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ABSTRACT

This report presents experimentaT results of the mechanical be-
havior of two metal matrix composite systems at room temperatufe.
Ultimate stress, ﬁ]timate strain, Poisson's ratio, and initial Young's
Modulus are documented for BORSIC/Aluminum in uniaxial tension and
Boron/Aluminum in uniaxial tension and compression. A more precise
definition of Poisson's ratio is used for nonlinear stress-strain
behavior. A comparison of compression results for B/A1 as obtained from

sandwich beam compression specimens and IITRI coupon compression speci-

mens is presented.



1.0 INTRODUCTION

In order to make optimum use of available materials, a thorough
investigation of their mechanical propertiés is essential. Hence, any
new material must be subjected to extensive testing prior to its use.
Composite materials are no exception to this rule. Testing continues to
be done on many different types of composites under a variety of loading
conditions. It is a notable trait of these materials that their design
can be tailored to fit the application.

Perhaps a primary reason for the development of metal matrix composite
materials has been their ability to combine thé properties of metals and
fiber-reinforced composites effectively. Indeed, the increased strength
and stiffness of resin-matrix composites is well documented; the higher
melting point of metals would be a significant addition to these properties.
Thus, metal matrix composites offer added stiffness and strength with a
possible increase in Jsefu] temperature range over that of resin-matrix
composites.

This report is a preliminary study of the tensile and compressive
behavior of two metal matrix composites (Boron/Aluminum and BORSIC1/
Aluminum) at room temperature. Ultimate stress, ultimate strain, Poisson's
ratio, and initial Young's Modulus are documented for BORSIC/Aluminum in
uniaxial tension and Boron/Aluminum in uniaxial tension and uniaxial
compression. Two different compressive testing techniques were used:

(1) a sandwich beam in four-point bending, and (2) the IITRI compression

test [1]. This report also compares these two methods.

2.0 EXPERIMENTAL PROGRAM
2.1 Materials

The Boron/Aluminum system (B/A1) combines 5.6 mil boron fibers and

1 Registered tradename



6061 aluminum matrixz. The BORSIC/Aluminum system (Bsc/Al) consists of

5.7 mil silicon-carbide coated boron fibers and 6061 aluminum matrix.

The tension specimens used for both systems were nominally 10" in
length and 0.75" in width. Except as noted, two fiberglass end tabs,
2.5" long, were bonded to each end resulting in a 5" test section.

Three different laminate orientations consisting of eight plies were
tested for Bsc/Al. 'B/A1 properties were obtained for six different

orientations where one orientation has six plies and the others have
eight plies.

Two compression specimens were used for the B/A1 system as pictured
in Figure 1. The sandwich beam specimen has nominal dimensions of 22"
in length, 1" in width, and 1.5" between the flanges. The top flange
has the 4" composife test section which is loaded in compression using
four-point bending (Figure 2). The bottom flange is titanium. Five
different Taminates of constant ply thickness were tested. The IITRI
specimens were cut from the composite flange of the sandwich beam specimen
as indicated iﬁ Figure 1. The IITRI specimens measured approximately
4.25" in length and 0.25" in width. Two fiberglass end tabs, 2.0" long,
were bonded to each end of the coupon resulting in a 0.25" test section.
Since these coupons are taken from the sandwich beam, the same five
laminate orientations as the beam were tested.

Table 1 Tlists material systemg, laminate configurations, and nominal
specimen thicknesses for each type of test. |

2.2 Preliminary Investigation

As an introduction, a search for published constituent material
properties of the Bsc/Al system was conducted. This system has exhibited

better elevated temperature properties than B/Al. Surprisingly, the

2 Thi .
This report is a continuation of the work of Mr. C. N. Viswanath
duplicates his specimen geometry [2]. | athan and



search indicated that the constituent material properties are not well
documented. It was found that the aluminum used as the matrix material

is initially in an F condition. This is a general condition representing
the as-fabricated state. Because of this classification no exact material
properties are available. Hence, very generalized aluminum properties
have been used to characterize the matrix behavior. However, the use of
these properties disregards any possible effects on the metal of the
diffusion-bonding process for fabricating the composite. This fabrication
procedure could result in the matrix being stronger and/or tougher due

to the nature of cooling after bonding.

Further difficulties were encountered with gathering fiber properties.
In this case, the infancy of the BORSIC fiber proved to be the drawback.
Also, data were often unavailable regarding the temperature dependent
nature of the properties.

A1l available properties are presented in Table 2.

2.3 Test Equipment

The uniaxial tension tests for both the B/A1 and Bsc/Al systems
were performed at NASA/Langley Research Center. The uniaxial compression
test utilizing the sandwich beam in four-point bending was also performed
at NASA/Langley, but the IITRI-type compression tests Were performed at
VPI & SU.

A11 tests at NASA/Langley used the 120 kip Tinius-0lson testing
machine with a constant load rate to failure. Foil-type strain gages
measured strain which was recorded using the Beckman automatic data
acquisition system. The tension tests fcr the [08], [908]; [(0/90)2]S
fiber orientations (in both material systems) had longitudinal and -

transverse strain gages on each side of the specimen. The [0/145]5,



[+45/(-45)2/+45]S, [(tBO)ZJS configurations had strain rosettes oriented
at 0°, 45°, and 90° with the longitudinal axis on either side of the
test specimen. The sandwich beams with B/A1 flanges oriented at [04],
[908], [(0/90)2}S had Tongitudinal and transverse strain gages on the
composite flange only. Further, strain rosettes oriented at 0°, 45°,
and 90° with the longitudinal axis were located on this flange for the
[(i30)2]s and [+45/(-45)2/+45]S laminates.

The tests at VPI & SU used the Instron model 1125 testing machine.
Laminates were tested using a monotonically increasing load to failure
under constant head rate; Strains were automatically recorded from the
foil-type gages using the CBz'data acquisition system [3]. Every specimen
had a Tongitudinal gage on each side and a transverse gage on just one

side.

3.0 TEST RESULTS

3.1 BORSIC/Aluminum System

As previously mentioned, this system was tested in unijaxial tension.
The results for ultimate stress, ultimate longitudinal strain, ultimate
transverse strain, initial Young's Modulus, and range of Poisson's ratio
are presented in Table 3. Poisson's ratio nas been defined as the
change in lateral strain for a change in axial strain [4]. It is assumed
to be constant during each increment of strain. A}l end tabs were
bonded to the specimens using contact cement. No stress-strain curves
are included for any of the tests performed in this study since they
essentially duplicate previous results [2].

The [+45/(-45)2/+45]S orientation was found to be incorrectly
fabricated for tension specimens of both material systems. During

testing of these laminates, the characterijstic twisting of an unsymmetric
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laminate occurred. A portion of a failed specimen was subsequently
bathed in a sodium hydroxide solution to leach out the aluminum matrix.
This revealed the true specimen orientation, [+45/(-45)2/(+55)2/(-45)2/+55].
This configuration was also verified by X-ray. Thus, the reported data
are unreliable for the [+45/(—45)2/+.45]S orientation.

3.2 Boron/Aluminum System '

3.2.1 Tension specimens

The data for the B/A1 uniaxial tension tests are assembled in Table
4, Three specimens having a [08] orientation were tested, but only two
specimens were tested for other orientations.

Some variation in method of Toad introduction was performed on the
[08] coupons. The first coupon utilized contact cement for bonding the
end tabs to the specimen. Because the contact cement was unable to
maintain the bond between end tabs and specimen during Bsc/Al tests, one
specimen had tabs bonded with 934 adhesive3. This a&hesive does require
a 200°F cure cycle. The final [083 coupon did not use end tabs at all.
A fine emory paper was used between the specimen and the grips of the
test machine. Surprisingly, the data from these three testé are inconclusive
as to tab influence. Moreover, the necessity of end tabs is questionable
for this material. Nevertheless, end tabs were used on all additional
tensile specimens. Contact cement was used because of its ease in
bonding.

Another testing technique used on these coupons was to grip the end
tabs approximately 1/2" behind the beginning of the taper. Several
specimens were previously observed to fail in or near the gripped region,

an area of stress concentration. It was beljeved that by gripping

:3 Product of Dexter Corporation



farther back on the end tab, the load would be more uniformly introduced
into the cohposite. However, several of the specimens tested were still
found to fail in the vicinity of the gripped region. There was no
correlation between ultimate stress and failure location. Hence, it
would be questionable to attribute all these failures to local stress
concentrations because several failures did occur well into the test
section. |

3.2.2 Sandwich beam compréssion specimens

Table 5 presents the B/A1 compression data for the sandwich beam
specimens. Once again, two specimens were tested for each orientation
except the [04] laminate; three specimens were tested for this case.

A variation in method of load application was used for the [04]
laminates. The points of the test fixture that introduce 1oad to the
composite flange of the beam could have either a rounded or flat surface.
The first [04] specimen was tested with the load applied through the
rounded surface. This caused a significant amount of bearing stress on
the particular load points. In order to introduce the load over a
larger area, the flat surface of the test fixutre was used to load the
last two [04] specimens. A typical failure using the flat surface is
shown in Figure 3. Perhaps a further suggestion to decrease bearing
stress would be to use small pads under the load points [5].

The cause of failure in the [908] specimens was buckling (Figures 4
and 5). Hence, the ultimate compressive values for these tests may not
correspond to the true maximum compressive values of this material. A
[(0/90)2]S sandwich beam is shown in Figure 6; its failure surface was
much more abrupt than the [04] specimen, and buckling was minimal compared
to the [908] orientation. The [(130)2]S specimen failed in its characteristic

manner (Figure 7), along a line oriented at 30° with the longitudinal



axis of the beam. The [+45/(-45)2/+45]s beam was not tested to failure
in compression. The large strains that accompanied the application of
load caused the beam to contact the bottom of the test fixture before
the ultimate stress was reached. Further, these large strains exceeded
the maximum values for the data acquisition system. Hence, the reported
values of ultimate strain for this orientation correspond to the maximum
readable strains during the test (Table 5). The second test of this
orientation was a tension test. The failure surface for this test is
shown in Figure 8; the curvature of the beam indicates the degree of
strain.

3.2.2 T1ITRI Compression Specimens

The compression data for the B/A1 IITRI specimen are presented in
Table 6. Four specimens were tested for each orientation except the
[(0/90)2]5; two laminates were tested for this configuration.

The failure surface of a [04] laminate is shown in Figure 9. The
failure was catastrophic and characteristic of compressive loadina. The
[908] specimens buckled as pictured in Figure 10. Thus, for a [908]
Taminate the maximum compressive values for the IITRI test do not cor-
respond to the true compressive strength of the material. Similar
behavior for this fiber orientation was noted in the sandwich beam test.
The [(0/90)2]S configuration has a failure surface that appears to
combine [04] and [908] failure modes. The [(0/90)2]S specimen in Figure
11 illustrates a smaller amount of buckling when compared to a [908]
surface and & contribution from fiber breakage, characteristic of the
[04] failure.

The [(¢30)2]S and [+45/(—45)2/+45]S specimens exhibit very similar
behavior (Figures 12 and 13, respeétive]y). The test section of each

laminate experiences large transverse strain. This is somewhat expected



due to the higher Poisson's ratio of some angle-ply laminates. Figure
13 clearly shows that the transverse strains are restricted by the
gripping influence; this will be discussed further in a following
section of this report.
4.0 DISCUSSION

4.1 Analytical Correlation

Laminate theory can be used to predict elastic material properties.
For a symmetric laminate of thickness 2H, the average in-plane stresses,

{c}, can be expressed in terms of the forces per unit length {N}, as

cJ)( NX

- _ 1

Uy = -é'ﬁ Ny . (])
Txy ny

Ix si

- _ 1 .

Oy - 7H [A] Ey s (2)
Txy Yxy

Inverting Egn. (2) aives midplane strains in terms of the stresses,

{e°} = [a*]{o} , (3)

1]

where

[a*] = 2H[A]™' . (4)

Hence, the elastic properties for the total laminate can be expressed

aS,
N e s
1 €y T2
£ = 2=l .y =_J-= (5)
X ey Ay Xy e, Ay
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Table 7 compares analytical and experimental values of Young's
Modulus and Poisson's ratio {(elastic range) for the B/A1 system. The
[04] and [908] laminates are included and their properties are input
for further calculation. The [(0/90)2]s laminate properties follow rule
of mixtures calculations using [04] and [908] input. Upon inspection of
the table, it is seen that the predicted modulii are greater than experi-
mental modulii except for the [(0/90)2]S IITRI compresssion case.
Further, the predicted Poisson's ratios are smaller than the experi-
mental valies except for the [(0/90)2]s tension case. The discrepancies
between experimental and analytical values may be explained by matrix
yielding caused by residual thermal stresses [6].

4.2 Poisson's Ratio Data

As previously stated, Poisson's ratio is defined as the change in
lateral strain divided by the change in axial strain [4], i.e.

~de

=Y
Vyy dex . (6)

The values presented in this report were obtained by plotting curves of
lateral strain verses axial strain. Poisson's ratio is then taken to be
the slope of a curve at selected intervals. Figures 14-24 illustrate
such curves for tension and compression tests (curves for some tests are
not included as strain gage or data acquisition malfunctions resulted in
jrrelevent data).

Several trends are apparent in the Poisson's ratio curves. The
[08] plots (Figure 14) are bilinear with the knee occurring approximately
at the proportional 1imit of the aluminum matrix [7]. The [908] speci-
mens are characterized by curves (Figures 15 and 21) that quickly attain
a maximum followed by a negative Poisson's ratio, i.e. there is lateral

expansion associated with an axial expansion. This negative ratio may
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be the result of a failure mechanism in the matrix material. This
behavior is not compietely consistent with the [908] IITRI coupons.
These tests terminated at much lower axial strain levels. The curves
for the [(0/90)2]s Taminates (Figures 16 and 22) have a slope that
becomes arratic and decreases in magnitude prior to failure. As ex-
pected, this laminate exhibits behavior that combines [0°] and [90°]
behavior. The [+45/(-45)2/+45]S specimens exhibit a small increase in
Poisson's ratio throughout each tast (Figures 17 and 23). It is inter-
esting to note that the change in lateral strain is very close to the
change in axial strain for this configuration with Poisson's ratio
approximately equal to unity throughout the test. The slope of the
[0/145]s curve (Figure 18) increases throughout the test (typical of the
[+45/(—45)2/+45]s), and the Poisson's ratio values 1ie between the [08]
and [+45/(-45)2/+45]S laminates, as expected. The [(i302)]S laminates
(Figures 19 and 24) have the highest Poisson's ratios. The values are
steadily increasing throughout each test with ratios greater than 2.0
being often attained.

Another trend is that the Poisson's ratios for the Bsc/Al laminates
are slightly larger than the corresponding B/A1 laminates. This may be
attributed to the larger, 5.7 mil., fiber used in the Bsc/Al system.

4.3 Comparison of Compressive Test Techniques

From the standpoint of static analysis, both the beam and the
coupon experience compressive loading in their test sections. However,
other constraints inherent in each specimen geometry can obscure meaning-
ful results.

The sandwich beam is constructed of two flanges and a honeycomb
core. This honeycomb is bonded to each flange and may influence any

Tateral behavior in the test section. It would follow that a decrease
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in lateral strain would result in a higher apparent Young's Modulus and
a lower apparent Poisson's ratio when compared to corresponding values
of the IITRI test. However, this pattern is not illustrated in all the
data. Although the [04] and [908] laminates exhibit higher modulii from
beam tests than from coupons, other laminates do not portray similar
trends.

The IITRI coupon has an extremely small test section (0.25"). This
section becomes critical when applying St. Venant's principle. The
proximity of the tabs and machine grips to the test region may have
significant effect on the data. Indeed, the [(i30)2]S and [+45/(-45)2/
+45]S orientations have large lateral deformations (Figures 12 and 13,
respectively). Also, these deformations continue into the gripped
region of the specimen. Hence, it is very likely that the deformations
are experiencing some grip effect. Obviously, for the [+45/(-45)2/+45]s
Taminate (Figure 13) the requirement of loading far-removed from tie
test section is not met.

If the state of stress is not uniform throughout the test section,
the Poisson's ratio data becomes questionable. Figure 25 shows the
strain gage locations on a typical IITRI specimen. The lateral gage is
located on the far right of the test area, and the axial gage is located
close to the middle. Poisson's ratio has been defined as a coupling of
Tateral and axial strains at a point. Because of the different strain
gage locations, it is apparent that the lateral strain (at least for
some laminates) may not be solely the result of the axial strain. It
may also be a function of machine gripping constraint. A better test
procedure would be to use stacked strain gages that measure strains in
the same region.

Another consideration for these IITRI tests is the load history of
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each compression coupon. As shown in Figure 1, the coupons are cut from
the composite flange of the sandwich beam. .Calculations reveal that the
area of the IITRI coupons experiences half the 1cading used to fail the
sandwich beam during the four-point bending test.' However, it has been
shown that cycling has a small effect on the elastic properties of
Bsc/Al [2]; negligible effects are assumed for this investigation.
Perhaps the most significant comparison between the sandwich beam
and the IITRI coupon is the maximum attainable axial strain for each
test. It appears that the IITRT coupons experience premature failure
for some laminates. This is best illustrated by the [903] specimens
(Figures 15 and 21). 1In the tension and four-point bending tests the
curves for these laminates attain a maximum transverse strain and then
decrease. This maximum is not evident in the IITRI [908] tests since

failure occurs at jower axial strain levels.

5.0 CONCLUDING REMARKS

This report presents the results of forty-one tension and com-
pression tests on metal matrix composite materials. The more precise
definition of Poisson's ratio used in the report extends the meaningful
use of this material property into the nonlinear range of material
behavior. The reliability of data from some angle-ply IITRI compression
tests is questionable. There is significant grip influence when testing
Taminates with high Poisson's ratio such as the [+45/(—45)2/+45]S
specimen. Further, the lower axial strain levels of some IITRI com-
pression tests when compared to corresponding sandwich beam data in-

dicate that the IITRI specimen often exhibits early failures.
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TABLE 1
TEST LAMINATE THICKNESSES

Material Orientation Nominal Thickness,
(Test) Inches
fo,1] ' 0.060
Bsc/é] [9083 0.060
(Tension) 8 :
[+45/(-45),/+45] 0.060
[0g] 0.060
[908] 0.060
B/A1 ‘ [(0/90)2]s 0.060
(Tension) [0/145]S 0.045
[+45/(-45)2/+45]s 0.060
[(£30),], 0.060
[04] 0.028
B/A1 [908] 0.060
(Compression) [(0/90)2]5 0.060
[+45/(-45),/+45] 0.060
[(£30)]¢ 0.060
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TABLE 3

BSC/A1 TENSTON DATA

Orientation oi, Ksi eg, % e;, % « Msq Vyy
ch 152.87 0.55  0.14  27.61 028
[0, ] 153.45 0.5 0.5  31.63 0.24-
[90g] 14.66 0.78 - o0.002 1z.04 OO0
[ +45/(~45) ,/+451, 388 241 174 1549 .

1 Strain Gage Malfunction



TABLE 4

B/A1 TENSION DATA

[0g] 209.0 0.80 0.22 26.60 0-28

[0g] 193.6 0.82 0.22 25.96 g:gg_

[0g] 206.3 0.82 0.22 25.60 3:%9-

(90,1 11.33 0.45 0.005 5.60 1

[90g] 15.65 0.63 0.006 9.99 i
[(0/90),], 116.1 0.83 0.02 15.72 8]82'
[(0/90),1, 114.1 0.85 0.01 14.65 0. 00

[ +45/(-45),,/+45] 24.75 3.99 4.29 12.26 0.83-
[+45/(-45),,/+45] 24.39" 3.85 3.90 8.5¢ 9.22-
[0/:45] 63.38 0.60 0.31 13.98 0-00-
[0/:45], 79.13 0.75 0.41 14,30 0.40-
[(£30),1 81.62 1.66 2.73 14.81 g:gg-
[(£30),] 77.60 1.38 2.35 20.16 e

1

Strain Gage Malfunction

2 Actual Lay-so [+45/(-45),/(+55),/ (-45),,/+55]




TABLE 5
B/A1 SANDWICH BEAM COMPRESSION DATA

u

. L, U‘ . P . o

Orientation oy Ksi Eys b mﬂ\ie;, % Evs Msi Xy
. o 0. 32_

: 1 \ 1

(0,1 287.1 - 0.27 \. 41.47
; m-"i;-

’ T | 0.29-

[0,] 448.8 1.0 0.40 40320 0o

| . ' ‘ 0.08>

[90g] a7 3.15 0.03 7.57 5.0
- 0.08,

[90g] 39.83 2.99 . 0.05 7.84 -0 02

. o 0.28-

[(0/90),]; 290.3 1.50 0.16 19.49 063
SRR 0.20-

[(0/90),,1 269.0 1.40 0.17 19.63 06
[+45/(~45),,/+451, 49.65 6.47 6.06 15.57 0.91
+45/ (-45).,/+45] ? 47.07 6.54 6.14 9.06 0.83-
[+45/(-45),/ 2 o : : : 1.00
1.17-

[(+30),]1, 74.03 0.8 1.39 25.80 > 20
s 0.98-

[(£30),,] 71.69 0.91 2.48 23.62 2 a5

1 Strain Gage Malfunction

2 Tension Test




B/A1 IITRI COMPRESSION DATA

TABLE 6

u

u

Orientation o Ksi egs % e;, 9 o> Msi Vyy
[0,] 254.8 1.13 0.32 20.80 03y
[0,] 284.2 0.85 0.3 28.87 022
[0,] 261.7 0.84 0.50 27.40 0.23-
- [905] 32.84 1.18 0.05 9.39 0.08-
[90,] 36.06 '0.73 0.06 10.25 8:%2’
[(0/90),] 227.6 1.03 0.20 19.05 0.3e-
[(0/90),1; 241.0 1.18 0.22 20.17 005
[+45/(-45),/+45] 25.64 0.73 - 10.00 .
[+45/(-45),/+45] 61.83 0.82 0.58 16.66 0.81
[(£30),1 36.64 0.53 0.73 17.73 0-78"
[(£30),1 47.72 0.51 0.80 19.01 e
[(£30),] 50.64 0.52 0.61 18.46 s
[(30),] 47.71 0.59 0.92 18.38 0 o0

1

Strain Gage Malfunction




TABLE 7

COMPARISON OF PREDICTED AND EXPERIMENTAL ELASTIC PROPERTIES

Orientation (type of test)

Ex, Ms1 Ex’ Msi vxy Vyy
Predicted Experiment Predicted Experiment

[08] (Tension) - 26.05 - 0.22

[04] (Sandwich Beam Compression) - 40.11 - 0.31

[04] (IITRI Compression) - 25.69 - 0.31

[908] (Tension) - 7.75 - -

(Sandwich Beam ..

[908] Compression) h 7.7 - -

[908] (IITRI Compression) - 9.82 - - -

[(0/90)2]S (Tension) 17.0 15.2 0.10 0.06

an (Sandwich Beam

[(0/90)2]S Compression) 24.1 19.6 0.10 0.28

[(0/90)2]S (IITRI Compression) 17.9 19.6 0.17 0.33

[+45/(-45)2/+45]s L (Tension) 14.7 10.4 0.16 0.88

- {(Sandwich Beam
[+45/(-45)2/+45]S Compression) 18.0 15.6 0.33 0.91
: (TITRI

[+45/(-45)2/+45]S Compression) 16.7 13.3 0.23 0.81

[0/i45]S (Tension) 19.2 14.0 0.17 0.40

[(£30),] (Tension) 20.6 17.5 0.20 1.06

{(Sandwich Beam :

[(£30),]¢ *Compression) 27.1 24.7 0.43 1.07

20.9 18.4 0.28 0.94

[(i30)2]s (IITRI Compression)

! Actual Lay-up (+45/(-45)2/(+55

)/ (~45) ,/455]

NOTE: B/A1 data used for tension tests.
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Figure 9. FAILURE SURFACE FOR A [04] IITRI
COMPRESSION TEST



Figure 10. FAILURE SURFACE FOR A [908] IITRI
COMPRESSION TEST
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Figure 11. FAILURE SURFACE FOR A [(0/90),]
IITRI COMPRESSION TEST
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Figure 12. FAILURE SURFACE FOR A [(‘30)2]S
IITRI Compression Test
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Figure 14. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[08] TENSION TESTS
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Figure 15. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[90,}] TENSION TLSTS
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Figure 16. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[(0/90,]¢ TENSION TESTS
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Figure 17. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[+45/(-45),/(+55),/(-45),/+55] TENSION

TESTS
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Figure 18, AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[O/i%]s TENSION TESTS



3.0 r

612/3

Vxy = 2.30

Figure 19. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[(i30)2]s TENSION TESTS
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Figure 20. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[04] COMPRESSION TESTS
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Figure 21. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[908] COMPRESSION TESTS
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Figura 22. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[(0/90)2]s COMPRESSION TESTS
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Figure 23. AXIAL STRAIN VS. TRANSVERSE STRAIN FOR
[+45/(-45)2/+45]s COMPRESSION TESTS

Note: 599/4 is a tension test
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AXTAL STRAIN VS. TRANSVERSE STRAIN FOR
(+30) ] COMPRESSION TESTS



Figure 25. STRAIN GAGE LOCATIONS ON TYPICAL
IITRI TEST SPECIMEN
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