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TECHNICAL MEMORANDUM X-73378

TECHNIQUES OF GLOBAL ANALYSIS APPLIED TO GRAVITATION
THEORIES: A COSMOLOGICAL BLACK HOLE?

INTRODUCTION

In the past several years a great number of theoretical studies of black
holes have appeared in the literature. Astrophysical applications have involved,
for the most part, models where the observer is placed far away from one of
these collapsed objects. Although there is apparently a lower limit to the mass
of an existing black hole formed in the "big bang" 11, 2] , it is not clear what a
reasonable upper limit might be. Models of collapsed stars and collapsed
galaxies seem to have received, however, the greatest attention.

The investigation considered here takes a different ( albeit elementary)
approach to a black-hole phenomenon. One first excludes from the context any
requirement that there be far-away static observers or emitters of photons and
replaces it with the requirement that all emitters and observers are falling
radially inward, through the horizon surface at r = 2 m, and toward the singu-
larity at the center where r = 0. Instead of using the typical Friedmann model
for a collapsing dust, it is assumed that the masses of the infalling particles
are negligible and that these are all test particles in the local Schwarzschild
geometry.

The primary results of this study are manifested in the pattern and
intensity of redshifted objects in the sky of a typical observer who has fallen
into the black hole. None of these results depend upon the mass of the black
hole, although the mass determines the scale of the whole model. To date no
results have been computed for emitters which are placed at greater distances
than r=4m.

k.1ALYTI CAL PRELIMINARIES

Consider a spherically symmetric collapsed mass around which a horizon
at r = 2 m has formed and restrict the future to contain only noninteracting test
particles. Suppose all families of test particles are falling radially inward



toward r = 0, having started from rest at r = ^. This gives rise to a geometry
which is the standard Schwarzschild metric filled with test particles and
dominated by the mass m of the black hole. ( The uniform boundary condition
at r = - merely sets up an "average" case to analyze.)

The most convenient form in which to express the geometry here is that
of the E ddington- Finkelstein ingoing Schwarzschild metric:

ds2 = g dxu dxv = dr2 ^ r2 ( d0 2 4 sin2 o d02) - dt 2 + 2m ( dr + dt) 2
µv	 r

(1)

where t =_ t + 2m - 1n  ( r/2m) - 11 and t is the standard time for a faraway
static observer. Removing the factor of 2m eliminates the mass dependence of
the scale so that coordinates, R, T defined by 2mR = r, 2m T = t, and 2mS = s
can be utilized. Hence, equation ( 1) reduces to

(2m) -2 ds2 = dS2 = dR2 + R2 ( d02 + sin2 o d(2) - dT2 + R ( dR + dT) 2

(2)

The horizon surface of the black hole now lies at R = 1.

Any curve or trajectory in this space uses the fundamental form ( equation
(2) J to compute the length of its tangent vector. For the null (photon) trajec-
tories the "length" is zero. Such a curve would possess (R(v), o(v), ON,
T(v) J as its formula, where v is a parameter along the curve. In this latter
case the tangent vector K = (R, b, ^, IT) would obey:

0 = RZ +RZ (O2 +sin2 0;2) -TZ +k (R+T)2	 .	 (3)

where d/dv = "dot." For non-null trajectories one simply uses S as the
parameter so that the curve is given through [R(S), O(S),  Q( S), T (S) J and its
tangent vector obtained by taking d,/dS. The analogous result to equation (3) is
then:

2
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,T

dR

(4)

where ±1 indicates the spacelike or timelike nature, respectively, of the curve
under consideration. Particles going less than the speed of light are timelike.

A feature of the Schwarzschild metric is that null trajectories, no matter
what their individual properties, fall into two classes. This is most easily
demonstrated by taking © _ $ = 0 in equation (3) to produce radial photon tra-
jectories. In this case one obtains two tangent vectors, K IN and 

K OUT , at each
point (R, 0, 0, T) in the space; i.e., assuming K is future-pointing (T > 0)
produces:

IN	 (-1, 0, 0 , 1)	 POUT	 (_11 0 ' 0 ' 1 - R
)
	 (5)

Notice that if R > 1, then KIN points "inward" and KOUT points 'outward" on

a simple R-T coordinate graph. If R < 1, then both vectors point "inward" but
the names of the classes still persist. If R = 1, a limiting proces s must be
used since equation (5) would be invalid for KOUT' In this case KOUT

(0, 0, 0, 1), whereas KIN is the same throughout. These two classes exist

at each point of the space for the other directions when 4 or ; is not zero,
but are somewhat harder to see. In summary, all future-pointing (past-pointing)
null vectors at each point form the future (past) null cone of that point, but
roughly half the vectors comprise an IN class, the other half forming an OUT
class.

For the model one wishes to study here, the timelike radially infalling
geodesics are the observers and emitters, whereas the (generally nonradial)
null geodesics are the paths of photons through which these sources "see" one
another. Because of the spherical symmetry, it is sufficient to study only
equatorial (0 = 7r/2) trajectories to obtain the entire picture. Hence, the 0 com-
ponents of all subsequent vector quantities are suppressed.

To get the results for redshift behavior, one integrates the equations of
motion for various geodesics in the Schwarzschild geometry to obtain, from the
first integrals, the tangent vectors of the radial timelike sources and the tangent
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vectors of the null paths which would connect them. Each radial observer or
emitter has tangent vector:

U	
d—S , 0,
	 1 1, 0, 1 + R }

C	 ^/R \	 1+^R/
	 (6)

Each photon trajectory has tangent vector x, _ (R,	 expressed as one of

where (f) denotes the OUT or IN class, respectively. The parameter p is the
angular momentum of the photon and is constant along any given photon trajectory.
If # = 0, then it is a radial photon. The function n depends upon the coordinate
R along any given photon trajectory but also depends upon the trajectory itself,
through p,

[1+ (±)
	 i12

The result [ equation (7) ] is valid for K_ throughout the space but is valid for
K+ only inside the black hole, i. e. , for R < 1.

Suppose an observer at R 0 receives a signal from an emitter which was

at RE . Then there is one more degree of freedom to be determined since RE

could lie anywhere on a circle; that degree of freedom is fixed by next choosing
a value of R. Hence, the signal received by the fixed observer is characterized
by a value for R E and a value for g. However, the direction from which the

observer receives the signal is only a function of /s, i.e. , the choice of photon
trajectory going through R O . If one follows a particular photon trajectory

(R fixed) away from RO , he runs over all possible R E 's that could have

emitted that direction-dependent signal. It is the redshift seen by the observer
that contains both the parameter P and the emitter position RE . The correct
redshift Z is contained in the formula:

I

(7)
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f  (R E , O )

1+ Z} = f}(R0,13)

where

Inside the black hole, a can run from 0 to co . We define 1 + ZCO = limit of
(1 + Z) as a — - so that

R
1 + Z^ = 0	

0	
(9)

R 1 --R EE

completes equation (8) for all P.

By going to the local Lorentz frame of the observer (two dimensions of
space, one of time), one can see the relationship of the direction parameter a
"look angle" w of the observer's celestial circle. The observer imagines the
sum total of all directions he must look as being on a circle with him at the
center. (This would be a sphere if we did not suppress the third dimension at
the outset. ) His loca', Lorentz frame is just a nonrotating set of two spatial
directions and one time dimension (his clock) . Suppose, without loss of
generality, one of his spatial coordinate directions is the radially inward pro-
jection of the spacetinie R-axis into his l(,^al frame. Then this direction could
be called "ahead" of him and the opposite direction would be "behind" as he falls
toward the center o f the black hole; these are taken to be w = 0 and w = 180 0 ,
respectively. All K+ rays from f)= 0 to P = m then impinge on the observer

at the angles w : 0 { w	 w,,, , and the K rays from P = 0 to R = - at the

angles w - : w D s ce < 180° . The dependence of w + upon 1; is given by

^'^ 0 
^ r} (R 0 , ^^)	 1

cos I w I -	 (10)
'	 (Y(ROpI}) _+ ti^R 

(8)
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coslw^l = If-R--	 ,

W. giving the direction where the two ray classes interface on the null cone.

These directions fill one half of his celestial circle; the celestial sphere would
be constructed by rotating this circle about the diameter P = 0 with Q = constant
# 0 corresponding to a whole ring of directions in the "sky" ( Fig. 1) .

The relationships in equations (8) , (9) , and (10) allow one to put together
an analysis of possible redshifts and blueshifts in a given direction (p) by looking
at ranges of values of RE for each case. The picture is fixed by choosing at

the outset a value for R 0 inside the black hole. Some details of this viewpoint

are analyzed in Reference 3.

LUMINOSITY DISTANCE

Before any realistic evaluation of the redshift formulas in equations (8)
and (9) can be made, it is necessary to answer the question: "What are the
intensities of the redshifts in the various directions from the observer?" That
is, if the rays from certain sources spread out too quickly, they may not be
seen at all; therefore, the redshift is purely academic.

To solve this problem, one must tie luminosity distance to the redshift
as various directions from the observer are investigated. Luminosity distance
involves integrating along a single photon trajectory from emitter to observer
so as to express the manner in which a small solid angle of rays at the emitter
( pencil of rays) spreads and distorts on its way toward intercepting the observer.
This is a complicated theoretical problem in nonlinear geometry and propagation
of frames, but it is workable. Some of the preliminaries can be found in
Reference 4. (No details leading to the results are to be given here but are
postponed for a subsequent publication in collaboration with D. L. Farnsworth.)

For radial photons, the luminosity distance d is given by

RE

d} _ (1 + Z) -1	 f	 %TR dR ,	 (11)
R0	1 f 11R
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where ( t) refers to the ray classes earlier, and 1 + Z is computed from equa-
tion (S) with Q = 0.

For the /3 = W case, the luminosity distance is found to be

2R sin (AO)	 1/2
dm = (1 + Z^ )-i 0	 (^t^ - E + tanh-1 E - tanh`• E)

(12)

where AO is the equatorial angle of travel of the photon:

AO = sin'' (2R E - 1) - sin-' (2R0 - 1)

All other photon directions have an elliptic integral for the angle of
travel AO ( where "a" means simply a ( R, (3) ] :

RE
AO = f R dR

RO

The luminosity distance in the two (t) cases is given through

2 _	 z R
D sin ( AO )	 RE tirR . (a t ^)	 i

(d})	 (1 + Z t )	 sin w.,E	 Rf	 (v • (1 - R)	 (13)
0

where

sin w  = 1--RE
E • RE a (R E' '3) } E

This is, again, an elliptic integral expression. For the study of these proper-
ties, a digital computer was utilized.

V
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NUMER I CAL RESULTS

The data may now be tabulated to make a proper comparison of redshift/
blueshift anisotropy at various luminosity distances. The procedure is to choose
first an observer (R 0) . Next, a direction (p) of his celestial circle is fixed.

By starting with values of R E and going out in steps from R E --t; R0 , one computes

th.e redshift Z and luminosity distance d for an emitter at that value of R E , as

seen in that w direction from the observer. The full equatorial coordinate values
of the emitter are R = R E and 0 = A0. This computation must be done twice,

once for the K_ ray directions and once for the K+ ray directions.

Table 1 contains a summary of these data. The data are presented in
steps of luminosity distance for greater ease of interpretation. Each set
corresponds to a given 'look angle" w or w +, determined uniquely by (; and
received by the observer at R O = 2/3, ¢ = 0°;

d_, d+ = luminosity distance of emitter at (R E , 0O) in units of (r/2m)
times 1000

Z_, Z+ = redshi ft/blue shift at the given d_, d

Ao = angular coordinate of emitter = azimuth angle of travel of photon
(in degrees)

RE = radial coordinate of emitter in units of (r/2m) times 1000.

DISCUSSION

Consider first the diagram depicted in Figure 2. The observer imagines
"spheres" of constant radius about him, each of which corresponds to a certain
"distance away. " This hitter distance is luminosity distance; therefore, an
object he sees is placed on a sphere corresponding to that particular value of d

in the particular direction u, from which it came to him. To this same object,
there is a redshift Z assigned, and so forth, so that along any specified line of
sight various redshifts occur. The intensity of these redshifts is completely

9



TABLE 1. REDSHIFT/BLUESMFT DATA

d-
Z_ 40 RE d+ Z+ Ao

RE

(9 = 0) w_ = 180° w+ = 00

101 0.083 0 900 8 0.126 0 695
200 0.149 0 1140 194 0.231 0 715
300 0.204 0 1390 307 0.453 0 750
400 0.249 0 1640 398 0.747 0 785
480 0.281 G 1840 499 1.758 0 855

.0(Q = 05) w	 = 170°
,.

w+ _, 1 0

104 0.078 1.1 900 101 0.102 1 690
200 0.137 1.7 1120 200 0.211 0.' 714
303 0.190 2.2 1360 301 0.383 0.4 740
398 0.230 2.5 1580 408 0.609 0.6 770
502 0.269 2.8 1820 505 0.903 0.7 0

((3= 0.1) w- = 161° w+ = 20
102 0.062 2.2 890 101	 0.101	 0.3	 690
200 0.116 3.4 1110 200	 0.225	 0.6	 714
302 0.163 4.3 1340 301	 0.381	 0.8	 740
399 0.202 5.0 1560 408	 0.607	 1.1	 770
465 0. 226 5. 1 1	 1710 505	 0.900	 1.4	 800

w+ = 40( Q = 0.2) w_ = 143°

101 0.014 4.0 870 101 0.100 0.6 690
199 0.042 6.4 1070 200 0.222 1.1 714
302 0.075 8,- 1280 299 0.376 1.7 740
398 0.104 9.1 1490 407 0.599 2.3 770
499 0.132 1f. .5 1690 505 0.889 2.8 R00

(Q = 0. 3) w	 = 128° ctl+ = 60

•-0.041	 5.4	 850103 100 0.098 0.8 690
199 -0.044	 8.8	 1020 200 0.219 1.6 715
300 -0.033	 11.4	 1200 299 0.367 2.5 740
400 -0.018	 13.3	 1380 406 0.586 3.3 770
499 0.00	 14.8	 1560 505 0.871 4.2 800

10



TABLE 1. ( Continued)

d- Z-
AO

RE
d

Z+ AO
RE

(Q = 0.5) w	 =104° co	 =9°

105 -0.119 7.0 810 100 0.093 1.3 691
199 -0.'72 11.5 930 217 0.230 2.8 720
302 -0.203 15.3 1060 294 0.343 3.9 740
398 -0.218 18.1 1180 404 0.550 5.3 770
500 -0.226 20.6 1310 504 0.820 6.6 800

( j3= 1.0) w = 73° w	 = 16°

100 -0.127 7.1 750 100 0.079 2.3 695
198 -0.212 12.5 820 205 0.181 4.6 720
305 -0.280 17.4 896 300 0.297 6.6 735
404 -0.329 21.3 950 393 0.441 8.6 770
471 -0.357 23.7 990 499 0.665 11.0 800

(a = 1.5) w	 = 60* co	 = 200

97 -0.093 6.5 730 120 0.081 3.4 700
207 -0.170 12.4 790 194 0.142 5.4 720
300 -0.221 16.8 835 307 0.256 8.4 750
402 -0.269 21.1 880 400 0.375 11.0 775
500 -0.307 24.8 920 492 0.534 13.4 800

(p= 2.5) w = 49° w+ = 250

103 -0.058 6.1 720 109 0.054 3.8 700
193 -0.096 10.8 760 215 0.120 7.3 730
295 -0.131 15.6 800 300 0.186 10.0 763
400 -0.160 20.1 836 400 0.283 13.2 780
506 -0.184 24.2 870 515 0.430	 1 16.8 810

(R = 5.0) w42°-= w30°+=

99	 0.029	 4.0	 70098 -0.024 5.2 71U
203 -0.040 10.3 750 196	 0.068	 7.7	 730
292 -0.046 14.2 780 302	 0.122	 11.6	 760
400 -0.049 19.0 815 4;4	 0.196	 15.5	 790
496 -0.047	 1 22.5 840 492	 1	 0.261	 18.3	 810

11
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TABLE 1. ( Concluded)

Z_ RE d+
r,
`+  RE

(a = 10.0) w = 39° w+ = 32°

106 -0.009 5.3 710 100 0.018 4.4 702
200 -0.009 9.6 743 200 0.046 8.5 734
300 -0.002 13.8 775 300 0.083 12.3 764
4.3 0.011 17.9 804 396 0.128 15.9 790
497 0.030 21.6 830 513 0.201 20.2 820

( j3= 25.0) w-= 36° w+ = 340

111 0.0 5.4 710 100 0.011 4.6 704
199 0.008 9.2 740 210 0.033 9.2 740
296 0.023 13.2 770 311 0.062 13.2 770
401 0.048 17.4 800 400 0.096 16.6 794
500 0.079 21.2 826 499 0.143 20.3 820

P= CO W-= w+ = 350

100 0.005 4.7 705
204 0.020 9.2 740
303 0.042 13.2 770
400 0.072 17.0 797
500 0.112 20.8 823

specified by the luminosity distance, and vice-versa. Redshifts (and blueshifts)
at "large" (luminosity) distances are too weak to be seen, whereas those which
are closer are seen more easily by the observer.

The data in Figure 2 are based on a standard unit of one black-hole radius
for the scale of distance applied to values of d. The anisotropy of redshifts is
clearly apparent. Towards the location of the center of the black hole (w = 0°) ,
the observer sees the highest redshifts in his sky. There is a local clustering
of redshifts in the diametrically opposite directior. (w = 180 ) , but these are not
as great as the former. This axis (w = 0° and w = 180 0 ) forms the axis of
symmetry about which the rest of the figure can be rotated to form the observer's
celestial spheres of constant distance away.

No redshifts occur in the section of the sky corresponding to w between
35 0 and 140 0 , and blueshifts achieve a maximum near the ring corresponding to
w = 73 0 in that region.

t,

12



up)

j - 730)

k- - 1040)

0.0	
S . 1 -0 If.l. . 11901

0-0 fw--IIrjO)

Figure 2. Red (blue) shifts at luminosity distance d.

13



AN EXOTIC APPLICATION: COSMOLOGICAL SCALING

Speculation about the universe as a black hole still has the status of
folklore at this time, but this model is particularly adaptable to the examination	 >
of some of these ideas.

A spherical collapse of approximately one-tenth the mass of the universe
at some early epoch would form a black hole whose horizon radius (= 2m) would
be close to 1010 light years. The strength of the tidal forces within the horizon
would then be near the normal forces experienced in a simple Friedmann model,
at least in the region m < r < 2m. One does obtain a kind of cosmology with
anisotropy if galaxies are the test particles. The time scale is quite large so
that an observer needs to fall 10 8 years before appreciably changing his distance
to the singularity at r = 0. His sky would contain a large number of redshifted
objects, clustered about the two antipodal points of his celestial sphere
(w = 0° and w = 180° ) . A large ring of bltleshifts would occur around w = 730.
Fennellyi interprets certain observational data on redshift anisotropy to point
toward a maximum Z and minimum Z at two antipodal points of the sky.

The most obvious weakness here is the lack of mechanisms in this model
to account for well-known isotiapic phenomena, such as the microwave back-
ground and the distribution of QSO's. Also, work on the mass spectrum of
primordial black holes [5] suggests that such a large black hole would be
merely a fantastic coincidence.

1. Fennelly, A. J.: Private communication. To be published in Mon. Not. R.
A str. Soc. , 1977.
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