. Hence, it is necessary to compare the performance of each
of the insensitive controllers on the Case 4R models versus their performance on the
Case 1 model for the same evaluation condition., Critical response data generated on the
Case 1 model at three evaluation conditions are given in Tables 30 through 32, The -
performance of the insensitive controllers with respect to unmodeled dynamics may be
evaluated by cofnparing the performance of each at the Case 4R nominal condition

(Table 23) versus the performance of each at the Case 1 nominal condition (Table 30),

The deviation in performance between Case 1 and Case 4R for each of the insensitive
controllers is shown in Figure 12, Plotted is the difference between insensitive con-
troller performance evaluated on Case 1 and insensitive controller performance evaluated
on Case 4R for each of the design criteria. As can be seen, all the insensitive controllers

behave, in general, much the same as the nominal controller except for the mismatch
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TABLE 29,

CASE 2 EVALUATION

- Nominal
(qf=1.0, 0, =1.0, wa=1.0)

- Worst Case 1

(§,=1. 25, w =0, 75, Myy

=0. 8)

Worst Case 2
f

(qf=0. 5, w.=1,0, Mw=1. 2)

£

Specification Re-Residual- Re-Residual- Re-Residual-
description Criteria Nominal ization Nominal| ization Nominal ization
Maneuver load g < -30% -40.1% | -40.1% |-31,4% | -31,3% |-68.4% | -68.4%
% change
Gust load B < -30% -34.7% -35.1% -15,7% -15.8% -61.3% -61.6% -
alleviation
% change T < +5% -30.5% -30.7% +0. 5% -0,19% -57.4% -57.6%
Handling w > 1.8 rad/sec 2,13 2.13 2.53 2.55 1.08 1.08
qualities P -1
l;sp 0.7-0. 8 sec 0.715 0.717 0.835 0.852 0.670 0.669
Stability margins
Gain - aileron > 6 dB © * © © © ©
elevator % %* ¥ 20 dB © ®
Phase - aileron = (0, 7854 rad © ® ® i © ©
elevator = (45°) © © © © © ©
Surface éa 0.00018 0.00019 0.00033 0.00034 0.0002 0. 00022
activity .
RMS 6a 0. 09800 0.09400 0.30000 0.29000 0. 0480 0.04600
(rad, NA
rad/sec) ée 0.00150 0.00150 0.00180 0.00180 0.0014 0.00140
'ée 0,00370 0.00380 0. 00460 0.00470 0.0030 0.00310
Run number NA 253 255 254 255 254 255

* Not evaluated
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TABLE 30. INSENSITIVE CONTROLLER PERFORMANCE CASE 1 NOMINAL

Evaluation Condition - Nominal

@ = 1.0, w; = 1.0, M_

=1,0)
f

Evaluation Model - Case 1

"

|

1

| [ ] | State . i
Specification ‘ i Re-Residual- | Add {  Multi- Uncertainty ! dependent | Sensitivity | Mismatch |
description | Criteria | Nominal; ization l noise | Minimax|{ plant weighting noise | vector estimation|
| | ! o> ‘ ‘ !
Maneuver load g < - 30% -40.2% = -40,2%  {-43.4% | -39.8% | -40,0% -40.9% . -40.5% | ~41.1% | -39,9% |
% change ; !
! |
Gust load B | <-30% | -30.8% | -40,0% J-49.8% | -41.3% | -42.2% -51,4% | -45.2% | -53.6% | -35.0% |
alleviation i i i f : i
% change T | < +5% | -32.3% }! -32.6% !-19. 9% | -38.5% | -35.4% -39.9% | -35.3% -29, 6% -28.4% |
_ | ; ! ! 1 y
| = 7
Handling w >1,6 rad/sec | 2.41 i 2.41 2,37 1 2.59 2,44 2.83 | 2,25 3.37 2,04
qualities sp -1 ! ! o I‘
Csp 0.7~-0,8 sec 0.730 | 0.736 0,737 0.720 0.695 0.707 ‘ 0.636 0.657 0.714
' i
|
: ; i i
Stability margins ‘! |
Gain: aileron’ © © © © © ® E © © © |
2 6 dB I |
elevator 35.8 dB 30.3 dB 139.1dB | © 26 dB © ® 16.8 dB 20,0 dB
. . 1,
Phase: aileron Z 0,7854 rad @ @ ! 80° rad © ® L o T ruad ®
> (45°) (103°) (101.7°)
1 - - 1,87 rad - 1,82 rad 1.62 rad| 1.30 rad| 2.11 rad
elevator ® (107.2) {104°) (92.7°) (74, 4°) {121°)
Surface éa 0.00017 0.00018 0.0010 0.00011 0.00017 0.00027 0.00022 0.00070 0.00019
activity
RMS 6 0,00074 0.00075 0.0032 0,00030 0. 00069 0.00099 0. 00095 0.00310 | 0.00073
(rad, a NA :
rad/sec) 6e 0.00150 0.00150 0.0014 0.00170 0.00160 0.00210 0.00170 0.00200 0.00120
Ge 0.00370 0.00380 0.0031 0.00440 0.00380 0.00640 0.00480 0.00680 0. 00330
Run number NA 256 3L 2L 5L 6L 7L 4L 8L 9L
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TABLE 31.

INSENSITIVE CONTROLLER PERFORMANCE - CASE 1 WC1 ..

Evaluation Condition - Worst Case 1

Evaluation Model - Case 1

(qf =1,25, wg = 0.75, wa =0.8)
State .
Specification Re-Residual-] Add Multi~ Uncertainty | dependent | Sensitivity | Mismatch
‘description Criteria Nominal| ization noise Minimax plant weighting noise vector estimation
Maneuver load g < -30% -33.2% | -33.2% | -32.7% | -33.6% | -33.1% -33.7% -33.7% | -20.1% | -35.8%
% change
Gust load B < -30% -22,2% -22,2% -27.3% | -28.1% -27.3% -39.7% -29.1% ~21,7% -28.6%
alleviation
% change T < 5% -6.5% -6.9% +1.71% -17.1% ~13.1% ~19.2% -12,5% +3. 3% -4,5%
Handling w >1.6 radfsec | 3,77 3.91 2,78 3.11 3.41 4,35 3.56 4,22 2.35
qualities P
Csp 0. 7-0.&sec'1 0. 807 0,801 0.713 0.744 0,810 0,645 0.562 0.482 0. 667
Stability margins
Gain: aileron ® ® ® ® ® ® i 11.4 «
2 6 dB | ]
elevator 19.2 dB 17.3 dB 20 dB 31,2 dB 16,7 dB 22,4 dB 18.6 dB | 4.5 dB ®
Phase: aileron 20,7854 rad ® ® | 2.09raqd ® ® o 1,49 rad N
> (45°) | (120,07 (85, 2°)
elevator - - ] - 1,88 rad - 1.66 rad 1.52 rad 1,40 rad | 1,91 rad
(107.7°) (95, 1°) (87.2°) (80, 0°) (109, 2°)
Surface 6a 0.00030| ©0,00031 | 0,0014 0.00012 0.00028 0. 00037 0.00037 0.0014 0. 00057
activity .
RMS 6a 0,00130 0.00130 | 0.0054 0,00046 0,00120 0.00160 0.00170 0.0060 | 0.00170
(rad, NA ; 1 _
rad/sec) Be 0.00180% 0,00180 ‘ 0,.0016 0.00200 0,00190 0.00250 0.00200 0.0036 0,00180
. | |
ée 0,00460 0.00470 | 0.0034 0.00470 0.00460 0.00750 0,00590 0.0120 0, 00440
Run number NA 1L 3L 1 2L 5L 6L 7L 41, 263 262
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TABLE 32,

INSENSITIVE CONTROLLER PERFORMANCE CASE 1 wC2

Evaluation Condition - Worst Case 2
(@ = 0.5, w =1.0, M_ =1.2)

Evaluation Model - Case 1

f
_ i State | . I
Specification Re-Residual-| Add Multi- Uncertainty {dependent !Sensitivity i Mismatch |
description Criteria Nominal ization noise Minimax plant weighting noise i vector | estimatio
' j -
Maneuver load 5 | < _gqq, -66.3% | -66.3%  |-69.2% | -65.9% | -66.2% -66. 7% -66.4% | -68.6% : -65.5%
% change .
i
! !
Gust load B < -30% -68.2% -68.4% ~76.2% | ~66.7% -68. 8% -72.6% -71.4% | -81.0% { -64.7%
alleviation ! \
b change T < +5% -57.3% -57.3% ~50.0% -59,9% -58.4% -59.8% | -58. 0% -53.4% -51,9%
Handling 0 >1.6 rad/sec | 1.16 1,16 1,13 1.25 1.19 1.28 1.09 1.16 | 1.51
qualities P -1 ‘ ' [
csp 0,7-0.8 sec 0.681 0.680 0.718 0.714 0.660 0.674 0.570 0.568 I 0,336
Stability margins
Gain: aileron ® @ L ® L L ®° ® ©
2 6 dB
elevator L] © ® L 41,9 dB = i ® ® 4,3 dB
Phase: aileron =z 0, 7854 rad o © ® ® L © L © L]
= (45°)
elevator © © . 2,71 rad . 1,85 rad 1.7 rad | 1,30 rad "
(155, 2°) (105. 8°) (101, 7°) ('78. 2°)
Surface 6a 0.00019 0.00021 0.0012 0,00013 0.00020 0.00031 0.00024 0, 00085 0.00045
activity .
RMS Ga 0,00053 0.00056 0.0026 0.00024 0.00052 0.00078 0.00068 0.00330 0.01000
(rad,
rad/sec) Ge NA 0.00140 0.00140 0.0013 0,00170 0.00150 0.00200 0.00150 0.00180 0,00330
.6& 0.00300 0,00310 0.0-025 0.00380 0.00300 0. 00560 0,00410 0.00540 t, 44000
Run number NA 1L 3L 2L 5L 6L 7 4L, 263 262
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Figure 12, Effect of Unmodeled Dynamics



estimation controller, In all cases, the mismatch estimation deviation shows a sign
reversal in deviation when compaLred to most of the other insensitive controllers. This
is especially noticeable in the RMS bending deviation plot. The conclusion that can be
drawn from this data is that the mismatch estimation controller is attempting to com-

ﬁensate for the unmodeled dynamics while the others are merely reacting.

Tables 30 through 32 also provide the necessary data for evaluating the third considera-
ti_on mentioned above, i.e., the effect of parameter uncertainties and unmodeled
dynamics on conl:roiler performance, Only three of the evaluation conditions were
retained for Ca:se 1 evaluation primarily because of the large computer costs accompany-
ing the data generation runs. In addition, it was felt that the same characteristic trends
that were observed in Case 1 at the nominal, Worst Case 1, and Worst Cése 2 conditions
versus their Case 4R counterparts would have been repeated with respect to the other

conditions, Plots of Tables 30 through 32 data are given in Figures 13 through 17,

Tables 23 through 32 brovide the necessary data for a comparative evaluation of insensi-
tive controller performance, Before proceeding to the next subsection we should point
out that there was no attempt to include stability margin criteria in the evaluation. An
analysis of Tables 23 through 32 indicates that for all controllers at all conditions
except 1 (mismatch estimation controller, Case 1, WC2) gain and phase margin criteria
are more than satisfied, It was concluded, therefore, that for this example satisfying

gain and phase margin criteria was not a critical design consideration.
COMPARISON PROCEDURE AND RESULTS

There are several methods that may be used to quantitatively compare the insensitive
controllers. Two methods that historically have been used are the performance index
and trajectory sensitivities. We introduce a normalized performance measure which
encompasses the performance index method. We also introduce a normalized range
measure which is akin to the trajectory sensitivity method, A combination of these

two measures is also introduced. Two other methods for comparison will be introduced
which relate more closely to the objective of insensitive control stated in Section III as
"maximizing performance over a given type and range of model variation."” One of
these methods uses a coarse overall relative scoring system. The other method is

based on normalized specification violation.
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Overall Relative Scoring

The score given an insensitive controller is based on its performance relative to the
performance of the nominal controller with respect to each specification. The score
is assigned as follows. For each of the criteria (maneuver load bending, RMS bending,
RMS torsion, short.peribd damping, and short period frequency), the insensitive con-

troller is given a base score of
+2 if the nominal controller is out of spec and the insensitive controller is in spec.

+1 if the nominal controller is out of spec and the insensitive controller is out of

spec, but not as far out as the noiminal,

0 if the nominal controller and insensitive controller are both in spec, or both out

of spec by the same amount.

-1 if the nominal controller is out of spec andthe insensitive controller is further

out of spec.

-2 if the nominal controller is in spec and the insensitive controller is out of spec,

The raw score for each insensitive controller is the sum of the base scores for all
conditions considered, An "ideal' controller would receive a base score of (+2) when-
ever the tiqminal controller is out of spec, The overall relative score for an insensitive

controller is then defined to be

raw score of "ideal" - raw score of insensitive controller
raw score of "ideal" - raw score of nominal controller

S(IC) =

Thus a score less (more) than 1 indicates less (more) sensitivity than the nominal,
The resulting overall relative scoring of the insensitive controllers is shown in Figure 18
based on the evaluations with Case 1 and Case 4R models. The results for the Case 4R
model using the same conditions as used for Case 1 are shown with shaded bars, The
striped bars indicate Case 4R results using all six evaluation conditions. Also shown
in Figure 18 is the effect of 'a.ddi.ng a ﬁctitious spec on RMS control surface activity.
The hypothesized spec is three times. the nominal controller surface activity at the
nominal condition for Case 4R. Ad_ding this criteria causes the overall relative scores
of the additive noise, mismatch estimation, and sensitivity vector controllers to increase
leaving the remainder unchanged. This would cause the additive noise controller to shift
significantly in the ranking,
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Majo'r'cc'mc'lusi-ons to be drawn from this relative overall scoring as indicated by

Figure 18 are:

1. The minimax and uncertainty weighting controllers are less sensitive than the

nominal in all instances,

2. The state dependent noise and sensitivity vector controllers are more sensitive

than the nominal in all instances.

3. The effect of unmodeled dynamics (Case 1 versus Case 4R with the Case 1

conditions) is least for the minimax controller.

4. The ranking of controllers for Case 1 and Case 4R is generally consistent, with

mismatch estimation and multiplant being the exceptions.

5. The fictitious surface activity criteria most seriously degrade the ranking of

the additive noise controller.

Norm’ailizred _Performance and Normalized Range

The insensitive coptrollers may be compared on the basis of normalized performance
which is similar to the method of performance index sensitivity, Comparison may also
be made on the basis of normalized range which is similar to the method of trajectory

sensitivity.

The normalized performance of an insensitive controller with respect to each individual

criterion is defined as follows:

The normalized performance of an insensitive controller with respect to maneuver

load bending is the average of the percent reduction in maneuver load bending for

the nominal controller divided by the average percent reduction in maneuver load

for the insensitive controller, The average is taken over the conditions considered.

With this definition, a value less than 1 corresponds to improvement in performance
" relative to the nominal controller and a value greater than one indicates degraded

performance.

The normalized performance with respect to RMS bending is defined in the same
manner as used for maneuver load bending with averages of percent reduction

in RMS bending instead of percent reduction of maneuver load bending.

135



136

The normalizéd performance with respect to RMS torsion is defined similar to that

for RMS bending except that the torsion averages are biased by 40 percent to - ;

~achieve similar scales. Thus, the normalized torsion performance is the ratio

-40 + (average percent reduction in RMS torsion for nominal controller)
-40 + (average percent reduction in RMS torsion for insensitive controller)

The normalized performance with respect to short period frequency; w, required
a somewhat different definition. Whereas increasing the percent reduction in
bending and torsion indicates improvement, increasing w indefinitely is not an
improvement. Thus, the normalized frequency performance is defined in terms

of spec violation as the ratio

spec violation of the insensitive controller
spec violation of the nominal controller

Z (1.6 - w,) for the insensitive controller
wi <1,6 i
N T )
‘”i <1.6 (1.6 - wi) for the nominal controller

where w, indicates the frequency for the ith condition.

The normalized performance with respect to short period damping, {, was also
defined in terms of spec violation. In this instance it was decided not to normalize
by dividing the spec violation of the insensitive controller by the spec violation

of the nominal controller because doing so would have made the range of this measure
of performance much larger than the range of the previous measures. It was

decided instead to choose the normalization such that, for Case 1, the value of the
normalized damping performance attained by the insensitive controller with the
greatest spec violation was approximately equal to 2, This was accomplished by

defining the nermalized performance with respect to short period damping as

5[ = (. -0.8+ = (0.7 - ¢l
¢.>0.8 ! £,<0.7 !
1 J
for each controller. The normalized damping performance of the nominal controller

for Case 1 based on this definition has a value of 0,13.
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‘The normélized performance of the controllers is defined as the RSS of the individual
normalized performance measures; that is, the normalized performance is the square
root of one-fifth of the sum of the squares of the five performance measures just defined.
A different normalization procedure would have the effect of changing the relative
weigpting in summing the squares. Un'fortunately, there is not an ob,viodsly '.;.correct"

weighting of the performances with respect to the various criteria,

Again, as in the overall relative scoring it is of interest to include control surface
activity in evaluating comparative performance., The normalized performance with
respect to surface deflections is defined to be the ratio of the average RMS deflections

for the insensitive controller to the average RMS deflections for the nominal controller.,

The normalized range of an insensitive controller with respect to each of the variables
corresponding to a specific criterion is the range of the insensitive controller divided
by the range for the nominal controller, The range is defined as the maximum of the
variable minus the minimum of the variable, The normalized range of the insensitive
controller is the RSS of the individual normalized ranges. With these definitions the
normalized range (individual and total) of the nominal controller is unity. A value

less (more) than 1 for an insensitive controller indicates less (more) sensitivity

than the nominal.

The normalized performance and range with respect to the individual criteria are shown
for Case 1 in Figure 19, Perfect performance with respect to bending and torsion is
represented. This corresponds to a 100 percent reduction for all conditions, The

spec requirement is also shown for bending and torsion which corresponds to a controller
that just meets spec for all conditions. Spec performance and perfect performance with
respect to short period frequency and damping coincide and correspond to a value of

zero.

Several conclusions may be drawn from the data displayed in Figure 19. First, there
is little difference between the controllers with respect to maneuver load bending.
Second, that is about the only instance of consistency. The mismatch estimation
controller is the least sensitive with respect to short period frequency but is the most
sensitive with respect to short period damping. The normalized range is sometimes
larger and sometimes smaller than the normalized performance. Finally, the surface
activity performance clearly indicates that the additive noise controller utilizes the

aileron significantly more than do the other controllers.
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The data shown in Figure 19, combined via the RSS process, is shown in Figure 20,

Also the performancé and range are combined in the same RSS manner to arrive at

a single measure. With respect to these measures, the minimax controller is generally
less sensitive than the nominal, and the mismatch estimation and sensitivity vector
controllers are generally more sensitive, The state dependent noise controller displays
much less range sensitivity than performance sensitivity. The surface activity increment
is most notable for the additive noise controller, which is less sensitive than the nominal
without c.ontrol surfade contribution but more sensitive than the nominal with control
surface activity considered, The multiplant and uncertainty weighting controllers are
slightly less sensitive than the nominal, and without control surface activity, the

uncertainty weighting controller is less sensitive than the multiplant controller.

Figure 21 shows the same kind of comparison for the Case 4R evaluations on the Case 1
conditions. The results are very similar to the Case 1 results except that the control
surface contribytion is more pronounced for Case 4R, especially for the uncertainty
weighting, additive noise, and sensitivity vector controllers, The same measures

are shown in Figure 22 for Case 4R with all six evaluation conditions included, Comparing
Figures 21 and 22 shows that the added evaluation conditions have a negligible effect in

these measures of insensitivity.

Normalized Specification Violation

The final method of comparison is based on a measure of normalized spec violation.
This measure is a refinement of the overall relative scoring. The total amount of

spec violation with respect to a given criterion is computed for each controller for

all conditions considered. This total is normalized by dividing by the maximum attained
to give the normalized spec violation with respect to the individual criterion. An overall
normalized spec violation is thén the RSS of the normalized individual spec violations.

In Case 4R none of the controllers violated the torsion spec, so this individual component
was omitted in the RSS calculations. In Case 1 the additive noise controller slightly
violated the torsion spec for one condition by 0.9 percent. Thus, RSS values for Case 1
were computed with and without the torsion contribution. The results are shown in
Figure 23, The uncertainty weighting and minimax controller were the least sensitive,

and the sensitivity vector controller was the most sensitive with respect to this measure.
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Overall Comparison

As a final means of comparison, the controllers were ranked with respect to each of
the overall sensitivity measures with 1 indicating least sensitivity. The rankings are
given in Table 33. Although there is some variation in relative ranking, it is clear
that the minimax and uncertainty weighting controllers are least sensitive, They are
less sensitive than the nominal controller according to every ranking, Also, itis clear
that the sensitivity vector controller is the most sensitive and is always more sensitive
than the nominal. The additive noise and multiplant controllers generally rate less
sensitive than the nominal. However, they each are rated more sensitive than the
nominal in at least one ranking. The additive noise controller could get a worse rating
because of its high surface activity and because of the fact that it is the only controller

which violates the RMS torsion spec in Case 1,
The major conclusion to be drawn from the comparison data is that the minimax and
uncertainty weighting controllers were significantly less sensitive than the others and

that the sensitivity vector controller was actually much more sensitive than the nominal

controller,
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TABLE 33. RANKING OF INSENSITIVE CONTROLLERS WITH RESPECT TO THE OVERALL
SENSITIVITY MEASURES

Overall relative scoring

Overall performance/range

Overall specification violation

Case 1

Controller Case 4R Case 4R w/o Case 4R Sum

Case 1 3 Cond. 6 Cond. Case 1 3 Cond. 6 Cond. torsion | 3 Cond. 6 Cond,
Minimax 1 1 1 1 1 2 2 12
Un_cert‘amty 3 3 9 9 9 1 1 18
weighting
Additive 2 1 3 3 4 4 3 29
noise
Multiplant 6 5 4 4 3 3 5 35
Mismatch 4 4 5 7 8 5 4 48
estimation
Nominal 4 6 6 5 5 6 7 49
State dependent 7 7 7 6 6 7 6 59
noise
Sensitivity 8 8 8 8 7 8 8 71
vector

e
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SECTION VIII

NEW CONCEPTS FOR INSENSITIVE CONTROL

Four new concepts, developed by Professor Kleinman and Professor Porter, are
described in this section, Synthesis of controllers based on these concepts was not
attempted due to the preliminary nature of the conceptual development; Professor
Kleinman's mismaitch estimation technique and Professor Porter's uncertainty weighting
technique were developed to the .stag:e where synthesis was appropriate as described in
Section VI, In this section Professor Portér's concept developments are summarized

in the following subsections: The.Finite Dimensional Inverse Concept, Sensitivity
Reduction Subject to Terminal .Equivalence, Interrelations Between Terminal Equivalence,
Model Following, and Observers., The final subsection, Sensitivity Design for Maximum

Difficulty, is a summary of Professor Kleinman's concept development,
THE FINITE DIMENSIONAL INVERSE CONCEPT

Many parameter sensitivity problems for systems under optimal control are finite
dimensional in nature. This provides an opportunity for the design of sensitivity reducing

compensators which circumvent, in part, the construction of inverse systems.

Consider the linear system modeled by the equation

%X = F(p)x + Gu, x(0) = X (149)

where F and G are matrices, and x, u, and p are vectors., Suppose that p0 denotes the
nominal value of the parameter vector, p. Further, suppose that uo(t) is the optimal

control for the nominal system and xo(t) is the corresponding state, i.e.,

xo = F(po)xo + Guo, xO(O) =X ‘ (150)

Defining 6x as the difference between the state of system (149) and the nominal state,

4

6x = X-X_, wWe have

&x = F(p)éx + [F(p) - Fip )lx_ +GOu, 6x(0) =0 (151)
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where 5u & u-u. We are interested in a method for choosing §u to compensate for

the variation from the nominal plant.

We now add a few explicit assumptions.

A,l The system of Equation (150) is under minimum energy optimal control.

A,2 The parameter vector, p, and hence the perturbation, F(p) - F(po), is constant.

The import of A.1 is that the input u(t) is basically determined by x,. For example,

with minimum energy state transfer from X, att =0 to Xp at t = tf,

_ T T - -1
uo(t) =G" ¥ (t, t) E (tf, 0) [xf - cb(tf, 0) xo] (152)

where

¢
nd = (t,7) = [ &(t,0)GGL &L (r,0) do
T

a(t, 1) = oF o) 77 4

Equation (152) may be viewed as placing the input set in linear correspondence with Rn.

the state set. From this observation we modify A.1 to the following form:

Al 1 The control is of the form u =

cxiui where ai are scalars and u, are known
i

1

nmM™MBs

functions.

Using A'.1 and A, 2 leads to the final form of the explicit assumptions:

A, The term, [F(p) - F(po.)]xo, in Equation (151) may be written as
N
[F(p) - F(po)]xo(t) = ifi v;3;(®) (153)

where the Yi are scalars and the ai(t) are known functions of time, Moreover the a (t)

i
may be taken to be linearly independent. From Equations (151) and (153), we conclude
that

t N t
sx(t) = [ &(tss) = Y;2,(s) ds + [ &(t,s)G su(s) ds (154)
o o i=1 o
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=

or

N
sx(t) = T y.Db.(t) + (Tsu) (t) (154")
i=1
where
t
b.(t) = [ 2(t,s) a,(s) ds _ . : (155)
0 o

and T is the integral operator with kernel &(t,s) G; i.e.,

t : o : .
(Téu) ) = [ &(t,s) G su(s) ds S (156)
o

If Su is zero, the system is operating in an open-loop manner and the open-loop state
response is (from Equation (154'))
N

GX(t)OL = i§1 Yibi(t) (157)

The sensitivity ratio for a system with control, 6u, is then

3= llextw) sy I/ Textty g,
N N (158)
- lli>=:1 ¥;b;(t) + (Tou) (1) [1/1]] I YO I

Our goal for sensitivity reduction is to find &u's which give $ <1, Proceeding toward
this goal, let us define L as the linear subspace spanned by the set {bi(t)}, and let PL
denote the projection operator from the space of all absolutely continuous n-dimensional

functions onto L. If we could take the control to be given by

su = Héx (159)

where H is a causal operator with the property that

_ 1
TH = (1 - )P : (160)
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then this control would yield a system with sensitivity ratio

$=¢ | _ . aen

Choosing € such that 0 < & <1, we would achieve reduced sensitivity._ Eciuatio_n (161)
may be established from (154') as follows. With su given by (159) and H satisfying (160),

we have
N .
5x(t)CL = I yibi(t) + (T6u) (t)
i=1
= 4E‘>x(t)0L + (TH6x) (t)CL
- 1 :
= 6x(t)OL +(1 6) (PL 6x) (t)CL
1
= ex(tlgy, +(1-g) ex(thgy,
Thus,
6x(t)CL = 66x(t)OL
Hence,
= llexttyy, l/lexwy; |

8 =
llaameL /11 x(t) ;. [1=¢

The heart of the problem of synthesizing such controls is to develop methods for computing
the operator H in a realizable form., The realizability of such an operator is assured

for many systems as the following development indicates,

Suppose that the set {vi} of controls is found such that bi = Tvi. It might be found,
for instance, by building (mathematically) a T-1 and recording the outputs vy of T-'1

corresponding to the inputs bi' Suppose that Pt, t > 0 is the truncation map

t x(B) pst
(Px) (8) =
0 B>t
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b

We want

Ptvi=PtHbi =PtH(Ptbi) £20
fori=1, ... , Nand

~ 4

HPv=0

whenever

Plv ¢ span {Ptbl. ces s Pth]. tz0

Then we would take H = (1 - ':f) H.

Iza a gpecific example, consider the problem on the finite time interval {0, 1] of finding

H with the properties that H is causal and Hbi =v; fori=1, 2, ... , N, A necessary

condition for the solution to exist is that, if for any tef[0, 1],
P, = P'b,
]
then
Ptv = Ptv.
i i
Reasonable assumptions that could be made concerning the set of functions bi are:

Asgsumption 1: The functions Ptbi, i=1, 2, ..., Nare distinct for any t > 0.

Assumption 2: In addition to being distinct, the functions Ptbi, i=1,2, ..., Nare

linearly independent for any t-> 9.

An example of a set of bi's which satisfy the second assumption is:

_ i _’_ .
i+1(t)-t. 1—0, 19 ses

For this general problem we have the known results :[47' 48]

1. A solution exists whenever necessary condition holds.
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2, A fixed ordér Vqlterra solution exists whenever Assumption 1 holds,
3. A linear solutioﬁ exists whenever Assumption 2 .holds_.

4. An explicit realization is available for results 1 through 3.

5. Realizatjon in differential equation form is poss_ible. | |

.
\ a

When Assumption 2 holds, the linear solution, H, may be determined as follows. .Let

us define a normalized projection, 1];, of bj as

t'_ -1 . . ) S
m = Hptbj” P-tbj |

Then Tl; are linearly independent for t > 0 and HTI;H =1lforallt>0andj=1, 2; cee o
Let N(t) be the Grammian matrix’ ' ’

PP TN

N = (<7 7>

The linear independence of the set of functions {T];} ‘implies that N(t) is nonsingulaz‘;
Let the inverse of N(t) be denoted by

_1 _
N “(t) = [aij(t)]

Now define

t+ t
M) =Za WN,i=1, 2, ...
i g 4

Then performing another normalization, let

t PR AT
Bt = P mhT, =1, 2, ...
) I JH('n}) j

The set of functions B; have the desirable properties that

<8, b, >=5.
R R

<-B;, PBu>=<B;, u>ifpat

This leads to the desired linear solution:

- t
[Hul(t) = [ wi(t, B) u(B) dB

(o]
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where

_ t
wit, B) = T v;(t) B/(B)

SENSITIVITY REDUCTION SUBJECT TO TERMINAL EQUIVALENCE

In this discussion, we will be concerned with the relation between open-loop and closed-
loop;lcon'i:r'di of la plant which has uncertain péram,eters. Sensitivity reduction is meas_ur"r.__ad
in terms of the ratio of closed-loop to open;lodb perturbations caused by perturbations in
the parameters from their nominal values., The open-loop and closea—lobp systems are
constrained to be terminally equivalent for the case of nominal parameter values, '

Here, terminal equivalence refers to equivalence of certain input-output relations for’

the open-loop and closed-loop systems.

The open-loop system is shown schematically in Figure 24, The plant is represented
by an operator P. Operators Q and R represent open-loop compensators. The input-

output description of the open-loop system is

SOL :x = PQu + (I - PQR)N (162)
"o
T 3
R n
ot N _ Q = P ; y ’

Figure 24. Schematic Diagram of Open-Loop System

The closed-loop system is shown schematically in Figure 25, The feedback operator
is represented by H, and G denotes a compensator. These operators, G and H, are

the design choices. The input-output description of the closed-loop systemr is

SCL :x = (I+ PGH)-1 (PGu + 1) S ' (163)
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Figure 25. Schematic Diagram of Closed-Loop System

Three types of terminal equivalence of the open-loop and closed-loop systems can be
imposed. Type 1 equivalence requires the transformations from u to x for the two _
systems to be identical for all u with 1 = 0, Type 2 requires the transformations from
T to x to be identical for all 7 with u = 0. Finally, Type 3 requires the transformations
from all pairs (u, T) to x to be identical., These types of equivalence impose constraints

on the pairs of operators (@, R) and (G, H). For example, Type 1 equivalence requires

e ) ) 1 | o _
x0L = PQu = xCL = (I + PGH) ~ PGu : (164)

for all u, This implies

PQ = (1 + PGH) "} PG
which is satisfied if
- Q=a+GHP) G . _ (165)
or
G = Q( - HPQ) ™ . aesy

Thus, the first equation specifies Q in terms of G and H, and the second specifies G

in terms of @ and H,

Type 2 equivalence yields the constraining relation

QR = (I + GHP) ! GH = GH(I + PGH)™* 7 (186)
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or

GH=QR (I - PQR)"! = (I - QrRP)"! QR (166")

Finally, Type 3 equivalence yields the relations

Q-a+cup)’ g, R=1 , (167

for (Q, R) in terms of (G, H) or

G=Qu-RrRPQ)"}, H=R - LR T o C(187)
for (G, H) in terms of (Q, R).

These types of equivalence will be imposed on the open-loop and closed-loop systems
for the nominal values of the plant in the definitions of sensitivity reduction. The
sensitivity index which will serve as a measure of sensitivity reduction will be defined
as the.''ratio" of closed-loop to open-loop output perturbations. For this purpose let
Po denote the nominal plant,’ ﬂo denote the nominal open-loop input, and xo denote the
nominal open-loop response. Let §P, 67, and 6x denote the perturbations from the
nominals, Thus, P = Po‘ + 8P, M= T]o + 87, and x = X, + 8x, Then for the open-loop

system we have

SOL: x = PQ(u - R'ﬂo) +17
x =PQu-RN)+T
8x = 8PQ (u - Rno) + 87 (to first order) . (168)

The corresponding closed-loop system is

SCL: (I +PGH)x =PGu+1

(I+P GH)x_ =P Gu + 1
_ o o o 0

(I+P _GH) 6x = 6PGu + 87 - 6PGHx_ (to first order) T (189)

-1
§PG[u - H(I+PGH) ~ (P Gu+1)]+ 81

§PG (I + HPOG)'1i (u - HN,).+ 87
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Now supposée we impose Type 1 equivalence and make the further assumption for

simplicity that Q = I. Then

n

5x

o " $Fur T o . uw

]

8x CL

I+ POGH)-I [6PG (1 +HPO'G)'1 u + §7] x T (171)
But Type 1 equivalence implies that Equations (165) and (165') hold. Equation (165')
withQ =T gives G = (I - HPO)-1 which yields the identities I + POGH =1 - PQH)".1 and
G({I + HPOG:)_1 =1, Therefore, using these identities and Equations (170) and (171),

we have

Y POGH)-I bx (172)

CL - - P,

@) L

Thus defining the sensitivity index, $, to be the "ratio" of 6x CL, to 5XOL, we have

-1
=@+ POGH) =I1-PH (173)

We would also consider Type 2 equivalence, In this case, u =0, Thus

°

5x

or, =~ 8P T, + 8T (174)

6x

-1 -1 i .
o, = @ +PQR) D[GPG(I +HP_G) (-H'ﬂo) + 8T] - (175)

But G(I + HPOG)_I =(I+ GHPO)"1 G so that

8%

' -1 ' -1
oL AT+ POGH) [6P (I + GHPO) GH(-T]O) + §7T]

1+ POGH)-I [-8PQRT_ + 67]. (176)

o . -
I+ POGH) 8 + (I - POQR)axOL

*oL

since (I + POGH)-1 =7 - POQR by virtue of Equation (165'), Again defining the sensitivity
> 1 s It >
index, §, to be the "ratio' of GXCL to axOL’ we find

$=(I+ POGH)—I =I-P_QR ) (177)
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I
:

These two examples', motivate the definition of the generalized sensitivity operator as
CgeaerPEml | | (178)

This sensitivity index is consistent wifh the original Bode type of index, Recall that

Bode's index for the system shown in Figure 26 is

T . dT/T _ d[4nT]
P - dP/P d[tnP

H |

§=T+P/(1 + PH)

Figure 26. Single Input-Single Output Plant with Feedback

For this system dT = -——gg apr/(1 + PH)2 so that
T dP p ! ap,”! -1 ‘ o
= {. A ) Pt =
Sp 2 T+PH ) (1 +FPH) {179)

(1+PH)

With this background let us proceed to develop general conditions which are necessary
and/or sufficient to assure sensitivity reduction as measured by the generalized sensitivity
index (178)., We will formulate the conditions as conditions on linear operators acting

on Hilbert spaces. We may consider the space of n-tuples of Lebesque square integrable
functions on (0, ®) as an example Hilbert space H with inner produce denoted by <, >,

Thus x(t) = (xl(t). xz(t). eee s xn(t)) is an element of H if

o i

"nm™Ms

. xi(t) xi(t) dt <°_°

The inner product of elements x and y is
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® n
<x,y>=[ = x() y;(t) dt
"o i=l

The norm of x is denoted by |[x||, where

e 1By

L e
x@Wxmd= = [ [xw]%a=<x x>
o i i :

1 i=l o

HME

We may consider an operator T as a mapping from one Hilbert space, El’ into another,
Ez. In case El = E'I..z 4
aTx +bTy. We say that T is positive denoted by T > 0 (nonnegative denoted by T = 0)

if and only if

=H we have T : H » H., The operator is linear if T(ax +by) =

<x, Tx>>0(=20)forallx#0

a

The adjoint operator, T¥%, of the operator T is defined as the operator which satisfies

<x, Ty>-= <T*x,y->for all x, yeH

The norm of the operator T is defined as

T fl=sup {11 Tx [I/]lx 113

where the supremum is taken over all x # 0 belonging to H. The operator T is a

contraction if and only if ||T|| = 1.

Now let us consider a plant, P, to be the linear operator mapping inputs ue ern (0, ») =H

into outputs yeH defined by the set of equations:
y(t) = M(t) x (t)
P : %(t) = F(t) x(t) + G(t) u(t) ‘ : (180)

x(0) =0

We will consider H to be a feedback operator mapping y into u. This is shown schematically

in Figure 27, In this case the sensitivity index is
$ = +Pm) (181)
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. ol PLANT P ) | ,
a(t) | 2 o M(t) i -
- | _
F(t) [ |
L - - = _
H(t) |

 Figure 27, Schematic Diagram of Plant, ‘P, with Feedback H

i.e., GyCL =8 6yOL. For sensitivity reduction we want $ to be a contraction so that

Moyey, s &0 ey 1111 syl (182)

Actually, we want somewhat more than (182). We generally want

~t m 2 t m 2
) z I(&yCL)i (1) |“ar s z ](6yOL)i('r) |“ ar (183)
o i=1 o i=1

for all t 2 0 instead of (182) which only states that
© m

2 oo 2
J o= leye @ [ desf 5 [(eyq )0 [ at
o i=1 o i=l

This requires $ to be a causal contraction, A simple scalar example to illustrate the

need for this causal requirement is provided by taking $ to be the time advancing

contraction
1
@2 x(t) = 5 x(t+1)
In this case, $ is a contraction with || $ H =1/2, But if we take y = x and choose
0 o0<t=<1
5Y0L(t) =

-1 1<t =<2
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we obtain -

2 -
IONYO-L(T)I dr=0for0sts1

but’
t 9 .
J‘o l5yCL(T)| dr>0for0<ts1

In stating our result for the system shown in Figure 27, it is convenient to have in hand

the transition matrix, ¥, for the closed-loop system

V(61 = [F) - G HE M) ¥ 6 1), ¥(T, 7 =1 (184)

Another useful quantity is the integral operator, W, whose kernel is given by

w(t, T) = [M(t) - HL(t) GL(t) K(B)] ¥ (t, 7) G(r) H(™), t= (185)

Here K is the unique self-adjoint solution of . :

-K(t) = K(t) [F(t) - G(t) H(t) M(t)] + [F(t) - G(t) H(t) M(t)]T K(t) + M () M(t)

t
f
Kt )= 470r, t ) MT(r) M(7) #(r,t ) dr (186)
o ¢ o o
o
Finally we identify the kernel
h(t, 7) = M(t) ¥(t, ) G(f) M(t) (187)

and let H denote its associated operator, The operator H may be considered as mappihg

Y into y via the integral equation

t .
yt) = [ h{t, 7)y(r)dr (188)
o o

with vy viewed as an input introduced in the feedback path. The sensitivity operator may

be viewed as the mapping into y of an input, 7. introduced additively to the output.
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These two situations are depicted in Figures 28a and 28b. Comparing these schematic

diagrams we see that the operators $ and H are related by the equation

g=1-H : : (189)

+ ‘ S+

X y

—’Q——b‘ G s = M -

-1 - :

F
.Y + i
-8
H j= ‘é‘ Y

Figure 28a. Schematic of Operator f: Y-y

Figure 28b, Schematic of Operator $ : y > y

.This. result may be derived analytically as follows. The operator H may be expressed
as: ' '
f: y(t) = M(t)x(t)
X(t) = F(t)x(t) + GIH() [v(t) - y(t)], x(0) = 0

= [F(t) - GEH@E)M(t)] x(t) + GE)H(t)y(t)
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The operator $ may be expressed as:
B y(t) = M@E)x(t) + V()
(1) = F()x(t) - GIH(y(®), x(0) = 0

= [F(t) - GIOH®M()] x(t) - GIE)H(E) ¥(t)

The operator I-_ﬁ may be expressed as: .
I-H: y(t) = y(t) - M(t)x(t) = v(t) + M(t)[-x(t)]

[-x()] = [F(t) - GYH(t)M()] [-x(t)] - G(t)H(t)v(t)
which is the same as the expression for the operator 8.

Clearly, $ is causal if and only if H is causal, a property built into this latter operator.

-Let us note that (asterisk denotes adjoint)

2 2 2 2
Hey gy II” - oy op 1% = Moy oy 11 - [188y o Il

< - <
oL oL > " <BWops B>

= > - < gy s >

< o1 YoL Wors BBy,
=< - g
o1 I P P
Hence ||$]|] <1 if and only if I - $*$ 2 0. Using the relation (189), we obtain the result
that ||$!] < 1 is equivalent to
H+f8x-H+xH20 ’ (190)

let us now introduce the following definition. An integral map W : L;n - L;n is positive
real if its kernel W(t, T) satisfies

(1) W(t, T1)is real
C(2) W, T)=0, T>¢t

{3) W is bounded

(4) W+W 20
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Now consider the kernel .

M(t) ¥t, T) G(T) t=z1 . L
(191)
0 t<r~T

w(t, 1) =

where ¥#(t, 7) = F(t) &t, ), ¥, 7)=1.
The aﬁsociated operator W may be viewed as the mapping from u to y defined by the .
system .
S & %(t) = F(tyx(t) + G(t)ul{t), x(0)=0
y(t) = M(t)x(t)

For such an operator W, we have the following result.

Theorem 1: Let W be bounded with kernel W given by (191). If there exists a continuous,

positive, self-adjoint matrix Q and a continuous m x n matrix I, such that

(1) -Q = QF + F*Q + L*L (time suppressed)

(2) Q0) G(0) = M*0)
‘ : t
(3) |la]] is finite where (Az) (t) & [ L{t)&(t, TG(7)z(T) d
o

then W is positive real.

Proof: Consider

ln.

#¥(7,t) {FHTIQT) + Q(T) + Q(T)F(T)} &(T, 8)

Q.

L {awr, QU1 87, )]

= &¥(7, t)L*(T)L(7)¥(T, 8)

We have also the identlity (see later remark)
t b
(Axaz) (t) = [ [ GHE)Ex(7, t)L*(T)L(T)8(T, 3)G(s)z(s) dTds
o t
(192)

b b
+ [ [ GRu)ER(T, t)LA(T)L(T) (T, 8)G(s)z(s)d Tds

t s

163



Using the first identity, we have

¢ b o
(Axaz) (1) = -[ [ GHb) - (8K, 1) QT¥(T, 5)}G(s)z(s)dTds
o ¢t

b b , oo
- GO g (e, DR, )]} Gls)z(s)drds
t s

Using the Fundamental Theorem of Calculus, we have

t
(AxAz) (€) = [ G*(t) {Q(t)&(t, ) - &*(b, t)Q(D)E(b, s)} G(s)z(s)ds

o]

b . :
+ [ G*(t) {#%(s, t)Q(s) - &(b, t)Q(b)&(b, )} G(s)z(s)ds
t

Using causality of &, we have

b
(AxAz) (t) = [ Gxt) [Q(t)3(t, 8) + &(s, t)Q(s)] G(s)z(s)ds
o

b
- [ Gx(t)exDb,t)QDb) &b, s)G(s)z(s)ds

o)
. b -
= ([W + Wx]z) (t) - [ G*(t)ex(b, t)QM)&(b, s) G(s)z(s)ds

o
Since A*A is positive and bounded, W+W* 2 0 and the theorem is proved.

Remark: With A as in condition 3, we compute
b

5 _
<y, Az>=[ [y(8), [ L(B)¥(B, T)Gtr)z(7)dT]dB
(o] (o]

b B
= [ [ [2(r), GHTIEKB, T) LKB)y(8)] drdp
o O

b b
=[ [ [z(1), Gx(m)&x(B, T)L*(B)y(B)] dedr
(o] T
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K '=<A*y,z>

b
* (A%y) (1) = [ GX(r)#x(8, IL*(B)y(B)dB

T .

By direct substitution, we have

b B
(A%Az) () = [ GH()#x(B, t)L*B) [ L(B) &(B, T)G(T)z(T)dT
t o

Using the identity

b T t b b b
J I it,7,8)dsdr=[ [ ft,7,8)drds + [ [ f£(t, 7,8)d7ds
t S C t t s '

o o

Equation (192) results.

Now using the analogy between H and A and the form of Equation (192), we have

t b
(H+lx) (1) = [ [ HHOGHE* (1, )MH(TIM(7)¥(T, s)G(s)M(s)x(s)d7ds
o t

b b
+ [ [ BHH)GH)¥*(1, OM*(T)M(1)¥(7, s)G(s)H(s)x(s)d7ds
t s

Then it can easily be verified that

PR, OMAIMTINT, 8) = = S (¥Kn, OK(D¥(T,8)])

We substitute this expression into H*H, recalling that ¥(a,b) = 0 for b > a:

b . : .
(H«fx) (t) = [ H*)G=E)[KR)¥(t, s) + ¥*(s, t)K(s)]G(s)H(s)x(s)ds
[o]

b
= [ HHOGHE)Y b, KDY (b, 8)G(s)H(s)x(s)ds

o
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Therefore the kernel of H*H is given by

HA(E)GH)[K(t)¥(t, T) + ¥*(7, t)K(T)]G(T)H(T)

= H*(t)G*(t)¥ *(b, t)K(b) ¥ (b, T)G(T)H(T)

~ Recall that the kernal of H+f* is given by

M(t)¥(t, TIG(TIH(T) + HHt)G*(t)¥*(T, t)M(T)

and hence it is immediate that the kernel of H+f* - H*H is computed by

[M(t) - H*E)GHEKE)]¥(t, TIG(TIH(T) + HH)GHE)§*(T, t) [M*(1)-K(T)G(T)M(T)]

+ HHEGHE ¥t DY (t TIGITIH(T)

Letting W be the operator whose kernel is

W(t, 7) = [M(t) - H¥*t)G*(t)K(t)]¥(t, T)G(T)H(T)

and letting 7 be the operator whose kernel is

m(t, 1) = HAEIGHEN Kt DK(EI¥(E, T) GITIE(T)

we note that m 2 0 and that

I-$p=Hx+H-TF=Wr+W+n _ - (193)
This leads to the following sufficiency theorem:

Theorem 2: If W + W* 2 0, then sensitivity is reduced. A necessary condition for -

W + W#* 2 0 is that

M(OGHE®R) + HL (G LML (t) = 2H ()G L (OK()G(E)H(E)
where K is given in Equation (186),

A sufficient condition for positivity of W + W* is obtained by expressing Theorem 1 in "~

terms of the closed-loop system as follows:
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Theorem 3: A sufficient condition for positivity of W.+ W= is the existence of a continuous

"\‘ positive, self-adjoint matrix Q and a continuous matrix L such that

T

\“\ . () -Q = Q[F - GHM] + [F - GHM]T Q+LL (times suppressed)

(2) [Q+K]GH = MT {defines Q(to))

t
(3) (Ax) (t) = [ L(t)¥(t, T)G(T)H(T)x(7)dT is a bounded map

3. o
frex

, Condition (3) is automatically satisfied on all finite intervals, and choosing H(0) arbitrarily

“in (2), we see that Q(0) is arbitrary in (1).

Example: Consider the scalar case with F, G, and M denoted by f, g, and m. Moreover
let g and m be constants (without loss of generality) and suppose g, m, and h > 0 while
B 2f(t) =£f> 0., Then from (184)

t
t¢t, ) =exp { -] [f(s) -ghm]ds}t=zr
T

In Equation (186) we have

~k(t) = -2[£(t) - ghm] k(t) + m> (194)

which gives

k) = ¥t , ) j‘: m? y2(r,t ) dr
from which we deduce

0 < k(t) <m>/2 (B - ghm) < -m/gh
Definir;g

é(t) = m/gh - k(t)

and substituting in Equation (194) yields

g = =2[f(t) - ghm) [m/gh - q(t)] + m?
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which lmay' be rewritten as

2 _ 26(t)m

-'-61 = -Z[f(t) - ghm]q(t) +m | __éh—

Cons equently choosing
| 1/2

2 _ 2f(t)m]

£(t) = [m 2h

Theorem 3 is satisfied. _ |

The Use of $-1

Taking a different approach we may obtain results similar in spirit with the above,
With ¢ = [I + PH]"1 and manipulation, it follows that

o o . )
|l$||$1<=>($*)1$1-IZO<‘=>PH+H P +HP PH=20

Since H*P*PH 2 0, a sufficient condition is that $ be causal and PH+H*P* 2 0, - This

line of thought culminates in Theorem 4.

Theorem 4: A sufficient condition for | |$H =< 1 is the existence of positive self-adjoint

Q and continuous L satisfying
(1) -Q=QF +FlQ+LTL

(2) QGH = MY  (defines Q(0) also)

t
(3) (Ax) (t) = [ L(t) ¥(t, V)G(T)H(T)x(T)dT is bounded
(o]

Remark: Notice that with G = M =1 we choose H = Q-l, and it follows easily tha_t

H = FH + HF ! + HLT LH which suggests a cost function being optimized. If G = I, then
H-= Q-IMT and progress also is in hand. However, if M = I, then a "rank" check on
condition (2) reveals an immediate difficulty if G # I. Conclusion: 'It is more important

to move toward G = I than M = I in the design assumptions,

In Theorem 4, the term H*P*PH is not used; hence the ensuring sufficient conditib_n
is possibly too severe. One can use a factoring process to improve this situation.

The conditions, however, become more complicated to state,
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Let V denote the integral operator with kernel

v, T) = [M(t) + HY ()G (K@) TIG(T)H(T)

where K is the unique self~adjoint solution of

“K(t) = KOF@E) + FLEKE) + M2 (5)M(E)

t

T
Kt ) =J ¥ (nt )M (MM, ¢ )dT

t
o

Then we have

PH + H*P* + H¥P*PH 2 0 <> V+V* = 0
Rather than continue the present line of development we shift to the stationary case.

Stationary Resulis

Let s and w denote the Laplace and Fourier variables, respectively. Our input-output

spaces become Lg (-, =), Let (using Equation (184))

W) = [sI - (F - cEM)] - (195)

Then using Equations (187) and (189),
$(s) = I - M{(s)GH (196)

A stationary form of Theorem 2 is the following:

Theorem 2': If Res(F - GHM) < ¢ <0, then a necessary and sufficient condition for

W + Wik 2 0 is that

W(s) = (M - HL G K) {(s) GH

be positive real where K is the unique positive, self-adjoint solution of

K(F -~ GHM) + (F - GHM) K = -M "M
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Neceé’sary conditions for W to be positive real are
(1} MGH = HTGTMT

(2) MGH=M G KGH = 0
The stationary form of Theorem 3 is the following:

Theorem 3': If Re {o(F - GHM)} '<s ¢ <0, then a sufficient condition for W(s) tobe
positive real is that positive, self-adjoint Q and L exist such that . -

: . T, _.T

(1) QF -GHM) +(F -GHM) Q=LL

“(2) (Q +KIGH = M~ ‘ . _ |
Example:’. , . L o o
oy [eo a8 R T U N I T

F— — G= M= ' .
ey o 11800 gee o 913 e 1 1 -1

We choose rank (G) = rank (M) so that H can be invertable (see condition (2), Theorem 3'),

Consider the compensation

[z

Note tha'i; :
17 5
MGH =H'6TM = 5o .20
5 15 :
' o(F - GHM) = {~1, -2}
Moreover . . . R ..
, 7]12 1/2
K=
1/2 2/3
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Hence

3 -18 166 s+3 2 ~-12 10
W(s) = 5
(115) (s+1)(s+2) 130 130 -1 s 17 5
and hence
2 2 .
. (6/115)2 676 + 1181 w ~180 + 415 v~ + 920jw
(W+W ) {w=
(2-(.02')2 + 9w2 2 2
-180 + 415 o~ - 920jw 1300 + 325w

which is a positive matrix for all w, Theorem 3' could also have been used with

_ 1 )
Q=3 L

Example: Suppose MG is square and nonsingular. Let Hbe chosen as H = (MG)"1 N
where N = N* > 0. The necessary conditions for positive W + W are then met (taking

" N not too large).

Let T(M) denote the null space of M and let P denote the orthogonal projection on (M),

Then M has a right inverse M"R with the properties MM"R =71 and M-RM =1- P,

Let N = M °NM; the n MN = NM and

F-GHM=F-G(MG)“1MN=F-(1—13)N=F-N

We can then rearrange Theorem 3' to read (K =K + Q)

(1) K(F-M+(F -9 K= - LT + T

(2) KN = MM

(3) Rec(F-Il‘})Se<0

A sufficient condition for sensitivity reduction is the existence of a solution triplet
(K) L} N)-
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Remark: It was noted earlier that the assumption G = I does more for the analysis than
the a_\ssumption M = 1. The primary reason for this, from a physical point of view, is
that M = I gives more information to compensate with; however it also lets "more' of
the internal perturbations show up in the output. The assumption G = I gives better

control with no detrimental effects,

Lo-Positive Realness and Stability

Consider PH : M(t)2(t, T)G(T)H(T), and suppose our opening theorem holds, i.e., Q(t) >0,
. . s . M o=t e, . L [ S S PR
‘Then, we have '

Proposition: The closed-loop system is stable,

Proof: With V[x,t] = [x(t), Q(t)x(t)] and the identities of Theorem 1, it is easily verified
that

b, 1] = - (L@ e )P - 2 1w, £ s 1 <0

where
v, b)) = [F(D) - GHEOM® ¢ )

x(t) = {F(t) - G(EYE(E)M(E)]x(t)

Corollary: If either {F - GHM, L} or {F - GHM, M] is observable and if ||Q(t)]] is
finite, then the closed-loop system is asymptotically stable.

INTERRELATIONS BETWEEN TERMINAL EQUIVALENCE,
MODEL FOLLOWING, AND OBSERVERs[48]

Many of the insensitive control concepts are clo‘sely related, This discussion illustrates
the type of comparison of concepts that is possible. The concept of terminal equivalence
was introduced earlier in this section. Let us consider the single-loop feedback system

with two compensators sliown in Figure 29, The piant is represented by P. The mapping

from u to y is

y = (1+PcH) ! Pau (197)

172




¥igure 29. Single-Loop Feedback System with Two Compensators

a .

11 thé nominal desired cloééd-loop plant is denoted by P, and the compensators, G and fI,

are constrained to satisfy

G=a-up)" - _ o o Qe8)

the gystem in Figure 29 is terminally equivalent to the system shown in Figure 30 where
the mapping fromutoyisy = I;u. That is, if P in Equation (197) is equal to l;, then
the mapping from u to y is the same for the two systems shown in Figures 29 and 30.
Thus, we will refer to the system in Figure 29 as being in terminally equivalent form

i Equation (198) holds,

o>

Figure 30, Desired Closed-Loop Plant

'The system shown in Figure 31 will be referred to as a model-following form.

y
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The model-following form and terminally équivalent form are related as follows:

A system is realizable in terminally equivalent form if and only if it is realizable

in model-following form,.

Using block diagram manipulation, we may transform Figiire 31 into 'Figuré 32-.wl'1ere 1
is the identity operator. Figure 32 is of the form of Figure 29 and is in terminally

equivalent form if Eguation (198) is satisfied with G =1+ KPand H = (I + KP)-IK: i.e.,

1

I+KP = (I- (I4KP)~ KI;)-I ' (199)

This is readily verified by multiplying both sides of Equation (199) on the right by
1- (I+KP) ' KP,

I+ KP - >
(1+ |<F3)"| K

Figure 32. Equivalent Representation of Figure 6

~

To prove the converse, Figure 29 is equivalent to Figure 32 if we set G = I+KP and
H-= (H+KP)—1 K. Then Equation (199) implies that Equation (98) holds. The block
diagram manipulation from Figure 31 to Figure 32 is reversible, which yields our

desired result.

For simplicity the above manipulations ignore some technicalities on existence of inverses,

stability of various forms, etc, What seems to be suggested, however, it the following:

Theorem 5: If a compensated system satisfies the following conditions, then it is

realizable in either a terminally equivalent or model-following form:
(1) At nominal parameter values the compensated and uncompensated systems agree,

(2) It has good behavior (i.e., it is causal, bounded, internally stable),

A potential application of the model-following concept is to use a reduced order system
as the model to reduce sensitivity to neglected and unknown dynamics. The plant, P,

may be represented as

P: x(t) = F(t)x(t) + G(t)u(t)

(200)
(t) = ME)x(t)
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The reduced order model is taken to be the plant

P: &(t) = F(OR(E) + Gl)a(

~ A a (201)
y(t) = M(t)x(t)

A

If P is, in some sense, a good approximation of P, then one can take the point of view
that £’ is the noininal plant, Thus, the uncertainties and disturbances of P and the -
difference P - P become the undesirables for 1;
Two nice things could result from a sensitivity design based on 1:’ as nominal. First

- the complexity of compensations calcﬁlafions, etc., would be reduced. §econd1y,
since 1; - P is now a disturbance, the natural tendency of P to look like P would be

further enhanced.

The model-following form of the control is then

u = -K(y=$) + & (202)

where {i is the optimal control for the system (201). Equation (202) incorporates
terminal equivalence, and the resulting sensitivity operator is $ = (I + PK)_I. Thus
the theorems dealing with the choice of K given in the discussion of terminal equivalence

can be invoked,

The model-following form of the control system may be related to observer theory[49] as
follows. Consider the plant P to be given in the form of Equation (200) and the nominal
plant to be in the form of Equation (201) where now, however, we will assume the

nominal plant is not of reduced order. We introduce a third system P given by

P: x=Fx +Gu
- - (203)
y = Mx
The model-following form of Figure 31 may be expressed as
% F-GKM  GKM x G
.= - + - i (204)
% 0 F b G

The system P is called an observer for P provided that P and P are coupled so that

X - % 20 as t » », One such coupling is obtained by setting F = F-GKM and

A A An

Gu = GKy + Gu. This yields the coupled system
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 |F-GKM  .GKM x| e . e
= . +, . u o - (205)
0 ' F % G
for which e = x - % satisfies o .
e=(F-GKM)e . T SRV . (zog)_

which will be aéyfnpfotically stable if the nbminal'systein is observable and conti‘Bllablc-

" and K is chosen properly.

The similarity between Equations (204) and (205) is apparent which leads to the results:

Theorem 6: (P, P) is in model~following form if and only if (P - P) is in observer

form.

Theorems 5 and 6 provide complete correspondence between the terminally equivalent,

model-following, and observer forms.,
SENSITIVITY DESIGN FOR MAXIMUM DIFFICULTY

We assume that the system is represénted.by_'

% = F(p)x + G u + Gy, x(0) = x_ B  (2o7)

where x is the state \fector, p is a vector of uncertain pérameters. u is the control
vector, and 7 is a vector of white~noise inputs, The object of insensitive design is to
determine an (optimai) feedback control that renders the closed-loop responses insensi.i
to variations in the uncertain parameters, In this devélopment we éssume that all sta e
can be n;leasured. Further, it is assuﬁied that for tl_le nominal system (p = po) a '

quadrati;c: cost functional

J=E{x'Qx +ulRu} | (208)

has been found such that the closed-loop nominal system responses meet or cxceed

specifications, where the nominal controller is

us=Kex T (209)
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AT

which is optimal with respect to (207) and (208) for p = Py The problem may then be
viewed as modifying the controller to account for sensitivity requ1rements. This

problem may be approached in two ways:

°

e Structural modification of the controller, and

e Algebraic modification of the gains, K%,

The mismatch estimation and control concept, described in Section VI; -and model’
following schemes exemplify the first approach. The basic idea of these concepts is to..
have a feedback loop in parallel witn the nominal feedback controller so that the perturbed
plant is forced to look like the nominal assumed plant. If there are no parameter varia-
tions, then one indeed has the optimal control. However, trying to bring the perturbed -
open-loop (or closed-loop) dynamics back to their nominal values is not necessarily

the best thing to do! If may well be that in the perturbed situation:the nominal control

is entirely satisfactory and that model-following feedbacks even degrade perforrmance.

An example of the sécond approach is to follow a "worst case' design in which an insensitive

control u = Kox is computed a priori subject to various assumptions on the parameter
variations. Thus, these variations are included directly into the design. The result

will generally be improved response over the parameter range but somewhat degraded )
response over the situation where the actual parameters are known (or have no variations).
Examples of concepts derived from this approach include additive and multiplicative

noise, eigenvalue sensitivity, the multiplant concept, and the minimax concept.

The concept of sensitivity design for maximum difficulty is based on the idea that a
system that performs well at a2 worst case will perform satisfactorily for all other

cases correspondmg to adm1ss1b1e parameter values. Finding the worst case is a

matter of 1nterpretat1on. The m1n1max concept uses this approach w1th the worst case
defined on the basis of closed- loop responses and may require a large amount of computa-
tion. The maximum d1ff1cu1ty concept is aimed at finding the worst case based on some
property of the open-loop system such as stability, controllab111ty, etc., that 1ni‘1uences

clased-loop performance.

For convenience in developing measures of system difficulty, let us consider the

deterministic problem. WMinimize

rJ=[ (yTQy + uTRu)dt © 7 (210)
(o]
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with

% = F(p)x + G(p)u, x(0) = X

'y = H(p)x

The solution to this problem is well-known and;the minimum is-

T
J* = xo P(p) X,

with P(p) denoting the Riccati matrix which satisfies

O=PF+FIP+HIQH - PGR™IG P

(211)

(212)

(213)

(214)

where the dependence on p is suppressed. The worst case might be defined as the

value of p for which P(p) is the largest in some sense.

One of the major problems, however, is that a scalar performance criterion must be

used to maximize P. Three are common:

1, Trace (P) -
2. det (P)

3. The minimum eigenvalue of P y

Also, we have not really kept to the goal of working with the open-loop system properties.

All properties (i. e., stability, observability, and controllability) are involved.

a rough "feel' we know heuristically that P increases as

1. F(p) becomes more uns table
2, HT(p)QH(p) becomes more positive definite

3. G(p)R-lGT(p) becomes less positive definite
What we need is a measure that neatly wraps up all three!

First Proposed Metric

Foregoing use of P directly, we can make use, of the almost inequalities;

o T [ LT P

(W0, T + M (0, <P = M(0, t) + W (0, T)
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‘This is not strictly corfect but is a reasonable approximation, where

T T C o .
M0, T) = eF "HIQHE ' dr . e
o . ) S . B
T o T . . . T
wo,T) = e ¥ erIgTeF Tar | | (217)
(o] . . ) .

are the open-loop observability and controllability matrices, respectively. T is any
time > 0. The inequality is derived by using the special control that drives the state
of the system to zero at time T using minimum energy. The equation shows that to

maximize P we should pick the parameter point p* that

1, Minimizes controllability, W(O, t)

2. Maximizes observability, M(0, T)

These results have. intuitive appeal. The controllability part is clear., The observability
part is clear if one considers that if the outputs show up strongly then so will thé éffedts
of parameter variations. However, there are difficulties with the above W and M
measures arising from the nature of the inequality derivation that assumed E(T)' - 0.

It is common for not all states to be controllable, as in noise shaping states, 'Thus.

the system may be only stabilizable and W-1 will not exist. A possible solution is to

use the geheralized inverse so that

1-

(W+M*)* SPSM+W (218)

Then we pick p to either minimize (W + MT) or maximize (M + Wf). The first measure
seems preferable since it increases the lower bound.  Also, a scalar metric such as

TR or det must be used. So,

Sensit'ivi.ty Problem 1: Find p* to minimize

3 =tr (W+M) |  a19)

Also, the matrix M is rarely singular in optimization problems since this would
.mean non-zero states did not affect y = Hx. :
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The solution p* should be very close to that needed to maximize P directly. The only
arbitrary quantity here is the time T, and different choices may result in différent_"

minimizing p*, However, this is not a major drawback for linear time-invariant systems.
M

Second Proposed Metric

°

" The metric Js is not really a single metric but is composed of both controllability and
observability. It would still be nice if both items could be rolled into one. Since.the
basic inequality was derived from driving x(T) = 0, a logical consideration would be
to drive y(T) - 0 also with minimum energy. This will bring up the output controllability
matrix,

Te-F'r T
H[ arlgTe T T

dTHY = W_(0,T) (220)
o y

Also, there is another consideration. While the above discussions are able to include
parametric variations in the output H matrix, it may not be of interest to have low

sensif;ivity in all of y = Hx but rather in some output subset

yS=I-Ix T (221)

Taking all these ideas into account, the following optimization problem is posed:

Find the control to minimize

T .
T=] (y7Qy +uTRu) dt (210)
(o]

while meeting the terminal condition ﬁx(T) = 0.
The above takes into account the design goals via J, and the desensitive design via the
terminal condition. If we are interested only in the desensitive design part, setQ = 0
so that minimum energy output control is of concern. Once the minimum J is foupd',

it will be necessary to maximize with respect to the parameters p.

Solution to the Optimization Problem

Hamilton-Jacobi theory is used to solve the above posed problem. Appending the terminal

constraint to J via a Lagrange multiplier gives
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3 =xTmEv+1/2] (y'Qy +uTRwat ' (222)
o ‘

The Hamiltonian for this problem is

WM, %, u) =% 1+1/2 [x H QHx + u’Ru] (223)

Let S(x, t) dehote the éost associated with the initial condition péir (x, t); that is,
S(x, t).is given by Equation (210) with the lower limit on the integral replaced by t and
the initial condition in Equation (211) replaced by x(t) = x. Then the Hamilton~Jacobi

equation is

28

s | | _
T +.H(°—x, x, u) =0 . _(224)

with boundary condition

Sx,T) = xT ﬁTv (225)

The control is found from d%/du = 0 which yields

-1.,T dS

u==-R "G >% (226)

Using Equation (226) to eliminate u from Equation (224) gives

T
S ., _T_ dS T..T dS -1.T dS _
> +x F°—§+1/2xHQHx-1/2(&-) GR G = 0 (227)

Assuming that S(x, t) has the form

S, t) = 1/2 x 1 Px +x2q(t) + rit) . (228)

and performing the necessary differentiations and substituting in Equation (2'27) and

using the boundary condition of Equation (225) yields

-P=PF +F P +H QH- PGR 1GTP; P(T) = 0 (229)

§ = -(F-GR™'¢TP)Tq; q(T) = ATy | (230)

t=1/2q eR 16 q; r(T) =0 ' (231)
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The multiplier, v, must ge determined such that the terminal condition, ﬁ'x(T) =0,

is satisfied. Now, x(t) is given by

F-cr™leTex -ar"'¢Tq, x(0) = x_ | (252)

.
X

I.et % (t, T) denote the fundamental matrix for Equation (232)., Then
T

x(T) = (T, 0)x_ - [ & (T, IGR™ G q(n) dr (233)
o _ .

and from Equation (230) we have

a(s) = 7(T, Ng(T) = 3 (T, NF v (234)
Thus,
T -1..T ~T .
x(T) = ¥(T,0x_~ [ ¥T,"NGR "G $T(T, AT H v (235)
o}

and Bx(T) = 0 if

T -1
v=[# ) wr.ner6T ¢i(r, nar BT He(T,00x, | (236)
o ¢
To simplify notation,let H = H % (T, 0) and
. T -1.T,T o
w=/] &(0,7GR G & (0,7)dr (237)
o

-~

Thus, W denotes the closed-loop controllability matrix. The minimum of Equation (222)

is given by

~ AN -1 -~
T T.,T T
* = =
J S(xo, 0)=1/2 X, Pxo +xo H™ (HWH") on + r(0) (?38)
with
T AT - AAT ~1 A
r(0) = -1/2 x H™ (HWH') Hx (239)
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Substituting (239) into (238) yields

A A -1A

T T

Tr=1/2 xOT [p+u’ (mWH) Hx (240)

The cost may be viewed as consisting of two terms, the first associated with the control

task and the second associated with sensitivity.

~ a A~ "1 A
We will choose the parameters p* to maximize the matrix H (HWHT) H, At this

]
point we must decide whether to consider open-loop versus closed-~loop sensitivity.
If open~loop Q = 0 and P = 0, the problem becomes simpler since W = W = usual

controllability matrix. The cost functional J* is then the minimum energy to drive

Hx (T) = 0. Choosing thé open-loop case yields:

Sensitivity Problem 2: Find p* to maximize

~ A nA -1 A
J, = tr [ET (‘HWHT) H]

where H = ﬁ@(T, 0) and T is arbitrary.

There are many interesting interpretations of this sensitivity metric. Note that both
output and control measures are included (one can set H = Hif all output sensitivities
are of concern)., If ﬁ-l exists, then the problem reduces to full state controllability
since the only way to get Hx = 0 is to get x(T) = 0. Also, there are many similarities

to the metric proposed under problem 1.
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SECTION IX

CONCLUSION

The results of the study of synthesis techniques for the design of insensitive aircraft -
control _’syé tems indicate that reduced sensitivity to model uncertainties can be achieved,
Specifically, when sensitivity reduction was equated with performance improvement,

two synthesis techniques produced controllers which demonstrated a significant improve-
ment in performance ?ver that of a nominal controller designed with no regard to
sensitivity considerations. These techniques were the minimax synthesis technique

and the uncertainty weighting synthesis technique. The former technique was formulated
based on existing minimax theory, and while it performed well on the design example,

it has the potential for severe computational requirements, The latter technique was
based on a new concept developed in the study which was termed the uncertainty weighting
concept, The controller designed with this technique equaled the performance of the
minimax controller. In addition, the uncertainty weighting synthesis procedure is

straightforward and suffers none of the computational burden of the minimax concept,

On the negative side, study results indicate that the sensitivity vector augmentation
synthesis technique is not weli suited for use on a controller design problem of the
scale of the C-bA example, In all performance evaluations, the sensitivity vector
augmentation controller could not compete with the other controllers. It must be
emphasized that the results presented here do not preclude use of the sensitivity vector
augmentation concept on other control problems which require sensitivity reduction.

In this study, however, the range of the uncertain parameters that were investigated,
the number of approximations that were necessary for the technique to be workable, and
the requirement for sensitivity state feedback were major deterrents to a successful

formulation.

The other techniques (additive noise, multiplant, state dependent noise, mismatch
estimation, and re-residualization) produted controllers whose performance grouped
rather closely about the performance of the nominal, The limited performance improve-
ment that was demonstrated for these techniques compromises the additional design effort
that was required. The additive noise technique did demonstrate better performance

but at the expense of an order of magnitude increase in control requirements. The
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multiplant controller produced results very close to the nominal, The state dependent
noise controller generally behaved poorer than the nominal; however, it is felt that

some tuning may improve performance. The controller designed with the newly developed
mismatch estimation synthesis technique did not score very high on the overall evaluation
but did demonstrate significantly improved performance at some evaluation conditions.
Since this was a new concept, it is felt that further refinements are required before
making final judgment. The controller designed with the re-residualized reduced order
model virtually duplicated the results of the residualization based nominal controller.

It is felt that the relatively weak coupling between the system modes that were eliminated
and those that were retained did not fully exercise the re-residualization concept. The
results presented in Appendix E, however, indicate that re-residualization can maintain

high order system characteristics in the reduced order model that residualization cannot,

To summarize the major conclusion of the study, the uncertainty weighting and minimax
syntheses techniques can improve performance with respect to variations from the
design condition. The latter technique has potential computational problems. The
sensitivity vector augmentation technique was not applicable to the C-5A design example,
The remaining techniques do not offer much improvement over nominal techniques in

their current formulation.

These conclusions have relied upon a solid basis for the final comparative evaluations,
This basis was constructed by 1) determining qualitative and quantitative design criteria
which specified sensitivity in terms of performance, 2) defining a broad category of
design model variations which consisted of model parameter uncertainties and both
known ana assumed unknown neglected dynamics, 3) selecting realistic model parameter
uncertainties (dynamic pressure, structural frequency and damping, Mw), known
neglected dynamics (structural modes), and assumed unknown neglected dynamics
(unsteady aerodynamics), 4) determining the range of uncertain parameter variation
through experimental search for design specification violation conditions, and 5) defining
a practical set of insensitive controller evaluation criteria, both qualitative and

quantitative,

Extending from these conclusions are the following recommendations:

o The minimax or uncertainty weighting concept should be used for current applica-
tions with uncertainty weighting being preferred because of the potential

computational load required for minimax design.
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e Further developments of design methodology for the uncertainty weighting,
mismatch estimation, and state dependent noise concepts should be investigated

before a final judgment is made,

e Of the new concepts for which controllers were not synthesized, the finite
dimensional inverse, maximum difficulty, and dual Lyapunov equation concepts
should be further developed and resulting designs compared with the existing

synthesis techniques.

o The real world constraint of limited measurements could compromise if not
negate the sensitivity reduction obtained with the techniques described in this
report, Investigation of the effects of these constraints is recommended for

future study.
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APPENDIX A

DESIGN AND EVALUATION MODELS
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APPENDIX A

DESIGN AND EVALUATION MODELS

All models are formulated in the following form:
b4 =Fx+G1u+G2'ﬂ (A-1)

r = Hx + Du (A-2)

Six cases were used for design and/or evaluation. These have been labeled

Case 1
Case 2
Case 3R
Case 3T
Case 4R
Case 4T

Case 1 was described in Section IV. The system states and responses were given in

Tables 2 and 3. Table 34 contains the F, Gl' Gz, H., and D matrices for Case 1,

1
and Table 35 presents eigenvalues and statistical response data,

The remaining cases are defined in Table 36, The F, Gl’ Gz, H, and D matrices and

accompanying eigenvalue and statistical response data are given in Tables 37 through 46.

{(Note: The data presented in the tables containing the F, Gl’ Gz, H, and D matrices
are in computer card image form, Only the non-zero elements of each matrix are

shown. There are five matrix elements per card with the row index specified in the
first two columns, the column index specified in the next two columns, and the value

of the matrix element given in exponential format in the next 12 columns,)
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TABLE 34.

F=MATRIX FOR CASE 1

211

23}
236
24S
250
255
260

275

316
321

445
450

= 66218E+00
¢14600E-01
=«36092E-01
~s304674E-01
«40758E+01
«-s23BTSF«01
~e32445F+01
“o4B934E¢00
«314T74E+00
«69614E+00
«53R38E£~01
-+56393€-01
«6567T1E¢00
~«23787€+00
« 1835700
~45683TE+00
~+35559E+00
~e22584F 00
~e TT966E-01
=2 68234E+01
=.13368E+02
~+60006E+01
«27253E+01
«12353E+01
~+24959E+00
«31507E+00
-« T1946E+00
«B45T74E~01
~s29223E+01
«23839E+01
~e12620F+01
+48658E+00
«286S1E~-01
~«23731€+00
«37541F <02
-« 73334E+01
~+3HTOSFE+02
«ST7304E+00
«7813BE-01
«25667E+00
e23846F 0]
«39401E+00
-9 06322E+01
«15979E+01
=«13093E+01
«35519€E-01
~+560690E~01
=.21051E-01
=e21614E=-02
~e16216E+01
=211279E+01
«57163E200
~.20616E+00
«166E83E+00
-.18298E+«00

2
7
12
117
122
127
132
137
146
151
156
161
166
171
176
22
27
212
444
222
227
232
237
246
251
256
261
266
271
276
32
37
312
317
322
327
332
337
346
351
356
361
366
371
376
4 2
417
412
417
422
427
432
437
446
451

1
1
1

232776E+01
s 24692€~01
-+ 98817E~02
422346E200
~+13389E+01
~e4SA17E+00
«32607E+02
wy67639E401
~e4493TE+0O
e643T4E+0]
«19618E+01
~482787E~01
0 15334F 00
~o12419E+00
«30302E+00
-e12293E+01
<e12779€+00
~«15208E+00
«3S119E«00
~e51239E+01
~eT7423FE+01
+53301E+02
-aB0G21E~00
~«4S01SE+00
+54178E+Q1
+27096E¢01
~«1056BE+0)
+19869E+01}
-—e14905E+01
«38615E+01
«16571E+00
«25263E-01}
«103B9E+00
«22748E+01
~s52607E40]
«TGLHLBSE 01
0IG564E+02
~s20817E+02
~e31B82SE+0])
+4)1193E+02
«20189E+02
«S7874E+00
~+1088SE0]
«B81217E+00
~e21167E+01
-e95920£~01
««86751E~02
-+27688E~01
-e14305E-01}
-«17073E+00
-+ 16325E+01
«34758E+00
«16060F+01
«12855E+00
~«1566Q0E+ 01

13
18
113
118
123
128
133
138
167
152
157
162
167
172
177
23
28
213
218
223
228
233
238
247
252
257
262
267
272
277
33
38
313
118
323
324
333
RET
347
152
357
362
367
a7z
377
4 3
4 B
413
418
423
428
433
438
447
452

-+ 2B017E-0]
«S099TE~01
~«TB9B1E=-02
~355979€+00
«20001E+01
~+3%201E£+00
~924690E£+03
neOB900E00
~e13379€4+01
+58554E =01
“+1096TE+0]
“s4B8040E+00
~229326F«00
»450290E~0}
~e24600E«03
+58290E-01
«27254E+00
-013356E+00
+54826E~01
2 9B465E+0)
~e648B23E+01
~.60551€+03
~+12530E+02
~218200E+01
~+1873BE+01
~219621E+01
~+e61363E+01
~+38185E+01
=+ 66956E+00
-+60551E£403
=+93165E+00
~e25497€E+00
«96035E-01
~e29214E+02
~o63746E+01
«67119E 01
=2 3554AF« 04
«6BT53E+0)
~all241E+02
-.10396E+02
~015651€+02
«33603E+01
«20915E+01
«362T4E+00
~¢35548E+06
«14365E-01
~+12895E-02
~+11339E£-01
«26115E+00
«15038E+01
~e26963E-01
=e134)14E~03
~+s13990E£+01
«4BBOGE~0D
-« 1RESGF+0Q

L 1

1
1
11

119

124
129
134
143
148
153
158
163
168
173
178
2 4
29
214
219
226
229
234
243
248
253
258
263
268
273
278
34
39
34
3i9
324
329
334
343
348
353
358
363
368
373
378
4 4
49
414
419
424
%29
434
443
468
453

~s694)2E~02
«89406E~01
«14250E-01
-+ 58786E+00
«BE6L1TE+Q]
«19697E+D)
~+20139E+03
«S3ITTTE~GO
«35371€+01
~+sG1028E+00
=e2T450E*0]

«90061E-0Y

=¢19208€-01
«. 1044SE00
~+20139E+03
-.46882E-01
s 27873E-01
=a11210E+00
~+16428E+01
«69654E+01
~+35922E+01
“026235E+04
-.75308E~-01
»35175E+01
-.16688E+01
~s42261E+01
«11562E+01
~.25361E+00
- 1244BE+01
-.26235E4+04
-«19642E-01
«17433E+00
«23093E+00
-+35241E+01
«44558E 02
+27593E4+02
«16284E404
e} T47T6E+01
+25SB05E+02
-+ 12264F+02
~e330T1E<02
~e63313E+00
»13883E+00
«67734E+DD
«14284E+04
~e46616E+00
-4¢29856E£-01
~e22035€-01
~e123BTE*03
~e43B95E+01
~«B1533E+00
~e30135E+03
"«12039€E+00
=.85502E+00
~«36956E-0)

COEFFICIENT MATRICES FOR CASE 1

15,

1.0
115
120
125
130
135

i

149
1564
159
164
169
174
179
2S
210
215
220
225
230
235
244
249
254
259
264
269
274
279
35
310
315
320
325
330
335
344
349
354
359
364
369
374
379
45
410
415
420
425
430
435
s
449
454

~23237E-0)
v 41943E-02
~e15659E~01

~,15561E+01

=+ 1974SE+00
=4 14466E+0)
=e40941E+02
~61617E=0]
=+ T4565€+00

«15883E+00

«27778E+02

«69993E+00
~940373E-0])

+10298E+00
=«40941E+02
~¢34T790E«00
~«13122E+00
~e10421E¢00
~a10445E+02
-+72091E+01
~.58873E+01
=+S6095E+03
~.49520E-01
-+ 78860E+00

+33011E+00

«42222E+02

«89852E+01
“ohT74T3E+00

«13683AE+0]
~e+56095E+03
-+ 11204€+00
~+30890E-01
-+89069E-01
“~e14694E+02
~+10078E+02
~e17349E+02

»J06829E€+02
=.40282E+00
«eS59674E¢01

«26922E40]

+«30806E+03
- 49205E40)

«25937E+00
- T76274E+00

«30829E+03
=+ 7T0435E-01
~«57857€-02
~e34194E-01
~«93701E£+00
~a69265E+00
=+21706E+01

<« 17226E+02,

s11129€E-01]
+13B66E+00
«72823€E-01
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TABLE 34, Continued

"F MATRIX FOR CASE 1 (CONTINUED)

455
460
465
470
475
S1
56
511
516
521
.526
531
536
545
550
555
56n
565
570
575
61
6 6
611
€l6
621
‘626
631
636
645
650
655
660
665
670
675
76
71
1
716
721
726
731
736
745
750
755
760
765
770
175
81
8 6
811
Blé6
82)
R26

«10621E+00
- 80774E=-01
«97637€+00
- 28755E+400
+28665E£+00
-+ 76870E-03
=+435621E¢00
~e26611E+00
-.18341E+00
-+16261E+02
~e17814€+02
~+13363E+02
=, 22415F+01
«28433E+01
~e13436E+01
«16760E+01
- 72639E+00
+BBOO3E+01
~e2544u4E 01
+26103€+01
-+11317E+01
-.11228E+01
~ 17667E+00
=483926E-01
e 24366E+03
- 11319E+02
+237311E+00
*a99210E+00
-s47T038E~02
<4BBSTE~-O1
=-+30948BE+00
-« T1047EQ0
«8T7176E°CG]
~e23188F<01
+26373F +01
~211610E+00
s,21536E£+00
~.6I6]19E~D)
+91292E-01
=+33588E+01
-46T27E+01
+11B813E¢02
=s32677E260
~«35171E«00
+35842E-01
-.26513€+00
=-18312E-00
e 22834E+01
-o54098E+00
« T0BLLE*QD
«48110E¢00
«20063E+00
+53088E~01
«70074F~-01
«G767HBE-DY
.42262€+01

456
461
466
47)
476
52
S 7
S12
517
S22
527
532
537
546
551
556
561
566
571
576
6 2
6 7
612
617
622
627
€632
637
646
651
656
661
666
671
676
77
72
Ti2
717
722
727
732
737
746
751
756
761
766
771
776
8 2
87
812
817
822
827

««10533E+00
-211867E+00
«23352E+00
~«13125E+00
«434T1E+00
=91 786E200
~e%43833E-01
=-a15270E+00
«44391E-02
~s11716E+0}
~a67T761E€01
«S0G16E+02
«10995E+02
«B96L11E+00
~+10909E+02
0 24355E+401
~e10692E+01
«21080E¢01
=e11373E40)
+39200E+01
=+s10485E+01
=+18509E+00
~«21490E+00
s22990E 00
~+73565E00}
«s12021E202
2 33548E+02
=240611E201
=o78646E-00
oP1696E+01
»1B0TIE+01L
~e 10466E+01
021048E401
~s95951E+00
«3B422E+0Q1
-.86288E°00
- 25291E+00
~+68431E~-02
al}TSOE‘Ol
-e30664E+03
«13600E+0}
=e6724TE01
=s70521€-01
~«1007SE+00
- 98065E+00
~258289E 00
~.27011E¢00
255667E.00
~«13579E+00
299344E 00
«45053E+00
«10432E+00
s 78267E~01
“091262E-01
«49136E01
+32839E+01

457
462
467
472
417
53

s13
s18
523
528
533
538
547
552
557
562
567
572
577
6 3
6 8
613
618
623
628
633
633
667
652
657
662
667
672
[ X&4
78
73
713
718
723
728
733
738
747
752
757
762
767
772
777
8 3
8 8
813
318
823
828

=e2530G4E+00
=e69134E+00
=e454B4E+00
=«41060E~01
=e13414E+03
«63949€-01
~e42346E~01
~«146B0E+00
«14951€+01
~«25174E+01
=oST960E+01
-e14545F+04
~s12582E¢02
+40636E+01
=+24888E+01
~e65613E+01
“c62184E+01
“e641105€401
~e325B3E+00
=e14545E+04
«94093E-01
e 46229€+00
~a15173€+00
=+ 49739E-01
s 17716E+62
<+5B052E+01
e TBI0T7E03
=o12268E02
=+34BT70E<01
=¢15350€+01
052544€¢00
~e609)19E01)
*o412B81E0}
=« 173026200
¢ 7TBOQTE+03
«13017E+00
263700E-01
«291737€-01}
025469E+00
+62918E<01
=9586B8E01
=o10291E+02
=+31534E4+01)
~e60307E00
«184642E+00
211683€+01
~a1S5733E¢0}
~s10996E+01]
«45796E~02
~¢10291E<02
~¢11352E+00
=e¢11603€<01
+12550€E200
~+15696E+00
~035292E+03
«67126E4 01

458, ~,30804E+00

462

468
473
478
54
59
Sl4
519
524
529
534
543
548
553
558
563
568
573
578
6 4
69
614
619
624
629
634
643
640
65

658
663
668
673
678
79
7o
Ti4
719
724
729
734
743
748
753
7%8
763
768
773
778
B &
89
814
al9
824
829

.a13219E+00
~+¢31302E-01
=+10522E€+00

.=a30139E+03

~+76045E-01
~e64043E+00
~e16376E+00
«.72542E+00
-.21711E+02
~e61759E+01
~.26722E+04
«85901E+00
~oS1444E+01
-+32955E+01
-.99129E+01
«11903E+01
=e28371E+00
-+90225E+00
~e26722E04
-e41706E-01
«28063E+00
- 12465E+00
-.68533E+00
«12927E+02
~oGTEBTED]
~.26279E+04
-429818E+00
«542B4E+01
=o46002€+00
~e63B57E+00
e 11740E+01
~.28922€+00
~o734B8E+00
- 262T9E+04
«56848E-01
«e21769E~01
=¢16280E-01
<. 72510E+00
L4BT06E+01
-+35973€+00
co6T99BE<03
=4.31705E-01
+42189E<00
607TT3E00
.18811E+01
2 30579E+00
= 7843BE=01
-e13976E+00
~.67998E+03
«19362€-01
~e24073E+00
«95678E-01
«19545E+01
<o 15028E+02
264133F <01

6459
464
469
474

479

55
510
515
520
525
530
535
S44
549
554
559
564
569
574
579
65
610
615
620
625
630
635
bbb
649
654
659
664
669
676
679
710
75
715
120
725
730
735
744
749
754
759
766
769
774
779
85
810
815
820
825
830

~+T6569E+00 -

«10271E+01.
~+39107E~01

+18499E+00
=oT7226E+02
~+13099E+01
««54702E-01

~e18148E+00

~«19351E+03
=e6334TE+01
=+95811E¢01
~+70943E+03
«52165E-01
2»48272E+00
+1357SE+01]
«43848E+02
«92505E+01
=433899€¢00
«17083E+01
«+T70943E+03
~+29513E+00
~.13900E+00
=«18933E+00
~+96007E+0]
~s78022E+01
~oT1B66E+Q]
=+ 75360E+03
=+56881E-01
~299924E+00
~+16803E+00
«26164E+02
+91233E+01
~e27276E+00
«17997E+01
=+ 75360E+03
=¢35799E~-01
-,55068€-01
~+11195E+00
=.14228E+0)
~e24640E+0]
=+71001E«0]
~e21418E+03
~e1942SE~02
«10880€-01
=+23862E+00
~+93515E+01
223764E+01
=+50768E~01
«S0770E+00
~e21418E+03
«45570E-01
«78782E-01
=¢50959E~-01
«17357E+01
«36451E+01
~.98954E+01



TABLE 34,

F MATRIX FOR CASE 1 (CONTINUED)

831

.836..

845
850
855
860
865
.870
87S
91
96
M
916

.921 .

926
931
936
945

832
837
846
851
856
861
866

+53454E+00
+43958E+00.
«10T78E+01
«33896E+00
«80593E+00
+31272€+00
-«39319E+01
_«BT3I00E+00
~«1235BE+01
=.37983E+00
«96177E-01
-«61592€-01
~+B89065E-01
«47058E+01
-.42830E+01
~.10128E+02
+39132€+00
«12989E+01
*G469SE+00
+56027E+00
«185226-01
-+23615E+00
«46598£~01 97)
-.75813€-01 976
~.37519€¢0010. 2
<.57961E-0110 7
-.77572E-011012
~«B1760E=021017
-+19296E+011022
~423150E+011027
.86341E+001032
.53623€+001037
~<73806E+001046
«66985E+00105]
-.28622E+001056
«+12003€+001061
W16%208401 1068
~,10371E+00107}
«60181E+001076
-.20075E+0111 2
~¢66399E+0011 7
~e23055E+011112
~.5B2B1E+001117
-.21074E+021122
~<11151E+041127
~«13B80F +021132
<23B69E+011137
-.20017E+011146
«77291E+011151
- h64LSIE+D01156
-<11959E+011161
«18010E+021166
<157S7E+011171
LT5669E+011176
-.246496E40112 2

876
9 2
9 7
912
917
922
927
932
937
946
951
95¢
961
96

an .

«1707SE+02
«16028E£+01
o46646E+00
=e43578E+0]
211674E+0]
«4615TE+00
=496332E+00
s28821E+00
~e16996E+01)
~e55269E~01
~e25539E-02
+«39394E-0]
2 15490E+00
«11709E+00
«3150S5E¢0])
+S6T95E€+02
=e51706E¢01
~:43857E00
«70772E+01
«36780E¢01
«27367E-01
-¢58329E~-01
«12422E~0] 972
~«10096E+00 977
=«19915€+0010 3
~+25543E-0110 8
~+52878E~011013
-« 76703E-011018
-+17498E+011023
~e26347E+011028
-e17573E4021033
~+36219E+011038
-+ 14252E~011047
«60701E+4001052
~e94056E+001057
-o17867€E+001062
2aPBELE00LHGHT
2 10431€+001072
«67237E+001077
~e19147E+0111 3
~»17396E+0011 8
~e62163E+001113
=+13913E+011118
-e11679€+021123
-+3005SE+021128
-«10372E+031133
-e12360E¢021138
+10538E+011147
~+23052E+011152
=e44276E+011157
~e17934E+011162
«4B4B5E+011167
+35199E+011172
«70061E+011177
~+37095€E+0112 3

833
.a38.
847
852
857
862
a67
872
at7
9 3
98
913
918
923
928
933
938
947
952
957
962
967

Continued

834
843
848
853
858
863
B68
873
878
9 4
99
914
919
924
929
934
9463
oug
953
958
963
968

- 42360F+03
#53777E201
«26915E+01
«37718E+00

~¢36184E+0]
«26898E+01
«19096E+01

=s51B87E-01
~e42360E+03

«e10552E+00

~e55047E-01
«333526~02

= 10754E+01
~o34107E+01
~e69322E+00

-2 77082E+02
«31BB6E00

=4.89740E+00

~+61166E+00

-.35140E<01
«15960E+00
«11631E+00

~-75196E-02 973

~.77082E+02 978
+TB391E-0110 &
«90318£-0110 9

~e41357E-011014%
2363626001019
+35783E4011024

~o17795E4011029
~e74070E+021034
~e20487E+011043
«13266E+001048
+21655E+011053
211736E2011058
~o10466E+011063
= 87925F+001068
c2RT40E0Q01073
~.T4070E<021078
045360E+0011 &
0 IBIHGEDOL] 9
~.60184E<00111%
«38616E+011119
«2T641E+021124

-2.16156E+021129

-.1027SE«041134

~+20415E+021143
«B40TTE+011148
«12281€+021153
+13030£+011158
~+10537E+021163

-.10229E+021168
«46B19E+011173
-.10275E+041178
+55723F+0012 4

835
44
846G
854
.8s9
864
869
874
a9
95

«1162%E€«04
«17391£+00
“o2607SE€0]
»e14613E+0]
«,52679€+0])
=+,52507E-00
¢ 13742E+00
2 19390E+00
e 11629E+04
~e64061E-02
-~ B87SS0E+00
«32776E~01
= 15647E+0Q}
=4,39258£4+03
2 G4623E+0]
269060E+02
=, 3I5286E+00
«37853E+01
~o22436E+01
~e70468E+01}
~+31387E-01
+848B82E-02
«69900E-02 974
+59060E+02 979
+SB402E-0310 S
«47146E-011010
~e%3910E~-011015
~246182E-011020
«25782E+011025
~o30680E°011030
=.42369E+031035
=o26T05E+001044
=.13893E2001069
s 77811E2001054
2 20492E<011059
2Z1JR0E-001064
" @B0TIE~011089
o1 3946E0C1074
~e#2369E0031079
-2 72765E-0111 5
~.18370E+001]110
~e57649E+001115
«97200E+0012120
-213670E+021125
~.26872E2021130
=e35972E904}1135
~e10611E+01)144
~.78455E+011149
«40057E+011154
«30710E+011159
«22632E+011164
~+B45S69E+001169
+37943E+011174
~s35972E+041179°
-+ 17B36E«0012 S

215
920
925
930
93
944
949
954
959
964
969

910 .

«3B364E+03
«16852E=-01
«20692E400
«6T374E+00
«19132E+02
~o40B06E+0]
269164E-0}
~490643E¢0Q
«38364E+03
= +50959€=01
+B46BBE-02
-.22464E-0]
=«23622E+0])
«T7745E-01
«420029E+01
+24520E+02
= 465435E=0]
-.10200E+01
.S8798E «00
+54932E+02
-424396E+00
«23369E-02
- 57656E-0}
+24520E+02
«66927€-02
~+11075E+01
“.15384E-01)
«40640E+00

=«7402SE+03

2 12924E+01
~22855E403
~+59292E-02

. 12B78E+00
- 22TTSE+00
~.16363E+02

016640E+01

2S2032E=0)

¢53793E 404
~22855€+03
= STLEEE +0Q

=394098E-0]

~s 74054E+00
~e53094E+0]

_+62737E+01

~+237T29E+02
~e31896E+04
_¢l3579E~0]
»11618E+01
=~+54081E+00
=« 77927E+02
«17638E+02
«13B92E+0])

2 76284E4+0]

~e31HY6E+04
= e14560E+01

191
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TABLE 34. Continued

F MATRIX FOR CASE 1 (CONTINUED)

12 6
1211
1216
1221
1226
123}
1236

. 1245

1250
12s5
1260
la6s
1270
1275
131
13 6
1311
1316
1321
1326
133)
1336
1345
1350
1355
1360
1365
1370
1375
16 1
14 6
1411
1416
1621
1e28
1436
1445
1450
1431
1455
1460
1665
1470
1475
15 1
15 6
1511
1516
1521
1526
1531
1536
1545
1550
1555

=«16376E+0112 7

=+15420€¢011212

-.6BB48E+001217
~.53151E+021222
-.78141E+021227
~¢14196E+021232
+67629E+001237
«32479E+001246
-.40101E+011251
+60145E+001256
~.24128E+011261
+3B009E 021266
“63729£+4011271
< 17554E+021276
=.17448E+0113 2
~.20034E+0113 7
-.13917€+011312
-.B2367£+4001317
=+26717£+021322
-.51969F +021327
-.29688£+021332
-.12348E+011337
+10908E+011346
~<67498E+011351
+49564E+001356
-+ 24591E+011361
#IBO1BE+021366
<69914E+011371
<18404E+021376
~.13266E+0114 2
-.35689E+0014 7
-.45392E4001412
~a27609E+001417
<63094E+011422
~e23170E+021427
«b68405E001437
024810E+011446
=+11311E+011451
- 414400E+021432
+10690E+011456
-.61105E+001461
«L0090F « 021466
<26502E+011471
«S0027E+011476
<19477E-0115 2
-¢41732E+0015 7
-+3B106E+001512
~.46163E+001517
-.19265E+021522
-.12497€+021527
-.25208E+021532
~.B0869E+001537
-.B0653E+001546
«2TSBHE+01155)
=~ THO6U4F 001556

~e65109E+0012 8
=+29582E+011213
+56209E+001218
«15942E+021223
-.14307€4041228
«52383E+02]233
-.14509E+011238
= 10294E+001247
~.38515E+011252
«20410E+011257
~+36380E+011262
v10446E+021267
+10351E+021272
«14812E+021277
-.36254E+0113 3
-.55334E+0013 8
~016930E+011313
«BOG4L4EL00]318
~ 43714E+021323
-.B3134E+021328
+T49STE «021333
+98173E+011338
- 40B20E+001347
~042881E+011352
+20753E+011357
=237111E¢011362
+10720E+021367
«11130E+021372
+15309E+021377
~e11113E+0114 3

‘-e18637E+0014 8

~+43391E¢001613
«96969E+001418
-010124E+011423
©,13850E+021626
mQAETRE+DT )RR
~e13995F2011447
v16066E+021452
«156494E£+031433
«B6T714E+011457
~292632E+001462
«28284E+011467
0 34465E+011472
«38918E+011477
-«58489E+0015 3
-+97993E~0116 8
~.27815E+001513
-+98539E+001518
-+ 14966E+021523
-.10826E+021528
~.91848E+021533
«68469E+011538
«5072SE+001547
=236625E+011552
~o4326R8E 011557

«13833E+0112 9

»a 1591564011216 ~,14920E2011215..

+30512E+011219
«14B4OE+021224
~a75811€+021229
«50725E+031234
o4 1524E 2021243
~e«18559E¢011248
-«37792€+011253
=e22179E+011258
~.21384E+021263
=422310E+0P1268
2 12694E4021273
+50725E+031278
+46329E+0013 4
«15209€+0113 9
~+30940E+011314
«29161E¢011319
«56387€+021324
~.15393E+041329
«26129E+031334
-e424T0E+021343
-+50085E¢011348
~+B1635E+011353
~«95702E+001358
«o21801E+021363
~222929E+021368
«13569£4021373
«26129E£+031378
~+95060E-0114 4
«349B0E+0014 9
~e43766E+001414
=.17827E+011419
<13931E+021424
“e14601E+021429
= 10883F+ 021443
~e55400E+011448
~.51046E+011453
< 10260E+041434
<. 56209E+011458
=e54520E+0116463
~e61113E+011468
+40307€+011473
«10260E+041478
«20441E+0015 &
+35500E+0015 9
-+2BT03E+001514
«18724E+011519
~.664B5E+011524
-+126B0E+021529
-+67353E+031534
~.B3214E+011563
«31210£+011548
«28172E+011553
«IBBIZE+011558

+94993E-011210

~+10787E+021220
+34064E+02122S

=250402E+02]1230.

~¢50985E+041235
~s12032E¢001244
+19591E011249
-.26B21€+011254
-.33302E+011259
+46995E€+011264
~+1BBI6E+011269
#10945E4021274
=+50985E+041279
-.17596E+0013 §
«3759BE+001310
-.15821FE+011315
«30446E0011320
~.30321€+02132S
-56930E+021330
-+43554E041335
+81535€4001344
«32450E+011349
-.28955E+01) 354
~e12630E¢011359
+4B001E+011364
~+19470E+011369
<11769E+021374
~o43554E+041379
~.B4651E-0114 S
+14945€001410
“419754E011415
-.23750E+011420
c19740E+021425
-0 15774E+041430
~e T1194E v 00 ) 40
e 11468BE« 021449
-4 56653011454
~o89608E+031635
=4 138B6E¢021459
+12284E+011464
~e52914E+001469
+35973E+011474
~.B960BE*031479
-.46303E-0115 S
~eB1434E~011510
~+32015E+001515
-.26872E+011520
«55132E¢011525
~.21024E+021530
-.446453E+031535
«55391E+001564
~+55321E+011549
+37746E+011554
+71134E«011559

~e64967E+00
=411792E+01
=¢26684E+02
=+30431E¢02
=+36113E+02
=.75441E+04
~e1082SE-0)
=+16048E+00
«73088E+00
+34028E402
«36721€+02
«38182E+0])
«1863TE+02
= 75641E+04
~e15314E+01
-+ 72919E+00
~.13130E+01
~.36387E+02
~+31614E+02
~49BTTE02
-.78570E+04
«18343E-01
~+19190E+00
+50919€+00
+39155€+02
+37539€+02
«40303E+01
+19671E+02
-.7B570€+04
“+44431E400
-.21786E+00
-+42109E+00
~.15745E+02
~<13529E+02
~.26704E+02
“s15055E+00
=+ 25022E+0]
+12560E+01
-.21997E+04
+13177E+03
+96153E+01
+12387€+01
#S5142E+01
=.21997E+04
-.30807€+00
-.62737E-0}
~+20359E+01
«30788E+00
«17121E+0]
~«17384E+04
-.15745E+04
272406E-01
+94320E+00
~+93512E+00
-+65753E+02



RARI

TABLE 34,

F MATRIX FOR CASE 1 (CONTINUED)

1560
1565
1570
1575
16 1
16 6
1611
1616
1621
1626
1631
1636
1645
1650
1655
1660
1665
1670
1675

171

17 6
1711
1716
1721
1726
173)
1736
17645
1750
1755
1760

~o4TTI6E+00156]
»7S5919E+011566
«15042E+011571
«37750E+011576
¢536424E+0016 2
-e3J6665E+0016 7
~.20857E+00]1612
-.19016E+011617
~e14040E+021622
~«33716E+011627
~+s18401E+04]1632
“es91625€£¢001637
«s18605E+011646
«2478B9E+011651
«e12493E+011656
-.2BB830E+001661}
«44299E+0)1666
«6B8797€+001671
«21836E+011676
~+s92163E+0017 2
«11402E<0017 7
-e64258E~011712
-e12792E+001717
+«13586E+021722
~e62156E+011727
=a15726E+021732
-«28069E-011737
2 22936E+011746
«11751E+0117S1
«B266TE+001756
=s13194E-011761
«16590E+001766
-+ 25848E~011771
«7T1216E-011776
+10000E+01
+10000E~+01}
«10000E-D1
+10000E+01
+10000E«01
«10000E+01
«10000E+01)
«10000E+0]
«10000E+01
«10000E+01
«10000E«01
+10000E+01
«10000E+0]
+»10000E4+01
«10000E+01
~+s60000E¢01
~e75000E+01
-e75000E+01
~+22185E+023642
~eB85492F+013740
~.50960F+013839

~eT2246E+001562
«20961E£+011567
«23565E4011572
«30718E+011577

=+22955E+0016 .3

=+13219E+0016 8
~e14532E¢001613
~+12405E+011618
«13016E+021623
~«60378E+011628
~e14065E+031633
+10848E+021638
el10974E+011647
=+10393E+021652
=~+78533E+011657
~e43464E4001662
«12063E+011667
»12312E+011672
+18S533E+011677
~+18082E+0017 3
~.26968E-0117 8
+86108E-021713
~«12395E+011718
~e29476E+011723
«99626E4001728
~e24167E9041733
~+10869E+021738
~e14001E+011747
+«19090E+021752
+81824E+011757
~+19581E-011762
24084SE~011767
«44948E~021772
«81945E-011777

+2218SE+02
+85492E+01
«10000E+01

Continued

~e4235TE+011563

= 44901F+011568

. +2B441E+011573
=e47353E+031578
#24430£40036 &
«20594E+0016 9
~.15596E+001614
+26336E+011619
«19T06E+021626
~«B036BE+011629
-+84061E+031634
~e50395E+011643
+46843E 0] 1648
«40085€+011653
«69372E+011658
~+25612€+011663
~¢25629E+011668
«15371E+011673
~.84061E+031678
-e21466E+0017 4
~e14242E-0117 §
«76977E-021714
~+24700E+0)1719
+12621E+011724
«10153€+011729
«B82144E+031734
=.23269E+001743
~«45551E+011748
~.26063E+011753
~e61330E+011758
“.11306E+001763
-.B)272E-011768
«20871E-011773
+82144E+031778

«93298E+001564

.=238233E+001569

«25008E¢011574
-+ 44453E+031579
=e20947€-0116 S
=+69189E-011610
~e16790E+001615

220826E+011620
-+15890E+021625
~+99897E+011630
=+19840€+031635

«BB225E+001644
~+96992E+0]1 1649

259839E+011654

«13368E+021659

+54929E+001664
~42147TE0001669

«13283E+011674
-+19840E+031679
-.17658E-0117 S

«10208E+001710

«67624E-011715
-«16375E+011720

+20395€+021725

«96046E+011730
~y45825E4011735
~+94076E+001744

«1116BE+021749
~e46454E00117564
-«13351E£+021759

.21893E-011764
-+58962E-02] 769

+10691E-011774
~e45825€4011779

«73130E+01
«B1808E200
o40730E+0}
=s15T4SE+04
“9211441E+00
=¢14963E-01
=¢35235E+00
¢22394E+0)
¢31093E+00
=«18921E+02
=e87244E+03
«13403E+00
«19350E+01
~a14T709€+01
=.11887E+03
«43083E+01
2141572E+00
«23069E+01
~sB872644E+03
=«10524E+00
-+10156E-01
=+ 71534E-01
~e66277E+01
~+28539E+0)
“«814T71E¢01
~e19786E02
~e16570E+00
“4s25524E+01
«10039E+01
«12242E+03
+17192E+00
~+76836E-03
«61627€-01
-+.19786E+02

193



194

TABLE 34,

F MATRIX FOR CASE 1 (CONTINUED)

3936

4040

&414)
4241

43 1

43 6
4311
4316
4321
4326
6433}
4336
4345
4350
4355

" 4360

4365
4370
4375
46 1
44 6
4411
4416
4421
4426
4431
4636
4445
4450
4455
4460
4465
4470
4475
45
P
47
48
49.
50
51
5210
5311

ODNUNEFrw

.S412

$513
S6l4

.5715

581%
5917

.60 1

60 6
6011
6016
6021
6026

90891£+023938
«e10983E+024042
=o49524E+004142
«10000E+01
«33109E60063 2
-.73002E-0243 7
#18066E-014312
&15237E-014317
-e20379E+014322
1193760014327
W16222E4016332
W2446TE+004337
~« 1573764004346
~¢346B0TE+004351
-.26919E~-014356
«28197€~014361
~+32835E€¢004366
.11894F+00437]
-+91785E-014376
$2B419E+0044 2
«177796+0044 7
«11292E+004412
23B983E-014417
#34117E¢014422
2668390014427
+30003E€+014432
=+ 13626E +014437
~e61766E+004446
¢124B0E +0046451
-+ 15753E+004456
«35973F+004461
-, 42287E+014466
«14611E+014471
~o11919E+014476
=+50000F +004545
~¢50000E+004646
~<500D0E+004747
=¢50000E+004848
«.50000£+004949
«50000E+005050
-.50000E+005151
«.50000E+005252
-.50200€+005353
-«50000E+005454
=.50000E+005555
-.50000F+005656
-.50000E+005757
-,50000€+005858
-.50000E+005959
+33109E+0060 2
«.73002E~0260 7
+18046E-016012
215237016017
-.20379E+016022
C11937E+016027

«+.38953€+023939
_.»10983E+02
-+61315E<01

~+16388E+0143 3
«12346E-0143 8
+4940BE=024313

=+11173E+004318
+66943E+004323
«22908E+004328

-+16303E+024333
+33B20E+014338
2 2246RE*004347

~¢32187€+40142352

-+980B9E+004357
«41394E-014362

- T6668E-014167
«62094E=-014372

~e15151E+004377
«61463E¢0044 3
«63894E-0144 8
«76041E~014413

~.17560E+004418
«25620E+014423
«38711E+014428
~26650E+024433
«40210E+004438
«22507E+004447
~e27089E+014452
~13548E+014457
«52839E4004462
~e99347E+004467
e 74523E+004472
~«19308E+014477
=«10983E+02
=-s10983€¢02
~s10983E+02

“¢10983E+02

~«10983E+02

-s10983E+02

-+ 10983E+02

-+10983E+02

-.10983E+02

-.10983E+02

~+e10983E+02

-+10983E+02

~o10983E+02

~+.10983E+02
~e10983E+02 )

-~+16388E+0160 3
«12346E-0160 8
+49408E-026013

~e11173E+006018
669434006023
. 22908E+006023

Continued

~«10192E¢02

«14008E-0143 & ,34710£-0243 5 ,11618£-01

=,2549BE-0143 9
v39491E-024314
«2798IE+004319

~¢10001E+014324
+19600E+004329
+12345E+034334
+49495E +004343
«66B95F 4004348

~+29277€-0164353
+54B36E+004358
+26020E+004363
«16663E+006368
¢296456-014373
+12345F+034378
~¢29145€-0144 &

~e13627E40044 9
+66782E-014414

~+2T413E-014419

~e4923IE« V14424
«32415E+014429
+30276E+034434
2626502016443
+91001E+004448
«9368BBE+004453
+98103€+004458
+30681E+014463
«19093E+014468
«3347BE+004473
+30276E+034478

214008E=0160 &
-+25498E-0160 9
+39491E-026014
»279B9E+006019
-+10001E+016024
«19600E+006029

o 44T0IE~014310
=4 71249E~02431S
+29393E+004320
=+ 43308E+014325
=+ 97486E+004330
<1007DE+034335
~10T14E024344
-« 176B6E+014349
«45514E4004356
+13745€+014359
~«45030E-014364
+56040E-024369
«52224€-014374
L 10070E+034379
+23461E-0144 S
~¢13936€-014410
«56051E-014415
+82138E+004420
-.34827E+014425
<17961E+014430
#13117E044435
+3T6SUE-D146ab
~.17588E+014449
+8343BE+004454
«21130E4014459
-.57811E+004464
+12671E+004469
<62240E+004674
+13117E+044479

_e34T10E-0260 .5
~e64T03E~0160]10
=+ 71249E-026015
«29393£+006020
~+43308E+016025
~+Q74B6E005030

+20971E-02
»78295E-02
«77806E+00
«98724E-01
«72330£+00
«204TYED2
«30808E-01
+37282E+00
~¢79414€-01
~.13889¢+02
=4 34996E¢00
+20186€~01
~.51491€-01
«20471E+02
¢ 17395€¢00
«65609E~01
«52103E-01
+52225E+01
«3604SE+01
+29436E+01
«28048£+03
~+10959E+02
«39430€+00
~+1650SE+00
=«21111€¢02
=e44926E+0]
«23737€+00
=+69189E+00
«28048E+03

+1161BE=01
+20971E-02
+78295E-02
«TTBO6E <00
+98T24E-01
+T2330E+00



b

TABLE 34.

F MATRIX FOR CASE ] (CONTINUED)
603]
6036
6045
6050
6055
6060
6065
6070
6075

61
61

1
6

6111
6116
6121
6126
613]
5136
6145
6150
6155
6160
6165
6170
6175

62
63
64
65
66
67
68

3
4
5
6
7
8

9

6910
7011
7112
7213
7314
7415
7516
7617
7733
7836
7935

«16222E+016032

22646TE*006037.

= 15TITE+ 006046
=¢34807€+006051
=,26919E-016056
=-s22157E+02606])
=+32835E+006066
«11894E+006071
=s917856-016076
+28419E40061 2
s 1TTTIE+006) 7
+11292E9006112
«38983E-016117
«34117€+016122
«66833€+016127
+30003£+016132
=+13626E+016137
«~e61T66E+006146
+12480E+006151
=+15753E+006156

+35973E+006161-

-.42287E4016166

+14611E+016171
~.11919£+016176
-+50000E+006262
=.50000E+006363
-+50000E«006464
~+50000E+006565
-+50000E+006666
-.50000E+006767
~+50000E+006868
-.50000E+006969
-+50000E4007070
~.50000E+00717]
~.50000E+007272
=.50000E+007373
«+50000E¢007474
-¢4S0000E+007575
««50000E«007676

«30000E+017777

«37500E+017878

+37500E+017979

G1-MATRIX FUR CASE 1

33

1

«60000F 0134 2

G2-MATRIX FOR CASE 1

&) 1 =,30360E 0042 1

~+16303E+02603)

+33820E+016038.

2 22468E+0060467
~e32187E+016052

=+98089E+006057

+#1394E-016062
=«76668E~016067
«62094E~016072
~«15151E+006077
«61463E+006] 3
+63894E-016] B
«76041E=016113
~.17560€+006118
+25620E+016123
+38711E+016]128
«426650E+026133
+40210E+006138
«22507E+006147
«227089E+016152
=« 13548E+016157
=.21657E 026162
~e99347E+006167
«T4523E+006172
~<19308E+016177
-.22185E+02
~.22185E+02
~.22185E+02
~.22185E402
~.22185E+02
-¢22185E +02
~.2218SE+02
-.22185E+02
-.221B5E+02
-.22185E 002
-.221B5E+02
~.2218%E+02
~.22185E +02
-.22185E02
~e22185E +02
~+10983E+02
-e22185E+02
-.221B5E¢02

+«75000E 01

+B6190E 00

Continued

+12365E4036034
249495E+006043
«66895€+006048
-e29277€-016053
#54836E+006058
+24020E+006063
«14663E+006068
+29645E-016072
«12345E+036078
=e29145E-0161 &
~«13627E+006) 9
e667B2E~016114
-.27413E~016119
~e49233E+016126
0326415E+016129
¢30276€+0361364
«62650E+016143
«91001E+006148
+93688E+006153
«98103E+006158
«306B1E€+016163
«19093E+016168
«3347BE+006173
«30276E+036178

.«10070E+036035

+26B089E+006044

«e17686E+016049
+45514E+006054
.a13T45E+016059
=e65030€-016064
+96040E~-026069

»52224E-016074

«10070E+036079
+23441E~0161 S
-e13936E~016110
+56051E~016115
«B8213BE+006120
=e34827E+016125
«17961E+016130
«13117E+046135
«3T7654E~016144
=+ 17SBBE-016149
«B343BE*0D06154
«21130€E+016159
=e57811E+006164
«12671E+006169
«52240E+006174
¢13117E+046179

«204T71E#02

«30808E-01

«37282E+00
=eT9614E~01

.=913889E+02

«334996E+00
«20186E=-01

~+51491E~-01 .

«20471E002
«17395E+00
«65609E~01
«52103E~-0])
«52225E+01
«36045E+0]
229436E+0])
«28048E«03
«24760E=-01
«39430E+00
~¢16505E+00
=+21111E+02
~e44926E+01
«23737E+00
=e69189E+00
«2B8048E03

195



196

H=MATRIX FOR CASE )}

175
21
2 6
211
216
221
226
231
236
245
250
255
260
265
270
27s

2311

36
311
s
az)
324
331
336
345
aso
355
360
365
370
375
e 1
“ 6
411
416
42)
426
%3}
436
445
4SH

- hOTI0E* Q4

+55658E+04
«3IS1TE«Q4
+39830€+04
«19521€+07
«30311E«07
«42056E+07
«JO6SOE+Q4
~+.B9139E+04
e 12396E+05
«14508E+05
=s24412E90)
.e30845E+04
~+31097E+03
¢15702E+04
~«B6102E+04
«4T160E+04
=¢B3995F+«03
=+59538E+03
«15353E+07
~.39053E+06
=a9456BE+06
«20473E+04
~+14873E+05
«42324E+05
«16238E+04
-e25324E+02.
«29203E+03
=+78539E+02
«13437E+03
«52393€+0)
«41100E+04
-+10987E+03
«15359F « 04
v 14485€+07
= ed9443E+09
«18975E+07
+30895£+02
el17441E+00
s4T160E+0S
«11200E+05
«10484E+03
~e10418E«04
«65380E+03
~+31181E+03
~¢99994E+03
e 40642E04
~s51475E+03
~+56835£+03
«15131€+07
=¢39738E+06
~s55499F + 06
«13863F«03
o T2STAE 0%

«34872E+0S

12
V7
112
1334
122
127
132
137
146
151
156
161
166
171
176
22
27
212
217
222
227
232
237
246
251
256
261
266
271
276
32
37
3le
317
322
327
332
337
346
351
356
361
366
n
376
4 2
4 7
412
417
422
427
432
437
446
451

TABLE 34,

~eJI999E0)
vIB226E 204
~eJ190SE¢04
¢} 1692E+0S
o 16TB2E+07
~s11240E+07
0 12556E£+08
=453974E¢05
026964E+04
«11983E+06
2 1407T7E«05
~e36153E+03
¢ 76841E+0)
¢34156E+02
+«16393E+04
-o29804E¢03
~+75835E03
~s13651E+02
»34453E+04
~e38944E+06
»21336E+05
e46212E407
~e10503E+06
«24395E404
e 43JSLE DS
-+81883E+04
-e37338E+02
+67149FE+02
~s11714E+02
«16489E+03
«93350E02
«25BIRE+04
~e30653E+03
+31187E+04
211440E+07
- BO0TIE+DS
«26194E¢07
1 49688E+04
¢35234E+04
«67932E+05
«13537E+05
«15436FE+03
=+2)1333E+03
2 40284E+03
-e60824E+03
+9608BE+02
ws904TSE«02
W 25702E+02
+32929E+04
~e37629E4+06
-.21787€+0S
«45207E+07
~e1246RE+05
«16352€+04
cG2990E 405

328
3
338
347
352
357
362
367
372
kXa4
4 3
6 8
413
4l8
423
428
433
439
447
452

»11376E405.
~e926T5E 04
“e16T16ECOG

+12620E+07
=e43B64E+07
«e}1305E+07
'01514“E007
~sh4260E 04
~e18863E+05

«5097BFE+05
~¢35668fF+05

? =«20801E+04

~e15086€+04
0642564E¢02
~e14144F+07
«4)35B8E+03
¢34602E+06
~e54810E+02
~«58771E+05
«16019E+07
~«25863E+05
=e21198F 07
=e4T7021E+03
«36783E+04
«53808E+05
=e47726E+03
~e21491E+03
~«13113€+03
«24346E+02
~e2)198E+07
«B5424E+04
=e52743E+04
~e22620E+0)
«10001E+07
-~ 264666407
= 7T50681E+08
~e10291E 06
«18374E 06
~¢23045E+05
~+236435E+05
-e26725E¢05
«88142E+03
«38301€+03
«23896E+03
=«10291E+06
=+¢38559E+02
+36B25E+04
~«B9011E€+02
«+58505E+05
«15326E+07
~+21933E+05
-s17370F+07
«4T7957F+03
=e59501E 04
SHEDOZE S0

Continued

3
1 9
116
119
124
129 ~

!
1
2

134
143
148
153
158
163
168
173
178
24
29
214
219
224
229
234
243
248
253
258
263
268
273
278
34
39
314
39
324
329
33
343
348
353
ass
363
368
373
378
4 4
49
414
419
424
429
434
443
448
453

«s JOVS)ECDS
«15864E¢04
e 16984LE+ 04
-y 27540E+06
e T3394E 06
~e15274E+07
0 42460E+06
~.88378E+04
«T3781E+05
-, 23429E+04
«15379£+05
«39832E+0)
-+11054E+03
«4T579E+03
2 42460E+06
~s91562E+03
+95815E+04
+65385€+03
~e24519E+06
o44BIBESDT
«69313E+06
«32960E+05
-a10762E+05
«19437E£+05
«12331€4+05
«36264E+405
©39535€+02
-+B87359E+01
«21997E+01
+32960E+05
~e42679E+03
~e14002E+04
«~e47990E4+03
~«10815E+06
= 602T4E06
-~ hG95S5E08
»10081E+06
~e14008E+04
<5594 7E+05
2 4BO0SE 04
+15047E+05
-e15347E+03
«18158E+02
«33872E¢03
«10081E+06
~+96419E+03
«91B6TE+04
«55229E€+03
-e25187E+06
«43B9BE+07
+58681E¢05
«10935E+06
~eP2GS0SE 204
21 7T0UE +0S
.88593E +04

18

110
118
120
125
130
135
144
149
154
159
164
169
174
179

25

210
218
220
225
230
235
244
249
254
259
264
269
274
279
35
310
315
320
32s
330
335
346
349
354
359
364
369
374
379

4 S -

410
415
420
425
«30
43S

Lab,

449
454

~e10405E€+0%
+»56826E+04
229672E+04
*933662E+07
v35311E+07
«23935€+07
~c4]1530€+06
«76136E+06
= 164T2E+0S
=, 13261E+05
~+32088E+06
«31760E+064
«21955E+02
«14581E+04
=~e41530E+06
=s10198E+064
e4TI39E+04
«27201E4+03
=e52211E+06
+30578E+07
=e21120E+06
~426307E+05
«19480E+05
~¢28138E+006
=+84319E+04
=+33536E+06
«31332E403
~.13711E402
«11077E+03

=e26307E+05
=e46136E+064
=¢64333E+02

«191G95E+04
= 14B4TE«O7
“v9431T7E+05

e167H0E~OT
~s42612E+0)

v46130E+06
«+12408E+0S
®s13034E+05
~.1CS0BE+06

“e11879E+04

«15720E+03

~+10933E+03
~e42412E+03

«13792E+04
445136404
«1897T7E«03

~e56242E+06

«29169E+07

~«90507E+03

=+22459E+05
-« 13082E+05
~a2150G6E+04

~+91932E+00



TABLE 34.

H MATRIX FOR CASE 1 (CONTINUED)

455
460
“65
«70
475
53
56
51}
516
521
526
531
536
545
S50
555
560
565
570
575
61
6 6
611
616
621
626
631
636
64S
650
655
660
665
670
675

76
711
716
721
726
731
736
745
750
755
760
765
770
175
81
B 6
81]
Bl6
821

«22939E+04
«28206E+02
-«25210E+03
«26340E+03
- 24515E+02
+11064T7E+04
«98392E+03
~o14244E ¢ 0k
~«69240E03
«31944E¢06
«o11934E+07
~.B8B8453E+06
034223E+03
'«22251E+04
+13277€+05
«93408E+04
«26398E+02
“e39872E+03
~+s97438E¢02
“26051F+03
-.68182€+02
«28011E+04
+59362€+02
=.,5169TE+03
«10800E+07
~e13221E+05
~s62617E+06
~o247T3E+0I
~a23162E+04
«11138E+09
«26062E+04
«17823E+02
~+21843E«03
«44918E+02
~«B9158E+02
=0 1 2248E + 04
~e13581E+04
~951962E+03
~e162T9E+046
«~+53054E+06
~+38095E+06
~o17388E+07
~+15372E+03
~s4178SE+03
«23162E+04
«e33459E+03
«.B6953E+02
«97745€+03
=e35766E+03
«3T604E+03
~e13272E+03
«33717E~03
«39010E+01
-e61310£4+03
«15404F+06

456

461 .

466
471
476
52
57
s12
S17
522
527
532
537
S4b6
551
556
561
566
571
576
6 2
67
612
617
622
627
632
637
646
651
656
661
666
671
676
72
77
712
717
722
727
732
737
746
751
156

761

766
771
776
82
8 7

812

817
822

“e62827E+04
+240810€+02
~e4T94SE+02
«17716E+03
~e14109E+0)3
+93032E+02
~e10366E+04
24A363E+03
=e223T4E+04
=44 925E+06
+33294E+06
=e30774E+07
«12549E+ 05

«49GOBE +04

=-o4BASOE+00G
~+29454E+03
+40796E+02
~s10693E+03
~e15432E+03
-a20205€+03
«S56242E+02
~s16043E+04
a12623E+03
«4T764623E «04
~e64T09E <06
e69734E+05
«55968E+07
~e79323E+03
-+2601T7E+02
«30920E+05
=e31198E+04
«26439E+02
~+53568E02
«38756E+01
~«10829E+03
~s22167E+03
=e18389E+03
216119€+03
~e20002E+04
~e46980E+05
«15782E+06
~e32170E+07
~e134B1E«0S
=+96021E+03
=« 12627E+05
«2B69SE 04
~+12769E+03
«22511E£¢03
=e«13382E+03
«52998E+03
-e27330E+02
~«20650E«03
e 13694E+02
¢ 1162RE+0S5
=e56204E+05

457
462
467

672
47T

53
s 8

513

518
523
528
533
S38
S47
552
557
562
567
572
577
63
68
613
618
623
628
633
638"
64T
652
657
662
667
672
677
73
78
713
718
723
728
733
738
Th?
752
757
762
767
772
177
8 3
B 8
813
418
823

Continued
«14942E+04 458 ,3B179E+0S
223303E+03 463 ~,38337E«02
«TLETQE+02 468 L1295TE+0)
«14123E+03 473 .16285€+03

~217390E+07.478 ,10935E¢06 .
¢S554641F+046 S & L,24661E+02
«¢90088E+03 5 9 =.139)17E+04
021TD0E+03 514 45427BE+0)
+64B73E+06 519 16472E+05
wo3J202BE+06 524 =,53826E¢06
«31857E+06 $29. ..57286E+06
e14502E+06 534 =,11724E+06
+50000E+03 543 L62580E+03
=«5149TE+04 S4B . J1678BE+05
~«28268E+05 S53 T6069E+04
®os23552E¢064 558 13545E+04
+23564F+03 563 =,50793E+02
e23967€+03 568 19843E¢02
~e20017E+03 573 ~.17292E+03
«14502E+06 578 ~.11724E+06
=e26137E+403 6 % =,92587E+03
«153B0E+04 6 9 .54196E+04
~o140B7E+03 614 +62433E+03
~e53TSIE+05 619 ~-,24T4BE06
«SST6DE+06 624 o25443E+07
-+59495E:05 629 +61750E+06
~e9243TE+06 634 +14B6BE+0S
«31682E+03 643 =.B2759E+03
~210750€+05 648 20808E+05
~«1719BE+05 653 .92885E+04
«76499E+04 658 <14798E+05
«15164E+03 663 -.29034E+02
«10393E403 668 T2766E+01
“e17041E+02 673 =,54214E¢01
“e92437E+06 678 <14B6BE+0S
+32852E+04 7 &4 .16866E+0)
«20TT9E+06 7 9 o25470E+04
¢36B44E+03 Tlh <26976E+03
*3IBBEGE+06 T19 +50672E+05
«BTBTIE+06 724 +11607E407
¢39216E+06 T29 22357€06
«e10129E+06 734 =41B734E+0S
~s15250E404 743 =,12022E+04
=e29952E+04 T48 +68456E+04
«B2133E+06 753 =¢14439E+04
~e52004E+03 758 —.29463E+04
=e73173E403 763 . +13300E+03
~e41695E+03 768 ~,26142E+02
*2e264336E+02 773 =.B6342E+02
~e10129E+06 778 =,1B734E«05
~e12862E+03 8 # = 9T7640E+02
«44970E+03 B 9 .13421E+04
-e49166E+02 Blé +5158BE+03
-e76596E+04 819 ~.27607E+05
«55930E+05 B24 «45044E¢06

459
64
469
474
479

slo0
518
520
525
530
535
544
549
554
§59
564
569
574
579
65
610
615
620
625
630
635
64k
649
654
659
664
669
674
679

710
718
720
725
730
735
Tabh
749
754
759
764
769
776
779
85
810
815
820
825

-27516E+06
~229626E+03
«61952E+02
«50387E+02
» o, 22459E+0%
_eB53T4E+03
-426489E+03

=+84323E+03

*¢36237E4+06
~s11830E+06

«210198E407 .

«90101E+05
«21B50E+06
~e21512E405
=e11242E+05
=¢5T026E+05
~e39896E+03
~s4S5077E«02
~428072E+03
.«90101E+05
=+ 10061E+04
~¢33927E+04
~219265E+03
=+40BITEQS
=+2298BE+07

=e28299E+06

«22823E+0S
-, 86858E+04
~+12552€+05
~e81346E+04
~+13180E+06
~e22753E+03

+43244E+01
= T26T7S5E+02

«22823E«05

«31314E+0n

¢b1T39E+02
~ea127T7T0E+0Q4

«104T6E07

04 0645E«04
=o13394E+07
= 64253E+0S

«10345€+06
~e10703E+04

«12595€E+03

+45997E+05

«1046TE+04 .

~+70009E+02

+26529E+03
~¢64253E+05

037214E+02
=+43B32E+03
=+13858E+03
«e45078E+05
=s19703E+06

197



198

TABLE 34, Continued

H HAIRIX FOR CASE 1 (CONTINUED)

826
a3
836
845
850
85%
860
865
870
a7s
91
96
911
916
921
926
93]
936
945
950
955
960
965
970
975
10 1
10 6
1011
1016
1021
1026
1031
1036
1045
1050
1055
1060
1065
1070
1075
111
116
1111

1116

1121
1126
113
1136
1147
1142
1152
1157
1162
1167
1172

~.15255E¢06 827
=280805E+06
~+1B698E+03
«13841F+03
=,33386E+04
-, 13683E+04
2 22212E402
~26217€+03
«66613E+02
~e11234E+03
+53648€+03
= 10967E+04
«72749€403
241367E+03
=~ 40974E+06
«61005€+06
+61980E+06
~.12918€+03
-412260E+04
~o4I4O9BE+03
«42608E+03
~.50770E+01
«84B58E+¢02
«24387E+02 971
.52585E+02 976
W22409E~0310 2
+25627E+0310 7
=.1B024E+031012
~e60451E+031017
+81652£+051022
~+14822E+061027
~e64008E+061032
~.15469€+031037
«379649E +041046

837
846
85}
856
861
866
871
876
9 2
27
912
N7
922
927
932
937
946
951
956
261
966

=+29913E+041051

«P20440E*0L1056
«89320E+011061
=s11026E+031066
+18203E+02107])
=e50B61E+021076
»18029E+061] 2
«20524E+071Y 7
«31135€+071112
o 42152E+071117
«18498E+071122
«14034E+073127
~e55310E+071132
«e10144E+071137
«70430E+061148
«2362TE*D51143
«12173E+061153
«10570£¢071158
«24237E+071163
«15171E+071168
«23773F+061173

832.

=«]0032E+0S

«37496E+05
413561E+08
-« 16823E+04
~o12458E+04
¢11282E+05
«9S737E €03
«32875E¢02
~a622B6E+D2
«111B4E+02
-+13960E+03
«96039E 02
~e31730E+03
"o 16232E+03
+87559E+03
“e144TIE+06
“s15451E+06
e17982E+07
+66299E +04
e 70934E+03

[ T-1:]
B33
838
8h7
.as2
857
a62
867
ar2
877
9 3
9 8
913
918
923
928
833
38
947
952
957
962
967

=e33247E+04
~oT6268E+01
+24806E£+02
+«39558E£+02 972
«37634E£+02 977
=+33454E£40210 3
«15819£+0210 8
«493T4E+021013
«T4963E+041018
=e16192E+051023
«39533E¢051028
«86295E+071033
«27320E+041038
=+27606E4031047
#+551642E£+4031052
+76238E+041057
e 13279E+021062
=+26990E¢021067
-eh0224E+0]11072
=+S7S19E+021077
«46752E+0611 3
«17302E+071y 8
=«10556E+071113
«12579E+081118
+61815€+061123
«4T7073E+071128
=«46670E+081)133
+25063E+061138
~e17186E+071149
+82332E+051144
+58165E+061154
«11801E+0713159
- 45712E+061164
«10110E+061169
v46419E061174

«T4B2E+D4 829
=22916BE 06
239389€493
=+ 76851E+ 0k
~«10587E+05
+54061E906
+18B72E+03
«12021E+03
~4176B5E402
~+291BBE+06
«16623E+04
223922E+04
~«17541E+03
«18379€+06
<11113E+07
~e16954E+05
-.20505E+06
“e91784E+02
«29529E+06
e36046E+06
~e14450E+03
=243966E+02
~+49590E +02
$42342E+02 973
-.20505E+06 978
=.28404E+0310 4
-+29934£+0310 9
<36300E+021016
=«58586E+041019
- 26972E+051024
+33321€+051029
«15034E+071034
+15902£4031043
~.14769E+041048
~448200E2061053
~e94182F 061058
«76305E«021063
«53094E+021068
~+15385E+021073

843
B48
853
858
863
868
873
878
9 4
9 9
9i6
919
924
929
934
943
948
953
958
963
968

*15036E+071078.

»12355E40711 4
=+45153E¢0711 9
~+10831E+071114
~e37126E+061119
~e¢34B05E+061124

«47459E+071129

«21613E+091134

«4B8553E+071139

«3B8926E+061150
=«B83504E+¢071145

«25410E+051155
=e94037E+071160
~e35544E+071165

«18093F+061170
=+57562E+061175

834

830
835
Ba4
849
854
859
113
869
B7¢
879
9 s
210
515
920
925
930
935
:7A
949
954
959
964
969

2 S10861E+06
= 09061E+04
=e11111E+03

«90630E+04

«9]1962E+03

2 T20689E+04
»s3527)1E+02

«81057E+01
-e693I69E+00
“269061E+04

«246B2E* 04
=213615€+03)

+37819€+05

«13009E-07
~¢10259E+06

+15347E+05

+554T74E+03
“e66211E404

»10268E+04

«23299E+04

+96448E+01
-s43419E+01

«42393E+402 974

«15347E+05 979
=eB81995E+0210 5

«26T790E021010

«3S9S4E+031015
~s16761E+051020

»13755E£+061025

«34997E+061030
= 65201E£+041035

«2691T7E+031044

«3T635E°041049
~+66T26E<041054
~e 167436051059
~2J4583E+02)064

¢ 3TTE0E+011069
=.87100E+011074
~e65201E2041079
~.25858E«0611 S

«6T208E2061110
-2 14B4BE*071115

«69573E£+061120
~e2)1TB4E*0T71125

«%#3920E4071130

+10114€+101135
~o 4426052001140
~.60615€+0561151
~4322BTE+061106
~+28311E+061156

o 28414E+061161
~e33492E+071166

«11313€+0711 71
~¢96338E+061176

-+ 2864BE+06
2 2482TE+09S
-+ 14B55E+04
=.16752E+04
=+94B49E+03
+21363E+08
“es27769€+03
+96985E40]
~29014TE+02
+24B27E+05
«23225E+04
~+30565E+03
«35620E403
+T6952E+06
-.23283E+06
+41620E+06
~.20083E+05
«40728E «05
+15635E+04
-437907E+02

~+62061E+05

«76840£+02
«10997€+02
+58591E+02

=«20083E+05
=4398232E+03
~+11869£+03
~e27140€+03
=e46]131E+05
=« 75201€+05
=4s27831E+06

+12976E405

~+78984E+03
~a98714E£+03

+19340E+04
«12533E+06

“alle96E«03

»10556€E+01

~e44220E+02

«123T76E+0S

=+32155E+07

2 35494E407
«24434E+07
«57756E+07

~«14958E+07
=e30712€+07

«221SSE+«09

=e46143E+06
~e25397E+07

«82752E+05

~:96834E +06

«46174TE«06

-.78851E+06

«S6232E+06

~+15336E+07



TABLE 34,

H.MATRIX FOR CASE 1 (CONTINUED)

1177
12 1)
12 &
1211
1216
1221
1226
1231}
1236
1242
1247
1252
1257
1262
i267
1272
1277
131
13 6
1311
1316
1321
1326
13
1336
1342
1347
1352
1357
1362
1367
1372
1377
14 1
16 6
1411
lal6
1421
1426
1431
1436
1442
1447
1452
1457
1462
16467
1472
177
15 1
15 6
1511
1516
1521
1526
1531
1536

«22TH2E«091178
~o42178E<0412 2

«15267E+0712 7

~¢39400£+061212
~.96309E+061217
«493274F+061222
«97286E4+061227
.10108E+071232
«+63895€+051237
«45419E+051263
~269754E+051248
~¢59927E«061253
-+38945£+051258
«61189E+051263
+3B664E+051268
«46168E+041273
+36163E+081278
«11232E+0613 2
+15034E40713 7
+10282€+051312
<19029E+071317
«93956E£+061322
«31469F+071327
~o17474E+071332
-.63518€+061337
«68541E+031343
«52989E+061348
+61280E+061353
«67245E+061358
«14122£4071363
+B8204E+061368
+15172€+061373
.12223£+091378
-.73497E+0416 2
+15030E+0716 7
~.40062E+061412
~e57356E+061417
~.80321F+061422
«5T7812F 0061427
#95343E+061432
~e16674E4051437
+3075SE+041443
«35432F+051448
-.51880E£+061453
-.60596F ¢051458
«30852E+051463
«21115E+051468
+35928E+031473
2299T0E+081478
+56089F+0515 2
«35099F+0615 7
~.11700F+071512
-.87601E+061517
«69217F¢061522
+29515E+071527
S175T9F«071532
-.3101 [E+061537

«10036E+101179
=413275E4+0412 2
-« 38663E0612 8

«2T7131E+051213

«4T7853E+071218

«25116E+061223

«10607E+061228
-~ T964GE 071233

«787BSE*061238

¢11038E+06)244
~o134BAE+061249
~o16B2TE+061254
=+49336E 061259
-9 11557E+051264

+25960E+0641269

«10381E+051274
e 23293E+081279

«2R645E+0613 13

e11766E20713 8
-~ 4082R3E+0611313

«2603RE+071218

«2B151E+061323

«22536E¢071328
~s17522E+081333
=,10951E+061338

«11258E+051344
-~oa11413E+071349

«25T775£4061354

«61029E+061359
~a2663AE+0611364

+5B691E+05]1369

«2R374E+061374

«61067E+091379

« T0668E+0414 3
~+37405€¢0614 A
-216311E+0S1413

«46554E+07141R

«28272E20K1427

2228058051428
e 75452E¢071433
~e2]735E0051438

+23099E+051444
-+ 15500F+05]1649
= l297SE+061454
~+¢51595E+061459
~a59591E 041464

«14913E+04]469

«32499E 0414674

«12956E+081479

+13645E+40615 3
-+42383E+0615 8

«35453E+061513
-+30668E+07151R

«B858723E+061523

«19691E+061529

«2029AF +071537
~.10126E+061538

Continued

o Z2922E 02
5612280512 4
215755%E¢0712 9
=225134E+051214
~e36305£4051219
~a12910E<071224
e 1S429E+061229
o 19240E+081234
«11513E+061239
~a21510E+081245
2 12670E*0512590
«10003E+061255
«65224F 071260
~oB89956FE+051265
p42856E<064)270
~+16073€+051275
«B612B9E <07
+97816E+0613 4
“0256468E<0713 9
“~e49941E+051314
~o26833E2051319
~236266E+061324
«1B522€E+071329
«12140E+091334
«29240E2071339
=+S0595F +071345
225827E+051350
+ T6L30E+051355
~o62159E+071360
~e20T00E*071365
«10751E+05)370
-+31963E+06137S
«13066E+09
-a57282E+0514 4
+15106€+071 9
~021995E2051414
“22349BE«0S51419
~v13287E071424%
o }AZLSEYDALGLRT
«160BTE+ 081434
«73510E+051439
=914496E206]1445
«440R3F+ 0414650
«1081BF« 041455
«3B7S8E+071660
~o46348F+051465
212416E+041470
-0 36285E+041475
«39631E+07
263607E+0515 4
~+A5655E+0515 9
+32B19€+061514
~e16B11E+061519
-+B0154E206152¢6
«39389F«061529
2 4T250E+0R1534
13BH1E-0T15239

= 2656600612 5
244SS0E<0T71200
«69T7T99€+061215
21100180051 220

=0369201E+071225

=, B9S56E<061230
+239201E+081235
=247021E2031240
e 17505E061246

=2 652T6E<0A) 251)

=al2022E+0512%6
oT17T0)E041201)

~.B4855E45051266
02746BE<0S1271
=.25480E-051276

=299003E20513 S
~o63582E+4041310
=o42782E+06131S
~33781E-051320
~.38091E2061325
2= 17976E0 071320
261253E+091335%
018374E 041340
=a25T09E<«061346
~a43875E 0561351
=« 19156£2061356
«16555E¢061361
~a19500E+071366
«66B0TE«061371
~o54870E061376

~e25200E«0614 S
«%I6FTESOTIG10
252037E061415
«112056:061420

~e351R21E207142%

~s TH600E°G61430
214971E<0R14635
«GTISTE2031640
¢ 168BE205)1646
=:367T0TE+06]65]
~«12802E0051456
2 35946E+041461
~«44331E+05)1466
011248E+051471
~213699E+051476

0189T4E+05)15 S
»o53621E+061510
«5B8518E+061515
«15343E+40561520
«42352E+051525
~+32558E°061530
«29117£+091535
-50000E+N31540

=, 52092E<G6
2 30266E+07
~e21117€<06
221534E 06
=235197E07
=049143E+06
056439E+07
~eB9792E06
~+J6565E+05
=033951E+06
«14T10E+06
210541E+05
2e20011E205
2 12918E+05
=v39217E+05

~o13888E07
=053145E+05
«17090E+07
»31337€.07
-16128E+07
=520935E407
»13065E+09
«42479E <05
«27026E+05
=a15007€-07
~a61698E+06
«24315€-06
~2458T6E+06
2 33961E+06
~+BB734E+06

~«55079E<06
»28892€07
~o20613Ee04
025769E+06
~oA2720E+07
~2363425E+06
2 35491E+07
~+10659E+06
=.284]1GE«05
~+322HA9E+06
2 12765E+06
+52963E+ 04
=«10713E+05
«43589E+04

=+19557£+05

«4012B8E«06
~+90299E+05
~210057E007

oBT733E+06

«BBOOSE06

«20372E+07

«61109€+08

«10728E+06

199



200

TABLE 34,

H MATRIX FOR CASE 1 (CONTINUED)

1542
1547
1552
1557
1562
1567
1572
1577
16 1
16 6
1611
1616
1621
1626
1631
1636
1642

- 1647

1652
1657
1662
1667
1672
1677
171
17 &
1711
1716
1721
1726
17N
1736
1742
1747
1752
1757
1762
1767
1772
1777
18 1
18 6
1811
1816
1821
1826
183)
1836
1842
1847
1852
1857
1862
1867
1872

+75935E+041543
«17871E+061548
«43037E+061553
-« 15269E+061558
«67347E+061563
«41609E+061568
+80138E+051573
«46132£+081578
~+10956E£+0516 2
«10672E+0716 7
=¢19535E£4+4051612
=e653407TE~061617
~e58430£+061622
- 18049E+061627
+79647E+061632
«18015£+051637
~+54959E+041643
«TO927E+051648
¢ 15463E+061653
-+ 14840E+Q61658
~+324T9E+051663
~.20616FE+051668
=e24469E+041673
+16370E+081678
«27944E£+0517 2
~e51343E+0617 7
~e3I67STE+061712
~«17310E+071717
«T79103E+061722
«12046E+071727
»31657E+071732
=+13061E+061737
~e34103E+041743
«101T4E+061748
~e49819E+051753
»12159F »051758
«34325E+061763
«2)1331E+061768
«35030€+051773
«15565E+081778
~¢12334E+0518 2
«15070E+0618 7
~215404E£+061812
-«81213E+061817
«89419E+05]1822
=+97769E+051827
«92725E+061832
»49531E+041837
=s41482E+4041843
«24821E+051848
«78678E+051853
~+14522€£+061858

=e10124E+051863 °

=+ 6HSTI0E 041868
«1'7344£+031873

~e56400E+041544
~e4]1954E¢061549
«22638E+051554
«26500E+061559
~¢12669E+061564
+27483E+051569
¢14319E+061574
+29333E£+091579
«~e61730E+0416 3
~+64038E+0616 8
«72926E+051613
«56608E+071618
«453T0E+ 061623
~«20190E+061628
~«10705E¢081633
~«97347E+051638
«80366E+031644
-« 11560E+061649
~o15144E+061654
-«30095E2061659
e61441E+041664
~e13853E+041669
-e54270E+041674
-e12616E+081679
«62053E+0517 3
~«39220E+0517 8
«16582E+061713
-e32441E+071718
«31833E+061723
«20832E+061728
«39823E¢071733
«12656E+061738
«14637E+051744
-« 1AS4BE+061749
«33871E+051754
«74T07E+051759
~e64606E+051764
¢14148E+051769
«670642E+051774
«13930E+091779
~+36149E+0418 3
~e55554E+0518 8
+37927E+051813
+13538£+081818
«22313E+0510823
~+98802E+041828
~+278364E+081833
-.12799E+061438
~+10891E+051844
4723264051849
«e75023E4051854
~+26280E+061859
+19162E+041864
~e64937E+031869
~+73305E+031a74

Continued
~e23966E+071545 ~,11411E+0615646
" e2B9T6E+061550 =,14125E+06155) .

+103B3E+061555 =,12245E+061556
=e21990E+071560 J.79000E+051561
=.9B439E+061565 =.92569E+061566
«S54091€+051570 ,L32715€+061571
~e14530E+061575 =,256B4E+061576
«59448E+08
~e54322E+40516 4 =.24724E+0616 S
e55196F+0616 9 425254E+071610
~e61067E+051614 +61BO9E+061615
~e16264E+051619 .91369E+051620
~e4B5BTE+061624 =,19593E+071625
«18990E+061629 -,91362E+061630
+89911E+071634 =-,12342E+08)635
~e59441E+051639 ,31682E¢031640
«93776E¢051645 L50978F+051646
«11185E+061650 -.11431E¢061651
«10009E+061655 -.19463E+051656
«27207E+071660 =.38073E+041661
o4T7797E+051665 +45156E+051666
~e22284F 4041670 ~o14490E+051671
°85083E+041675 «13520E+051676
=e32924E+07
+3B248E+0617 & 453277E+0517 5
85935E€+0617 9  .11493E+071710
«3989BE+061714 ,22821E+061715
=299420E+051719 +53596E+051720
=+13215€+071724 =,13538E+071725
~«18581E+061729 =.97689E+051730
¢14757E+081734 <13896E£+091735
«667T69E+061739 =~.15250E¢041740
“e11349E+071745 =,17911E+051746
«33644E+051750 =.30557€+051751
«14B54E+031755 +61036E+4041756
“e12916F+071760 +40266E°051761
~eB80240E+061765 ~44T7293E+06]766
+26491E+051770 <16250E+061771
~+B0B25E+051775 ~,13623E+061776
«31712E+08
~e10604E+0518 & =,27187£+0518 S
#5T035E+0518 9 ,L44485E¢061810
«B2405E+0641B814 .51806E+061815
~e29469E+051819 =411309E+051820
~e14465E+061824 -.27520E¢061825
«820B3E+051829 ~.68872E+061830
«11549E+081834 =.21914E+071835
~«12099F+051839 .39389E+031840
«164157E+051845 .3016BE+051846
~415263E+051850 L4H991E+051A51
024852E+051855 .27203E+051856
«14265E+071860 -.11870E<041861
«14985E+051865 ,14204E+051B66
~e53449E+031870 -.38596E¢041871
«37839E+041875 LS1147E2061876

=e22912E4+05
1033511E+06
=«17737E+06

«11598E+06
=+21702E+06

+16796E406
~e4224S5E+06

=+40523E+06
“e22873E+07
=+ 28754E4+06
«7SB80E«0S
«24560E+07
024108E+06
~«2B8717€+07
~«67B15E+04.
~e11204£4+05
-+15151E+06
«11834E4+06
=«56003E+04
«10692E+0S
=.67980E+04
«20772€E+05

«10627E+07
. «66098E+04
“e13317E+07
=e11032E+06

+28882E+06

«24529E+07

«30528E+08
~+11525E+06

«26659E+05
~¢33984E+06
~eB82391E+05

«59152E+05
=211110E+06

«81207E+05
=+21780E+06

= 46TI1E +0S
=+ 19152E+06
=+2BIT79E+06
~+10310E+06
«28076E+06 -
«13530E+06
~o 7T8586E+06
~e14382E+05
~ea5146E+04
«12123E+06
«10026E+06
~e17518E+04
«33893E+04
~«12391E+04
«67130F+04



TABLE 34, Concluded

H MATRIX FOR CASE 1 (CONTINUED)

=a20641E+071879
_e25620E+0519..3
=e14229E+0619 8
=+15086E+061913

«18225E£+071918.

«20344E+06132)
«40314E+061928
~e2544TE+071933
~+65455E+051938

~a66TS2E+041944

«23609E+051949
~e10116E+405195¢4
~e47656E+051959
=¢24158E+051964

+53601E¢041969

+24527E+051974
+53849€E+081979
=+16362E+0420 3
~+15993E+0520 8
+38452E+052013
+85592E+072018
=«33207E+052023
=+64837E+052028
~+18020E+082033
~+11483E+062038
~¢10773E+052044
+54114E+052049

«35149E4052054

«80773E+052059

+BR4IGE+032064
~«21830E4+032069
=¢16318E+03207¢

=e96194E+062079

1877 .13879E£+081878
19 1. «97123E+0419 .2
19 6 =.39762E+0619 7
1911 .61231€E+061912
1916  +41816E+061917.
1921 L45129€+061922
1926 =.56763E+061927
193) ~,78A89E+061932
1936 =.52265E+051937
1942 =.28659E+041943
. 1947 «10216E+051948
1952 =412194F+051953
1957 -.16808E£+051958
1962 412798E+061963
1967 «80304E+051968
1972 +,12628E+05197]
1977 .22987E+071978
20 1 -.78385E+0420 2
20 6 oB0430E+0520 7
2011 =.14506E+062012
2016 -,63136£+062017
2021 L47650E+052022
2026 +14608BE+062027
2031 .10107€+072032
2036 L42021E+042037
2042 =434313E+062043
2047 =-.26346E+052048
2052 .28225€+052052
2057 +56689E+052058
2062 ~,46283E+042063
2067 -.31235E+042068
2072 +25621E+032073
24 6 +10000E<01

22 4 +10000E+01
2077 =.74252€+072076
21 3 L10000E+01

23 § ,10000E+01

26 8 410000F+Gl

25 7 +10000E+0)

27 9 L10000E+01
2810 L10000E+0)
2911 L10000E«0)
3012 .10000E+01)
3113 .10000€E+01
3214 <10000E+01
3315 +10000E+01
3416 <10000E+0])

H MATRIX FOR CASE 1 (CONTINUED)
3517 ,10000£¢01
3618 .«10000E+01
3719 +10000E+01
3820 +10000E+0]
3921 .10000E+01
4022 .10000E+0]
4123 o10000E+0Q)
4224 .10000E«0}
325 410000E+01}
4426 +10000E+01
4527 10000E¢01
4628 o10000E+01
4729 L10000F+01
4830 -.10000E+01
493) ,10000E¢01
5032 +10000E+01
5133 -,60000E¢0])
5234 =,75000E¢01)
5333 .10000£¢01
5434 +10000E+0}

S5 1 +10000E+01

56 2 +10000E+01

=2 126435€+07
21B133E+0619 &
«11020E+0719 9
“e16642E+061914
~obTTS9E+051919
~e10602E+07192¢4
e41687E€+061929
+661B2E+061934
+25932E+061939
~e44TOOE*061945
=¢10960E+051950
+3B9B1E+041955
«55185E+061960
~¢1B77BE+061965
+94B00E+ 041970
=+30215E+051975
«12162E€+08
~+93750E+0420 &
=+25006E+0520 9
«32191E+052014
~e14076E+052019
«11823E+062024
~+51334E+052029
«45764E+072034
~¢597B4E+042039
»7325BE+042045
~210049E+052050
=+13359E+052055
~¢3B826E+0620€0
«6919BF+042065
=a}74T2E+032070
»18727E+062075

“e63653E+06

23818 E«0519 5 8792025 06
=+23130E+06
«41678E+06
~e26941E+06
«37399E+06
«u65017E+06 .
+11792E+08
+566B0E+05
=¢55909E+03
+50169E+05
+2B738E405
¢22042E+05

«13014E+071910
~+.97980E+051915
«99710E+041920
=.11359€+071925
+34640E+061930
_+54132E+0R1935
=o91784E+021940
+13087E+051946
 «20912E4051951
-.15997E+031956
«15002E+051961
~.17709E+061966
+59631E4051971
«e50694E+051376

~s16715€+0520 S
«13847E4062010
«34603E+062015

~e423T6E*042020
«16851E+062025

=+4921BE+062030
~+10821E+072035
«15902E+032040

-e24951E£4052046
«37477E+052051

-+16289E4052056

-¢54120E+032061
«66040E4042066

=e15634E+062071
«24303E4042076

~e41742E405

«29672E+05
=«B80797E+05

~+45811E+05
=« 72904E+05
~e27344E+06
+15981E+05
+56952E+05
«42081E+06
=.39737E+06
223356E+05
~«90128E+04
0 14916E+06
~.17658E+05
~.79998E+03
«15959E+0¢4
~+38580E+03
¢31636E+06

D-MATRIX FOR CASE. 1

1 ~,B4864E+0711

~.12719€+0812

1

1 =~.61746E+0613
1 =,10434F«0814
1 «B7012E+0615
1 =.55462E¢0716
1 ~+60774E+0617
1 =-.17513E+0718
1 =s12303E+0719
1 «902064E+0720
1 «60000E 01592

«31865€E07
.224T20E+06
¢ T5607E406
«B82012€+06
=+87930E+06
«11151E+06
=«14050E+06
=+¢S1796E+05
«11510E+06
«+4RI01E+0S
«75000E 01
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TABLE 35, EIGENVALUES AND RMS RESPONSES FOR CASE 1

OPEN LOOP
E1GENVALUES
REAL IMAG FREQ DAMP
Kussner -.24680489 0.00000000 26680689  =1.00000000
{  Ilaasessn 0.00000000 268643511  =1.00000000
Aileron -6.00000000 0.00000000 6.00000000  ~1.00000000
Kussner/Wagner -10.98300000 0.00000000  10.98300000  ~1.00000000
-22.18500000 0.00000000  22.18500000  ~1.00000000
Kussner -5.09600000 3.60330182 6.24123385 -.81650522
Kussner/Hagner {:::: -8.54920000 0.00000000 8.54920000  =~1.00000000
-10.98300000 0.00000000  10.98300000  =1.00000000
Elevator -7.50000000 0.00000000 7.50000000  ~1.00000000
~2.18500000 0.00000000 2.18500000  =1.00000000
Kussgigcgig:er ~7.50000000 0.00000000 7.50000000  =1.00000000
[ =22.18500000 0.00000000  22.18500000  =1.00000000
-22.18590006 0.00000000  22.18500004  =1.00000000
-22.18499954 0.00000000  22.18499956  =1.00000000
~22.18499954 0.00000000  22.18499954  =1.00000000
-22.18590006 0.00000060  22.18500006  ~1.00000000
-22.18500006 0.00000000  22.18500006  =~1.00000000
-22.18499932 0.00000000  22.18499932  ~=1.00000000
-22.18499932 0.00000000  22.18499932  =-1.00000000
-22.18500352 0.00000000  22.18500352  =1.00000000
-22.18500352 0.00000000  22.18500352  =1.00000000
-22.18499766 0.00000000  22.18499766  =1.00000000
-22.18499766 0.00000000  22.18499766  =1.00000000
-22.18498832 0.00000000  22.18498832  ~=1.00000000
-10.98299999 0.00000000  10.98299999  =1.00000000
Wagner J -10.98299999 0.00006000  10.98299999  =1.00000000
— ~10.98299938 0.00000000  10.98299938  =1.00000000
-10.98299592 0.00000000  10.98299592  =1.00000000
~10.98299592 0.00000000  10.98299592  =1.00000000
-10.98297826 0.00000000  10.98297826  =1.00000000
-10.98297826 0.00000000  10.98297826  ~1.00000000
-22.18516865 0.00000000  22.18516865  -1.00000000
-22.18516865 0.00000000  22.18516865  =1.00000000
-10.98353111 00013084  10.98353111 . ~1.00000000
-10.98195856 00074758  10.98195858  =1.00000000
-10.97703485 0.00000000  10.97703485  ~-1.00000000
~22.18163848 0.00000000  22.18163848  =1.00000000
~10.93147807 00788580  10.93168092 -.99999974
-10.88522896 0.00000000  10.88522896  =1.00000000
-10.74226749 0.00000000  10.74226749  =1.00000000
-21.87218932 0.00000000  21.87218932  =1.00000000
~10.16535534 0.00000000  10.16535534  =1.00000000
- L -21.39156456 0.00000000  21.39156456  =1.00000000
Short Period -.86710311 1.33027733 1.58792493 254606052
—— -.67787290 5.53703588 5.57837593 -.12151797
-.23390114  11.12613802  11.12859636 -.02101803
-.66381152  13.88935949  13.90521315 -.04773832
-.71189325  15,69722948  15.71336391 -.04530496
-.43016385  17.48300516  17.48829639 -.02459724
-.61462065  18.77419694  18.78425482 -.03271999
: -.50636749  19.89619669  19.90263930 ~.02544223
Bend}ng Modes ____ ¢ -.55891810 27.21771559 27.22345370 -.02053076
1-15 -.99205830  33.31684647  33.33161319 -.02976328
-.79858336  37,35654713  37.36508195 -.02137245
=.83990987  39.39941788  39.40836939 -.02131298
-2.49913278 40434719457 40.42451947 -.06182220
~1.11727885  41.55773336  41.57274966 - 02687527
-1.10415915  42.89168820  42.90609794 -.02573432
-~ 76662165  49,76614620  49.77205055 -.01540265
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TABLE 35,

«10121382E4+07
«16302733E+06
«69469100E+06
+B8558B057E+05
«39317435E+06
«4B690990E+05
«23265728E+06
«55777699E+05
«10340485E+06
«31300667E+05
«24137047E+07
«47154683E+06
«17695985E+07
«37390724E+06
«11089511E4+07
«2516T6444E+06
«71808161E+06
+13691056E+06
«37008233E+06
«81342190E+05
«18462290E+01
«69030339€E~01
«19773704E+00
«12922158E+00
+23080328£-01
#«37000113E-01
«36920803E~01
«14791733E-01
+46697515E-01
«43904216E-01
+34T796R%44E~01
.18248172€-01
«78772318€£-02
«10927018E-01
«78947763E-02
«68132548E+00
+80861673E-02
«22704271E-01
+38493616€-01
«55158798E-02
«11107994E£-01
«91198926E-02
«45301163E-02
«15590481E-01
«12701031E-01
«77672093E-~02
«66490324E£-02
«1411%698E-02
«326B4778E-02

.«33709014E-02

¢31937363€~14
«22627982€-12
«53228939€-15
¢30170643E~-14
»15881054E+02
«24569286E+01

Concluded

) »= ot bt gt gt bt G Pt P e
QUOENCVFWNCO®NOUI & WUN -

NN
W e

NN
o

NN N
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«15881054E+02
»245692B6E+01
«18462290E4+01
«69030339E-01
«19773704E+00
«12922158E+00
«23080328E-~01
«37000113E-01)
«36920803E~01
«14791733E=-01}
«46697515E=~01
«43904216E-~01
+34796R44E-01
«18248172€E-01
«7B7723)18E~02
«10927018E-01
«78947763E~02
«68132548E+00
«80861673E-02
«22704271E~01
+38463616€~01
«55158298E~02
¢11107994E~01
«91198026E~02
«45301163E~02
«15590481E~01
«12701031E-~01
0 77672093E~02
«66490324E~02
014119698E~02
«3248477BE~02
«33709014E-02
«5322893%E~15
¢30170643E~14
+23647580E~14
«99178200E4+00
«97183710E+00
+97979891E£+00
«55751508E+01
«98351309E4+00
«3728RB52E+00
«10000642E4+01
»46190556E+00
+17852216E+00
« 717064958E~01
«22502400E~02
«59778695E~02
«45303568£~02
e75114084E~03
«12768364E~02
«10536364E~-02
046060422E~03
«16470572E~-02
«15477549€~02
«11710190E~02
«60616702E~03
«22011686E-03
«31019115€~03
«27933508E-03
+23008115E+00

+91467613E-01

«40632342E~-01
«13987475€-02
+38647145E-02
«26310788E-02
«45221500€-03
«73822350E-03
«67941286E-03
«27106400£-03
«91206133€-03
«86177223E-03
«67033689£~03
«33596179E-03
«13600091E-03
«18527349€-03
+15293583€-03
«12870008E-14
«59315791£~15
«14820492E-14
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TABLE

36, STATES, RESPONSES, AND CONTROLS FOR

CASES 2, 3, AND 4

Case 2
42 States

56 Responses

Case 3
24 States

38 Responses

6 Modes

Truncated, Residualized

Case 4
16 States

30 Responses

2 Modes (1 & 3)

Truncated, Residualized

2 Controls 2 Controls 2 Controls
States Responses Controls States Responses Controls States Responses Controls
1 w 1-10 (B, T)) LI 1 w 1-10 (B, T,) Sae 1 w 1-10 (B, T) 5 e
2 q/n2 i=1,5 éeic 2 q/n2 i=1,5 6eic 2 q/n2 i=1,5 Geic
3-17 1 11-20 (B, 1) 3-8 M -Mg | 11-20 ®LT) 3 , 11-20 (8, T)
18-32" 1, i=1,5 90-14 M-, i=1,5 4 ﬁa i=1,5
33 5, 21-35 1, 15 5, 21-26 1 -1, 5 n, 21 h,
34 be, 36-50 1, 16 be, 27-32 M -7 6 My 22 0
35 be_ 51 5, 17 b 33 %, 7 5, 23 W
36-41 p,-p, 52 'eei 18-23 p,-p, 34 'aei 8 be; 24 Ny
2w 53 5, 24 W 35 5 9 beg 25 '6a
54 e, 36 aei 10-15 p,-p, 26 Bei
55 w 37 w 16 Wy 27 6a
56 q/n2 38 q/n2 28 5ei
29 w
30




TABLE 37,

F-MATRIX FOR CASE 2

331
"33
41
b 6
411
416
421
426
431
436
51
56
511
516
521
526
531
536
61

611
616
621
. 626
631
636
71
T6
711
716
721
726
73

~o66218E+00

+14600E-01
=+36092E-01
=e30474E-01

«40T7SBE+01
=,23875€+01
-+ 32445E+01
- 4B934E+00
«+56B37E+00
-+35559E+00
~+22584E+00
= 77T966E~01
«a68234E+01
-+13368E+02
~e60006E«01

«27253E+01}
~e12620E+01

«4B6SBE«00

+28651E-01
~+.23731E+00

«37541E+02
=e73334E+01
=+38705€E+02

«57304F ¢ 00

«35519E-01
-~ 60690 =01
-,21051E~01
~s21614E~02
~e16216E+01]
-e11279E+0])

«57163E«00
-«20616E+00
- 768T0E-03
~e&43621E+00
~e26611€+00
=.18341E+00
~.16261E¢02
~e17814E«02
~+13363E¢02
=e2247SE+01
-+11317€+01
-«11228E+01
~s1766TE+00
-e83926E-01
-e24366E+03
-e11319E+02

«97311E+00
~«99210E+00
~«21536E£¢00
-+11610E+00
-+63619E-01

«91292E~-01
~+335BKRE«01
~o4u721E+01

«11813E+02

. 1.2
17
112
117
122
127
132
137
22
27
212
217
222
227
232
237
32
37
312
317
322
327
332
337
42
4 7
412
417
422
427
432
437
s 2
S 7
512

522
527
532
537
6 2
67
612
617
622
627
632
637
72
7
712
717
722
127

132

«32776E+01
-e24692E~01
-+98817E-02

+22346E+00
~s13389E+01
~245817E+00

232607E+02
-e67639E+01
=e12293E+01
-a12779E+00
-+15208E+00

«39119E+00
~.51239E+01
-e77423E+01

253301E+02
~.B0421E+00

«16571E+00

«25263E-01

«10389E+00

«22748E+01
-:52607E+01

«744B5E+01

«35564E+03
~e20517E202
©e95920E-01
- B67Y1E-02
~+226BBE~01
~-«14305E~01
-+17073E+00
-+16325E+01

«3475BE+00

+16060E+01
~+91786E+00
-+43833E~01
~e15270E+00

1a64391E~02
-e11716E+01
~e67761E901

«50916E+02

«10995E+02
~e104B5E¢01
-+18509E+00
-221490E+00

«22999E+00
-+ 73565E+01
-«12021E+02

«33548E+02
~+40611E+01
-.25291E+00
-.86288E+00
~«68431E-02

«13750E-01
~e30664E+03

- 13600E+01
- 6T24TES01

1 3
18
113

118

123
128
133
138
e 3

213
218
223
228
233
238
33
38
313
318
323
328
333
338
43
4 8
413
418
%23
428
433
438
53
S8
513
518
523
528
533
538
6 3
6 8
613
618
623
628
633
638
73
78
713
718
723
728
733

-« 28017€=01
«50997€E~01}
~+78981E=-02

~255979E«00.

#«26001E+0)
=+39201E+00

~e24690E+03

~+98990E+00
«58290€E~01
«27254E+00
~«13356E+00
*54826E-01
«9B465€+01
~e64B829E+01
~o60551E+03
~212530E+02
~+93166E£+00
=+25497E+00
+96035€-~01
~o29214E+02
=e63746E+01
«67119E+01)
~+35548E+006
«6B753£401
«14365€~01
-sl2899E -02
~¢11335€-01
«26115€+00
«15038E+01
~026963E-01
=e13414E+«D3
~213990£+01
+63249E=-01
= 42366E-01
~o146B0K+00
»16951E001
=s251T4E+01
«e57360E+01
~e14545E+04
~e12582E+02
«94093E~-01
s 46229E+00
~+15173E+00
-e49739€-01
«17716E+02
~+58092E+01
«78907E°03
-e12268E+02
«63700E-01
«13017€+00
~e91757E-01
«25469€+00
«62918€+01
-258688E+01)

=¢10291£-02

1.4
19
114
119
126
129

134

24
29
214
219
224
229
234

34
39
314
319
3246
329
334

4 4
49
414
419
424
429
4234

5 4
59
516
519
524
529
534

6 &
69
614
619
624
629
634

7 4
79
714
719
724
729
134

=, 69419E~02
«89406E-01
«14250E-01
~«SBTB6E00
«B661TE«01
«19497E+01
=«20139E+03

~+46882E-01

«27873E-01
~«11210E¢+00
-e1642BE+01

e 69654E+01
~+35922E+01
~e26235E+04

~s19642E~-01
«17433E+00
+23093E+00
-«35201E+01
«44558E+02
a27593E+02
«14284E+04

~e BOH16E 00
~el98LH0L~01
=+22035E-01
~«12387E+023
~.43895E+01
-+81533E+00
~«30139E+03

=.76045€-01
=e44043E+00
~e16376E+00
~eT2542E+00
~c21711E¢02
~+61759E+01

«26722E+04

~+41706E-01

«28063E+00
~.12465E€+00
~+68533E+00

«12927E+02
=2 47687E+01
=+26279E+04

~s21769E-01

«56848E-01
~¢16280E-01
-« 72510€E+00

«48704E+0}
-«35973E+00
~sBTIINE0]

COEFFICIENT MATRICES FOR CASE 2

|
110
115
120
125
130
135

25
210
215
220
225
230
23S

35
310
315
320
325
330
335

4 S
410
415
420
425
430
43S

568
510
515
S20
525
530
535

6 S
610
615
620
625
630
635

75
710
715
720
725
730

735,

=+23237E-01

=e41943E-02
=« 15659E~01
=215561E¢01
~e19T74SE+0Q0
~+14466E4+01
~240941E£+02

=e34790E+00
~.13122E+00
~+10421E+00
=e10445E+02
~e72091E+0]
~+5B8873E+01
~+5609SE+03

~e11204E+00
=+«30890E-01
~+89069E-01
~e14694E+02
~«10078E+02
~e17349E+02

«30829E+03

=« T0439E~-01]
“e57HLIEL =02
~+34194E~01
=+93701E+00
~+69265E+00
=e21706E+01
~a77226E+02

=+13099E«01
~«54702E-01
=+ 18148E+00
~«19351E+03
=e63347E+0]}
~+95811E+01
«e70943E+03

-.29513E+00
~+13900E +00
-.1B933E+00
~+96007E+0)
-.78022E+01
~.71B66E+0}
~.75360E+03

-+ 55068E~-01
-+35799E-01
~+11195E+00
~e14228E+01
~e264640E+01
-«71001E+01
=21 418E+03
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TABLE 37.

f MATRIX FOR CASE 2 (CONTINUED)

136

B 1

8 6
811
. 816
a1
826
.831
B36
9 1
.96
911
916
. 921
926
931
. 936
10 1
10 6

1011

1016
1021
1026
1031
1036
111
11 6
11n

1116

1121
1126
113
1136
12 1
12 6
1211
1216
1221
1226
1231
1235
13 1
13 6
131}
1316
1321
1326
133)
1336

S 1a ]

14 6
1411
lal6
1421
1426

~+32477E+00
24B110DE00
+20063E+00
+53088€-01
+T0074E-01
«47678E+01
<42262E+01
+534564E+00
+43958E00
-+37983E+00
«96177E-01
~+61592E-01
-.89065E-01
«47058E+01
=«42830E+01
-.10128E+02 932
+391326+00 937
=237515€+0010 2
~.57961E-0110 7
-.77572E~011012
~+B1760£-021017
-.19296E+011022,
-.23150£+011027
«B6361E+0010632
«53623E+001037
-.2007SE+011] 2
~266399E40011 7
~+23055€4011112
~+58281E+001117
-+21074E+021122
-« 11151E+041127
-+13880E+021132
+23869E+011137
~e26694E+0112 2
~+16376E+0112 7
=.154206+011212
~+6884BE+001217
-+53151E+021222
-.78141E+021227
~+16196€+021232
+67629E+001237
»+1744B8E+0113 2
=420034E40113 7
=.13917€+011312
-+82367E+001317
-.26T17€+021322
-+51969E+021327
~229688E 021332
~212348€+011327
~+13266E°0114 2
=e35689E000i4 7
=545392E0001412

737
8.2
87
812
817
822
827
832
837
9 2
97
912
917

927

«~s27603E+0014617

«43094E011422
~«23170E+021427

922.

=« 70521E=-01
«45053E+00.
«10432E+00
«7826TE=-01
~291262€~01
«49136E+01
«32839E+01
¢17075E+02
216028E+01
~e55269E-01
~+25539E-02
«39394E~01
«15490E+00
«11709E+00
«S54795E+02 933
-251706E+01 938
-219915€+0010 3
-2255643E-0110 8
~«52878E~011013
~eT6703E-011018
~e17498E+011023
~e26347E+011028
~s17573E+021033
=¢36219E+011038
~+19147E+0111 3
=+173%6E+001) B
~+62163E+001113
~+13913€E+011118
~e11679E+021123
-«30055E+021128
~e10372E+031133
~.12360E+021138
-2 37095E+0112 3
~+65109€+0012 8
=e29582E+011213
.«56209E+001218
«15942F+021223
«o14307E+041228
+52383E+021233
«014909€+011238
<4¢36254E+0113 3
»,95334E+0013 8
- 16230E2011313
«B80444E+001318
-.43714E-021323
-283134E2021328
«7495TE*021333
«%8173E+011338
~a11113E-0114 3
~«1R637E<0014 8
~e43391E+001413
©096969E+001418
~al9124E+011423
=.13850E+021428

738
81
8 8
813
818
823
828
833
838
9 3
9 8
913
9is
923
928

Continued

~eJ1534E+01
=411352E+00 8 &
-«11603E+01 8 9
«12550E+00 814
-¢15696E+00 819
=¢35292€+03 824
«67126E+01 B29
=¢42360£+03 834
«S3777€+01
~¢10352€+00
~«55047E-01}
«33352E-02
-s10754E¢01
~e34107E01
=e69322E+00
-+77082E+02
231886F+00
«78391€-0110 4
«90318%E-0110 9
~+41357€-011014
#36342E+001019
«35783£+011024
~+17795£+011029
~«T6070E+021034
=e20487E+01
«45368F¢0011 4
+38344E4+0011 9
=s50184E+001114
+38616E+011119
«27641E+021124
=216156E+021129
<ol 0275E+04113%
=020615E+02
«55723€E<0012 &
«13833€+0112 9
~+15915€-011214
«30312€+0)121%
¢ 14840E-02]1224
~o75811E0021229
2507256403123/
~«41524F 02
«46323E+0013 4
«15203E+0113 9
=030940€2011314
029161E+011319
+56387E+021324
-015393F+041329
026129E+031334
=s424TOE02
~«95060E-0114 &
«34980E+0014 9
~e43766E+001414
-o17827€+011419
2 13931E+021624
=0214601E+0214629

9 4
929
914
919
924
929
934

«19262E~01_8 5§
«e24073E+00 810
«95678E-01 815
«19545E+01_820
~.15028E+02 825
«64133E+01 830
«11629E+04 835

~e640861E-02
=+87550E+00
«32776E-01
=« 1554TE+01
~«3925BE+03
«44623E+01
«69060E+02

9 S
210
91s
920
925
930
335

«58402€-0310 5
«47146E~-011010
~e43910E-011015
~.46182E~011020
«25782E+011025
=~+30680E+011030
~+42369E+031035

=9 72765E-0111 S
~«18370E+001110
=+576459E+001115

297200€+001120
~«13670E+021125
~.26872E+021130
=+35972E+041135

~«17836E+0012 S

«94993E-011210
~e14920E+011215
=e107B7E021220

«34064E4021225
~+50402E+021230
~¢50985E+041235

~«17596€£+0013 5
«37598E+001310
~o1582)E011315
230446E+011320
~¢30321E+021325
=+56930E+021330
~.43554E+0641335

-«B4651E-0114 S
«14949€+001410
<o 19756E-0)1415
~e237S0€+011420
+19740E021625
= 15TTGE+ Q41070

«455T70E~01
«7B782E~01
~+S0959E~01
2173STE«0}
+36451E+0)
~.98954E+01
+38364E+03

~+50959E~01
+84688E-02
-e22464E-01
~e23622E+0]
«7T7745E-01
~+20029E+01
«24520E4+02

.66927E-02
-.1107SE«0]
-.15384E-01

«40640E+00
-, 74025E+03

. 12924E+01
- 22855E+03

~e3T46BE+00
= 94098E~-01
~o T4054E+00

=+¢53094E4+01

«62737E+01
-«23799E+02
~+31896E+04

- 14560E+01
-1 6496TE+00
-.11792E+01
< 26684E¢02
~¢30431E+02
~e36113E+0Z
~o 75641 E+06

~.15314E+01
«.72919E+00
~.13130E+0}
-.36387€+02
~.31614E+02
~49BT7E+02
~,78570E+04

~e44431E400
-.21786E+00
-.42109E€+00
~o15745E+02
~.13529€402
- 26706E+02



TABLE 37,

F MATRIX FOR_CASF 2 (COMTINUFDN)

1431
1436
15 1
15 6
1511
1516
1521
1526
1531
1536
16 1
16 6

. 1611

1616
1621
1626
1631
1636
171
17 6
1711
1716
1721
1726
1731
1736
18 3
19 4
20 5
21 6
22 7
’) 8
24 9
2510
2611
2712
2813
2914
3015
3116
3217
3333
Je3a
3535
3636
3737
3436
3936

4040

4141
4241

33 1

34 2

.=ela600E+021432

«6B40OSE+001437

«19477€-0115 2
-s61732E+0015 7
=-.38106E+001512
-e46163E+001517
-« 19265£+021522
~«12497E+021527
-<25208E+021532
~.B0B69E+001537

«53424E+0016 2

=< 36A65E+0016 T

-.23857E+001612
~.19016E+011617
~.16040E+021622
-.33716E+011627
-.18401E+041632
~.91625E+001637
“.92163E+0017 2
«11402E+0017 7
-«646253E-011717
=e12792E+001717
«13585E+02172?
~.6P156E+011727
-.15726€£+021732
-.2R069E-011737
«10000E+01
«10000E+01
«10000E+01L
«10000E+01
«10000E+01
«10000E+01]
«10000E+01
«10000E+01
«10000E+01
-10000E+01
«10000E+01
+10000E+01
«10000E+01
«10000E+01
+10000E+0}
~e60000E+01
~e75000E+01
-.75000E+01
~.22185€E+023642
~eBS492E+013740
-+50960E+013839
«90891E+023938
~e10983E+024042
= 48524F+004142
«100060E+01

.G1-MATRIX FOR CASE 2

«hH000NE+01
+75000QE 401

+15494E+031633
~+92678E+011438
~«58489E+0015 3
-«97993E£-0115 8
~.27815F+0015113
~-«28539€+001518

=2 14966F+021523

-.10826E+021528
-+91B4RF+0215323

«68469E+011538
-e22955F+0016 3
-«13219E+0016 8
~+14532F+001613
-.12405€E+011618

«13016E+021622
~+60378E+011628
~+14065E+031638

«1NALRE+D21638
~.18082E+0017 3
-e”6968E-0117 8

«86108F-021713
-.12395E+011718
-e204T7HE+011723

«9962AF+0N1728
=e24167E+041733
-+1nA69E+021738

«22185F+02
«B5492E+01
«1N00NE+QY
~+3R953E+ 023939
«10983€+02
-+61315E-01

«10260E+06]1434
-+ 10553€+0°?
«20441E+0015 &
«35500E+UD1S 9
-«2B703F+0N1514
«187264FE+011519
-+ AR4GRSF+ 011524
-«12680E+021529
~e47353E+031534
~+A3214E+01
«266430E40N16 4
«+20594E+0016 9

-+ 1559%5E+001614,

«2633%E+0115619

«19706E+021624
-e80363E+011629
-.B4061E+031634
-+50395E+0)
-«21465E+0017 4
-e14242E~011T7 9

«T76ITTE-071714

~«26700E+011719

«12621E+011724
«10153€+011729
. «B2144E+031734
~e¢23249E+00

-e10192F+072

Continuéd

~«B89608E2031435

~.64303F-0115 5

- A1436E-011510

-.32015E+001515
~e2hBT2E+N11520

«55132F+011525

~e21026E+071530
e 6445364031535

-.P20947E-0116 &
~HGLHAF~-011610
~e16T90E+001415

+PNRAREF+011R20
-.15890F+ 021625
-.99897E+41163¢C
~.19840E+0316A15

-+ 17658E~-0117 S

-10208E+001710
+A76R24E-011715
~.16375E+011720
«20395F+071775
«96046E+011730
=5 45825E+011735

- 21997E+04
~.30807E+00

=¢62737€-0)

~«20359E+01
«30788E+00
»17121E401
~«17384E+04
"~ . 15745€E4+006

~e116441F+0n
=.149A3F =0}
=eIB23I9E+00

«P23G4E+01

«3INGIE+00
“a18321£+02
-sB7244E+073

=e10924E+00
~«10156E-0]
~«71534E-01
~s66277E4+01
~+28539E+01
~.81471E+01

=.)9786E+02.

207



208

G2-MATRIX FOR CASE 2

el 1
42 1

=+30360E+00
«B6190E+00

H=-MATRIX FOR CASE 2

216
221
226
231
236
S
36
n
e
321
326
a3
336
61
46
41
bl1a
%21
426
43)
436
S 1
5 6
511
516
52}
526
53]
536
6 1
6 6
611
616
621
626
631
636

=+46710E+04
«55658E¢04
+33517E+04
+39830E+04
a19521€+07
«30311€+07
4205607
«106S0E+0%
~«B86102€+04
«4T160E+04
=+B3995€+03
-+595318€+03
«15353£+07
~239053E«06
=494568E¢06
«20473E+04
«S52393E+03
«41100E+04
-+10987€¢03
«15359E+04
«1468B5€+07
=e39443F+05
«1897SE« 07
«30895E+02
~e39994F+03
+40642E+04
~a51675€+03
~sS6B35E¢03
«1B131E«07
- +39733E+06
=s55699E ¢ 06
+13863E+03
«11047E+04
«9B392E+03
~«14244E+04
~a69240E+03
«I1944E+06
=411934E+07
-+8B453E+06
«34228E+03
~+68182€+02
«28011E+04
«59362E+02
~«51697€+03
+»10800E+07
-+13221E+05
-~ 62617F+06
-+s24773£+03

12
17
112
117
122
127
132
137
22
21
212
217
222
227
232
237
32
37
Nz
317
322
327
332
337
4 2
4 7
412
417
422
427
432
437
s 2
57
512
S17
522
527
532
537
6 2
67
612
617
622
627
632
637

TABLE 37. Continued

»o33999E+03
038226E+04

. =e11905E+04

»11692E+0S
«16TB2E<07T
~eal1240E-07
«12556E+08
»s539T4E+05
=+29804E+03
~o75835€03
-213651E+02
234453E°04
~o38944E+06
«21336E+05
c46212E07
=~e10503E+06
+93350E+02
»2%838E+06
~+30653E+03
«31187E+04
«11440E+07
-e45073E206
«26194E-07
+49688E+404
«9608RE+02
= 904T5E<03
225702E+02
¢ 379298204
“«o3V629E ¢ 06
-o21787E+05
e &45207E<07
-o12468E+05
«93032€202
~a10366E204
«4B363E+03
~-a22374E+04
~s44925E+06
©33294E+06
=s30774E+07
«12549E+05
«56242E+02
~e16043E<04
+12623E+01
«4TH63E+04
-~ 64709E+06
«69734E+05
«55968E¢07
= 7G323F+03

13
i8

-113

118
123
128
133
138
23
28
213
218
223
228
233
233
33
38
312
318
323
328
333
338
6 3
6 8
13
alfl
423
«28
433
538
S 3
58
513
518
523
s28
533
538
6 3
6 8
613
618
623
628
633
638

o11376E+05
*e926T5E«04
=s14716E<04
«12620E+07
<e43B64E07
=51 1306E207
“o14146E907
=ob4260E+06
e4]135BE+03
234602E+0%
~e548)10E+02
-2 SB771E+05
216019E¢07
=s258863E+05
=221198F 207
~o7021E203
2B85424E+06
=:52743E+00
~o22620E+03
+10001E+07
~o24666E07
-+ T5681E+05
-210291€+06
«18374E+04
«o38659E+02
«36B25E+04
=«89011€E+02
=+5A505F+05
0 15326E+07
~e21933€+05
=a17390E+07
«67957£+03
¢55441E+04
=«900B88E+03
«21700E+03
«54B73E+06
-232028E906
«31BS57E«06
«14502E+06
«50000E+03
~e26137E4+03
«1S5380E+04
- 14087E+03
~oS53753E405
+55760E+06
=e59495E+05
-eQ92437E<06
231682403

1 &
19
ila4
119
124
129
134

-
29
2la
219
226
229
234

3 &
39
314
319
kKr-{3
329
334

4 6
4 9
414
419
424
429
436

5 4
59
514
519
524
529
534

6 4
69
614
619
624
629
634

~+10751E+04
e 15864E404
-+16984E004.
~.27540E+06
«73394E+06
=2 152T4E+0T
s42660E+06

“«31562E+023
«9581SE+04
«65389F+03

-224519t+06
«G4B2BE+07
2+69313E¢05%
+32960E£+05

=0424T9E+03
~a16002E+064
-e47990E+03
=e10815€£206
~e60274E+06
= GLISSEC06

«100BlE+06

~296413E+03
«9186TE+04
«55229E+03
~a2%187E+06
«4389BE+07
+58681E+06
«10935E06

+24661E+02
=+13917E+04
«564278E+03
e16472E+05
~e53826E+06
«57286E+06
=«11724E406

-e92587E+03
«54196E+04
«62433E+03

- 24T4BE 06
o 25443E+07
«61750E+06
«1486BE+03

15
110
115.
120
125
130
135

25
210
215
220
225
230
235

35S
310
315
320
325
330
335

4 5
410
415
«z0
425
430
43S

5 S
S10
518

520 ..

525
530
53S

65
610
61S
620
625
630
635

~+1040SE+05
+S6B26E +04
«29672E+04
~e33662E+07
«35311E07
«23935E+07
~a41530E+06

~+10198E+04
«4T7989E+04
«27201E+03
~«52211E+06
+30578E+07
~«21120E+06
~a26307€¢05

=.46136E+04
~e64333E+02

»1919SE+04
~e148B4TE DY
~a94317E+05

+16760E+07
~o42412E+03

~e13792E+04
«44513E+06
«18977E+03
~eS6242E+06
«29169E+07
~+90507E+03
-¢22459E+05

«85374E+03
~+26489E+03
*~.84323E+03
«36237E+06
~+11830E+06
~e10198E+07

«90101E+05

“+10061E+04
~e33927E+04
~e19265E+03
~4083TE06
=+ 22988E«07
=+28299E+06

«22823E«05



TABLE 37.

H MATRIX FOR CASE Z (CONT INUED)

71
16
711
716
721
726
731
736
81
8 6
811
816
821
826
831
836
91
9 6
911
916
921
926
931
936
10 1}
10 6
1011
1016

12 1
12 6
12n
1216
1221
-1226
1231
1236
1242
131
13 6
13n
1316
1321

=+ 12248E¢04 7
»213581E+04 7.7
=«51962E+03 712
=e16279E+04 717
-«53054E+06 722
~+38095E£+06 727
~+17388E£+07 732
-+ 15372E+03 737
=413272E+03 8 2

«33717E+03 8 7

«39010E+0) 812
~+6]1310E+03 817

«15404E+06 822
=e152556+06 827
-+80805€+06 832
~+18698F+03 837

»53648E+03 9 2
~e10967E+04 9 7

«72749E+03 912

«%1367€+03 917
=+ 40974E+06 922

«6100SE+06 927

«4)1980E+06 932
-«12913E+03 937

«22409E+0310 2

«25627E+0310 7
~+18024E+031012
~s60451E£+4031017

«81652E+051022
~e14822E+061027
~+64008E+061032
=¢15469{+¢031037

«18029€+0611 2

«20524E+0711 7

«31135E+071112

wu2]152E+071117

s18408E¢071)22
e14034E4071127
-355310E+0711232
~«10144E«0T71137

«23627E+05
=<42173E£20412 2

«15267E+0712 7
~+39400E%06]1212
-e96309E+061217
-+93274E+061222

+»97286E+061227

«1010R€+071232
~+63895€¢051237

«45419E+05

«11232€+0613 2

«16034E+0713 7

«10282E+051312

«19029€4+071317

«93956£+061322

2 =e22167E+03 7 3
~218389E+03 7.8

+16119E+03
~e20002E+04
~4469B0E+05
«15782E+06
~«32170E+07
=e1348]1E+ 0S5
=e27330E02
~+20650E+03
+13694E4+02
«11628E+0S
=s56204E¢05
»37496E 05
+»13561E+08
-e16823E+04
«96039E+02
=«31730E+03
=e16232E+03
«87559E£+03
~el44T3E+06
~e15451E+06
«179B82£+07 933
«66299E+04 933
~e39454E+0210 3
+15819€+0210 8
«49374E+021013
«74963E+041018
~e16192E+051023
+39533E+051028
«B6299E+071031
«27320E+041038
«46752E+0611 3
«17302E+071) B
~+10556E+071113
e12579E«0R111A
Le81815E+06112)
247073E+071128
=s466TOE+081133
+25063E£+061138

713
718
723
728
733
738
81
8 8
813
813
823
828
833
83a
9 3
9 8
913
918
923
928

~e13275E40412 3
~eJA663E+0612 R
. e2T131E+051213
«47853E+071218
»25116E+061223
«10607E+061228
-+« 79643E+071231
«78785E+061238

+28645E+0613 3
«11766E4+0713 8
~a40828E+061313
«26033E+071314
«2R151E¢061323

Continued

«J2B52E+06 7 4
220779€+04 7 9
236844E0] 714
+3IBB6GES06 719
+87873E+06 724
¢3I9216E+06 729
~+10129E+06 7134
~¢15250E4+06
=e12862E+0)
s449T0E03
~e49]166E02
*sT6596E+04
+55930£+05
e T4B2UE+04
~e29188E+06
«39389E+03
«16623E+064
023422E+04
“s1T75641F«02
«18373€+06
«11113€+07
-2 16954E+06
=+203505E+06
~e91784E+02
=e28404E+0310 &
=e29934E+0310 9
«36300E+021014
~+58586E+041019
=e26972E+051026
«33321E-051029
«15034E+071034
+15902E+03
«12355€+0711 &
-+45153E+0711 9
~+10831E+071114
~e3T7126F 061119
~eJ4B0SE061120
e4TLSIE0T1129
«21613E+091136
»4B8553E+071139

B &
89
Blé
819
824
829
834

9 4
99
914
919
924
929
934

«¢54122E00512 4
«15755€+0712 9
~+25134E+051214
=¢36305E+051219
=« 12910E+071224
¢ 15429E+061229
«19240E+081234
«11513E+061239

«97B16E+0613 & -

=e25468E+0713 9
~e49941E+051314

=«26833E+061319
=+36265F+061324

«16866E+0)
225470E+04 T10
«24976E+03 11S
«506T2E+05 720
«11607E407 725
«22357E+06 730
~+18734E+05 735

L)

=s97640E+02
«13421E+04
+51588E+03
-+27607E+DS
s 45044E+06
«51861E+06
~e69061E04

85
810
815
820
82s
830
835

95
910
915
920
92s
930
93S

«14510E+03
«246B2E 04
~e13615€4+03
+37819€¢05
«13009E+07
~10259E+06
+15347E+05

=+B1995€40210 5
»24790E4021010
+35954E+031015

~+16761E+051020
»13755€+061025
«34997E+061030

-+65201E+041035

~+25858E+0611 S
«6720BE+061110
-+14848E+071115
«69572E+061120
~221784E+07112S

263920E+071130 ~

+10114E+102135
-e44260E+061140

~e24566E40612 §
«44550E+071210
+69799E+061215
«11001E+061220
~¢36901E+071225
=-¢89556E+061230
«23901E+081235
~e47021E+031240

-+63582E+061310
=e42782E+061315

«387B1E+061320
-,38091E£+061325

+99003E+0513 § =

e31314E404
o41T39E02
«s12770E+04
«10476E+07
«40645E+04
~s13394E+07
~e64253E+05

0¢37214E02
«o43832E+03
-,13858£+03
~+49078E+0S
= 19703E+06
~«2B64BE+06

02482TE+05

«2322SE+04
=¢30565E+03
¢39420E+03
«78952E+06
=,23283E+06
«41620E+06
=+20083£+05

=e¢39832E+03
-+11869E+023
=~«27140E+03
~e46131E+05
=« 75201E+05
=«27831E+06

«12976E+05

=+32155E+07
«35494E+07
e 24434E+07
«5T756E07
~s14958E+07
«30712E4+07
»2215SE+09
=e46142E+06

~e52092E+06
«3J0266E+07
=+21117E+06
«21534E+0¢
=«35197€E+07
=249143E+06
«56439E+07
«~.89792E+06

«138B8BE~07
=e53145E+05
«17050E+07
«31337E07
«16123E+07

209
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TABLE 37,

H MATRIX FOR CASE 2 (CONTINUED)

1326
1331
1336
1342

141

14 6
1411
1416
142])
1626
143)
16436
16442
15 1
15 6
1511
1516
1521
1526
1531
1536
1542
16 1
16 6
rell
1616
1621
1626
163}
1636
1642
17 1
17 6
171%
1716
1721
1726
1731
1736
1742
18 )
18 &
1811
1816
1821
1826
1831
1836
1842
19 1
19 6
1911
1916
1921

«31469E¢071327

~a1T4T4E+071332.

-+63518E+061317
«68541E¢03

~eT349TF+0414 2

+15030E+0714 7
-.40062E+061412
-,57356E+061417
«.B80321F+061422

+57812E+061427

495343061432
“s16674E+051637

+30755E + 04

+56089E+0515 2

«35099E+0615 7
-.11700E+071512
-.87601E+061517

+69217E+061522

«29515E+071527

< 17579E+071532
-+31011F+061537

«75935E+04
-.10956E+0516 2

.10672E+0716 7
-.19535€+051612
-463407E+061617
-.58430F+061622
-.1B8049E+061627

27964 TE+ 061632

+18015€+051637
- «54959E +04

+27946E+0517 2
~.51343E+0617 7
-.36TSTE+061712
-. 1731064071717

«79103F+061722

«12046E+071727

«31657E+071732
~.13061E+061737
-.346103E+04
-¢12334E+0518 2

+15070E+0618 7
~.15404E+061812
-.81213E+061817

.B9419E+051822
~.97769E€+051827

+92725E+061832

+49531F ¢ 041837
- 414B2E+04

«97123E+0419 2
-.39762E+0619 7

+61231F+0619]12

«41816E+061917

«45129E 061922

«22536E+071328
=+17522E+081333
=«10951E+061338

«70668E+04)4 2
«¢37405E¢0614 8
=«16311E+051413

«46554E*07161R

282722061423

«22805E+051428
=+ 75452E+071433
~e217356¢051438

«13645E4+0615 3
=+42383E4+0615 8
+35453E+061513
-+3066RE+071518
«85873E+061523
«19691E+061528
«20298E+071533
~+10126E+06153R

~+61730E+0416 3
~e64038E+0616 8
«72926E+051613
«56608E+071118
«45370E+061623
-+20190E+061628
=«10705E+081633
=e97347E+051638

«620S3E+0517 3
~+¢39220E+0517 8
«16582E+061713
-e32441E+071718
»31833E061727
«208J2E-0481728
239823E+071733
«12656E+061738

~+36149E+¢0418 3
~+55554F£+0518 A
037927€+051R13
¢13538E+0814a18
«22313E+051823
~+«98802E+04]1R28
~+27834E+0818373
-+12799E+061838

«25620E+0519 3
-+14229E+0619 8B
~+15086E£+061913

«18225€+071918

«20344E+061923

Continued

«18522E+071329
212140E+0912334
«29240E+071339

-,57282E+0514 4
¢15106F+0714 9
-.21995E+051414

-¢23498E¢051419

=s132B7F«071424
«1B245E+061429
«160BTF«081434
«T3510E+051439

_963607E+0615 4 .
=+35653E£+0615 9
«32819€£+061514
~«16811E+061519
~+A0154F+061524
«39383E+061529
«4T290E+0B1534
«13861E+071539

-¢54322E+0516 4
«55196£+0616 9
=«61067€+051614
-e16264F+05]1619
~«4B587E+061624
«18990E+061629
+89911E+071634
-+59641£+051639

«3R248BF+0617 4
+B85935£+0617 9
«39B89BE+061714
-+99420F+051719
“s13215F+0T1724
~«18581F+061729
e1475TE+O0R] 734
«66T69E+061739

-+10604F+0518 4
+57035£+0518 9
«B2405E+0641814

~+29469E+051819.

-+14465E40616824
«B2083F+051829
«11549E+0818234

~«12099£+051839

+1B133E+0619 &
«11020E+0719 9
-e16642E+061914
~«47759£+051919
~«10602E+071924

«17974E+071330
«51253E+091335
«18374E+041340

~¢25200E+0614 S
«43617E+0714])0
+S9037E+06]1415
«11205E+061420
=e35121E+071425
~«75600E+061430
«14971E+081435
«47957E2031440

+18974E+0515 S
~+53621E+061510
«58518E+061515
«15343E+061520
«42352E+051525
=+32558E£+061530
«29117€+091535
«50000E+03)540

=e24T24E40616 5
+25254E+071610
+61809E 061615
«91365E+4051620

=+19593E+071625

~+91362E+061630
=«12342E2081635
«31682£+031640

«53277TE+0517 S
«11493E+071710
«22821E+061715
+53596E+051720
=+ 1353BE¢071725
~e976089E+0517130
2138964091735
~o15250E+041740

~¢2718B7E+0518 5
«44485E+061810
+51806E+06181S

-11309€+051820

=+27520£+061825

~.68872E+061830

-.21914E+071835
«392389E+031840

«38189E+0519 S
«13014E+071910
-+97980E+051915
«99710E+041920
~+11359E+071925

=e20935E+07
.a13065E+09
e42479E+0S

~+55679E+06
.28892E+07
-.20413E+04
,25T49E+06
~432720E+07
-+36345E+06
.3549]1E+07
-« 10659E+06

240128E+06
“e90299E€+05
=+10057E+07
«87733E+06
«88005E+06
«20372E+07
+61109€4+08
«10728E+06

~s40523E+06
~e22B73E+07
-.28754E+06
«75880E+05
«24560E4+07
«24108E+06
~«28T17E+07
~.b7B15E+04

«10627E+07
«66098E+04
=e13317€+07
~e11032E+06
«R2BAA2F 06
024529E+07
+30528E 08
=¢11525E+06

=446791E+05
~o1C152E+06
~.28979E+06
=.10310E+06

+2B076E+06

+13530E+06
-.TB5B6E+06
-.14382E+05

«79202€+06
=+23130E+06
«41678E+06
~+24941E+06
«37399F+06
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TABLE 37,

H MATRIX FOR CASE 2 (CONTINUED)
1

926 =.56763E+061927 40314E+061028
1931 =,7BBRIE+061932 ~,2544TE+071933
1936 ~.52265E+051937 ~.65455E+05)938
19642 ~,28659E+04
20 1 -.7B3B5E+0420 2.-,16362E+0420 3
20 6 .80430E+0520 7 ~«15993E+0520 A
2011 -.14506E+062012 .38452E+052013
2016 -.63136E+062017 .BSS92E+07201R
2021 .47650E+052022 -.33207E+052023
2026 <14608F+062027 -.64B37E+052028
2031 «10107E4072032 ~-,18020E+082033
2038 ,42021F 042037 ~.114B3E+062034
2042 -.34318E+06
21 3 ".10000E+01
22 4 310000E+01
23 5 <10000E+01
26 6 +10000F+01
25 7 L10000E+01
26 8 .10000E+01
27 9 .10000E+01
2810 .10000F+01
2911 <10000F+01
3012 ,10000E+01
3113 .10000E+0]

32164  410000E+01
3315 .10000E+01
3416 .10000E+01
3517 L10000E«0]
3618 .10000E+0)
3719 L1N0O0OE+0}
3820 .10000E+01
3921 .10000E+0)
4022  J10000E+01)
4123 ,10000E+01
4224 +10000E+01
4325 .10000F«01
4426  .10D00E+01
4527 410000E+01
4628  ,10000E+01
4729 .10000E+01}
4830 ,10000E+01
4931 .10000E+01}
5032 L10000E+0]
5133 ~.60000E+01
5234 -.75000E+01
5333  .10000E+01
5434 .10000E+01
55 1 .10000E+01
56 2 .10000E+01
57 2 -.22748E-02

Concluded

s416B7E+061929
+66182€+061934
«25932E+061939

~+93750€£+0420 4
=¢25006E£+0520 9
«32191E+052014
=+ 140T6E+052019
»11823E+062024
=+51334F+052029
s4ST64E+0T2034
=s59784F+042039

«34640E+061930

«54132E+081935 .

~e91784E+021540

~«16715€+0520 S
013847E+062010
¢ 34603E+062015

=+ 42376E+042020
«16851E+062025

~+4921BE+062030

-+10821E+07203%
1 15902F 032040

D-MATRIX FOR CASE 2

111
12 1
13 1
14 1
15 1
16 1
171
18 1
19 1)
20 1
51 1
s7 2

~s84864E+07]1)1 2
=+12719€E+0812 2
~+61T46E+0613 2
=e10434E+0814 2

«87012E+0615 2
~«55462E+0716 2
=+607T4E+0617 2
=v17513€+0718 2
=«12303€£+0719 2

«90204E+0720 2

«60000F 0152 2
«75000F 01

~e65017€4+06
«11792E+08
«56680E+05

~+4S811E+05
=s 72904E+0S
- 27344E+06
«15981E+05
«56952E+05
«42081E+06
=¢3973TE+06
0 23356E+05

231845€+07
«24T20E+06
«75607E+06
+82012E+06
~+87930£4+06
«11151E+06
~«14050E+06
=+51796E+05
«11510E4+06
~+4R8901E+05
«75000E 01

211



TABLE 38,

OPEN LOOP

EIGENVALUES

REAL IMAG

~.24680489
-.24843511
-10.98300000
-5,09600000
-22.18500000
~7.50000000
-7.,50000000
~6,00000000
-.87958078
~+51114709
-¢231531375
~+56235202

-.58926994

-.42543603
-.57814367
-.46764186
~.55183151
-.98417727
-.80458111
-.81469289
~2.61966243
-1.11127619
<1.02606573
-.66176822

212

FREQ

0.00000000
0.00000000
0.00000000
0.00000000
3.603301R2
0.00000000
0.00900000
0.00000000
0.00000000
1.27414073
5.459]10641
11.12377051
13.79095081
15.59071845
17.48034181
18.75374268
19,824907139
27.199467135
33,27741074
37.3535214]
39,36582774
40.11R05440
41,55086856
42,78253654
49,22033625

DAMP

«206R0489
+248435]11
10.98300000
8.54920000
6.264123385

22.18500000

7.50000000

7.50000000

6.00000000

1.564825581]

5.48298406
11,12617985
13.80241153
15.60185056
17.48551817
18.7625521°2
19.83062213
27.205060465
33.29196055
37.36218560
36,37425704
40,19095617
4).56572642
42.79483898
49,22478479

EIGENVALUES AND RMS RESPONSES FOR CASE 2

«1.00000000
~1.00000000
=1.00000000
~1.00000000
-.81650522
~1400000000
~1,00000000
-1.00000000
~1.00000000
~+56811043
=+09322425
’002080982
=«04074303
=+03776923
=-.02433076
-.03081354
=+02358204
-«02028415
=+ 02956201
=~.02153464
“+02069100
=+06020365
=.,02673540
=+02397639
-00134“380
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TABLE 38,

R.M.S, RESPONSES

«15749265E+02
«24047537E+01

+81323244F:0)
«213998B0E+00
«e12941657E+00
«21727066E-01
«35101296E-01
«3BH867383E-01

. «164528055E-01

«45516509E-01
«42391354E-01
«33773654E-01
»18483173€-01
«B1967769E-02
+11651000E~01
«81831300€-02
«70211777E+00
+82045150E~02

w23440668E~01

«37561075E-01
«53221984E-02
«10707587€-01
«90147168E-02
«44006460E-02
«15131846E-01
«12323695€£~01
«75562331E-02
«64967921E=-02
«14155077€-02
«32029698E-02
+33047234E-02
«15460685€-14
+«29095085E-15
«30474335E-14
«99178700E+00
«97183710E+00
«979798G1E+00
«55751508E+01
«98351309E+00
«37288852E+00
«10000642E+01

Concluded

Responses
R.M.S, RESPONSES

[
=~ C VDN NS WNe-

- gt b ot ot
VNP WN

VNN NNNINY
UL W=

«11221924€4+07
«16183051E+06

«TT227T46E+06

+B9494276E+05
+43855596E + 06
+496B1893E + 05
«25746560E+06
«54714230E405
+11495801E+06
+30820437E405
«35579708E4+07
«48785318E+06
e24948393E407
«40364431E+06
+14816548E407
«27421917E+06
«90853222E+06
<14260969E€+06
+45453683E+ 06
+B66993I36E + 05
«21375964E+01
+71228R85E-01
«21399880E+00
+12941657E+00
«21727066E-01
+35101296E-01
+38867383E-01
. 14528055E~-01
+45516599E-01
+42391354E-01
«33773654E-01
+18483173E-01
+81967769E-02
«11651060€-01
.81831300€-02
«T0211777E+00
.82045150E-02
+23440668E-01
+37561075E-01
+53221984E-02
«10707587E-01
«90147168E-02
V44006460E-02
.15131846E-01
+12323695€-01
~75592331€-02
+64967921E-02
»14155077E-02
.320296A98E-02

«33047234E-02

«92764110E-14
+21824314E-14
+15460685E~14
+2909908SE~15
+v15749265E+02
«2404T7537E+01

213
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TABLE 39.

F<MATRIX FOR CASE 3R

11

e

-

6
[}
&

- Py

fasyuy

&
¢

-

]

Fompp

o

o
—

3

1
6
1
6
1
<]
1
]
1
1
5
1
6
1
6
1
6
1
i
6
1
H
6
3
[
S
[
7

et et e Dt gt . ) )
LSRN OO NNANIRRAZTNNUTIAN D 88 S WWWWN AN N e e

ot
W
o
vt

o Dt
=}
e
~N o

17418
i%19
2018
2118
2ee?

‘2223

2423

-+, 68156E00
«21332€-901
~, 1 T7082E~01
-~ 19G02€+03
~55140E000
©o,32436F <00
. 10304E002
=s25322€40%
~+16B63F<01

2511236000
~16621E202

a14194F 204

24552201
~358908F-01
© o B6D20E+00
~029227E003

«531060E-01

~o60920E 00 ¢

~,19318E+03
=, 2575304
«s11068F<01
=3 POB9LEL DT
~ e 336BTE<G1
- 292920 0%
=+ 20164F <09
~. 107535800
=o12963E+0)
~ BEROSF 3
25398608
nIBLLARE DD
s 189ATE (Y
i Li6BE0 04
-10000F 0]
»10000E+01
cAN0G0F Q]
W} ODVOE«G]
JYGHO0F+ 01
¢ 1C000E-01Y
w,BG000E 01
~.TS000F+01
~,T75600F 61

P2
17
112
117
-
g7
212
217
32
37

31

317
4 ¢
4 7
412
617

u
™~

e Lt e

e
R IV SR AU PR R TR NV O R T

PO AR LLORFRAUTN

s s

~. 2218574621624
. 8549266011822
~250260E+012020

2 SRB21E-022120

~o10983E+622

224

«32791E201
=a26604E-01
%&958E+01
~o3DLGTE G2
~ol11746E901]
e} 1995E 00
«o57006E+01
oo 466F5203
s 10534E¢00
217325601
2 40631E«02
2PSS9RPE03
«o,88300E-01
>~ 76114E~D2
~¢15823E901
=2 &3B6TE<02
-.B5213E¢00
~.346829E-01
o YSL04E 12
=,58207E953
=, 28T21E00
~517602E+00
- 24252C203
0o 62584E 4032
.o £34%955:00
~.B3125E-00
=.32269¢+01
o1 T943EH3
262046E200
~GOTh2E -0}
c4S0B3E0})
2323186463

«22188E202
2 854952E+90}
«iD00OE<EY

DN L PM RPN DU S E S 8 W N N N = e e

Py o ot - pas ot et o g - e

- pet
DWWV WRIWUPRPLDADDRDWIWIWDWIDWDLDW

D B
—
L 0o

gia

«e35615E-01
«4T7787E=01
=ol360)E00}
o hB27IE00
039579E-01
e@5113F¢00
©e49634E201
2 27053E+01
~.98741E<00
-s?25652F <00
»o5861BE-0G1
«6297%E <00
cJL416E=01
=a3J0630E-02
~e15692E <00
=a21372€+00
»51344E-01
~o616130-01
=:.37837F+00
«a23003E+01
21592701
«43TB3E<00
~oT1034E+01%
~« 30079 <01
c6H0625F~01
s J235TE< 0D
=2,30625E03
~53280G4E«Q0
~o}07GLIECH
~o116B1E-C}
4TT10E201
+4 384800

«o35953E¢«622181 ~.10192E+02

231068302

=+ 49526E002324 ~.61315E~012

«10000F<«01

~60000 201
LTSH00E-61

e o - — ot — -

-
EVFOITCIISVIFOIFVTOITODFOT VLD SO0

DN ~NOOFFUNVTIUTE & & & ol N NTU N a0 e o gew

o
L)

8ie
819

~«T1438E~02
=+ 63IOTSE<00
«184668E+01
=oT0523E+01
= 64TO9E-0]
v 1 0B50E£+00
291053E+01
=s10493E£+01}
=~ 2LB8T4E-01
~.29851E<02
=:66903E+0]
=e23)32E 002
= 4E5T4ES00
«26632E+00
215112€+01
«16827E401
~+72981E-01
+13558E+01
=«31528E+01
s11163E+02
>+39164E-01
=.19816E:00
a1 T025E02
~e42601E401
~o21022E~01
«23384E£+00
«60832E«01
~o 42523601
«18093E~0]
~«11571E+00
=e35230E003
016346E0%

15
110
115
120
2.5
210
215
220
3s
310
3is
320
% 5
410
415
420
5SS
510
518
520
£ 5
610
615
620
75
710
715
720
8 5
810
815
826G

COEFFICIENT MATRICES FOR CASE 3R

~224133E-01
~.65316E+00
©es23106E+03
~<.51B890E+00
-, 32990E +00
vy, 16757E+0]
~.57617E¢03
-.11854E+02
~o14662E+00
-, 408585401
-¢33B01E+04

«66833E+01)
= 67265E«0])
-o12384E+03
«213323E+03
e 13256E+0]
=012857E+01
~e66745E+00
~ 14152E+04
= 11851E+02
- 2T445E+00
- 67868E-00

©B80354E+03
~.11528E+02
- 48689E-01
= 74504E+00
-2 13080E+02
“.29517E+01

235634601

0 20064E+01
“.41074E+03

050304E+01




G2-MATRIX FOR CASE 3R

.23 1
24 1

~«30360E+00
«86190E+00

.H=MATRIX FOR CASE 3R

«

=e11402FE+05
«59635F ¢+ 04
=u33660E«07
“oh2T18E07
-+ 16815E+05
«62092E+04
~2S6988E+06
'«23209E4+06
«21601E+04
04 0248E+04
~o14698E¢07
+15608€+07
~sB6859€+04
«S54799E+ 04
- 60684E+06
«49S8TE+06
+J2661E+04
+90921€+03
«ASTI6E+06
«16435€07
~o656TBE+04
«39764E%04
= 45087F+06
«15519€+07
= 20237E+04
-2 10691E+04
«10328€+07
«14635€+06
-.63651E¢04
«13185F 04
~.28042€+05
+46564E 06
- 17620E+04
=.77769€+03
«78195¢F+06
~s63165E¢06 917
~e36447E+0410 2
«BST787E+0310 7
=o TT475E+051012
«29360F+061017
«18137€+0611 2
«20391F«0711 7
+56752F+071112
«97908E+091117
~a44260E4041122
+35657€+0612 2
«15249€+0712 7
«26164E+061212
«21769€+081217

VO OEDIDIRINNNNCOGOTITARANNNS S ST WWWWN NN o
— - ot bt - - — - - o o
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TABLE 39. Continued
«e20980E+04 1 3 +11B92E«05 1 & =,11222E+04 1 S
 eITTL6E+0L | B.~,95956E+04 1.9 L12660E¢07.110.
e)19604E+07 113 165356407 114 ~.43I256E+07 115
=e3T233E+06 118 +74621E+06 119 -,13161E+06 120
«o17551E404 2 3 ~.13706E404 2 4. =.10226E+04 2 S.
~eB9423E+03 2 8 o30213E+064 2 9 =,79580E+05 210
«1632BE+07 213 =440178E+06 214 +15634E+07 215
«14186E+06 218 o87754E+06 219 =.21133E406 220
«9446TE+03 3 3 <B7658E+04 3 4 =,40629€¢03 3 §
+262T0E+04 3 A =.52791E406 3 9 L10033E+07 310
«143BSE+0T 313 L11376E+07 314 -.24584E+07 315
+102SAE+07 318 ~.27862E+04 319 ,24007€+05 320
~oel2267E+04 4 3 =.1729BE¢04 & & = 10673E+04 4 S
~e10609E+04 4 B +32638€¢04 4 9 =,78122E+05 410
«16069E+07 413 ~.38764E+06 416 o14963E+07 415
«18605E+06 418 .62943E+064 419 =,11212E+06 420
«B6BLTE+D3 S 3 .546010E+04 S & «57B99E«02 5 5
~210337E+04 § B =.75T65E+03 5 9 ,64T25E«06 510
e3P090E+06 513 ~.43627F+06 S1&4 ~,33237E+406 515
«60190E+06 S18 ~.18108E¢04 519 L35BS57E+05 520
~.45726E¢03 6 3 =.19342E406 6 4 =.10373E¢04 6 S
=e16366E%04 6 8 <BTTBTE+03 6 9 ~,70613€+05 610
«11613E+07 613 ~.64807€+06 614 . «52377E+06 615
46543E+06 618 «13B97E«06 619 ~.6)1029E+05 620
~+36966E+03 7 3 .28616E+046 T 4 17184E+03 7 5
~414644E+03 7 8 <19385E+06 7 9 .38385€+06 710
=e50920E+06 713 ~.497055+05 714 o.86234E+06 715
~.55748E+05 718 4150956404 719 ~.26246E+05 720
“«10989E+04 8 3 =.17894E+06 A 4 =,21584E+03 B 5
=+340176403 A A .21615E+03 A 9 =.263B2E+05 R10
+v25316E¢06 A1 = 74333IC+L5 Al4 ,49803E«05 ALS
«15154E006 A18 LS52326E+03 819 ~,TBI29E+05 B20
=e51343E+03 9 3 13572E+06 9 & .996465E+02 9 §
~e33506E403 9 8 .211i0E+04 2 @ L1B069E+06 910
“230323E+06 913 =.14985E+06 914 +11084E¢07 915
~e32589€+06 918 +19436E904 19 =.21225E¢05 920
~o70178E+0310 3 ~¢13305640410 & =.153B6E+0I10 S
“e6777TSE+0210 8 =.42362E+0310 9 =,17731E«051010
«144TGE+061013 ~.2B09BF+051014 =.30134E+051015
«10060E+061018 o17237€+031019 ~.44B65E+051020
«44BTTES0611 3 1242340711 & -.25941F+0611 5
«17271E+071) 8 =.4S5062E+0711 9 =+31213E£+061110
«13907E+071113 .57191F+061114 =.12992E+061115
«17283E+091118 -.10109E¢071119 +441B4E*061120
-46143E+061124 <23627E+05
=oB0T94ESOII2 3 =.52063E40512 & =.2655TE1 0612 S
=+3B657E+0612 8 +15761E+0712 © -.123B0E+051210
~e10491E+071213 +26751€+061214 -412615E4071215
«37171E+071218 =.68760E¢051219 +89422E+061220

=s104B6E+05

=~e27397E+06

~e49243E+07
~e18320€+05
~a17113E¢04
=e27011E4+06
+35508E+05
"e11202E+04
=+43716E+04
=+ 10366E+06

~+9BSATE+06"

+68250E+04
=¢20389E+04
~«27563E+06
«73225€+05
«22936E+04
«10606E+04
«17219E+05
«16249E+07
¢ T1056E ¢ 04
«17389E+04
~e26417E+06

0 18458E+07

«69635E + 04

«301S57E«04

«46899E+ 0S5

«54150E+06

«63792E+03
~e65703E+03
=e6]223€ +0S
+S4116E07
«20544E+04
«20198E+04
«3266TE+0S
«78CA4E 06
«27122E+04
«82027E+03
«24964E+05
«53083E.07
012945E+04

Te32230E+07

«T0640E+06
«20835E+09
045933E+07

=+52054E+06
»13555E+06
«15421E4+08
«10307E+06

215
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H=MATRIX FOR CASE 3R
1221 =.47021£+031222

40 2 =.22T748E-02

TABLE 39,

(CONTINVED)
~+89792E+061224

«11748E+0713 8
«T0998E£+061313
«10272E+09123168
«42479E+05]1 124
«81114E+04164 3
~e37394E+0614 8
=+90600E+061413
+26117€E+071418

=e10659E+0614624

«12954E+0615 3
~ab4246TE+0615 8

¢59861E¢061513 .

«4840B8E+081518
«10728E+061524

~o4BTTTEO416 3

-+64024E20616 8
~e68436E+061613
-e24351E+071618
=+67815E+041626

«58958E+0517 3
=-¢JQ769E+0S517 8

«T1745E¢061713

«23903E+081718
««11525E+061724
«.12429E+0418 3
=+55256E+051a 8
~¢B9106F£+051R13
=.4786RE+061R18
=.143B82E 051824

«24985E+0519 3

~e14245E+0619 8.

+42578E+061913
«96484E+071918
«5A680E+051924

~.19670F+0320 37

=¢24B56E+0520 9.

- TB915E 4062014
+38844E+062019. =,

~e15808E+0520 B
~e70432E 052013
-«30281E¢062018

. #23356E+052024

13 1. «10591E+0613.2
13 6 .14964E+0713 7
1311  «30743E+071312
1316 . .58954E+091317
1321  .18374E+041322
14.1 oSB499E+0314 2
14 6 .15014E+0714 7
1611 +30236E+0614)2
1416 +1407SE+081417
1421 <47957€+031422
15 1 <5017BE+0515 2
15 6 +34B03E+0615 7
(1511 4B5731E¢061512
1516 427958£+091517
1521 «50000E+031522
16 1 =,44169E+0416 2
16 6 +10660E+0716 T
1611 «13188E+061612
1616 =+13054E+0814617
1621 .31682E¢031622
17 1 «26792E+0517 2
17 6 =.51536E+0617 7
1711 -.10800€+061712
716 413398E+091717
1721 ~.15250€+041722
18 1 -.26000£+0318 2
18 6 .14907E+0618 7
1811 -.14240E+051812
1816 =.21942E+071817
1821 .39389€ 031822
19 1 <11014E+0519 2
19 6 =.39844F+0619 7
191] ~.25386E¢061912
1916 +53135E+081917
1921 =.91784E+021922
20 1 =.27781£+0320 2
20 6 ,79401E+GS20 7.
2011 <7S129F+052012
2016 ~.12211E+072017
2021 +15902€+032022
21 3 .10000g+01

22 4 +10000E«0]

23 5 410000E+01

26 6 +10000E+01

25 7 .10000£+01

26 8  410000E+01

27 9 L10000F+01
2810 +10000E+01
2911 +10000£+01
3012 +10000E¢01
3113 .10000F+01)
3214 .10000E+01
3315 -.6000CE+01
H-MATRIX FOR CASE 3R (CONTINUED)
3416 =.75000E+01
3515 .10000E+01
3616 +10000E+0}

37 1| .10000E¢01

38 2 .10000E+01

227273E+0613_1

«456419€+05

Concluded

298197€+0613 &.=.99521E40513. 5

=,25420E+0713 9
«24T26E+061314
=+62575E+061319
+68541E€+03
«255453E00514 4
#1S111E+0714 9
«29851E+061414
~e22062E+051419
e30755F006
«63783E+0615 &
-+35456E+0615 9
#81152E+061514
=+30539E+061519
«15935€+04
~+52366E00516 &
+55249E+0616 9
+65904E+061614

«16309E«051619 -,

=e564959E¢06
¢3BIT6E0617 &

+86068FE+0617 9 =

«31097€+061714
=«13172E+061719
=+34103F+06

“e77001E+0418 & =

«57347TE«0518 9
«60356F+051814
«3B8551E£+041819
~e41482E 04
«18174E+0619 &
«11027E+0719 9
«20404F+061914

‘«e53703E+051919

*e28659E+04
o T4T20E«0420 &

=934318E+04

«.2368BE+061310
~e19728E+061315
~¢84798E+05132¢0

=«25191€+0614 S
~e20644E+041410
«e12B85E+071415
«82742E+051420

+18678E+0515 S
=+15329E+061510

.=eT0459E+06151S

~e12251E4061520

=o24TO07E+0616 S

«43519E+041610
=e45983E+061615
16289E+051620

«53115€+0517 5
s BT665E4051710
-« 12614E+071715
«14222E+061720

«26952E+0518 5
«36788E+041810
-s14714E+06181S
+16B05£+051820

«38177€4+0519 S
=ek4438E+051910
~+104B0E+071915
=+41029E+051920

~e16ST3E0520 S

«11628E+062015
23918E+052020

D-MATRIX FOR CASE 3R

11 1
12 1
131
14 1
15 1
16 1
17 1
18 1
19 1
20 1
331
A4 2

=e84864F¢07})] 2
«s12719€£¢0812 2
~o61T746E+0613 2
=e10434E*0814 2
«87012E+0615 2
~e55462E+0716 2
=«60TT4E0617 2
«+17S513E+0718 2
«e12303E+0719 2
+90204E+0720 2
«60000€ Ol
+7S000E 0140 2

¢ TT964E+042010 .

~a13933E.07
«39108E+06
«11607E+09
22T63TE-07

~+55627E+06
«13629E+06
«12812€+08
o6T924E 0S5

«J9B9BE+0S
1544 TE«06
043514E+08
«13076E+07

=e40418BE+06
«11119€E+06
0423B9E+07

*e60716E+05

«10616E+07
«56207E+0S
«12831E+08
«626B3E06

=e45414E+05
+12306E+0S
«9TTO2E+06
~«10397E+05

+791B4E06
«13201E+05
«14664E407
+24873E+06

~o4497SE+0S
«10146E+05
=e28674E+07
=oSTBI2E 04

«J184SE07
«24T20E+06
+75607E+06
+82012E+06
-,87930E+06
«11151E06
=214050E+06
««51796E+ 0S5
«11510€+06
=s4R901E+05

»7S000E 01
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TABLE 40, EIGENVALUES AND RMS RESPONSES FOR CASE 3R

EIGENVALUES
REAL IMAG

-.246804R9
-.24R435) 1
=10.98300000

=P ,56920600
~5,09500000
=22.18500000
-7.50000000
«7.,50000000
-6.,00000000
-.89639730
~-,472915A9
-o23197946
-,58051611
-.62879051
-e%2916431
-,63282642

Responses
R.M.S. RESPONSES

«97691330€.06
«9594R0S8BE+05
«71717221E4+06
«33235365E+05
«41364008B£406
«22612479E+05
«228327R9E+06
«37925111E+06
«B88437194F «+0S
«2B2R1492E+04
«3264064L9E407
«33403210F+06
«23570807E+07
+27606995E+06
«14026411E+07
«2093239RE+06
2BLL6193IE406
«10995822E+06
«41152790E+06
«68150133€405

+19583924E4+01

«67654134E-01
«20722379€+00
«13572309€+00
#23649271E-01
«35310963€-01
«63519868F+00
«77335982F-02
«22888029E-01
« JUS68559E-01
oH5hG149ISE-02
«11694970£-01
24816433BE-14
«13204196E-13
«80273897€-15
«17605594E-14
«15841310€+02
¢26460384E+01

FREQ DAMP
0.000000n0 «26BROGAY . =1,00000000
0.00000000 224863511 =1.00000000
0.00000000 10.98300000 -1.00000000
0,00000000 8.564920000 =1.00000000"
3.603301R2 6.264123385 -.B1650522
0.00000000 22,18500000 =1.00000000
0.00000600 7.50000000 -1.,00000000
0.00000000 7,50000000 «1.00000000
0.00000000 6,00000000 ~1,00000000
1.28R32477 1,56949317 -.57113807
5.39R25762 5.41893299 -.08727104
11,125839q09 11,12825817 -+02084598
13,80188476 13.81408780 =.06202349
15.63094804 15,64359019 -.04019477
17.49286539 17.,49812909 -.02452630
18,79828981 18,806893854 003364498
States
R.M.S, RESPONSES

1 +ISR41T10E402

2 «26460184F +01]

3 «19583924E+01

o +67654]134E-01

S «20722379E+00

6 «13572309€+00

7 «23649271E-01

8 «35310963E-0}

9 «6351986RE+00

1o «77335982E-02

11 «22R8RO29E-~01

12 «38568559E-01

13 «56414905€-02

14 .11094970F-01

15 «80273497€-15

16 «17605594E-14

17 «32509803E-14

18 «99178700E+00

19 «97183710E4+00

20 «37979A91E+00

21 «5575150R€+01

22 «98351309E+00

23 «37288852E+00

24 «10000642E+01

217



F~MATRIX FOR CASE 3T

TABLE 41,

Gl-MATRIX FOR CASE 3T

15 1
16 2

«60000F«01
«75000E¢01

COEFFICIENT MATRICES FOR CASE 3T

1 1. =,66218E200 1 2 L32776E¢01 1 3 =228017€=01 ) & =.69419E=07 1 F =.23237€=01
1 6 o14600E~01 1 7 =¢24692E~01 1 8 «S0997E=01 1 9 ~,55979€+00 110 ~<S8786E+00
11) =,15561E+01 112 40758E+0]1 113 =+13389E¢01 114 .20001E¢01 115 =.24690E+03
116 =020139E+03 117 =¢40941E202 110 _=e&B9I4E+00 119 =+676I9E*0] 120 =.98990E+00
2 1 =«S6RITE00 2 2 =e12293E¢0] 2 3 o582.0r 51 2 & =o46882E~01 2 5 =,34790E+00
2 6 =,35559E000 2 T =o12779E«00 2 8 <27254F«00 2 9 +54826E~01 210 ~.16428E+0]
211 =210445E¢02 212 ~468234E+0]1 213 ~451239€+0]) 214 ,98465E+01 215 ~e60551E+03
216 =.2623SE+04 217 =.S609SE¢03 218 +27253E+0) 219 =.B0421E+00 220 -.12530E+02
31 ~.12620E90]1 3 2 J)ASTIECDO 3 3 ~e93166E+00 I & =,19642E~0) 3 S =.11204E+00
I 6 4B658E<00 3 T +25263E~-01 3 8 ~e25%97E¢00 3 9 =,29214E+02 310 ++35241E+01
311 . 14694E¢02 312 +I7541E+02 313 =¢52607E+01 314 =o63746E+01 315 «o35548E+04
316 o14284E+04 317 <30829E+03 318 +57304E+00 319 ~,20517E+02 320 +68753E+01
4 1 23S519E~01 & 2 «.95920E~01 4 3 .+14365F-0]1 4 & _~.46616E+00 4 5 =.70439E-01
4 6 -«b60690E~01 & T =-.B6TSIE~02 4 B =<128B95E~02 4 9 <26)115E+00 410 -.12387E+03
411 =¢93701€¢00 412 ~¢16216E+01 413 =o)TO73E«00 414 o1503BE+01 415 =.)13414E+03
416 =430139F+03 417 ~,77226E+02 418 =.206]16F¢00 419 o16060E*01 420 =<13990E+01
S 1 =oT76870E~03 5 2 ~.917B6FE+00 S 3 +63949E~-01 5 &4 ~.76045€-01 5 5 =,13099E+0]
S 6 =o43621E+00 5 7 =,43833E~0) 5 B =,642345F-01 5 9 .1495)E+D0] 510 =.72542E£+00
511 =.19351E+03 512 =.16261E+02 S13 =,11716E01 514 «.25174E+01 515 =.14545E+04
516 =426722E+04 517 -.70943E+03 518 ~,22475€+01 519 .10995E+02 S20 =.12582E+02
6 1 =o1131TE+0]1 6 2 ~o104B5E¢01 6 3 «94093E~01 6 4 =,41706E-01 6 S =.29513E+00
6 6 =e)1122BE+01°6 7 ~,1R500E+00 6 B +46229F¢00 6 9 =,49739E-01 610 -,68533E+00
611 =.960D07F¢01 612 ~.24366E+03 613 ~.73565E+01 614 +17716E+02 615 .T78907E+03
‘616 = 26279E+04 617 <« 7S360E+03 618 =299210€¢00 619 ~.40611E¢01 620 -.12268E+¢02
T 1 =eRIS36E+00 7 2 ~0252%1E+00 7 3 .+63700E-01 7 4 =.21769E-01 7 S ~+55068E~01
7 6 =.11610E+400 7 7 =.B62BABE+00 7 8 <13017E¢00 7 9 o25469E+00 710 <,72510E+00
711 =o14228E+01 712 ~o33588E+01 713 ~e30664E+03 714 J62918E+01 715 ~«10291E+02
716 =,6799BE¢03 717 =42141R8E+03 718 =o32677€¢00 719 =+70521E~01 720 =+31534E+0)
8 1 L48110E«00 8 2 +45053E¢00 8 3 -+11352F«00 B 4 .19362E-01 B S L45570E~01
8 6 J20063E+00 8 7 +10432E+00 R 8 =<11603E+01 8 9 ~.15696E+00 810 +1954SE+01
811 L173S7E«0] B8l2 447678E+0]1 Bl +49136E+01 Bl4 =¢35292E+03 B1S5 ~+42360E+0)
B16 +11629E+04 B17 3R364E+03 818 <43958F¢00 819 L1602BE+01 820 <S3IT77E-01
9 3 .10000E+01

10 ¢ ,10000E+01

11 5 +10000E+01

12 6 <10000F+01

12 7 10000E-01

1¢ 8 <10000£+01)

1515 =.60000E+01

1616 =,75000E+01

1717 =,75000E+01

1818 ~,2218SE+021824 «2218SE+02

1919 ~.B5492E+011922 L85492E+01

2018 -.50960E+012021 +10000£+01

2118 <90891E+022120 ~+3B953£+022121 ~«10192€E+02

2222 -,10983E+022224 .10983€+02

2323 =,49524E+002324 ~.61315€-01

26423 L,10000E+01



GR=-MATRIX FOR CASE 23T

23 1..-30360E+00
246 1 «B86190FE¢00

H MATRIX FOR CASE 37

+18029E+0611 2
2a20524E+0711 7
+STTS6E+071112

N o

-~ 4G260E+D041122
=.42]1T78E+0412 2
«15267F 0712 7
A21334E 061212,

1 ) -.46710E+04 1 2
1 6 o55658F+04 1 7
111 ~.33662E+07 112
116  +42460E+06 117
21 ~.B6102E+04 2 2
2 6 J47160FE¢04 2°7
211 =.S52211E+06 212
216  «32960F£+05 217
31 .52393F«03 3 2
36 L41100E«04 3 7
311 ~.14B47E+67 312
316 .10081E+06 317
% ) ~,99994E+03 4 2
b &  J40642EC04 4 T
411 -.56242E¢06 412
616 L10935F+06 417
5 1 «11047E+04 5 2
S 6 498392E+03 5 7
511 «36237E+06 512
516 ~e11724E+06 517
6 1 -.681B2E+02 6 2
6 6 +28011E+04 6 7
611 =.40897€+06 612
616 «14868E¢05 617
7 1 -.12248E¢06 7 2
7 6 -«13581F¢04 7 7
711 .10676E+07 712
716 =o1873uE+05 717
B 1 ~.13272F+03 8 2
8 6 ,337176+03 8 7
811 ~.49078E+05 812
Bl6 ~.65061F+04 817
9 1 .53648E¢03 9 2
9 6 -.10967€+04 9 7
911 .78B952E+06 912
916 .15347E+05 917
01 .22409E+0310 2
0 6 425627E+0310 7
01) -.46131E+051012
016 -.65201E+041017
11
1.6
1
116
121
21
2 6
211

Bt ot P b e Pt oo G Pt ot

—

+10114E+101117

TABLE 41,

~«33999E+03
+3B226E+04
.219521E07
=e41530E+06
~«29A804E+03
=« 75835E+03
«15353E+07
=e26307E+05
«93350E+02
«2583BE+04
.lkkBSE}O?
~e42412E4+03
«96088E«02
~e9047SE+03
«15131E+07
=e22459E+05
«93032E+02
~e10366E¢04
«3194L4E+ DS
s90101E+05
«56242E+02
~s16043E04
«10800E+07
«22823E+05
~e22167E+03
~+1R383FE+03
-+53054€+06
~a664253E40S
~e27330F 02
~s20650E+03
s 15404E+06
«24B27E 05
«96039E+02
=¢31730£+03
~e&40974E+06
~«200B3E+05 918
=+39454E+0210 3
«15819E40210 R
«81652E051013
«12974E+0S51018
«46752E+061) 3
«17302E+0711 8
«18498E+071113
«22155E+091118
~es46143E+061124
-«13275E+0412 3
-«3R663F¢06]12 8
~«93274£+061211

WOILDWIDIWIWIWIWIDILRWDODWLWLOWDWDWDWDDWDWDLWDW

Continued

«11376E+05
~292675E+06
V16782E+07
+10650E+04
«41358E+03
234602E+064
=.38944F+06
«20473F+00
+B5424E+04
~e52743E+04
2 116440F+07
<30895E+02
~+3B659F +02
+36B25F +04
~«37629E+06
+13863E+03
e55441E+04
-+9008BE+03
~e44925E+06
«34228£+03
-.26137E+03
<15380E+04
“e64709E+06
~.24773E+03
«32852F +04
+20779E+04
-.46980F 05
=s15372F+03
~«12862F 03
2 449T70E+03
~+56204E+05
-.18698E+03
«16623F 404
«23422F +04
-414473F+06
-<12918£+03
-.28404E+0310 &
~+29934£+0310 9
~+16192E+051014
~e15469€+031019
«12353€+0711 &

—— - - — — — — e -
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———
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Sl4

~+45153E+0711 9.

«61815E+061114
=+10144E+071119
«23627E+05
~+54122€+0512 4
«15755£+0712 9
+25116FE 061214

. =oT6596E+04

919 .

~e107S1E+04
«12620E+07
re43864E07
=« 5I9T4E 05
~+91562E+03
=«5SB771E+05
e16019E€+07
=+10503E+06
~e424T79€+03
«10001E+07
- 24666E+07
»49688E 04
~e96419E 03
=+58505E¢05
«15326E+07
-o12468BE+05
«24661E+02
«64BT3E+06
~«32028E+06
«12549E 05
~«92587E+03
~.53753E+05
«55760E+06
-«79323E+03
«16B66E+0)
«38864E06
«B7873E+06
=s134B1E 0S8
-+ 9T7640E+02

15
110
118 .
120
25
.210
215
220
1§

515
520
65
610
615
620
75
710
715
720
85
Bl0
815
820
95
910

+«55930E 05
=s16823E¢04
«14510E+03
«18379€E+06
«11113E+07 915
«H6299E 04 920
~=<81995E+0210 S
=-+58586E+041010
~+26972E+051015
«27320E+041020
~-+25858E£4+0611 S
~a37126E061110
~+34805E£+061115
+25063E+4061120

~.24566E+0612 5
-.36305F+051210
~:12910E071215

=«1040SE«05
= 27540E+06

el l44E+QT.

~o44R60E+06
=+10198E+04
~«24519E+06
-.21198E+07
~e47021E+03
~246136E+04
~.10B1SE+06
-.10291E+06
.18374E+04
-.13792€+04
~.25187€+06
=.17390E+07
«4TOSTE+D3
<BS374E+03
«164T2E+05
<14502E+06
«50000E+03
~.10061E+04
=.24748E+06
-.92437E+06
«31682E+03
«31314E +04
«50672E+05
-.10)29E+06
“e15250E+04
«37214E402
©e27607E+05
-.29188E+06
+39389E+03
«23225€+04
«37819E +05
- 20505E+06
~e91784E+02
~+39832E+03
-e16761E+05
«15034F«07
«15902E+03
“«e321556¢07
«69573E+06
«21613E+09
<48553E+07

~+5209ZE+06
+11001E+06
«19240F 08
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TABLE 41,

(CONTINUED)
«S56439E+071218
~aB9792E+061224
«2B645E+0613 3
«11766E€+0713 8
+93956E+061312
+13065E+091318
«424TIE 051324
«70668E+0414 3
=¢37405E+0614 8
~+80321€+061413
«3549]1E+071418
~+s10659E+06142¢6
«13645E+0615 3
~+42383E+0615 8
6921 TE+ 061513
«61109E9+081518
«10728E+061524
~o61730F+0416 3
~o6403RE+0616 B
-+58430E+061613
-+28717E+071618
=«67815E¢041524
«62053E+0517 3
~¢39220E+0517 8
«79103F+061713
+30528E+081718
-e11525E¢061724
~e36149€+0418 3
~+55554E£+0518 8
«89419£+0518173
~+ TR586E+061818
«s14382F 051824
«25620E+0519 3
~+14229E+0619 8
«4S5129F 061913
«11792E+08191R
LeSAGANE+05]1024
=o16362E+0420 3
~+15993E+0520 8
«47650E+052013
-¢39737E4+062018
«23356E+052024

Concluded

~+63895E+051219
245419E+05
«97B16F+0613 4
~s25468E0713 9
+2B8151E+061314
=+635198F+061319
«68541E+03

~e57282F+0514 &

«15106E«0714 9
«28272E+061414
~e166T4E+0516419
«3075S5E 04
«63607E+0615 &
~+35655E£+0615 9
«BS5873E+061514
~e31011£+061519
e 75335F+ 06
=¢54322E+0516 &
«SS5196E+0616 9
*+45370E+061614
«18015£¢051619
~e54953€ 04
«3B248FE+0617 4
«B5935E+0617 9
«31833E+061714
~+13061E+061719
~234103F+00
~¢10604E+0518 &
«57035£+0518 9
«22313F+051814
e49531F+041819
=s41482F+04
+»18133F+0619 &
«11020E+0719 9
«20344F+061914
=e52265F+051919
~+2B659E + 00
=+93750E+06420 4
~+25006E+0520 9
=¢33207£+052014
«42021F+062019
“+34318E+04

«TB785E+061220

+¢99003E+0513 S
=+26833E+061310
~+36266E+06131S
~«10951g+061320

~+25200E+0616 S
=~e23498E+05)410
“e13287E+071415
~+21735E+05)420

¢18974E+0515 S
-a16811E+061510
-+.B0154E+061515
~¢10126E+06)520

~e24T24E+0616 5
~.16264E+051610
~«485S8B7E+061615
=+97347E+051620

+53277E4+0517 S
~¢99420£051710
~e13215E+071715

«12656E+061720

-«27187E4+0518 S
~e23469€+051810
-+14465E+061815
~e12799E+061820

«38189E+0519 S
~e64T7759€+051910
~+10602E+07191S
~+s65455E+051920

~e}67T15€+0520 S
~a14076E+052010
«11823E062015
*.11483E2062020

«115]13E+06

=«13888E+07
«32T81E+06
«212140€009
«29240E+07

~+55679E 06
+11205E+06
«16087E+08
+73510E+05

«40128€£+06
.215343E+06
«4T7290€E4+08
«13861£+07

~+40523E+06
+91369E+05
«B89911€+07
=e59441E+05

210627E+07
«53596E¢05
e 14757€+08
«66769E 06

=e46TF1E+05
~e11309E+05

«11549E+08
=+ 12099E+05

«T9202E+06
«99710E+04
«66182E+06
+25932E+06

~e45811E+05
~e423T6E+04

«4STHLEOT
-s59784E04

D MATRIX FOR CASE 3T

11 1 ~.B84B64E+0711 2 +J184SE+Q7
12 1 =.12719E+0812 2 +24720E+06
13 1 =.651746E+0613 2 .75607€£+06
16 1 =.10434E+0814 2 +B2012E+06
15 1 +8TD12E+0615 2 -.B7930E+06
16 1 -.55462F«0716 2 .11151E406
17 1 -e60774E+0617 2 ~.14050E06
18 1 =.17513E+0718 2 =451796E+05
19 1 ~.12303E+0719 2 11510€+06
20 1 +90204£+0720 2 =.48901€205
331 .60000€ 01

36 2 .75000f 01

40 1 +D0000E 0140 2 «75000E 01

<06110F 003915 «.24690E 033916 =«20139E 03

H=MATRIX FOR CASE 37
1216 +23901E+081217
. 1221 =+4T7021E+031222
13 1 +11232E+0613 2
13 6 ,15034E40712 7
1311 ,31337g+071312
1316 ,61253£+091317
1321 .18374F+041322
14 1 =.7349TE+0416 2
14 6 Z.15030E+0714 7
1411  .25749£+061412
1416  L149T1E+081417
1421 .47957E+031422
15 1 +56089E+051S 2
15 6 .'»35099E+0615 7
1511 +B7733E£+061512
1516 +29117€+091517
1521 +50000E+031522
16 1 =.10956E+0516 2
16 & ,10672E+0716 7
1611 ,75880C+051612
1616 =.12342E+081617
1621  .31682€¢031622
17 1 <27944E+0517 2
17 6 -.51343E0617 7
I711 =.11032E+061712
1716  .13896E+091717
1721 -.15250F+041722
18 1 =,12334E+0518 2
18 6 ,15070E40618 7
1811 =,10310£+061812
1816 -.21914E£+071817
1821 .39389€+031822
19 1 .97123€+0419 2
19 6 -.39762E+0619 7
1911 -,26941F+061912
1916 .54132£+081917
1921 ~.91784E+021922
20 1 ~,78385E+0420 2
20 6 .B0430E*0520 7
2011 .15981£+052012
2016 ~,}10821F 072017
2021 415902F+032022
21 3 L,10000E+0}
22 4 .10000E+01
23 S .10000E+01
24 6 .10000F+01
25 7 .10000E+01
26 8 .10000E+01
27 9 410000E+01
2810 .10000E+01
2911  +10000E+01
3012 .10000£+01
3113 ,10000€+01
3214 .10000£+01
3315 =.20000E 01
H=MATRIX FOR CASE 3T (CONTINUED)
3416 =475000E+01
~3515  (10000E+01
3616 +10000E+01
37 1 410000E+01
38 2 .10000E+01
39 2
40 2 -,22748E-02



'TABLE 42. EIGENVALUES AND RMS RESPONSES FOR CASE 3T

EIGENVALUES

REAL IMAG
~+24KR0LAY 0.00006010
-,2484351) 0.00000000
-10,98300000 0.,00000000
-8.54920000 0,00000000
~5.09600000 3.60330182
-22.185600N0n0 0.06000000
-7.500000080 0.00000000
~7.50000000 0.00000000
-6.90000€00 0.00000000
~+88003874 1.27317857
-.50790698 5.45874459
-,23115692 11,12423163
~,57835683 13,79429153
-,60493468 15.59460920
-,42821137 17.48254868
- 4652071352 18.78156474

States

FREOQ

R«M.S, RESPONSES

-
QUDNCVF WN -

[
U & W=

«15747433€402
«26026060E+0}
«21337662E+01
«69787019€-01
«20710092€ 400
«12959656E+00
+22042549E-01
«32B716726-01
«70145739E4+0C
+HO9T1864E-02
.23061739E-01
«37550928E-01
+53251662E-02
.1068675RE-01
«21144986E-14
.72863426E-16
.10386349E~13
«99178200E+00
«97183T10E4+00
9797919 1E+00
«55751508€4+01
«98351309E+00
«37288852E+00
«10000642E+01

DAMP

«246R0489 «1.00000000
«264863511- -1.00000000
10.92300000 -1,00000000
A.54920000 ~1,00000000
6.,24123385 ~eH1650522
22.,18500000 =1.00000000
7.50000000 -1.00000000
7.50000000 ~1.00000000
6.00000000 «1.,00000000
1.54772473 -+,5HR60159
5.48232269 = 09264L4649
11.12664553 -.02082900
13.80620212 -, 04152893
15,60633788 -.03R76212
17.,4877921) -, 0264R630
18.79181895 =%.03303105

Responses

R.M.S. RESPONSES

VDNV &N

«11209333€497
«16080005E+06
«TTI60745E+06
«8B160057E4+05
+43819204E+06
+48B107IHE+0S
«2571B039E+06
«SLLASTLIE «0S
«11474430E+06
¢30694623F « 05
«345177T78E+07
«3230264HE+06
«2S001679E+07
«26995730E+06
«15015515€E+07
+19977758E4+06
«908S365TE+06
«26653026F +.05
¢44151039€406
+«22142522E+05
«21337662E€4+01
«69787019€£-01
«20710092E+00
«12959656E+00
«22042549E-01
«32871672E-01
«70145739€+00
«B0971864E-02
«230617139€E-01
«37S550928BE-01
«53251667E-02
«10686758E-~01
«12686991E-13
«54647569€~13
e21144986E~)14
«T2863426E~14
«15747433E+02
«26026060E+01
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)
M1

TABLE 43,

F=MATRIX FOR CASE &R

P= - g
S DD~ £ L) Ot O pmiant O Pt e N vt

O VDNV E S LW WN NN - -
—

1

1210
1310
1416
1515
I'615

G1-MATRIX FOR CASE 4R

71
82

15 1
16 1

=e69879E+00
~a18640E+01]
=+ 71309€+01%
=¢51240€+00
~e10023f¢02
~+93350E+00
~e16743E01
=«181S1Ev02
=e23922E¢02
e11610E+00
=s19259E€+03
«11406E+02
«10000E+01
«10000E+01}
~+60000E+01
««75000E+01
=+ 75000£4+01

B F DWW DN e b

Pt - - .
NN NN NN

-

-.22185¢+021016

-.B5492F+011116

~¢50960E¢011213

+90891E+021312
~+10983E+021416
~.49524£ 4001516

+10000E+01

«60000E+01
«75000E+01

«¢30360FE+00
L +B86150E+00

H-MATRIX FOR CASE 4R

Wl W NN e o s
- L
- XNl N . ]

—

-e 26658 +05
=e34413E407
=« 1BB60E+06
~e22021E+05
=e62332E+06
=e23632E+06
~.B0508BE+04
~s15374E«07
~s13252E+05

1
1
1
2
4
2
3
3
3

1

1

1

MN~NVNNUN NN

G2=MATRIX FOR CASE 4R

.0 J264T7€201 1 3 =+352056E-~01 .
~e21772E403 | 8 =+22603E+03
«e10835E¢01
=el13T2E+01 2 3 . «3641]1BE=0)
©,60258E¢03 2 B =,24336E+04
-s11407E+02
=9S5672TE~0) 3 3 = 97534£+00
«s323STE*04L 3 B  L10072E«06
«4B042E01
=e79345E+00 4 3 +47618BE-0)
=e14607E+04 4 B =.24250E¢04
~e11165€+02
«22185E+02
«B85492E+0]
«10000E+01
~e38953E+021313 -.10192E02
.210983E+02
-e61315€~01
=eIST46E*Q0S5 1 3 +14D295E+05
o84T4LSECD0T ) 8 ~039797E+08
=e17944E 06
=e60129E¢04 2 3 ~.14744E+06
«3A999E+0T7 2 B -.10278E+08
~e47110E+05
~e82720E04 3 3 0101164505
ob46SUESDT 3 B =,22425E+08

=+10203£+06

S VW Ll Il
O O O O

W NN - -

o &

s Ve

=e28477E-01.1 5

~e38719€E+02

=232117€400.2. 5
=.%1898£+03 210

= 18968BE+00
+15T7S4E+0)

=e)26B2E+01

=+ 54550E+03

-.13130€+05 1 S

~298219E+07

«e32119E+04
-e22243E¢07

= 62936E404
- 528EBE+07

3s
3i0

4 S .

410

110

25
210
3's
310

COEFFICIENT MATRICES FOR CASE 4R

=2 04668E200

~e49629C+00

=e}1381E900
o 2T46TE+0}

=+.29898F+02
s4TOLGE+00

«14080E+0)
-2 22403E+01

«12663E¢07
-«67189E+04

~.82381E+05
«4B5BBE+04

s10035E+07
~e12441E+05



H MATRIX FOR CASE 4R

4 1
4 6

- - [ — !lﬂu\:
Hh‘Oh"UQPU—CIrU‘Oh”HQY*_(’M._’._~

N et = O DO VOV OB NNNO R
C N R :

S ) Pt P gt e pmat

-t gt
NN
—
O

131
13 6
1311
16 1
14 6
1411
15 1
15 6
1511
16 1
16 6
1611
17 1
17 6
1711
18 1
18 6
1811
19.1
19 6
1911
20 1
20 6
2011
21
22
23
24
25
26
27

NDNOUNISW

=eT4062F+04

-.13862E+05 4 2
~<65948F+06 4 T
=«13700F«06 417
«16623F+04 5 2
«36594F+06 S 7
«POD0AF 405 512
- BA2EIEN4 5 2
- 4R923E+0H & T
~eR24B1F¢05 K12
«13779F+04 7 2.
«10553F+07 7 7
=.12917F+05 712
8 2.
8 7
a12
9 2

=2 ]0700E+06
=+«R3061F+05
e 14835F +04
«RO0141F+06 9 7
=+90009F+04 912
=e43225F+0410 2.
=+ R2RSSE+0510 7
~e47793F+051012
o 17498F+0611 2
«56148F+0711 7
«62T05F+061112

«65708F+0412 2 .

«29532F 0612 7
+90R69F+061212
«10252F+0613 2
«30430F+0713 7
-e92516F+051312
«28952F #0414 2
«33027E€+0616 7
294531F+051412
. «46215E+0515 2
+B2TTIF+0615 7
-+13381F+061512
~a21619E+0416 2
«15392F+0616 7
~.49373F 041612
«21R54F+0517 2
-.16161F+0617 7
«12495E+061712
=.77073F+0218 2
~211679F+0518 7
«17R60F +051812

«T6RT2E+0419 2

-.27485F+0619 7
-.52904E+051912
<19115E+0320 2
«78214F+0520 7
-.22037F+052012
.+10000E+01
+10000E+01
«10000F+01,
«10000E+01
~«60000F+01
-.7500QF +01
L210000F N}

TABLE 43,

(CONTINUED)
~a54554F + 04
«39280F+07
- 45621F+05
~e4RSTNF+03
«IN63I5E+Q7
-eREGTYE+04
‘.3‘?“9!5‘0“
«eDITATF+07
-«31361F+05
«26297E+04
~e2132RF+«07
« 3583A6F +05
~.19685E+04
«62292E+07
-.79252F +04
_»23831F+04
~e33323F+07
«314T1F+05
=e12744E40410
«S5R423F+0710
-+531T74E+04
«44026E40611]
«21215F+0911
«4S151E+071113
2 1677T9E+0412 3
+13249F +0812 B
«131156+061213
«2R92rF+0613 3
«11813F+0913 8
«27221F+0717313

&P

ot awn
oL ow Gw

~~

o0 wD®

3
8
3
8
3
8
3
8
3
8

. «99560E+0414 3

«11157E+0814 8
oRRG46HPE+051413
«12570E+0615 3
«45998F+0815 (
«12A1AE+0T71513
-e30750F+0416 3
«23723€E+0716 A
~ednal1At+051613
«56632F+0517 3
e 15490F +0R17 8§
«57326E+0A1713

~e11058E+0418 3.

«8351RE+0418 8
=+R916AF+041813

«3997RE+0719 8

«21297E+0619123

«21313E+0320 .3
=+323R0E+0720 8
--9R8AGOE+032013

H=-MATRIX FOR CASE 4R (CONTINUED)

28 8
29 1.
30 2

«10000E+01

. «10000E+01

'«10000E+01

32 2 =.22748E~02

.=s1B196F+04

«21960E+0519 3

Concluded

Ao
o

-e 99475407

«55115E+04
~e17347E+07

U1 J
0 &

~e153083E+04s
= 6H8198E+07

o

~224345E+04 _
«78988F+07

~=
o &

=217503E+04
-e17195€E+07

«ARISHE QD
«6909)1F+07

o.& OF

8
6
9
9
-«1288]E+Q6l0
-+11569F+0710

«12429E40711 «
«9A1G0F+0011 9
~elt260F 4061114
-a51903€£+0512 4
«27875F+0R12 9
-s47071F+031214
«9A233F+0A13 &
«5KR039F+0913 9
«1R374E+041314
-« RG2RAF+ 0516 &
«1R525F+0R14 9
«47957F 031014
+H3IRIBF 40515 4
«?69656F+0015 9
«5N000E+031514
~e52325E+0516 6
- 062H4E+0T71H 9
«3166PE+031614

_«e3RGGIF+0R17 &

2122175+0917 9
~a15250F+041714
~e76690F+0418 &
~e1R761F+0718 9

«39389F+031814

«18221E+0A165_ 4

+45238F «0A19 S
—<917R4E+021914
~e15272E+0620_4
~e16377F+0620 S

«15902F+03201¢

4.
S

. =e35129F 04 6 § -,90R79F +09

~e21741E+07 410.

.« TPTBIE+0Y S 5
-.26291F+0A 510

4. =9 7TR41F N & S
9 =.15022E+07 <¢0

«36391E¢06 1 S
<19761E+07 710

-.90406E403 8 §
=<37769F+06 8.0

. «25534E+04 9 5
+16925€+07 910

~s9A766E+010 S_
- 2h046E4061010

=+ A2R250E+0711 S
«16860E+0091140
~e46143KE+061116
~a51958E40612 9
«50426F+0T71210
- RQ9TI2FE«0Q12P16
-«13943F+0713 5
«100aSF«091310
«4P24TIF + 051316
=« 5G548F+0K16 5
«35215E+071410
-«10659€ 051416
«4STR4E+OR]S]N
«1NT2HBF+061516
= 6N3STF+061H S
~e142B6F+071610
~e6h7R1IS5E+041616
«10607E4+Q717_5
«?0811F+0R1710
-e11525€+0A1716
~«45342F+0518 S
=e42332E+0561810.
=+ 14382F+051816
«79125E+0612 5.
« 75505£+071910
«S6680F+0519]A
= 44890620520 5
~e«PS56BE+052010
»23356E+052016

D-MATREIX FOR CASE_4R

«240T0E+04:

e H46TIF+06
~«JOHTTF+04

=e 72352E408
=~ 16013E04

«384O0RE«DG
+ 454735 +00

-426163E205
~+29833E+03

21B064E+06
«49246E+04

= . T922F+05
-+ "TR1DE+03

~431134F+06
-« 101R4F 07
« P236PTF+ 0%
~2105R0F « 05
=~ 6646TF +05
e 94 ]19F +05

~eP3640F+0R

~ah2ITHE + 05K
«HBS41E+073
=2 J4R52E+03
=e20434E+05
«30755E+04
~«15263.+06
~eA097"F +0h
A
«ShHAOUF .00
«17R92E+05
- 54A59F + 04
= A7530E05
-« 13650F +06
—e34103F <04
2 387S3E+04
«39A20E+00
~e41482L+04
=2 44291E205
~«S6875E+05
- ?28559E+04
2 78365E 04
«429A0E+04
~e34312E+04

P N O e e Sy ey

-+ B4B64ESOT]]
~e12719E+0812
*.6)1746E+0613
=e104304E+0814

JaBT0L2E+0615.

-e55462E+0716
~e60TT4FE 0617
~«17513E+0718

~e12303€+0719 -

«90204E+0720
«T7S000E+01

" «7S000E«01

«600U0E+0]

2
2
2
2
2

2
2
2
2
2

+31845E+07
«24T20E«Q0
«T5607E06
«B82012E+06
=aB87930E06
¢11151E+06
«s164050E+06
«e51796E+05
«11510E+06
“~o4RF01E+ 05
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TABLE 44. EIGENVALUES AND RMS RESPONSES FFOR CASE 4R

EIGENVALUES
REAL IMAG
~.246806489 0.000000n0
-,24843511 0.0000000n0
=-10,98300000 0.00000000
-8,54920000 0.00000000
-5.09600000 3.60330182
-22.18500000 0.00000000
~7.50000000 0.00000000
=7.50000000 0.00000000
-~6,00000000 0.00000000
=.91300458 1.334584190
-, 477810995 $.39333882
-o,675704647 13.,87828693
States

R.M.S, RESPONSES

-
COVT NN S W=

—
-

e st pad put s
VLS WwN

«15B05554E402
»24996092E4+01
«17714140E+01
«20777196E400
«eST109424E 400
«22436704F =01
«79153434E=-]14
«68686857E=-14
#11051351€-13
+99178200E+00
«97183710€+-00
«97979891E+00
«55751508€£+:01
«98351309€+00
«37288852E+00
«10000642E401

FREQ DaMP
+24680489 -1.00000000
« 248643511 -1.00000000
10.98300000 -1.,00000000
8.54920000 -1.00000000
6.,24123385 ~.81650522
22,18500000 -1.00000000
7.50000000 ~1.00000000
7.50000000 -1.00000000
6.00000000 -1.00000000
1.61865204 =-+56405241
S.41446276 =.08824716
13.89472651 ~e04863028
Responses

ReM.Se RESPONSES

VO~NOU S W

«77017052E+06
+60395RB5E +05
«S57100123E+06
«28680908E+0S
+36105986E+06
«30804690E+0S
«2309638B7E+06
«35132370E+04
«10087294E+06
«52078202E+04
«283B6422E+07
«227ST708E+06
«2040601SE+07
«183612643€+06
«12788421E4+07
«15983672€4+06
«81839401E+06
«10174884E4+06
«4#0601504E+06
«662466H0E+05
ol77lQl40E¢°l
«20777196E4+00
«57109424E+00
e 22636704E-01
«47492060E-13
«S1515143€-13
«79153434FE~14
«6B686857E~14
«15805554E+02
«24996092E.01



TABLE 45,

F~MATRIX FOR CASE 47T

- .

DU NEN S S WL W N NI e e
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OOV DN v O+t b OV ot TN et i O 0d
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1111
1210
1310
1414
1515
rels

=~e6621BE*00 .

=.15561E+01
~e6T7639E+ 0]
=+56837E+00
“e 10445E+02
~.80421E+00
~e12620£+01
~e14694E+02
=.20517E+02
~«76870E-03
-+ 193S1E+02

«10995E+02

«10000E+01

«10000E+01
~+50000E+01]
=+ 7S5000E+01
=« 75000£+01

FEREEWWWNNN -

— Lt -
NSNS NTIN N

—

-
N

-+22185F«021016
=«85492E+011114
=+50960E+011213

«90891E+021312
~«10983E+021416
~:49524F+001516

«10000£+01

+J2T76E+0} |

-e24690E+03
~+98990E+00

~«12293E4+0]) |

~e60551E+03
=+12530E4+02

«16571E+00
=+35548E+04

«68753E+01
~+917B6E+00
=e14545E+04
=+ 12582E+02

«22185E+02
«85492E+01
«10000E+01

P Wi NN

BW DWW Dw Bw

~+20135E+03

~e26235E+06

~«93166E+00
«14284E+04

. 06394%9E-01
~e26722E 004

~+38953E+021313 ~.10192€+02

»10983E+02
=+61315E-01

Gl=-MATRIX FOR CASE &T

71
a2

«60000E+0)
«75000E+01

G2~MATRIX FOR GASE »T

15 1
16 1

-+30360E+00
-B6190E+00

H-MATRIX FOR CASE 41

[ -  od
e DN bt b N s s O bt et DR et

VS PWWWNRNN R e
—

~e46T10E+04
~e33662E+07
~a53974E+0Q5
=+B6102E+04
=+52211E+06
~+10503F+06

«52393F+03
-+ 14847E+07

2 4968AF + 04
=a99994E+03
=«56202F+06
~2124443E +05

211DGIF 04

1
1
1
2
2
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3
3
3
4
A
4
)

1

1

1

1

2
7
2
2
7
2
2
7
2
2
7
2
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~e339¥9E+03
~s14144E+07
- 44260E+04
=e29804E+03
“~e21198E+07
-.47021E03
+9335pE+02
-.10291E+06
«12374E+04
«96088E+02
-+17390E+07
WG47957E+03
2930325002

h

o

WWw. VN

R

e 11376E+05
«42460E+06

ellaookeul
«32960E£+05

«10081E+06

-e3B659F+0¢

3

8

3

8

3  +B5424E+04
8

3

8 «10935E+06
3

«S5441F+ 04

~+28017€-01

#58290€~01

1

1

2!

e

A3

3

&
4
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4
9
4
9
4
9
4
9

0 &

=223237€-01

~e40941E+02 110
~934790E+00_2 S

-9 56095E+02

=e11204E+00
«30829E+03

=e13099E+01
=s70943E+03

~210405E+05

~«41530E+06 110

-a10198L 04
=+26307E+05

=246)36E+04
~e42412E+03

~e13792E+04
~e22459E05

«BEITLF 07

COEFFICIENT MATRICES FOR CASE 4T

=+55979E+00
=, 4B934E+00

«54826E~01

«27253E+01

=e29214E 02
«ST304E«00

+14951E+01
~o224T7SE+0])

elcol20Ee07
«10650E+04

2 5 =«S87TT1E05

«20473E+04

«10D001E+07
+«30895E€+02

4 5 ~,S8505E+05

«13863E+03

.ba87if'06
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TABLE 45,

H=MATRIX FOR CASE 4T (CONTINUED)

56
511
51

—
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o QN e e TP e et TR et bt (R e s (N bt bt OB et et ON

-

NN ~ 020 VOO OVDODNd NN
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I3 6
1311
164 1
14 &
1411
15 1
15 6
1511
16 t
16 6
161)
17 1
17 &
171)
18 1
18 &
19 1
1811
19 6
1911
20 1
20 6
2011
21 3
22 &
23 5
24 6
25 7
26 B
er 17
28 B

H=mATRIX FOR CASt 47

29 1
30 2
e 2

. =e79323E+03

«3623TE+06 S 7
«12549€+05 512
=+68182E+02 6 2
=+40897E+06 6 7

72
77
712
8 2
87
812
9 2

-.12248E+04
«10476E+07
~.13481E%05
-o13272€+03
~.49078E+05
~e16823F+06
«53648E+03
«TB9S2E+06 9 7
w66299E 404 912
+22409€+0310 2
=.46131E90510 7
«27320F 041012
L1B0O29E+0611 P
STTISEE«0T1) 7
«25063E+061112
“o42178E+0412 2
.21534E+0612 7
«78785E+061212
«11232E+0613 2
«31337€0713 7
=+10951FE+061312
= 73497E+0414 2
«25T49E+0614 7
~.21735F+051412
«56083E40515 2
«8T7733E+0615 7
~.10126E+061512
~.10956E+0516 2
+75880E+0516 7
=497347FE+051612
«27944F+0517 2
e 1103260617 7
212656F+661712
~=e12334€+05]18 2
«.10310E+0618 7
«9T123E+0419 2
=« 12799E+061812
- 24941E+0619 7
~e65455F¢051912
=o78385F+0420 2
«15981E+0520 7
-«11483E+062012
«10000E+01
«10000E+01
«10000E01L
«10000E+0}
~e60000E+01
-.75000F +01
«10000E+01
«10000E+01

«10000€+01}
«10000E+01
-+22748E-02

612

«16502E+06
+50000E+03
+56242E402
~e92437E 06
 ~316B2E+03
«e22167E+03
-«10129E+06
-e15250E404
Z.27330E+02
-+2918BE+06
«39389F+03
+96033E 02
-.20505E+06
- 91784E+02
=e39454E+0210 3
«15034E+0710
«1RG0PE 03
WU6TSPE G041 3
.21613E+0911 A
«4A553E«071113
-.13275E+0412 3
+19240E+0812 B
+11513E+061213
+2B645E+06113 3
«12140E+0913 A
+29240E+071313
«70668E+0414 3
«16087E+0814 B
+73510E+051413
+13645E40615 3
«47290E+0815 8
«13861E+071513
~e617I0E+0416 3
+B9911E+0716 8
-e59441E+0S1613
«62053E40517 3
.o JLTETE+0817 B
+66T69E+061713
~e36149E+0418 3
«11549E+0814 8
«25620E+0519 3
-.17099E+051A13
+661BPE«0619 R
+25932E+061913
~+16362E+0420 3
+45T64E+0720 8
-¢59784E 042013

-] ® ~N~ o wn
®» W PN DWW

3
8
3
a8

(CONT INUED)

0

*e11724E06

-+26137E+03
+14B6BE+05

*32852E+0¢
-+ 1B734E+05

~N~ OO n

~+12862€+03
~e69061E+06

»16623E+04
¢15347E+0S

o & & Ve O

L] -0 ]

~+2B8404E+0310
~e65201E40410

o &

«12355FE+0711 4
«10114E+1011 9
~eb4260E¢041)14
-¢54122E+0512 4
«23901E+0812 9
=e4T021E+031214
+97816E+0613 4
«61253E+0913 9

«18374E+041314

=e57282F+0514 4
«14971E+0814 9
«47957F+03)414
«63607E¢0615 4
«29117€+0915 9
«50000E+031514

=+54322E4+40516 4

~+12342E+0816 9
«31682F+031614
«36248E 0517 ¢
«13806F+«0917 9

~+15250E+041714

-+10604E+0518 4

-+21314E+0718 9
»18133E+05]19 4
»393B9F+031814
«54132E+0813 9

~e91784E+021914

=+93750E+0620 &

~«10821E+0720 9
1590264032014

Concluded

«90101E+05 510

-.10061E+04
.22823E€+05

65
610
75
710

«31314E+04
~¢64253E+05

" «37214E+02 B S
«2482TE+05 B10

v 5
910

«23225E+04
=e20083E+05

-¢39832€+0310 S
«12976E¢051010

=« J2155E+0711) S
«22155E+091110
~e46143E+06])116
-.52092E+0612 S
«56439E+4071210
~.B9792E+061216
-+1388BE+0713 S
+13065E+091310
«42679E+051316
~«55679E+0614 5
¢35491E+071410
-+10659E+06)416
«4012BE*0615 §
«61109E081510
«10728E+061516
~«40523E+0616 S
~«28717E+071610
<+67815E+4041616
«10627E+0717 &
»30528L.081710
=¢11525E+061716
~+46T7T91E+0518 S
-+¢78586E+061810
2 79202E+0619 S
~«14382E+051816
«11792€+081910
+S6680E+051916
~«45811E+0520 &
~e39737E+062010
«23356E+052016

D-MATRIX FOR CASE 4T

11
12
13
14
15
16
17
18
19
20
25
26
32

TU P b bt bt bt bt ot bt et 4t s mt

~+12719€+0812

+B4B6GESOTI

«61746E0613
«10634F+0814

*34228E+03

«+53753E+05
~e24773E+03

+38864E+06
~.15372E+03

-+ 76596E+04
~+18698E+03

«18379E+06
“.12918E+03

=+58586E+04
~e154609E+03

~e37126E+06
~s10144E+07

«2362TE«05
~+36305E ¢« 0S5
-+.63895E+05

«45419€+05
~e26833E¢06
~e63518E+06

«68541E+03
~e23498E+05
~e166T4HE+0S

+30755E+04
~es16811E+06
=+31011E+06

«7593SE+04
“e16264E+05

«18015E+05
=eS54959E+ 04
“e99620E QS
~el3061E+06
~¢34)03E+04
= 29469E+05

«49531E+04
=e4TT1S9E 05
~e414B2E+04
=+52265€4+05
~e28659E+04
~e14076E+05

«42021E+04
=+34318E+04

«31845E+07
«24T720E+06
«7S60TE+D6
«82012E+06

+B7012F¢0615
«55462E+0716
«607T4E+0617
«17513E+0718

«s12303E+0719

«30204E+0720
«60000E+01
«75000F+01
«75000€+01

NNV N

~sB7930E906
«11151E+06
~s14050E+06
=951796E+05
«11510E+06
=s4BI01E0S
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TABLE 46. EIGENVALUES AND RMS RESPONSES FOR CASE 4T

FREQ

OPEN LOOP
EIGENVALUES
REAL IMAG
-.24680489 0.000000n0
~.26843511 0.00000000
-10.98300000 0.000000n0
-8.54920000 0.00000000
-5,09600000 3.60330182
-22.18500000 0,0000000¢
-7.,50000000 0.,00000000
~7.53000000 0.00000000
«6,00000000 0.00000000
-.B8215376 1.27062167
=-.50773730 5.45751506
-,64986528 13.84743358
Staten
ReM.Se RESPONSES
«15740274E+02
«23962136E+01
«21072B39E+01
«20585036E+00
«69758088E4+00

.22877193E-0)
W562732681F-106
.13807059€-13
.19833243F-13
«99178200E+00
«97183710E+00
«97979891E+00
+55751508E+01
+98351309E+00
.37288852E+00
.10000642E+01

DaMP

« 24680489 =1.00000000
24863511 -~1.00000000
10.98300000 -1.00000000
.8.54920000 ~1.00000000
6.26123385 ~.81650522
22.1B8500000 -1.00000000
750000000 -1.00000000
7.50000000 =1.00000000
6.00000000 =1.00000000
1.54682730 =.57029881
.5.48108272 =+ 09263449
13.86267440 -.04687878

Responses

R.M.Ss RESPONSES

Gnt Bt oo Bf Gt Bt Bt Bt B o
OCENCVLFWUNSGOONOU &S W

WNNNNNNNYNN
CODPNOUVNESE WN=C

«11139601E+07
«1592154RE+06
«716623651E+06
+86150862E+05
«43539257E4+06
«4T7057712E+05
«25592687E+06
«54251833E+05
«11421182E+06
«3054029BE+05

+31940719E+07
«21960789E+06
023267321E+07
.18487121E+06
«14660200E+07
«15349598E4+06
+92810167E+06
«20455724E+05
«45712662E+06
+22068265F +05
«21072839€+01
+20585036E+00
<69 7SB0BBE +00
.22877193E-01
+32563969E-13
.10355295€-12
«54273281E-14
.13807059E-13
< 15740274E+02
«23962136E4+01
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APPENDIX B

MODELING PARAMETER UNCERTAINTIES

There are many ways to incorporate parameter uncertainties in the model. One could
impose an independent variation on each uncertain element of the coefficient matrices

in the eguations of motion and response equations., Such an approach has two major
disadvantages: the number of components in the .parameter vector is large, and specific
combinations of such variations could violate physical constraints, To overcome these
disadvantages, we introduced the physically "independent" parameters: dynamic pressure,
structural damping, and structural stiffness. Variations in dynamic pressure cause
variations in essentially all of the uncertain coefficients. Variations in structural
damping and stiffness cause variations in certain subsets of the coefficients., To pérmit
the assessment of a variation in a single coefficient, we included the_coefficient, Mw’
corresponding to an uncertainty in Cma in the vector of uncertain parameters. Relative
variations from the nominal values were chosen as the actual components of the para-

meter vector. Thus this vector has the form
=@ wp M_, C)T (B-1)
P =W Pp Mg Sr
with the nominal value for each component of p being unity.

The state space representation of the "complete model" of the C-5A with explicit

dependence on these parameters is given by

X =F(p)x + Gl(p)u + Gz(p)”ﬂ (B-2)

r = Hip)x + D(p)u (B-3)

The matrix F(p) may be written as

5 9 15

L w F +CO(Cf)(wf) 2 w F

- 2
Fp)=F +§ (q) F- + (w)
o o f' Tq f ; 1o wiZ j=1 1© Qwi

i
(B-4)

+q o(qf)Mwo(wa'l)FMw
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Scse

where Fo includes actuator, gust, and Wagner dynamics and pure integrations. The
matrix, Gl(p). is actually independent of p since it depends only on the actuator models.

\

Thus.
\\\ A .
\ »
It was aésumed that the gust model did not vary so that G2 is also independent of p
G, = G,(p ) & G (B-6)
2 270 2

The matrices H(p) and D(p) should be expressible in forms similar to that used for
F(p) in Equation {B-4). However, it was not possible to properly isolate the effects
of Mw variations in the responses from the data available, Therefore, H(p) was

expressed as

15 15
- = 2 2
H(p) = H + qo(qf)Hq + (wf) Ef w0 Hw.2 + Co(Cf)(wf) ? wioHCw (B-7)
i=1 i i=1 i
and D(p) was similarly expressed as
- 9 5 9 15
D(p) = Dy +a5(ap) Dy + (0" = 955 Dy p * &0 = 035Pcy, (B-8)

The manner in which the matrices Fo‘ Fc? Fm 9 F;w » etc., were determined will
i i
now be described. The matrix, F, may be represented in the partitioned form

F11. Fip Fy3 Ty Fig Fie
Fo1  Fag  Fag  Fyy Fyy  Fyg
F = 0 F32 0 0 0 0 (B-9)
0 0 0 F,, 0 0
IR S
Fw
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_ T T T T T
co'rIr'Ie‘:sponding to partitioning the x vector into x~ = [(x ) (x ) (x ) , (x ), (x ) /,
6 1 L
(x ) ] where x = (W, Q/nz)T: X - (ﬂ 1° lea esey n ) » (n]_: nzo sesy "]15)
(6 , be, x I&e )T, x = (gust states), and %8 = (Wagner states). The matrix, F

0 ; 0 "0 0 0 0
, .
0 0 0 0 0 0 /
|
F_=| 0 F, 0 0 0 0 o (B~10)
0 0 0 F,, 0 0
o0 0 b P 0
L FW —_

where F32 is the 15 x 15 identity matrix corresponding to integration (T]i = j' ’ﬂi)

F 44 is the 3 x 3 diagonal actuator dynamics matrix

F55 is the 7 x 7 gust dynamics matrix

Fw is the 37 x 79 Wagner dynamics matrix

The only matrices in (B-9) that depend on structural damping and frequency are F22

and F The matrix, F22, may be written as

23°
aero structure
where
(Fyo) = -2( diag (w,) (B-12)
i )
structure

Similarly, the matrix, F_,, may be written as

23
F23 = (F23) +(F,,) (B-IS}
aere structure
where
' . 2 ' '
(F..) = -diag (w,”) : (B-14)
23 i
structure

232



The structural data consists of the values of QO = 0,02 and the model frequencies, wio"

listed in Table 47.

' TABLE 47. MODAL FREQUENCIES (radians/second)

‘l\ i w. -i . i w;
1 4,7225 6 18.723 11 38.792
2 11.146 7 20,116 12 39,671
'3 13.575 8 217. 339 13 41, 897
4 15,564 9  32.980 14 43,230
5 17,749 10 37.425 15 50.568

From Equation (B-12) we have Fgw- as the matrix with a "-1" in the ith diagonal element
i
"
of "the F22

block' and with all other elements zero., Similarly, from (B-14) Fy,2 is
the matrix with "-1" in the ith diagonal element of "'the Fog block" and zero elsewhere.

The matrix qF- corresponds to the remainder of F - F_- F , i.e.,
q o structure
Fl1 Fia Fis Fia Fi5  Fig
Far  (Fyy) (Fa3) Foa  Fas  Fag
- _ aero aero (B-15)
qF- =
q ———————————————————————————————————————————————————
0

The matrix Fy; is the matrix with a "+1" in the first row and second column and .

zeros elsewhere.

The only responses which were included in the performance index that depend on the-
uncertain parameters are the bending and torsion moments at the wing root and their
derivatives, In Reference 35 the bending and torsion moments, denoted by BM, where

given as
BM = IE{ + Nit'l + Neq + (gust penetration moments) + (control surface moments)

(B-16)
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where q is a vector of generalized coordinates, I is an inertia matrix, and N, and N /
1 !

are aerodynamic load coefficient matrices. The equations of motion, written in terms

/

/(B'17)
/

of the generalized coordinate vector, are:

generalized ) = (generalize'd

.e o + -
Mg +A0q Kq (aerodynamic forces control forces

The generalized vector, q, may be partitioned into two sub-vectors q1 and q2 with q1

. denoting rigid body coordinates and q2 the vector of flexure mode displacements, i.e.,

2 : T '
C.l - (nls nzn es ey n15) (B-18)

The corresponding partitioning of Equation (B-17) has the form

M1 0 0 0 0 0 q1
+ + 9
0 Mylis 0 ~My(Fyy) 0 -My(Fyg) q
structure structure
= ¥ (partitioned generalized forces) (B-19)

where 115 is the 15 x 15 identity matrix, Mg is a diagonal matrix, and (Fzz)structure

and (F23)structure are given in Equations (B-12) and (B-14), respectively, With I in
Equation (B-16) partitioned appropriately into [Il, Iz], it is possible to rewrite

Equation (B-16) using (B-19) as

BM = 12 [(Fzz) <':12 +(F,,) q2] + (aerodynamic moments) (B-20)
structure structure

with the aerodynamic moments being proportional to <-1.

The matrix I2 is given in Table 48 for the case in which BM is the vector

4 bending moment at the wing root

Bl
BM = (B-21)
T1 4 torsion moment at the wing root
The response vector, BM, may be written in the form
BM = Hx . S (B-22)
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ROW 1
-.5644BE+05 ,22275E+0s
-.28034E404 .80097E+(3
ROW 2

028913E"0“ 020\100E*04'

.36353E+03 =.18577E+02

TABLE 48, 12 MATRIX

J1B360E+GS ~.BOT42E+D4
.74888E+03 .96566E+03

.30008E+04 =,63192E+04%
.15308E*02 - L4941E+03

~.S3074E+04

.12560E+05 ~,18274E+04 ~.46399£+04

.136305+od -, 224TLE+04 =,49429E+04

«12468E+04 - L45179E+04 =~.11045E+05 =.40468E+04

'13077E’03:

.52363E+03 =,19210E+04



since it is independent of actual commands,

vector p may be expressed as

The dependence of H on the parameter

15
= 2 2
H= qo(qf)Eq + (wf) }_: % I—{w.2 * go(gf)(wf) ? u)ioligw. (B-23)
i=1 ‘o i i=1 A
where
- 1 15 2 15 .
H-=(@q) [H- £ o -t =T w _H_ ] (B-24)
—q (o) i=1 io wi2 o i=1 io gwi
15 9
¢, E o He o= [0 I7(F,,) c o o0 0] (B-25)
i=1 structure
15 2 2
T o, = [0 0 I(F,,) 0 0 0] (B-26)
. io —w,2 23
i=1 i structure

and the partitioning in (B-25) and (B-26) is consistent with the partitioning indicated

in (B-9).

The decomposition into parameter dependent components of the H and D

matrices associated with the derivative of BM may be derived using the decomposition

of H and F and the equation

d -
— (BM) = H (Fx + G u + G,T)

(B-27)

The coefficient matrices for the remaining responses of interest (surface displacements,

surface rates, and control follower response) are independent of parameter variations.
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APPENDIX C

RESIDUALIZED PARTIALS

In computing the sensitivity partials for use ip the sensitivity vector augmentation design
technique, it was discovered tha; residualization computations and partial derivative
computations are not commutative processes. In other words, the partial derivatives
that are computed on a higher order system and then modified through residualization
are not equal to the partial derivatives computed on a residualized system. Consider

our standard plant representation given by

* = F(p)x + Glu + G2'f] (C-1)

The sensitivity vector augmentation approach, as discussed in Section V, defines

sensitivity state dynamics given by

dF(p)
op

Qo
"
ed =4
3|

x + F(po)c (C-2)

These sensitivity state dynamics are then augmented to Equation (C-1) to form a sensitivity

state vector design model, or

— —— . _ - — — — -
. b4 F(po) ‘ 0 x G1 G2 _
X = = + u + il (C=-3)
. dF(p)
o >p F(po) o 0 0

To illustrate the difference discussed above, let us first compute the partials on the 42nd
order Case 2 model and residualize the partials to Case 4R, Equation (C-3) may be

represented by
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2] [ 2
1

3 Fll(po) F12(po) 0 0 X,
. 2 2
Xy Fa1(p,) Fay(Py) 0 0 Xy
vy 2= | Mu® T2 F.o() F. )| o2 o
% op >p 11'Po 12'Po 1
pO pO
. 2 dF,,{p) OF5,(p) P o) F (o) 2
i) S op 21'Po 22'Po %
L L. Py Py S —J L _

+ control and noise drivers

where the superscript 2 refers to the Case 2 model states and all partials are evaluated
at 2pﬁ. Letzus consider the case where, for demonstration purposes, we wish to eliminate
x, and o, which are scalars., Let us assume also that p is a scalar, If we compute

the partial derivatives first and then residualize, we obtain a sensitivity vector augmenta-

tion model given by

- 2 (acd ~ 2
* i1 12 X1
= - o + control and noise drivers (C-5)
% Fa1 Foo oy
where
of  (p) OF,_.(p)
F = F _(p)-F (p)F, (/1 () +F, (p) —oz 2Lt (o) £, (p)
11 11 12 21 22 12 oD op 22'P’ 192'P,
~ bf22(p>
Fig = Fip0) Fyy (o) —5— [ £59(P) £55(p,)
dF, . (p) dF. ,(p)
~ 24y 12
For " —3p— - ~3p— FarlP/i5p®
dF, (p) df ,(p) dF . ,(p)
12 22 12
+[—5 sp | f22(P) T35(R,) = Fy (P )/ fpy(p )] —55
- OF ,(p)  2f,5(p)
Fog = Fpalpy) +[—5 dp | TaalP) £55(05) = Fio(0 )/11(p )] Fyy(p)
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This may be contrasted to calculating the partials after residualizing. For example,

the residualized form of Equation (C-4) with the sensitivity states eliminated is:

2

. - -1 . .
. [Fll(p) F12(p) f22 (p) FZI(p)]Xl + control and noise drivers

Computing partial derivatives based on this residualized form results in the following

sensitivity vector augmentation design model:

F, ) = F () £, o) Fy (o) 0 %,
1;21 F11“’0)’F12(po)f22-l(po)le(po) %
+ control and noise drivers (C-6)
where
1;21 ) °1;1)1 B bFlci(p) Fo1 () iy5(p) - 7y plp) f_F_g_;(P_)/ f9(P)
= [£55(p) Eéi—([—)l Foy(@) +159(0) Fy o (p) -b—}-?—gil)ﬂ]/fzz(p)2

As can be seen, each element of the F matrix in Equation (C-5) contains elements that

are functions of the partials of 'x2 matrix elements that do not appear in Equation (C-86).

No attempt was made to evaluate the effects of the two procedures on the sensitivity

vector augmentation controller performance, It is stated here purely as an observation,

The partials that were -used in the actual design were truncated partials; that is,

bF21 i bF12 i bF22 -
op bp dp

This produces a sensitivity vector augmentation design model given by

-1 2
Fn(p) - Flz(p) Foo (p) F21(p) 0 Xy
dF. . (p) 2 (C-7)
E)1[)1 Fll(po) o

+ control and noise drivers
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APPENDIX D

RESPONSE RATE CALCULATIONS

In controlling the level of response of specific elements of this response vector, it is
sometimes advantageous to introduce rates of change of those elements as additional
response states, Control is then exercised through manipulation of weights on the
response elements and their rate of change, This procedure was used in control of
the RMS bending and torsion moment respoﬁse to gust input. Consider the standard

Case 1 model representation

3t - x4 G u+ Gy . (D-1)
r1 = Hx1 + Du (D-2)

This is the Case 1 model structure given in Appendix A, The response vector may be

partitioned as follows:

— —_ —_ — —
:1 rr1 H | D
1 1 1 1
_ 1 _ .1 - 1
r = r2 = r1 H2 x + D2 u (D-3)
1 1
3 3 Hy D3
L L— L L
where
ri = bending, torsion moment response
r; = i‘l = rate of change of bending, torsion moment response
r; = dynamic states and state derivatives

The original form of the data did not include the r; data, These response terms were

computed by differentiating

1 1 )
r1 = Hlx + Dlu (D-4)
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or

¥, = HXk (D-5)

where

o
1
(=)

Substituting (D-1) into (D-5), we obtain

»
[y

1 .
HlFx + H1G1u . : (D-6)

H
[y

1
Hzx + Dzu

where the noise driver term was neglected.

Variations similar to those discussed in Appendix C were observed in the computations
of response rate terms, For example, if one were to construct response rate terms
using Case 2 instead of Case 1, elements of the H

2
some even changing signs. This can be seen from representing (D-6) by

'1 - 1

Ppo=[Hj Hipl [Fyy Fog| [ % | + [Hyp Hpl | G|
F F 1 0
21 22 X9

= [H,F 11+H12F11]x ) Fyp +Hy 22]x (D-7)
+H11G1 u
1
Using Case 2, the resulting expression is
2 1
¥ =H .F, .x +H G u (D-8)

1 1171171 1

As can be seen, the matrix coefficients of xi in (D-7) and (D-8) differ by H12F11 which

does have non-zero elements,
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As was the case with the computation of the partial derivatives, the computation of the

response rates is not commutative with the residualization process. Rewriting Equation

(D-8) as
2 = 722 + p? (D-9)
1 2
or
2 2 ~ 2 2 2
B o= [H21 sz] x; |t D%u
X2
2
where
2 .
x1 = states to be retained
2 e
x2 = states to be eliminated
and
~2 22 2 2
Hoy = Hyy Fyy *Hip Fyy
~ 2 2 2 2 2
92 = Hyp Fig THyp Foy
2 _ 2
D = H11 G1

Eliminating states xg through residualization, the equation reads

1 1

. : -1
3 2.2 2.2 2_ 2 2. .2 2 2. 2 2
Flo= [y Fiy +Hjp Foy = [Hjp Fig #Hjp Fool (Fyy)  Fyilx) +Du
2_ 2 2 _ 2 ol a9 2
= [H11 F11 - H11 F12 (Fzz) F21] X3 +Du {D-10)
= H2 x1 +Du
However, beginning with
r2 = H2 x2 + Dzu - (D-11)
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we residualize to get

-1 2 2

3 2 2 2 2
) F21 ]x1 + D%u (D-12)

ry = [Hy " - Hy" (Fyy

If the response rate terms are now computed using the derivative of Equation (D-12),

we obtain
3 2 2 2.1 2 2 2 2,71 2
Fpo=IH T - H" (Fpy) Fo 1IF 7 - Frp (Fpp) Fplxg
2 2 9.1 2 :
+m 2 -n,0 @5 F, %G _ (D-13)
~3_ 2 o3
-H2 xl +Du
Now
3 *3 2 2.7l 2 2 2 27l 9 2 2.7l
Hy' -H," =-Hj, (Fyy ) Fy Fipm +Hj, (Fyy) Fy i Fip” (Fpy) Fyy
2 2.1 2 2 2 g -1 2
=-Hjp (Fap ) Fy [Fi -Fip (Foy ) Fyy'l (D-14)
#0
and
~3 3 2 2.1 2
5% = p° = -H " (F,,") F,° G, (D-15)

There was no attempt made to determine if any one procedure was better in some
sense than another., It is noted here only to recognize that differences exist and must
be considered. For this study, after we recognized that differences did exist due to

computational procedures, we maintained consistent models for all designs,
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APPENDIX E

MODEL REDUCTION TECHNIQUE COMPARISON

Three techniques--truncatioh. residualization, and re-residualization--have been
described in the main body of this report. All three techniques can be used to reduce
the order of an unwieldy model. The latter two techniques retain the characteristics of
the eliminated dynamics in some sense. This appendix presents additional comparitive
results on model reduction techniques, An additional technique, singular perturbation,

is also described and included in the comparison evaluations.

SINGULAR PERTURBATION

The singular perturbation method assumes a plant representation given b)/ f\

%) = lel + F2x2 + Glu (E-1)

X, +F x (E-2)

ex2=F %2

3

where, again,

states to be retained

el
"

states to be eliminated

Ll
"

We may note in passing that the residualization method may be derived by assuming
¢ = 0 in Equation (E=2). But the perturbation approach consists of writing the solutions

as power series in ¢, To this end, suppose

2.2

_ .0 1.1

xl-x1+ex1+2e_x1+... _ . | (E-3) .
_.0 1 1 22

xz—x2+ex1+2ex2+... (E-4)

These expressions may be substituted into (E-1) and (E-2). This gives

.0, .1 _ 0 1 0 1
%y ++:x1 +vee -Fl(x1 +t-:x1 +...)+F2(x2 +¢;x2 +...)+G1u (E-5)
.0 . 2.1 _ 0 1, 0 1

ex2 +e X2 +ca' "F3(x1 +€x1 +-ct)+F4(x2 +ex2 +--u)- . (E"G)
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Equating coefficients of like powers of ¢ gives

.0 __ .0 0
X = lel + FZXZ + Glu (E-7)
o .0 0

0= 1?‘3x1 + F4x2 (E-8)

.1 — 1 1

% = lel +F2x2 (E-9)

0 _ .1 1

x1 = F3x1 +F4x2 . (E-10)
A
oo -1 0

Thus from (E-8), X, = ~F, F3x1, and from (E-7) this yields
.0 - "1 0
:-:1 = (F1 - F2F4 FS) xl + Glu (B-11)

We may solve (E-10) for x; in terms of xi and xg and substitute this expression for
x1 in (E-9) to obtain

2
.1 _ -1 1 -1.,0
xl -‘(Fl - F2F4 F3) x + F2F4 Xq (F-12)
00 -1 00 .
But xz = -F4 F3 %) from (E-8), and using (E-11) we have
.0 _ -1 -1 0 -1
9 = --F4 F3 (Fl - F2F4 FS) xl - F4 FBGl u (E-13)

Substituting for kg from (E-13) into (E-12) yields

1_ -1 1 -2 -1 0 -2
k) = (F) - F,F, " Fo)x, - F,F,  Fg(F -F,;F,~ Fo)x -F,F " FGu

(E-14)

1
Now if we set y = xcl) + eXy and perform the required algebra, we finally have

F4‘1F xl

s _ -2 "'1 2 "2
§ = (-eF F,  Fp) [(F -F,F, Foly + Gul + “FyF, "Fo(F -F 5) Xy

4 274 274 2

(E-15)

Assuming the.last term is negligible (which may or may not be a valid assumption)

leads to the reduced order model

. -2 -1
¥ =~ cF,F, “Fo) (F) - F,F, "Fgly +G,ul
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Apparently one can derive an infinite number of methods to derive reduced order models,

We have stopped with these four and examined them in the light of a very simple example,
Examples

We will treat a very simple system with numerical values chosen somewhat arbitrarily

but intended to be typical of what may occur in an authentic design problem. Consider

the system
EN 12 ] [x ] [0 ]
5{2 = 0 -3 0 X, + 3 u (E-16)
BCH I el B e R B

A loose interpretation of this system as typical of an authentic system is to consider

x; as corresponding to a low frequency mode, X5 28 corresponding to a high frequency

mode, with x_ a surface position driven by a first order actuator. Viewed in this

2
manner the relative magnitudes of the numerical coefficients are realistic, Consistent
with the physical interpretation, we will assume as our goal a reduced order model

for the low frequency mode and actuator, Thus we group the first two components of x

into the sub~-vector %y and take the last component of x to be the sub-vector Xoe This
partitioning yields
-1 +1 2 0
F = F_ = G, =
1 0 -3 2 1o L I
F3 = [-0.5 a] F4 = =10
The truncated method yields
-1 +1 0
X = Xm + u (E-17)
0 -3 3
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The residualization method yields

-1.1 1+(a/5) 0

[ = + -
N Xp u (E-18)
0 -3 3

The re-residualization method yields

-110 1004262 -6a
99 99 59
*RR ~ *Rr T u (E-19)
0 -3 3

The singular perturbation method with ¢ = 1 yields

-1.111 1.0140,.262a -0,06a

e
M
+
=

| (E-20)
P 0 -3 P 3

Now, the question arises as to how these reduced order models compare, and more
basically, what should be the basis for the comparison. We will not attempt to answer
the second question but will make a comparison based on two criteria. The first
comparison will be with respect to controllability. The second will be with respect

to closed~loop eigenvalues of the "complete' system corresponding to designs with the

reduced order models aimed at specified closed-loop eigenvalues.

The determinant of the controllability matrix for the system (E-18) is 27[0.5 + 9a + 2a2]
which is zero at a = -4.444 and ~0,056. For system (E-17) the corresponding determinant
is -9. The determinant of the controllability matrix for the residualized system (E-18)

is -9[5 +2a]/5 which is zero at a = -5, The determinant for system (E-19) is

~-(900 + 2002)/99 which is zero at a = -4.5. For system (E-20), the deteri'ninant is
-[9.0942.018a] which is zero at a = -4,505. Thus the latter two systems more accurately

reflect the controllability of the original system.

Another possible check on the validity of the reduced order models is to specify the
closed-loop eigenvalues for these models in order to define a coniroller. Then with
these controllers, find the closed-loop eigenvalues of the complete system and compare

the difference. This was done for the two cases a = -4 and a = -5, The closed-loop
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eigenvalues specified for the lower order models were -2 and -3 in each case, The

results are given in Table 49. The models based on re-residualization and perturbations
give very similar results which are significantly better than those for the truncation and

residualization models.

TABLE 49, CLOSED-LOOP EIGENVALUE COMPARISON

Value of Reduced order K1 Kz Closed-loop eigenvalues
a model of complete system
Truncated -2/3 -1/3 -1,18, ~4,25, -9,57
Residualized -2,85 | -0.3 ~1.36, -5.42, -8,11
- Re~-Residualized -4,99 | +0.11 -1.68, -5,25, -6.77
Perturbation -4,95 +0,10 -1.68, -5,14, -6.88
Truncated -2/3 -1/3 -1,11, -4,01, -9,88
Residualized No solution - - -
- Re-Residualized 4,99 -0.80 -2,06 +0.77j, -12.28
Perturbation 5.04 -0.80 -2,05 +0.79j, -12.30
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APPENDIX F

MINIMAX THEOREMS

Two theorems are presented to support the procedure used in the design of the minimax
controller., The first theorem is an existence theorem providing a sufficiency condition
for optimal insensitive controllers locally, that is, for sufficiently small variations,
This theorem also implies that such controllers are optimal controllers corresponding to
boundary points of admissible parameter variation sets. The second theorem states a
necessary condition for an optimal controller corresponding to a point in the boundary of
the domain of admissible parameter variations to be an optimal insensitive controller.
Here, the expression optimal insensitive controller refers to a controller which is
optimal for some admissible value of the parameters which minimizes the maximum of

the performance over the range of admissible parameter values.

e Theorem 1: Consider the system X = F(p)x + G(p)u, x(0) = x0 and associated

performance functional

@

J(a,p) = (Hx+Du) Q(Hx+Du)dt
o

where p is a vector of parameters. Let J*(p) = min J(u, p). Suppose P, is a
point with the property that IVpJ *(po)’and .vppJ >!=(po) > 0. Then there exists an

¢ > 0 such that the control u*(po) which minimizes J(u, po) also minimizes the
maximum of J(u, p) with respect to p in an e-ball, with P, on the shell (boundary)
of the ball,

Proof: For any ¢ >0, let Be(po) denote the e¢~ball with center at

po - GVPJ*(PO), 1. Csy

B, = {pw =p, - e¥ JHp ) +em |7l <l 74p )3

Also, define M(u; Py ¢) to be max J(u, p). Then
peB_(p )

M(u; Pye €) 2 J(u, po) z J*(po)
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For peBe(po) we may express J(u*(po), p) as

T
Iulp ), p] = Juxp ), p ] + VpJ[u*(po). pl (p-p,) +

P=P,

T sz[u*(po)- p] 2
1/2(p-po) —F (p-po)-l-o(e)
dpdp

P=p,

= Jup) g (p-p) + 1/2(p=p )" Hlp-p ) +o(c?), H >0

Note that g = v J[u*(p ), =9 J*

g = v 3luk(p ), pl pI¥(P)
p=p
For peBe and e to be sufficiently small, the only possibilities for extreme points
of J[u*(po), p] are

1. Approximately po-H-lg if this point lies within Be, or

2. Points on the shell of Be'

The point near pO-H-lg is a minimizing point, Therefore, maximizing points

lie on the boundary of Be.

The problem of extremizing J{u*(p ), p] subject to p = p_ - eg + ¢ with [nl = 1gl

may be treated with a Lagrauge multiplier as minimizing
T
H-= Jo +g (p-po) + 1/2(p-po)T H(p-po) + o(ez) + MT]TTI - gT g)

This yields 0= eg + A'I]TezH(g-'ﬂ) +0 (ez) and |1] = |g| as necessary conditions.

For e small these conditions imply that

=+e[l+o0(1)] and M= +g[1 + o(1)]

The bottom signs yield the maximum and the top signs yield the minimum, The

exact solution for the bottom signs is A = =¢, T = g which describes the point Py
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Thus, on Be

J[u*(p). p] = Jlux(p ), p,] = I*(p,)
Hence,

Mlu*(p ); p_, €] = J¥p ) < M(u; p, ¢)
which was to be proved.

Theorem 2: Consider J[u*(pc). pl = J*(po) + gT (p-po) + O(IP"Pol) with

g= VpJ "‘(p)lp=p . Let Q denote a closed convex set with nonempty interior in
o

the parameter space, Suppose P, is a point in the boundary of Q with the property
that

Jukp ), p ] = max Ju*(p), p]
pel

Then g must be an external normal to Q at |

Proof: Assume that g is not an external normal to Qat Py i.e., there exists

. T . .
a p; in Q such that (pl-po) g =c,; >0, Since Q) is convex, p(A) = P + k(pl-po)

lies in Qfor 0 <A <1 and [p(l)-po]T g= A(pl-po)T g= lcl. Thus,

Jwxp ) p] = I4(p) + [p0) = p 1" g + ol [pA) - p_ |1

J*(po) + kcl +o(p) > J*(po)

for A to be sufficiently small, This contradicts the hypothesis that P, has the
property that J[u*(po). po] = max J[u*(po). pl.
: pefl
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APPENDIX G

DUAL LYAPUNOV CONCEPT

This appendix presents resulis derived 'by Professor D, L. Russell in his role as a
consultant to Honeywell. The work reported is part of Honeywell's Independent Research

Program on insensitive control,

Several different definitions for insensitivity of a linear control system are introduced,
and relationships between these definitions are established., It is found that a certain
degree of agreement between a priori distinct notions of insensitivity can be expected.
The idea of maneuverability is introduced, and the extent to which it can be considered
to be an attribute complementary to insensitivity is explored., Finally, numerical
schemes for implementing the design techniques suggested by the theoretical develop-

ments are examined.

INTRODUCTION

Our purpose in this report is to explore several different possible definitions for
insensitivity of a linear control system and to establish relationships, where possible, '
between these definitions. We shall see that a certain degree of agreement between

a priori distinct notions of insensitivity can be expected., Finally we introduce the idea
of maneuverability and explore the extent to which it can be considered to be an

attribute which is complementary to insensitivity.

Let us assume that we begin with a linear control system

% = F(p)x + G(p)u, x(0) = X xeR", ueR™ (G-1)

and determine, via familiar techniques, a linear feedback law

u = Kx (G-2)

such that the nominal closed~loop system

%= (F(po) + G(po)K)x = Sx, x(0) = X (G-3)
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For peBe(po) we may express J(u*(po), p) as

T
Iurlp ), p] = Jarlp ) p ] + ¥ Jukp)opl | (pp,) +

P=P,

o 2-3[up ), ]

1/2(p-p,) (p-p_)+ole)?
dpop
p=p,
T T
= Jx(p,) +g  (p-p,) + 1/2(p=p,)" H(p-p) +o(s?), H>0
Note that =97 -Jju* ), =9 J%
g = V,Jlu*(p, ). p] TP
PP, P=p,

For peBe and ¢ to be sufficiently small, the only possibilities for extreme points

of J[u*(po), p} are
1. Approximately po-H-lg if this point lies within Be, or

2, Points on the shell of Be.

The point near po-H-lg is a minimizing point. Therefore, maximizing points

lie on the boundary of Be.

The problem of extremizing J[u*(po), p] subject to p = P, ~ g + €N with [n] = 1g|

may be treated with a Lagrange multiplier as minimizing
H=J +g" (p-p,) +1/2(p-p )" Hip-p ) +ole?) + a1T1 - g7 @)

This yields 0= eg + M]TezH(g—'ﬂ) +0 (ez) and |M| = |g| as necessary conditions.

For ¢ small these conditions imply that

A=+c¢[l+o0(1)] and = +gfl + o(1)]

The bottom signs yield the maximum and the top signs yield the minimum. The

exact solution for the bottom signs is A = -¢, N = g which describes the point |
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Thus, on B
€
J[u*(p ), p] = Ju*(p,) p,] = Ip,)

Hence,

* : = .
M[u*(p ); p_» €] = JXp ) = M p_, ¢)
which was to be proved.

Theorem 2: Consider J[u*(po). pl = J*(po) + gT (p-po) + o(lP'Pol) with

g= VPJ *(p)|p=p . Let Q denote a closed convex set with nonempty interior in
(o]

the parameter space. Suppose P, is a point in the boundary of  with the property
that

JluKp ), p I = max J[ux(p,), p]
peQl

Then g must be an external normal to Q at Pye

Proof: Assume that g is not an external normal to Q at Py’ i.e., there exists

. T X .
a p; in Q such that (pl-po) g=cy >0, Since Qis convex, p(A) = Py + A(pl-po)

lies in 0 for 0 <A <1 and [p(\)-p 1T g = l(pl-po)T g = Ac,. Thus,

Ju(p,), p(] = Ix(p,) + [ph) - p_1T g + ol Ip(A) - b, ]

J*(po) + lcl + o(p) > J*(po)

for A to be sufficiently small. This contradicts the hypothesis that Py has the
property that J[u*(po). po] = max J[“*(Po), pl.
: pefl
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APPENDIX G

DUAL LYAPUNOV CONCEPT

This appendix presents results derived 'b'y Professor D, L. Russell in his role as a
consultant to Honeywell. The work reported is part of Honeywell's Independent Research

Program on insensitive control,

Several different definitions for insensitivity of a linear control system are introduced,
and relationships between these definitions are established. It is found that a certain
degree of agreement between a priori distinct notions of insensitivity can be expected.
The idea of maneuverability is introduced, and the extent to which it can be considered
to be an attribute complementary to insensitivity is explored. Finally, numerical
schemes for implementing the design techniques suggested by the theoretical develop-

ments are examined,
INTRODUCTION

Our purpose in this report is to explore several different possible definitions for
insensitivity of a linear control system and to establish relationships, where possible,
between these definitions, We shall see that a certain degree of agreement between

a priori distinct notions of insensitivity can be expected, Finally we introduce the idea
of maneuverability and explore the extent to which it can be considered to be an

attribute which is complementary to insensitivity.

Let us assume that we begin with a linear control system

% = F(p)x + G(p)u, x(0) = X e xeR", ueR™ (G-1)

and determine, via familiar techniques, a linear feedback law

u= Kx (G_z)

such that the nominal closed-loop system

%= (F(po) + G(po)K)x = 8x, x(0) = x_ (G-3)
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is asymptotically stable; i.e., S = F(po) + G(po)K is a stability matrix,

One of the types of insensitivity which we shall discuss is insensitivity to parameter

variations. If the feedback law (G-2) is employed in (G-1), we obtain

% = (F(po) + [F(p) - F(po)] + G(p K + [G(p) - G(po)]K)x = (S + 8S)x (G-4)
where
6S = F(p) - F(po) + [G(p) - G(po)]K - : (G-5)

We shall use the term "insensitivity with respect to parameter variations' (IPV) to refer
to the study of the perseverence of the stability character of the matrix S+§S for perturba--

tions 6S about S.

Another aspect of insensitivity has to do with the manner in which the system (G-3) is

affected by external disturbances. Specifically we shall suppose (G-3) to be replaced by

X = Sx+v (G-6)

where v is a "white noise' disturbance with covariance

cov {v(t), v(s)) = 6(t-s)V

The term '"insensitivity to external disturbances' (IED) will be used to refer to the study

of the relationship of the covariance X(t) of x(t) to the covariance matrix V.

Finally, one might suppose the two systems (G-3) and (G-4) to be augmented by a

command vector:
X =8x +Cw ' (G-17)

% = (S+6S)x + Cw . (G-8)

In both cases we consider the problem of steering from

x(0) =0 (G-9)
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to

x(T). =x (G-10)

1
by means of an appropriate command input w. The study of the manner in which w
must change as the system matrix passes from S to S+4§S will be referred to as

"insensitivity with respect to command requirements, " or ICR for short,

In connection with the system (G-7) and specified boundary conditions (G-9) and (G-10),
- one may also ask what relationship exists between the norm and location of the target

vector x, and the norm in, say, L2[0, T] of the control w reguired to achieve the transfer

1
from (G-9) to (G-10). This is what we refer to as "'maneuverability. "

INSENSITIVITY WITH RESPECT TO PARAMETER VARIATIONS

We consider the nominal closed-loop system (G-3), i.e., % = Sx, and the perturbed
system (G-4), i.e., X = (S+6S)x. If S (=A+BK) is a stability matrix, the familiar

38
theorem of Lyaponov  ‘guarantees that the matrix equattion‘r

sz+zs¥+L =0 (G-11)

has a unique positive definite symmetric solution Z = Z(L) for each positive definite

symmetric matrix L. In fact, we have

Z = j' eSt Les*'c dt

o

We will attempt to extract information about IPV from Equation (G-11).

Multiplying Equation (G-11) on the right and on the left by Z-1 one has

1

stz 1z lg 4 271

Lzt =0

For a perturbed matrix S+6S one then has

1 1 1

(s+65)42 L + 2z Ns+s8) + 2z  1z7t -z les - ssez 7t = 0 (G-12)

T In this appendix superscript asterisks will be used to denote transpose operation,
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Proof: Let L

Citing Lyapunov's theorem again we see that S+58S remains a stability matrix if

-1

z7 1121

-z lgs - ssxz" 1> 0 - (G-13)

1 1

Moreover, S+6S has purely imhginary eigenvalues if Z"ILZ-1 -27768-6S*Z " =0

and becomes completely unstable if z 11zl - 271 - ssxzl <o,

Proposition 1: The inequality (G-13) is valid if

ss*L les < 1/4 27 lnz "t

and this is the best estimate of its kind.

1/2 denote the posii:ive syrhmetﬁc square root of L and let L-ll2 = (Lllz)-l.

We rewrite (G-13) in the form

A s Talhs R LI I St R AL

and note that

*

1 )

05y 2z L2 4 aase P (Jr 27T L2 4 s2esiL1/2

1 1 -1_1/2

Lz™ +27 L -t/

=1/22" L -1/2 112 5-1 | gigug1s

265 + 6S4L s

so that

1

+ @ es+esrzly s 17227 Lzt wassanles

and hence

1 1 1 1

z7lrz"l oz leg - ssez™l2 17227 127! - 2ss+7L s (G-14)

The inequality (G-13) is true, therefore, if the right-hand side of (G-14) is positive,
i.e,, '
1

ssxL "l ss<1/a2” 1

LZ" (G-15)

That this is the best estimate of its type follows from the fact that if we take

8S = uLz"1 (G-16)
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which violates (G-13) for » 2 1/2, then (G-12) becomes

1 1 1

(S+88)*Z™ " +Z™" (S+8S) + (1 - 2u)z'1Lz' =0

»

showing that, for the particular §S in (G-16), S+6S has purely imaginary eigenvalues
when (G-15) becomes equality and becomes completely unstable when < becomes > in
(G-15), i.e., foru>1/2,

Remarks

The estimate (G-15) does not appear to be independent of the matrix L. It may, therefore,

be true that some choices by L yield better estimates than others for various purposes,

If we take

8S = Al

(G-15) becomes

/2 1,1/2

Pr<1/ant/2z7! 2"

or

/ 1/2

1<1/21t2271 g
showing that S +AI remains a stability matrix if IAI < ”'1 =1/2 x (smallest eigenvalue
of Lll2 Z-1 LI/Z). This means that all eigenvalues of S lie to the left of the line

Re (A) = =#y. This result is similar to one obtained by Wonham.{sg]

INSENSITIVITY WITH RESPECT TO EXTERNAL DISTURBANCES

We consider the system (G-6) with white noise disturbance. Letting X(t) be the covariance

matrix for the vector x(t), we find that

R-sR+%s"+v

where, as indicated following (G-6), V is the covaraince matrix for V. Since Sis a

stability matrix, for any value of }?(0) we have
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lim X)) = X

where X satisfies

SX +XST +v =0

A natural way in which to assess the insensitivity of X = Sx + v to the white noise dis-
turbance v would seem to be afforded by comparison of X and V. Let us define the index
of insensitivity with respect to v to be the largest positive number o for which

< }
p.oX A2 !;

or equivalently

1/2 X-l 1/2

lJ:oI =V v (G-17)

Now (G-15) can be rewritten as

(L1/2 GS*L-IIZ) (L-1/2 6SL1/2) s1/4 (L1/2 z-l L1/2)2

and if we let My be the largest number for which

21-1-11 < I_‘1/2 Z-l L1/2

then S+8S remains a stability matrix if

(Lllzss*L-1/2) (L-1/258L1/2) < H'12
or
65; 85y, < ”12
where
5S = LllzssLL'llz (G-18)

It would seem natural to refer to W, as the index of insensitivity with respect to para-

meter variations of the form (G-18), Since X of the present discussion reduces to Z
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of Equatxon (G-1 1) when V of the present discussion becomes L of Equation (G- 11), 2p.1
should be compared with R in (G-17). Hence we have the result expressed in

proposition 2.

Proposition 2: For. the disturbed system (G-6), the index s of insensitivity with respect

to external white noise disturbance v with covariance cov (v(t), v(t)) = 6(t-s) satisfies

where by is the index of insensitivity with respect to parameter variations

1/2 12

8S, L~

88 =L L

TOWARD A THEORY OF MANEUVERABILITY
Let us now consider the system (G=-T).

Here C is a fixed n x p matrix, For a fixed time T > 0, the condition that w should steer

the system from the initial state

x(0) = 0 (G-19)

to a desired final state

x(T) = X, . (G-20)

is, from the variation of parameters formula,

i J.T S(T-1)

(o]

x C wit) dt | (G-21)

1

Let us assume now that the plant operator uses a (possibly time varying) control mode

linearly dependent on the desired final state:

w(t) = w(t,xl) = A(T, t)x1

Then Equation (G-19) is satisfied for all x; eRn just in case

J.T S(T-t)

o

CA(T,t)dt =1 . , (G-22)

‘264



It seems fairly plausible that human operators may, in fact, operate plants in such a
' manner, at least after they have adjusted to the plant's characteristics, . Just what the
matrix function A(T, t) would be in any particular case would have to be determined by

lengthy experiment.

In discussing maneuverability, however, it seems reasonable to consider that control
mode which corresponds to least control effort in some sense., That control mode is

obtained by letting

S*(T-t)

w(t) = C¥e £, EeR" o (G-23)

and substituting (G-23) into (G-21) with the result

T
J eS(T-t)

(o]

S#(T-t)

CCxe dt) € = W(T) € = x, S ‘ 7 (G-24)

Assuming that the pair (S, C) is controllable, W(T) is positive define and we have

£ = w(m)! x,

S*(T-t)

w(t) = C*e w(T)™} x, =A_(T,0) % (G-25)

The control "effort" is

1/2 T 1/2

T
[ W |Pat = fxprwe ST coneS T arwr)x

1
o o

., L2 .
(cf. (G-24)) [xl*W(T) xl] . : : (G-26)

and thus becomes small as W(T)-1 becomes small, i.e., as W(T) becomes large,

Now

T

SW(T) + W(T)S* = [ - :]i—t [T Va5 (Tt 4
[o]

= -cCx+ e T cowe™ T
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so that W(T) satisfies

ST ST _

SW(T) + W(T)S* + CC* ~ &>~ CC#e 0 (G-27)

For all T > 0 we have 0 < W(T) <W, where

SW + WS* + CC* = : (G-28)

and, since S is a stability matrix,

. " .
hinco eST CC*eS T _ 0, 11—r)r; W(T) = W

T T

Let L. be the matrix introduced in Equation (G-11).

Since L, was assumed positive definite, there is a least p > 0 such that

pL 2 CC*

and then

S(pZ-W) + (pZ-W) S* = pL, - CC* 2 0

and Lyapunov's theorem gives

wZ = W(> W(T) for any T > 0)

and then

W(T)-1 >x1z 1/p 71

We have seen that insensitivity with respect to parameter variations corresponds to
keeping L large and Z":l large. If L is large, p is small and 1/p is large. So L large
and Z_1 large makes 1/u Z_1 large. We see that W(T)_l, which by (G-26) measures

the least control effort to execute the maneuver (G-19) and (G-20), becomes large. Thus,
we have less maneuverability in that a large control force is required to execute the

maneuver,

We have shown, therefore, that the requirements for insensitivity with respect to

parameter variations are inimical to the interests of maneuverability ( a result which
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will surprise no one who has worked in the field, of course). Thus, control design (by
which we mean the selection of K as described in (G~2)) must balance off these two factors,

One seeks K such that the solution W of

SW+WS* + CC* = 0 (G-28)

is not too small while at the same time the solution Z of

SZ +ZS*+ L =0 (G-11)
is not too large.
INSENSITIVITY WITH RESPECT TO COMMAND REQUIREMENTS

Consider the system (G-7) and also the perturbed system (G-8). We shall suppose
that the plant operator has ''learned' a control mode A(T,t) for (G-7) for some T > 0;

i.e., he knows how to form the command control force

w(t) = w(t, xl) = A(T, t) 3

for some A(T,t) which satisfied (G~22) and hence is able to perform a maneuver x(0) = 0,

x(T) = X

We suppose now that the plant changes from (G-7) to (G~8). One then has

T'e(s+aS)(T-t)

o

x(T) = [ Cw(t) dt

If the operator continues to use the control mode A(T,t), he will no longer steer from 0

to the desired target state x Instead, with target X, he will reach

1°

. T
x, = [ eSS (T-1) a1y gt x

1
o

i J-T S(T-t)

o]

CA(T,t) dt %

T
o] (59 (T-1) _ S(T-1)

(o]

) CA(T, t) dt Xy
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= (I+E) x1

where the operator
T (s+9) (T-t)__S(T-b), -
E=[ (e -e ) CA(T, t) dt - (G-29)
o

represents his error at time T,

The expression (G-19) is rather difficult to deal with unless we consider limiting

behavior as §S tends to zero., We define
. T (S+£56S) (T-t) S(T-t)
E _ lim e -e
Since E = 0 when € equals zero, we have
(G-31)

_ . dE
E(esS) = € 3rzgy *ole) €0

and 3%3% indicates the rate at which the error operator E grows as the plant dynamics

are perturbed in the direction §S.

Now e(S+€ 85) satisfies the differential equation

d_¢ (S+e88)T

4 J(SHESIT) o (SHHT o

and reduces to the identity for T = 0. Regarding BGSe(S+66S)T as an "inhomogeneous' |

term and invoking the variation of parameters formula, we have

T-t '
e(S-I-ﬁ&S) (T-t) _ eS(T-t) +J- eS(T-t-T) 66Se(S+&’!<‘iS)'r gr

(o]

and then
Lim e(S+€GS) (T-t) _eS(T-t)
e-0 e
(G-32) '
T-t
= J' eS(T-t-T) S eST dr
To)
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4

S =

T ey

;
b

Consequently,
T T-t

dE : S(T-t T)

— = & -

3(85) J‘O _ro s ar CA‘T,t) dt (G-33)
T , Tt

= eS(T-t) S e s5 5 ar CA(T, t) dt
o p

One pos'sible'rhéasﬁré of the system's insensitivity with respect to command require-

ments is
25 ||
sup b(6S)
llsslf#0 T8l

i.e., the maximum growth rate of the error operator E(€8S) as compared with that of

the perturbation €6S. Eventually we shall obtain an estimate for this quantity, But our

real thrust here is to proceed a step further and let

dA .

A(esS, T, t) = A(T,t) + & ——ar (68

>(55) (T, t) + o(e) " (G=-34)

denote a corrected control mode, i.e., one for which
T

I BSSTY cpess, T, tyat =1 (G-35)
o]

Subtracting (G-22) from (G-35) we have

T _ T _
0=F eSEST-Y pioss T ar- f ST cag, b at
o o
T (s+e89) (T-t)
=[ e C [A(E8S, T, t) - A(T, t)] dt
o
T (s+€88) (T-t) _S(T-t)
+] [e e 1 CA(T, t) at
[s]

(cf. (G-31), (G-32), (G-34)
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T
e [ (S8 (T-t) o _2A

C 3(69) (T,t) dt

o

dE
+ 6——0(68) + o(g)

and dividing by € and taking the limit as € » 0, we have

T
S(T-t) DA 0E
Io e Cm (T, t) dt+O(GS) =0

which must be satisfied by the first order correction term in (G-34).

The least norm solution of the above equation is provided by setting

SoE (1) = x> (T 1

0(8S)
yielding

T ser-t) SH(T=t) >E

[ e CCe Var= - 22

o d(86S)
or (cf. (G-24))

- . Q2E_ - - -1 oE

Wr=-355 > 7= -WD 355
and thus

OF e s SHT-t) -1 dE

An appropriate norm for D4 is
pprop ° >(6S)

(T, t)= (6S) (T,t) dt

= Tr,_r
o ey

)
H
H

270

« T
* -1 S(T-t) vy SHT-1) -1{ E
> W) [ e CCe dt W(T) <o (65

—
dE 3 -1 OE _ -1 OE OE ¥
3 ss> W(T) <D(SS)>‘J = Tr 1 W(T) <b(5S)> < o(ss))

(G~36)



DA
2(88)
mode must be changed in order to adapt to the change from % = Sx+Cw to X = (S+e¢§S)x + Cw,

2 .
Thus, on the one hand, H H , which measures the minimal rate at which the control

. -1
varies directly with IIW(T) " || (and becomes small as maneuverability is improved large

as maneuverability suffers) and, on the other hand, varies directly with Hb 55) ||2

Thus, whether we choose to define insensitivity with respect to command requirements
dA E

in terms of m or b—'(ég)

we shall have to estimate the latter in any case.

We take the formula (G-33) for bz()f:S) and effect a change of variable T = s+t to get
T T
DE |7 ST seSTea(r, 1y ar at
d(6S)
o t
(G-37)
T T
= ST s SY ca(r, by at ar
o o
Put
T s(r-t)
B(r) =] e CA(T,t) dt
o
and (G-37) becomes
DE T S(T-T7)
S TS ¢SS BT

and then, using the Schwartz inequality, we have

S(T-7) S¥(T=0)

” b(&S) ”2 = Tr (‘r J“ e 6S B(T) B(O’)* §S e do d'T)

T T
=Tr ([ [ B(T) B(o)*sS*e
(o] o

SHT=0)S(T=T) 5 4o ar)

T T 1/2
< Tr [(] [ B(o)B(1)* B(T) Blo) do dr)]
[o] [o]
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*eS*(T—T)eS(T-c) S*(T-o)eS(T- T)

T T 1/2
x[TR(] [ ¢s 5S6S*e &S do d7))
(o] o]

(G-38)

1/2

T 1/2 T
S(T" T) dT)z]

=[Tr ( B(1)* B(7) d'r)z] [Tr ([ e | §S 8S*e
(o] (o] '

S*(T=-T)

Now for any positive definite symmetric matrix M with (positive) eigenvalues

)‘1’ 12, ese }'n’ we have

1/2 n 21/2 n 21/2
=(Z QD) Sz A)) =
k=1 k=1 k

(Tr M2) A, = TrM
1 k

(YE-]

so (G-38) implies

T

|| JE (S(T=7) S*(T-1)

T
2
sy |l = (Tr [ B#B(T) d7) (Tr [

(o) o

85 8S*e dT) (G-39)

Now

T T
Tr [ B(1)*B(r)dr =] Tr B(t)* B(7)dr
o o

and, using the same reasoning as in the steps above,

T T .
TrB(M*BMdr=Tr[[ [ &Y S*(T-s) ds dt]

o o

CA(T,t) A(T, s)* Cx*e

T 9. 1/ 1/2
<[Tr (] A(T,t)* A(T,t) dt)°]

2 T y
[TI‘ (f eS(T-t) CC*eS*(T't)_dt)Z]
o (o]

T T
STR ([ A(T,t)*A(T,t) dt) TR ([ e
o o

S(t-t) S*(T-t)

CC*e dt)

T T
TR ([ AT O* AT a) Tr S coxeS™ T gy
° o]

and returning to (G-39) we have

T T

I s IP < Tr () AT O* AT Y at) (Tr [ ST b5 este
fo) o

S¥*(T~T) an
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LT T ]
s T ST cexS T ary an

(o] o

Now

i

T T
I o1e () ST coxe Y gy ar
o] o]

T T
s Te(f ST coxeSTY gty ar
(o] (o]

= (cf. (G-24)) = T [Tr W(T)]

and we finally have

. _
< (T Tr (W(T) ) (Tr [ A(T, t)* A(T, t) dt)
o

I 2= )12

d(8S)

S(T=-7) S#(T=-T)

T
x(Tr [ e
o

8S 8S*e dn)

= T [Tr (W(TN] Ila]12 [Tr Q(T)] (G-40)

where Q(T) satisfies

S S*T

SQ(T) + Q(T)S* + 68 §8* ~e> L 6S 6S%e> 1 = 0

and therefore cbeys the inequality

Q(T) < Qo T 2-0

where

SQ + QS* + 6S 65% = 0 (G-41)

Similarly we have W(T) £ W, where W satisfies (G~28) and we have the weaker but more

convenient estimate

12 2
I %ll < T Trw TrQ |[a ] (G-42)
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Thus, if we measure insensitivity with respect to command requirements by means of
H 3(55) aS) ||, we want the product Trw TrQ [lA H to be small, Now, letting A_be the

least norm control defiried in (G-25), we have

Trw TrQ ||A[1% 2 Trw TrQ HAOHZ 2 TrW TrQ Trw '

with equality holding in the first instance when A = Ao and in the second instance when

we let T = «,

For many purposes we can assume that TrW and TrW_1 will balance each other out

leaving us with something like

dE_ |2
Il 575 ||

2(65) < yT Tr (Q) (G-43)

in the case A = Ao’ T large.

Hence insensitivity with respect to command requirements (ICR) amounts, in this
instance, to the condition that Q, which is the unique positive definite solution of (G-41),
should be small. We see that if we measure ICR in this way it will correspond to IPV
with 8S §S* taking the place of L in (G-11), At this point, therefore, we have established
an essential unity of IPV, IED, and ICR if ICR is measured via H (6S) [l. In this
connection we should note how the control mode A enters the picture here. The estimate
=117

on H is directly proportional to ||A “2 showing that the manner in which the

2(55)
human operator carries out his maneuvers has some bearing on the sensitivity question,
The more efficient his control mode, the more the system fulfills the ICR requirement

as defined above.

As we have indicated earlier, however, our main thrust is to measure ICR in terms

DA .
£ 3065)° Returning to (G-36) we have

2 T
A DA DA
I 2211 =Tr [ = (T,t) (T, t)* dt
2(88S) L2 [0, T] o d(8S) 2(6S)
DE OE >
< Tr (W(T) 3(59) (WS_)) )
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dE dE

%k
< Tr (W(T)_l) Tr (?3(63) d(88S) )

2
E
2E

=Tr (WD) Y || 5(65)

If we accept (G-43) and assume T large enough so that W(T)-1 is close to W_l, we obtain

an estimate of the form

dA 2 _ 0 -1
— <
l3gg!l” = ¥yT Tr (W) Tr (@
. ; . oen i [[0A (2
for some y > 0., To fulfill the ICR requirement when given in terms of b_(a_S)H , wWe see

that we want to
Maximize W: SW + WS* + CC* =0

Minimize Q: SQ + QS* + 8S §S* =0

effecting in the end some compromise between these contradictory requirements. We

see that ICR, as measured by || Hz, involves the same tradeoff which was introduced

o(&s)
in connection with the conflicting requirements of maneuverablhty and insensitivity,

SUMMARY REMARKS ON THE THEORETICAL DEVELOPMENT

In the foregoing analysis, we have seen that there are a number of approaches to
insensitivity controllers which make use of solutions of Lyapunov type equations. Three
of these, IPV, IED, and ICR (measured by H b(6S) |}, have been seen to be essentially
equivalent, and they are in some sense inimical to the interests of maneuverability.

Because of this latter problem, it is the author's feeling that ICR (measured by 5%5)
is the most realistic measure of insensitivity. This is reinforced by the fact that

DA
d(68)

be sensitive to parameter changes, measuring, as it does, the minimal necessary change

represents, in however crude a sense, the degree to which the plant operator must

in open-loop control strategy which the operator must effect to preserve the same

maneuvering capability in the face of parameter fluctuations in the plant.
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An obvious weak spot in our analysis is the dependence of our criteria upon a fixed

time interval T--a dependence which we have tried to avoid by saying that if T is
reasonably large and the eigenvalues of S are significantly displaced to the left of the
imaginé..;"y' axis then little erfor is introduced by taking T = + », Clearly this device will
be inadmissible when we are dealing with short time period maneuvers in a plant which

is only slightly damped. In such situations, for example, we should feel obliged to use the
solution W(t) of (G-27) rather than the solution W of (G-28), We are then immediately
confronted with the question of which value of T to use, One possibility here would be

to look for some approach which treats the time T in which a maneuver is to be performed
as a random variable with an appropriate probability distribution assigned on the interval
(0, =).

RELATIONS BETWEEN THE LINEAR QUADRATIC AND
LYAPUNOV EQUATION APPROACHES

The Lyapunov eﬁuation approach developed up to this point may be briefly summarized
as follows. Two matrices, Z and W, were introduced as solutions of the Lyapunov
equations, (G-11) and (G-28), To achieve insensitivity it is desired to choose the feed-

back gain matrix, K, so that Z is small and W is large.

In the linear quadratic approach, the feedback gain matrix, K, of the linear controller is

chosen to minimize the quadratic performance index

<]

J =[] (x*Qx +u*Ru) dt (G-44)
o

The resulting feedback gain matrix is given by

K = -R"! g+p (G-45)

where P is the unique positive definite solution of the Riccati matrix equation

0=F+P +PF +Q - PGR™! G*P (G-46)

The value of the performance index obtained with the optimal control is xo*Pxo. We

may rewrite Equation (G-46) is the form -

0=(F - GR™! gxp)rp + P(F-GR'IG*P) +Q + PGR™! GxP (G~47)
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If we multiply (G-47) by P—1 on both sides, we obtain

0=(F-Gcr axpp ! +p ! (F-gr lcxp)x + P 1P ! + GR lG* o
1 -1 -1 -1 -1 (G-48)
=(F+GK)P  +P  (F+GK)*+P QP = +GR G* v

Let Z be the solution of the Lyapunov equation

(F+GK) Z+Z (F+GK)* + pl QP‘1 =0

with K given by (G-45). This Lyapunov equation is the same as (G-11) if we put
L= P"1 QP-I. Thus, W = P-1 -Z satisfies

(F+GK) WAW (F+GK)* + GR™! G* = 0 (G-28")

1G#* = cC*. Thus, the solution of (G-46) leads

rather naturally to a pair of solutions of (G-11) and (G-28') and we have the relationship

which is the same as (G-28) if GR~

P = (Wiz)™ !

In general, this process is not reversible, If we have (G-11) and (G-28) for stable -
F+GK, we can set.

L = (W2) Q (W+Z), P = (W+z)~ !

and (G-11) and (G-28') add to give

e T (F+GK)* + Pl qr !+ GrR lgx =0

Multiplying on the right and left by P gives

(F+GK)*P+P (F4+GK) +Q + PGR™ G*P = 0

which is not of the form (G-46) unless

= -R"! grp

Here HK+R-1G* (W+Z)"1 ( can be regarded as a measure of the departure of (G-11) and

(G-28') from an optimal linear quadratic system.

27



Because the null space of Gle/2 is the orthogonal complement of the range of R-llzG*.
one may assume without loss of generality for any feedback matrix K that
-1 .2
K=-R =~ G¥P
for some n x n matrix P. If one now computes
- (F+GK)*P - PHF+GK) + K*RK =
- (F-GH™! G*P)* P - P* (F-GR™1G*P) + P*GR™} G*P = Q(P) (G-49)

~

we have a Riccati equation of the form (G-46) if Q(P) turns out to be positive definite
and 1; is symmetric (and, a fortiori, positive definite if F+GK is stable). Modifying '.;.
and hence K, so as to increase Q(I;) tends to move the system toward the set of Riccati
systems. Equation (G-49) is important for general K since the properties of the
sensitivity index $(1) = (I—R()\)GK)"1 depend[39' 40] 4 o very large degree on Q(lg) where
R(\) = (AI-F) "1,

Our double Lyapunov equation approach has a number of relationships with the sensitivity
analysis based on $(A). The matrix $(1) measures the ratio of output disturbances in the

open-loop and closed-loop systems
% = F(p)x + GK xo(t), x(0) = X (G-50)

X = (F(p) + GK)x, %(0) = X, (G-51)
where xo(t) is the solution of

% (t) = (Flp,) + Glp )K) x, (1), x_(0) = x_ (G-52)

Equation (G-11) can be interpreted as providing the limiting (as t - <) covariance matrix

corresponding to a white noise disturbance with covariance §(t-s)L.,

In this sense (G-11) defines a ''Lyapunov transform'' relating input, v, and output, x,

in a particular statistical manner, It compares with the relationship

Xs) = (sI - (F+GK))"! Hs)
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based on the Laplace transform approach but, whereas the vector functions x(s), v(s)

lie in infinite dimensional spaces, Z and L lie in finite (i;-'i)-) dimensional spaces.

In both cases transient effects are neglected. With this comparison in mind we can use
(G-11) to study insensitivity in the '"Lyapunov transform'' setting much as one uses
$(1) to study it in the Laplace transform setting. Suppose we start with a stable nominal

open-loop system Xk = F(po)x and solve the corresponding version of (G-11),

FZ +ZF*+ L =0 : (G-53)

Introducing a small parameter variation §F = F(p) - F(po). we produce a corresponding
variation 8Z in Z which satisfies -

FbZ + 8ZF* + OFZ + Z§F* =0 (G~54)

With feedback u = Kx, one can solve
(F+GK) Y+Y (F+GK)* + L =0 (G=-55)
but, to mimic the line of reasoning which is followed with respect to the sensitivity

matrix $(1) = (I-R(A)GK)-I. we adjust the "input' L so that the '"'responses' Z and Y

agree when 8F = 0, This means we replace L by

L = L - GKZ -~ ZK*G* (G-56)

Then the solution Y of

Y ~ ~

(F+GK) Y+Y (F+GK)* + L. = 0

is givenby Y = Z, (We remark that I. will remain positive definite if K is not too large.)
Bringing in the parameter variation §F again we produce a change §Y in Y,

(F+GK) 8Y + sY(F+GK)* + §FY + Y6F* = 0

which, since Y. =Z, is Just

(F+GK) §Y + §Y (F+GK)* + 8FZ + Z§F* = 0 {G-57)

The "adjustment" (G-56) in L allows us to have the same inhomogeneous term

§FZ + Z8F* in both (G-54) and (G-57). The criterion for insensitivity improvement
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should now be that §Y is smaller, in some sense, than $Z. A really sat{sfactpry
criterion for smallness here remains to be developed, but we can give a fairly

persuasive argument. Suppose K is selected so that the solution Y of (G-55) satisfies

Y<pZ, 0<p<1 K _ {(G=58)

where Z is the solution of the Equation (G-53).

Let p 2 0 be selected so that

§FZ + ZsF* s L, {G-59)

for all §F in a certain class, say §F§F* s &], Then, comparing (G-54) and {G-53) and
using (G-59), we have, for all such §F,

8Z < pZ (G-60)

On the other hand, comparing (G-57) and (G-55) and using (G-58) and (G-59, we have

~

8Y < pY spuZ = ppY (G-61)

for all such 8F, which is an improved bound as compared with (G-60). Thus we see
that selecting K so as to reduce Y as compared with Z has as a consequence a type of ' -
insensitivity improvement comparable in a sense to the more familiar one based on

the Laplace transform approach and the sensitivity matrix $(1).
NON-SPECIFIC APPROACHES TO INSENSITIVITY IMPROVEMENT

By "'non-specific" approaches to insensitivity improvement we mean methods which do
not take into account the specific form of the perturbations encountered. An example

coming to mind very quickly is that of linear quadratic control. It is very well known

that heavier weighting on Q, as compared with R, leads to a less sensitive sy'stem..

Convincing arguments to this effect are given in References 39 and 40,

We present here an alternate, but related, approach to non-specific insensitivity

improvement. We have noted that if we let L. be an n x n symmetric positive definite
matrix and solve (G-11) for Z, which will also be symmetric and positive definite if

S is stable, then S+6S will remain stable, provided only that
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ss+L”t 65 < (1/4) 27t Lz}

If we do not have any specific ideas about the form of 8S, it is clear that our objective. ..
should be to make Z small relative to L. or, equivalently, Z-1 large relative to L-l.
The method which wé will now describe does precisely this by making Z smaller while
keeping L fixed. The method is also notable for the light which it sheds on the relation-
ship between the Equations (G-11) and (G-28'). '

For ease of discussion let us assume that G(p) = G(po) 4 @, that is, G is known with
certainty. We keep L fixed and allow the feedback matrix K = K(s) and the solution

matrix Z = Z(s) of

[F(p,) + GK(s)] Z(s) + Z(s) [F(p) + GK(s)]* + L = 0 (G-62)

to depend on a scalar parameter s. We shall require K(s) to be differentiable with
respect to s. It is then easy to show that Z(s) is also differentiable in any interval in

which F(po) + GK(s) remains stable. Differentiating (G-62) with respect to s, we have

Z dzZ dK *
[F(p,) + GK()] S + L [F(p ) + GR(s)I* + G = Z(s) + Z(s) =

G*=40 (G-63)

To make Z(s) move toward smaller values as s increases, we need to have gsé negative

definite. There are a number of ways in which this can be done but certainly the most
obvious is to put

& - rlGxz(e) | (G-64)

so that (G-63) becomes

[F(p,) + GK(s)] g—f + %f— [F(p,) + GK(s)]* - :GR_IG* =0 (G-65)

Comparing (G-65) with (G-28') we conclude that the choice (G-64) for %;E leads to

az. - '
3 - 2 W) (G-66)

where (cf. (G-28"))

[F(p,) + GK(s)] W(s) + W(s) [F(p_) + GK(s)]* + GR g =0 ' (G-67)
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Smce W(s) is pos1t1ve defnute. gz is negatlve def1n1te and Z(s) is made smaller while
no change is made in L. Thus the two d1fferent1a1 Equatmns (G-64) and (G-66) together
with the Equations (G-62) and (G-67) constitute a non-spec1f1c-m_ethod for insensitivity -

improvement.

There are very def1mte 11m1tat10ns on how much 1mprovement can be effected by thls
method, With K(s), Z(s) bemg the gam matnx and Lyapunov solution matrix, we know .
that F(po) + 8F + GK(s) is stable where 6F = F(p) - F(po) satisfies

sF+LL 6F < (1/4)2(s)" ! Lz(s)™! ' (G-68)

If we select SF in such a way that (F(p), G) becomes an uncontrollable pair, then, for -

some )‘o 20, (F(po) + 6F + )‘oI‘ @G) is not stabilizable and we cannot have

(6F + 7\01)L':l (BL* +1 T) < (1/4) Z(s)'1 LZ(s)'1

for any value of s, For L = I we see that this limits the degree to which the largest

eigenvalue of Z(s) can be reduced.

It is always true that one does not get something for nothing. The above method of .-
defining K(s) makes Z(s) monotone decreasing, But clearly Z(s) 2 0 for all s, We
conclude therefore that

lim dZ _ -2 lim W(s) = 0

2o ds -0
s

But W(s) measures the maneuverability or degree of controllability of the system. So
it is clear that we would never want to push s to +« in this method. Also, since

dK

—_— = =G

ppe G Z(s)
it is clear that the gain matrix will tend to become large as s < +», In implementing the
method, it seems reasonable that one should decide upon,a Eriori bounds Pk P and
stop the process as soon as :

lKs) 1] 2 ppe
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o W(s')m1 2 pWI_  (@=nxn 'identity.matrix)

Since the rate at which Z(s) can be decreased is8 equal to ~-2W(s), we see the.t at the.
outset 1t is not only important that Z(0) should be small but also that W(0) should be
large. We are therefore r1ght back to the or1g1nal problem w1th respect to selectmn '
of K(O) we want K(0) to be such that Z(O) is not too large while W(O) is not too small.

We remark that (G-62), (G-64), (G-66), and (G-67) can be solved numerically by
familiar methods., The Bartels-Stewart method[ g is particularly appropriate for (G-62)

and_.(G-G'Z). since the same matrix, -_F(p(.)-) + GK(s), is involved in both cases. -

A further question which occurs rather naturally is this. If we follow the above
procedure, do we decrease sensitivity as measured by the so-called "sensitivity

matrix' ?

As one examines the theory of this matrix as it related to linear quadratic regulator

theory (see, for example, Reference 39 and in particular Reference 40), we observe the

following. First of all'wé may, without any 10ss of generality, assume
N e
K(0) = -R "G*P(0)

~

for some P(0)., Then letting

~ ~ S
P(s) = P0) +[ Z(s) ! ds (G-69)
[o] . .

we have

" K(s) = -R"1G*P(s)

We now'set

Qs) = ~F(p )*Pls) - Pls)*F(p_) + P(s)'GR ™ G+P(s) (G-10)
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Following the approach used in Reference 39, we see that

(S ™! K(s)*K(s)SGw) ™! = K(s)* [I4G*R Gw)* (G(s) + iw(P(0) - P(0)*)) R(iw)G] K(s)

The criterion for improvement of insensitivity in this setting is that Q(s) should be

positive, and the larger Q(s) is, the better., Now, differentiating (G-69), we have

9 | _puze) ! -z(s)"! F4z(s) lGR™1G*P(s) + P(s)*GG*Z(s)"}

ds

~(F-GK(s)*Z(s)" ! -Z(s)"* (F-GK(s))

But, multiplying (G-67) on the left and right by Z(s)“1 then shows that

-g% =26) ' L z(s)"! (G-71)

and therefore Q(s) increases, the rate being greater as Z(s)-1 becomes greater, i.e.,
as Z(s) becomes smaller, Thus our method also improves sensitivity as measured by

the sensitivity matrix $(3).

The above reasoning also shows that if Q(0) is positive definite, corresponding to
-1 ~
K(0) = =R "G* P (0)

which is the optimal control for the cost

@©

[ =x*Q(0)x + u*Ru) dt
(o]

then
-1
K(s) = -R "G* P(s)

remains the optimal control relative to

«@

[ x*Q(s)x + u*Ru) dt
o
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Thus the class of optimal linear quadratic controls is invariant under our method and, in
the context of such systems, corresponds to increasing Q(s) in a particular way, namely
(G-71). To express this in a different way, suppose we have a symmetric positive

solution P(s) of the Riccati equation

F*P(s) + P(s)F + Q(s) - P(s)GR_1G*P(s) = 0 (G-72)

corresponding to the feedback control law

u=-R"! GxP(s)x
We now let Z(s) be the solution of
(F-GR™! G*P(s)) Z(s) + Z(s) (F-GR_1G*P(s))* + L = 0 (G-73)

or, equivalently,

®-GR™laxpe))* z(s)! + z(s)" ! (F-GR™! G*P(s)) + z(s) ! LPs) ! = 0

In (G-73) we let

dP _,, -1 4@ _ . -1 -1 }
3 T2, 3= =Z(s) T L 2(s) (G-74)

Then (G-73) remains invariant; i.e.,

= [F*P(s) + P(s)F +Q(s) - P(s) GR_'G*P(s)] = 0

This means that the differential Equations (G-74) combined with (G-73) provide a
methodical way of moving through the class of Riccati Equations (G-72) in a manner
which

(1) Decreases sensitivity as measured by the sensitivity matrix

(2) Decreases sensitivity as measured by our criterion in the sense that in
(F—GR-IG*P) (s)) Z(s) + Z(s) (F-GR-IG*P(S))* +L =0

the matrix L remains fixed but Z(s) becomes progressively smaller.
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Now property (1) can be made true in Riccati Equations (G-73) just be increasing Q in
any manner so that (1) is not all that startling, But, as noted preyiously, “just incrsas_ing
Q inan arbitrary manner does not, in general, allow one to conclude anything similar to
(2). So what we have appears to be a particularly advantageous way to vary the’ welghtmg
matrl.x Q in Riccati equations, QOur method is also more general since the system of
Equations (G-62), (G-64), (G-66), and (G-67) (wh1ch leaves (G-72) invariant and
accomplishes (2) above) makes sense for any starting gain matrix K(0), whether derwed

from a Riccati equation or not.
"SPECIFIC" APPROACHES TO INSENSITIVITY IMPROVEMENT
By a "specific" approach to insensitivity improvement, we mean a method which is

geared to the perturbations which are known to affect the system at hand. Thus, we

consider the nominal system

X = F(po)x + Gu, x(0) = X xeR", ueR" (G-175)

and the perturbed system

% = Fp)x + Gu = (F(p ) + 6F)x + Gu, x(0) = x_ | (G-176)
and we suppose that there are finitely many matrices Fl’ Fz, . .:..' ‘ F!’ such that §F 1o
can be written
‘e .
8= X aF, o 20, i=1,2, ..., 4 (G-77)
. iti” i .
i=1 .
and we will suppress the dependence of F(po) on p_. We suppose now that K is an
m X n matrix such that F+GK is stable, and we solve )
(F+GK) Z+Z (F+GK)* + L = 0 _— . (G-11Y

for some positive definite symmetric matrix L. Then we also have

£ L L
(F+ £ o F,. +GK)Z+Z (F+ £ o F, +GK)*+L - X a(F.Z +ZF.%) =0
. i~i R T | . iTi i
i=1 i=1 i=1
. L _
A sufficient condition for F + % o Fi % GK to be stable'is that
i=1 | :
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.
“L- E

o (F,Z +ZF, %) >0 = ' ' S " (G-178)
i imi i : . :

1

We assume the matrix Fi to be scaled in such a way that the range of likely system

matrix perturbations is the convex set

t!isl

.M
™M

EoFly 2o a2
i=1 , i=1

i 20,1i=1,2, cee> &, & @ < o if and only if the matrices

L - a(FiZ + ZFi*) are positive definite fori=1, 2, ..., £. Our immediate objective

can be taken to be (for fixed L and K) to find:

Now (G-78) is true for @

@ = maximum o (G-79)
such that
L - d(FiZ + ZFi*) 20, i=1, 2, ¢ee, 4 (G-80)

subject to (G-11),

Let L = MM*, Then (G-80) becomes

M(I - afm ™! Fze w7 ZF* (M7 1)¥) M* = M(L - F) M¥2 0, i=1, 2, ..., 4
(G-81)
and we see that
| a_o_:: [if }‘i_> o {Ai}] ; : ' : (G-82)

N

where Ai is the largest eigenvalue of the matrix Fi which has been defined in formula

(G-80). Having determined @, which is a standard problem of numerical matrix theory,

we let
I-= {i |_11 = a.}_ .

~

and we let ¢ij' iel, j=1, 2, ..., m, be the eigenvectors of Fi cor'r_e#ponding_tq the

eigenvalue Ai' Here m, is the multiplicity of A,. Since Fi is symmetric, the number

io
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of eigenvectors corresponding to xi equals m, and, ‘in addition, we may assume .: -

orthonormality:

1, k=j

o P,
ik "ij i 0, k #j

Now, suppose a change K -» K+8K is effected in the feedback matrix with a resultant

change Z -» Z+8Z occurring in Z, Then Fi(cf. (G-80)) is changed to

F, + 0F, = F, + mL [F;8Z + 6ZF,*] Yy« : . (G-83)

The question of prime interest to us is this: how do the )‘i’ iel (and hence Oto) change?

We must divide our answer into two parts, according to the multiplicity of )‘i‘

If )‘i has multiplicity 1, it is easily established to first order
)\ - sk »~
hi=9; O ¢
If this multiplicity condition holds for all iel, our goal of increasing @ can be achieved if

max * 2
< -
jer % 090 (G-84)

»

In (G-83) we have indicated that sFi arises from a change §Z in Z which arises in turn
from a change in the feedback matrix K, K passing to K+8K. Now §Z and %K are

approximately related by

(FP+GK) 8Z+6Z (F+GK)* + G 6KZ + Z§K* G* =0 (G-85)

Thus the requirement (G-84) becomes

1,%

e F, 62 o H* sl

max *
R

% 1.%
<
iel % $ZF; (M) ]¢; <0

subject to §Z, 5K obeying (G-85), Now let the permissible variations in K be linear

r
combinations of matrices Kv’ e.g., K= I Bva, and set
v=1
r
K= £ & K
v v
v=1
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(Note that here we allow for the possibility of limited observational ability.) Define
matrices Z by

(F+GK) Zv + Zv (F+GK)* + GKv Z+ZKv*G* =0

Then the steepest descent method for varying K becomes

min
%

1 * -1
Z,F, (M )]r»].L

(e » sees 2 ) max
1 T iel

HMw»

* -1 “1 gk, -
e o, [MTF,z M) +M

v=1

N2 2 _-
(81) +-..+(8r) <1

and the requirement for being able to improve insensitivity is that this quantity be
negative. With '

A, ¥pag=l -1% -1 * o a] %
Yo = 9 M7 Fz M) +M z F, M )]¢i

this reads

min

L}

(61. ces » Cr) (n_lax
iel v

n M
le]
<
S

1
2 2
et e’ 51

This can be reduced to a standard mathematical programming problem by introducing

a non-negative parameter Y and solving

max y

subject to

. T r

y + vfl e“ Y:lv <0, ieI_.
(G-86)

2 2
@)+, +@)% 52

For computational purposes it might be well to replace the last condition by
le)] =1, v=1,2 ..., r
which leaves us with a linear programming problem.
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Once the mathematical programming problem has been solved and we have 81,. 82. sees Cr.
we let
, r
8K=¢g( T Cv'Kv)
v=l
where € is an appropriately small positive ''step size'" and we have a new feedback
matrix

K1=K+6K=K+€

[ s ]
(]
(2]

v=1

Our analysis guarantees that, provided € > 0 is sufficiently small, the number «
as 0'0 (cf. (G-T79)) did to K, and satisfies

1

corresponds to K1

a, > o
1 o

The whole procedure outlined above is now repeated with K replaced by K1 to obtain

K2 =K1 +$K1 w11:h¢:r2>a:1

; s : <a <
matrices K, Kl' K2, K3. «se 2nd a corresponding monotonic sequence 0'0 < o] 02

> ao’ ete, We iterate to obtain a sequence of feedback

¥y <ees o The process stops when @ =z 1 or when it is no longer possible to increase

"i by a significant amount,

L

The above procedure must be modified somewhat if the eigenvalue )‘i of Fi has

multiplicity m, > 1., The formula
o), =0, oF
i~% F; %

obviously no longer holds since every unit vector ¢ in the mi-dimensional eigenspace
corresponding to )‘i is an eigenvector., About the most which can be said is that the

mi-fold eigenvalue )Li -of Fi passes into the my eigenvalues of the m, x my matrix

%*

%

. - ~ _ x A “

#*
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The condition that all of the eigenvalues of this matrix should be less than A, is that the

matrix

i

8% oF, &
1 OFi Yy

should be negative definite. So to improve our value of @ o0 Ve need

* -
‘i 6Fi ‘i <0, iel

Using Kv. Zv as defined earlier, we now have the problem of selecting 81. Bos oo ,er

s0 that each of the matrices
T e &¥m! F,z +z_F o h* e
vel v i i%y vi i

is negative definite. Defining the matrices l"iv by

R S | * -1.%
Miy=% M IF2Z +ZF 1M g
the problem is this: given the linear combinations of matrices
r

l"i(cl. essy er) = vfl Cvriv. iel

do there exist values of el. cees 8r such that all of the ri(el, sess er) are negative
definite?

Thus posed, we have a very difficult problem which we shall not attempt to solve.
Instead, one proceeds as follows, Let a positive number vy be selected which is, roughly
speaking, the minimal improvement in @, which we consider worthwhile. For i¢l we
select m, dimensional unit vectors

i i i
™

. m
(One would likely start with Wy = m,; and the gji the usual basis for R i.) We require
r
i* i .
vfl Cv % ri\’ gj ] ~Ys i‘. J = 1. 2. XXX “i

. (G-87)

|ev"1. \’-1. 2.....1‘
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Whether or not this set is empty is a standard linear programming problem, If it is
empty our procedure terminates and we accept whatever value of Ofo we have, If the

set is not empty, we denote it by S(§j1. iel, =1, eees u-i) = S and solve

min &
_8\’-820. \’-‘=1|-t-ar (813 seo ey er) €S - (G-88)

We then have the matrices I"i( 81,- cees er) satisfying (G-87). For each i we now compute
the largest eigenvalue of I"i( €ys sans 6r), _call it ei: If ei <o, I"i (81, eses er) is negative
definite. If ei > 0, we adjoin to the set £ 11. covs E:‘i the unit eigenvector corresponding
to ei and increase Wy by 1. Having done this for all i, either all ri(el, cses er) are found
to be positive, in which case our objective has been achieved and we proceed to change

K as in the earlier single multiplicity case, or else we must go though the linear program
(G-87), (G-88) again with a larger set of constraints corresponding to the new vectors

we have adjoined. It can be shown that this procedure eventually terminates with (G-87)
an empty set, in which case we are all through, or else with the ri(el, ceas 8r) all
negative definite, in which case we improve our value of e

We remark here that, in the generic case, only one matrix I;i will have an eigenvalue

li with 1/ Ai = ao and it will be of single multiplicity. So our discussion of the case of
higher multiplicity might seem a bit of pedantry. However, the effect of our procedure

is to decrease this eigenvalue while ignoring others so that, eventually, we must expect
two or more eigenvalues which are equal, If and when they occur in the same matrix

1‘;‘1. we shall be confronted with the problem which we have been taking pains to discuss -

here,

Some Variations

We have noted that in the system of Equations (G-11) and (G-28') it is desirable to keep
Z small and W large. There is a certain inconsistency in this to the extent that, since

L is positive definite, we can find ¢ > 0 such that

L 2 GR™! g

and we then clearly have pZ 2 W, assuming F+GK is a stability matrix. But it is not at
all inconsistent to attempt to decrease the largest eigenvalue of Z while, at the same
time, we attempt to increase the smallest eigenvalue of W, or perhaps, to avoid making

this smallest eigenvalue of W any smaller. Nor is it inconsistent to attempt to carry
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out the mathematical program involving Z while at the same time we attempt to keep the
smallest eigenvalue of W as far away from zero as we can, The methods for carrying

this out are essentially the same as those used to deal with Z,

If we consider only the single perturbation (cf, (G-77))

1
FI-ZI

the objective (G-79) and (G-80) becomes

" max o
subject to (G-11) and

L~aZ 20

When L =] also, this objective amounts to minimization of the largest eigenvalue of Z,

If we consider the perturbation

1__-1_-1
FZ_EW VA

where W solves (G-28'), then the objective (G~79) and (G-80) becomes

max B

subject to (G-28') and

L=pgwlz2o0

Again, when L, = ], solution of this problem amounts to minimization of the largest
eigenvalue of W'l, i.e., maximization of the smallest eigenvalue of W. The two

objectives can be combined in a fairly reasonable way by attempting to solve the problem

subject to (G-11) and (G-28'") and

x>0, >0

L-aZz0
~1

L-BW =20
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- In the iterative procedure, we again let L = MM* (trivial, of course, if we take L =1).- .

so that
L -aZ =‘M_(I. ~am™t zavhyn M
L-w = ma-em ! wil (ulyx) mx

We let ¢ 2 3=1, eees m, be the orthonormal eigenvectors corresponding to the larg'esf

e1genva1ue, A, of M lz (M 1)’I‘ and we let i s 3% 1, vees m2 be the orthonormal e1gen-

vectors correspondmg to the largest e1genva1ue, p., of M W (M 1)=°<. Allowing

perturbations

K- KK =K+ (E,K, + ves +8K)

171
as before, we let
(F+GK) Z + Z (F+GK)* + GK Z + ZK * G* = 0 (G-89)
(F+GK) W + W_ (F+GK)* + GK W + WK _* G* = 0 (G-90)

We further note that

swl=-wlswwel

6(0'—15 = 5(Ap) = A0 + oA

In the single multiplicity case we have
-1 -1
(81) = % (M~ 6Z (M )*) ¢

6p) = -yl w 'l sw w

and our objective becomes

min
e 2 ceey e max A
1 "% r { v

2 2
€+ +e)*s1

[ e B |

-1 -1
| S Tz,

r N . .
po e v w lw wl aa s #}
\)=1 v v
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!'ml').‘x"oveinerit will be realized if the min-max is negative, We are left with a mathematical
programmmg problem of the same type as before and we obtain a linear program again if
wezeplace(&) +...+(8) £1by ' '

I'evlsls v=1, 2, see, I
The ‘higher multiplicity case is treated as before.

If we w1sh to combme the obJectwes on Z w1th a requ1rement that the smallest e1genva1ue

of W should not be decreased we would adJom to (G-86) the constraint

°

r
T Evi*Wv‘kZO
v=1

where § is the unit eigenvector corresponding to the smallest eigenvalue of W, The Wv
are’ e.gain determined by (G-90), Again modifications are required for the higher

mul'tiplic'ity case,

¥inally, there is the question of what matrix L should be used in (G-11). This question
is by no means trivial because it is entirely possible to have a stable matrix, Fo-, a

positive definite symmetric matrix Z and yet have

" L=-F Z-2F *
: (o] (o]

not positive definite., Thus positivity of L in addition to that of Z is sufficient, but not
necessary, for stability of Fo' This means, carried a little further, that the criteria

for persistence of stability of F + §F are somewhat pessimistic, i.e., in

(F + 6F) Z4+Z (F + 6F)* + L - 6FZ - Z8F* = 0

it may very well happen that F + §F remains stable even through L - 6FZ Z6F* is not
positive definite, e .

Suppose Fo is stable and diagonalizable so that there is a non-singular T with
-1 o _
. T FOT = d1ag (kl’ }\2. es ey )\n) = A
Lob‘k-at
AY + YAX+1=0 ' (G-91)
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Then

-1 -1

e -1
Y = diag (zne(xl))’ (2Re(12))’ -ees (gge (xv))

and we see that the smallest eigenvalue of %- Y-1 is precisely the stability margin
for Fo' Now (G-91) is

1 F T Y+Y T* F * (T hx+1=0

and, multiplying by T on the left, T* on the right, we have

F_ (TYT*) + (TYT#) F;‘+ TT* =0

The stability margin remains the same: it is the smallest eigenvalue of

% vl -;- T (TYT*)-I T

i,e., the largest number A such that

AL < %—T* (TYT*)-lT

or, equivalently,

-1

(Ty T 7% (Ty T !

A2 (797! < %

With

Z=TYT*, L =TT* (G-92)

this is just

1

)‘2 L-l < > Z-l 1

LZ"

which is the stability margin derived from our theory. Thus the choice (G-92) for L and

resulting Z accurately reflect the stability properties of F.

We can take F0 = F+GK(0), our initial closed-loop matrix. If we then choose 1. as above,
our conclusions, based on the preceeding material in this Appendix, should not be
excessively pessimistic for variations §F in F that are not too large. Choosing L to
give the best eétimate for large 8F remains an open question,
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