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EXkZCVTIVE SUMMARY 

The Jet Propulsion Laboratory 1JPL) has  previously in\-estigatcd the 

feasih'lit). of rl??plcn\cni;cg rutornoti\-c cnginr gasol inc /a i r  n:ixturcs a-rth a h\-dro- 

gen r ich  g a s  in o r d e r  to permi t  the c o m h s t i o n  of zasolinc under ul tralean condi - 
tions. It is des i rab le  to  opera te  a3 automobile engine i n  the  u:tralcan region 

&cause the t k t t m a l  efficiency is increased and t h e  peak conlbustion t t m p e r a -  

nares a r e  decreased.  hcrcarcd cagine thermal  efficiency leads direct ly t o  

improved fuel econo-my, r*ile low-er  combustion t empera tu res  resul t  in lc JS 

XO formation. 
X 

fhe rPL c-crpt far  prodccing the  hydrogen avoids the hazard of carrytap: 

&toted quantities of the  g a s  tn the ii;tom~b;.lc by generotins the  des i red  amaunt 

on a d m  and bazis. This  i s  accomplished by using r bydrogca genera tor  in 

conjuncticm with a standard IC engine. 

The imp;en~entation of dre hyAro(ren-ertiched fuels concept cons is ts  of 

the  addit.- of a h y d t q m  genera tor  t o  a;' internal  combustion engine s y s t e m  

I see Figure I ;. -c s f  the kc! za tmal ly  provided t o  the engine i s  d i v c r t d  

:e the  h y d r x m  generator .  In the  hydrogzn generator.  the  fuel i s  vaporized 

and -mixed with pre-heated a i r  after u-kich it i s  rwrtially o x d i t e d  - i. e.. 

r e a c t 4  at i n  overrii r ich conditior - on the  su r face  of a I o . P - c o ~ ~  nickel 

cak ly r t .  I h e  products of th is  react ion a r e  predominantly hydroken and carbon 

mortoxide. Diluent nitrogen from. the  atr also c o m p r i s e s  a rig-ificon? fraction 

of the  product gas. Other products  a r e  HLO, C02,  snd ~ n r e a z t d  hydrocarbons. 

( F o r  a detailed descript ion of t h e  product g a r  ccmposition. see T>bIe I ,  paqc 37. ) 

The  product gas i s  mixed with pr imary  &el and - .r a m  i o  then inducted 

into the  engine. This tesul t ing mix tu re  cndergoea cambustion i r c  t he  engine a t  



Fig- 1. System schematic 

an  air 'fuel rat io much leaner  than that which could be supported by gasoline 

alone. This ultra-lean combustion i s  accomplished as a resul t  of the  lean 

flammability l imit  extension provided by the u s e  of hydrogen in the fuel mix- 

ture for the  engine. 

The resul ts  rif this  ul tra-lean combustion a r e  the reduction of NO emis-  
X 

sions and the improvement in engine t h e r m r l  efficiency. These  benefits a r e  the 

resul ts  of decreased combustion temperatures; in the  engine which cause: 

1) Reduction in the  r a t e  of formation of NOx. 

2 )  Reduction in the  heat loss  to the engine cooling .system. 

3 Reduced heat content of the  engine exhaust. 



4 Reduced energy losses  dire t o  dissociation during the comblation 

process.  

Control of the  flowrates of fuel and a i r  t o  :he engine and the hydrogen 

genera tor  is expected t o  he provided by a n  electronic coat ro l ler  activated by a 

driver-operated foot pedal. The iomplexity of th i s  sys tem i- anticipated t o  be 

or, s a m e  o r d e r  as that of c u r  rent production, electronic,  fuei injection 

systems.  

The  hydrogen enrichment concept requires  that a part of the gasoline 

fuel be used t o  opera te  the  generator. The total usage of gasolice by the 

generator  and the engine has  been shown t o  be less than a n  engine operating 

u-ithwt hydrogen enrichment because the increased engine efiici ency m o r e  

than offsets the  generator-associated losses.  

In the  cur ren t  mark f ~ r  the EPA, the  JPL sys tem bas been evaluated in 

terrr,s o i  he1 coi:sumption and engine exhaust emiss ions  through multlcylinder 

(\'-8) automotive engine/hydrogen genera tor  tests, single cylinder r e s e a r c h  

ensir?c iCFRl t e s t s ,  and hydrogen-generator charactertzat ion tests. Analytical 

predictions have been made of the  h e 1  consumption and SOx err.issiona which 

uvuld resul t  f rom aziticipated engine impro\-ements. The  hydrogen-gas pen- 

e ra to r ,  u-hich a-as tested to quantify its thermodynamic input-output r e k t i o n -  

ships. uas used for integrated test ing of the 1'-8 engine and generator .  

Engine (V-8 )  t e s t s ,  using gasoline alone as the fuel, uvre condvcted 

with the stock, carburet ted engine and with the engine modified with t h e  Auto- 

t ronics  induction and ignition systems, These  provided a well-defined base- 

l ine from which t o  make  comparisons.  The resul ts  -6 .hese tests w e r e  w e d  

to d raw contour maps  of brake  specific fuel consumption (BSFC) and brake  



specific emics ions  as f u n c t i ~ n s  of brake  mean effective ? r z s s s r e  (BXIEPI and 

engine s p e d ,  (Kt-a). T e s t s  of the  modified engine cc-mbined witn the  hydrogen 

genera tor  provided data f r o m  which s i m i l a r  maps  w - e r r  made for t h r e e  hydrogen- 

genera tor  flow rates.  Engine op-ratian on the mixture of generator  products 

and gasoline was  excellent and generally :rouble free. Xo problems reflecting 

a safety hazard  w e r e  encountered. Post-tes: i n ~ p e c t i o n  of the  heads. pistons. 

and intake manifold showed no adverse  affects  f rom operation with :his fuel 

mixture. 

T e s t s  with a single-cylinder r e s e a r c h  (CFR\ engine u-ere made to 

evaluate the sifcct  of ''leanness of operation" and o i  h\-dropcn supplen?enta- 

tion on cr i t ica l  c o n ~ p r e s s i o n  ratio. Operation a t  ul tra-lean conditions d w s  

resul t  in  i higher cr i t ica l  compression ratio. This suggests  that e i the r  a 

higher compress ian  r a t i o  may be used with the rr.ixed fuels (with an  atten- 

dant inc rease  in efficiency!, or a lou-er octane fuel n?av be used a t  the 

cur ren t  levels  of camp.-ossion rat ic ,  This u-ocld, in turn, resul t  in some 

reduction in maximum engine power. 

An analytical model of a hydrogen-generator s?absystem. consisting of the 

generator ,  a compressor ,  pump and heat  exchangers. =as used t o  e s t ~ m a t e  the 

additional engine power required to  opera te  this  subsystem. These  es t ima tes  

were  then used with a3 analytical model of the  combined cnginethydrogen gen- 

e ra to r  subsys.;em t o  provide predicted sys tem fuel consumption and emiss ions  

performance. The performance of the  existing sys tem was predicted and 

found to  compare  kvdrab ly  with that actually observed. The effect on sys tem 

performance then was predicted for engine improvements that  will allow engine 

operation a t  a leaner  condition and for  increased compresslan ratios. 



The  Federa l  Driving Cycle was analytically simulated, and a paramet r i c  

study of vehicle h e 1  consumption and NOx emiss ions  was performed. These  

studies showed that engine modifications, associated with state-of-the-art 

hardware  and techniqr:es, will resul t  in the hydrogen genera tor /  engine sys tem 

giving a simultaneous wi leage  improvement of 26% and NO emiss ions  of 
X 

0 .2  g m l m i l e  when compared to  a stock vehicle. 

Other significant achievements included determining that the  energy con- 

tent of the generator  output s t r e e m  is sufficient, in ve ry  prel iminary s tar tup 

tests, to  start the ( V - 8 )  engine only LO seconds a f t e r  the  genera tor  i s  turned 

on, and that the  s y s t e m s  simulation computer  model predicts  BSFC within a 

feu- p ~ r c e n t  of measured data. 
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SECTION 1 

P1I RCDUCTION 

The Enviramnenta! P r o t e c t i ~ n  -Agency (-A) 'has sponsored a critical 

evaluation of the JPL hydregen enrichment concept- This e - r l lu t ioa  included 

the characteriutiaa of a h y d r o g t ~  gas gareramr,  the tertiag of a V 8 automotive 

cugure operated -ti& *& gas  gaterator.  and an &yt;cal predicti- of the  per- 

f r .nar te  of an a g i n e l g m c n t o r  system in a 1973 Chevrolet Impala sedan. 

TG best perform this ~1aluat i3~.  s u  objectives were established. These 

objectives were met by complr'iing technical tasks designed far each objective. 

The ent i re  e f f ~ r t  m a y  be Glvided into two parts: an experimental test effart and 

an  aaalytical effort. BoQh are highl;- iaterdepcndent a,* u c h  of the broad 

categories are discussed iq more  detail below. 

CC- 

r he experime..:=l effort had three oojectives which are listed below. The 

su~po-s technical tasks  for each objective are also d i sc~ssed .  

OBJECTIVE 1: To  determine the input-output relationship of a hydrogen 

generatirz sad t o  estimate the engineigenerator startup characteristics. 

Task (EPA Task A, Complete infarmation on Task A is f o d  in - 
Section XI, R. of this report): A characterization of the hydrogen 

gas gene* >tor was completed to  determine the generator product 

compositim over a range of generator fuel flow rates and reaction 

chamber pressures.  The operating characterist ics for the primary 

components of the generator subsystem -;tere identitied and this 

information and these data were used to estimete the t ime required 

for the generator to prcduce sulcficient chemical energy to  s t a r t  



the automobile iV-8) test engifie in a sold condition. Related startup 

c h r a c t e r i s t i c r  of the generator, iclheli, were also determined. 

OBJECTlVE 2: To  measure  the performance and emissions of a multi- - 
cyliadcr (V-3) t *st engine fueled by a mixture of gasoline and hydrogen generator 

products, 

Task WE! Task D. See Section 11- C- ): Ar automobile engine 

mounted -a a dynamometer tes t  s t a d  and operated with a gasoline/ 

hydrogen-generator p rodues  mixture n s  used to gather tbt i-uired 

!V-8) engiac perfotmutce data. Con:inuous cnrissions data were 

measured for Wx, CO and the HC pollutants using emission analysis 

equipment operatai  ~ i ~ u l t a n z o u s l y  with the engine dyriamomele r . 
OBJECTIVE 3: T o  eva!uate the effects of ultra-leas engine operation, 

resulting k o m  hydrogen addition, on the critical compression ratio. 

Task (EPA Task E. See Sec*ion 11. D.): Tes ts  were cinducted usirig - 
a single cylinder, Cooperative Fuels R e ~ e a r c h  !CFEU e n g i c ~  to  

evaluate the rel-ationship between cri t ical  comprcsston ratio, the 

degree of lean operation, and hydroger. ilow rate. 

The a2alytical effort a lso had three objectives A i c h  are listed below 

alonq with a brief discussion of the supporting technical tasks. 

OBJECTIVE 4: To  develop an engineering definition of the hydrogen- 

generator subsystem and the operational characterist ics of its subassembly 

components. 

Task (EFA Task B. See Section III. B.): A hj7othetical hydrogen - 
generator subsystem was synthesized in engineering terms. This 

subsystem was based on test data generated in EPA Task A and 

estimated accessory component performance irom the technical 



literature. Tne effect of variations in this accessory load on 

system fuel economy and e,missions was examined, using the 

hydrogu- generator/tngine model described in objective number 

five, below. 

OBJECTIVE 5: To  develop computer s i m - ~ k t i o n s  of !a) the hydrogen-gas 

generator subsystem, (b) a combined engine!gas generator, and (c) the Federal  

Driving Cycle ( FDC) . 
Task WPA Task C. See Section lC. C. !: TSree computer programs -. 

were developed. The f i rs t  simulated a d  predicted the loads as a 

h c t i o n  of generator throughput whit". wautd be i m p s e d  on a 

vehicle by the generator subsystem. The second simulated mqine l  

generator combination and predicted both fuel consumption rates 

and NO emissions as functions 3 f  engine q e r a t i n g  conditions and 
X 

generator throughput. The third simulated a vehicle being d r i v c ~  

over the FDC, and predicted the vehicle performance in t e r m s  of 

gasoline mileage and NO emisiions per  mile. 
X 

OBJECTIVE 6: T o  utilize the compnter simulations developed to  achieve 

Objective 5, and t o  estimate the effects of engine improvements on engine/ 

generator system performance over the FDC. 

Task @ P A  Task F. See Section 111. D. ): Data were generated using - 
the enginelgenerator performance predictier. model whSOA, in turn, 

were used a s  inputs to the F D C  simulation for determining fuel 

economy and NO emissions over the driving cycie, This process x 

was repeated for seve=.al alternative engine configurations. 



B. TECHNICAL HISTORY 

1. Or-erviewi 

The wide hmmabi l i t y  limits of hydrogen make it a unique fuel. Small 

amounts of hvdr4en .  ahea mixed .cith other fuels, can be used to extend the 

flammability l imits of the mixture. Fheliair cycle calculations have long 

indicated that very lean opemtioa of a n  intc-ma1 combustTon engine would 

result in improved engine e f f ic i~ncy  and reda~ced emissions of NO by reducing 
X 

comkistioo temperatures. To  achieve these advantages, h o ~ v e r ,  i t  vns 

n u e s s r - y  that the engine operate at a fueliair  ratio l a n e r  than the lean 

flammability limit of gasoline. 'f'ne National Aeronautics and Space Admicis- 

tration (I-) provided the facilities and sponsored a program to demonstrate 

by analyses a d  e x p e r i m t ~ t s  that the addition of small  amounts of hydrogen to  

gasoline resulted in ultra-le- operation with an attendant reduction of NOx 

enlissions and improvements in engine efficiency. 

The use  of molecular hydrogen as a fuel for automotive use  :us ser ious  

drawhacks. No nationwide d i s t r i h t ion  system for this fuel exists and it: 

storage as a high pressure  gas  o r  cryogenic liquid requires vehicle czpabilities 

which do not now exist. To eliminate these difficulties, JPL proposed that the 

needed hydrogen be ottained from gasoline already on board the vehicle. This 

would be done in a hydrogen generator in which the rich combustion of gasoline 

in a i r  would result  in a product gas rich in hydrogen plus various residual 

hydrocsr:runs, CO, and diluents. 

The maximum theoretical hydrogen yield for a hydrogen generator using 

water, gasoline, and air i s  29% by volume. When no water i s  used, chemical 

equilibrium calculations indicate that the generator a i r l fuel  mass  ratio must be 

greater than 5 to  avoid soot formation. Under these condi:ions the maximum 



thearetical hydrogen yield is 24% by x-olume. The catalytic generator u e d  for 

the tests described in th i s  report yields 22% by %-ol*sme hydrogen without produc- 

ing sod. This operation is achieved with onlv gasoline and a i r  as inputs: no 

water is used. The catalytic generator has a chemical e n e z w  ratio of 80%. 

That is, rhe chemical energy content of the generator actput is 80% of the energy 

content of the input stream. The remaining 2OCo is in the form of sensible he&; 

not u s e f ~ l  to engine ope rat;,^, A schematic of the JPL hydrogen geaerator svs-  

tern currently in use is presented in Figure 1 below, ~ 5 t h  an  explanatory aar- 

ratire. 

The imp'rementation of the hydr9pen enriched fuels concept consists of 

the addition of a hydrogen generator to an internal combustion engine svsterr, as 

Fig. 1. System schematic 
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shoan in Figure-I. Sorne of the fuel normally provided to the engine is diverted 

to the hydrogec generator. la the hydrogen generator the fuel is vaporized and 

mixed ritb pre-heated air  after which it is partially oxidized - i. e., reacted 

a t  an ovcrall rich condition - on the surhce of a low cost nickel cata:yst. The 

products of this reaction are  predominantly hydrogen and car'mn monoxide. 

Diluent nitrogen from the air  also comprises a significant fraction of the 

product gas. Other products a re  Hp, C02. and unreactcd hydrocarbons. 

(For a detailed description of the product gas composition, see Table 1. 

rtris product gas is mixed with primary fuel and air and is then iirducted 

into the engine. This resulting mixture undergoes combustion in the engine at 

an air/fuel ratio much leaner than that which could be support& by gasoline 

alone. This ultra-lean combustion is accomplished as a result of the lean 

flammability limit extension provided by the use of hydrogen in the fuel zlixtura, 

The results cf  this ultra-lean combustion are  the reductisxi of Nx 

emissicms and thc improvement in engine thermal efficiency. These hncfits 

a re  the results of decreased combustion temperatures in the engine u-hich 

cause: 

1) Reduction in the ra'e of formation of NOx. 

2 )  Reduction in the heat loss to the engine cooling system. 

3) Reduced heat content of the engine exhaust. 

4 Reduced energy losses due to disassociation during the 

combustion process. 

Corrtrol of the flowrates of fuel and air to the engine and the hydrogen 

generator i. expected to be provided by an electronic controller activated by a 

driver operated foot-pedal. The complexity of this system is anticipated to 

b? on the rune order as that of current production, ele~tronic, fuel injection 

systems. 

6 



2. Early CFR Engine Studies 

Tke hydrogen enrichment concept was conceived during t?te course  of a 

series of experiments conducted d t h  a single cylinder CFR engin-. In the 

initial single cylinder CFR e n ~ i n e  work, NO emissions f rom various fuels 
X 

were compared in t e rms  of grams of emission per indicated horsepower-hour 

produced. Fuel consumption was measured in t e rms  of engine-indiczted 

thermal eiiiciency, and combustion conditions were ex?ressed in te rms  of 

equivalence ratlo. Equivalence ratio is the actual fuel/air ratio divided by the 

chemically cor rec t  (i. e, , stoichiometric) fuellair ratio. In these CFR engine 

experiments, is was shown that NOx emissions from gasoline could be reduced 

slightly by lean operation. With gasoline f ~ l ,  levels equivalent to  the E P A  1978 

standard could not be achieved because engine misfire limited the minimum equi- 

valence ratio (d) to  about 0.59 (see Figure 2). With hydrogen, however, the 

engine aas operated down to  equivaience ratios of - C. 1 where the NOx 

eirissions were less  than 11100 of the EPA Standard and a r e  approximately 

equal to  the EPA ambient a i r  standard ( 0 . 2 5  2pmi. Since the ea=emely  low 

NOx emissions achievsble by lean cornbustion with pure hydrogen a r e  nct 

required, i t  is  more practical to use  srnail amounts of hydrogen to  extend the 

operating range far  gasoline into tke ultra-lezn region. It is desirable t o  

limtt the amount of hydrogen needed to  minimize the hydrogen-generator s ize  

and reduce the effect of : ae ra tor  efficiency an overall fuel economy. 

Mixtures of hydrogen and gasoline in the CFR engine s h o d  very 133- 

NO emissions in the ultra-lean region. Carbon monoxide emissions nar- 
X 

measured and found a l so  to  be below the -A 1978 Standards, ;s long a s  

adequate quantities of hyiirogen were used to  avoic! r.?isfire. A s  discussed in 

Section 11. C., Concludi~g Rizaark*, the favorable CO reau'rts were not 



Fig. 2.  CFR NO emiss ions  vs  equivalence  ratio,^ 
X 

duplicated when the  V-8 engine was operated with genera tor  products. 

Apparently, the  CO in the  genera tor  product s t r e a m  is the  source  of the engine 

CO emissions. Hydrocarbon emiss ions  were  measured and f ~ u n d  t o  be above 

the  EPA 1978 Standard. 

The  CFR studies further  indicated that engine the rmal  efficiency w a s  

inversely related t o  equivalence ra t io  as predicted by theory. This  i s  il lus- 

t ra ted  in Figure  3. 

Thermal  efficiency increases  of approximately 40% [from about 0.23 for 

conventional s y s t e m s  t o  about 0.33 for hydrogen and gasolice mixtures) were  

indicated f rom these  studies. Increased vehicle fuel economy is direct ly 



Fig. 3. CFR therraal  efficiency v s  equi..-elozr- ratio 

proportionate to increased engine the rmal  efficiency and, as will be shown 

lz t e r ,  m e r e  than offsets the penalties associa ted  with the  u s e  of the  g a s  

generator .  

3. Early V-8 Engine Studies 

The NOx emission data  generated by V-8 engine tests, made  using 

bottled hydrogen, reinforced tke  concepts de t r rmined In the  initial CFR 

studies. T h e  V-8 engine NOx v s  equivalence ra t io  c u r v e  was s imi la r  t o  the  

CFR curve  both in cha rac te r i s t i c  shape and in the  valuen of the data. The 

CFR resul t s  wit?. carbon monoxide (CO) and hydrocarbon (HC) emiss ions  w e r e  

a l s o  experienced with the  V-3 e,lginr. 



The initial multi-cylinder 1'-8 engine thermal effi-iency measurements 

~x'nibited a marked difference from, the single cylinder results. Yt.e CFR 

resul ts  showed clear and sha rp  maxima. The mu!ti-cylinder engine maxima 

was broad and not clearly defined. This i s  thought to be main!). the result of 

cylinder - to-cylinder variations ia  eq--1iva1encc ratio. The phenomena i s  illus - 
trated in  Figure 1. The same engine was operated with two different induction 

systems; one was the system used for the hydrogen generatorlengine tes ts  

described in  Section IIC of this report  and the secona a laboratory system 

specifically designed to give uniform equivalence ra t io  distribution. 

Work performed by JPL  (after the work reported here) for the Depart- 

ment of Transportation, Transportation Systems Center (DOTITSC) (Ref. 10) 

contributed to the knowlec2ge of lean operating lr-8 engines. The implementation 
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of s e v e r a l  engine modifications rllower! the '.'-8 e. .,e, f8:elea by gasoline only, 

to  operate approximately 50'?l0 1ea.ner thar. a s tack  engine. Although n<; hydrogen 

enrichment Cat2 have been tzken -.*ith this  modified engine, the s a m e  t rends  of 

improved leannesd a r e  expected for ul tra- lean operation. Ii  the s a m e  improved 

performance is realized with hydrogen enricS!~lent as has been observed with  gas - 

oline, then the lea11 l imi t  l ines of Figure 5 will result.  

4. T e s t v e h i c l e  

a. Descript ion 

A complete c a r  was modiiied to opera te  on gasoline/llydrogen mixtures.  

This  vehicle used an experimental  induction sys tem and high-pressure  cyliilders 

I I I I 
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EFFECTIVE EQUIVALENCE RATIO - e; 

Fig.. 5 .  Mass flow r a t io  v s  effective equivalence ratio - 0;: 
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of hydrqen  gas mounted in the trunk, This vehicle was used initially to  demon- 

s t ra te  to the NASA the feasibility of the concept of adding gaseous hgdragen to  

the fuel-air mixture to redxce enlissiocs and increase furl cconorr.y. The 

vehicle used w a ~  a 1973 Chevrolet Impah  4-door sedac  quipped with a 350 -  

cubic-inch V-8  engine. 

This vehicle was tested with certain aexiliary e q u i p c n t  operating such as: 

power steering, power brakes, and ar, automatic t;-ansmission. 

Equipment not operated because of the cornplicatlons that w:wld have 

resulted to  3 feasibility dernonstrarion, o r  because ir  w a s  ?rot required, included 

rhe iollmving: . 
Evaporative cclrrtrols 

\-acuurn s ~ r k  a d - a c e  

Exhaust gas recirculation 

Air injection reactor 

Air conditioner/heaber 

A bottled-gas supply system consisting of three K - s i r r e  +attics was installei  

in the trunk and a prototype mixed Fatls induction system replaced the carburc- 

tion system supplied by the c r r  manufacturer. Ali eagineerinc test  instrxrnen- 

tation and associated power supplies were located on board the tes t  i - ch i c l e ,  

The tes t  vehicle was started by means of the ignition-key with some auxiliary 

manual procedures, However, all s t a r t  assirtan-e equipment was on-board and 

al l  s t a r t  operations were controlled from the front seat. 

6. Perfor-nanceSummary 

Early tes ts  indicated that th: driveahility, handling characteristics, and 

power response were very similar to a st*:.dard axtarnnbilc- Initiii t 1iss i r .n~ 

test results over the FDC were promisin;,. and a r e  sumn;arizc, is f c  dws: 



- -- 

'i'ests continued with added benefit. These additional tes ts  indicated that 

hydrocarbon emissions were reduced when the  amount of hydrogen was increased 

and, for a pi-ec hydrogen !?owrate, also sha rcd  a rninitrtrn a s  a iunction of 

e~u iva l ecce  ratio tree Figare 6).  This work i s  dircussed i n  greabr detai; in 

.Section 11. D, Task E. 

fhc amount of hydrogen a d d 4  t o    re vent misfire and the design reqblire- 

rncnts o i  a hydrogen generator art r onstraints on the amount of hydroga a t rut  

Parameters  

Hydrocarbons (gmlmi  r 

Carbon &lamoxide (gm/mi $ 

NOx igm/mir 

Fig. 6. HC emissions vs equivalence ratio 
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should be added t o  the gasoline-air mixture. When one considers the 

equivalence ratio and the amount of hydrogen requii::! for low NO emission 
X 

opcratioa, the HC emission yielded by Figure 6 is substantially higher than the 

1 s f 8  Federal Standard. 

This information led to the consideration of using an exhaust catalyst t o  

reduce the YC and CO emissions with the JPL hydrogen-enrichment concept csed 

to  simultaneously reduce the NOx emissions. 

Refinements to  and fine tuning of the bottled-gas tes t  vehicle enabled 

J P L  to collect test data which reflected the lowest probable emissions t h t  

covld be expected without internal enpifie modifications and without the use of 

an exhaust catalyst. Upon ccalpletion of those tests, an  exhaust catalyst was 

added to determine the effects- Data from 'k~&h se t s  of Federal Driving Cycle 

tests are summarized as follows: 

The total gaso!iac energy used (BTUs per mile) for the unmodified ca r  

as purchased was 12,f 00 for a miles /gallon equiva1er.t of 9.5. The bottled- 

1 Updated Bottled-Gas Car  
r 

Parune tc  rs I No Exhaust Catalyst With E*aust , EPA S * d a  1978 rd 

gas ca r  with o r  without the exhaust catalyst used 8,850 BTUs per  mile of hydro- 

gen and gas*rlinc for an equivalent 13 miles per gallon: an improvement of 3%. 

0.41 

3.4 

0.4 

Hydrocarbon (grnlrnl) 

Carbon Monoxide (grnlmi) 

NOx (gmlmi) 

5. Hydrogen Gene rator 

A general dcscrip:ion of the hydrogen generator was presented ill Section 

1.6 

I. B. I., Cverview. More specifically, the generation of rxolecular hydrogen 

14 

2-04 
I 

0.31 0.39 



from a hydrocarbon source is an industrial process in wide sse. The process 

used by 3 PL ;?; described in the following paragraphs, a d  is  similar to those 

employed industrially. There are, however, several major differences. A 

k e l  rich mixture of heated a i r  and mporized gasoline is fed to a reaction 

chamber where a small portion of the gasoline feed is  completely oxidized. 

T h i s  combustion supplies the energy necessary for the hydrogen formation. 

The remaining gasoline is  partially oxidized according to the chemical equation: 

In addition to the CO and Hz, there a r e  also E. and small amounts of COZ and 
L 

uiiburned hydrccarbons (principlly CH 1 in the product stream. The products 4 

exit :he reactor at  a tcntperaturc: of approximately 1ROO'F and are -,:r~ed 

through a heat exchanger u-3ere the a i r  and gasoline feeds a r e  heated. 

?h~s concept produced a maximum of 14- 5 5  hydrogen by volume with a 

chemical energy ratio of 67% and had the disadvantages of req- iring water as 

well as a large size. T ~ i z  thermal generator was approximately 40 in. long 

a& : 2 in. in diameter. 

The reaction chamber may be empty :thermal reformation) o r  may be filled 

with a nun-noble metal catalyst (catalytic reformation\. The initial JPL 

experience has shown several major admnLages for the use of a catalyst- I h e  

ca-alytic retormation has resulted in a higher hydrqen yield Ialthuugh there is 

no theoretical advantage\ a d  has proven much more amenable ta the suppression 

of soot formation. The thermal reformation has required, at  least at JPL, the 

use of water in the generator feed to prevent soot formation- 

Tests were conducted to determine the sensitivity of catalysts to putential 

poisoning sources such as leaded-gasoline. A 100-hour test yielded no adverse 



effects from the lcaded test gasoline fuel on a promising hydrogen generator 

catalyst. A compact catalytic hydrogen generator was designed and fabricated 

which yields 22% .lydrogen by volume. This represents an improvement of 

52% over &e older, thermal g =aerator designs. addition. the compf? 

catalytic generator requires 30 water feed and is only 10 inches long. ab-ut 

7 inches in diameter, and operates a t  a chemical energy ratio oi 80% (improwing 

the efficiency by 20% over the t,,erxnal design). 



SECTION II 

EXPERIMENTAL WORK 

A. OVERVIEW 

In this section of the report, the experimental work rill be described and 

the results  of these erpcrimcnts prercnfsi. The work sutetnent  tasks which 

will be discussed here  are Task A, Catalytic G e a e n t o r  Charrcteriutio:  

Task D, \?-8 Engine Tests, a d  Task E, CFR Engine Tests. 

'Ihrce distinct experimental t a s k s  were  c xnpletcd a s  part of tbe hydrogen- 

enrichmerrt cri t ical  evaluation. These were charat- t e r i u t i o n  of a hydrogen 

generator for both steady-state and startup operation, s iqle-cyl inder  Coopera- 

tive Fuel Research (CFRt  engine tests, multiple-cylinder errqinc t e s t s  with 

both gasoline only and gasoline/gas generator product mixtures as the fuel. 

Data from these three areas were used to  evaluate the state oi technological 

development t.f the hydrogen enrichment concep, t o  ass i s t  in the development 

of the computer simulations describzd in secz~r-n 111. C -  and 111. D. of this report, 

and to  evaluate the potential of the hydrogen enrichment concept which would 

result from further engine-related improvements. 

Pr ior  to beginning the effort described in this document, a significant 

amount of engine and vehicle test experience had been acquired using mixtures 

of gagoline a; d compressed bottled hydrctgen. This previous experience 

included operation with single-cylinder engines, multi -cylinder engines, and 

vehicles. All these results  confirmed the hypothesis upon which the hydrogen 

enrichment concept i s  based ti. e- , the use  of hyd rogen/gasoline mixtures 

allows ultra-lean operation with the attendant benefits of increased engine 

efficiency and decreased N O  emissiont, but left unanswered the questions 
X 

concerning engine operation and performance with hydrogen-gas generator 



products. Specifical:y, questions such as the '~llawing remained open: what 

is the effect of having combustibles, other tkan hydrogec, in the hydrogen gas 

enerator prcducts? W i l l  the hydrocarb.\n emission-, be acceptable? What i s  

the x-ariatioa of engine thermal efficiency =;th equivalence ratio' What i s  the 

effect  of hydrogen-gas-generator products on the engine hardware? 

The primary sbjectives of the hydrogen-gas generator work was to char- 

acterize the input-output relationship of a gas generator and to  determine the 

startup sequence and cold-start response of a generator. Although the state- 

ment oi work required only an analytical estimate of the generator s tar tup 

properties, experimental results are presented. The input-output relatioeships 

oi the generator, which was subsequently used in the V - 8  enginelgenerator 

tests, were completely determined and a r e  presented below. It should be noted 

that there  were tw3 generator designs involved. The generator used for the 

engine testing represents an ear ly  s t a r e  of design and was suitable only for 

steady-state operation. A NASA-spnzsored generator development activity, 

which was carried 33 i~ parallel a - ~ t h  tire wsrk described in this repart, resulted 

in a generator design with vastly improved thermal characteristics. This latter 

design was the Iource of the start-up data presented below. 

The objective of the multicylinder engine test  =-as to determine the 

engine performance, in te rms  of fuel consumption and exhaust emissions, for 

a range of engine RPII,  BMEP, and equivalence ratio. This was accomplished 

with three distinct engine confie.rations. Each of the configurations i s  described 
... 

in detai;. Tne f i rs t  was the stockv engine complete with two-plane manifold, 

4-barrel carburetc-r, exhaust gas recirculation (EGRi, pos itivc crankcase 

. . . . 
As explained in the detailed discussion of these tests, the a i r  injector 
reactor (AIR: was not used. 



ventiktsqn (PCY :, and stock ignition system/spark advance c u ~ v e .  An engine 

speed range from idle to  4000 RPh4 and an engine load range from zero ro 

wide-open throttle were covered. These tests  were performed, using the same 

test stand and inst rumentation employed for a11 the multic ylinder engine tests 

and thus provided a firm base for comparisons with the hydrogen-enrichment 

c once-$. 

For the second engine configuration, an Autotronics inductiar system w a s  

employed and the EGR was disconnected. The Autdronics system replaces the 

intake manifold, the carburetor, and ignition system. For this csnfiguration 

the spark advance was controlled manually and was, in general, set  for maxi- 

mum economy- This configuration was identical to  the one used for the com- 

bined engine/generator tests and thus provided a mearure of how much of the 

performance improvernenr resulted from the hardware changes. The engine 

conditions were covered as for the stock configuration. 

The third configuration, as noted above, was identical t o  the secol;d 

except for the addition of a manifold for distribution of the hydrogen gas genera- 

tor products. Data were gathered a t  three steady-state generator f l w r a t e s  

corresponding to 0.5, ' .O,  and 1. S lbm!hr of hydrogen. For  each generator 

flow, dabla were taken at  approxirnz.tely 30 combinations of R P M  and BMEP. 

This covered an R P X l  range from 1000 to 3000 and a BMEP range up to 70 psi. 

This test matrix was selected to provide a good definition of the level-road-load 

performance and includes the maximum power conditions required to  cover the 

EPA Federal driving cycle ITDC). At each operating condition the equivaleilce 

ratio and spark advance were chosen to yield maximum econonly. 

The single-cylinder CFR engine tests  were designed to aid in understanding 

the "hydrocarbon problem," which appears to  accompany lean combustion, and 



to deiarminr :he effect 2i hydroo_cs addition on critical comprersim ratio. 

n e  C :  !< rttrr prfnrmcd a t  the California Inettute oi Technology campus, 

which led to the hydrogen enrichrrrent cancept, did not include measurements of 

e~bausz  )zvi?:cwsarbms- T i e  multicylinder engine work which preceded the effort 

described in this document ihd~cated t h t  as equivalecce ratio n s  reduced i 

minimum hydrocarbon level was achieved. This minimum typicaliy occur red 

on the rich s:de of the maximum economy equivalence ratio, but the resuli was 

always clouded by the fact thai in a multicylinder engine there a r e  cylinder-to- 

cylinder variations in the equivalence ratia. This means that one or more 

cylinders reach a misfire condition well before the majority of the cylinders 

and hence excessive exhaust hydrocarbons may result even though the overall 

equivalence ratio is far removed from where misfire would be expected. There- 

fore, a ser ies  of CFR engine tests  were performed to  examine this question but 

without the complications of the multiple cylinders. Complete sets  of exhaust 

emission measurements were made as well a s  measurements of engine thermal 

efficiency. The results of these tests  a r e  presented in S e c t i ~ n  11. D. 2. 

It had been postulated that the use of hydrogen enrichment would increase 

an engine's critical compression ratio (i. e., -ihe compression ratio a t  which 

"knock" occurs). A second ser ies  oi CFR tests were performed to check this 

postulate. The results of these tests a r e  also presented in Sectian 11. D. 3. 

B. CATALYTIC HYDROGEN GENERATOR CHARACTERIZATION/ 
STARTUP TESTS (EPA TASK A) 

1. Introduction 

The JPL zpproach to improving the efficiency of an internal combustion 

engine, while simultaneo-ssly reducing exhaust emissions, i s  based on operating 

the engine in an ultralean mode a s  a result of the adZition of gaseous hvdroeen to 

the fuel stream. The source of hydrogen chosen to meet this requirement is  



one that can convert the conventional gasoline fuel, already onboard the -.chicle, 

to hydrogen on demand. This eliminates the requirements for storwe of gaseous 

hydrogen cr other hydrogen convertible materials. 

There a r e  tw6 basic processes which have been developed for the industrial 

productim of hydrogen from hydrocarbons. These a r e  steam teforming aad 

partial oxidation. The steam rczorming process consists of a reactioa d a 

hydrocarban, such a s  methane shown below, with steam to produce carbon 

moacxide and hydr agen: 

Kcal 
CH4 T 3.4 I, i r 280- - CG - 3H2 

~ N A  mo e 

The reaction is highly endotbormic and requires an  external source of energy. 

The partial oxidacon arocess mag bt visualized a s  a two-skp reaction 

process in which a portion of the fael i s  oxid;;.ed to ?rotride the energy necessary 

for the reforming process. The first  step is: 

Kcal C H 4 +  OZ - C 0 2  + H20 7 1300-- 
g m  n.ole 

This i s  then foll~wed by the process of Equation 1. 

The partial oxidation procrys *as chosen for :he JPL automotive applica- 

tion for the following reasons: 

Part ial  oxidation provid2s a simplified system design by 

elimination of the external water and heat supply required 

for steam reforn~inq. 

8 PotentizXy better tr-ansicnt resoonse characteristics since there a re  

no heat-trzcsfer surfaces involved. 

There is little or  no soot prod~ction dependence upon type of iuel. 

The reduced propensity for soot production allows the use of liquid 

fuels from naphthas to heavy iuel oils; whereas, steam reforming 

feedstocks are limited to naphi;ha or lighter hydrocarbons. 

2 1 



Both types o i  reactions may be caklyzed with either noble or  nm-noble metal 

catalysts. The use of a catalyst allows a closer approach ro equilibrium hydre- 

gem yields. The relatively high catalyst reacti c~n temperature (1 000 ' C in :he 

partial oxidation process is considered t~ be the source oi lead and sulphur 

tolerance at concentration levels of 200 and 300 ppm, respectively (Refs. 1 

8nd 2,. 

Initial feasibility demonstrations of the hydrogen injection concept used 

pure, gase-sr hydrogen. Since the product resulting from the partial oxidation 

reforming of gasolinr c ontains species other than hydrogen, the engrrkc per- 

forrmnce with generator poduc t s  was somewhat unknown. Thereiore, it was 

agreed that EPA test  activities would employ a gas generator. The character- 

ization of this gas generator i s  described below. 

It should be noted that the gas generator used for the engine testing was 

th? first catalytic generator attempted at  JPL. The hydrogen yield was excel- 

lent: nearly equilibrium concentrations. However, a s  noted below, the physical 

size of the generator i s  mucs larger than necessary. Although no generator 

development was done as part of the LIyA effort, a parallel, NASA-funded 

development has been carried out. A considerable redxction in size was accom- 

plished, while still producing the same generator output. The transient char- 

acteristics of this significantly smaller NASA-funded generator a r e  a'lso 

described below, in lieu of the analysis called for in th;. statement of work. 

2. General Characterization Tests 

a. Test Objectives 

The objective of the characterization tests of the catalytic generator was 

to determine the generator - product composition over a range of generator fuel 

flowrates, reaction chamber pressures and equivalence ratios. 



b. Gas Generator Hardware Description 

The hydrogen generator is shown in Figure 7. A schematic of the 

generator i s  a lso included in Figure 8. The principal elements oi the generator 

a r e  a burner section, a catalytic reaction chamber, and a heat exchanger. 

During steady-state operation, the burner section ensures completion c ~ f  the 

gaseous fuel-air mixing by means of a hollow cone, swirl  injector. The burner 

section also includes a second set  of fuel and a i r  inlet fittings (see Figure 7 1  for 

generator startup with ambient temperature a i r  and liquid gasoline. This 

particular mode of s tar tap was not used during the work described in  this 

report. A s  described later, generator startup was zlways accomplished by 

pre-heating the catalyst bed. 

The burner i s  designed to  permit two modes of operation, one for startup 

with ambient temperature a i r  injection through the side fitting and liquid fuel 

atomization through the pressure  atomizer. The second is the normal tes t  

mode with a mixture of vapcrized-fuel and preheated a i r  k i n g  injected via the 

swir l  chanrber. This c h a m k t  produces a short, t~ighly-vortical-flow Surning 

pattern between the burner and catalyst chamber. 

The reaction chamber shown in Figure 7 serves  a s  the structural  and 

product containment vessel. It was fabricated from a 26.0-inch long section 

of 8-inch, schedule 5, Hastalloy-C pipe. 'lne inlet flange, with 3-inch diameter 

burner aperture, is bolted to  the chamber and the exit flange with I .  5-inch 

exit flow aperture is welded to  the chamber. The operating temperature of the 

chamber wall is reduced to  1000 " F from the catalyst bed operating tempera- 

tu re  of 1850 ' F by the addition of the ceramic liner shown in Figure 7. The 

liner i s  a composite of tvro ceramic cylinders. The inner cylinder i s  high 

purity alumina purchased from the Coors Co. with a 5.5-inch internal diameter 

by 24 inch length with 114 inch wall thickness. The outer cylinder was cast in 
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place wing  a ceramic  fiber insulatiar consisting of 50% each alumina a d  

silica, and haa a wall thickmess d avproximately 1 inch. 

A total of 13.5 lkn of catalyst was used. The catalyst k d  container i s  a 

welded stainless-steel unit @ype 316, 0.06 inch -11 thickness) vlth perfarated 

e d  plater and is shown r i t h  a wrap of asbestos, The chamber c a i n e d  4 Ibm 

cf 15% Pickel catalyst pellets (5/8 inch diameter x 3/8 inch lory) and 6 Ibrn of 

25% nickel catalyst pellets j l /8 inch diameter x 111 inch long), An additional 

3.5 lhn of 11% nickel catalyst pellets (1 12 inch diameter x I /t inch loag) were 

isstalled ktPeea the catalyst bed and burner, extending to s i th in  1 inch of the 

burner face in a s imilar  codainer not shown. The cataiystr were ohhined from 

thc Chemtrcm Corporatiom and are commercial grades ($3, 00 per I b n l  of hydro- 

cartxm steam r e f o r m i q  catalyst. 

The heat exchanger is shown schematically in Figure 8, The heat exclanger 

was used to cool the generator p r o d ~ c t s  and t o  simultaneausly preheat the a i r -  

g u c l i n e  mixture sapplied to the generator, This was accornpiished in a 12-foot- 

long triple-concentric tube. Heat exchange occurs between the generator pro- 

duct gas  and ambient temperature combustion a i r  being supplied Lo the burner. 

The cooling air flows through the center 1 / 2  inch jiarneter tube and returns in 

the o u k r  anrrulus, between the 1-1 / 2  and 2-inch dial-eter tubes. The generator 

p r h i t  is cooled in one russ through the Inner annulus, between the ! 12- and 

I -1 /2 -inch diameter kbes .  

c. Tes t  Description 

Previous experience with the catalytic generator had identified two opera- 

tional constraints. These were: (1) the temperature of the fuel/air mixture 

a t  the inlet of the penerator should be maintained above -40G°F; direct  injection 

of the liouid fuel into the burner section results  in degraded oerformance of the 

catalyst; The degradation i s  presumed to be the resul t  of carbon accumulation 



oa thc catalyst; a d  (2) the maximum catalyst temperottlrc should k n~aiahined 

klw -2WO'F. At a btrnperatnre of 2OSO.F *re n s  a -0-order-of-myoitudt 

increase in che sod (mixture d carboa a d  partially oxidized lzydrocarboru) 

productim rate, This is pre.rm& to be the result of thermal cracking of the 

methane in the product stream, 

An electrical air heater shorn schc=tically in Figure 8 was used during 

startup to meet the first constraint of airlhzcl preheat (the cold-start r w i r e -  

me- were investigated under N-2% s~=sorship).  After startup, the heat 

exchanger t b .  necessary air preheat and tbe electrical heater -s de- 

eacrgized. Exploratory bcsb -with the fuel heater found that it n s  a& meeded, 

Injection of the liquid gasoline into the pre-heated air stream -s sulficient to  

insure complete vaporizatiam of the gasoline, The s e c d  constraint v a s  met 

by maiataining the h e l l a i r  equivalence ratio of the generator a t  2.8 0.1. For 

valuer of the ratio above 2.9, soot is formed. At cquivrlence ratios below 

2.7, the hydrogen production rate i t  reduced with elevated catalyst temperatures, 

These effects --.re shown in Figure 9. 

The characterization cests ot the generator consisted of a ser ies  of forty 

operating conditions. Three values of reaction chamber pressure of 2, 8, and 

12 psig a t  each of three fuel flowrates were incl-ded. All these tests a c r e  

conducted to verify performance repeatability a s  wel l  as to determine per - 
formance variation as a function of equivalen.-e ratio. At each of the operating 

conditions, after steady-state operating temperatures and product cmposition 

had been established, a group of 35 opera t iq  data parameters were reco-ded 

with a digital data hcquisition ~ y s t c m  on magnetic tape for post-test computer 

d;a reduction and analysis. Each data se t  consisted of fourteen temperature 

measurements, ten pressure measurements which included instrumentation of 

the sharp-edge orifice type ai r  and fuel flowmeters, and four generator product 



Fig. 9. Theoretical equilibrium, adiabatic combustion 
(CHI. gL)-water-air at 80 - F, 44 psia 



compositiun analyses for dry mole fracticm of hydrogen, carbon dioxide, carboa 

matoxide, and unconverted hydrocarboas (CHI through C6H,,l. A gas chroma- 

tograph was used to provide backup hydrocarbaa analysis as veU as verification 

of the canposition of the uncolvcrted hpdrocarbont, In general. thc hydrocar- 

boa analysis showed methane, - ethylene and oalv trace amounts of h~ar- 

ier hydrocarbans, 

<)nt other operating characteristic was dctcrmined far the generator- 

This was the s& production rate over the opcratiag range. The primary means 

of determinine so& iontent of tbe generator p rducr  was to  pass the generator 

product flow through a 1 0-micron filter for mer ids  up t o  30  minutes, using thr 

filter-elerneat weight increase aiter oven drying as a measure of the soe t  

deposition- A second device was built and installed to provide cor?tinuous 

optical opacity n#asurements oi  the paduct  stream, utilizing a variable 

intensity lamp a d  photo-multipiler. This device =L_S used to indicate qualita- 

tive carbon ccantcnt varitt iors =s itb the filter measurements k i n g  used to 

quantify these measur;ments. 

d- Test Resuits 

The generator was operated a t  an equivalence ratio of 2.83 *Q- 1 over a 

fa*! itowrate range from 3-  7 to 16. L Ibm !hr with a corresponding generator 

product hydrogen flowrare of 0.4 to 2- l lbw../hr. n e  faass yield of hydrogen 

was found to be relatively insensitive to reaction chamber pressures over the 

test range 5f 2 to 12 psig. A* the m-imum fuel f lwrate ,  a 5% hjdrogen yield 

increase e s  observed for a pressure increase from 4 to 12 psig. Figure 10 

shows this variation of hydrogen volume percent in the generator product with 

pressure. A 10% hydrogen concentration increase from 20% to 2 2 5  is shown 

for the flowrate increase from 3 . 7  to 6.2 lbm/hr of fuel. The yield increases 



Fig. 10- Hydrogen mole fraction (dry) variation with cquinlence 
ratio and rezctim chamber pressure 

wl:h flowrate because of a catalyst temyieraturr. increase from 1700 to 1800 F. 

This, in tu.n, results in increased catalyst activity- This yield increase 

corresponds to a performance increase from 0- 89 to 3- 97 of the theoretical 

value of hydrogen volume percent concentrations in the generator product. The 

hydrogen and carbon monoxide concentration data as a function of air to fuel 

ratio, shown in Figure 11, agree closely with the theoretical curves. 

Figure 12 shows a similar comparison f.$r water, carbon dioxide, and 

methane equivalent in the genzrator product. The deviation between measured 

and theoretical methane ccncentration reflects the source of the sub-equil~brium 



Fig. 11. Comparison of measured and theoretical mole fraction 
concentratiom for Hz and CO 

hydrogen yield. It was fouzld in preliminary tests that the amount of unconverted 

hydrocarbons could be reduced to  the theoretical value with an  attendant increase 

in hydrogen yield if the catalyst was operated a t  a temperature of LOSO ' F. This 

operating condition has been avoided in subsequent tests since the methane 

conversion to  hydrogen apparently takes place through a mechanism of thermal 

cracking as opposed to steam reforxmng. The thermal cracking is evidenced 

by a factor of 50 increase in soot in the generator product. This data is shown 

in Figure 13 where soot content as a fractcon of fuel flow is plotted a s  a 

function of catalyst temperature. 

The theoretical curves shown in Figures 1 1  and 12 were obtained from 

the computer program of Ref. 3. JP-5 (C8H~5. 35 1 was used a s  the fuel in 
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I Q S L T  OF Y L T n U E  
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Fig- 13. XIeasured soot content in generator product 

those calculations since the hydrogen t o  carbon fuel rat io i s  most s imilar  to  

the fuel (Indolene-clear) used in the generator tests. The data presented io 

Figure 10 a r e  basically raw data f rom the hydrogen analyzer on a d r y  basis 

since the analyzer requires sample Crying with a water vapor trap. The same 

data a r e  shown in Figure I I where the hydrqgen concentrations a r e  slightly 

redwed as a result of including an  estimate nf the water vapor content in the 

generator product. The water vapor est imate i s  made in the computer data 

reduction program in an  iterat've calculation which consists of (1 ) picking a 

value of -moisture content, ( 2 )  converting the measured values of mole fraction 

to a wet basis, (3 )  calculating the output mass  flowrates for CO, COZ, CH4, 

Hz, NL' and H 0, and (4) ca1culi;:ing a hydrogen mass  baiance. This procedure 2 



is repeated until the hydrogen tuhnce  (input minus output) is equal to  zero. 

Carbon, oxygen, a d  nitrogen have shown agreement t c  within 1 for oxygen 

and -a t r~yen ,  and to about 3% for carbon, The soot production measurements, 

shown in FI gure 1 3, have characterized this generator a s  producing 0,002 lbm 

of carboa per lbm of fuel, This accounts for 213 of the carbon balance error .  

During the generator development tests, an  operating condition was 

noted in which there aas no apparent flame in the void volume upstream of 

the czl-talyst bed. This " flamelr ss" catalytic -oxidation is a desirable condition 

and was employed in a11 subsequent generatorlengine tests. The operating 

procedures which result in *'-eless" operation also preclude catalyst 

temperatures abcve 2000' F- The canclusion that there is no flame is based 

on observations of the temperature of the gasolinelair mixture in the void (see 

Figure 8 for location of TC-561. At az equivalence ratio of 2. S and in a chamoer 

without a catalyst, combustion was visually observed at  the TC-56 lozation. 

Under these conditions, the temperature indicated by TC-56 ranged between 

1800 and 2200' F. With the addition of a catalyst and using the proper startup 

technique, the TC-56 temperature ranged between 400 and 1600 ' F. This low 

void temperature occurs with high yields of hydrogen and catalyst bed tempera- 

tures of -1 800' F. The temperature a t  TC-56 is apparently a strong fi~nction 

of the distance between the swirl tube and catalyst bed. This dimension has 

been varied from 1 to 18 inches. It i s  concluded that the transition from the 

flameless mode to tbe high carbon yield mode, where the catalyst temperature 

is 2100°F and the TC-56 temperature is 2+00° F, is controlled by a combination 

of rich flammability limit dependence on temperature and flame instability. 



The computer data analysis output for a typZcal run c o d i t i ~ n  i s  shown in 

Figure 14. The first four groups of printout l is ts  the operating temperatures, 

pressures,  input flowrates, and flow denzities- The next two lines of printout 

show the wet and d r y  mole fraction c~ncent ra t ions  in the generator product. 

Usicg the 'water vapor esiimate f rom the hydrogen balance calculation, the 

bottom line of printout shows the mass  balance e r r o r s  for the product flowrates 

shqwn in the line above. A se t  of caiculation results  a r e  shown in Table I for 

the same test  condition. For  this calculation, an  iterative hand calculation 

was made in which a l l  four species mass-balance e r r o r s  equal zero. Tke 

mole fraction and output flowrates in Figures 14 and Table 1 are seen t o  agree  

closely. 

Figur s 1 5 and 1 6 show the generator product m a s s  composition variation 

as a function of input fcel flowrate. The lines represent the locus of operating 

conditions a t  an  equivalence ratio of 2 .  8. This equivalence ratio was used for 

a l l  subsequent engine/generator tests. The prdzlct  variation with input fuel- 

flow rate is very nearly linear, over the range ~f fuel flowrates tested, and 

the variation in composition of the combustibles is small  for a range of 4 f rom 

2.4 to  3. 1. 

3. Startup Tests  

a. Background 

In parallel with the enginelgenerator tes ts  described in Task D, further 

develqment  of the catalytic hydrogen-gas generator occurred under NASA spon- 

sorship. The improved generator i s  significantly smaller than the one described 

above and consequently h s s  superior thermal transient properties. in lieu of 

the analysis called for in the work statement, the startup tes ts  conducted with 

this generator a r e  described below. 





Table 1. Results of calculation for operating conditions 
with exact input/output mass balances for 
carbon, oxygen, nitrogen, and hydrogen 

INPU T CONDITIONS I 
AIR FLOWRATE, lbmlhr 
FUEL FLOW. lbmlhr 

AIRIFUEL RATIO 
EQUIVALENCE RATIO 

GENERF.TOR PRESSURE, psig 1 4  
CATALYST TEMPERATURE, F 1774 

1 OUTPUT CONDITIONS 

MEAN hi OLE CG' LAR 
WEIGHT 

MOLE 
FRACTION 

MASS 
FRACTION 

MASb I 
OU TPU r 1 

EXIT PRESSURE, psig 1.3 

EXIT TEMPEKATLIR.(.Z, ' E- 1527.0 

GENERATOR EFFICIENCY 0. 785 

EFFICIENCY ITHEOSETICAL EFFICIEKCY 0.837 



INPUT FUEL FLONRATE, Ibm/b 

Fig. 15. Generator product combust ible  - component f lowrates:  
CO, CH4, and H2 as a function o f  fuel  flow 
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Fig. 1 6 .  Gene rator product diluent - component Ilowrates : 
NZ' HZO, and C02  as a function of fuel flow 



A s  noted in the description of the generrLor characterization above, the 

maximu-  -rrcductlan of hydrogen, without s o d  production, reqcires a homo- 

gene-, single-phase mixture of fucl 4 a i r  and a minimum catalyst tempera- 

ture of 1400 * F. A startup process w a s  evolved which r-auld allow a smooth, 

reasonably rapid t r a ~ s i t i o n  from an ambient temperature catalyst bed and liquid 

fucl t - B  the cohdltions necessary for maximum &ydrogen yield noted above. The 

three-aep process consists of: 

1 t Operation a t  an a i r l f i~e l  ratio cf 9- O for -30 sec- During this 

step. combustim occurs upstream of tne catalyst bed- T)-.Is 

step is primarily one of '-activatingw the catalyst bed. 

2 )  Operation a t  an urtermediate air! fuel ratio of 6- 6 for - 30 sec- 

This step continues the catalyst activation, but a t  a reduced a i r /  

fuel ratio s o  as to preclude catalyst overheating which may result 

from prolonged operatioc a t  an airJfuel ratio of 9. 

31 The final step is a richening of the airlfuel ratio to 5. Z (4 = 2.83. 

This is  the desired operating conditian. 

further d* tails or :hi- startup process aa-e given below. This further dis- 

rassion i s  keyed to Figure iT, which i s  a schematic of the generator uses for 

the startup development. 

During step ope of the s t a r t ~ p ,  liquid gasoline flows to the air/ftlel mixer 

and i s  igaited and burned in the startup reactirn chamber. TSe air for step 1 

is eirected through the startup \eat exchanger. Step 1 i s  considered complete 

when the temperature of the a i r  leaving the star-up heat e r c k z g e r  is -500' F 

(i. e., high enough to ins- e vaporization of the gasoline) and the catalyst itself 

is  at a minimum temperature of 350 ' F. This i s  hot enoag5 to allow mixture 
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richening ta aa AIF = 6.6- Operation time ar m AIF = 9 must be minimized so 

as to prevent ovezheatiag the catalyst. 

At the ead of step 1 the fuel a d  air  a r e  re-routed, as shown in Figure 17, 

thrclugh the steady-stake heat exchanger and the A/F  ratio i s  reduced to 6.6- 

Step two results in at lead a partial shift of the reforming process from thermal 

to catalytic atd continues until the catalyst bed reaches a temperature of 

- 1400 'F. That temperaturt is high enough so  that the catalyst i s  sufficiently 

activated to sustain steady-state operation at an A/F = 5. 2. Mixture richening 

to an A/F = 5.2 completely extinguishes the &me in the startup reaction 

cburber. but the reactions continue, "flamelessly" on the catalyst- 

b. Test Hard-re Description 

The generator hardware used for the startup tests i s  shown in Figure 18. 

As shown there, two coiled tube type heat exchangers were us ed. The tube 

material was 321 SS, with an OC of 0- 375" a d  a wall thickness of 0. C35". 

There a r e  30 in. of tube length in the startup heat exchanger and 57 in. of 

length in the steady state unit. The catalyst shown in the 3- 5 in- dia. by 

4.5 in. long wire mesh ccmtainer i s  1.5 lbm of 118 in. dia. x 1 /8 in. long 

cylindrical alumina pellets containing 10% by weig5t molybedenurn a d  2 - 4 5  

cobalt. This was purchased from the Harshaw Chemical Co. as  catalyst type 

(WOZT. The burner housing provided the volume necc: sary for the startup reac- 

tion and served as  the actachrnent point for the fuel/air feed lines and the startup 

heat-exchanger lines. The chamber i s  13 in. long with a 4 in. ID and is lined 

with a 1// in. layer of alumina. When assembled, the reaction chamber is 3-1 12 

in, in diameter with 2-1 12 in. between the exit of the fuel/air mixer and the 

start-up heat exchanger. Tbore is  a 114 in. gap between each of the two heat 

exchangers and the catalyst bed. A conventional automobile spark plug is shown 





installed in the chamber wall. It is used to initiate cornbuation, and once con>- 

busticn has been established the plug i s  no longer energized. 

c Test Results 

Figure 19 summarizes the temperatures variations during the three-step 

startup sequence. The temperatures were measured by the thermocouples 

located as shown in Figures 17 and 18. The temperature in the void upstream 

of .he catalyst bed, TC 56, indicates the presence of the flame d u r i n ~  operation 

at  an A/F = 9.0. During this same period, the air preheat temperature, TC 59, 

reaches 490 F. b . e d i a t e l y  after the air l fuel  ratio is e u r i c h d  to 6.6, the 

void temperature (TC 56) begins a rapid decrease. During the second step 

.>peration, the catalyst bed temperature (TC 52) r ises  a t  an increasing rate- 

At the end of this second step, the a i r  preheat temperzture (TC 59) and void 

temperature (TC 56) a r e  nearly equal, and the catalyst bed temperature is  well 

above the catalyst activation temwrature  of 1400 ' F. The product gas tempera- 

ture iTC 51) rises continuously during the startap process and reaches its 

equilibrium value of -1 200 F after approximately ZOO seconds. 

Continuous analysis of the generator products during startup was made 

for concentrations of four species. A thermal conductivity analyzer was used 

for hydrogen, nondispersive infrared aralyzers  for carbon di-zide and carbon 

monoxide, and a flame ionization analyzer was used to  measure unconverted 

h-ydrocarbon concentrations. As in previous generator tests, product analyses 

with a gas chromatograph indica td  the composition of the unconverted species 

was generally 90% methane, 10% ethylene and only t r a r e  quantities of higher 

molecular weight hydrocarbons. 

The analog output from the four gas analyzers as well as all other test 

data (temperatures, pressures, and flowrates) are recorded on printed paper 
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and magnetic tape. The magneiic tape i s  used for post-test computer data 

analysis. The gas analysis data, as well a s  key temperatures, a r e  a lso recorded 

with c o n t i r u ~ ~ s  recording multi-3le-pen recorders.  The response lag of the 

analysis system, c a s i d e r i n g  both the sample transit  time from generator-to- 

analyzer and the analyzer equilibration time, has  been subtracted from the gas 

analysis data in Figures 23  and 2 1. By operating the generator at steady-state 

conditions and alternately sampling the generator product an-! injecting 100C; 

nitrogen into the sample line, the response characterist ics of the analysis 

system was determined, The sample transit  time is 20 seconds, and the 

.tnzlyzer equilibration period i.s 35 seconds for the hydrogen and carbon 

monoxide. 

Figures 20 and 21 show Hz. CO, CO and CH compositions a s  functions 2 4 

of time for t)le startup tes t  shown in Figure 10. The dashed lines represent 

the tfieoretical equilibrium composition assuming instantaneous response to 

the s tep changes in air ' he1  ratio, Forty-four seconds a r e  required to reach 

the equilibrium level a t  A/F - 9. 1, with an additional 20 seconds to reach the 

A/F - 6 leve.., anri 10 seconds more to reach the steady-state leve!. This 

assumes the a rymptotic approach to equilibrium shown i s  not a generator char - 

acterist ic but a result  of not ~crr.~!etely subtracting the analyzer response char- 

acterist ic.  The Cotted line shown i s  considered to be the actual hydrogen 

response. Ear l ier  teats ha.;e shown the generator response to be instananeous 

for  fuel flow trzd air-to-fsel ratio changes of 25% a s  long 2s the catalyst tempera- 

ture is 1800'F or  higher. Similar instantaneous response was obtained when 

doubling the air and fuel flowrates a t  a corrstant air/fuel  ratio. 
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Fig. 21. Generator product: CO; and unconverted IiC 
volume con-entrations during start -up 



Figure 21 shows the carbon dioxide and unconverted hydrocarbon (as 

methane equivalent concent rations normalized by their respective steady- state 

concentrations. This shows the average methane concentration to be approxi- 

mately 2 . 5  times the steady-state value during the f i rs t  50 seconds of operation. 

This i s  the result iti the relative ease  o i  thermally decomposing gasoline to  

methane (as compared t o  cracking for hydrogen) when the average reaction 

temperature i s  less  than 1000' F. This is  a fortituous condition which ra i ses  

the heating value of the generator product t o  a level, after  only 20 seconds, 

sufficient to  s ta r t  the engine; whereas, the heating value of the hydrogen plus 

carbon monoxide does not reach the same value until 55 seconds af ter  generator 

startup. 

Using the mole fraztion composition data of Figures LO and 21, the mass  

flowrates, m. of the four species were  calculated from the following equation: 
1, 

n. x m w .  x t m  + m-\ 

where 

t h 
r?. = mole fraction (wet) of i species 

1 

(Hz, CO, COL. CH4, N2, HZO; 

mw. = moiecuhr  weight of ith species 
1 

m = input a i r  flowrate 
a 

m, = input fuel flowrate 
A - 

mw = mixture molecular weight 



This calculation requires nitrogen and wat l r  mole fraction as inpat quantities. 

The nitrogen concentration is, of course, directly calculable from the input a l r  

flowrate. The water vapor content in the generator product i s  unknown. 

An iterative type calculation i s  used to  estimate the water-tapor content 

which balances the atomic oxygen mass balance. Carbon and hydrogen mass 

balance calculations for the p r o k c t  compusition during the last 20 seconds of 

the startup show the compositional data to be consistent. Carbon and hydrogen 

mass balance differences during the first  45 seconds of generator operation indi - 
cate that the concentrations s h w n  in Figs. 20 and 21 for hydrogen and methane 

underestimate the actual generator outputs. Since this will provide a conserva- 

tive estimate of generator startup performance, the higher m e t h n e  and hydrogen 

concentrations that are calculated using mass balance constraints a r e  not shown 

here. Future tes t s  will be required to verify the apparent undermeasurement 

of hydrogen and methane. 

The mass  flowrates of Hz, CO2, CO and CH4 calculated from Figures 20 

and 21 composition &-'La .;re shown in Figure 22. The mass  flowrates of the 

combustible species (Hz, 20, and CHq\, were used to  calculate the heating value 

of the gecerator product during the generator stiirtup. These valiles a r e  shown 

in Figure 23, normalized .>y the lower he?*ing vslue cf the gasoline ( 5  Ibmlhr) 

required t c  idle the V-8 engine of Xask D. When this parameter, termed heat- 

ing value f r a c t i ~ n  (HVF) becomes snity, the engine should start  on generator 

product alone. The sngine/generatcr combination of Task D has already demon- 

strated an engine s tar t  on a steady-state flow of generator products contailling 

0. 5 lbmlhr of hydrogen. This corresponds to an HVF = 1.33. 

The calculated flowrates for carbon monoxide, carbon dioxide, methane, 

and hydr~gen  species a r e  shown in Figure 22. The total generator exit 
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Fig. 22. Generator product flov.,rates of: Hz, CO, COZ, 
and CH4 during start-up 



g. 23. Generator thermal efficiency and generator product 
heating value variation during start-ur, 
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flowrates, iccluding nitrogen and water  vapor f lowrates,  were  found t o  b e  12, 

I ,  and 1% l e s s  than the a i r  plus fuel input flowr t e  30, 50, and 80 s e c s  after 

startup, respecti\-eiy. The e r r o r  in ccmpositian i s  attributed t o  i n c ~ m p l e t e  

compensation for the  sl)w response of the ,as analyzers .  The response :har- 

ac ter is t ic  consists  of a 20-second sample trans:t period plus a n  additional 

35 seconds f o r  full hydrogen analyzer  r e s p c n s t  and 20 seconds for the CO, GO2, 

and C'ri4 analyzers.  A molecular  species  m a s s  balance can be made t,) es t imate  

the prcduct composition f rom t ime z e r o  a t  s tar tup,  but this requi res  the zssunlp-  

tions (1) that there  i s  a n  eq~.i l ibrium concentration of water  vapor of 12% and 

no f ree  oxygen, and (21 t he re  is no m a s s  holdup of ei ther  solid cai-bon o r  



unreacLed hvdroca rhas  wi.ic;. condense on the cold catalyst o r  cold chamber 

wal!+ during the first  20 seconds of operation. With these uncertainties, it was 

concidered prudent t o  use the gas analyzer-induced-composition even tht~ugh in 

e r r o r  by approximately ti;? over the startup cycle since the indicated cornpo- 

sition i s  a n  underestinute of the actual generator output. 

The variation of generator thermal efficiency during generator startup is 

a l so  shown in Figur-z 23- The quantities HVF and q s h m  in Figure 23  arc 

defined as follows: 

H V F  = generator product he+,:w:g value traction 

q = generator ~herxnal efficizncv 

HVF x me 

where: 

m 
t h = mass flowrate of i species (If2, CO, CH4) 

I 

:h hi = lower heac of combustion of 1 species 

m = gasoiine flowrate a t  engire idle 
e 
0 

h = gasoline lower heat of combustion 
g 

r k  = gasoline flowrate t o  gznerator 
g 

The heating vzlue fraction i s  shown in Figure 23 to be 2.03 by t!te end of 

generator startup, indicating the engine speed a t  the end of MCaE 2 would be 

ap-roxirnately double normal engine idle speed. Figure i 4  shows the air/fuel  



taiio and fi,-1 flowrate n r i r t i oa  ~ e c e s s a r y  during startup to achiev? coruhd. 

engine :'I* speed 6. e., achieve a corutaat value of HVF = 1.0) during g e m r a w  

startup. 

4, Conclusians and Summary 

a ,  A catalytic generator with 13.5 ;Zm of catalyst has demonstrata3 

experimen*al hydrogen yield fractions of 0.89 to 0.98 of theoretical 

yield. Hydrogen output f l m a t e s  of 0.4 to 2.1 lbmfhr of hydrogen 

were obtained, No water or steam was required for these results, 

b) Tbe increase in hydrogen yield fracticm with increasicg fuelfair 

flowrate ini'cated the generator vol-n..c li. e- , the generator con- 

taining 13.5 1br.- of catalyst) a d l o r  the c;r=alyst volume is k r g e r  

than needed to obtain hydrogen outpats of up to 2 Ibmfhr. 

c 8 High efficiency 0pera~i.m was obtained over a wide range of catalyst 

temperature, 1500 to 1930 ' F, thus providing a satisfactory safety 

margin- 

d )  The relatively I ~ J P  reacti - temperature ccmbined with the use of 

ceramic liner materiais prodaced reaction chamber temperatures 

of i 000 ' F or Iecc, thus ntsking the use of inexpensive strcctural 

materials possibk. 

? : f he controllability of the flameless catalytic oxidation process in 

the generator was established. This process is  requisite for (1 1 

high-yielti e f i  ciency, (2) elimination of water 2 z  steam injection, 

and (3) low solid-carbon production rates of 0.002 !bm of carbon 

per pound of uel. 

f )  Equilibrium hydrogen output was achieved in -60 seconds. 

gl The energy content of the generator output stream was sufficient 

-20 seconds after generator startup to actieve engine start. 



C. MULTI-CYLIXDER ENGBIE TESTS (EPA TASK D) 

1. Introduction 

The primary objectives of the task were  to  assess quantitatively the 

state-of-the-art cf the hydrogen enrichment concept and t o  provide a n  experi- 

mental base from which t o  estimate the potential of the concept. The work 

described in the report was undertaken ear ly  in the evolution of the hydrogen 

enrichment. In particular, it was recognized that bath the hydrogen genz-at?r 

and IC engines, as r c k t e d  to  ultra-lean operation, were not ma tu rdy  developed- 

h'evertheless, previous experience using mixtures of pure hydrogen a d  

gasoline %ad shown a d r a m t i c  decrease in NOx emissions and a significant 

increase in engine thermal efficiency- However, since the same experience 

had been acquired with bottled, compressed hydrogen and nct with the prodects 

from a hydrogen gas generator, there  were s t i l l  unanswered questions con- 

cerning hydrogen enrichmen:. In particular, ( I t  the effect of non-hydrogen 

cortstituents, both combustible and non-combustible, in the generator gas 

stre-; (2 1 the effect of the use of a gas generator on overall brake specific 

fuel consump:im (BSFC): and 13) the effect of the ase of generator p r d u c t s  on 

kydrocarban c-d carbon monoxide exhaust emissions, were all unknowns. 

Three tii-E;.: . t engine configurations were used. These were: (11 a stock 

engine, conlpiete =ith car3*.llctn-, two-plane intake manifold, inductive ignition 

s-rstsm, exhaust gas recircuiaiion (ZGR) and operated with only gz-soline as the 

:-el; $1 the same engine block a s  (1) but equipped =ith a single s lane intake 

manifoid, an Autotror.,:~ gaooliae delivery system., and a multiple-strike, 

capacitive discharge ignition system and operated with only gasoline as the fuel; 

and (3) the same confib;ration as @) but further modified to allow distribution oi 

the hydrogen-z-ner~tor products and operated with mixtures of gasoline and 



generator prcducts as the fuel. The details of these engine configurations a r e  

given below, 

The rationale for testing the three engine configurations a r e  as follows. 

Configuration ( I )  duplicated as nearly as possible the engine as used on a vehicie. 

Tests of this  configuration represented a baseline condition from which a l l  other 

test data were compared. Configurations ( 2 )  and ( 3  t were ide.rtica1 except that 

generator products were not used in tests of the (42) configuration- Tests of 

the (42) engine were performed s o  that any benefits a::rihtable only to  the bard- 

ware change could be s o  identified. The configuration (31 then differed I'rom (Lr 

only in the use of hydrogen-generator p r d u c t  gases and was the hardware used 

to  e ~ l u a t e  the hydrogcrr -enrichment concept- The test results of these three 

engine configurations a r c  presented below. 

2. Test Hardware Description 

a Engine Configuration 4 i 1 

The Chevrolet 350 CID engine :I9731 was selected as representative of a 

production passenger car engine in wide use. A few of the pertinent c b r a r t e r -  

ist ics a r e  tabulated below. 

Induction System 

The s t tck  engine induction system consisted of a dud-plane intake mani- 

fold and (-barrel Quadrajet carburetor. In place of the engine fuel pump, a 

pressurizec! facility storage tank was used to feed gasoline to  the carburetor 

fi .  at chamber. 
* 

Ignition System 

The stock ignition system was the standard breaker-point type consisting 

qf a coil, condenser, distributor, wiring and spark plugs. Factory equipped 

carbon-core spark plug wires were replaces -..lth metallic conductor, 



Engine Manufacturer Specificatiorrs 

Engine: '3hevrolet 1973 

No. Cyl. : V-8 

Bore: 4.00 in. 

Stroke: 3.48 in. 

Displacement: 349.7 cu. in. 

Specified Compression Ratio: 8.5 

Advertised HP: 175 @ 4003 RPM 

Advertised Torque: 260 lb-ft 6 2800 RPM 

sillcan-insulated ignition wire- The AC R-44 res is tor  type spark plugs were  

gapped at 0.035 inches- 

Emission Control Devices 

The factory-inrtalled devices for emissions crmtroi included ( I  1 a n  a i r  

injection reactor  (AD; pump and distribution manifold, (2: an exhaust gas  r e -  

circulation IEGH) system and (3) a positive crankcase vcrititation (PCV) system. 

The purpose of the AIR system was co provide additional a i r  to t he  exhaust gases 

and thus reduce unburned hydrocarbons and carboy1 monoxide. The EGR (use3 

to reduce oxidzs of nitrogen) control valve was externally located in the intake 

manifold adjacent to the rocker a r m  cover. Internal flow passages directed the 

exhaust gases  into the intake manifold below the carburetor throttle plates, The 

PCV system maintained a positive f!ow of crankcase blowby gases back into the  

engine a i r  intake system and was used during a l l  tes ts  of the baseline stock 

engine and nlodified test  configurations. 



b. Engine Configurziions (2 and (3) 

The modified engine was derived from configuration (1 1 by removing the 

AIR and EGR emission devices and replacing the carburetor ami intake manifold 

with a n  Autotronics induction system. The P C V  system w a s  conaected for ail  

engine tests using the Autotronics induction control system. The Airtotronics 

equipment was selected primarily for the flexibility of the associated controls 

and for the potential improvements in atomizatiou and distribution offered a t  lean 

operating conditions. The modified system is shown schematically is Figure 25. 

Air flow to the engine was sensed by a turbine air-flow transducer. Gasoline 

flow to the engine was controlled by a variable speed. positive displacement pump. 

Tt.9 pump speed, proportional to gasoline flow, and the a i r  flow signal were 

used by the procezsor to calculate air/fuel ratio. Thc computed air/tuel ratio 

was compared to the value selected by the user and the resulting e r r o r  s i p ~ z i  

was used by the pump power-drive circuit to supply more or  less electrical 

power to the pump; hence changing the gosoline f!owrate in  accordance with the 

user selected air!fuel t r i io  setting. Cornpesczt parts of the Autotroaics induc- 

tion control syskrr. a r e  shown in Figure 26, 

Air throttling was achieved by rotation of an air butterfly valve located 

upstream of the plecum chamber- Primary air  for the engine entered the 

chamber with a vortex flow pattern while a pc,rtion of the a i r  b y p s s e s  the 

throttle rlate and was t ? ~ e  working fluid for a Hartman whist!e atomizer. The 

atomizer, which was centered directly above the intakc; manifold, received 

gasoline from the positive displacement metering pump. The atomized gaso- 

line t~as  then mixed with the primary a i r  stream as it flawed through the 

plenum chamber. The gasoline and a i r  mixture was distributed ;o each 

cylinder with an aluminum, single-plane Tarantula (Edelbrock Co. ) intake 

ma tifold. 



Fig. 25.  Syatrn~  sr.l~cnlatit: f o r  t ~ l o d i f i c d  tent  
cnglna w i t h  hydrogen-gaa generator 
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3. Test Instrumentatian 

The following paragraphs contain a general discussion of what parameters 

were measured, ihe type of transdacer used for the key parameters,  the 

recording devices, and special data techniques used. 

A digital data acquisition system was used and i s  the hear t  of the instru- 

mentaticn capabilities. The IDAC (Integrated Data Acquisition and Control) 

data system was designed a t  JPL in 1966 for rocket propuision test  programs 

and includes both real-time engineering unit output and control capabilities. 

The real-time data capability i s  provided by a combination of printed 

p a w r  tape. eight video displays, and 16 digltal-to-analog converters. In 

additi-m, recording on magnetic tape i s  possible. Tbz engineering units capa- 

bility i n c l ~ d e s  ranging a& scale factors for aI! standard transducers, thermo- 

couple linearization, and output with appropriate units. The system will limit- 

check 64 data channels in real-time. The IDAC can also accept digital inputs 

in addition to  analog signals. The dlgital capability was used for g ~ s o l i n e  flow- 

ra tes  (birbine flourrr?eters), for digital spark timing data, and to accept digital 

codes which automatically deflne the status and range of the various emission 

instruments. 

The IDAC hardware and basic program wzs used for the engine tests, 

described kere, without modification. An additional program was devrtloped 

that provided the real-time calculation and dispiay of several  parameters 

unique to the engine test  program. This program calculated these key param- 

e te rs  and was used to facilitate the testing. These parameters were: 

1 )  Gas<>line mass  flowrate (for both engine and gas generator). 

2)  Air-mass flowrate (for bo'b engwr, and gas generator). 



3 )  Equivalence ratio (including the contri'oution of the generator 

products 1. 

4 )  Thermal efficiency (including the effect of the generator). 

5 ) Emission data independent of the operator selected instrument 

range. 

Calculation e r r o r s  for these parameters, independent of trazmdrrcer 

e r rors ,  were on the order of 0. LQb. Calculations for approximately 30 other 

parameters were a l so  made and were available for real-time outp t .  Data 

were u+ia+ed at approximately 112-second intervals, which was more than 

adequate f >r  the steady-state test conditions employed. A much-faster sampling 

capability i s  anherent in the IDAC, but was not used for the testing described in 

this report. 

The hydrcgen enrichment concept leads to engine operating conditions 

which result iu very low flowrstes of liquid gasoline to  the engine. Gasoline 

flowrates ranging from 0.001 gpm to 0.5 gpm were encountered. JPL has 

successfully made use of turbine flowmeters for flows of liquids, and the IDAC 

was designed specifically to be compatible with this type of meter. However, 

turbine flowmeters typically have a dyramic flow range of 10:l. To cover the 

range of flowrates of interest here, three meters were required. They were 

arranged a s  s h ~ w n  schematically in Figure 28, and the gasoline flow was rot-ted 

to  the desired flowmeter by the solenoid valves. 

The flowmeter frequeccy, gasoline temperature, gasoline pressure, and 

flowmeter coaes (i. e., which meter was active) were input to  the IDA,. The 

code signhi was ~ascd to access the flowmeter calibration constants for the active 

flowmeter; a quadratic equation was used to convert the frequency to volume 

flow. Real-timc mass flo-mate data, corrected for temperature effects, was 

o ~ t p u t  in units of lbmlhour. 

6 5 





Gaseous flows were measured by a laminar flow transducer; the 

differential oressure  ac ros s  the flowme te r  is linearly proportional to L, actual 

volume flow through the flowmeter. r;l provide mass  flow data, absolute pre - 
sure  and temperature of the flowing gas were measured iind input to the 

IDAC. 

A signal proportional to spark timing was derived from the mechanical 

hardware shown in Figure 24. The disc, attached directly to the engine crank- 

shaft, contains a ring o i  holes (the innermost) located a t  10 * crankshaft inter - 
vals. A light source on one side of the disc excites a lig5t sensitive detector 

whenever a disc hole passes between the light source and detector. 

These pulses a r e  input t o  an electronic phase -locked loop c irc -~ t .  This 

loop t rccks  the 10" pulses and provides a:, autzut frequency 1 G O  t imes the input 

frequency, i. e., Q. 1 " degree resoli.ti,~n. Firing of the number 1 spark plug 

generates a signal that passes the 0. 1 * pulses to a counter. The counter i s  

turned off a t  top dead center, TDC, thus providing a count equal to  the spark 

timing with 0. 1 " resolution. The logic i nch .  es the capability t o  measuie  

spark t ~ m i n g  after TDC. The spark timing e r r o r  i s  l ess  than *O. 2 a t  steady- 

state engine speedc. The counter output is available in binary coded decimal 

form and is recorded by IDAC via a digital input chamel. 

Continuous analyses were made ol the engine exhallst gas to determine 

the concentration of CO, Cot, NOx (NOZ and NO), and unburned hydrocarbons. 

The CO, and CO analyzers operate on the principle of non-dispersive infrared 
L. 

a.dsnrption. N i t r ~ c  oxide (NO) and nitrogen dioxide (NOZ) were measured with 

a cterr.iiuminescent instrument. Oxides nf nitrogen (NOx! a r e  reported as the 

sum of NO and NO2 contained in a gas samole a s  if the NO were i.1 the form of 

NOZ. Hydrocarbons were measured with a flame ionization ,kctor .  





Engine hrake horsepower u * t s  measured with a water-brake dynamometer 

rated "ram 4 to 300 13HP at  speeds to  10,000 RPhi. A par t  throttle friction 

horsep.,wer curve, obtlincl! from Generai ).lotors 5s: a similar eagine, was 

used to ca!culaic !IS; ~2-responding indicated h ~ - s e ~ , a r e r ,  

4. Test Descrietiun 

.as razed earlier. three  distinct s e t s  of t es t s  were  -=a&. The f i rs t  t es t s  

invalved t r e  s t ~ c k "  engine, a s  Gi scribed in p;-eceding paragraphs, ,nd provided 

the h s e i i z e  data irom which comparisons were made. These tes ts  used the 

equi-.alencc ratio ti. e.. fueiJair rctic.3 'Pulii i ~ t o  the carburetor and t h ~  s ? a r k  

ti~.;ll;! built ;zto the distributor. Two deviations from a * j ;~r&- esplne cuxifig- 

uration a-era employed. First, the engine-driven fuel pump was removed, and 

a pressur~zed  tank =as used to supply gasoline to  the carburetor float c'ru.mber. 

This =-as done t , ~  improve the quality of the fuel flowrare measurement. Secondly, 

the "stock" exhaust r??anifolds a-ere replaced b\- exhacst headers {see f i pu re  27j. 

These headers alioa-ed exhaust samples to ?x taken frorn the individual cylinders, 

but orevented the use of the air injection reactor (AIR1 de-.Gre. Thus, the HC a n i  

CO emissions presented here for the *'stockH enginc a r e  not truly representati-:e 

of the 1373 Chevrolet 313 C13 engine but a r e  more nehrly indicative of those fro% 

an uncontrolled engine. 

The baseline tes ts  covered an engine speed ranpe frorr. idle ( - S O 0  RP?r!l u~ 

~7 4000 X P X .  Engine output from s co-load condition up to the aide -open throt- 

tle (icOTI pas-rr was covered. Data a-ere taken a t  approximately 70 discrete 

RPhl -load combinations. Measurements of exhaust emissions and e n ~ i n e  per- 

formaace were recorded ..t each of these operating csditic-ns. 



The data taken during these testr were first reduced to obtain calculated 

values of parameicts such as brake specific fuel camsumption (BSFC), equivalence 

ratio, brake and indicate specific emissions, and brake and indicated paner. 

The final desired form. of the daw e s  contour plots of BSFC and brake specific 

emissions of oxides of nitrogen, of unkmcd hydrocarbons, and of carbon 

monoxide, as functions of engine RPM and brake mean effective pressure 

(BMEP). (See Figures 30 through 33. 1 The computer program which produ=ed 

the colltmr plots rewired that all data points be provided at specific RPM 

i n t e ~ l s .  Thus, it was oh-n necessary to refer a &ta point taken ot 2010 RPM, 

for example, back to ZOO0 RPM. This =as accomplished by assuming indicated 

specific fuel cons~mpior~,  engine a i r  flw and emissions were constant for the 

range of the correction- To increase tl. : number of points for the cantour 

plotting program, the reduced data was curve fit with a third-order polynomial. 

This polynomial was used oniy to interpolte the data. No attempt was nude to 

extrapolate +Ae c~ntGurs beyond the region where data were taken- These same 

tec);liquzs were used for the data from a11 tests including those involving the 

g2 5 generator. 

The other t w ~  engine coniigurations tested required a somewhat different 

test approach siace neither the equivalence ratio nor the spark timing could be 

specified in advaslcc. The following approach was adopted. The use of hydrogen 

allows operazion a t  ultra-lean equivalence ratios. -which in turn resulis in greatly 

reduced peak combustion tempezatures. A s  a resu?t, o spark taming which gives 

best engine economy (i. e., peak therrral efficiency) is entire!y feasible. All 

tests involviag the gas generator i i .  c. , c~nf ipra t ion  13 ; I  were per formed at an 

equivalence ratio and spark :king which gave bcst eng;,-.e efficieacy. Thcrefore, 

tests irivrrolring configuration ! 2 )  were likewise performed at mmuriin~m engine 











efficiency conditions. This allowed a direct assessment of hoar much of thz 

gain associated with the use of the generator products could bz assigned to  the 

other hardware differences. 

To determine the best operating condition for a given RPM-load condition, 

a ser ies  of "sensitivity-' tests were performed. These sensitivity tests con- 

sisted of (1 ) determining in real  time the "best" operating condition by maximit- 
* 

ing the engine thermal efficiency,* and ( 2 )  making small perturbations In equiv- 

alence ratio and spark tinling, as shown in the Sketch A below. h t a  were recor- 

ded a t  the conditions indicated by the darkened circles. 

Sketch A 

2- 

'When the hydrogen-gas generator was used, the system thermal efficiencb-, 
which includes the gasoline flowug tr, the gas generator, %-as used. This 
particular technique was icasible onlr because the ID-ZC system provided a 
rcai-time calc-llation and display of the thermal efficiency. 



A typical result  of the sensitivity tes ts  i s  st!own in Figure 34. From 

these plots, an equivalence ra t io  a rd  spark timinq %:ere then selected for use 

i n  the mapping tests. The RPM-load conditions for which sensitivity tes ts  

were performed for engine configuration (2) a r e  listed in Table 2. I t  =*as 

found that lest efficiency for configuration (21 was achieved a t  a n  equivalence 

ratio of -0.85 and a spark timing of -50' BTDC and was almost iniependent of 

RPM and load. These values were used for the mapping tes t s  which resulted in 

the contour plots of Figures 35 tnrough 38. 

Simlrar sensitivity tes t s  were -ondzcted using the engine configuraticn ( 3  

in conjunctior? with the k.ydro~oz-gcs gene:=:;: These tes ts  occurred shortly 

af ter  cemplttion of the modr; Gevelopment described in Task C. models 

Fig. 34. Se!,sitivity test results  for enpin configaration 2 
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Table 2. Sensitivity engine/generator test matrix 
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were most helpful in the testing by predictiag the best engine operating cmditions. 

At  the same time the sensitivity data showed areas where the models needed 

improvement. Because of the synergistic effect between model and data, mare 

sensitivity testing e s  performed than originally planned. 

5- Test Results 

A typical set of results from the enginefgenerator sensitivity tests a r e  

shown in Figure 39. The apparent best efficiency point, as determined by the 

test crew, was at  an equivalence ratio (4) of 0.74 and a spark timing of 40' 

BTDC. The sensitivity data were then taken at spark tinlings of 30*, 40', and 

Z0' BTDC and a t  O's of 0.30, 0.75, 0.80, 0.85, and 0.90. No data were taken 

at 30' BTDC and j .- 0.70, because the engine was =is firing badly at this con- 

dition. As can St seen from Fig. 33 the best efficiency actually was at a spark 

timing of 50' RTDC and O = 0-73. However, the efficiency at  40' BTDC is the 

same, within the experimental error, but occurs a t  a s1:ghtly richer 4 of 0.75. 

Therefore, for the purposes of the mapping tests, data for this same engine con- 

dition were taken at 4 = 0.74 and 50' BTDC. rhe sensitivitw tests turned out to 

be a convenient mett.od for deciding on an engine operating condition. 

The enginefgenerator combination was mapped for three values of genera- 

tor throughput. These throughpts, 26 lbmlhr, 52 Ibm/hr, and 79 lbrnfhr 

corresponded to 0.5 lbmlhr, 1.0 lbmlhr, and 1.5 lbm/hr, respectirely, of 

hydrogen in the product gas stream. The contour maps. Figcres 40 through 

51, are  the resuits of %hese tests. Only a portion of the RPM-BMEP plane was 

covered in the engine/generator tests. Low values of BMEP were precladed by 

the chemical energy content of the generator gases. %s, for a generator 

hydrogen flowrate of 1.5 lbmfhr, BMEP's less than -45 psi could not be 

achieved. BMEP's above -70 psi were precluded by the operating equivalence 
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ratio. Tiis i s  anorher ray cf statilg that the engine was a i r -  limited. For any 

given equivalence ratir, a d  RPM, the maximum amou~t of fuel {and hence the 

maximum torque which can be produced by the engine! is firred by tbt mariman 

air a s b  Higher SMEP s cmld be achieved simply by increasing tbe 
* 

the equivalence ratio-' Since rfre results of operating at  increastd equi..-a!ence 

ratio a r e  not exprrcted to be greatly different from *&at achieved +CG engine 

canfiguration i I ; ,  no attempt war made to operate the engine /generator zcrnbina- 

tior. at my cquiorlerce =ti6 &ker t 5 n  best efficiency- S M e  t b t  the engilre 

c-rlguratioa (21 r~sul t s ,  Fi-ms 35 through 33, exbibit the same iimihtim to 

a s l r  g e e  No d a  were taken ior Z P Y c  ia excess of ;GOO, I)rC *r- 

'icular r4hic3den~iac/generator combination oi cmcern does not rcqsire an 

e-:sc speed abre 2700 R P?d to rua the driving cycle, 

In additioa to tiit eq~Gva.cl;ct ratio Iintitatiocs imposed on the engine, 

there was a limitation assoslated with :he test S a r h r e .  In particular, t)re 

wattr  supply to the mter 5rake dynamometer was n d  adequate to allow h r g c  

loads at la\: engine RPnIs. This is reflected in al l  the contsur plots- 

The c c)iaiar p i d s  i Figures 40 through 5 1 8 contain a wealtb of ini2rxnat;oa. 

However, making corr.priscns between engine configurations with only rkose 

plots is -<cry difficult- Complete comparisons can best be d m e  using a c o m p t c r  

simulation of the Criiing cycle and these a r c  included in t!!e Task F results. 

However, several iuteresting observatiorrs a r e  readily apparent a k a  the test 

results a re  presented in a different w.muer. Figures 52 through 57 show the 

performance of the three engine confiprations at am cagiae s p e d  of 2,000 R P M ,  

* 
T h i s  option of ix~creasing the equi.atence ratio wvould r ~ e s t  like!? be incladtd 
in the controls cf any vehic!e employing the hy4rcgen-enr lcbn t  concept. 
For rapid accelerations, such a s  passing or entering a high-speed highway, 
the driver would be allowed to enrichea the miwturc, k t  a: the expense of 
both fuei economy and increased ernijsions. 
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Fig. 54. BSHC vs BHP at 2.000 HPM 

Fig. 55. BSCO vs B H P  at 2,000 RPM 



Fig- 56, 9 vs BHP at 2.000 RPM 
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Figures 58 thraugh 62  compare the BSFC and ?lox en~ i smiws  for the three con- 

figurations a t  level-road laad condiriom. Figures 63, 64, and 65 illustrate the 

relatiomhip between BSFC, BSNOx, and hydrogen flowrate a t  three different 

engine speeds. These 14 figures are discussed in more detail in  the following 

parrgrapbs. 

Figures 52 through 57 show BSFC, BSNO* BSHC, BSCO, engine thermal 

efficiency, and equivalence ratio, respectively, as functions of BiW a t  an  engine 

s p e d  of 2000 RPM. Data for each of the three engine configurations a r e  shown 

there; however, only the 1.0 lbrn/hr of hydrogen results  are included for con- 

figuration (3). 

Figures 52 and 53 illustrate the two primary benefits associated with the 

hydrogen enrichment concept, and a t  the same time Figure 52 i l lustrates one of 

the negative aspects as well. The BSFC associated with hydrogen enrichment 

is -10% improved over the stock configuration (1) a t  20 and 70 BFIP. At 40 BHP, 

the condition is equivalent to  55 mph level-road load, the improvenlent is 670. The 

configuration (2) BSFC resul ts  are virtually identical to  those of configuration (3) 

even though the operating equivalence ratios a r e  very different (see Figure 56). 

This is clearly the resul t  of including (as i t  properly should be) the effect ol the 

hydrogen-gas generator on fuel consumption. Reference to Figures 56 and 57 

shows that configuration (3) was operated a t  a lower equivalence ratio, and as a 

result  the engine therma! efficiency was -10% higher. However, since there is 

about a 20% loss in chemical energy for that portion of the gasoline which goes 

to  the generator, a11 of the improvement in thermal efficiency is not translated 

into improvements in BSFC. For  the particular operating conditions shown, 

the net effect is &.at configuration (2) and (3) achieve the same BSFC. 



Fig. 58. BSFC v s  engine speed at level  road load 

Fig. 59. BSNOx v s  engine speed at level  road load 



Fig. 60. BSHC vs engine speed at level road load 

Flg. 61. BSCO vs engine speed at level road load 
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Fig. bL. k v e l  road Ioad data cornparism 4 
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Fig. 03. BSFC v s  BSNOx 

The use  of the . lu totronics  ha rdware  d o e s  not i n  and of i tself  lead t o  improve-  

-xents in  BSFC. The  BSFC improvenlen ts  shown in  F i g u r e  52 a r e  the d i r e c t  

ri.s.:lt of icancr opcr.itior. ~ n 6  the use of XiBT iznition t imings,  Presun:ablg. i f  

:r.e coni igcrat?or .  ( I \  cneirie ..*<re opera ted  a t  the same equivalence a s  the con- 

f i  c :r  i? ion r 21. tSe :>Sf C ' s  -.vo~ld be the  sarne. The s a m e  c o m m e n t s  ma:. be  

.i:ade wit): reearr i  to  nvdroeen. The  ase  of hydrogen i n  and of i t re i f  o f f e r s  no  

p a r t i c i ~ l a r  ~ d v a n t a e e  in terr.:s af engine efficiencv. and the C F R  engine r e s u l t s  

.?i page I l l ' :  of this  repor? verify th i s .  I4owevtr, the  u se  of hydrogen d o e s  allow 

1:itra-:can o p e r a t ~ o n  and th i s  i s  what  r e s u l t s  in reduced fuel consumption. 



Figure  53 c l e a r l y  shows the advantage of they hydrogen-enrichment con- 

cept  in  t e r m s  o i  NOx emissions.  Use of the genera tor  products pe rmi t s  opera-  

tion -tt ul tralean equivalence ra t ios  (see Figure  56) an4 resu l t s  in  the significazit 

reduction i n  N C  emiss icns  shown in  Figure  53. Xecall a l so  that c .Ligurations 
X 

(2) and (3) include nc  cievices sucn as EGR. fr,r control.  i h u s ,  the advan- 

tage shown by configuration (3) is dce  alt-.ust entirely* co the low equivalence 

ratio. 

F igures  54 and 55 are plots of hydrocarbrn (BSHC) and carbon monoxide 

(BSCO) exhaust  emiss ions  against  BHP. iviost lean-burr? engines, including the 

hydrogen-enrichment concept, do  cot  exhibit good hydrocarbon emiss ions .  

Under conditions of low equivalence ratio, the hydrogen-enriched fuel r e su l t s  

are a factor of - 3 g r e a t e r  than e i the r  the configurations (1) and ( 2 ) .  Recall  that 

nei ther  of the latter engines included any air injection into the exhaust  manifold 

and. thus, the hydrocarbon emiss ions  f o r  those two engines a r e  probably l a r g e r  

than in a roadable vehicle. However, note that  a t  -70 BHP. where  the configu- 

ration (3) engine equivalence ra t io  is about the s a m e  as configuration (2). the 

hydrocarbons are slightly lower  for  configuration (3). This  is q u i r e  likely the 

r e su l t  of having a significant par t  of the fuel in  a totally gaseous condition. 

The carbon monoxide resu l t s  are s imi la r  i n  that a t  low BHPs the hydrogen 

enriched fuels  prodice higher CO emiss ions  than the o ther  two engine configura- 

tions tested. At higher BHPs the BSCO f r o m  configurations (1) and (3) a r e  

comparable. Again note that at higher BHPs where  the operating equivalence 

ratios of configurations (2) and (3) w e r e  about the s a m e  (see F i g u r e  57). BSCO 

*The genera tor  products contain l a rge  quantities of the diluents N2 and CO2. 
They play no ro le  in  the combustion process  but d o  affect NO, emiss ions  in  
much the s a m e  way as EGR. 



levels f ram engine i3 !  *-=re much lox .r. The source of the CO for the hydrogen 

enriched engine is unques*.ionably the gelierator products. Operating the same 

engine at  the same equivalence ratio. but wit3 pure hydrogen, the amolmt of 

CO emitted is about 2 nrdcrs cf r r a p l r - ~ d e  iess  than shcwn on Figure 55. 

Figure 58 through 62 also compare the three enginc. c~nfigurations, b-:i. 

at  level-road load conditions. The abscissa of Figures 58-62 a r e  engine rota- 

tional s p e d .  For each value of engine speed, there is a unique engine load that 

corresponds to  a vehicle speed. The vehicle speeds indicated a r e  for a 4530- 

lbm Chevrolet Impala as driven in third gear. Three hydrogen-generator 

flowrates, equivalent to 0.5, 1.0, and 1.5 lbmlhr or hydrogea, a r e  shown in 

Figures 58-62. 

The level-road-load data exhibits many of the same features as the con- 

stant engine speed results of Figures 52-57. The hydrogen enriched fuels give 

fuel consumptions which a r e  superior to the stock engine over the entire range 

of engine speeds tested, but a r e  no better thnn cclnfiguration (2). The interplay 

equivalence ratio and hydrogen flowrate can be seen in Figures 58 and 62. 

Increasing amounts of hydrogen allow lower engine equivalezlce ratio (see Figure 

62) and hence a higher engine thermal efficiency, but the benefit is offset t .le 

losses in the generator to  the extent that minimum system BSFC occurs not ar 

minimum equivalence ratio but at  -- 1.0 lbmfhr hydrogen flovr-ate. 09 the other 

hand, increasing arno-mts of hydrogen, and hence lower equivalence ratios, 

leads directly to lower N O  emissions as shown in gure 59. 
X 

The hydrocarbon and carbon monoxide emitted a t e  again higher for the 

hydrogelr c c ~ i c h e d  fuels, a s  they were for the constarrt engine speed results, 

but the differences a r e  not nearly a s  large. 



The intersctivns and effects o i  equivalence ratio and generator floarrate 

are illustrated in F igures 63, 64, and 65. In Figure 53 BSFC i s  plotted against 

=O for an engine s y e d  of 2030 RPM. Each of the data points cor respmd t o  
X 

a d i f f e r en~  engine load- The Ievei-road laad points are shown as the sotid 

symbols- At both ZOOC and 21500 RPM, additional hydrogen has btneiicial effects 

on bnth NOx and fuel cansumption, although at  b d h  engine speeds the ESFCs 

associa:ed with I .  0 and 1.5 ibm/hr .f hydrogen are the same. At 1539 RPM, 

hoarever, this i s  not the case. Increasing the hydrogen flowrate from 0 .5  Ibm/ 

h r  t o  1.0 lbm/hr decreases the NOx emitted but results  in a poorer BSFC. 

However, note that the BSFC associated with 1- 0 LbmJhr hydrogen flowrate i s  

stiU superior to that achieved with stock engine. 

6. Conclusions 

i ,  The initial teats. tn which a hydrogen gas generator v l s  mated to  

a mxlti-cylinder IC engine went very smrxthly. There was no 

evidence of any de te te r iws  effects cui the engine hardware, and 

there were no incidents t o  suggest any sigxifiturt safety problem+ 

associated with the UK of hydrngen- 

2 ,  TSe trends of increased engine efficiency and decreased NO x 

emissions in the ultra-lean : cgirne, which were observed with 

bottled hydrogen, were a lso observed with hydrogen gas  generator 

pr d u c t  s. 

3 ) The trend of increasing hydrocarbon cmis; ions with ultra-lean 

comtustion, reported by several inv .st,pa?.-rs, were observed 

with the hydrogen-enriched fuels. Increasing * -  w t s  o l  hydrogcn 

-?At 1.5 Ibmlhr of hydrogen. the chemical ener: con! t -f ?he peneracor 
nroducts i s  too large to operate a t  the level-read 1o.t I ;. +;tion of 22 fr;t'J'. 



has a beneficial result on tt?e problem, but uader no operating 

conditions were the HC emissions b e l w  the equinlent EPA i 978 

standard. 

4 Quurtitiesofcarbonmonoxidecmis~ion~approxi~t~~gthc1978 

CO allowable level of 3.4 grnlmi rere observed in c011~iuPction with 

use of the hydrogen generator products- C a r h  monoxide emis- 

sions were extremely law d e n  pure h+rogen was used, ant! hence 

the concl~sion is that the CO contained in the generator products 

is not complete\y oxidized in the engine -ombustion chmber- 

51 Brake specific fuel consumptior. decreases (including the generator 

losses I of 10- 15% front the stock englne were observed over most 

of the engine RMEP-RPhI operating regime, 'Ilrcsc a r e  the result 

of lean operatior. and thc use of M S T  igniticm kminp. 

Oxid;: of iitrogen erniasiuns orere rignificactlp reduced when thz 

hydrogen enriched fuels were used- The syccific arn2rnL ci the 

reduction varies directly w:th the engine cquivalenre ratio. which 

in turn is directly affected bs ti.t power required from the engine. 

D. CFR EXCINE TESTS tEPA TASK El 

I. introduction 

A single-cylinder, Caoperativc Fuels Research !CFR$ engine was =red t o  

tnvestigr:~ two aspects of the hydrogen enrichment concept. The first of these 

was the general relationship between engine performance, in te rms of thermal 

efficiency and emissions, and equiwaltnce ratio and fuel compasit~on. The 

second was the depefideace of critical compression ratio on equivrlence ratio 

a d  fuel composition. 

The two groups of tests differed not only in objrctive, but also in physical 

location of the engine, in several of the test procedures, and in the details d 



the hardware iartalhticm. Where significant to the test results, &ere a r e  

noted bela. 

The investigatioa of the rr.latioarhip between tngm-- in* a d  a p d s  is 

very nearly a duplicate of the mlrlt i-cylidr  eq(ime mapping tests- That is to 

say, the inlet coaditiow rere - r i d  in a swerrut ic  n y  a d  *3;c t q i n t  efflcienc)- 

a d  exbus t  gas c a p o s i t i a  d e t e r m i d -  The a r e  of the CFR engine, h m v e r ,  

has the a d v a e g e  Of alluwiq a more distinct sepa~ation of comcept pbtn- 

aneaa from h a m r e  phtnoclcaa. In particular, the use of the CFR engim 

elimkater cylinder-to-cyEr;dcr distribution lrnd engime speed as expe r imcn~ l  

variables- The data from the CFR engine tests i s  believed tc give a good repre- 

sentation of rht may be expected frorn the hydrogen enrichmert camcept. It is  

then reascmable to expect that sigaificant differences between V-8 Zr'Z 4ata 

&re r c rd t s  of hardware lirnitatioas and not fundamental limitatioar- 

Tbt critical compression tests a r c  easrly a t c o ~ p l i s b t d  with tbt  CFR 

engine since that is closePy related to the Furpose for which the CFR eagine 

was 0 r i g i ~ 1 ~ y  developed- T h t  is, Tbt 'ktamt" rating of fuels- Tlrt techniques 

used to detczt ' b - r k ' -  in the exprimcats described h t r c  is  difftrmt from 'rht 

used in thc xtaae  t csting- The detcctim method is d i scassd  in detail btl-. 

The remainder of thlr t a s k  descripioa is  dividei i n t ~  two wrts- The 

first is  a destriptit? of tt= psrformaace tests a d  the ~ e r d  deal* vith the 

critical compression ratio tests. 

2- Perforrmnce:Emissioa Tests 

a CFR Engine Description 

The CFR engine in use at JPL for this test series was acquired on loan 

from tk Union Oil Co. The CFR is a single-cjrliader engine of cootiau- 

oluly variable compression r&o up to a maximum of -13.S:l. The 



engine is caaatcted by pulleys a d  btltr to a syachrrrlaous electrical u*oPor 

c-Me of starting th eag;ae 4 d either absorbing tke u c e s s  pmer developed 

tht emgint at sapplyiy pawer so  as to maintain a camstant speed of 1 2 0  
* 

R-I. " Dcuiled dimesiuas and cornpent  dcscriptiaas a re  g i n s  in Ref- 4- 

No changes r e r e  nudc to the basic CFR engine except in the induction 

a The CFR carburetor war replaced by a pMmrutic atomizer ISprayiag 

Systems Atomizer aith a f 64 A i r  h'ozzle ud a # I  650 foe1 nozrlel- The modified 

inductinn system is shown in Figure &6- Tbe p~pnuric atomizer prorides 

superior atamitttiom ,f the liquid gasdiae .Jd is also l toavcniem means d 

rnirirg t& gasoline and gaseous hydragea. (Tk hgcirogea is introhced thra;gh 

the -tic b.Lf of the atomizer- & The atomizer is c-ted to the C F R  

exgiar b h k e  port by meart of a 28" 1- x 1-1 14'- 1. I)- fiuibte tube- Thc 

connedi* t u k  prsr~ides a latge rniniq:mparization volume a d  helps to i n sun  

a miform largelv gasexas charge to the eqiac. 

Tbc parameters meamred d ~ r i r y  the test series, ;-rcrrtded tyiinder 

c h m k r  pressure, engine inlet -fold pressure and temperature, a a s t  

gas pressure aad temperature, idicated horsepower a d  the pressure, tempera- 

ture, & voi-ctric flwratcs of t te &:, liquid he), and gaseous hydrogen. 

The florrates {air, gasdine, and hydrogen) were measured by Rdameters 

(Brooks aad Fiscber t Perter); the pressures were measured by b d i  electranic 

rrrais-gage transducers [Statham and Kistlerj and direct reading dial gages; 

and temperatures were measured by Sc:h thermocriple~ (Cr- -Const. and 

Cr. -All d direct reading 3ial gages (Weston)- The parameters measured are 

specified in Table 3 with the instrument locations ccded to the Figure 61 schematic. 

Wther preset speeds are possible by using different pulley combinatlons. 





Table 3. hstr9mcatrtioa ihfercnce Fie. 67)  
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Table 3. Instrumentation (Reference Fig. 67) (Contd) 
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Fig. 67. JPL CFR rchemrtlc (inat rument locatlonu) 



One of the key measurements, indicatecl horsepower, will be described 

here since it is romcrb.t different from the usual measurement of engine power. 

Indicated horsepower (IFIPI i s  derived from a direct measure of combusticur 

cylinder pressure and a signal proportioar1 to the c h m k r  volume. The 

cylinder pressure is measured by a high-respcmse t r a d u c e r .  The clmmber 

volume signal is derived in the same manner as the spark t imbg sigml for the 

V-8 tests. (See Section 11. C. -3. ) The chamber volume signal is take= from 

the 3une disc (see Figure 29) as spark timing in the case of the CFR engine. 

The disc used for the spark timing circuit includes a r e c o d  set of holes that 

provide pulses at equal combustion chamber volume increments. Fifty holes 

for each 180 ' of crankshaft reation were drilled at locations salculsted from 

the piston stroke and connecting rod length to provide equal volume increments 

between the holes. The equal volume pulse is sent to the control logic; an analog 

switch is closed cawing the cylinder pressure to be sampled for a period of 

145 microseconds. Signals from the spark timing circuitry control the switches 

that define positive (power stroke) or negative (compression stroke) W. The 

resulting voltage-time pulse is stored in a capacitor, providing an electrical 

charge proportional to the average cylinder pressure for the volume increment. 

The sum of the charge generated by the 50 pressure-time samples for each 

cycle is, thus, proportional to the integral of pressure and incremental volume 

(i. e., Jpdv). With the proper scaling, this signal i s  directly IHP. 

The charge stored on the capacitor i s  amplified and scaled to provide an 

andog voltage that reads directly in IHP. The time constant of the analog cir- 

cuitry is  approximately 2 seconds, so that the analog output voltage represents 

IHP averaged ever several cycles. 



An emissions sample was taken from the e r h s s t  products through a line 

coanected from the exhaust pipe to the emissions analyaer beach. T%e same 

emiss ims anrlysis instrumentation used for tbe '4-8 tests W8S utilized, a d  

hence will not be hrrther described here. 

Because the CFR engiae was in a temporary location for this first grmp 

of tests, only the emissions bench was coanected to the IDAC. Consequently. 

a l l  data were band-recorded and later reduced to engineering units. Further 

rnanipulatie:,:: cf the data was by digital computer. The parameters of interest 

here, equivale?v-e x t io .  indicated thermal efficiency, indicated specific 

emiss~oas  were results of the computer treatment. 

c. Test Description 

The single-cvlirrder engine was aperated at local unbiem inlet conditio~s, 

at full t!.rottle, a t  a constant ergine speed oi 1200 RPM, and with a compression 

ratio setting of 8.6 to 1. 

Approximately 120 discrete cornbinat;ons of equivalence ratio and hydrogen 

iraction were tested. These tests were grouped and a r e  identified a s  Series I 

throtlgh IX. Each aer!es corresponds to a constant value of the ratio of a i r  

flowrate to hydrogen flowrate. Series I and I1 were conducted w:th pure 

Indolene-30 and pure hydrogen, respectively. The mixed-fuels tests were con- 

ducted by fixing the hydrogen flowrate a d  varying the gasoline flowrate. This 

procedure was chcser. for i ts  experimental convenience. However, it does 

result in  the simultaneous variation of both equivalence ratio and the hydrogen 

fraction. The specific values of air-to-hydrogen ratio tested a r e  rated on 

Figure 68. Additional mixed-fuel tests were made in which the shrouded ~ l v e  

was replaced by a plain ii. e., non-shrouded\ valve. All test points represent a 

condition of maximum p w e r  spark advance (MPSA), and data were recorded 

only after a period of stabilized operaticn. 





d. Test Results 

Ttre data from the i d i v i d u l  test series were plotted versus equivalence 

ratio and curves hnd-fitted to the data points. Indicated thermal eff~ciency 

(qt 1, indicated horsepower (IHP), volumetric efficiency (qv), spark advance 

(SA I, and indicated specific emissions (NOx, CO, and HC) were each plotted. 

Typical plots of + qr and SA for four fuel compositions a r e  shown in Figures 

69 aad 7 0. The derived c.urves of qt and SA for a11 the tests a r e  shown on the 

single plot, Figure 71. Figure 72 i s  a plat of MP as a function of equivalence 

ratio a d  show. the magnitude of the p w e r  loss associated with ultra-lean com- 

bustion. 

The individual plots of qt vs Oi were used to locate the two lines labeled 

CFR lean Limit and CFR maximum qt, of Figures 68 and 73. The maximum 

qt line is simoly the lcci of the maxima as typified by Figures 69 and 70. The 

lean limit is  the loci points which a re  57,  lower than the maximum and to the 

lean side (i. e., lower 4 1 of the nraximum. The CFR misiire curve of Figures 

69 and 72 represents the minimum 4 at which the engine could be operated 

without significant misfire. The curve labeled EM flam~nability limit is cal- 

culated according to Le Chatlier's Rule from Bureau of the Mines data. This 

curve was first presented in Reference 5. Plots of specific emissions for al l  

tests a r e  shown in Figures 74, 75. and 76. 

The data, when plotted with airlhydr 3gen ratio a s  a parameter, 2re  of 

limited value since one of the key parameters. %HZ (or synonomous1y hydrogen 

to gasoline mass ratio) doe5 not appear explicitly. By choosing data points 

which fell within a selected band of hydrogen percentage, the plct of Figare 77 

was constructed. The emissions curver of Figures 78 and 79 labeled 5% Hz 

and 10%HZ were derived in a similar way, although the scatter of the emissions 

data made that task more difficult. 
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Fig- 72. -valence ratio rt idicrted H P  

Several cbrervatioas may be r=r& from Figures 75 thraugh 77. These 

are: 

1) The inverse relatiaaship of qt rith + has ken clearly verified. 

2 )  The additiaa af hydrogen allows the combustion of gasoline at cop- 

ditions which a r e  well k l a  the ftamrmability limit d gasdine 

3) There is a clear dependence of rlt, CO, and HC on the f u e l  

composition. 

4 More data at lar percentage of hydrogen shculd be gathered since 

that is the region of interest for the multi-cylinder engine- 



EOUVAUNCE IAm. 

Fig. 73. Equivalence ratio vs  hydrogen mass fraction 
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Fig. 75. HC emissions vs equi-valence ratio 









Fig. 79. Hydrogen fraction v s  equivalence ratio 

5)  The strong dependence of N O  emissions on equivalence ratio is 
X 

apparent, thus confirming that control of NOx by ultra-lean 

combustion is possible- 

6 )  The HC difficulties observed with the V-8 engine a r e  also apparent 

in the CFR engine data. 

A comparison was desired between the data reported here and both the 

unpublished data of Rupe, Lee, Houseman, and Shair (which led directly to the 

hydrogen enrichment concept) and the data of Stebar and Parks {Ref. 6) .  This 

comparison is shown in Figure 78. Indicated thermal efficiency data from all the 

test ser ies  were plotted as a function of equivalence ratio and a composite 

curve drawn. Although the data within the envelope appears to exhibit excessive 



scatter, as shown previously (Figures 72 a d  73). the data actually represents 

a "family of curves. " The three sets  of data exhibit the same inverse relrtion- 

ship of equivalence ratio and thermal efficiency. Hwever,  the GM data does 

not show a maximum in thermal efficiency. The absolute values of qt differ 

considerably among the three curves, but this may reflect in part the three 

different experimental setups and differences in instrumentation techniques. 

For com-rative purposes, the lines identified a s  the flammability limit 

and the lean limit (Figures 68 and 73) were replotted in Figure 79, slag with 

Che line identified a s  the GM lean limit. (This line is defined in the GM report 

of Reference 6. ! This comparison shows that the GM and JPL lean limits start 

tc diverge a t  an  equivalence ratio of approximately 0.25, and the divergence 

increases a t  higher equivalence ratios. The JPL data indicate lean limit opera- 

tion for 100% gasoiine a t  a much lower equivalence ratio than the GM data. This 

is most likely the result ef the good gasoline atomization and long mixing length 

in the JPL experimental setup. 

It had been sl~ecuiated at  the beginning of this work that the use of 

shrouded intake valves would improve the engine thermal efficiency a d  simul- 

taneously reduce the untamed hydrocarbons. It was presumed that low 

efficiency and high hydrocarbons resulted from incomplete combustion in the 

main charge. Consequently, i t  was planned to do a comparative set of tests 

using shrouded and itnshrouded intake valves in the CFR engine- A small 

number cf tests with the unshrouded valves were conducted, but were not 

definitive because the range of equivalence ratio covered was not large enough. 

These tests were not repeated because during the relocation of the CFR engine, 

similar multi-cylinder engine tests were performed. 



Compar;~tive tests of shrouded a d  unshrouded intake valve, using a V-8 

engine, have shown that the original speculation was false. In these tests the 

use of s'mouded valves did significantly inc tease the engine thermal efficiency, 

but the unburned hydrocarboor emit!ed increased by a factor of -3. It is clear 

that the use of shrouded valves increases the turkrlence level of the charge, 

and hence increases khe apparent flame speed. The increase in efficiency then 

arises from the fact that combustion occurs over a much shorter time interval 

and thus more closely approximates the ideal cycle. However, a t  the same time, 

the increased turbulence changes the heat-transfer rates to the "cold" chamber 

walls, increasing the amount of hydrocarbons trapped in the quench layer. There- 

fore, i t  is no longer believed that the ilse of shrouded valves will decrease the 

hydrocarbons; however, i t  is clear that combustion turbulence is a key para- 

meter in achieving ultralean, high-efficiency operation. 

3. Critical Compression Ratio Tests 

a. Discussion 

The objectives of this group of tests were to investigate and to quantify 

the "knock" characteristics of hydrogen-enriched gasoline. It was expected 

that for a fixed hydrogen-to-hydrocarbon ratio, the criticz! compression ratio 

(the compression ratio at which knock is first observed) would vary inversely 

with equivalence ratio, 4 ,  and in fact this trend was observed. All "knock" 

tests were done using Indolene-clear as the liquid fuel. Indolene-clear is lead- 

free and has a research octane number of 97. Since a l l  previous C F R  testing 

a t  JPL was performed with Indolene-30, research octane number of 104, a set 

of tests using the Indolene-clear a s  the fuel were first  conducted. Two other 

fuel compositions, 5% and 10% by mass hydrogen, were tested. 



Knock is generally presumed to  result from the detonatim of the "end 

gas. '* (Ref. 7. ) The end gas is the last fuel consumed during a r y  given cyclc., 

and as a result of the high cylinder pressures and temperature existing a t  that 

time, the end gas may be detonable. The passage of the detonation wave r e s l i t s  

in the audible sound (termed knock). Since the strength of the detonati -,n wave 

is variable, different magnitudes of knock a r e  observed. 

One of the characteristics associated with knock is a high-frequency pres- 

sure oscillation s~per imposed  on the normal cylinder pressure waveform- The 

characteristic frequency of these pressure oscillations is determined by the 

combustion c h ~ m b e r  geometry and volume, and the physical properties of the 

gas through which the detonation wave passes. Since these do not vary appreci- 

ab!y for a given engine, this characteristic may b k  used to  detect knock and to 

quantify i ts  strength. The signal from the high response pressure transducer, 

also used for the IHP measurement, was filtered and conditioced. Two knock 

measurements were derived. These were the fraction of cycles (KP) for which 

knock was detected and the relative measurement of magnitude (Khl). The 

magnitude is a combination of the superimposed pressure amplitude and the 

KP measurement. For K P  = 100% and "large" (i. e., clearly-audible knock) 

arcplitude pressure fluctuation, Khl = 1002. Either K P  = 50% and large pres-  

sure amplitudes or  KP = 100% and moderate pressure amplitude wi1.l r*:sult in 

KM 50%. This technique for quantifying knock magnitude is not a n  accepted 

one anc presents some obvious difficulties in interpreting the results. In addi- 

tion, the entire technique is a very sensitive one and detects ''knock" when there 

is no audible indication. This presents difficulties in defining the onset of 

knock. 



Comments concerning the -experimental technique employed may be 

summarized as follows. The technique is a sensitive one, perhaps too sensitive. 

The correlation between it and industry-accepted techniques is not clear a t  this 

t ime and further effort is required to  achieve that undcrstanding. In spite of the 

difficulties noted, the method employed i s  felt t o  give valid relative results, 

although the absolute values a r e  open to  question, 

b. Test Description 

The CFR engine was installed in i t s  permanent location and was setup as 

depictzd schematically in Figure 80. This insta!lation differed from that used for  

the performance/emissions tests in that the inlet a i r  heater was added, t1.e inlet 

and exhaust surge tanks were replaced by newly designed tanks, and other .minor 

modifications were made to  accommodate the new location installation. 

Instrumentation utilized in the new location (Figure 80! was oimilar to 

that used i n  the Series I, but included additional transducers aad the special 

electronic equip-ment t o  characterize "knock" of the mixed fuels. The same 

high response pressure  transducer, which supplies a portion of the signal for 

the IHP meter, a lso served a s  the source for the "knock" measurements. 

Initial operation of the CFR engine showed a characterist ic (Ref. 6) low- 

amplitude oscillation super- imposed on the normal cylinder pressure signal 

during conditions when audible knock was apparent (See Figure 93). This char- 

acterist ic frequency of approximately 6.3 'KHz was used to provide a compira- 

tive indication of knock a t  different engine operating conditions. 

The cylinder pressure  signal is sent to  a bandpass filter that passes only 

the characteristic knock frequency. This 6th-order filter has selectable low 

and high pass sections; the cutoff frequency controls were experimentally varied 

to  optimize the fi l ter  output ratio between the knocking and normal operation 





modes. Two outpat meters were used to provide kdications of the frequent) 

ti. e., the fraction of engine cycles exhibiting knock) and t5e magnitude of the 

knock signal. The frequency meter defines the percent of cycles when knock 

occurred. This signal is developed by a constant width, constant amplitude 

pulse  hene ever the characteristic hock freqrrency exceed,- a minimum threshold. 

The circait is  calibrated to provide full-scale meter deflection when the knock 

frequency =s presented on every firing cycle. The magnitude meter indicates a 

relative combination of the knock amplitude and its frequency. Maximum meter 

deflection is obtained with 100% frequency and high amplitudz: either a 50% 

frequency and high amplitude or  100% frequency and half the amplitude will give 

50% meter deflection. 

As was the case for ?he performance/emission tests, the CFR engine 

was operated at a constant s ~ , t d  of 1200 rpm and at wide open throttle- "Knock' 

i s  a function of the incoming charge temperature, and so this temperature was 

eliminated a s  an experimental variable. This was accomplished by heating the 

main air-  The energy added was controlled, through a feedback loop, so that 

the temperature of the charge (i. e- , gasoline, hvdrogcn and a i r )  was mainsained 

a t  -83' F. 

Three fuel compositisns were tested. These were 05, 55, and 10% 

hydrogen by mass. The gasoline used for all  "knock" tests was Indolene-clear 

(i. e., contains no lead). Equivalence ratios from 3.4 to 1. 1 5 were tested, 

although not all  combinations of fuel composition and equivalence ratio were 

covered. The combinations covered a r e  shown in Table 4- 

The test procedure used was a s  follows. Steadv-state engine operation 

was estal tisb -d ior the dnsired fuel composition and equivalence ratio at a com- 

pression ratio of 8.0. The s p a r k  advance was set for muinrum power, and 



Table 4. Fuel coanpositim a d  equivalence ratio 
for knock tests 

the data were recorded. The compressiom ratio was then increased to a 

higher -mlue (the increment generally employed was ACR = 0.5)- the spark 

adlance was re-adjusted for maximum power, and the data were recorded. 

This proceda~re was continued -ti1 a strong, audible h o c k  was observed or 

until a compression ratio equal to -1 1.5 was reached. 

c. Test Results 

The test data were reduced to engineering units, plotted, and curves hand 

fitted to the data. Figures 81 through 89 a r e  plots of h o c k  magnitude (KM) 

knock frequencv (KP), indicated thermal efficiency (qt), and maximum power 

power spark advance (MPSA) versus compression ratio. Several observations 

can bc readily drawn from these figures. Thermal efficiency varies directly 

I I I 

Fatel C ~mpcrr itis=, Equivalence h t i o  1 5 Hi 

9 1.15 

I 0.8 

I 0.6 

0- 7 

I 0 .55  

1 

0. 47 

0.8 

0-  ii 

0.4 

Note: All teats rvz a? ma-rr,-wn p<rrcr spark advance. 

1 - All tests run with indolene-clear. 



Fig. 81. Knock magnitude. knock %, qp and MPSA 
vs compression ratio (plot 1) 
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Fig. 82. Knock magnitude, kaock % qr and WPSA 
vs compression ratio (plot 2)  



Fig. 83. Knock magnitude, knock % qt.  ik  MPSA 
vs compression ratio (plot 3) 
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Fig. &. Knock magnitude. knock % Q. aad YPSA 
vs compression ratio (plot 4) 
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Fig. 85. Knock magnitude, knock %, q t .  and MPSA 
vs compression ratio (plot 5) 
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Fig. 86. Knock magnitude, knock fE, qt, and MPSA 
vs  compres~ion ratio (plot 6 )  
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Fig. 8?. Knock magnitude. kaock %, qc. and MPSA 
vs compression ratio (plot 7) 
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Fig. 88. Knock magnitude, knock Qm qt ,  and MPSA 
vs compression ratio (plot 8) 
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Fig. 89. K z d k  ~rragnitude, knock 16, l i t ,  and MPSA 
v s  compress;on ratio (plct 9) 
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as  compression ratio. This is predicted by theory; Ref. 7 shows that the first-  

order efficiency is related to compression ratio by 

(where Y is the ratio of the specific 

heats for the combustion gases) 

Therefore, 

This equation predicts values of the derl- .~t ive -0.01 5, for y = 1. 3 and CR = 10. 

ie measured slopes of Figures 75 throtigh 89 fall between 9.0097 and 0.027. 

The maximum power spark advance decreased with increasing compression 

ratio indicating that the combustion interval also decreases with increasing 

compression ratio. 

Figure 90 is a collection of al l  the knock magnitude curves from Figures 

81 through 89. Two trends a r e  apparent. For a given compression ratio, 

lower equivalence ratio yields less knock, or a t  least knock of lower magnitude. 

For a given equivalence ratio, the fuel richer in hydrogen yields less knock. 

For the two test ser ies  run a t  4's of 0.48 and 0.4, there was very little change 

in the knock magnitude over the entire range of compression ratios tested. If 

an arbitrary valse of KM=lO were chosen to  represent the onset of knock, then 

a compression ratio of 10.2 cogld be used if 4< 0.56 and if the % H2>5. 

The results of the tes ts  with 10% HZ a r e  somewhat anomalous. The shape 

of the curve for 4 = 0. 8 is different than for al l  other conditions in that the 

slope becomcs negative instead of becoming more positive. The datz ' . r  

4 = 0.4 and 4 = 3.6 do not show a slope reversal, but on the other hand they do 



Fig. 93. Composite of knock magnitude curves 
from Figs. 81 thru 89 



not show the sharp increase in slope exhibited by the other conditi~ns.  There 

is  nothing in either the thermal e:'ficiencv or 5-rk advance data t o  indicate some 

change in the character of the combustion process. 

One of the potential disadvantages of increasing the compression ratio 

i s  the possibility of increasing the quantity of NO produced for a fixed equiva- 
X 

lence ratio. This was not the case fcr the experiments described here. 

Figure 91 i s  a plot ~f NOx. in units of gm/IHP-hr, versus compression ratio. 

As seen there is no significant c'nange i . ~  N O  with increasing compressic- 
X 

ratio. The shapes of the curves of Figure 91 may be explained as fol lo~ 

the compress on ratio i s  increased. two competing processes occur. . r .  lng 

compression ratlo results in increased peak combusticn presscre and tempera- 

ture  and this tends to increase the amount of NO produced. On the ather hand 
X 

the combustion interval i s  shortened (at least for this engine) a s  indicated by 

the smaller spark advances required for maximum efficiency. Decreased spark 

advance means the zombust~on gases a r e  a t  peak temperature for a shorter 

time, and hence there is l e ~ s  time for the KO to form. Apparently, the two 
X 

phenomena cancel each other and there was virtually no dependence of NOx emis-  

sions on compression ratio. 

Figure 92 is a plot of the unburned hydroca-bon emissions versus com- 

pression ratio. Again, HC i s  apparently not strongly influenced by compres- 

sion ratio. The amount of HC observed agrees with the values shown on 

Figure '75. 

The preceding discussion of test results has been somewhat non-definitive 

with regard to  what compression ratios a r e  feasible for the mixed fuels. Th; 

trends noted seem clear, but this is not the case for absolute v-ilues. The 

p.1-oblem lies in defining, from the experimentai data, the crit ical  compression 





Fig. 92- HC vs compressi.m ratio 

ratio. This difficulty is illustrated in Figure C3. Tbe three photos coxnprislag 

Figure 93 are  the combustion pressure, (uprer tracer as  i .hnctiop of time, 

for three different compression ratios, and are  taken from an oscilloscope. 

The lower trace is derived from the basic presscre signat and is 3sed for the 

knock measurements. 

Since the knock tests were condiicted with a gaso:ine haviag a research 

octrac numbrr of 97, it waa expected that operation at a ctxnpression ratio 

of 8.6 would exhibit no knock. However, associated with the upper pbso was a 

KM vabt of t3 and a K P  of 12 (i. e., during 12% of the engine cycles, some 

indication of knock was detected). The lower eoto,  compression ratio of 10.3, 

shows clear evidence o: knock. The center photo is apparently exhibiting knock. 





The pressure trace appears to show a knock that is stroager t h a  for compression 

ratio of 8.6 anci 'his i s  borne out by the KM wlue of 16. Nose that the ceaCer 

photo correspaods ta the knee of the curve in Figures 82 and 90, and it might 

be argued that the knee is aa indicatioa of the onset of knock. The questim, 

which is unanwered, is what causes the acoustic excitation shown in the upper 

p)l.rto? Did this result from a detonation or n s  it triggered by some *her 

source? 

d. Coaclusims 

I I Increases in compression ratio'are possible for ultra-Ieaa comhs -  

tior,. Raising the compressioa ratio to -10 should be feasible. 

2 )  Thermal efficiency increases with increasing compression ratio, 

as expected. 

3) NOx was a& adversely affected by increased compressim ratio, 

but neither was i t  helped. 

4 There was no significaat effect of compression ratio oa unburned 

kydrxarbons- 

S i  For a given compression ratio. a knock magnitude is inversely 

proportiozml to the amount of hydrogen in the fuel mixture. 
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SECTION III 

AXALY TICAL WORK 

In this sectioa of the report, the andytkal work performed rill be 

described a d  the results  of these analyses presented. The work statement 

tasks  which will be discussed in this section are Task B. Definition of System 

and Operational Characteristics, Task C. Thermodpamic  Cycle Analysis, and 

Task F. Estimation of Performance Potential a d  System Capability. 

T o  perform these tasks,  th ree  interrelated analytical models were 

developed a d  will be described. The f i rs t  was a model of what is termed the 

Hydrogen-Generator Subsystem. It aggregated the  operating characterist ics of 

each of the auxiliary components necessary to the hydrogen generator (for 

example. the air compressor  a d  air compressor drive train) and prsvided an 

estimate s f  the additional loads the rrlbsys2em would impose on the engine. In 

addition to making these estimates for a se t  of performance assumptions cor  re- 

sponding to  a nominal case,  hounding cases of minimum and maximum loads 

were estimated. 

Next these estimates of hydrogen-generator subsystem auxiliary loads 

as a function of hydrogen generator flow rate were combined inti, the second 

model. This system model pravided an estimate of enginel hydrogen gene ra tor  

~ u t p u t  and i=qx production ra te  a s  a function of three primary variables: 

Gasoline flowrate to the enzine. 

* Gasoline flowrate to the hydrogen generator. 

Ai r  flowrate. 



The output of th is  model was  a prediction of brake  specific fuel 

consumption and brake specific NOx emiss ions  as functions o' brake  mean 

effective p r e s s u r e  (BMEP) and engine speed (RPM). The effect of chzarges in  

the performance of e lements  of the sys tem on fuel consumption and NOx emis -  

s ions could then be predicted using this  model. 

The third model w a s  a simulation of the FrCtral Urban Driving Cycle 

(FDC). It used the output c g f  the sys tem model o r  measurements  made on an 

engine dynamometer to es t ima te  vehicle performance over  the driving cycle 

and to predict  fuel consumed and NQx produced. 

The portion of this  section. discussing the work performed under Task  C 

of the statement of work, will desc r ibe  these  models i n  m o r e  detai l  and will 

corr.pare the i r  output with measured data. The descript ion ,f the work per- 

formed under Task F will d i scuss  the predictions of these paodeis ma& for  

assumed improvements in  sys:em performance. 

B. DEFfilITION O F  SYSTEM AND OPERATIONAL CHAR ACTERXSTICS 
( E P A  TASK B) 

1. Introduction 

The ~ b j e c t i w  of the work performed under this task was to define a 

vehicle systen: using the hydrogen-enriched fuels  concept and to  es t ima te  the 

performance of elements of that system. In this  section of the report,  the 

sys tem and subsystem will be  described. The e lements  of the hydropcr- Ron- 

e r a i o r  subsystem will be iderltified, the i r  operation described. &. => t h i r  

assumed performance pa ramete r s  discussed. A model of the h+. 'r :get cr,er.- 

e r a t o r  subsystem was  developed to integrate these e lements  of t're hvdr9gen 

genera tor  subsystem. The output of this  model was an .?stirnate of the loads 

the subsystem imposed on the engine a s  a frnction of hydrogen genera tor  flow 

rate. A description of this  model and it; ou tp -~ t  is presented in  this  section. 



2. System Description 

The block diagram of the hydrosen gcneratorlengine system is shown ia 

Figure 94- This system i s  made up of arr engine and a hydrogen generator sub- 

system. This generator subsystem provides the engine with a hydrogen rich 

product gas  to  promote l e a  operation and taxes the engine for the power 

needed to drive the a i r  compressor and fuel p-amp supplying fluids to the hydro- 

gen generator. Also included in the hydrogen generator subsystem are the 

sensors  and control elements necessary to caatrol  the hydrogen generator flow 

rate. 

Examination of the elements of 'be system will be accomplished by follow- 

ing the individual fluid flow paths. 

a. Fluid Flow Paths 

(1 1 Engjne Fuel F~GW Path- h e 1  flow to  the eng'se is pro- 

vided by a variable speed, pcaitive displacement, electric motor-driven fuel 

pump. This electric puny zeplaces the stock mcchafifci\ pump t o  providr pre- 

c ise  knowledge az4 ccntroi of fuel flow to  the enginz. 

( 2 )  Generator Fhel Flow Path. Hydrogen generator fuel - 
flow control is obtained from a pump similar  t o  the engine fuel pump and sized 

for  the much s m a u e r  g t ~ e t a t c r  subsystem fuel flow rates. Generator fuel i s  

p ~ m p e d  through a start!run valve t o  either the generator burner pressure- 

atomizer o r  the fuel vawrizing heat exchanger. The pressure-atomizer flow 

path is used during initial engine start-up only. Switchover t o  heat exchanger 

3peration occurs when hydrogen generator product gas temperatures are high 

enough t o  permit  fuel vaporization. 

(3) Generator Air Flow Path. Generator subsystem air 

flow is provided by a variable speed air compressor powered by an engine 





V-Llclt driven hydraulic pump/motor assembly. The hydraulic motor is 

directly shaft-coupled to  the compressor. 3 ~ r n p r e s s o r  discharge airflow 

rate modulation is achieved by varying hydraulic motor speed by controlling 

the hydraulic pump by-pass valve. 

Airflow discharging from the compressor  is measured with an orifice- 

type flow meter  to  provide a feedback signal for system controls. Compressor 

discharge flow then conttnues t o  the air heat exchanger where the a i r  is pre- 

heated to  500'F by heat exchange with generator product gas. 

Preheated air is directed through the check valve into a transition 

soction where mixing with vaporized fuel occurs. This mixture discharges t o  

the generator bt. .er section, and subsequently to  the combrustion/reaction 

chamber. The reacted, high temperature hydrogen-rich product gas then flows 

through the fuel, a;-, and coolant heat exchangers, decreasing t!!e product gas  

temperature tc approximately 500'F a t  the generator discharge port. Cooled 

prodcct gas is ducted through a filter and subsequently discharged to  the engine 

induction system mixing manifold. 

(4) Engine Air Flow Path. Engine airflow is controlled by 

a driver actuated throttle position. Soth throttle position and engine airflow 

a r e  measured to  provide input command signals for systam controls. 



( 5 )  Generator Coolant Flow Path. A generator coolant flow 

Loop is required t o  reduce product gas  temperature to ar, acceptable level s o  

that: 

Engine volumetric efficiency penalties a r e  . ninimized. 

Exposure of downstream components to  excessive temperatures 

is precluded. 

Auto-ignition of the engine fuel is prevented. 

Although othcr methsds of reducing product gas temperature may be 

feasible, tile cooling heat exchanger is considered one practical approach 

because it permits  low-cost, near- term implementation. 

Generator coolant flows from the high pressure ,  low temperature side 

of the engine cooling system, through a thermostatic flow control xralve (wllich 

regulates coolant temperature to  ZtO'F a t  the coolant heat exchanger discharge 

port), and then i s  returned to  the  high temperature,  iow pressure  tide of the 

engine cooling system. 

b. Estimates of Component Performance 

T o  estimate the effect of the accessory loads on system operation, 

typical performance properties for these major  components were aggregated 

in an analytical representation of the hydrogen generator subsystem. The out- 

put of these analyses was an estimate of total accessory losds imposed on the 

engine as a function of hydrogen-generator flowrate (Figure ?=I). 

In this section, the performance properties used for each of the major 

components will be individually described. 
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Fig. 9 5 .  Auxiliary power requirements 



c. Component Hardware  Description 

(1) Hydroget1 Generator .  The  b s i c  components of the  

hydrogen genera tor  coas is t  of the  burner  ssc.tion, reactov,  combustion chamber ,  

and t h r e e  integral,  compact  heat  exch Anger s. 

During steady-state operation. tl.~e genera tor  provided (by the catalytic 

par t ia l  oxidation of gasoline i n  a i r )  hydrogen yields in the  product-gas s t r e a m  

controllable between 0.5 and 1.5 lbmihr .  

Extensive development and testing ~f 'nydrrjgcn genera tor  units  at 3FL. 

under NASA sponsorship, has  provided a brer-d data b a s e  upon which tne  p e r -  

formance cha rac te r i s t i c s  of the  prcposed unit can be estimated. Section 11. B. 

described the  genera tor  p e r f o r ~ ~ l a n c e  pacameters ,  gas  composition, teinpera-  

ture,  and p r e s s u r e  over  rhe complet5 steady-state operational enve!cpe. 

It  has been demonstrated,  .~xper imenta l ly ,  that  c)tL~mum yield, soot less  

production of flycirogen g a s  i=. achieved when e p r a t i n g  at an  a i r j f u e l  r a t io  of 

--. 27 (equi*ralence ratio, pG, equal t o  1.75). 

Table 5 comp;..res the  t?-eoret ic~i  hydrogen-generator product-gas c.xn- 

position with the act~xai  gas  compositior. obtained a t  a tv;; ,a1 operating point. 

Averaged product gas  com~;os i t ion  obtain+ ~ v e r  the  :ange of flowrates was 

used for  the  purpose of systew. gerfcrmance  pre?.~cctios and analysis.  

(2) Compressor .  Variatian of the  speed of a centr ifugal  

o r  vaned type a i r  compressor  was used to  provi8e the  necessary  variat ion in 

hydrogen-gener;t:r subsys tem a i r  : l o w a t e  and p ressure .  Representative 

compressor  performance cha rac te r i s t i c s  were  cofistriicted f rom dimensior-less 

data presented in Ref. 8. d igure  96 shows the resultant  compressor  pe i for-  

mance  map  f rom which overai! compressor  efficiency was predicted ior the  

range of anticipated sys tem o p e ~ a t i n g  p r e s s u r e  ra t ios  and flow-rate functions. 



Table 5. Catalytic hydrogen- zenerator output com?o7itian 

The campressor was oversized slightly to  obtain impravt-d design 

efficiencies when operating a t  maximum hydrogen demand flow (1. 5 lbm/hr).  

Thls ;mpro**ement resuits from tl:e typical increase in cc - tprrssor  efficiency 

experie'lced a s  design flowrate is decreased from maxin-dm to nominal at 

constant p?essure ratio. 

Maximum predicted compressor efficiencies range from 67% to 78%, 

whit% is c~ns ide red  conser-.*ative for devices of this kind. Table 6 presents 

compressor predicted performance for the anticipated operational envelope. 

(3) Hvdraulic Pump and Motor. The hydraulic motor was 

assumed driven by a hydraulic pump, driven in turn by V-belt power from the 

engine. Characteristic hydraulic pump performance i s  shown on Figure 97. 

This curve was conservatively scaled down by app -xlmately 10% from pump 

performance data presented in Ref. 9. 
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Fig. 96. Typical compressor performance 

Table 6 -  Required cGmFressor performanc - for 
operatior-a1 envelope 

Hydrogen flowrate 
(IbIhr) 

i 
1 1.0 

2 

Compressor efficiet~cy !qc; required 
for various z n?,~ent temps. 

1 2 0 ' ~  

0.61 

0.74 

I 
I 

:. 3 0.74 -- - -- - 
I 

60'9 -25 'F 

0.59 0.45 

0 -  75 



Fig. 97. Typical ndraulic pnq performance 

Figure 97 perfoimance data were also assumed to be valid for +he 

hydraulic motor. except that maximuii efficic~cj was estimated at 70% iasterd 

cf 80%. The values shown were, therefore, ma;tiplid by 0.875 to Main 

hydraulic motor tf,c';;ency. 

(4) Heat Exchaqgers. Product gas temperamre at S- 

reactor chamber u i t  p?me i s  dependent on it'et plane airffuel ratio, nlixiui~ 

temperature, a d  fl~wrata. Based on test results. steady state product go* 

tenlperatures for the range of required h;-drogen-yield flowrates and A / F 

mixture ialet temperatures ai ,- presented ir- Table 7.  



Table 7. Estimated steady-state hydregen-generator 
reactor cbarnber discharge terqeratures 

AS cda be s u n .  +he produd-gas exit temperature -s in the range of 

1500' F to 1850'~- As described above. this temperature is rduced by using 

product gas heat to preheat 2 5 e  com€ustim air aad to vaporize a d  preheat the 

combustion gasoline- These operations do not require enoupk neat to rtr:sce 

the product gas temperature belor 500' F. S c h  a rdict ion was desirable 

f r m  the standpoints of improving volwetric efficiency, of reducing the prob- 

iems azz~=i=t,d with corrinent -sure to high temperahi es. and of 

eliminating a-y safety hazard that .might e-xi st. Zn fhese analyses. this was 

accomplished by assuming that this excess heat wa? rejected tc engine 

cooling system. 

Heat-uchaqer perfozmnce is expressed in  terms of effectiveness, t ,  

which is acf'iied as the ratio of the a c t s 1  rate of heat transfer to the maximum 

possible rate --f heat exchurge- Maxim~m heat exchange would be obtained in a 

Eydrogen flowrate 
(lbfhr) 

0.5 

1.5 

perfectly indated  carnter floa heat exchanger of infinite hut-transfer area. 

Heac-exchanger effectiveness rektions are: 

, 

Reactor chamber dischrge 
tr&perature 

Fuellair mixture tanp. . ' F 

Ch 
t = -  T ~ i n - T ~ o u t  -= - -- - cc 'C out - 'C in 

C ~ I N  'H ..;- * - 
\: iq C~~ =ii in  'C in 

@ 4% 

1570 

1770 

@ 5% 

1630 

1830 - 



where: 

CH = mH - cp Hot-side heat capacity 

Cc = m - cp Cold-side heat capacity 
C 

Cum = smaller of CH and Cc 

TC = temperature of cold side 

TH = tanperature of b d  side 

The efiectiveness method allows defiini%iom of hut-exchanger performance with 

a minimum of required test data =id calcirhtion steps since logarithmic or 

mean temperature d i f fers -es  are not i;r~-.-cd- Definition or calculatioa of 

oversll heat-transfer coefficients can be avoided daea effectivenesc is 

e-2-essed as a function of the hot and cold side fluid flow rdcea- 

A typical compact h u t  cxckanger effect-i=-raess -7.q oWained from 

Ref. I is sham on Figwrt 98. Sorr-e of the c t rves  shown are steeply sloped 

with maximum e~fectiwencss o b i z e d  at low vahes of ha-s ide  f l w .  The shape 

of such a curve 5s rc~resenta t lve  of a heat u c b  3ger &re bi&h performance 

is desired and achievr-  with h r g e  hut - t ransfer  rrcrs cornbiaed with a high 

Reynolds N--kr and fullv develop*i turbulazt _ow- H;ah performance, how- 

ever, LS usually comprom;oed by the weight and -ing l ~ s s  penaities associ- 

ated with these large areas  a ~ f  high Reynolds Nunbers. 

The effectiveness curve obtain&- ircm tezts of a preliminary version of 

the a i r  h u t  exchanger is presented in Figure 99. Tbe stape of this curve and 

the ?OW masimum r q u i r c d  efk t iv*ness  (only 47%) indicates that a high per- 

formance kcat exchanger is nr;? required tor this applicatio~. 

Figure 99 also presents predicted effectiveness curves required for the 

f :el, air ,  and cwlant production heat exchangers. The predicted curves 

similarly show that relatively high performance is not requireti. The 



Fig. 98. Compact heat-exchanger typical performance 

production heat e x ~ h a r ~ g t r s  are ,  therefore, tlrpcted to be low cost, light 

weight, a d  easily fabricated c o w a c :  units- 

The predicted heat-exchanger performance of Figure 93 was obtained by 

constructing faired curves through the effectiveness required a t  design-point 

flow a d  temperature coaditioaz. 

Heat-exchanger desicn gnals include fuel vaporization, a i r  preheat, aad 

product gas coding +ile simultaneously limiting the reactor chamber tem- 

perature to  a region where optimam hydrogen yields a ~ e  obtained. Figure 100 

shows tke resulting steady -state heat exchanger discharge temperatures when 

&e effectiveness curves of Figure 99 a r e  used over the system-design, 



Big, 99. Hydr~qen-generator heat-exchanger required performance 

enve!ope- These temperatures show- close agreement rith design requirements. 

demonstrating that an acrive temperature control system is not required. 

3. System Pressure Losses 

Table 8 presents the predicted pressure loss factors for the hyarogen- 

cenerator air-flow circuit- These loss factors z *  present the dissipation of 

total pressure head due tc friction and to the losses associated with sudden 

enlargements, contractions. and turns of the air flow stream. The hbuls.tea 

factors. K, can be used to calculate system pressure rlrcp witk either the 

compressible flow dynamic head approach or by usinq ?anno Line relations. 

The dynamic head : pproach was used for all the calculations in this strrdy. 
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Fig. 100. Hydrogen-generator heat-exchanger 
estinii.ted discharge temptratur 2s 



Table 8. Estimated pressure loss factors for 
hydrogeri-generator air-flow path 

4. Gas Filtration Provisicns 

The system design includes provisiori for the filtration of product gas. 

Such a filter may not be necessary, however, i f  the production generator itself 

dewonstrates acceptable cocfainment of contami~.~nts that might be introduced 

to the discharge gas stream in the event of an upst:exa failure. This filter 

could be either a flow reversing type or a s ~ n p l e ,  wire z-lesh, low-pressure 

drop screen System analytical performance pt dictions include a conserva- 

tively large filter loss factor of 6 dynamic velocity heads to provide for the 

se:ection of a high-pressure drop device. 
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Description 

Compressor 
Discharge 
to Air HX 
Inlet 

Air HX 
Inlet 
to /  ene era tor 
Discharg~ 

Generator 
Discharge 1 to 
Carhre tor  

Item 

Six 90. Bends a t  
K = 0.3 

2 A. of Sched. e0 
Tubing 

Flowmete r 

Hydrogen Generator 

Eight 90 ' Bends at 
k = 0.3 

2.5 ft. of 1" I.D. 
Tubing 

Filter 

K = -- 
qc 

1.8 

0- 96 

1.0 

5% 
K + Safety 

Factor 

1.89 

1.01 

1.05 

K T ~  = 3.95 ~ 4 . 0  at 
Area = 0 -  195 sq. in. 

K = 32.4 at 
Area = 0.1% sq. in. 

2.4 

0.6 

2 - 5 2  

0.63 

6.0 6.30 1 
KTOT = 9.45 9.5 at 
Area = 0.785 sq. in. 



5. Subsystem Model 

These component perfcrmance pror+erti_os were combined in a model of 

the hydrogen-generator subsystem which produced an estimate of tile accessory 

loads imposed on the engine as a function of hydrogen-generator flowrate. 

This estimate m s  shown earlier in Figure 95. 

To  assess the influence of changes in these performance properties, 

bounding cases  in which these properties were modified as indicated in 

Table 'r were calculatc3. The results  of these calculatic?.ns are included in 

Table 9 and are labeled "maxirm~m" and "minim.~m". 

6. Cotrc!usions 

Based on these calculations, it i s  concluded that the accessory loads 

imposed on the engine will be in the range o f  G. 5 Hp to  2.3 lip. 

The effect of these accessory loads on system pertbrmance will be pre- 

sented as part  of the description of Tasks C and F, which follow. 

C THERMODY NAhiIC CYCLE ANALYSIS (EPA TAX< C )  

1. Calculation Scheme 

The i~troduct ion of a hydrogen generator requires some modification to 

the ordinary methods of ca1culati;lg the performance aad e m i s s i ~ n s  character-  

istics of a spark ignition engine. This sectian mill describe the meti~od used in 

this work to  analyze the hydrogen genera'or,' mgine system. Some comparisons 

of the analysis results with i es t  d?ta will b= given to provide cc -ddence  in the 

analysis method. 

The operating chz-acter~.=tics c - the hydro-en kenerator which was used 

in the hydrogen genr ta tor  l engine analysis were b a s ~ d  -rl the data from the 

catalytic generator cparacterization t?sts i e p o r t d  in Catalytic Wdrogen 

Ger orator CharacterizationRbrt  Up Te. ts ,  Sectic n 11-B of this report. For 





the hydrogen flowrates considered (0.5 lbmihr  t o  1.5 lbm/hr) ,  the average 

prdlrct cor~posi t ion from the generator i s  tabulated below for a generator 

Over the range o i  hydrcgen flow rates ,  the generator requires ar. average of 

8.41 lbm of gasoline for  every 1 lbrri of hydrogen ;in the product gas. The:;e 

average quantities were  used in all the analyses since only minor dcviatiol-s 

frorri these values F ,a cbsetved in the generator component tests .  

In engines op ?rating on gasoline, the equivalence ratio is used as the 

meastxre of leaness and provides a reasonably good correlation cf NOx emis- 

sions. The equivalence ratio is not a s  useful in e n g i ~ e s  running on generator 

products o r  mixtures of generator products and gasd ine  since it fails to 

properly account for the effect ~f the diluents ir- ;.h.? product gas  i rom the 

generator. Better correlation of therrr.al efficiency and EtO emissions data 
X 

from engine dynamometer t es t s  of the geuerator/engine system was obtained, 

using an effective equivalence ratio. 4;, which accounts for the dilution effect 

in an approximate way. a s  iollows: 

equivalen.:e i-atio, 9 of 2.75. G ' 
1 

Hydrogen-Generatcir Averzgc c-??rlr Somposition 
2 

Volume P e t  cent 

21.22 

1.11 

CO 

C02 

23.24 

1-05 

52.05 

- 



where: 

Cg = stoichiometric h e i l a i r  for gasoline 

GG = stoichiometric h e l i a i r  for itk component of the generator 
i product gas. 

ril = a i r  flow ra te  t o  engine a E  

m g ~  
= g a s d i n e  flow ra te  t o  engine 

rhG = fiow ra te  of ith component of the generator product gas  t o  engine 
1 

C = combustibles 

KC = non-combustibles 

Combustion of a fuel is possibie only over the range of fuellair  for which 

the fuel is flammable. The generator product g ~ :  has a m ~ c h  lower lean flam- 

mability limit than gasoline becacse of the hydrogen conclencration in the product 

gas. This permits  the generator product gas  to  be bcrned at  a lower equivalence 

ratio than gasoline LO help in  controlling NOx emissions. The lean f i a m a b i l i t y  

l imit  of mixtures of generator gases and gasoline piaces a n  operaticg ccwnstraint 

on the generator I eng. ae svc,telt. Using Bureau of Mines flammability data and 

LeChatlicri3 Rule for  computing the  flammability limit of mixtures, the  lean 

flammability l imit  for mixtures of generator gases  and gasoline wa:; calculated 

and i s  shown plotted in Figure 101. 

2. Constraints 

It is rarely  possible in practice to operate an engine a t  this calculated 

lean flamrn . bility limit. T1:eoretically , a3 the equivalence ratio is decreased,  





t he  t h e r m a l  efficiency of the  engine should inc rease ,  approaching the  air cyc le  

efIiciency. In a prac t ica l  engine, the  combust ion t i m e  i n c r c a z e s  and the c j c l e -  

to-cycle  p r e s s .  -e var ia t ions  i n c r e a s e  as the Ican-flammability l i m i t  of the fuel  

is approached.  T h e s e  f a c t o r s  comhinec! with cy l inder - to-c j l inder  equivalence 

r a t i o  var ia t ions  r e s u l t  i n  a d e c r e a s e  i n  i h e r m a l  effici-ncy, as the l ean  l imi t  is 

a p p r o ~ c h e d .  S'nce i t  is not d e s i r a b l e  t o  ope ra t e  l e a n e r  than the point where  peak 

t h e r m a l  eff ic iency is obtained, peak t h e r m a l  eff ic iency da t a  f r o m  engine dyna-. 

m o m e t e r  tests w e r e  used t o  e s t ab l i sh  a n  equipment  l ean  f l a w n u b i l i t y  l i m i t  f o r  

the  350-CID Chevrole t  engine used i n  t h i s  stady. Th i s  equipment  l e a n  l i m i t  is 

a l s o  shewn in  F i s u r e  101 d o n g  with the d a t a  cor responding  t o  peak efficiency. 

Another engine operat ing cons t r a in t  is the max imum volume flow r a t e  of 

c h a r g e  through the engine. Thi; i s  imposed  by the engine d isp lacement  and the 

wide-open-thrott:? (WOT) volumetr ic  efficiency, e of the  engine ai: any given 
Y' 

engine speed. The  WCT volumetr ic  efficiency w a s  a s sumed  to be  cons tan t  a t  a 

valae of a. 7 f o r  all the ana lyses .  F o r  a given effect ive equivalence rat io ,  th i s  

coris t raint  p laces  a n  upper  bound on  the allowable gasol ine flowrate to  the engine. 

3. Opera t ing  Reg ime  

T h e s e  two engine opera t ing  cons t r a in t s  he lp  define a n  avai lable  <-- rat ing 

r e g i m e  fo r  the  engine as shown in F i g u r e  102. The  engine csnrlot o p e r a t e  t o  the  

le f t  of the i ezn  l i m i t  constrair l i  without a l o s s  i n  t h e r m a l  e f f ic iency .  The  

engine breathing cons t r a in t  is shown fo r  a n  engine speed  of 2500 RPM and t h e  

min imum hydrogen flqw rate of 0. 5 l b m l h r .  Increas ing  t h e  hydrogen f lowra te  

d e c r e a s e s  the  avai lable  operat ing r e g i m e  o n  th i s  plot by shifting the  engine 

b rea t  ;ing cons t ra in t  down. F o r  a given engine speed  and  hydrogen f lowrate ,  

any operat ing point in  t h e  avai lable  operacing r e g i m e  can  be ~ b t a ' n e d  by cfianging 

the  engine ef iect ive squ!va?ence r a t io  a n d l o r  air throt t l ing ra t io ,  T. It  is 



Fig. 102. Operating rtgirne for generatotiengine system 
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desirr3le  to operate near the equipment lean limit since this leads to  peak 

thermal elficiency and helps minimize NO emissions, 
x 

4. Prediction Model 

The relationships a d  assur.~ptions used to predict the brake specific 

fuel consumptisa a d  brake specific NOx emissions of the hydrogen generator; 

tngiae system will now L,e desr:riberl. 

The product gas f rom the hydrogen generator subsystem will, in general, 

he a t  a higher temperature than the ambient air being inducted into the engine. 

For a given generator flowrate, a model of th2 hydrogen-generator subsystem, 

described in Task B, Section III. B-, was used to calculate the product gas  

:ernpcrature entering ?he engine. The product gas is assumed to thoroughly 

mix aith the gasoline-air charge in the intake manifald. An expressian for the 

mixture temperature, TM, was obtained by assuming steady iJow, adiabatic 

mixing of the two streams. 

= p a  = constant pressure  specific heat for air 

C . th = constant pressure  specific heat f o r  1 component of the 
p ~ i  generator product gas  

Ta = air temperature 

TG = temperature of generator product gas 

P = product gas  f rom generator 



The gasoline was assumed to  have a negligible effect on the mixeure 

temperature. 

An expression for eagine air-flow rate, m =S obfained by equating aE' 

the engsae pumping capacity to the flow of mixture to  the engine. 

T = air throttling ratio 

l = WOT volumetric efficiency 
V 

N = engine RPM 

VD = engine displacemen. 
- 
R = universal gas constant 

Pamb = arr?bient p ressure  

PC = molecular weight of product gas 

M = molecular weight of a i r  a 

mG = generator flow rate  

This equation includes the effects of mass  flow rate  and temperature of the 

generator product gas on the a i r  breathing capacity of the engine. The gasoline 

is assumed to  remain in an atomized state during the induction process and to  

have a negligible effect on engiae breathing. 

For  a given a i r  t5rottling ratio, engine speed, and hydrogen flow rate,  

Equations (2) and (3) can be solved simultaneously for mixtur t  temperature and 

engine a i r  flow rate. Once engine a i r  flow rate  is known, Equation (1) can be 

used to  calculate gasoline flow rate  t o  the engine for any given engine effective 



equivalence ra t io  which falls within the  allo*lrble operating regime desc r ibe  ! 

in Figure 102. 

The equipment lean flammability l imit  l ine can be represented by tbe 

following equation. 

where: 

ELL = equipanent lean limit 

= gasoline & l o r  r a t e  t o  genera tor  

m 
pE 

= gasoline flow r a t e  t o  engine 

F o r  sys tem operation a t  the equipment lean flurunability l imit ,  i: is necessa ry  

t o  solve Equat ic ls  (1 and (41 simultaneously t o  obtain t h e  engine gasoline flow 

ra te  and engine - ffecti.i-e equi\-alence ratio. 

In the  analysis.  i t  mas assumed that the  engine indicated thermal 

efficiency. % IE. could be adequately represented by a l inear  iunction of t h e  

engine effccti\-e eqrit-a:ence ratio. 

This  kind of relationship i s  predicted theoretically i f  t he  combustion t i m e  can 

be maintained constant ulrlle decreasing the  equivalence ratio. Hydrogen 

penerator,"engine data from engine dynamometer t e s t s  is shoun  along with th is  

equation in Figure 103. The assumed equation passes  through the  data at the 

higher equivalence ra t ios  and begins t o  deviate f rom the  data  a s  the thermal  

efficiency begins t o  d e c r e a s e  at  the  l eaner  equit-alence ratios. It i s  felt that 

the assumed equation i s  adequate to represent  the thermal  efficiency in the  





available operating regime for the engine and which i s  identified in F i i u r e  102. 

It a lso provides a means for evaluating the effect of eagine changes which per- 

mit efficient operation a t  leaner equivalence ratios. 

Once engine gasoline flowrate and engine ind~cated thermal efficiency 

a r e  known. the follouing equation aras used to  caiculate engine brake horse- 

power. B' 

uhe  re: 

- lower heating value of gasoline 

Q - lorer heating value for ith combustible component of generator 
gi product gas 

C - combustibles 

PF - engine friction and pumping loss horseponcr pluse horsepower 
required to operate hydrogen generator subsystem. 

Pumping and engine friction losses  rere based on da t r  supplied by GM for 

the 350-CID V-8 as shown in Figure 104. An average loss characteristic. mid- 

way between the WOT and closed throttle data, was used in the hydrogen gener- 

atorlengine rrmdel. The horsepower required to operate the hydrogen generztor 

includes the power input t o  the hydraulic pump/motor assembly in the generator 

subsystem and the additional power required by the engine water pump to provide 

the necessary cooling of the product gas from the generator. A model of the  

hydrogen generator subsystem was used to  calculate the pc ,trer 108s for any 

operating condition. 





The brake mean effective pressure.  BMFP, was calculated using the  

following equation. 

2 P ~  BMEP = - 
N V ~  

Using the results  of the above calculations, the brake specific fuel con- 

sumption, BSFC, of the hydrogen generatoriengine system can be calculated 

tot  a given engine speed. a i r  throttling ratio, hydrogen flouiiate. and engine 

effective equivalence ratio. 

+ m 
BSFC = .-. 

B 

where: 

m 
g E  

= gasoline flowrate t o  engine 

m 
gC 

= gasoline flowrate to hydrogen generator 

PB = engine brake horsepower 

Given the  hydrogen requirement, the gasoline flowrate to  the generator 

is known being an average of 8.43 Ibmlgasolinellbm hydrogen. 

Hydrogen generatorlengine data from engine dynamometer tests were 

used to  obtain the NOx emissions correlations used in the system anaiyses. For  

a hydrogen flow ra te  of 0.5 lbmlhr ,  the indicated specific NOx emissions. ISNOx, 

a r e  shown plotted versus  engine effective equivalence ratio in Figure 105. 

Similar correlations were a l so  available for hydrogen flow rates  of 1.0 lbmlhr  

and 1.5 lbmlhr.  The NOx correlation assumes  that Ismx i s  a function of the 

effective equivalence ratio and the hydrogen flow rate. There  i s  a need for a 

more  comprehensive analysis of the NOx data t o  evaluate the effects of other 



Fig. 105. NO emiss ions  charac te r i s t i c s  for  generatorlengine sys tem 
X 

factors such a s  engine RPM and thrott le  setting. This  would help identify 

better NOx correlat ion parameters .  Although s o m e  of the  data deviates signi- 

ficantly f rom the  present  correlat ion curve,  the  c o r r e l ~ t i o n  does  a;l adequate 

job of estimating the total  NOx emiss ions  over  the  urban driving cycle, which 

covers  a wide range of engine RPM and load conditions. Once indicated 

emiss ions  were  obtained f rom the data corre la t ions ,  the  brake  specific NOx 

emissions. BSNOx, w e r e  calculated using the  following equation. 



where: 

P -- power 

B = brake 

F = friction 

5. Prediction and Tes t  Comparison 

This semiempirical  model of the hydrogen generator/engine system was 

used to compile tables of brake specific fuel consumption and brake specific 

NO emissions a s  a function of brake mean effective pressure  for engine speeds 
X 

from 1000 t o  4000 RkiA. The results  of these calculations a r e  compared with 

engine dynamometer data for a hydrogen flowrate of 0 . 5  lbm/hr  in Table 10. 

It is necessary t o  ev:c uate the agreement between analytical, estirnate, 

and experiment. The analysis provides a reasonably good, slightly optimistic 

estimate of BSFC and a somewhat poorer, conservative estimate of BSNO 
X 

based on the following rationale. 

If the differences between the tes t  and predicted columns in Table 10 a r e  

averaged over all the listed RPM-BMEP combinations, the following results  

a r e  obtained. The average BSFC difference i s  -2.2% (analysis yields smal ler  

values) and the average BSNOx difference is +502 (analysis yields l a rger  

values), The agreement for individrral points may vary significantly from the 

average, but on t i e  average the analysis yields slightly smaller  BSFC's and 

much la rger  BSNOx's than were measured experimentally. The results  for the 

other two generator flowrates tested (1.0 and 1.5 lbmlhr  of H ) were similar. 2 

For the 1.0 lbmlhr  data, the average BSFC difference was -3.0% and the 

average B S W x  difference was 0%. F o r  the 1.5 lbmlhr  data, the average 

BSFC difference was - 1.1% and the average BSNOx difference +290%. Averhged 

over a l l  the tes t  points, the difference in BSFC was -2. 1% and the difference it? 

BSNOx was 105%. 
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Table 10. Comparison of t es t  and predicted results  for 
baseline engine (0.5 lbm/hr Constant 

Hydrogen Flowrate 

I BSFC prediction average e r r o r  for above comparison = - 2 . 2 %  I 

r 
BMEP 

! 4.90 

4i .46 

59. 87 

13.80 

32.35 

50.06 

65.47 

10.48 

19.92 

0.6291 

46.16 0.5494 

55.07 0.5119 

BSFC 

Tes t  

0.8876 

0.5279 

0.5054 

0.9031 

0.5736 

0.4990 

0.4698 

BSNO, 

Predicted 

0.7773 

0. SO36 

0.4578 

0.8477 

0.561 I 

0.4897 

0.4612 

1.1927 

0.7697 

Tes t  

0.42 

1.59 

0.77 

0.45 

l .OO 

1-98 

Predicted 

0.06 

0.53 

0.98 

0.52 

j 2.46 

4-64 

3.02 

6 -  53 

8. i 7  

0.6018 

0.5234 

0. -991 

9. ao 
16.26 

1 
3.52 

5.41 

8.97 

11.01 

13.75 

16.64 

19.51 

24. 37 

26. 39 

- - 1 7.8' 0.8" 1 1.24 

2.81 

4.16 

5.87 1 
64.70 j 0.4804 0.4811 10.85 I I i 
82.60 0.4580 1 0.4640 27.40 

I 
9.33 1.4042 1 , - - 1.53 

20.08 0.8556 0.8055 1.67 

30.73 0.6800 0.6538 2.26 

40.52 0.5826 I 0.3857 5.92 

0.7317 1 1-08 1.78 

83.23 

55.44 

68.18 

50.26 

64.33 

09.39 

0.5235 

0.4785 

0.6365 

0.5212 

0.4978 

0.5312 

0.5049 

0,5784 

jo/, 27.05 , >rediction average e r r o r  for above comparison 

10.56 

13.14 

a. 45 

0.4824 

0.5388 15.18 

0.5290 17.37 
i 

0,5122 j ZL. 



T h e s e  r e sd l t s  indicate  that  t he  ana ly t ica l  work i s  adequate  for  t h e  purpose  

of predicting pe r fo rmance  potential. T h e  fuel economy predict ions should be  

opt imis t ic  by  s e v e r a l  percent  while t h e  NO emis s ions  should be conse rva t ive  
X 

by a factor  of two. However,  i t  should be noted that s imply  averaging  d i f ie r -  

e n c e s  ove r  a l l  t e s t  conditions g ives  equal  weight t o  eack  BMEP-RFM combina-  

ti-n. T h e s e  ave razed  d i f fe rences  wo\ild not be app ropr i a t e  t o r  t h e  FDC s i n c e  

the  engine obviously does  not spend equal  t i m e  a t  all points in  t he  BMEP-RPM 

p!ane. 

A m o r e  meaningful es t imat ion  of t he  validity of t h e  analyt ical  techniques 

ove r  the dr iving cyc le  is given in  Tab le  11. Driving cyc le  calculat ions of fuel 

economy and NOx emis s ions  ,based on s teady-s ta te  engine dynamomete r  da t a  

a r e  compared  with ac tua l  vehicie  da t a  f r o m  c h a s s i s  dynan.ometer t e s t s .  T h e s e  

compar i sons  between exper iment  and calculat ion lead t o  slightly different  con- 

clusions than those  reached in t he  ?receding paragraph.  T h e  fuel economy 

\-alues of F i g u r e  107 show tha t  the  a g r e e m e n t  between expe r imen t  and ana lys i s  

Tab le  11. 'J'rban dr iv ing  cyc le  r e s u l t s  

! *All emis s ion  eqaipment  except  PCV disconnected. i 

- 

P a r a m e t e r s  

Stock m e a s u r e d  [vehic le -chass i s  dyno) 

calculated ( s teady-s ta te  engine dyno) 

Autotronics*-measured (veh ic l e -c ;~as s i s  
dyno) 

calculated (s teady-  s t a t e  engins dyno) 

F u e l  
Economy 

(MPC)  
- 

10.6 

12.11 

12.8 

13.82 

NO, 
Emiss ions  
(GMIMI) 

2.05 

2.16 

5.12 

5 . 5 4  



is on the order  8-145, krt still optimistic. The agreement for the  M, 

emissions is much closer ,  5 3 % .  and still coaservative. Of m o r e  significance 

a re the incremental changes aetweer two different engine configurations. 

engine coni ip~rat ions  (1) and i2). An incr :are in fuel economy of -21% was 

measured and an  increase  of -14% was ~ r e d i c t e d .  The change in NOx emissions 

-s predicttd to be 156% and the measured change was 150%- Thus, the foilow- 

ing conclusions concerning the  aaalysis methods used t o  predict performance 

potentid of the hydrogen enrichment concept a r e  offered. 

1) The absolute values of fuel economy are optimistic, but the  rela-  

tive change f rom the baseline engine is valid within 105. 

2 )  The absolute values of NOx e m i s o i o ~ s  a r e  conservative, but again 

the relative change i s  valid. 

A computer program t ~ l s  to simulate the 5PA urbafi driving cycle 

which is the standard tes t  cycle for evaluating automobile emissions- The 

program divides the  driving cycle into 1 -second increments and uses  t%e 

velocity profile. vehicle inertia, rolling resistance and drive t ra in  losses  to 

determine the required engine brake mean effective pressure  and W M .  Tablzs 

of brake specific fuel consumption and brake specific N9 emissions a s  func- 
X 

tions o i  brake m.em effective pressure  and engine RPM were csed t o  establish 

the fuel consumed and NO-_ emissions produced in  each increment of the cycle. 
A 

The results for each increment were then summed to obtain the miles per gallon 

and emissions for 'he cycle. The tables of brake specific fuel consumption and 

brake speciric emissions needed in the m ~ d e l  c r n  be based either on steady- 

state engine dynanometer data o r  on results  of the hydrogen generator/engine 

system model. 



A # ~ r d  model used in this study ums the  Siumberg-Kwnrr es cycle 

analysis program. The pmg  r a m  incorporates the modified Zclciovitch kinetics 

mechanism for NO prcductim into a general  thermodyeamic analysis of a 
X 

spark-ignited internal ro rnk~s t ion  eagiire cycle. It is possible t o  predict 

quantitatively the NOx emissions, mean effective pressure,  hors  e p o a t r  , 

specific fuel consumption, and t h e r n u l  efficiency as a fuaction of fuel type, 

equivalent ratio, percent exhaust ga s  recirculation ( EGRJ, compression ratio, 

intake manifold temperature a d  press;lre, RPM, cornburtion = .terval, and 

spark advance. 

The Blurnherg-Kummer rnoie! -.vas used t o  provide a theoretical basis 

for the thermal  efficiency r e l a t i on~h tp  used in the  hydrogen gcneratoriengiae 

analysis. The effects of cornpressian rzm.io changes on 5 e l  cansumption and 

NO emissions were alsc. estimated using this m de!. 
X 

D. PERFORMANCE POTENTIAL AND SYYTEM CAP ABfLITY (EPA TASK F) 

1. Introduction 

Using the engine dynamometer data from the hl-drogcn peneratorlengine 

t ~ t s  reported tn Section ii C, and the ar.alysis techniques described in Sec- 

tion IIL C, tile potential of the hydrogen ger.erator/engirze system w a s  etaluatad 

based on the iean perCormarce o i  the 350-Ci3 Clrevrolet V-8 used in this stuciy. 

Four control strategies were  considered: three  constant hydrogen flow r a t e  

cases ,  and one variable hydrogen flow-rate strategy, The serlsit~vity at fuel 

cousumption and NO ernis5ions to  the paras i t i t  loads imposed by thc hydro6cn 
X 

generator subsystem were studied. Thn effects of in=re;sed sompression ratio 

and improved lea81 l imit  operation of the V- 8 on <he hyr' rogen gent ra tor  /engine 

system performance were also e~-alualed.  



2 .  Control Strategies 

The clmtrol strategies considered carr be explained using Figure 106, 

which shows the engine breathkg constraint and equipment lean ? h i t  corrstraint, 

The most desirable uperat:ag points for the hydrogen generator/cngine system 

Lie on the lee boundary of the operating regime since this leads to the highest 

*herma1 efficiency a d  helps cantrol NOx cznissions. For the ccnstant hydrogen 

flow-rate strategy, tSe system operat=s along path ABC with one hydragrn 

flowrate. For  maximum engine p.r.cr, the  engine operatirrg p i n t  corresponds 

to  an eqraivaience ratio ol 1.C and wide-open-throttle (WOT) represented by 

 pi^+ -4. P,;wrer mtput  i: reduced by eqaivalence ratio throttling along line AS. 

the WOT engine cocstramt- Further reductions in poac r  a r t  obtained lq oar 

Fig. 106. Generatori  engine system c o n t r d  strateby 
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and equivalence ratio throttling 210i:g line BC, which is also the equipment 

Ieaa-limit constraint. 

Fo r  the r k b l e  hydrogen flowratc stt ategy, the  hvdrogen generator 

Cowrate is assumed to vary over the range nTcessary to  supply from 0.5 to  

1- IS lbm/kr  of hydrogen to engine. Again this control strategy can be repre-  

sented by the  path ABC in h g u r e  !%. For maximum power, the engine operat- 

ing point c o r r e s p a d s  to  a n  equivalence ratio of 1 - 0 and WOT aith the minimum 

hydrogen-getaerator flaw-rate- Power is reduced by equivalence ratio throttling 

along line AB d i l e  maintai?ing WOT and minimum generator tlowrate. When 

the equipment lean limit is reached at point B, further power reductions are 

obtained by moving along line BC by iacrcnsicg hydrogen generator flowrate 

and decreasing engine gasoline flow rate  while maintaining W@T- This operat- 

ing mode continces until the maximum hydrogen generator flowrate ia reached 

at p i n t  C. F ~ r t h e r  power reductions are obtained bj air throttling while 

simultaatausly reducing hydrogen generator flowrate and engine gasoline flow- 

rate to maintain operation at point C. For the variable flow-rate strategy, the 

generator is assumed t o  respond instantaneously to  changing hydrogen demands. 

3. Nominal FDC Performance P rediction 

Using a constar;: hydrogen flow-rate control strategy and fuei consumption 

and emissions data from engine dynamometer tests, the performa-tce of the 

hydrogen generatorlmgine system over the urhan driving cycle was estimated, 

using the driving cycle computer sirnulati03 program. The results  of these 

calculations a r e  given iq Tabie 12 along with s imilar  results  for the stock 

engine and the katotronics-modified engine running on gasoline only. 



Table 12. Predicted urban driving cycle performance 

The resrilts for hydrogen flowrates of 1.0 and 1.5 lbm/hr  a r e  not given since 

the BMEP/RPM range needed on the federal driving cycle IFDC) cannot be met 

satisfactorily with these flowrates becaise  of the high heating value of the 

generator products. The case using 0 .5  lbmfhr  of hydrogen shows a 16.8 per- 

cent improvement in fuel economy and reduced NOx emissions when compared 

wirh the baseline stock engine. 

4. FDC Performance Predictions with System Losses 

Several components in the hydrogen generator subsystem require power 

inputs from the engine for their aperation. Calculations were made to  a s se s s  

effect of these parasit ic losses  on generator/  engine performance. The 

fiominal hydrogen generator parasitic loads were defined in Task B, Sec- 

tion 111. B., a s  a function of generator flowrate. A range of load requirements 

for each generator component was considered to  determine the sensitivity of 

system performance to  variations in these parasitic loads. The load variations 

i 

NO, 
Emissions 

GMlMI 

2.16 

5.54 

1.29 

Parameters  

Stock engine 

Autotronics-modified 
engine 

Hydrogen g inera tor i  engine 
0-  5 lbmlhr  hydrogen 

NOTE: Predictions used engine dynamometer data. - 

Fuel Economy 

MPG 

12.11 

13.82 

14.14 

Percent  
Improvement 

0 

14.1 

16.8 



considered were given in Table 9. Because system performance is insensitive 

to heat exchanger effectiveness, no variation in tnis parameter was considered. 

Using the fuel consumption and NOx amissions crlculated with the hydro- 

gen ge~*rator/engir?e system model, the system perf-rmance over the urban 

driving cycle ~ 3 s  calculated nit3 the driving cycle conputer  simulation program. 

Results for the cur  ren; tngine a r e  shuwn in Tablc 1 3 for 0.5 and 1.0 llxn/hr 

hydrogen flowrates and for t ! ~  variable hydrcsen flow-rate control strategy. 

Results a r e  given for no paras;+ic loads, min i i~um,  nominal, and maxi- 

mum parasitic loads. For  the range of parzsitic loads con+i4ered, there i s  no 

significant effect on fuel consumption and NOx en.issions af the system. 

The case corresponding to a hydrogen flowrate a; 1.5 lbmfhr is r.ot pre- 

sented since the BMEPlRPM range needed for the driving cy-.le cannot be 

Table 13. Effect of hydrogen generator parasitic loads on urban 
driving cycle performance 

1 r 

Configuration 

Engine 

Baseline 

Baseline 

Emissions NO, 

(GMIMII 

1.30 
0.86 
0.43 

1.38 
0.97 

Baseline 

Baseline 

Fhel Economy 

Generator 
System 

No Penalty 

Min Penalty 

MPG 

14.69 
14.09 
14.43 

14.47 
14.60 

0.50 1 
1-38 
0.98 

I 
0.50 

1.38 
1.00 
0-51 

Hydrogen 
Flow 

(lbmlhr) 

0.5 
1.0 

Variable 

0.5 
1.0 

Nom Penalty 

M u  Penalty 

Percent 
improvement 

21.3 
23.8 
19.2 

19.5 
20.6 

14- 06 

14.11 
14.58 
14.04 

14.25 
14.52 
1 3- 99 

Variable 

0.5 
1.0 

Variable 

0.5 
1.0 

Variable 

16.1 

19.0 
20.4 
15.9 

17.7 
19.0 
15.5 



provided by this generator flowrate. The variable hydrogen flow- rate strategy 

used the entire hydrogen generator flow rate range from 0.5 to  1.5 lbm/hr of 

hydrogen. 

5, FDC Performance Predictions with System Improvements 

T o  further assess the potential of the hydrogen generatorlengine system, 

the effects of increased compression ratio acd improved equipment lean limit 

on system performance over the urban driving cycle were evaluated. The two 

lean-limit improvement cases considered are shown in Figure 107. For  a 

given fuel mixture, these cases represent a movement of the equipment lean 

limit 50 percent and f 5 percent of the distance (in 4) from its current value 

toward the calculated lean limit for the mixture. The driving cycle results  for 

these cases  are given in Table 14 considering nominal parasitic lcads. 

Fig. 107. Two I t  7n-limit improvement cases  considered 



Table 14. Effect of engine tmprovtments on urban driving 
cycle performance 

Improvements in the equipment lean l imit  of the Autotronics-modified 

engine have been demonstrated in  work sponsored by the Department of 

Transportation Systems Center. Ref. 10. using gasoline a s  the fuel. Modifica- 

tions were  made to reduce combustion duration by increasing combustion 

chamber turbulence and improving the ignition system for  lean mixtures. The 

peak thermal efficiency for the improved engine operating on gasoline occurred 

a t  an equivalence rat io of 0.75 compared with the 0.85 equivalence rat io for  

the Autotronics-modified engine which was used for the hydroqen generator /  

engine data previously discussed. Performance improvements s imi la r  to those 
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Con figuration NO* 
Emia s ion s 

GM/MI 

0.27 
0.85 
0.27 

0.29 

Hydrogen 
Flow 

( lbmlhr)  

0.5 
1 * 0 

Controlled 

0.5 

Engine 

Lean Limit  
Imp roved 
50% 

Lean Limit  

f i e 1  Economy 

0.86 
0.29 

0.17 
0.71 
0.17 

3.20 
0. 70 
0.20 

Generator 
System 

Nom Penalty 

Nom Pe.-alty 

I Imp raved 
7570 

Compr. 
Ratio = 
1O.O:l 
Lean Limit 
Improved 
75% 

Compr . 
Ratio = 
10:O:l 
Lean Limit 
Improved 
7 570 

A 

I 

MPC 

14-9: 
14.85 
14.56 

15.07 

*Relative to the stock 1973 vehicle which was used for thin program. 

t 
Percen t  

Improvement 

23.1 
22.6 
20.2 

24.4 
23.3 
22.5 

30.2 
30.7 
28.5 

27.7 
27.3 
25.5 

I 1.0 14.93 
14.84 

1 5.77 
15.83 
15.56 

15.47 
15.41 
15.20 

I Controlled 

No Penalty 

Norn Penalty 

0.5 
1.0 

Controlled 

0 . 5  
1 1.0 

Controlled 



demonstrated with gasoline should be realized in the hydrogen generator1 

engine system utilizing the improved engine. It is expected that this improved 

system will yield lean limit data close t o  the 50 percent improved lean limit 

curve in Figure 107. 

The effect of increasing compression ratio from 8.5 to 10.0 was evalu- 

ated for the no parasitic load and nominal parasitic load cases ,  assuming the 

75 percent improved lean limit operating constraint. The results  of these cal- 

culations are given in Table 14. With the engine improvements specified, the 

ultimata hydrogen generatoriengine system is predicted to  yield a 28 percent 

increase (relative to the stock 1973 vehicle) while controlling the NOx emissions 

to 0.2 gmlrni over the urban driving cycle. The performance improvements of 

Table 14 are i n  addition to those gains resulting from other vehicle modification. 

such as weight reduction. r e a r  axle ratio changes, radia! tires, etc. 

it should be noted that while the increased compression ratio i s  for lean 

operation, it is possible that it would result  in knock-limited performance a t  

higher equivalence ratios and thus lead to  a reduction in the maximum power 

output of the engine. There  i s  some indication from CFR tests that the pres-  

ence of hydrogen in he generator products increases the knock-limited com- 

pression ratio for all equivalence ratios. Further work i s  required to  determine 

the compression-ratio limitations of the hydrogen generator /engine system. 

6. Calculated Contour Plots 

Fo r  each calculation of mileage and emissions over the-FDC, contour 

plots of BSFC and BSNOx as hrnctions of Brake Mean Effective P re s su re  

(BMEF) and RPM were calculated. Typical examples a r e  shown a s  Figures 

108 and 109. 







7. Conclusions 

Based on these analyses, two major conclusions may be drawn: 

1)  Integration of a hydrogen generator uith an unmodified 1973 

Chevrolet 350 CID V-8 engine is  predicted to provide a 15% 

improvement in the mileage of a 1973 Chevrolet Impala and a 

reduction in NO emissions to 0.5 gmlmile. The nlileage improve- 
X 

ment may be as  high a s  20% and the NOx emissions may be a s  

great as  1.5 gm/mi. Mileage and NO emissions predictions were 
X 

for operation over the Urban Federal Driving Cycle. 

2) If the equipment lean limit of this engine were improved significantly 

and if its compression ratio were increased tc 10: 1 from 8.5: i .  

mileage was predicted to improve 25% to 27% and NOx emissions 

were predicted to be in the range of 0 .  Z to 0.7 gm/mi. 

E. ESTIMATEDUNDERHOODTEMPERATURES(EPATASKA) 

1. Introduction 

The hydrogen generator, because it contains a high temperature reaction, 

has t3e potential of increasing the already high vehicle underhood temperatures. 

To estimate the magnitude of this temperature increase, a brief a n a l ~ s i s  was 

perforrrred. At the minimum hydrogen-generator flowrate, this temperature 

increase is estimated to be less than 4'F, and a t  the maximum flowrate to be 

!ess than 1 0 ' ~ .  

Figure 110 shows the predicted steady-atate engine compartment maxi- 

mum temperatures for a vehicle powered with the 350 CID Chevrolet V-8 

engine. The figure a.hows that a baseline compartment temperature of 1 IO'F 

was assumed for the stock engine powered vehicle at  all engine speed condi- 

tionr and 60 * F ambient temperature. 



6 4 F  AMWENT TEMP 
MAX?cMTR 

r STEADY STATE 
r 350 CID CHEVIOLET V d  E N G l N L  

r(tEDICIED 
E N G / G E N  SYSTEM: 

STOCK E N G I N E  

mrph 
I I I 1 1 
0 1 2 3 4 

E N G I N E  SPEED, 1000 rp, 

Fig. 110. Maximum engine compartment temperatures 

2. Calculation Scheme 

Baseline heat rejection ra tes  a t  maximum power for the stock engine 

were obtained f rom stock tes t  data assuming 527'0 of the consumed fuel energj  

content was rejected to  the engine coolant. If the heat rejected to the engine 

coolant were  considered proportional to  the temperature increase of the a i r  

flowing into the underhood a rea ,  the following relation can be used: 

where: 

QR = Engine heat rejection ra te  (Btu/hr)  

K =: Overall heat-transfer coefficient (Etu/hr - OF! 
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110 = Engine compartment air  gerature ( "  F) 

60 = Ambient air  temperature (OF) 

Ergiqe compartment temperatures for a vehicle equipped with the hydrogen- 

enriched fuels system were predicted by using the above relation, mcdified to 

accocct for the heat loads imposed by the hydrog~n generator and ita auxiliary 

componects. The pumpimotor and air compressor heat loads wzre assumed to 

consist of component mechanical or  thermal inefficiencies which a=s-nt to 

0.7 H P  at  C. 5 Ib/hr Hz delivery and 1.15 HP at  1.0 lblhr Hz. The generator 

teat load consisted of the heat transfer required to cool the produc~ gas from 

reactor chamber temperature to generator discharge temperature. Senerator 

heat balance calculations (which included allowance for generator a i r  preheat! 

predicted engine compartment fieat loads of 6.244 Btulhr at  0.5 lblhr H2 and 

19,811 Btulhr at 1.5 lblhr H,. The following  equation^ were used to combine 
I+ 

erigine heat rejection rates with generator system heat-rejection rates for 

calculation of engine compartment ste. .c y-state tempera+ire. 

(0, + Q Mech ' %en' + bG 
Tee = v-- 

where: 

T = Engine compartment temperatu; e ( " F, ec 

Qp = Engine heat rejection rate (Btuihrj 

Q ~ e c h  = Heat reject~on rate due to H2 generator system inefficiency 
(Btulhr) 



%en 
= Generator product gar heat :old (Btulhr) 

= Overall heat-transfer coefficient ( ~ t u l h r -  *F) = ,m 
60 = Ambient temperature ('F) 

3 Results 

The results  of these calculations are r-hown m Figure ; 10. One of rl.cse 

curves shouin is appropriate t o  both the 9 . 5  !b!hr Hz and variable H flow-rate 
2 

cases. since maximum engine power is achieved un the schedule with 0.5  Ib!h.- 

HZ- The other curve s h o w  is for the maximcm irydrogerr-generator f ior-ra te  

case. that containing 1 - 5 lbmlhr of hydrogen in the product gas. 



SECTIOK 1V 

CONCLUDING REMARKS 

Detailed summary discussions a r e  presented a t  the coa:lusion of Scc- 

tions 118.. LIC. , IID., f o r  the experimental work and in  Sections IXB., IIIC.. 

IIID. , and IIIE for the anzlytical u-ork. Remarks of a summary aahare a l so  

appear in the Exec;ltive Summary section, and in the latrod*actory sectio-l, 

Scction I. 

From these \ar ias  sources, concluding r e n v r k s  based on particularly 

signiticant findings are p r e s e ~ t e d  below. 

A catalytic hydrogen sene rator 'has demonstrated kyci m g e ~  yields of 

69-485 of theoretically possible values over a hydrogen flowrate r a g e  of G. 4 to 

2. 1 lbrn!hr. S o  water or s team =as required for this periormance. The 

catalyst volume used was later  d e t e r m i n d  to ?HZ l a rge r  than re.-ired indicatil-2 

;hat a further economy of operation and des i f fn /~ ' .~nu fac tu t i ag  i s  possible. 

The operating temperature of the penerr tor  provides a satisfactory safety 

margin and will allow- the use of inexpensive stnrctural  materials. Equilibrium 

hydrogen oatput achieved in approximately 60 seconds with sxfficicnt cat-. 

p t  s t ream energy content to  ac5it-r-e a V-5 engine start after 20 seconds. 

A hydrogen generator ;V-.S engine ccmbina$ion aperated smoothly with 

no evidence of dcle:erious effects on engine bard--arc a d  no evidence of safety 

pvb le rns  as a result of the presence af the  hydrogen gas- 

The trends o! inc t-cased engine efficiency and dcc rersed NO emissions 
X 

it.. the ul'ra. lean regime, u-hich u-ere obser\.cb with Sotiled hydrogen, =-ere 

also observed with hydrogen-gas-generator products. 

The trend of increasing hydrocarbon emissions with ultra-lean combustion, 

reported by several investigators, r a s  observed with the hydrogen-enriched 



fuels. Iac rearing amounts of hydrogen has a beneficial result *a the problem 

but u d e r  no operating conditions were the HC emissions 'wlcrw the equivalcat 

E P A  1978 stadard. 

b r g e  quantities of CO en;issioas a r c  observed in conjunction wit.; are 

of the hydrogen-geneaator pr&cts, CO emissiaas  --ere extremely low r h t n  

pure hydrogen r;rs used a d ,  hence, t k  obviars cuncla*sion is the 20 contained 

in the generator pro&xts i s  not complr.tely oxidized in the engine combustion 

c b r n b e r  

Brake specific fuel coasumption (including the losses  associated r i t h  t k  

gas  generator) decreases  of 6 - 15% from the s t x k  engine were obsen-ed over 

mast of the t q a x t e  BMEP - RPZU operati- regime. 

Critical compresrion ratio tests using o CFfi test  engine indicate that 

compression r a t k  increases  t o  a value of -10:l a r e  possible in the ultra-lean 

combustion region and that thermal effitienc:7 a i l1  also iacrezse PiTh increasiag 

values of the compression ratio- Increased compression ratio resulted in no 

significant chr;-.p in eitk r the  KO or u n h r n e d  hydrocarbon emissions, 
x 

The integration of r hydrogen gencratcr with an  unrnodifid V-R engine 

having a 8.5:l c o r n p r t s s i o ~  ratio i s  predicted to mvrove fuel economy 15% 

with f 3 emis*icrr  of 0 . 5  grnimi ower the FDC. This performance i s  relative 
X 

to an unsvstiifier! but otherwise identical 1*75 Chevrolet Impala- The integration 

~f a bvdropea pcacra2or with a V-R engine having o 10:l compressior. ratio and 

an irnprovcd equipment lean limit i s  predicted to  improve fuel economy 25% 

wit;> SOx emissicn o: 0- 2 gm/w.i on the FDC relative to  an  unmodified l ?t 3 

Chevrolet Impala. 



A d e l  of the hydroger, generator and i t s  attendant accessories S a t  been 

developed to  produce an  estimate of t k  loads this subsystem =-ill impose on the 

rest  of the vehicle +?stern, The maximum additional loads imposed on the 

engine by the incorporation of a hydrogen generator ate estimated to  k f rom 

1-6 t o  i. 3 fW at maximum bpdrogen-generator flou-rate. 

An amlyticr;  technicpe for correlating and rep1icstir.g the data produced 

during test  of a hydrogen gcneratorlenginc system has been de-=loped and 

verified. This technique provides the  means for examining the future potential 

of the hy-ttgen-enriched fuels concept. 

A &el permitti- simuiation of the performance of a vehicle on the 

Urban Federal  Driving Cyc!e was dcvelcpcd and rho- to  predict, f rom steady- 

state engine data. the mileage and KOx emissions of a twhicle driven over  the 

c g c k  to Pithin 1 4 5  a d  87% respectively. =ken compared to vehicle, ctissis- 

dyrumorncte r i-esults. 

The hydrogen gem rator contains a high temperatare reaction and has 

the potential of increasing the already high i-ehicle under% sd t e rnp ra tu re s .  

To e s t i m t t  the magnitude of  t h ~ s  temperatare increase, a brief analysis =-as 

performed. At the minimt?m hydrogen-generator xlou-rate, this tempcraturc 

0 
increase is estimated to  be l e s s  than 4 F, and a t  the r n a x i r ~ r n  flax-rate to  be 

lest than IQOF. 
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