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ABSTRACT

The radon concentrations in the lunar atmosphere have been determined by

measuring the 21OPo progeny activity in artifacts returned from the moor.

Experiments performed on a section of the polished aluminum strut from Surveyor

3 yield an average lunar radon concentration of (3.8±1.1)-10
-3
 disintegrations

cm- 2 sec- 1 during its 944 day exposure at Oceanus Procellarum. Data obtained

from the Apollo 16 Cosmic Ray Detector Experiment Teflon thermal shield yield a

radon concentration of (64±12) • 10-3 disintegrations cm-2 sec- 1 at the time of

that mission in the Descartes area. These results are compared with other

values of the lunar radon concentration obtained at different times and differ-

ent locations and by various techniques. Possible sources and release mechanisms

compatible with all of the data are discussed.

An experimental procedure to determine the relative retenticn coefficients

of various types of material for radon progeny in a simulated lunar environment

is described. The results of several experiments are given, and their effect on

lunar radon progeny measurements is discussed.

An analytical procedure is given for the analysis of a Teflon matrix for

trace constituents.



INTRODUCTION

The episodic evolution of radiogenic gases from the interior of the moon

into the lunar atmosphere has been fairly conclusively demonstrated. Evidence

for this phenomenon has been gathered from earth-based observations, from direct

measuring instruments placed on the moon during the Surveyor and Apollo missions,

from instrumental measurements made by lunar orbiting spacecraft, and from

analysis of returned lunar materials and artifacts. A fairly concise summary of

many possible sources and release mechanisms for this episodic evolution of

radiogenic gas is given by Friesen^i^.

The objectives of this research effort were to determine the equilibrium

activity of 222Rn in the lunar atmosphere at the Apollo landing sites by measur-

ing the entrapped radon decay products in a polished tube section from the

Surveyor 3 spacecraft, in the Teflon thermal shield from the Apollo 16 Cosmic

Ray Detector Experiment, in the Solar Wind Composition Experiment foils, and in

the Kapton thermal coatings of the command modules which orbited the moon. In

addition, the relative retention coefficients of each of these materials was

determined in the laboratory in a simulated lunar environment to see if there

might be significant differences in radon progeny collection efficiency. Any

affinity of the materials for gaseous radon would result in an increase in the

apparent radon concentration in the near vicinity of the material during expo-

sure. The selective rejection of radon progeny after incidence on the material

would be manifested in a lower apparent radon concentration.

The results of this program have been examined in light of proposed sources

and episodic release mechanisms and compared with other data obtained by differ-

ent techniques.
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EXPERIMENTAL PROCEDURES

Radon atoms bounce along the moon in ballistic trajectories since their

thermal energy is insufficient to provide escape velocity. As these atoms

undergo radioactive decay, relatively large amounts of kinetic energy are im-

parted to the 21SPo daughters. Only slightly more than half of these daughters

will strike the moon, since most of those recoiling away from the moon will

escape. Those recoils which strike an object exposed to the lunar environment

embed themselves and are trapped. Again, almost half of the trapped atoms are

lost from the material by subsequent alpha decays to 214Pb and 210Pb, but this

loss is very nearly compensated by the gain from the same decays on the surface

of the moon.

Range-energy calculations indicate that a two-sided planar material, such

as the SWC foil, will maintain 48% of the radon decays in the form of 210Pb,

assuming no enhancement or loss of radon progeny due to effects other than

radioactive recoil.	 A one-sided planar material in lunar orbit, such as the

thermal coating on the command and service module, will effectively capture 25%.

A one-sided planar material on the surface of the moon, such as the Cosmic Ray

Detector Experiment Teflon thermal shield, will have a capture efficiency of

29%, and a cylindrical object, such as the Surveyor 3 strut, will have the same

efficiency as a two-sided planar material of the same surface area.

Polonium-210 is an easily measurable decay product of the .^1.4 year half-

life 210Pb and can be used to determine the 21OPb concentrations in the exposed

material, and hence, the radon concentrations in the lunar atmosphere at the

time of exposure. Unfortunately, the technique does not afford a simultaneous

measurement of the 210po on the lunar surface at the same location; therefore,

a precise determination of the degree of equilibrium between radon and polonium

is not possible by this method.

-3-



Candidate materials for raftn exposure measurements must meet several

criteria including low intrinsic 210Po content, availability of suitable blank

material, and documented exposure to the lunar atmosphere. The SWC foils, the

thermal coatings from the spacecraft and from the Apollo 16 Cosmic Ray Detector

Experiment, and the polished aluminum strut from the Surveyor 3 spacecraft have

proven to be suitable collectors.

A detailed description of the analytical procedure for determination of

2 10p including an evaluation of possible experimental problems associated with

such ultra-low level radioactivity measurements has been published elsewhere 
(2)

and will not be repeated here.

Due to the inherent insolubility of Teflon, a special dissulution procedure

had to be developed for analysis of the Apollo 16 Cosmic Ray Detector Experi-

ment Teflon thermal coating. In this procedure, the sample, a 6 x S cm piece

of Dupont type A FEP Teflon 0.051mm thick and coated on one side with -250A of

inconel and ti1500A of silver, is ashed for two hours in a stainless steel bomb

at 550°C.	 Utilizing a nitrate-peroxide oxidizing system, a "sandwich" con-

sisting of layers of NaNO 3 , Na202 , teflon, Na2 02 , NaNO 3 is placed in a 2 cm

diameter by 7 cm deep cavity and heated to fuse the Teflon. After cooling the

melt is dissolved in warm dilute nitric acid followed by the usual chemical

separations. (2)

A special procedure for analysis of the Surveyor 3 aluminum strut was also

required due to the relatively high intrinsic 210 Po content of the aluminum. A

surface etch technique was used to remove a minimum quantity of aluminum from

the strut commensurate with removing 100% of all embedded 222 Rn progeny. In

this manner, the background from intrinsic 210 Po in the aluminum could be

minimized. The aluminum tubing was etched in IN HC1 for two minutes, and

weight loss was used to determine the amount of surface erosion. Analyses of

W
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the acid solutions by the standard procedure (2) yielded the specific activity of

2 10p in the strut and blank material.

To guarantee the reliability of measuring 21OPo concentrations in lunar

artifacts as a method of estimating the radon content of the lunar atmosphere,

it is necessary to establish the radon progeny retention coefficients of the

materials. This is to determine whether the materials possess either a "getter"

quality for radon which might artifically enhance the apparent radon concentra-

tion to which it was exposed or a spontaneous rejection of radon progeny which

would have the opposite effect. To evaluate these effects in the laboratory,

it was necessary to simulate lunar exposure conditions while still maintaining

a workable time frame.

Blank material of each lunar artifact plus two additional reference mate-

rials were exposed to relatively high concentrations of radon gas at sufficiently

low pressure to simulate the lunar deposition conditions for radon and its

daughter products. The quantities of 218Po , 214Pb , 214Bi, and 214Po were deter-

mined in the exposed foils using Thomas' 
(3) 

method of interpreting time varia-

tion of alpha particle decay after exposure. Radon-222 was measured directly

in one experiment utilizing a solid state alpha energy spectrometer.

The exposure apparatus consisted of a modified glass enclosed vacuum coater

whic'A had a cover 60 cm high and 44 cm in diameter mounted on a stainless steel

base. Evacuation was by combination of a mechanical pump, an oil diffusion

pump, and a liquid nitrogen cooled sorpt'Ion pump which furnished chamber pres-

sures as low as 3 . 10- 7 torr.

Rectangular pieces, 3.81 cm x 5.OP cm, of each lunar artifact material,

silicon monoxide coated aluminized Kapton spacecraft thermal shield, aluminum

oxide coated aluminum golar Wind Composition foil, silver and inconel coated

type "A" FEP Teflon Cosmic Ray Uetector Experiment thermal shield, and

-5-
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aluminum Surveyor 3 strut, plus samples of uncoated type "A" FEP Teflon and

polyethylene, were located symetrically in the vacuum chamber. A known charge

of 222Rn sealed in a 24 karat gold ampoule 3.5 mm long and 0.75 mm outside dia-

meter was placed in a guillotine located in the vacuum chamber and operated by

a mechanical feedthrough. Confinement, leakage, and dispersion of the radon

gas and its daughter products was monitored by scintillation gamma-ray spectro-

metry from the outside of the vacuum chamber. After evacuation, the chamber

was isolated, and the gold ampule severed in the guillotine to start the simu-

lated lunar exposure. Pressure was monitored by ionization and thermocouple

gauges. The simulated exposure was ended by bleeding several torr of room air

into the chamber. The system was again evacuated and "rinsed" a total of three

times with room air before opening.

Samples were counted on six zinc sulfide type alpha particle scintillation

counters. Controllable parameters, such as geometry of the foils, electrical

grounding, alpha detectors, etc., were varied in several different experiments

in order to identify and eliminate any systematic errors.

RESULTS

The results of the experiments to determine the relative radon progeny

retention coefficients of the various materials are summarized in Table I. The

data are normalized to the Cosmic Ray Detector Experiment Teflon thermal shield

which was found experimentally to agree precisely with the calculated values.

No significant systematic effect was observed due to exposure position, elec-

trical isolation, or counting facility.

The materials with metalized surfaces exposed showed significantly higher

retention of radon daughters than did the plastic materials. This behavior is

not unexpected considering the ion sticking probabilities of the various

materials. The probability of metal ions sticking onto metal surfaces is

-6-



TABLE I

Relative Activity of Alpha Active Radon
Progeny in Various Materials Exposed to a
Simulated Lunar Atmosphere Normalized to
Aluminum

Material	 Relative Activity

1. FEP Teflon	 0.9310.05

2. Silicon monoxide coated aluminized Kapton 	 1.21±0.08
spacecraft thermal coating

3. Inconel and silver coated FEP Teflon Cosmic Ray 	 1.00
Detector Experiment thermal shield

4. Aluminum - Surveyor 3 strut 	 1.16

5. Aluminum oxide coated aluminum Solar Wind Composi- 	 1.26±0.15
tion Experiment detector

6. Polyethylene	 0.91±0.02

-7-
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higher than onto plastic surfaces due to the nature of the binding forces in-

volved. Adhesion to plastic surfaces is primarily by physisorption (Van der

Waals) forces, whereas binding to metal surfaces is by much stronger chemi-

sorption forces.

In the experiment to measure the relative radon progeny retention coeffi-

cients of lunar artifacts during exposure to the simulated lunar atmosphere,

it was possible to resolve the alpha particle decay curves such that the indi-

vidual concentrations of 218po, 214Pb, 214Bi, and 214Po in each material could

be determined. The materials with plastic surfaces exposed (foils 1, 3, and 6

in Table I) demonstrated the predicted rate of disequilibrium, while the

metalized materials (2, 4, and 5) d,d not. That is, the absolute values of

each individual progeny present in only the plastic materials agree with the

predicted values based on recoil loss. Therefore, the lunar radon concentration

data obtained from metalized materials 
(4,S) 

needs to be adjusted for the unfore-

seen retention of radon progeny.

Table II summarizes some previously published results of lunar radon and/or

polonium measurements along with the two new pieces of data determined in the

course of this research. Although it was planned to also investigate the radon

progeny content of the Kapton thermal shields from all lunar orbiting space-

craft, these artifacts were not made available for the research.

DISCUSSION

The radon concentration at the Surveyor 3 landing site in Oceanus Procellarum

was determined to be 3.8 . 10 -3 disintegrations cm- 2 sec-1 `rom measurement of the

radon progeny in a section of the polished aluminum strut returned by the

Apollo 12 astronauts. This value is an average for the 94t days in 1967-1969

that the strut was exposed to the lunar atmosphere and is compatible with the

upper limit of 21O Po activity measured on the returned Surveyor 3 camera visor

-8-
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TABLE II

Lunar 21OPo and 222Rn Activities in Units of
10- 3 Disintegrations cm-2 sec-1

Method or Time Base of

Devicet Determination Location 210po 222Rn Ref.

Calculation Pre 1966 All 1300 6

Explorer 35 1967-1968 All <110 480* 7

OAS

Surveyor 5 1967-1968 Mare Tran- 29:!9 100,31* 8

Spectrometer quillitatis

Surveyor 6 1967-1968 Sinus Medii <21 <110* 8
Spectrometer

Surveyor 7 1967-1968 Tycho <21 1110* 8

Spectrometer

Surveyor 3 1967-1969 Oceanus .5 <17* 9
Visor Procellarum

Surveyor 3 1967-1969 Oceanus 1.09tO.31* 3.8±1.1 This
Strut Procellarum work

Lunar Fines Pre 1969 Mare Tran- <0.45 <1.6* 10
quillitatis

Apollo 12 1969 Oceanus 18.9t2.8* 65.4±9.6 4

SWC Foil Procellarum

Apollo 12 1969 All 20.7-+9.1* 71±31 4

Kapton

Lunar Fines Pre 1971 Fra Mauro 11* 37 11

Lunar Fines Pre 1971 Hadley- 11* 37 11

Apennine

Apollo 14 1971 Fra Mauro <5.5* <19 5

SWC Foil

Apollo 15 1971 Hadley- 6.9*-1.1* 23.9±3.6 5

SWC Foil Apennine

Apollo 15 & 1971-1972 All 3.1-4.6 0.92-1.32 12,13
16 OAS

Apollo 15 & 1971-1972 AEZitarchus 16 10.1 12,14

16 OAS Rn) Mare
^mnditatis
(	 Po)

Apollo 16 1972 Descartes 7.3±1.5* 25.2-+5.0 5

SWC Foil

Apollo 16 1972 All	 (17%) 18.513.6* 64±12 This

CRDE Foil Descartes work

(83%)

*Calculated from measured parent or daughter activity.

tOAS = orbiting alpha spectrometer; SWC =	 Solar Find Composition; CRDE = Cosmic
Ray Detector Experiment



by Economou and TurkevicO	 However, it should be noted that both the

camera visor and the polished tube section were covered with a deposit which

may have hindered the deposition or adhesion of radon progeny. 	 This would

result in apparent radon concentrations which were lower than actually existed

at the time. of exposure.

The Surveyor 3 strut data can also be compared to the radon concentration

measured by Brodzinski (4) at the Apollo 12 landing site from the Solar Wind

Composition foil exposed at the time of the landing. The radon concentration

determined from the Surveyor 3 strut is a factor of 11 lower than that infer-

red from the SWC foil and may be due to real differences in the average radon

emission during the 944 day exposure of the s*..-ut and the 18 hour exposure of

the SWC foil, or to biased results because of the deposit on the surface of the

strut, or a combination of both.

The radon concentration at the Apollo 16 landing site was determined to be

64 . 10- 3 disintegrations cm- 2 sec- 1 from the progeny activity in the Cosmic Ray

Detector Experiment Teflon thermal shield. This artifact received 11% of its

effective exposure to the lunar atmr phere from orbit and 83% of the exposure

at the landing site in Descartes. This data can be compared to the data of

Brodzinski and Langford (5) obtained from the Apollo 16 Solar Wind Composition

foil which received a nearly identical exposure. Corrections have been applied

to the data from the solar wind composition foils, the Surveyor 3 strut, and the

spacecraft Kapton coating to compensate for their slightly increased retention

efficiency for radon daughters and to the Cosmic Ray Detector Experiment Teflon

thermal shield for the single surface collection ability of this material com-

pared to the double surface of the Solar Wind Composition foil. The Cosmic Ray

Detector Experiment foil was exposed to an apparent radon centration more than

twice as high as that observed by the Solar Wind Composition foil. No document-
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able explanation for this discrepancy is immediately apparent. The Cosmic

Pay Oa tector Experiment was deployed on a footpad of the LEM while the Solar

Wind Composition foil was erected at some distance from the LEM. Perhaps the

increased astronaut activity in the immediate vicinity of the Cosmic Pay Detector

pcperiment enhanced soil radon emanation sufficiently to account for an

extremely high localized concentration.

The possibility of localized physical activity as a primary source of radon

emanation can be supported further if it is assumed that the Surveyor 3 data is

not biased due to the deposit on the artifact surfaces. 	 The reported radon

concentration measured by the Apo l lo 12 Solar Wind C.,inposition foil is substan-

tially higher than that measured by the Surveyor 3 artifacts and could also be

attributed to local astronaut activity at the time of exposure, since, except

for landing and recovery, the Surveyor 3 artifacts spent the vast majority of

their exposure on a quiescent moon.

Evidence against this local disturbance enhancement hypothesis is equally

available since the 214o activities in the Apollo 12 Solar Wind Composition

foil and the Apollo 16 Cosmic %y Detector Experiment foil, which were exposed

to relatively large amounts of astronaut activity, are not as high as that ob-

tained with the Surveyor 5 spectrometer measurements of Turkevich, et al.(7),

which had absolutely no physical disturbance in the vicinity at the time of

data accumulation.

When all possible sources of adverse influence on lunar radon measurements

are considered, it becomes apparent that a generaJ approach of orbital spectro-

metry such as that; used by Gorenstein, Bjorkholm, am Golub 
(12,13,14) 

has dis-

tinct advantages	 However, accumulation of statistically significant data by

this technique cver a large area of the moon with a relatively fine spatial

resolution requires much more sensitivity than was available on the Apollo



missions. Increased orbital sensitivitv could be achieved on missions such

as that proposed for Lunar Polar Orbiter by incorporation of large area spectro-

meters. However, such sensitive data would be expected to only further support

the well-documented and accepted phenomenon of variant lunar radon emission.

All evidence indicates relatively large spatial and temporal variations and a

delicate sensitivity to external disturbances such as astronaut activity,

moonquakes, etc. Although the sources and release mechanisms of volatiles on

the moon as postulated by Friesen N are supported by this evidence, it appears

that even more localized and miniscule mechanisms may have a substantial

influence.

- s
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