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PART I - CURRENT STATUS
 

1. The EHD Heat Pipe Concept
 

The electrohydrodynamic (EHD) heat pipe, as proposed by Jones,1
 

utilizes the force exerted on a dielectric fluid in a non-uniform electric
 

field to form liquid channels 2 ,3 connecting the condenser and evaporator
 

sections of a heat pipe. These channels function as low resistance
 

arteries through which liquid may flow from the condenser to the evaporator
 

during heat pipe operation. A sketch of one possible channel configuration
 

(the one employed inall of the experiments to be described) is shown in
 

Figure 1. Inthis configuration the axial rods (electrodes) are maintained
 

at a high voltage with respect to the grounded heat pipe shell. The liquid
 

phase of the dielectric-working fluid collects inthe high field strength
 

region forming a tent-like open channel between the condenser and evaporator
 

ends of the pipe. In response to heat transfer the liquid-vapor interface
 

at the evaporator end of the heat pipe recedes into the high field strength
 

region while the interface at the condenser end bulges out into the lower
 

field strength area giving rise to a net pumping head which drives the
 

liquid from the condenser to the evaporator. The role of the electric
 

forces in the EHD heat pipe isanalogous to that of surface tension forces
 

ina capillary heat pipe. In steady state operation the electrical current
 

required to maintain the tent flow structure is negligible.
 

The basic principles governing EHD heat pipe operation have been
 

'5
detailed by Jones.4 The polarization or dielectrophoretic force acting
 

on a dielectric fluid ina non-uniform electric field can be viewed as a
 

surface traction acting at the interface between the liquid and vapor. 


This surface traction supports a pressure differential across the interface,
 

i 
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the net effect being somewhat analogous to that produced by surface
 

tension in a capillary tube. The maximum pressure difference, due to
 

electrical forces, available to drive liquid from the condenser to the
 

evaporator is,
 
a - s E 

Ape -e 2 
max"
 

Under static conditions these forces can lift the liquid against gravity
 

to a height given by
 
(: s )E2 Z -so max*hs 

-

a - (1) 
2 pL9 

During heat pipe operation the height to which the liquid can be raised
 

is reduced due to flow related pressure losses in the fluid circuit. The
 

maximum electric field strength which can be sustained is limited by the
 

breakdown strength of the working fluid. For the electrode structure
 

shown in Figure 1, E V/SAS. .Since the size of the liquid return channel,
 

for a given E, scales with SAS it is limited only by the available voltage
 

level and by geometric constraints. Thus the viscous flow losses in the
 

liquid channel can be minimized without reducing the available pumping
 

head.
 

Although the EHD heat pipe can be operated without any sort of
 

capillary wicking, and indeed surface tension forces were ignored in the
 

above discussion, inmost of the experiments a capillary structure was
 

employed to distribute the liquid over the evaporator surface. Inthe
 

proof of concept experiment performed by Jones and Perry6 the axial elec

trode structure was mated with an internally threaded pipe. This heat
 

pipe was operated with both A.C. and D.C. electric fields demonstrating the
 

dielectrophoretic 2 nature of the phenomenon. Heat pipe operation was also
 

achieved in a tube in which an axial electrode was coupled with a Feltmetal
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capillary liner.7 Other experiments, to be reviewed later, indicate that,
 

depending on the application, capillary assist may not be required.
 

2. Applications
 

In light of the fact that the twooessential requirements for operation
 

of an EHD heat pipe are the use of a dielectric working fluid and the avail

ability of a high voltage source it appears that a natural application of
 

this device would be for cooling of electrical equipment. In this applica

tion it may be desirable to combine the element to be cooled and the heat
 

pipe structure into an integral unit. Even in situations in which a high
 

voltage source is not available it may be worth'investing in one to take
 

advantage of the special features offered by the EHD heat pipe. These
 

features are outlined in the following paragraphs.
 

Because of the inherent uncoupling between maximum pumping head and
 

arterial size mentioned earlier the EHD heat pipe affords relatively high
 

thermal throughput. Where the operating temperature range or other con

siderations dictate the use of a dielectric working fluid the EHD approach
 

may represent the low technology solution to a design problem. In order to
 

match its thermal capacity using a conventional heat pipe complex capillary
 

structures may be required. The comparison drawn by Loehrke and Debs8
 

illustrates this point although recent experiments by Saaski9 indicate
 

that high-performance wicks need not be arterial.
 

In contrast to capillary driven arteries, EHD ateries offer positive
 

priming under load. Experiments have documented that priming can be
 

achieed even in presence of nucleate boiling06' I0 Vapor bubbles are
 

ejected from the open tent-like arteries as the liquid advances over the
 

hot evaporator surface. Capillary priming follows arterial priming as the
 

surface in the vicinity of the tent is cooled.
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Since the location of the liquid inventory is determined primarily by
 

the combination of gravitational and electric forces voltage controlled
 

conductance can be realized.10 With the evaporator end of the heat pipe
 

elevated above the condenser end in a gravitational field the conductance
 

can be varied from a maximum (evaporator surface fully wetted) to near
 

zero (evaporator surface dry) by.simply varying the voltage level supplied
 

to the axial electrodes. Under the inverse orientation additional elec

trodes covering only the condenser end of the heat pipe would be energized
 

to hold the liquid'against the gravitational pull.
 

Another feature of the EHD heat pipe is that no wick or special surface
 

geometry isrequired. Although capillary wicking has generally been assumed
 

to be a necessary element inan EHD heat pipe, the experiments described in
 

Part II of this report reveal that the average evaporator unit conductance
 

is degraded only slightly when a grooved active surface isreplaced by a
 

smooth one. Thus, in applications where the heat rejecting surface is
 

inviolate the EHD approach is still valid. No special surface preparation
 

or blanketing wick is required.
 

3. Performance
 

Two important performance measures, maximum throughput and conductance,
 

have been studied. Although these measures are not strictly independent,
 

the coupling between them, for the range of EHD configurations investi'gated,.
 

has proven to be remarkably weak. The basic mechanisms which establish the
 

limits to thermal throughput appear, at this time, to be better understood
 

than those which govern the conductance. The following-paragraphs summarize
 

the results of several performance studies of EHD heat pipes of the general
 

configuration shown in Figure 1.
 

http:realized.10
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Maximum Thermal Throughput
 

Given a basic EHD structure, e.g., three, symmetrically placed axial
 

rod electrodes within a pipe of a given diameter, there are remaining two
 

geometric variables, rod diameter and rod-wall spacing, and voltage which
 

may be selected to optimize the heat pipe performance. Ifthe optimization
 

involves maximizing throughput based purely on hydrodynamic considerations
 

then that maximum flow rate will be determined by one of the following
 
4
 

limits:
 

1. Sonic limit - as in conventional pipes.
 

2. EHD surface wave celerity limit - which places a constraint on
 

the maximum liquid flow velocity.
 

3. Entrainment limit.
 

4. Pumping limit - analogous to the wicking limit in capillary pipes.
 

Which of these limits sets the maximum flow rate depends on the working
 

fluid, operating temperature range, geometry and voltage. Constraints on
 

these variables enter as:
 

1. Voltage supply limits.
 

2. Vapor breakdown voltage limit.
 

3. Fluid freezing point and critical point or decomposition limits.
 

The last constraint couples the maximum throughput to the conductance,
 

however, the coupling noted incapillary pipes due to the onset of nucleation
 

is not experienced in EHD pipes.
 

The pumping limit referred to above pertains to the capacity of the
 

axial EHD arteries. Indesigns where capillary structures form a significant
 

part of the evaporator surface liquid distribution system,(see the next
 

section) then the capacity of this system may limit the throughput.
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A working fluid figure of merit proposed by 
Jones4
 

(C - eo) h E2 

NEH D - fg (2) 

based on the pumping limit (as set by the liquid viscous pressure loss) and
 

the vapor breakdown constraint may be helpful in selecting candidate working
 

fluids.
 

Liquid entrainment by the counterflowing vapor is a potentially more
 

severe problem in an EHD pipe with its open arterial configuration than in
 

a conventional arterial pipe. Jones and Perry analyzed this problem and
 

experimentally verified their analysis. They present criteria for the onset
 

of entrainment and suggestions for postponing onset should such measures be
 

necessary.
 

The EHD wave speed limit 4 is unique to EHD heat pipes. In the open
 

channel arterial flows a condition of criticality is reached when the velocity
 

of the liquid approaches the surface wave celerity. This condition is
 

interpreted as limitingthe liquid flow rate through the artery. Experimental
 

and theoretical determinations of wave speed for the tent geometry are des

3
 
cribed by Jones and Melcher.


In all of the EHD heat pipes built and tested to date the maximum
 

throughput has been pumping limited. None of these pipes were optimized
 

for maximum throughput in the sense described by Jones,4 but rather the
 

geometry and working fluid were chosen for experimental convenience. On
 

the other hand, by virtue of the fact that most of these pipes were operated
 

near the vapor breakdown limit, the heat transfer rates are representative
 

of the maximum attainable for that geometry, working fluid and voltage
 

supply limit.
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Of particular interestare the results reported by Loehrke and Debs
8
 

obtained with a 30 cm long circular EHD pipe. At the time that paper was
 

written itwas not clear that dryout had been attained inany of the ex

periments. Subsequently Debs 12 tested a 114 cm long version of this pipe
 

which clearly demonstrated dryout behavior.
 

The long pipe is identical to the short pipe described in reference 8
 

except for two changes. First, the adiabatic section was lengthened and
 

second, four Teflon spacers, 0.25 cm thick, were used for internal support
 

of the three axial rod electrodes. These spider-like spacers, Figure 2,
 

were relieved inthe areas between the rods and the wall to minimize flow
 

resistance. The facilities and techniques used in testing this pipe were
 

identical to those described in reference 8. The working fluid was again R-11.
 

One experiment was run, at a tilt angle of 0.56 degrees, to the point
 

where the evaporator dryout signature was unmistakable. A plot of average
 

evaporator superheat versus power level for this run is shown in Figure 3.
 

The onset of dryout, as characterized by-the sudden change inslope, was
 

accompanied by fluctuations in some of the evaporator surface temperatures
 

similar to those noted by Loehrke and Debs8 with the short pipe at the
 

highest tilt and highest power. Taking this to imply that incipient dryout
 

had been reached inthat earlier experiment the dryout data in Table I were
 

compiled.
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Table I
 

Conditions at Dryout
 

30 cm pipe @ 30491 tilt. 113 cm pipe 

L' (cm) 15.24 96.52 

h (cm). 2.29 3.10 1.64 

qmax (w) 95-100 0 28-38 

qmaxL'(w-cm) 1448-1524 0 2703-3668 

V (kv) 16 16 16 

The values for h presented here are calculated vertical distances from
 

the top of the excess liquid puddle at the condenser end of the pipe to the
 

topmost point at the evaporator end of the pipe. The value for h at
 

qmax = 0 was calculated based on the observed electrode voltage required to 

depress the temperatures at the uppermost evaporator thermocouple during
 

startup (See reference 8). The observed h was then extrapolated to 16 kv
 

using equation 1. The effective length of the heat pipe L' ismeasured
 

from the center of the evaporator to the center of the condenser.
 

A plot of the dryout data is shown in Figure 4. The nearly straight
 

line correlation is characteristic of pumping power limited throughput. Order
 

of magnitude calculations reveal that the liquid supply viscous losses are
 

dominant. Precise analytical corroboration isdifficult because:
 

a) the precise tent geometry is unknown.
 

b) the liquid frictional characteristics of the open tent with
 

counterflowing vapor at the surface is unknown.
 

c) the three electrodes are not at the same elevation and thus
 

are pumping against different gravitational heads.
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The last difficulty could be accommodated but the first two preclude ar
 

accurate analysis.
 

With the flexibility available to the designer of an EHD heat pipe
 

(voltage level, number, size and shape of electrodes, etc.) the numbers
 

presented here could be easily altered and in fact considerably higher
 

throughput estimates are given by Jones4 for optimized pipes. On the other
 

hand, it is unlikely that the hydrodynamically optimized pipe will be the
 

best choice for most applications. Conductance related limits may take
 

precedence. At any rate, the circular pipe data establishes an experimental
 

benchmark against which other designs can be compared.
 

Conductance 

EHD heat pipe conductance (or its constituent parts, evaporator conduc

tance or overall heat transfer coefficient, U =----q-- and condenser.A .AT 6,7,8,10
 

conductance, Uc = ) has been the subject of a number of investigations.A AT
 cc

This summary will be limited to those determinations of conductance which
 

were not obviously biased by condenser flooding due to excess inventory or
 

by partial evaporator dryout due to pumping limitations of either the EHD
 

arterial structure or capillary distribution system. With that qualifica

tion one can draw the following tentative conclusions based on the limited
 

amount of data available:
 

1) EHD heat pipe conductance is comparable to that obtained in
 

conventional heat pipes with grooved active surfaces using the
 

same working fluid.
8
 

2) Condenser conductance is about double evaporator 
conductance.8
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3) Evaporator conductances in EHD heat pipes having no capillary
 

structures are nearly as high as those measured in grooved

surface pipes. (See Part II of this report.)
 

In terms of numbers, measured EHD evaporator conductances have ranged from
 

as working fluid.8 
10
 

0.07to 0.16 w/cm2 -C using R-l1 


Because of the unknown nature of the basic heat transfer mechanisms
 

in the liquid layer covering the EHD heat pipe evaporator surface, it is
 

likely that these conclusions will remain tentative for some time to come.
 

The conventional conduction model for transport through the liquid layer
 

does rot adequately explain the observations. There is evidence that this
 

model may also be deficient in certain capillary heat pipes of unconventional
 

geometry.9 The possibility that suface tension variations due to tempera

ture variations over the liquid-vapor interface may drive convection was
 

investigated. As reported in Part III of this report there is insufficient
 

information available to make a judgment on this possibility.
 

The conclusions drawn earlier and the conductance values quoted are
 

all for relatively-low evaporator superheat. Experiments8'10 with R-11
 

working fluid have shown that at high enough superheats (ATe z 100C for
 

these tests), nucleate boiling begins in the vicinity of the EHD tents and
 

the average evaporator conductance increases appreciably. Thus, in con

trast to conventional capillary heat pipes where nucleate boiling adversely
 

affects heat pipe operation, EHD heat pipes may be profitably operated in
 

the ebullient regime.
 



4. Open Questions
 

The two major unanswered questions concerning the performance of EHD
 

heat pipes involve long term materials compatibility or fluid degradation
 

in presence of strong electric fields and the previously raised issue of
 

conductance.
 

Since the EHD heat pipe is constrained to operate using fluids having
 

notoriously poor thermal conductivies and since the experimental results
 

to date indicate that conductance rather than throughput may limit
 

performance itwould be desirable to have a better understanding of the
 

processes which control the conductance. Fundamental studies aimed at un

covering these processes would benefit the development of heat pipes in
 

general, particularly those operating in temperature ranges requiring use
 

of similar low conductivity fluids.
 



PART 	II - EVAPORATOR CONDUCTANCE EXPERIMENTS
 

1. Introduction
 

Previously reported EHD heat pipe experiments have indicated that
 

the adverse effects of the thick, liquid tents on evaporator conductance
 

may not be as severe as expected. An analysis, based on a conduction
 

model for heat flow through the liquid layer, of the evaporator of the
 

heat pipe tested by Loehrke and Debs revealed that the evaporator surface
 

superheat beneath the EHD tents should have been about 30% higher than that
 

at between-tent locations prior to the onset of groove dryout.
13 That the
 

observed circumferential surface temperature distributions were not con

sistent with this analysis would tend to indicate that the conduction model
 

is not appropriate. Similarly, the experiments of Loehrke and Sebits
10
 

showed little degradation of evaporator conductance due to arterial shielding.
 

Loehrke and Debs hypothesized that under certain circumstances, namely for
 

isothermal evaporator surfaces, capillary grooves may not be required in
 

EHD heat pipes.
 

The aim of the experiments reported here was to test this hypothesis.
 

A heat pipe was designed and constructed in which grooved and ungrooved
 

evaporator surfaces can be interchanged to provide a direct comparison of
 

evaporator conductances. In addition, the electrode density in this pipe
 

can 	be varied over a wide range. This flexibility provided the opportunity
 

to obtain design data concerning the optimum electrode spacing.
 

2. 	Experiments
 

The EHD heat pipe used in these experiments is similar to the one
 

described in reference 8. In this flat plate geometry the evaporator and
 

condenser surfaces lie in a plane. The vapor space above this plane is
 

http:dryout.13
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covered with a transparent plate to facilitate observation of the EHD
 

tents. A view of this heat pipe, looking down through the transparent
 

cover, is shown in Figure 5. Identical active surfaces, each 10.16 cm
 

wide and 12.07 cm long (inthe flow direction), are separated by a
 

5.5 cm adiabatic section. Suspended 0.32 cm above these grounded surfaces
 

are 15, 0.16 cm diameter, rod electrodes spaced on 0.64 cm centers. Any
 

number of these electrodes can be energized to a high D.C. potential for
 

a given test. This provides the flexibility to vary the fraction of the
 

active surfaces which is covered by EHD tents. Additional flexibility has
 

been provided by making the active surfaces removeable. Two sets of
 

evaporator and condenser surfaces were used in these experiments. One
 

set, shown installed in Figure 5, was grooved while the other was smooth.
 

The heat pipe enclosure consists of three major parts, shown in
 

Figure 6,which are bolted together. The cover is a 1.27 cm thick polished
 

Lexan plate. The center section, a hollowed out 2.54 cm thick Lexan plate,
 

forms the vapor chamber. The base plate, also of Lexan, holds the active
 

surfaces and adiabatic section and completes the enclosure. A Lexan frame,
 

which fits completely within the enclosure, is used to support the electrodes.
 

The base plate has been machined so that the upper surfaces of the evaporator,
 

condenser and adiabatic section lie inthe same plane.
 

The evaporator is formed from a brass plate to the back of which is
 

glued a heating unit. Two different evaporator plates were made, one smooth
 

and 0.32 cm thick and one grooved and 0.23 cm thick. Both have eight #2-56
 

studs brazed to the bottom surface near the outer edge. The grooves are
 

approximately square incross-section, 0.08 mm deep and cut to a density
 

-1
of 3.85 mm . The groove profiles are shown in Figure 3 of reference 10.
 

The heating unit was formed by sandwiching a 0.64 cm thick
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plexiglas plate with thermocouples imbedded on both sides between two
 

sheets of Armstrong Temsheet resistance heating material. The heating
 

element closest to the evaporator surface forms the main heater while the
 

other one serves as a guard heater. The heating unit, measuring 10.48 cm
 

by 8.57 cm was then epoxied to the bottom of an evaporator plate.
 

The plates which form the condenser surfaces are identical to the
 

evaporator plates. Heat is removed from the condenser section of the heat
 

pipe by passing coolant from a constant temperature circulating bath through
 

tubes attached directly to the lower surface of the brass condenser plates.
 

Five 36-gage copper-constantan thermocouples are attached to each active
 

surface at the locations shown in Figure 7.
 

The active surfaces were sealed to the base plate with Dow-Corning
 

733 RTV flourosilicone rubber. The adiabatic section was covered with a
 

layer of 0.013 mm thick aluminum foil which was bonded to the Lexan with
 

the same adhesive. The studs attached to the brass plates extend through
 

the Lexan base plate. Nuts were placed-on--these studs and tightened, after
 

the rubber had cured, to provide additional support for the active surfaces.
 

The Lexan harp which forms the electrode support structure serves not
 

only to hold the rods in position but also carries the load required to
 

maintain tension in the 15 electrodes. The threaded ends of the rods pass
 

Nuts are turned onto the rods and tightened
through holes in the harp. 


down until the desired tension is achieved. This fastening arrangement
 

limited the spacing between electrodes to a minimum of 0.64 cm. At closer
 

spacings arcing between adjacent rods occurred when alternate electrodes
 

were grounded. Based on this electrode spacing the gap between the
 

electrodes and the base plate was set at 0.32 cm. so that when all electrodes
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are energized the EHD tents will cover virtually the entire active surface.
 

Shorting straps were designed to fit under the fastening nuts and connect
 

-together all electrodes which are to be energized and all which are to be
 

grounded so that only two electrical feed-throughs are required for the
 

heat pipe enclosure. Two additional holes were drilled through the center
 

section. One, to which a valve was attached, served as a fill port. A
 

thermocouple probe was 
inserted through the other to measure vapor temperature.
 

Two series of experiments were performed, one with smooth active
 

surfaces and one with grooved active surfaces. In each experiment the
 

temperatures of the active surfaces, the vapor temperature and the power to
 

the main heater were recorded. In all experiments the working fluid was
 

R-11. The aim of these experiments was to obtain quantitative information
 

concerning the influence of electrode spacing and active surface geometry
 

on the conductance of an EHD heat pipe. All of the data presented, however,
 

are concerned just with evaporator conductance for the reasons outlined in
 

the next paragraph.
 

Because of the relatively large spacings between the electrodes and
 

the active surfaces used in these experiments, compared to the diameter of
 

the electrode rods, a significant concentration of electric field strength
 

occurred in the vicinity of the electrodes. Thus, the field strength at
 

the surface of the evaporator, which determines the useful EHD pumping head,
 

was about a factor of three lower than the maximum field strength near the
 

electrodes. For this 
reason the maximum tilt which could be achieved without
 

breakdown was relatively small. Under most operating conditions at these
 

low values of tilt the condenser surface was flooded with a pool of excess
 

liquid which reduced the condenser conductance to about one third the level
 

of the evaporator conductance. Since this condition is not typical in
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well-designed heat pipes, see for example reference 8, it was felt that
 

these condenser conductance values were not meaningful. It should be
 

emphasized that this test pipe was designed for maximum experimental
 

flexibility and was not optimized for overall conductance.
 

3. 	Results
 

For all of the experiments reported here the electrode voltage was
 

maintained at 12.5 kv D.C. and the heat pipe tilt, evaporator over condenser,
 

was set at one degree. The data are presented in terms of average evaporator
 

superheat, ATe, as a function of net heat throughput or main heater power,
 

q, and as evaporator conductance, Ue at equilibrium conditions.
 

A plot of evaporator superheat versus power for several different
 

electrode configurations with smooth active surfaces is shown in Figure 8.
 

These data show a relatively small change in evaporator conductance for a
 

large change in amount of evaporator surface covered by tents. Visual
 

observation indicated that one possible-reason for the small effect noted
 

was that the tent shape, and thus the amount of surface covered by the tent,
 

depended on the liquid inventory. With a large inventory the actual vertical
 

lift which had to be overcome by the EHD forces was small so the tents were
 

broad and covered a large portion of the evaporator surface. With a reduced
 

inventory the tents would be forced to recede into the high field strength
 

region directly below the electrodes to provide the extra lift and thus the
 

amount of evaporator surface covered was smaller. The same effect is
 

observed with a constant inventory if the tilt is changed.
 

In order to better pinpoint the effect of tent geometry on evaporator
 

conductance subsequent experiments were performed to find the maximum
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conductance for a given electrode configuration. This was done by fixing
 

the heater power and varying the inventory. Each test was initiated with
 

an extra large inventory, the heater power was fixed at 25 watts and the
 

average evaporator conductance at equilibrium was measured. A small amount
 

of R-ll was then removed from the pipe by opening the fill valve for a short
 

period of time.. Conductance was again measured after equilibrium was re

established. The results of one such test are shown in Figure 9. Equilibrium
 

point one corresponds to the condition of maximum inventory. At this in

ventory, with the electrodes not energized, a pool of liquid covered the
 

entire condenser and adiabatic section. At the last equilibrium point,
 

number nine, a substantial portion of the evaporator surface was dried out.
 

For the test configuration represented in Figure 9 the maximum conductance
 

occurred at about the point where the EHD tents were thinnest, but still
 

fully primed. The maximum single point conductance, determined in this
 

way, for a range of electrode densities is shown in Table 1. for both smooth
 

and grooved evaporator surfaces.
 

Table 1.
 

Maximum Evaporator Conductance
 

Surface Finish Electrode Density 
(cm-1 ) 

Ue 
(w/cm2-oC) 

Percent Surface 
Covered by Tent 

Smooth 1.575 .075 56 

.787 .086 68 

.524 .067 50 

Grooved 1.575 .097 43 

.787 .100 23 

.524 .103 

.394 .085 
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The absolute maximum conductance for both grooved and ungrooved
 

surfaces occurred at an electrode density less that 1.575 cm-1 (every
 

electrode energized') which would seem to indicate some insulating effect
 

of the liquid tent. However, especially for the grooved surfaces, the
 

variation of maximum conductance with electrode density is extremely small.
 

Surprisingly, the highest conductance measured with the ungrooved surface
 

is only about 15 percent lower than that for the grooved surface.
 

An attempt was made to quantify the effect of inventory change on
 

the liquid tent structures by determining the fraction of the evaporator
 

surface that was covered by liquid at each equilibrium point. Photographs
 

of the evaporator surface were taken at each pdint and the area covered by
 

the tents was measured from these pictures using a planimeter. For the
 

smooth plates this gives a measure of the total area covered by liquid,
 

however, for the grooved plates it measures only the area covered by the
 

tents. The extent to which the grooves were wetted could not be assessed
 

visually under equilibrium conditions. The photograph reproduced in
 

Figure 10 shows the smooth evaporator surface under maximum conductance
 

conditions with every electrode energized. The adiabatic section is to
 

the right and the bright regions to the left represent dried out sections
 

of the evaporator surface. Variations in the tent widths due to small
 

differences in the spacing between the electrodes and plate can be seen.
 

In fact, the'third electrode from.the top is partially unprimed at this
 

operating point. Plots of evaporator conductance versus fraction of
 

evaporator surface covered by liquid tents,such as those presented in
 

Figure 11, revealed that the maximum conductance with the smooth evaporator
 

surface were attained with over half the evaporator surface covered with
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liquid. With the grooved evaporator surface the maximum conductance was
 

achieved with less than one half of the surface covered by liquid tents.
 

For the grooved surface with every electrode energized many of the tents
 

were partially unprimed at the point of maximum conductance. Clearly, the
 

grooves were supplying liquid to a larger fraction of the evaporator sur

face than was covered by the tents. This also accounts for the fact that
 

the maximum conductance listed in Table I for this configuration was comparable
 

to that measured for the condition of every other electrode energized.
 

To summarize, the visual observations of the EHD tent structures
 

coupled with thermal measurements showed that the evaporator conductance,
 

for both the grooved and ungrooved surfaces, was about 0.04 to 0.05 w/cm 2-°C
 

when the entire surface was covered by the liquid tents. As the liquid
 

inventory was reduced and the tents receded under the electrodes the con

ductance increased for both surfaces. The maximum conductance for the
 

smooth evaporator surface was achieved when the area covered by the tents
 

was reduced to about 50 - 80% of the total evaporator surface area. The
 

highest conductance, 0.086 w/cm2 -°C, was attained with every other electrode
 

energized. At this point the energized electrodes were fully primed with
 

liquid. In contrast, with the grooved evaporator surface the conductance
 

continued to increase with decreasing inventory until a maximum value was
 

reached with about 20 to 40% of the evaporator area covered by liquid tents.
 

The maximum conductance of 0.103 w/cm2- C was observed with every third
 

electrode energized and fully primed.
 

'These observations indicate that the grooves were effective in dis

tributing liquid over the evaporator surface between arterial tents. This
 

was confirmed by visual observation. Although the liquid could not be
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detected in the grooves under equilibrium conditions under transient
 

conditions, for example when the high voltage to the electrodes was
 

suddenly turned off, groove dryouts could be observed.
 

The fact that the conductance for the grooved surface changed by
 

only a factor of three when the fraction of evaporator area covered by
 

the liquid tents changed from 100% to 20% lends support to the hypothesis,
 

that convection processes are augmenting heat transfer through the tents.,
 

This-contention is reinforced by the relatively high conductance measured
 

for the smooth surface. A two-dimensional numerical conduction model of
 

the smooth evaporator surface and EHD tent structure was analyzed and the'
 

results showed one possible alternative explanation for the high conductance
 

values noted. If heat were transferred strictly b& conduction through
 

the liquid layer then in order to realize the observed average conductance
 

level virtually all of the heat loss from the evaporator must occur in the
 

thin edge layer near the junction.between the tent and the dried out region
 

of the evaporator surface. The exact geometry of the tent-in this region
 

is difficult to acertain. One would expect, however, a strong correlation
 

between the measured conductance values and the length of this junction or
 

interline present on the evaporator surface if this did represent the
 

principal region of heat transfer. The length of this interline was measured
 

from the photographs taken of the smooth evaporator surface at the various
 

levels of inventory. These lengths and the corresponding measured conductances
 

are plotted in Figure 12. The absence of any clear correlation suggests
 

that this mechanism alone cannot be responsible for the total heat transfer
 

to the liquid.
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4. Conclusions
 

These experiments have shown that an EHD heat pipe can operate effec

tively without the need for capillary structures, such as grooves; to aid
 

in distributing liquid over the evaporator surface. Comparison tests showed
 

that smooth evaporator surfaces gave average conductances only 15% lower
 

than surfaces with capillary grooves. The conductance of the grooved sur

face was, however, less sensitive to variations in the spacing between
 

electrodes.
 

For the smooth evaporator surface the maximum conductance of 0.086 w/cm2-oC
 

was attained when the spacing between adjacent electrodes was four times the
 

spacing between the electrode and the active surface. For the grooved
 

surface the optimum spacing ratio was between four and six and the maximum
 

measured conductance was 0.103 w/cm2- C.
 

Strong evidence was obtained to suggest that the heat transfer through
 

the liquid layer covering the evaporator surface is augmented by convection.
 



PART III - CONVECTION IN THIN FILMS
 

1. Introduction
 

Analytical estimates of heat pipe conductance have traditionally
 

been based on conduction models for heat transfer through the liquid
 

layers in the evaporator and condenser. The rationale for neglecting
 

cross-film mixing motions has been that the characteristic dimensions of
 

the liquid films confined by capillary structures are small so that the
 

stabilizing actions of viscosity and heat conduction overpower any driving
 

forces arising from temperature gradients in the film. Inmany applica

tions this assumption may be perfectly valid. If it is not, however,
 

conductance estimates may be overly conservative and analytically derived
 

geometric optimizations may not be pertinent. In particular, it appears
 

that this assumption may not be valid for certain EHD heat pipe designs.
 

There are at least three possible driving mechanisms for heat con

vection in evaporating liquid layers (inabsence of nucleation within the
 

liquid). The terms buoyancy-driven convection, surface-tension-driven
 

convection and electroconvection may be used to classify the motion according
 

to the dominant driving force. The first depends on the presence of an
 

acceleration field, the last on an electric field while the second is ubiq

an EHD heat pipe all Criteria
uitQus. In three mechanisms may be important. 


for determining whether or not convection will occur and, if itwill, what
 

will be the effect on heat transfer depend strongly on geometry and boundary
 

conditions. A great majority of the experimental and analytical work which
 

has been published relevant to thin film convection deals with horizontal
 

fluid layers of uniform depth. Although the results of this work'are not di

rectly applicable to most heat pipe geometries they can provide a guide to the
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relative importance of the various mechanisms and shed some light on
 

potential problem areas. It is significant that even for this well-studied
 

geometry a completely verified coupled theory accounting for just buoyancy
 

plus surface tension effects does not exist. The following sections focus
 

on convection in horizontal layers. A number of review papers have been
 

15 16'17
'
published which offer a broader perspective on this problem.
14'


2. Convection in Horizontal Fluid layers.
 

Of the three mechanisms for driving convection mentioned previously
 

the one associated with buoyancy forces has been subject to more analyses
 

which have been verified by experiment than either of the other two. These
 

have shown that when a horizontal layer of fluid is heated from below in a
 

gravity field convection begins, due to the destablizing density gradient,
 

=
at a critical value of the Rayleigh number, Ra ATL , which depends on
 

the thermal and hydrodynamic boundary conditions. Experiments with con

ducting upper and lower rigid boundaries are in good agreement with the
 

theoretical prediction for critical Rayleigh number. Theoretical prediction
 

for the critical Rayleigh number have been made for a variety of idealized
 

boundary conditions including all combinations of free and rigid upper and
 

lower boundaries and perfectly conducting and perfectly insulated (to
 

temperature perturbations) upper and lower boundaries. The critical values
 

range between 320 < Ra < 1708. Sufficient experimental results have been
 

reported which are not in disagreement with these predictions that the
 

linear theory on which they are based is well accepted. The heat flux
 

through the layer, for fixed AT, has been found to undergo a transition
 

from being inversely proportional to layer depth for subcritical conditions
 

to being virtually independent of layer depth for supercritical conditions.
 

http:problem.14
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One of the reasons that this mechanism is well documented is that it is
 

relatively easy to design an experiment in which the critical parameter,
 

Ra, can be accurately measured and in which alternate mechanisms are
 

eliminated. This clean separation is not possible in surface-tension and
 

electroconvection experiments.
 

In a horizontal layer consisting of two superposed fluids separated
 

by an interface convection may be induced by surface (interface) motions
 

driven by surface tension variations due to temperature or concentration
 

perturbations. In spite of the fact that this is basically a two-layer,
 

two-fluid problem most analyses are patterned after Rayleigh's single

fluid model for buoyancy driven convection. This model gives rise to a
 

= 
parameter, the Marangoni number Ma 'AL , which, in absence of gravity, 

describes the convection boundary. As with the critical Rayleigh number, 

the.critical Maragoni number depends on the boundary conditions of the 

fluid layer but, in contrast, the possible range is much larger. For ex

ample, for a conducting, rigid lower boundary and a free upper boundary the
 

critical Marangoni number ranges from 80 < Ma < - as the upper thermal
 

boundary ranges from perfectly insulating to perfectly conducting. Although
 

sufficient experimental evidence exists to confirm that surface tension
 

forces can drive convection the quantitative agreement between theory and
 

experiment found for buoyancy driven convection is lacking. This subject
 

is reviewed in more detail in the next section.
 

Convection, in the EHD heat pipe, may also be driven by body forces
 

attributable to the strong electric field. One of these forces, the
 

dielectrophoretic force, is responsible for the formation of the liquid
 

arterial structure in the EHD heat pipe. Even in a single phase fluid this
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force may be present and due to property (permittivity) variations with
 

-temperature. The effect is somewhat analogous to that due to density
 

variations in a gravitational field. Savkar 18 found that, in absence
 

of gravity, convection will begin in a dielectric fluid layer, confined
 

between parallel conducting plates maintained at a potential difference
 

AV and temperature difference AT, at a critical value of "dielectrophoretic
 

=
Rayleigh number" ER -C (yATAV)2 2.4 X 103. Turnbull9 has analyzed
 

the combined dielectropheric and gravity problem in a horizontal layer
 

heated from below and predicted a marked destabilizing effect due to
 

electric field. Turnbull and Melcher20 have demonstrated that the de

stabilizing effect of dielectrophoretic forces can be strong enough to
 

overcome a stabilizing density gradient. They observed and predicted
 

convection under conditions of negative gravitational Rayleigh number.. It
 

is interesting to note that Savkar's critical ER is independent of layer
 

depth. Using the property values for R-ll we-can estimate a critical 

value for the product of voltage difference times temperature difference 

above which convection should take place in a horizontal layer as ATAV = 

30 x 1O3 Ev-°C]. Although not directly applicable to the heat pipe geometry 

the magnitude lies within the range in-which all of the EHD pipes have been 

operated. InD.C. fields Coulomb forces on free charges may also be 

important and, in fact, are usually the dominant cause of electroconvection. 

The relative magnitude of the dielectrophoretic force compared with the 
~.dldT 21
d/dT


Coulomb force is given by 


For the general horizontal layer with a free surface inan-electric
 

field convection may be driven by the coupled action of the forces due to
 

gravitY, surface tension and electric field. Uncoupled analyses indicate
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that the relative importance of these forces will depend on layer depth.
 

For a given fluid and with fixed electric field strength the critical
 

AT for onset of convection due to buoyancy forces varies as 1/L3 while for
 

surface tension and electroconvection in absence of gravity ATc varies as
 

I/L. Thus, buoyancy forces should be relatively less important for thin
 

layers. Whether or not surface-tension or electric field forces ever
 

become large enough to drive convection will depend on the details of the
 

problem. The-importance of surface-tension forces in evaporative convection
 

appears to be particularly difficult to assess at this time. A brief review
 

of this problem is presented in the next section.
 

3. Surface-Tension Driven Convection in Horizontal Layers.
 

There is sufficient theoretical and experimental evidence to support
 

the contention that surface tension variations can induce convection in
 

fluid layers. 14 Quantitative comparisons between theoretical predictions
 

and experimental results are, however, sparse incontrast to the state of
 

affairs for buoyancy driven convection. Virtually no experimental data are
 

available for evaporating layers of a pure liquid. A review of the theoretical
 

and experimental attempts to determine the conditions required for the onset
 

of convection in a horizontal layer will serve to indicate where the diffi

culties lie with respect to drawing conclusions concerning evaporating layers.
 

The most thoroughly studied configuration consists of two horizontal
 

immiscible fluid layers separated by an interface characterized by a surface
 

tension the magnitude of which depends on temperature. The earliest studies
 

focussed on fluids having vastly different densities and viscosities and
 

treated the problem in terms of a single fluid with a free boundary. The
 

http:layers.14
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governing equations were linearized for small perturbations to the initial
 

quiescent condition with constant temperature gradient. The thermal con

ditions at the free boundary were characterized in terms of a Biot number
 

T -HL Bi corresponds to an iosthermal boundary while Bi = 0'represents 

a boundary with a fixed mean heat flux, i.e. insulated to perturbations in
 

heat flux. Pearson22 found that in absence of gravity convection will begin
 

at a critical value of the Marangoni number Ma, the magnitude of which depends
 

on the Biot number. Nield 23 extended Pearsons analysis to include the
 

effects of gravity. His results indicated a strong coupling between the
 

buoyancy and surface tension effects with a suppression of the critical
 

-AT required for the onset of convection when the layer is heated from below
 

and complete stabilization when the layer is heated from above. The diffi

culty inapplying the results of these analyses enters in the determination
 

of the Biot number at the free surface for a practical configuration.
 

Smith24 circumvented the requirement for setting a thermal boundary
 

condition at the interface by analyzing-the two-fluid problem. He obtained
 

a closed-form solution for the critical Marangoni number, inabsence of
 

gravity, which depends only on the properties of the two fluids and on the
 

25
surface tension variation with temperature. Zeren and Reynolds extended
 

the two-fluid analysis to include the effects of gravity. Both of these
 

analyses indicate that convection may occur not only with heat addition
 

from below but also, for certain fluid combinations, with heating from
 

above.
 

One of the main uncertainties associated with all of the linear analyses
 

mentioned above is that the principle of exchange of stabilities has been
 

assumed without proof. That is,convective motions are assumed to result only
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from perturbations which grow monatonically intime. Sternling and
 

Scriven26 have shown, however, that for deep layers, in absence of gravity,
 

oscillatory modes may be unstable. Ifoscillatory modes are possible in
 

finite layers then convection may begin at Marangoni numbers lower than
 

those predicted by extant linear theories. So far, no such modes have
 

been observed experimentally.
 

Although Grodzka 27 has reported observations of cellular convection
 

inessentially zero gravity conditions all of the quantitative data avail

able which can be used to check the theories has been obtained in presence
 

of a gravitational field. Thus, one must relate these results to theories
 

inwhich the effects of buoyancy are included. Zeren and' Reynolds25 performed
 

experiments with benzene-water layers and qualitatively verified certain
 

aspects of their theory. They were, however, unable to produce the pre

dicted convection with heating from above or to obtain the predicted
 

magnitude of coupling when the layers were heated from below. They
 

attributed these discrepancies to uncertainties in the surface tension
 

which is extremely sensitive to minute levels of contamination.
 

While the analysis of Zeren and Reynolds appears to be the most general
 

performed to date for combined buoyancy and surface-tension effects the price
 

paid for this generality isthat a simple, closed form solution for the
 

stability boundary cannot be obtained. Each configuration must be analyzed
 

individually and the stability criteria determined by numerical methods.
 

On the other hand, the more restricted analysis of Nield yields a simple
 

criterion for the stability boundary but requires knowledge of the inter

facial thermal boundary condition. Koschmieder28 performed experiments
 

with layers of silicone oil and air and reported qualitative agreement with
 

Nield's theory. He inferred values for the interfacial boundary conditions
 

from measurements of the wavelengths of the roll cells formed just after the
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onset of convection. Palmer and Berg29 and Hoard30 et al. performed
 

similar experiments and found good agreement with Nield's theory using
 

an interfacial boundary Biot number estimated on the basis of a one

dimensional conduction model. Based on these limited experimental data
 

it appears that Nield's theory can be-used to predict the onset of convection
 

for certain fluid combinations and geometries specifically those in which
 

the shear stresses in upper fluid layer are negligible and also deforma

tions of the interface are negligible.
 

4. Evaporating Liquid Layers.
 

Heat transfer coefficients at evaporating interfaces are generally
 

quite high and, in fact, interfacial thermal resistance is typically
 

neglected in estimating heat pipe conductance. If the interfacial heat
 

transfer coefficient is high then the potential for sustaining surface
 

temperature variations and thus surface tension variations is low. If one
 

assumes that, at least for low evaporation rates, Nield's predictions apply
 

to layers with net vapor production then the liquid layer temperature
 

drop required for the onset of surface-tension driven convection should be
 

quite high. At low pressures or with non-condensible gases present in the
 

vapor phase, however, Sukhatme and Rohsenow31 have shown that the inter

facial resistance can be appreciable. Indeed, the only reported observa

tions of surface-tension driven convection in evaporating layers of pure
 
32
 

liquids have been for net evaporation into a non-condensible gas. Under
 

normal heat pipe operating conditions, however, it does not seem likely
 

that the interfacial resistance would be high enough to support convection.
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In layers with non-planar interfaces it is possible that surface
 

temperature variations may be produced due to the influence of surface
 
33
 

curvature on the equilibrium vapor pressure. Thus, in heat pipes with
 

capillary evaporator structures it is conceivable that convection within
 

the capillary pore could be present if the interface radius of curvature
 

were not constant. On the other hand the presence of the confining side

walls should tend to inhibit convection.34 At the present time there is
 

insufficient information available to assess the importance of surface

tension driven convection in general heat pipe applications. However, in
 

the EHD heat pipe experiments with a smooth evaporator surface reported
 

in Part II surface-tension driven convection was probably not important.
 

Interfactal radii of curvature were large and non-condensible gases, if
 

present, were swept away from the evaporating interface reducing the
 

possibility for surface temperature variations.
 

http:convection.34
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Nomenclature
 

A = surface area
 

,Bi = HL/k - interfacial Biot number
 

C = specific heat
 

E = electric field strength

EC
 

)2ER = C (v - dielectrophoretic Ravleiqh number.
 

g = 	acceleration of gravity
 

h = 	vertical height of liquid rise
 

hfg 	= heat of vaporization
 

=
H 	 interfacial heat transfer coefficient
 

k = 	thermal conductivity
 

=
L layer depth 

L=: effective length of heat pipe 

Ma = pAL - Marangoni number. 

NEHD = working fluid figure of merit (Eqn. 2) 

p = pressure 

q = heat flow rate 

Ra = -ATL 3 - Rayleigh number. 

SAS = spacing between electrode and heat pipe surface 

SE = spacing between energized electrodes 

U q/AAT - conductance 

V = voltage 

a= thermal diffusivity
 

thermal expansion coefficient
 

y = thermal coefficient of permittivity
 

AT = temperature difference
 

s = electrical permittivity
 

S= kinematic viscosity
 

p = density
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=surface
: tension 

a' = change in a with temperature 

= electrical conductivity 

Subscripts 

L = liquid 

v = vapor 

e = evaporator 

c = condenser 

b = breakdown
 

o = free space. 
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Figure 1. EHD Heat Pipe Schematic
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Figure 2o Sketch of 0°25 cm thick Teflon spacer
 
(shaded) used to support electrodes
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Figure 6o Heat Pipe Enclosure.
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Figure 7. Locations of Thermocouples in Active Surfaces.
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Figure 10. Smooth Evaporator Surface With Every Electrode Energized.
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