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1.0

BOPACE i
Engines.

general

Although BOPACE development has been strengly influenced by the require-

ments for analysis of engines, in particular the space shuttle main engine,

it i5 a

The cuvrrent BOPACE Version 5 is based on the earlier BOPACE 2-D and 3-D

codes [1

preblem

conveniences. This document describes the current BOPACE program and in-
cludes theoretical, user, programmer, preprocessing, and example proebTem

sections.

_,..n.._h...__wk

THE a”;l”ﬂ COMPANY

INTRODUCTION

s the acronym for the Boeing Plastic Analysis Capability for
It is a nonlinear stress analysis program, based on a very i

family of isoparametric (curved boundary) finite elements.

general program applicabTle to many types of nonlinear structures.

,2]*, but it prevides major improvements in the areas of increased

size capability, additional analysis features, and added user

BOPACE has been developed by The Boeing Company for the NASA Marshall

Space F1

1)

DC 6000 2145 ORIG. 4771

ight Center, based on the following general requirements.

Analysis of very high temperature, large plastic-creep effects,

and geometric nenlinearities,
Treatment of cyclic thermal and mechanical loads.

Improved material constitutive theory which closely follows

actual behavior under variable temperature conditions.

A stable numerical solution appreach which avoids cumulative

errors.

t Brackets denote references given in Appendix A.

1-1.
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5) Capability for efficient handling of up tou 4500 degrees of

freedom (1500 DOF front), within 64K words of computer core.

The BOPACE research and develepment efforts have led to an improved
hardening theory for cyclic plasticity, a method for representing general
cases of load reversal, and techniques for improving the accuracy and
controlling convergence of highly nonlinear solutions. New features in
the current program version includé substructuring, an out-of-core Gauss
wavefront equation sofver, multi-peint constraints, combined material

and geometric nonlinearities, automatic calculation of jnertia effects,
provision for distributed as well as concentrated mechanical loadings,
follower forces, singular crack-tip elements, the SAIL automatic data
generation capability, and expanded user coﬁtro1 over input quantity

definition, output selection, and program execution.

BOPACE 1is written in FORTRAN IV and is currently available for both the
IBM 360/370 and the UNIVAC 1108 machines.

The BOPACE Programming effort has been led by D. L. Beste of Boeing

Computer Services.

j=2
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2.0 MATERIAL CONSTITUTIVE THEORY

The basic purpose of classical constitutive theory in an e]asto-?isco-
plastic program such as BOPACE is to provide incremental relations
between stresses and strains. BOPACE uses these relations with the
finite-element stiffness method to provide a convenient and efficient

approach for solution of an important class of nonlinear problems.

BOPACE accounts for elastic, plastic, thermal and creep deformations,
and the nonlinear dependence of all deformations on temperature, The
material constitutive theory includes a combined isetropic/kinematic
plastic hardening theory, and a generalized approach to cyclic lead
reversal. The BOPACE constitutive theory is developed by a tensorial
apporach which provides all relations in a form which is invariant

under ceordinate transformations.

2.1 ELASTICITY EQUATIONS

This section defines the cumulative and fncremental forms of the
relations for temperature-dependent elasticity, which are used in BOPACE
for initially isetrepic materials. Anisotropic elasticity is discussed

in Section 2.7. »

General Concepts and 3-D Relatiens - The basic cumulative stress-strain

relation, for either temperature-dependent or temperature-independent

elasticity, is

2-1
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= n¢ e
Uij = Dijkl ) (2.1-1)

where o and e® are the 3 x 3 tensors of stress and elastic (recoverable)
strain, respectively, and D® is the tensor of elastic coefficients which
may depend on temperature. For convenience we will use the equivalent

single-subscript notation

- ne . -
ay D'lj €5 (2.1-2)

‘where subscripts i and j range over all nine of the tensor components.

For 3-d-1‘mens_1‘ona1 analysis the relation 2.1-2 is taken as

\
(a ) e
G)(X rsxx
.
“yy Eyy
e
g JE
ZZ
oz (2.1-3)
ny ee
| By O 0O »
e
€ %z ¢ = 0 Dy, O { ez |
é
Oyz 0 0 Dj3 vz
e
UyX E_yx
1 e
T2x €2x
e
T2y €2y
. J L 4
22
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—
where
v v v ]
E ‘
D]‘I - "I'\J -2V AY ]-\) v
|V Y ]'\L
and
1-2v 0 0 |
i E )
022 = 033 = Iy "0 0 1-2v 0
LO 0 1-2v)
'ﬁ — Here E is Young's medulus and v is Poisson's ratio.

Note that the elasticity matrix in Equation 2.1-3 is consistent with the

. . ioaes ("“, : . e _ e .
tensorial definition of s\lj,ear strains (e.q. Sy ny/z’ where ny is

the engineering definition of shear strain). Tenserial definitions are

used in the BOPACE program in order to easily formulate constitutive

theory which is invariant with respect to coordinate transformations.

The last three of Equations 2.1-3 are somewhat redundant and may be

discarded to give an abbreviated 6-component form (e.g., uyx = Oyy and

Eyy = €,,)- It should be emphasized, however, that in performing

YX Xy _
later summations all non-zere values of the nine tensor components must

be accountéd for.

2-3
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‘Relations for Special Cases - Equations 2.1-3 can be used to determine

the cumulative stress components, given all of the cumulative elastic
strain components. These equations can therefore be applied in the

following analysis cases.

wd
.

3-dimensional (al) strain components computed from displacements)

2. generalized plane strain (speciffed zero or non-zero value of
one normal strain}

3. axisymmetric (circumferential strain computed from radial
displacement)

4. confined red (specified zerc or non-zero values of two normal

strains).

Special cases exist, however, in which one or more stress components
are specified while their corresponding strain components are unknown.

These include:

1. generalized plane stress or partially confined rod (specified
zere or non-zero value of ohe normal stress)
2. unconfined rod {specified zero or non-zere values of two normal

stresses).

Where one normal stress (say, °zz) is zere, the stress-strain relation is
| 1 v 0} six ‘
E e
= : 1 0 2.1-4a)
R 72 S

2-4

OO 6000 2148 ORIG. 4/ 71



THE _ﬂ”fl”g COMPANY

.3 -, - Iy o .
and if the normal stress-.fs non-zero, the corresponding strain can be

computed as

£, = (UZZ(T—?_’\J)/G - (sxx+ayy

Where two normal stresses (say, o ) are zero, the stress-

vy and oy,

z
strain relation is simply

o = E g (2.1-5a)

and if the normal stresses are non-zero, the corresponding strains can

be computed as

i
H

)/G - ve |

((1-v)o »

vy yy ~ “%zz

€2z {(1v)a,, - vgyy)/e T VExx (2.1-5b)

Once all strain components are known or computed, the stiesses can be

found if desired from the complete 3-dimensional stress-strain relation.

Incremental Relations - For the case of temperature-indepdendent elasticity

the incremental stress-strain relations are simply
Ao, = D&, AE? (2.1-6)

where A denotes an incremental quantity and D& is the approprizate

elasticity matrix.

2«5
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When temperature dependence is considered, the incremental relation may

be written either as

1 0_ el el .e0 e0 -
Aai =gy -o;® D'ij €5 Dij €5 (2.1-7a)
or
_ .n& @0 el e
Aoy = ADij 5 + |J1.‘_j Aej (2.1-7b)

where the superscripts 0 and 1 denote quantities evaluatad at the
beginning and end of the increment, respectively, and #D® = 961 - DeO

is the change in elasticity matrix from beginning te end of the increment.
The first term in Equation 2.1-7b accounts fer stress change due only to
change in elastic properties, while the second term accounts fer

additional stress change due to the increment of elastic¢ strain.

2.2 THERMAL STRAIN

Alternate Formulqtith'— The conventional description of thermal strain

is given, for isotropic materials, by

= vy AT {1 (2.2-1)

where st denotes thermal strain, T is the temperature, and y is the

thermal coefficient of expansion which may be a function of temperature.

2-6
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An alternate integrated description of thermal strain is

®xx o
t - E:t (T)

“yy J
t
Ezz

gives the thermal strain directly as a function of temperature.

(2.2-2)

where here ¢

for analysis purpeses, st may be taken as zero at any convenienit reference
temperature,

20PACE Formulation - BOPACE uses the direct form 2.2-2. This form is

preferred over that involving a thermal expansion coefficient because
accumulated errors in thermal strain are not introduced. These errors
could arise with the form 2.2-1, in case y varied with temperature and
the specified heating and ceoling sequénces used different temperature
increments. BOPACE takes the structural fabrication temperature of sach
element as the reference temperature for zero thermal strains. (If the
material data defines a non-zero thermal strain value at the fabricatien
temperature, all thermal strains computed for the element are adjustad by

~ subtracting out that value.)
2.3 PLASTICITY

This section defines the incremental elasto-plastic relations used in the
BOPACE program. ({See also Section 2.6 for the elasto-plastic interative
a]gofithm.) BOPACE employs a new concept of combined isotropic and
kinematic hardening, and accounts for temperature-dependent elasto-
plastic behavior as well as a generalized form of cyclic load reversal.
In order to develop the constitutive theary in a straightforward manner,

discussion of the effects of temperature-dependent elasticity en the

2-7
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—_ elasto-plastic relations is deferred until Section 2.5.

Befinitions - The following nomenclature is defined.

g = total stress

a = stress center {of yield surface in kinematic hardening)
s = deviatoric (total - hydrostatic) stress

a = deviatoric stress center

s = s -a-= relative deviatoric stress

e = elastic (recoverable) strain

P o= plastic (time-independent non-stress—inducing} strain
es = creeﬁ (time-dependent non-stress-inducing) strain

General Concepts - The basic concepts in most elasto-plastic theories

are those of a yield surface, the dependence of yield on only the

deviatoric stress components, incompressibility under plastic strains,

and normality of the plastic-strain-rate vector to the yield

surface. The definition of a particular theory requires assumptions

for three basic constituents: '

1) a surface relating the stress components at yield

2) a flow rule defining a direction for the incremental
plastic-strain vector

3) a hardening rule. -

Yield Surface - BOPACE'empToys the Huber-Mises yield surface {37,

defined by the reTa%iQe deviatofic.stresses as

2-8
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F = 5.5, - §9§$ =0 (2.3-1)

where the summation is again taken over all nine tensor components of
s. The ;? are compenents of a point on the yield surface at a known
conditijon of temperature and plastic deformation, e.g., from a uniaxial

test.

cquation 2.3-1 holds whenever the material is plastic, i.e., whenéygr,.
the components ¢f s are on the yield surface. Function F may be thought

of geometrically as defining a hypersphere in 9-dimensional deviatoric

stress space. Alternately, when expressed in the 3-D space of principal

stresses, this yield surface can be shown to be an epen-ended circular
cylinder whose axis passes through the origin and makes equai angies
with each of the three principa1.stress axes., The Huber-Mises yield
surface is generally used to describe plasticity in metals because it
agrees reasonably well with test results and it gives a smooth surface

which is convenient for calculations.

Flow Rule - BOPACE uses the Prandtl-Reuss flow rule, which is the usual
rule associated with the Huber-Mises yield surface. The assumptions
are that the material is incompressible under plastic flow, and that the

plastic strain rate is normal te the yield surface at the stress point.

These assumptions provide the relation

acf = as, | (2.3-2)

where A is a flow parameter (er plastic proportionality constant).

2-9
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Basic Hardening Concepts - An elastic-plastic material which work hardens

in the plastic range is commonly analyzed using either of two classical
hardening theories. Isotropic hardening [4], which assumes a uniform
expansion of the yield surface during plastic flow, accounts for change
in size of the hysteresis loop during gyc1ing. Kinematic hardening [5],
which assumes a rigid translation of the yield surface in the direction
of the plastic strain increment, accounts for the proenounced Bauschinger
effect which is evident in cyclic behavior of most metals. In general,
an actual cyclic behavior can be more accurately described by a combination
of isotropic and kinematic hardening. A gqmbined.hardening theory has
been given by Hodge f6] for materials wﬁich satisfy the Tresca vield
condition. Because a better representation for most metals is provided
by the Huber-Mises yieid surface, a corresponding combined hardening

theory [7] has been developed for the BOPACE pregram.

Hardening:Parameters - A simple combined hardening theory such as that

presented in Reference 7 makes two basic assumptions:

1) Size of the yield surface is a functien of a cumulative hardening
parameter, «. This means that the isotropic hardening, i.e. the
incremental change in size of the yield surface, depends on the

initial value of « and its change k.

2)  Yield surface translation is related {but only in an incremental
manher) to a kihemat1C'hardening parameter, <. The kinematic
hardening, i.e. the incremental translation of the yield surface,

depend$ on the initial value of fk and its change Amk.

2210
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For a siﬁple uniaxial load case, the yield surface size at any time is
measured by one half the algebraic difference between the current yield
stresses in tension {positive) and compression (negative), while the
cumuilative kinematic hardening is measured by one half the algsbraic sum

of the yield stresses in tension and compression.

It will be evident in the discussion to foliow that isotrepic hardening

can be related to k on either a cumulative or incremental basis, while

- . . k :
kinematic hardening can be related to « only on an incremental basis.

Ini addition to the parameters x and Kk, hardening is also a function of

temperature.

Figure 2.3-1 shows hysteresis loops for the first two strain-controlied
cycles of a typical material which exhibits combined isotrepic and
kinematic hardening. Here o denotes yield stress and ¢ denotes yield
stress center, The Bauschinger kinematic hardening effect is apparent

in that the initial yiélding in tension causes a reduced vield stress in
compression, i.e. a shift of the yield center by an amount «. Successive
yielding in compression causes a reduced yield stress in tensien, and so
forth. Isotropic hardening causes the increase in size of the hysteresis
leop with continued cycling. The hysteresis loops for many materials
become stabilized after a number of cycles, and they may begin to decrease

in size as further deformation causes a seftening effect.

Figure 2.3-2 shows the stabilized hysteresis Toops for a material at
various temperature levels, (Different strain ranges are used to separate

the loops for purpose of illustration.) The hysteresis leop of a material

2-11
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Figure 2.3-1. Combined Hardening Betavior (Non-stabilized)

Figure 2.3-3, Variable Temperature Hardening Effects

2-12
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typically decreases in size with increasing temperature. Note that the
size of the yield surface will vary in a similar manner with temperature.
Alsc the rates of isotropic and kinematic hardening with respect to

plastic deformation vary with temperature.

The isotropic hardening parameter « may be appropriately taken as either

the cumulative plastic work density, or as the sum of increments of

effective plastic strain. The kinematic hardening parameter Kk must
acceunt for the Bauschinger effect in cyclic loading, and it may be
taken as an adjusted value of k. As 1ong as no lead reversal nccurs and
the Toading is proportional, Kk is simply equal to x. However, nk must
be set to zero at the start of each increment in which a complete Toad
reversal occurs. (A complete load reversal occurs when the incremental
plastic strain vector has a direction exactly reversed from that of the
previous plastic increment). For an incomplete Toad reversal, the

BOPACE program computes the starting value for Kk

by multiplying the
existing accumulated value of mk by the factor (1 + COSINE}/2, where
COSINE is the Cosine of the argle between successive incremental plastic

k becomes kX + ax.

strain vectors. At the end of each increment, «
Because the Bauschingér effect varies with cumulative deformation in
certain materials (e.g. it may become more prenounced as plastic cycling
continues), BOPACE allows an additional option for the kinematic hardening
to be defined as a product of two functions. The first is a function of
-nk and defines the shape of the kinematic hardening, while the second is
an additional factor which depends on « and defines the magnitude of the

kinematic hardening.

2-13
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In order to implement the BOPACE hardening theory, it must be determined
how the size of the yield surface varies with temperature. In addition,
the dependence of isotropic and kinematic hardening on the parameters x

and Kk

must be determined. This is accomplished by performing cyclic
tests at several levels of constant temperature. After the cyclic
hardening behavior is thus determined at different constant temperatures,
an assumption must be made for variable temperature cycling. The hardening
effects of variable temperature are {illustrated in Figure 2.3-3. _Aé

‘ong as temperature remains constant, plastic hardening behavior is
defined by following the shape of a stress-strain curve at the given
temperature, say te the point 0 on the T2 curve. If temperature changes
to T3, and then plastic deformation continues, an initial peint must be
determined on the T, curve from which the new yield surface size and
initial hardening slopes may be determined. This transfer from curve T2
to curve T3 requires a definition of the basis for hardening, i.e. the

definition of the parameters « and Kk.

BOPACE allews the option of
either plastic work or the sum of increments of effective plastic strain
to be used as the hardening basis. The strain and work options correspond

to the respective peints 1 and 2 in Figure 2.3-3.

The hardening relationship determined from a series of cyclic tests may
depend somewhat on the strain range used in a particular test. If

strain range is a significant factor the test conditieuns should duplicate
the approximate expected strain range for which an analysis is te be
made, 'The choice between plastic strain and plastic work as a basis

k

for the hardening parameters « and « may depend to a large extent on

2-14
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which basis provides the better overall representation of cvclic behavior

-at various strain ranges.

Multijaxial Hardening Rule - The kinematic hardening rule empiayed in

BOPACE is that due tic Prager [5]. It gives the increment of yield

surface translation in terms of the incremental plastic strains, as
= P2 P -2

where ¢ is the kinematic contribution to the slope of the uniaxiai
stress vs. plastice-strain curve, and [ is the identity matrix. An
alternate hardening rule due to Ziegier [ 8] is preferred by some plas-
ticity analysts because the form of Ziegler's rule does not change with
reduction in the number of spatial dimensioens, and it is therafore
supposed te simplify the calculatiens. Prager's rule is considered more
acceptable from a physical peint of view, however, and it presents no
difficulty when ail components of the required tensors are retained as
they are in the BOPACE programs. Note that for Prager's kinematic
hardening rule, the deviatoric stress center is equal to the stress
center, i.e. a; = oy.

The isotrepic hardening, i.e. change in size of the yield surface due to

plastic deformation, is defined for a preportienal test loading by

85y = RS, ach) = 2y 1y e} (2.3-4)

2-15
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where r is the isotropic contribution to the sTope of the uniaxial

stress vs. plastic-strain curve.

The necessary condition that stresses remain on the yjeld surface is
satisfied by taking the differential of Equation 2.3-1. The condition

is F =0, which to a first order approximation can be shown to give

S, A01 - AL = O (2.3-6)
wnere
A=LS, na,+
P At

The key to a successful combined hardening tﬁeory is the proper deter-
mination of the hardening variable A. BOPACE uses input data hardening
tables which give the yield-surface size and the surface translation as
functions of the hardening parameters x and kk. These are iwe-dimensional
tables for each material whose erdinates and abscissas are, respectively,
temperature and hardening parameter. -Given the initial values of « and

Kk at the beginning of an increment, and estimated values for sk and AKk,

2-16
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the corresponding increments of isotrnpic and kinematic strags increase
are obtained from the hardening tabjes. (Mardening due to températUWe
change is included by adding it to the isotropic stréss'increment.) |
The hardening slopes ¢ and r are thén-COmputed, by'diyiding the Tncremental
stress increases by the estimated‘incremeat of effective plastic sﬁraiﬁ;
This procedure gives average values for the 5lopes ¢ éwd r during the
increment, and tends to produce an accurate and stable numeriga?.iiérative
process. Note that, in general, it is only the isctropic ard kinematic
stress increases, and not the slopes ¢ and r, which the tablss relate
cirectly to the hardening parameters, (For a particular Joading and siress
state, the siopes c and r can at any given time be reiated indirectly to
the hardening parameters.) The cheige of a test value for s® in cquation
2.3-7 is arbitrary, as long as it is a point on a yield surface of size
corresponding to g, i.e., a surface with equal values of temperature ang

parameter x. It is convenient in BOPACE to take go equal to s,

Incremental Stress-Strain Relation ~ The incremental stress-strain

relation now follows the development of References 9 and 10. Take

e+p

=02, ac® = %, ac®tP - p8. S
Ao, = D Aej BTJ ACJ D1J SJA (2.3-8)

i ij

where D% is the appropriate matrix of elastic constants.

Then-

2-17
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which gives
= 5. D%, Ac®*P s D% o 2.3-10}
A= sy 05y aeSP/(A + 5, 0E, S, (

Substituting Equation 2.3-10 into Equation 2.3-2 provides the desired

relation

/ e ° e

i Di. 3. s, D

. +
boy = k[ﬁj - ’.”‘«Ak ﬁ L Asg P (2.3-11)
A+ S Dmn Sh

0!“ ) R

_ /ne p etp _ et

D is the elasto-plastic Jacobian (tangent-stiffness) matrix relating
incremental stresses to incremental elastictplastic strains. In effect,
| it separétes the elastic and plastic strains and determines the incre-
mental stvess corresponding to thé incremental elastic strain. O is
the stiffness reduction due to plastic flow, and hecomes zero for the
case of infinite hardening, iue; A = =, or equivalently the total slope

(c+r) of the stress vs. plastic-strain curve is infinite.

To develop the piape strain relation we essentially carry out the 3-D

matrix derivatfon, and then drop out all zz terms because for iterative
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. + e .
sclution purposes Aegzp = (), For plane stress, the derivation is carried

out using only the plane stress elasticity matrix.

Effective Stress-Strain and Plastic Work - The concepts of "effective

stress" and "effective strain" are related to plastic work, and are usec

in a limited way in the development of constitutive theory for the

30PACE proegram.

Because they can easily be misapplied, especially in the presence of yield
surface translation, the use and Timitations of the concepts are briefly

discussed hera for the Mises plasticity theory.

Due to characteristics of the Prager hardening theory. the following

statements of equivalence and proportionality should first be noted.

fay = sy ek ms, # sy (2.3-13)
Because of the incremental nature of kinematic hardening, s, and §i
are in general not proportional. X
The Mises effective stress o is defined by
& = —% S5 S (2.3-14)

The incremental and cumulative values for plastic work, wp, are given by

WP =0, Aa§ (2.3-15a)
and

WP = 3 o5 AEE (2.3-15b)
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where I denot2s summation over all increments. For the special case of
proportional loading (i.e. 1pading in which all stress components are
increased proportionately) followed by a constant stress level {i.e. no

plastic hardening), the cumulative plastic work is given by
W = o, e (2.3-15¢)

As a matter of convenience in computing plastic work, an increment of

affactive plastic strain, azk, has historically been defined by

-pz = g p p {2 2-
(A; ) 5 Al ael {2.3-16)

At this point, however, care must be exercised in using the historical

calculation for plastic work. If kinematic hardening were zero, then

Sj = Sy and because Ae? is propertional te S5 the use of Equations 2.3~

14 and 2.3-1f would give plastic work as

WP = T oaeP (2.3-17a)
and

W = 3z 7P : (2.3-17b)

2-20

8w 2ran OQR'G al7

it
1

[

S



THE ”ﬂf’”g COMPANY

If in addition, the condition were one of proportienal loading and
constant stress, then by defining the cumulative effective plastic
strain, Ep, in the same manner as AEp, we would have

W = 7P (2.3-17¢)

Of course the Equations 2.3-17 in general are not valid, because of the

presence of kinematic hardening and non-proportional leading. Thus
plastic work must be computed from Equation 2.3-15a and b, rather than

“rom the product of effective stress and strain quantities.

The guantity P serves 1ittle purpese in a general plasticity analysis,
although it is a tensorially invariant quantity and does provide a
measure of net residuzl defeormation. For a rational measure of deforma-
tion history, either the plastic werk, Wp, or the sum of increments of

effective plastic strain, I KeP, s appropriate. The difference in

concept between the quantities WP and £ aeP should, however. be recognized.

2.4 CREEP

Stages - Metals characteristically eéxhibit the three stages of primary,
secondary and tertiary creep. Figure 2.4-1 shows these stages in a
typical creep histery under conditions of censtant temperature and
stress. Because creep rate varies consideréb1y during the different
stages, the description of actual creep histoeries is considered to be

essential for an accurate analysis. The BOPACE proegram accounts for

DO §000 2145 ORIG, 4/7)

LT



Figure 24-2. BOPACE Creep Representation  Example for Variable Temperature

Figure 2.4-3,"

EFFECTIVE CREEP STRAIN (&%)

EFFECTIVE CREEP STRAIN {£%)

EFFECTIVE CREEP STRAIN (&%)

e e e
R I

s G . e - —— —

TIME

Figure 2.4-1. Typical Creep Stages

TIME

and Constant Stress}

{1) AGE HARDENING 5
{2) STRAIN HARDENING 3
{3} WORK HARDENING

TIME

BOPACE Cresp Hardening Options (Example for Constant Temperature

and Variable Stress)
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the creep time history by allowing the user to define, by a series of
input points, the shape of the effective-creep-strain vs. time curve for

each material.

Temperature and Stress Effects - Creep rate in most metals {s very

dependent. upon temperature and stress level. The BOPACE approach te
creep analysis prevides a reasonable description of temperature and
strass affects, while aveiding excessive storage and computational
~aguirements. For each material, BOPACE requires a creep

curve shape which gives the relative variation of effective-creep~strain
ys. time for the various stages considered. This shape is assumed to be
vaiid for all the temperatures and stress levels of the particular
material. A table of creep factors for the material is then specified
as a function of temperature and effective stress, and a pertion of the
actual creep curve is determined by multiplying the reference creep
curve by the apprepriate facter using the average temperature and stress
during the increment. Fiaure 2.4-2 shows pertiens of typical creep
curves for the special case of constant stress level and variable temper-
ature; Note that accerding to BOPACE assumptions these curves have the
same shape.

Hardening - As long as the temperature and stress level remain constant,

an increment of creep is determined by follewing the corresponding creep
curve for the given time increment. However, if temperature er stress

level changes, an initial point must be identified on the cerresponding
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new creep curve in order to determine the new creep rate. This transfer
from one curve to another requires an assumption for creep hardening,

which in BOPACE is defined by a single hardening parameter, «C.

BOPACE
allows the option of eijther age. Strain, or work hardening. for which k©
is defined respectively as the accumulated time, sum of increments of
effective creep strain, or creep wOrk.;.Eonsider, for example, these
eptions in Figure 2.4-3 for a case of constant temperature. Creep

during the preceding increments has progressed to the point @ on the E]
wurve. The average effective stress during the present increment is 52,
which gives the initia® points 1, 2 and 3, respectively, for the opticns
of age, strain ahd work hardening. Incremental creep for the current
increment is then determined by continting aleng the 62 curve from the
appropriate initial peint, for a distance equal to the specified creep
time increment. In the general case beth temperature and stress will
vary from one increment to the next, but thé hardening cptien still
determines in the same mannher how the transfer is made between the creep
curves.

Load Reversal - The main use of the creep-hardening parameter «* comes

into play during a load reversal. When a complete reversal occurs, K~ »
is set to zero and the initial point on the creep curve is taken as that
correspending to a zero value of «C. {A complete load reversal occurs
if thé incremental creep-straﬁn vector has a direction exactly reversed
from that of the preceding creep increment.) For an incomplete loead
reversal, the BOPACE progrém computes.the starting value for k© by
multiplying the existing value of «© by the factor (1 + COSINE)/2, where

COSINE is the Cosine of the angle between successive incremental creep
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strain vectors. Parameter «C then accumulates as before, 1.e. at the

end ef each increment k° becomes © + 1.

Multiaxial Flow Rule - The incremental creep-strain vector has histerically
been taker normal to a Mises type of surface which passes through the
styress point. When kinematic plastic hardening is considered, this

surface could be taken either as the actual translated vieid surface, or

25 an untranslated surface which passes through the sztress point but

whose center remains at the origin. The appropriate choice of surface

is not clear, and the multiaxial creep flow rule is therefore defined on
the basis of programming simplicity. BOPACE defines multiaxizl

creep under elastic conditions by
c 3 ,—<C,—
bes = (5 8e°/3) i (2.4-1)
where Az° is the increment of effectfye creep strain defined by
—C\2 - 2 c ., C 2.4-7
) 3 by beg | { )

while o and s are evaluated at the beginning of the increment.

Creep which occurs under plastic conditiens is taken in the same direction

as that of the plastic strain increment {see Section 2.6).
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2.5 COMPLETE STRESS-STRAIN RELATIONS

In Sections 2.1 to 2.4, the basic theory used in BOPACE for elasticity,
thermaj strains, plasticity and creep has been discussed. The present
section describes the complete stress-strain relations, and the manner
in which simultaneous elastic, plastic, thermal and creep strains are
accounted for. The combined effects of temperature-dependent elasticity

and plasticity are included.

General 3-D Relations - For temperature-dependent behavier, an elasto-

plastic incremental stress-strain relation follows frem Equations 2.1-5b

and 2.3-8:

Ao, = aDS, 80 D&} Ac8*P . pel -

9 ij & * D]J Aejb Djj ij (2.5-1)
Here the first term accounts for stress change due to change in elastic
properties, while the secend and third terms account for stress change
due to change in elastic strain. Following Equation 2.3-9,

0

) . o el ,etp o el -

3 = o o o Ap® .®
Ar = S,i_ AU,i 5,' AD . ej 13'

1J

(2.5-3)
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For the general case of temperature-dependent plasticity, R® accounts

for isotrepic hardening due to both plastic defermation and temperature.
Then |

~ e eO el e+p
. . +
y = o ADyj &5 :* Di.} (2.5-4)
~oe
A+ g Dkl %

Substituting Equatien 2.5-4 into 2.5-1 gives

el N -e e] a0
s AD o s
Ao, = ADe] ik X :1 L] €204 D?} ik ,‘k 2’1 23 AE§+P
A+ *m Drn Sn ) A+ Sm P Sn
(2.5-5)
or, using abbreviated netation
i = fAn@ D e@ el pl e+p ] e+p
Ag, L+ .
o, (ADU ADU) 3 ([a13 + DY )A ADU j +m1J Aej
(2.5-6)

Thus the increment of stress can be determined as the sum of twe products:
an incremental matrix times the initial elastic strains, plus an end-of-

increment matrix times the incremental elastictplastic strains.

This formulation was used by the priginal BOPACE program in the iterative '
stress-strain algorithm for temperature dependent materials, and is

developed here for the sake of c¢larity. The present BOPACE program,
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however. employs an improved iterative algorithm, which allows an additional
benefit by substituting the simpler Equation 2.1-3a for 2.1-3b. Details

of the new algorithm are discussed in Section 2.6. For either approach,

the formation of the tangent stiffness matrix is based on Equatien 2.3-

12, with quantities evaluated at a single appropriate temperature. (In
updating the matrix the temperature used is that at the end of the

increment).

2.6 IMPROVED ALGORITHM FOR INELASTIC CALCULATICNS

Summary of Basic Cencepts - The iterative residual-force procedure is

often employed with an incremental selution for inelastic (plasticity
and creep) problems, in order to avoid accumuiated error. Each iteration

in the residual-force procedure involves the following two stages.

1)  Equilibrium and Compatibility: Given the current residuals {unbalanced
forces or stresses), the equilibrium and compatibility equations
are applied in order to predict an improved configuration (of

displacements and strains).

2) Separation of Strains: Given the current strains, some algorithm
based on-the inelastic material theory is applied in order te
separate the strains into their elastic, plastic and creep portiens,

and thus provide the resulting stresses.
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When this procedure has converged to the correct result, the following

conditions will be met.

1} Forces in equilibrium

2)  Displacements compatible

3}  Plastic strain increment satisfies normality rule

4} Size of yield surface consistent with deformation history

5)  Translation of yield surface consistent with deformation history

The overall BOPACE solution technique based on the residual-force
procedure 1s summariéed in Secticn 4. The burpose of the present section
is to discuss the details of a new alyorithm whicn has been develcped

and incorboerated inte BEGPACE. for improving the convergence and accuracy
of the inelastic stress-strain calculatiens. This algorithm defipes the
1mp1eméntation of stage 2 (separatioen of strains) in the residual-ferce

iterative procedure.

Background - The theory already presented in Sections 2.1 through 2.5
may be emplayed for both stages of the iterative procedure, and in fact
equations of the type 2.5-5 were used fer all stress-strain calculations
in the initial version of BOPACE. Cenvergence difficulties resulted
from the use of this appreach in stage 2, however, when the incremental
inelastic strains were large relative to the cumulative elastic strains.
These difficulties were substantially eliminated by properly controlling

the direction defined for the incremental inelastic strains. (The
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reason for the difficulties aid the method of control were presented in Ref-
erence 11), Another quite different approach is based on a "strain-space"
concept, and was presented by Barsoum in Reference 12 with the claim of a
significant improvement in efficiency. That approach was therefore modified
appropriately to make it suitable for a finite element solution procedure,
and incorporated into the BOPACE program. Because the method as presented
in Reference 12 assumes kinematic hardening only, it was extended to include
the combined isotropic and kinematic hardening provided by BOPACE. In addi-
tion, seme further techniques for accelerating convergence were identified
and incorporated into the strain-space method., The resulting BOPACE algoi-
ithm appears to be a significant improvement, and it has been made a permanent
part of the current program. Although the implementation of tha algorithm
to include creep,temperature dependent elasticity and plasticity, etc., is

somewhat complicated, the basic procedure will be detailed here,

Basic Definitions and Comparison of Algorithms - The new irelastic

algorithm involves calculations in the "deviateric strain space," rather
than the more conventional "deviatoric stress space" used in previous
BOPACE programs, For the sake of clarity, the previously used stress-
space algorithm will again be summarized here, and the elastic-plastic
quantitites used in the new strain-space algorithm will be defined and

compared with previous quantities.
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Paint which is fixed during increment
Foint whish moves during increment

a) QUANTITIES IN DEVIATORIC STRESS 5PACE

b} QUANTITIES iN BEVIATORIC STRAIN SPACE

Figure 2.6-1. Graphical Representation of Elastic—Plastic Quantities
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As described in Section 2.3, the definition of a plasticity theory
requires assumptions for three basic constituents: a yield surface, a
flow rula, and a hardening assumption. BOPACE development is based on
the Mises yield surface, and this surface is represented by a hypercircle
in 9-dimensional deviatoric stress space, as shown in Figure 2.6-1a.

The surface is defined by the equation |

N A

- _ o0%0 (2.6-1}
F=5:5;~s848;=0

where s is the deviatoric stress, s =s -ais the relative deviatoric
stress and defines the isotropic hardening, o« is the surface translation
and defines.the kinematic hardening, while s0 is a reference value of s
and must be known as a function of plastic deformation {(e.g. from a
uniaxial test). Point A in Figure 2.6-Ta is the origin of the deviatoric
stress space, point B is the current center of the yieid surface, and
point C represents the current state of deviatoric stress. A stress
Eoint on the surface coerresponds to a plastic state. According to the
Prandt1-Reuss flow rule, the direction of the incremental plastic strain,
seP, is normal to the yield surface at the current deviatoric stress
state, s, A soI%d circle ( @ ) in Figure 2.6-1 denotes a peint which
remains fixed throughout the increment, while an open circle ( 0 ) derutes
a point which moves EUring,the ihérement. In order to achieve greater
accuracy and allow larger lead increments, BOPACE evaluates moQTng poﬁnts
such as B and C at the midpoint of the plastic increment. Additioral

details of the BOPACE stresséspace algorithm are discussed in Section.z.s.
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For the new strain-space algorithm, the three basic constituents of the
plasticity theo:ry remain unchanged, and direct use is made of the stress-
space theory and nomenclature. However, we now wark with a yield surface
and associated quantities in strain-space. Thus we compute the deviatoric

etastic strain, ee, in terms of the deviatoric stress. s, by
e

where 6 = E/{14+v)} is a tensorial shear modulus. Similarly we define a

"strain center®, B, in terms of the stress center, «. Dy

B_i rof,_i/& (2.6-3)

~

Then the relative deviateric strain, e, is defired by

e; = €5 - 8 = (55 - 0g)/6 = 5./8 (2.6-4)
The geometrical interpretation of the new algorithm involving these
quantities is provided by a sketch in 9-dimensional deviatoric strain-
space, shown in Figure 2.6-1b. There point 0 is the origin, defining

the initial undeformed (zero strain) state. Subsequent deformation is
caused by a series of load increments, resulting in elastic and plastic
strains. A superscript 0 is used to denote the value of a quantity at

the beginning of the load increment. Thus, point A defines the cumulative

p]éstic strain, spo, which exists at the beginning of the current increment.
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{Because of the plastic incompressibility assumption, the plastic
straine themselves are deviatoric strains). A1l ather points in Figure
2.6-1b refer to locations at some time during the current increment. In
particular, we will be mainly concerned with the location of these
points at a defined reference time. This reference time may be taken at
the end of the increment, follewing the approach of Barsoum [12], er
greater accuracy may be obtained at the expease of some additional
variable storage by taking the reference time at the midpoint of the
plastic increment, as is done in the new BOPACE algorithm. Point D
defines the total cumulative deviatoric strain, e, at the reference time.
The circle is associated with the Mises vield surface, but is a hyper-
circle in the deviatoric strain spnace. A strain point within the
surface corresponds to an elastic state, while a strain point outside
the surface corresponds to a plastic state. The size of this circle is
defined by its radius éi(éi = §1/G), whereas the Mises stress-space
surface has radius ;. The center of the circle is at point B (Bi =

sgo B8y = e?o + “i/G)’ whereas the center of the Mises stress-space
surface ‘has components oy Buring plastic deformation, the strain-space
surface may undergo both expansion {due to isotrepic hardening), and
translation (due to kinematic hardening). The cumulative deviateric
elastic strain, e°, is defined by the vector AC (e? = si/G). From these
comparisens it should be apparent that the basic quantities in Figures
2.6-1a and b, respectively, can be made to coeincide, if points A

are superimposed and all dimensions in 2.6-1b are divided by the

factor G. The incremental plastic strain, ae®, is defined by the
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vector CD. It is normal to the circle because of the Prandtl-Reuss

flow rule, and i$5 therefore colinear with the radius e to point C.

p

e, Ae!

The vector B = é + Ac” is denoted by E'. The symbels e', e
)
and E' are consistent with their usage in Reference 12.

Computatien Procedure - We now define the new strain-space algorithm

for impleménting stage 2 of the residual-force iterative procedure.
The problem which must be solved cah:hg stated in terms of the various
strain vectors. At the beginning of the increr-nt, we have known
values for EpO (which remains constant during the fncrement), and fer
Bs ee, and e. These have been determined such that they are all
consisteht,‘i.e., such that the appropriate vectors méet at single

points A, B and €. The current estimate for the value of &' at the

reference time is also known from stage 1 of the iterative procedure.

We must then determine values for g, ee, e and 4=P at the reference

‘time, consistent with the cenvergence requirements. Stated somewhat

dﬁ??erently, we are given the lecations of points A and D at the reference

time, and the locations of points B and C at the beginning of the increment.
;. We must then compute the locations of B and C at the reference time,

~ consistent with the cenvergence requirements.
The basic steps of the stage 2 algorithm are summarized by the following.

1} Given values at beginning of increment for:

6}
o = stress center
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1]

$% = relative deviatoric stress

el

e elastic strains

| .
2) Given ¢ = total {elastic + plastic) strain from stage 1.
3) Take values at reference time, based on 2stimated incremental
deformation, for:

Ao = kinematic hardening increment

a]sl = isetropic hardening increment

4) Compute: e} + e; - a?g = initjal =zlastic strain + total sirain

increment

e. = corresponding deviateric value

0

5} Compute: g, = fu% + Aai)/e

(15%] + als])/e

LA
n

6) Compute: E, = e, - g;

7} Compute: a= (|E'] - ]é[)/lEr] = plestic preportionality constant

1
8) Compute: Asg = lEi = incremental plastic strain at reference time.

Adgust Asg-+ Aeg times ratio (ratic = total time increment /
reference time increment, to obtain total plastic strain in-
crement. Set « and E| values based on acP.

9) Compute end of increment values for:

e?’“ a} - Ae? = cumulative elastic strain
_ e i T b
Ui = Dij ey = cumulative stress

10) Use ¢ to compute residual forces and residual norm, and return to stage

1 if convergence has not been achieved.
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The strain-space algorithm presented above corresponds tc that given by
Barsoum [12] except that here a combined isotropic and kinematic hardening
is provided and a referenze (midpoint) time caiculation of the incremental
variables is used teo improve accuracy. As noted by Barsoum, greater
consistency and better convergence are pbtained by utitizirg an algoerithm
in strain space rather than in stress space. This is because the stress-
space calculation fixas the aeP vector aleng the direction of a.previous

s vector, rather than simultaneously fixing the directions of s and aeP

- consistent with the given total strain increment ae.. The stress-space

algorithm can cause large tangential oscillations in the location of point

C, resulting in divergence if ac? is large relative te the cumulative

elastic strain.

Aithough a strain-space ajgorithm as described will eliminate most of the
inconsistencies and tendencies toward aivergerce, it should be noted that
an inceonsistency still exists in the plastic hardening guantities., This

is due te updating « and g based en the estimated increment of plastic
deformatibn, which will ndt in general be consistent with the actual
defermation. Thus, if another iteratien weré'performed ustng the same
value for the total strain increment Ae, different results would be obtain-
ed due to change in 8 and e. This inconsistency in the basic strain-space
space a}gerithm often resuits in poor éonvergence, with radial oscillations
of points B and C frem one iteration toe the next, espacially if the plastic

hardening slepes (c and r) are relatively large.

The present strain-space algorithm eliminates the difficulty by properly

modifying the calculation of A in step 7. In this medification we use
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the parameters c and r associated with kinematic and isotropic hardening,

respectively. in the expressions

P
i

1

Aok,

n

als| = & rjaeP| (2.6-5)

The E' vector can then be written as
[] ] H

) L0
Ei - Ei - Bi = ei (Bi + ABi)

1 0 . _ 1 0 g-l p -
e,i - B.i - A(l.ifG = E.i - B.i - 3 c AE.i/G (2.6 6)

. 1 1
Replacing Ae? in this equation by in, we may solve for Eiz

1 _ ] 0 2 . 2 7
Ei - (e.i - B'i)/(l + ?AC/E‘} (,.6- .a)

In a similar manner we may ebtain

al = 1601 + 2306 6 5
lat = 1e% + Zarje |/ (2.6-7b)

r

The plastic proportionality constant, as already defined, is

»= (JE | - Je])/IE | (2.6-7¢)

It is apparent frem Equations 2.6-7 that the expression for A is non-
linearly dependent upon A itself, and this is the reason why consistent
A is not selved for directly. An accurate value for A, however, can
easily be gbtained by a "1inear intersection method." In this method
we take the approximate value of X from step 7 of the stage 2 algorithm,

and substitute into the Equations 2.6~7 to ebtain a new computed value
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Aepe We then assume a value of A + Ax, where A} is a small change
{perhaps .0TA), and again substitute into Equations 2.6-7 to compute
another value Aoy The twoe pairs of assumed and computed A values are
pletted in Figure 2.6~2. The correct value for A 1ies on the 45-degree
Tine {since there the assumed and cbmputed values would be equal),

at the intersection of this line with the Tine connecting the two
plotted points., This corrected value of A is obtained by the foi]owing

adjustment of A from step 7.

M At Mg = A)/(8h = A+ A ) (2.6-8)

The incorperation of this adjustment into the strain-space algorithm
provides consistent values for ail quantities in stage 2 of the iterative

process, and results in improved convergence.

SRR .| N —— o - CONSISTENT A

COMPUTED VALUE { J)

ASSUMED VALUE (X

Figure 2.6-2. Linear-intersection Calculation for A
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Further Extensions and Pefinements to the Basic Algorithm - The strain-

space algorithm as presented here is employed in BOPACE for plastic
analysis. In addition, the BOPACE algorithm treats creep strains in

a manner similar to that for the plastic strains, For cases where the
material is elastic at the beginning of an increment and then reaches
the plastic yield point at some intermediate time during the increment,
greater accuracy is obtained by dividing the calculations into two
parts, In such cases the initial creep is taken in the direction of
the initial deviatoric stress, and creep which occurs after the yieid
point is taken in the same direction as the plastic strain increment.
Other extensions, such as temperature dependent elastic-plastic-creep,

have aiso been incorporated into the BOPACE program.
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2.7 ANISOTROPIC ELASTICITY

The anisotropic stress-strain relation for 3-dimensional analysis may be

written in the general form
. = D se- (2 7-1&)
i id 7 '

wherse D is a 6 x 6 symmetric matrix of elastic censtants. In order to
pravide a simple form of temperature dependence in its anisotropic elas-
ticity, BOPACE jincludes a factor, f, which may be specified as a function

of temperature., The stress-strain relation then becomes

o, = F(T) D.

; eJ":' (2.7-1b)

Thermal strains are introduced for the anisotropic material, by speci-
fying =ach normal thermal strain cemponent as an independent functien

of temperature. Thus,

; t
Eix = oxx (1) -
e.;y = e;jy (1) (2.7-2)
Egz = Ezz (1)

The current BOPACE version dees not provide p1asticity'or creep for

anisotrepic materiais.

2.8 REDEFINITION OF MATERIAL PROPERTIES

It is desirable te provide maximum versitility for definitiéon of material
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properties, without unnecessarily complicating the form of input and .
storage. Toward that end, BOPACE allows redefinition of any material

properties, at the start of each load increment. This allows the user
to modify material properties, for example, to approximate some of the

following types of behavior.

1. Differences between tensile and compressive properties
(redefine material as function of current stress state).

2, Crack surface and other tension cutoff situations.

3. Treatment of plasticity or creep behavior which does not
follow, during the entire deformation, the theoretical
behavior of a single material definition.

4, Treatment of temperature dependent anisotrecpic materials,
for which the entries of the elasticity matrix do nat all

vary proportionately with temperature.

Some caution must of course be used in redefining material properties,
in order to prevent significant discontinuities in behavior, which could
lead te inconsistent results or difficulties in convergence of the

solution.
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3.0 FINITE ELEMENT FORMULATIONS

The BOPACE program provides a family of isoparametric (curved boundary)
finite eiements, with a user-selected number of nodes along each'e1ement
houndary. The simplest elements of this family are the 2-node rod, 4-node
guadrilateral and 8-node brick, and various higher order elements of the
family are defined by adding additional edge nodes to the basic corner
nodes. BOPACE allows each element edge to contain an optionally cifferent
number of arbitrarily spaced nodes (from 2 to 5), resulting in a totai
maximum number of nodes egqual to 5, 16 and 44 on the rod, quadriiateral
and brickelements, respectively. The arbitrary number and spacing of
nodes allowed by this family provides versatility for representiing complex

geometries, and also makes variable mesh spacing convenient.

This section discusses the elemental-Tevel formulations, including the
isoparametric formulation and shape functions, the calculation of ref-
erence-point and nodal quantities, the stiffness matrix generation, and

the numerical integration process.
3.1 ISOPARAMETRIC FORMULATION AND SHAPE FUNCTIONS

The iseparametric finite element concept invelves the definition of shape
functions over a simple “"parent"” element. These functions then serve a

dual purpose: 1) they map the geometry of the parent element inte an

o

s

element of the actual body, and 2) they accomplish the usual-task of

o
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1 {Eta)

{a) PARENT ELEMENTS — 1-D {ROD), 2-D (QUAD), 3-D (BRICK)

<

-

S

(b} ACTUAL ELEMENTS, AS USED FOR 3-DIMENSIONAL PROBLEM

Figure 3.1-1: BOPACE Isoparametric Elements
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interpolating the field quantities (e.g., the temperature and displacements)
at any point within the element in terms of the nodal quantities. A
detailed discussion of isoparametric formulations is given in the boock

by Zienkiewicz [13].

Typical BOPACE {soparametric elements are illustrated in Figure 3.1-T,
with both their parent and actual forms. The discussion in this section
will be presented mainly in terms of the 3-dimensional BRICK element,
hut the procedure for other alements follows a similar development via an

appropriate reduction in dimensions.

Element Coordinates, Nodes and Reference Peints - The parent BRICK

element is defined as a 2 x 2 x 2 cube, having &n associated Cartesian
coordinate system £-n-z with origin at the center of the cube and axes
normal and parallel to the faces (the coordinate normal te a face has a
value of +] on that face). The nodes of the actual element define its
generally curved boundaries (each edge is a space curve defined by the
polynomial through its nodes). Element nodal quantities (forces, dis-
' placements, stiffnesses) are referred at this stage to the basic X-Y-Z
coordinate system, which is a global Cartesian system for the entire
structure. Each element also contains a number of referznce points,
lTocated in its interior or on its surface. These points include the
integration points required for solutien, plus an optional additional
number of user-selected points. ({The additional points are for the

purpese of output only, and have ne effect on the soluticn). Elcment
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reﬁerence-point cuantities (strains, stresses, etc..) are referred to the
X-y=2 coordinate systems, which are Cartesian systems defined for each
point. It should be noted that for ROD or QUAD type eiements used in a
3-dimensional problem, the reference-point coordinate system axes must
logically be tangent to the centerline or surface of the element. Co-

ordinate systems are discussed in more detail in Section 4.

Element Geometry and Field Quantities - Each element ncde has an associated

shape functicn given in terms of the £-n-g coordinates, i.e., at the ith

node the shape function is denoted by N (e, n. c). These shape functions

define the geometry of the actual element by a pointwise mapping from the
parent element. Thus in the actual element the X-coordinate of a point

is given by
X=X Ni(g, n, 1) (3.1-12)

Here (£, n, z) are the coordinates of the corresponding point in the
parent element, and K is the X-coordinate of the ith node, with summation
implied over i. Similar expressions are used for Y and Z coordinates.
Field quantities such as temperature, and displacements U-V-W (in the
¥~y-7 directions, respectively), of a point in the actual element are
defined in the same manner. For example, the U-displacement of a peint

is defined by

u=U Ne, n. 2) (3.1-1b)

3-4

[o ANt 214% ORALG, 4721



THIE J”EI”G TOMPANY

where U' 15 the U~displacement of the ith node.

Displacement Derivative Calculations - At each refarence point in the

BOPACE element, the spatial displacement derivatives mus® be expressed
in terms of the nodal displacements. To accomplish this, we first
define a matrix g at the reference noint, consisting of the nodal shape

functions differentiated with respect to the £-n-¢ coordinates:

1 -1
Nl e N
e Bt 3L
Nt an”
g an 1:39)] 2N
N aN? N’
YA 3L 3r (z.1-2)

A Jacgbian matrix, J, at the point is computed as

i3 = %in ij (3.1-3a)

where Xis is the X-Y-Z system ith coordinate of the jth node. The

J
Jacobian has the form

[ a8y az]
9 9E  9E
J=1 38X aY 3z
en an an
aX 3Y aZ .
TR (3.1-3b)
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In general the X and X coordinate systems are different, in which case
a transformation matrix, C, of direction Cosines is defined at the ref-
erence point, such that

X Jx
yp= L) v . (3.1-4a)
: 2
The Jacobian is then transformed by
Jdis =d, € (3.1-4b)

id 7 Yim vgm
Finally a transiormation is applied to the g matrix, of the form

555 = i 9y (3.1-8)

This inverse Jacobian transformation produces the desired vorm of the

partial derivative matrix g, which is

- n
1an o N
ax % ax
5 - N o "
By 3y By
N o N |
_35 3z 3z J (3.1-5)

A compesite matrix is then defined by
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W
o
o

[ I |
f
[w]
wa
[}

New tc define displacement derivatives we will tind it convenient to use
both the vactor {single subscript) and matrix {deuble subscript) forms

interchangeably. Thus we define, for example,

ew/ﬂﬂwﬂﬂﬂﬂﬂm)
\ 2X 3y 9Z 8X 9y 9Z 9X 3y 9z

3y 3V W

aX  BX 9%

3y 8V 3

3y 3y 8y

8U 8V =W
| 82 3z 8z (3.1-7a)

and

5(%%&&&&@%%) (3.1-78)

3X By 9Z 9X 3y 3Z 53X 3y 8Z
If we arrange the vector q of element nodal displacements in the form
q=(wlfu3ﬁ-—-W,W---th1---Nﬂ

(3.1-8)

we may write the impertant relationship between displacement derivatives
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and nodal displacements, in the form

The reference-point system derivatives 6 may be obtained from the mixed

derivatives &' by the transformation

In constructing the BOPACE program legic it is actually more convenient
to rearrange the g-vector so that the U-V-W displacements at a partic-
uiar node are grouped together. This also reguires rearrangement of the
columns of the & matrix. However the calcylation and storage of the g-
matrix for each reference peint occurs in the simple form of Equation
3.1-5, and required operatiens invelving the G matrix are performed
simply by an appropriate indexing-pfecedure, taking full advantage of

the evident sparsity in the given form of G.

General Considerations for the Shape Functions - The shape functions for an

element are derived se as to have thé following characteristics.

1) . Each function is independent, having a unit value at its associated

node and zero values at all other nodes.

2) Each function satisfies interelement continuity requirements,
having zero values on all edges and faces except those on which

its associated node is located.
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3) In order to guarantee convergence with mesh refinement, any state
of constant displtacement derivatives within an element must be

obtainable by a linear combination of the shape functioens,

The derivation of shape functions which satisfy these requirements has
often been accompiished by irial and error or by chance discoveary, as in
ine case of tha so-called "serendipity" isoparametric elements of Reference
13. A rationa! approach to the same functions, hewever, is provided
through the use of Lagrange interpolatien, and this approach proves to

oe more general as well., By means of Lagrange interpelation, twe types
of elements are provided in BOPACE, depending upon the manner in which
the mapping between parent and actual elements is accomplished. The
"proportionate" mapping provides elements which usualiy perform better
for general analysis, while the “serendipity" mapping pravides eiements
which are useful for crack-tip analysis. The fellowing paragraph
describes the two types of mappings uséd in BOPACE, and their application

to regular and crack-tip types of elements.

Proportionate and Serendipity Mappings {Regular and Crack-Tip Elements) -

The edge nedes may be arbitrarily spaced along the edge of the actual
element. With the preportieonate mapping, the edge node pesitions on the
parent element are determined by using their perpendicular preojections
onte the straight 1ine connecting the appropriate two corner nedes of
the actual element, with a propertienate mapping of this line back onto
the edge of the parent element., Thus a variable spacing of the edge
nodes generally occurs on the parent element itself. With the
sereiidipity mapping, the edge nodes are uniformly spaced on the

parent element, and receive their variable spacing on the

3-9
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actual element through mapping by the shape functions. Then by proper user
Tocation of the nodes along appropriate edges of the actual element, a
crack-tip analysis capability is created, providing dispiacements and
singular strains which vary in a half-power and inverse half-power
refationship, respectively, along these edges. For example, location

of midside nodes at the quarter points (one -fourth the distancas along
the edges from the crack tip to the opposite corner nodes) creates the
singular crack-tip element described in Referencae 14. It is to be noted
that the required strain singularity is exact along the element edges,
but only approximate within the element interior. The proportienate
mapping is usually more accurate for general aﬁalysis, because the dis-
placements and strains vary as polynomials rather than as half powers or
other functions. The capability for representing basic lower order
strain states is therefore disrupted to a lesser exfent with the pro-
portionate mapping. The following discussion of the BOPACE element
functions is conveniently presented by first describing the interior

edge node functions, and then defining the corner nede functions.

Edge Functions - Consider for example, a particular edge of the parent

element, which is parallel to the ¢ direction and has nodes 1, 2, ---m
arbitrarily spaced along its length. A Lagrange interpolation function

for the ith node on this edgé is formed by taking the product

(£ - g){g = gp)---(g - £5_1)(E - &gk - sm)

It is to be noted that this product is nonzero at node i and is zero at
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all ether nodes along the edge. It is a pelynomial of order m-1. This
product is then supplemented by giving it a Tinear variation in the

sther two coordinate directions, i.2., by multiplying by the product

(n - )z - zg)

where ny and gy are coordinates {(+1) of the oppesite edges. Finally a
unit normaiized function is obtained after dividing by the value which
the function takes on at its assocfated node. Thus the final shape

function for the 1th node of the edge is

N (e, n, 5) = (T (5 - g0 n - ng)(z - z5)/ (normalization factor)
(3.1-17a)
where the I product sum is taken over all nodes on the edge except the

ith nade.

The derivatives of this function which are required for BOPACE analysis

are obtained from the following expressions.

i m
L L R E R (3.1-11b)
j=1 h|
N
= Nl - » (3.1-11d)
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The.shape functions and their derivatives, for edge nndes of edges
parallel to the n and r axes, follow directly from Equations 3.1-11

by cyclic permutation of the coordinates E-n-z.

Corner Functions - The shape function for a corner node is most effec-

tively obtained in two parts-- the "linear" function and the "deviation
from 1inearity." (he linear function is the function which would be
used for an 8-nede brick without edge nodes. Ffor example, this function
for‘the corner node at E = n=17 =1, is

Nz (1+e){1+n)1+7g) {3.1-12a)

00—t

which provides displacement states in which all edges remain straiaht.

The edge nodes during such displacement, of course, underao nonzero dis-
placements, and these must be eliminated by the addition of the deviation-
from-linearity functions. Such functions are simply the edge node
functions already discussed. Thus the total shape function for the

above corner node is

N=g 0+ (1 +n)(1 +2) - 5N (3.1-12)
‘where the summation is performed over all edge nodes.
Each coefficient ai is the value of the corner function 3.1-12a evaluated

at the ith edge node, and Ni is the shape function of the ith edge node.

Shape functions for other corner nodes are obtained in the same manner,
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after appropriate changes of sign {+1) in Equation 3.1-10a.
3.2 STRAIN, FORCE AND STIFFNESS QUANTITIES

Strains - The Lagrangian strain, e, is defined in terms of material dis-

placement derivatives, @, at a poeint in the body, by
= 1 - 3

Here AU and Al are constant coefficients which define the strain tensor,
with Al providing the (geometrically} nonlinear portion of the strain.
In terms of engineering strain components, this equation may be re-

written with the linear (AQ) contribution in expanded form, as

o 5 [
e 100000000 {u
oy co0o0100¢00]|]y
Jeu | 000000001*\”‘”%15\11._9.3
Ty 61010000 0]| ]y kK
Yoy 00100071 00]]y,
e _o 0000 1 01 0“ vy
Yy
")
(3.2-2a)

where x-y-z and u-v-w are the coordinate directions and corresponding

displacements, respectively, for th& point.
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Here the nonzero terms

M =
Aloze =
Alygs =
Alagp =
Algis

Mgoz =

and a useful

Al

Al
Al

i

124
255
Alagg =
Alggy =
Algg

Al =

e VVEING courane

of Al are

Alyyy

Al ogg
A 399
A gys
Alsas
Mese

Masg = Mypg = Mygy =

Msga = Algyg

b=
—
]
b
—

689

form for the nonlinear contribution is

ik % =

Because of the symmetry of Al (A]ijk = A]ikj)’ the

Alggy = 1

Alggg = 1

(3.2-2b)
defined by

(3.2-2c)

differentiation of

Equation 3.2-2a provides the strain rate, &, in terms of the displacement

derivative rate, 8, in the simple form

£O0 BO0OD 2148 TRIG, 4/71
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Forces - The principie of virtual work is valid for arbitrary nonlinear
materials,and it provides a simple basis for deriving the eiement force
and stiffness relations. The equivalence of external and jnternal
virtual work relates the generalized nodal forces p. and displacements

q, in the element equiiibrium equation

)dv o (3.2-4)

= f =
§9:Py = Jjy Sey o5 dv ‘fv Be (o, 3

* %*

which holds atong any equilbrium path in the neighborhood of a particular
equilibrium (*) configuration. (The integral expression in Equation 3.2-3
is exact, except that only the first order incremental siress-strain
relation involving the DO matrix is used. Its use does not lead to
inaccurate results in the solution precess because of the equilibrium
check and midpoint residual-force corrective iterations which are
performed.) Here SE;and dq are kinematically consistent variatiens, and
from Equatiens 3.2-3 and 3.1-9 (ignoring, for simplicity, the overbars
which denote coordidate system)

I

|
|
sey = (Aoij + A1ijk B ) 605 = Agy 685 = A o 695 = Byy 8qy
(3.2-5)
The theoretical implementation of Equation 3.2-4 requires the use of the

~second Piola-Kirchoff stress associated with Lagrangian strain, with

integration over the undeformed velume (e.g., see Oden and Key, Refer-
ence 15). However the small strain assumptibn is used in the BOPACE
formulation, se that! the stress may be taken as the usual engineering or
true stress. (A general large strain development is presented in the con-

text of perturbation solution metheds, in References 16 and 17.)
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Substituting for &c in terms of 49, and realfzitig that Eguation 3.2-4
must be satisfied for arbitrapy variationg 48q, provides the basic

equilibrium equation for fyrces, ag

P; = fy Baqo, &V = fy G (AD

ar’s

- + A1amn en)(cg + DQaE ﬁmb)dV

(3.2-6a)
' or at a particular equilibrium {*) configuration, whare o = ¢* and
9 = 0%, we have

PY = Jy Gy (App + Algpy 87) o3dV = [y Gpy AT, o3dV

(2.2-6b)

Stiffness - Differentiating Equation 3.Z-6a and evaluating at the
particular equilibrium configuration (ae = 0, & = ¢%*, etc.] provides

the first order equiiibrium rate equation

By = Koy, 4% (3.2-7)

where

Koqj = IV Gmi (Aoam Dogb Aobn + a; A1 ) Gnd dv  (3.2-8)

amn
The "tangent stiffness’ matrix KO* as given by Equation 3.2-8 is clearly
separabie into two parts-- the gecwetrically linear and the geometrically
nonlinear contributions. The first contribution te KO* is due to the

incremental stress-strain relation, and its symmetry depends on syimetry
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of the matrix DO*. The second contribution is due to the initial
stresses during changing geometry, and is always symmetric in form. The

incremenca) form of Equation 3.2-7 is of course

2y = KC¥4 nqy (3.2-9)

and 1s the basis for BOPACE solution procedures. In generating the
tangent stiffness by Equatioh 3.2-8, a matrix W = AD__DO¥  AD, +
ag ﬁﬂamn is first computed, after which the product Goi W o an is

formed. The geometrically nonlinear part of H is given by

[h 0o

9y A]amn = 0 h O

0 0 h

where

xx "y %z

vz yz “zz
The stiffness generation protedure described here takes maximum advantage
of sparsity in the & matrix, and alsc allows the inclusion ef geometric

nonlingarities as a simple optional program step.

3.3 NUMERICAL INTEGRATION

The 1ntegrals which define force and stiffness guantities in the BOPACE
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program are calculated by numerical integration using Gauss product
formutas, and must be evaluated over the volume of the actual element.
The mechanics of the integration process, however, are best accomplished
over the parent element, where there are simple integration limits in
terms of the f~n-z Cartesian coordinate system. Integration is therefore

taken in the form

fy fdv= jf} If} If} f(g,n,z) |3 dedndz (3.3-1)

where f is the function to be integrated, and |3} is the Jacobian
determinant which corrects for the fact that a differential volume

{dxdydz) in the actual element is equal to |J| (d&dndg).:

The integral is evaluated numerically by substituting for it a sum over
a number of Gauss integration points:

m n p

£ I flegingaz,) Wigy (3.3-2)

fav =
v i=1 §=1 k=1

Here m, n, p are the numbers of integration points in the £, n, r
directions, respectively {total number of points = mxnxp), and wijk is

a weighting factor for each point which includes the value of the
Jacobian determinant. The Gauss integration scheme is used because it
provides higher accuracy for a given number of points than some other
methods, through an optimum selection df the point 1ocations; {The use
of m Gauss points allows the exact integration of a polynomial of degree

2m-1.) The BOPACE program provides, as a default, the automatic selec-

tion of the nunber of integration points in each coordinate direction,
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so as to exactly integrate the stiffness matr?g. (This stiffness
integration is generally exact only if all element edges are straight
lines and the H-matrix is constant over the element). However, it has
been found that accuracy and convergence are often improved if fewer
integration points are used, especially for plasticity analysis. (A
2 x 2 x 2 point rule is often useful for BRICK elements). BOPACE
allows the user te select, if he wishes, the number of Gauss points in

sach direction.
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4.0 COORDINATE SYSTEMS

BOPACE coordinate systems are used to locate nodes and element reference
points, to define the gquantities (e.g., forces, displacements, stresses

and strains) associated with these nodes and points, and to help define
other program input such as distributed Toad directions and inertia related

vectors.,

The definition and use of the element parent coerdinate systems have been
discussed in Section 3. BOPACE uses several other coordinate systems, each
of which is associated with"pn integer identification number:

0 tangent

1 basic Cartesian

2 basis cylindrical

3 basic spherical

>3 spectal Cartesian

Each of these systems 15 described in the remainder of this section.

Tangent Systems - Tangent system coordinates x-y-Z are element associated

Cartesian systems, and are used to define reference-point guantities and
distributed load directions, for varieus points within or on the surface
of the element. The X axis is taken tangent to a parent coerdinate & axis
at the point; the ¥ axis is taken normal to X and tangent to the parent £-n
plane, such that y has a positive component in the n direction; and z is

defined such that X-y-z is a right hand system. The £-n coordinates used

4-1



to define the tangent system correspond to the parant element, or in some
cases to a local parent region such as a particular face or edge of the

element.

In case the parent system is defined for a 1-dimensional region (e.g., a
rod tyre element, or edge of a membrane or solid type element), the n
direction is undefined. The ambiguity for direction y is then overcome

by taking y normal to X and in the basic XY plane, such that z has a com-
penent in the positive Z direction. In the special case where X is parallel
with Z {i.e., X has no component in the XY plane), y is simply taken in the

Y direction.

Basic Systems - The three basic right hand coordinate sysiems are shown in

Figure 4.0-1. They are general purpose systems used for locating points

and defining directions. The Cartesian system X-Y-Z prevides the basic.
reference frame for the entire structure. The local coordinate directions
for other systems are defined in terms of X-Y-Z using the usual direction
Cosine transformations. Much of the internal program storage and compuia-
tion is in terms of the basic Cartesian system. The cylindrical system
R-0-Z has 1ts origin and Z axis coincident with those of the basic Cartesian
system, while R is in the X-Y plane, and © is measured from X to R. The
sphe?ica1 system R-e-¢ is the same as the basic cylindrical system, except
that the Z coordinate is replaced by ¢ (¢ is in the R-Z plane, and is

measﬁred from the X-Y plane to R).



Specia] Cartesian Systems - These are additional user input coordinate systems,

for defining directions of nodal or reference-point quantities. They are
not associated with any particular crigin, and therefore, can not be used

for location of points.

-

X

*) CARTESIAN X-Y-Z

Y4
z - ‘ R
i
# IN X-Y PLANE ‘ 8 IN X-Y PLANE
R " IN R-Z PLANE
N
$ L~
- g X : o X
* b) CYLINDRICAL R4.Z ¢) SPHERICAL R-G-¢

Figure 4.0-1: Basic Coordinate Systems
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5.0 LLOADS

The BOPACE load options consist of five types:

1) Concentrated mechanical loads

2)  Distributed mechanical loads

3) Thermal loads

4)  Normal strain or stress Toads

5) Inertia loads.
Each of the tirst four loading types is defined by one or more load sets,
which can be combined by means of. their respective Joad facters, The
inertia loads are computed from specified concentrated and distributed
mass data, along with quantities which define the acceleration behavior

df the structure.

The BOPACE forces defined by cencentrated mechanical loads are fixed in
direction (non follower-force type). The BOPACE distributed mechanical
loads and inertia Toads, however, may be of the follower-force type. For
geometrically nonlinear problems, the direction and Tine of action of these
loads is updated at the beginning of each increment, based on the current
displaced configuratien., This means that if geometric nonlinearity has

been specified, all inertia loads and those distributed mechanical loads
which are referenced to tangent coordinate systems, will contain fellower-
force effects, {Distributed mechanical leads referenced *o other coordinate

systems, are fixed in direction because the coordinate systems are Tixed).

A17 loads represent cumulative values, so that the change in Tnad for a
particular increment of a problem is the difference between the specified

cumulative start and end of increment loads.
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5.7 . CONCENTRATED MECHANICAL LOADS

A concentrated mechanical load set is defined by the zers or non-zero
externally applied load value for each independent freedom iﬁ the structure.
A particular load value will either be a force, or, if the freedom has been
constrained via a singie-point constraint (SPC) it will be an imposed dis-
placément. If a load Valué is specified for a dependent freedom constrained
via @ multi-point constraint (MPC), the value must be a ferce. The program
then automatically distributes this force to the independent MPC freedoms,

according te the defined MPC coefficients.

A nodal force is by definition the rate of change of eéxternal or internal
virtual work, with respect to a virtual displacement of its associated
nodal freedom. The equivalent concentrated nodal force corresponding te a
general loading condition depends on the loading distribution, as well as
the element geometry and shape functions. The relationship may be quite
simple as on a rectangular face of an 8-node brick (each corner receives
one fourth of the total load), or 1t may be complicated and physically
reaningless, as on the same type of face with midside nodes (the correct
corner force values are actually negative). In the more complicated cases
it is best to define the distributed loading, and let the program compute
the equivalent concentrated values using the distributed or inertia loading

routines.
5.2 DISTRIBUTED MECHANICAL LOADS

A distributed mechanical load set §is defined by the values of load intensity
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distributed on the edges and faces of the various elements in the structure.
Associated with this set of values is a corvresponding set of program cemputed
equivalent concentrated nodal loads. BOPACE provides a very general capabil-
ity to specify loads of the pressure (normal to surface) type and drag
{tangent to surface) type using tangent coordinate systems, as well as load

intensity components in directions defined by any other coordinate system.

For Toads of the normal and tangent type, local region tangent coordinate
systems are required. These are formed using the Tocal region parent (£-n-z)
coordinates as discussed in Section 4. Figure 5.2-1 serves to help define
the local parent systems for the edges and faces of the various types of
BOPACE elements. There the elements are shown, with their corner nedes
numbered according to the scheme used for BOPACE element input data. The
edge and face regions for each element are alsec listed along with their
associated corner nodes. The corner node ordering for each region defines
the parent coordinate system for that regien. For example, edge region 3

of the QUAD element has its lecal £ axis in the direction from node 3 to
node 4. Face region 2 of the BRICK element has its Tocal & axis aleng the
edge nodes 6-5, n axis in the directien 5-8, and ¢ axis defined by the right
hand rule. Note that for each face région of the BRICK element, the positive

normal (¢ direction) is outward.

One or more components of distributed Toad intensity may be specified at
each desired location. To specify a uniform load intensity, enly one loca-
tion (i.e., the edge or face number) is given, along with the compenent values.

For Tinear variation of load intensity, the corner nede values are specified.

5-3.
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(For a quadrilateral area region, the specification of values at four points
means that the varfation is Tinear along the edges. but possibly of higher
order in the interier.) For a general variation of load intensity, values
are specified for the corner nodss and the interior edge nodes aof the region.
In any case, the user need not be concerned with any particular ordering of
the input nodal values, because the program uses the randomly snecified node
identification numbers te identify the appropriate edge cr face and to
define if nacessary the correspending local parent coordinate system. For
uniform or linear load variation, the program computes any unspecified nodal

intensities by proper interpolation from the element shape functions.

The equivalent concentrated nedal loads are computed by an integral invelving
the region shape functions and the distributed load intensities. An area

loading, fcr example, uses the area integral

Pf = JA Ni d dA = JA Ni dj Nj dA (5.2-1)
where Ps is the equivalent concentrated load in a particular coordinate
direction at the ith node of the region, d is the Toad intensity in this
direction, dj is the Toad intensity at the jth node, and N are the shape
functions for the region. Coordinate transformafions are applied in the
integral as required. The integration is carried out numerically using
Gauss product_formulas, with the number of Gauss points in each coordinate
direction selected so as to give an accurate result. The number of points
used depends on the maximum number of nodes in that direction as well as the

order of variation of load intensity, and the resulting integration is
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exact if all edges of the region are straight lines. For edge regions the
number of Gauss points used in a given direction is (n+m)/2, and for aiea
regions it is (n+tm)/2 + 1, where n is the maximum number of nodes in that
direction and m is the order of distributed load variation (1 = uniform,

2 = linear, etc.).

5.3 THERMAL LOADS

A thermal load set is defined by the value of temperature at each node in
the structure. The required temperatures at element reference points are

computed from nodal temperatures by
T o= TN (5.3-1)

where T1 is the ith nodal temperature, and Ni is the shape function for node
i evaluated at the reference point. Reference-point temperatures at the
beginning of the problem are set by the fabrication temperature of each

element.

The BOPACE treatment of element fabrication temperatures and nodal thermal
Toadg can be employed to account for the effects of initial residual stresses,
manufacturing tolerance errors,. shrink-fit assemblies, and other initial-strain
situations. The basic program assumption is that at fabrication time, all
elements are at their specified respective fabrication temperatures, and

they fit together into a stress-free configuration defined by their given

nodal coordinates. Also, for all purpeses of computation and output,

thermal strains are taken as zero at the fabrication temperature. (If the

material data defines a non-zero thermai strain value at the fabrication
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temperature, all thermal strains computed for the element are adjusted by

substracting out that value.)

As an example, take the case of a fastener and drilled plate, manufactured
from the same material and intended for a shrink-fit assembly. Assume that
thermal strain data have been defined for the material such that the thermal
strains are 0 and .002 at rezpective temperatures of 100 and 400. The BOPACE
temperatures for the elements of the fastener and plate have been defined at
fabrication as 100 and 400, respectively, and at that time the diameters

of both fastener and plate hole are 1.0, The assembly then fits together
with no gap, and the fastener/plate interface may be defined by a single
set of nodes (o} if desired, by pairs of coincident fastener/plate nodes
which are fixed together via MPC constraints). A nodal thermal loading is
then applied in cne or more increments, which brings the entire assembly to
a uniform temperature of T06. The result is no thermal strains in the
fastener, but thermal strains of -.002 throughout the plate. The BOPACE
elastic-plastic-creep analysis provides the accompanying distribution of

other strains and stresses within the fastener and plate elements.
5.4 NORMAL STRAIN/STRESS LOADS

A normal strain/stress load set is defined by the zero or non-zere value
for each free normal direction of the elements in the structure. Free
directions are those for which the strain is not determined by nodal dis-
placements, i.e., the surface normal for membrane type elements and the
two centerline normals for rod type elements, as defined by the element

parent coordinate systems. In order to provide the most general type of
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alement behavior, BOPACE allows the user to control these otherwise un-
determined sirains ow-stresses by means of the normal strain/strass Joads,
Whether strain or stress values are specified is determined by element

property codes.
5.5 INERTIA LOADS

BOPACE provides three sources of acceleration for automatic calculation of
jnertia Yoads. Each source applies uniformly to the entire structure, and
is defined by a spacial vector, whose magnitude {is given by the LFACTOR card
and whose direction is defined by the TRANSLATE or ROTATE cards. These
vectors are:

1) translational acceleration, a

2) rotational velocity, w

3) rotational acceleration, a.
Based on these user supplied data, BOPACE first computes the total accelera-
tion components {x-y-z) at each node as

q = a+ w{wR) + axR (5.,5-1)
where R is a vector from the rotational axis to the node.

For a BOPACE isoparametric element, a noan acceleration in, say, the x
direction, causes only ¥ direction accelerations of points within the
element, This results in an uncoupling of the x-y-z inertia effects, so
that each Toad component can be computed separately. For the x direction,
therefore, a vector a is formed from the a vectors, such that 51 is the x
direction acceleration at noede i. The vector P, of x direction 1ner£ia

leoads is then computed using 6 and the concentrated and distributed masses:
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Here m is the value of concentrated mass at node i, p is the distributed
mass density of an element, Ni is the shape function for the ith node of
an element, and the summation is taken over the volumes of all elements.
The y and z components of inertia loads are computed similarly. The volume
integrals are evaluated by the same Gauss product formulas used to compute

the element stiffness matrices.
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6.0 NONLINEAR SOLUTION METHOD
6.1 BASIC SOLUTION REQUIREMENTS

"The exact elasto-plastic-creep analysis of a structure requires the satisfac-

tion, at all ppints in the structure, of three requirements:

1) Equilibrium of stresses
2) Compatibility of strains
3) Satisfaction of constitutive theory, which is summarized by the

appropriate stress-strain rate relation.

The following paragraphs summarize tha BOPACE solution approach as it relates

to satisfying these three requirements.

Stress-Strain Relation - The stress-strain rate relation is cast into an

incremental form, as defined by the material constitutive theory of Section
2. The assumed stress-strain relation is satisfied exactly in the BOPACE
solution procedure, provided that the increment is sufficiently smail so that
incremental quantities can be treated in a differential manner, and that the

iteration procedure is sufficient to produce convergence.

Compatibility - Compatibility is satisfied exactly within each isoparametric

element as a result of the finite-element derivation. In the global sensz,
i.e., over the entire structure, compatibility is also satisfied exactly, by
merging the element degrees of freedom inte global degrees of freedom and
thereby establishing the equa1ify of displacements at appropriate adjacent

nodes.
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Equilibrium - Equilibrium in general is satisfied only approximately within
an isoparametric element, because of its variable stress state. Stresses are
also not necessarily in equilibrium between adjacent elements, although all
stress equilibrium is satisfied in the 1imit as the finite-element mesh is
refined. For any mesh representation of the structure, global equilibrium is
satisfied in BOPACE in an average sense, because equilibrium is established
between the generalized nodal forces defined according to the usual finite-

element procedure,
6.2 COMPARISON OF COMMON SOLUTION METHODS

The common stiffness methods used for solution of elasto-plastic problems

can be classified by three general types:

1) The pure “tangent stiffness” method

2) The "constant-stiffness residual-load" method
3) | "Combined" methods.

Tangent-Stiffness Method ~ The pure tangent-stiffness method obtains the

solution for each load increment by a single solution of the incremental
equiiibrium equation:
= KO*x -
APi Ko i AQj (6.2-1)

in which AP and af) are the global incremental forces and displacements,
respectively, and KO* is the Jacobian (tangent-stiffness) matrix. This is

the type of solution used in NASTRAN's "piecewise 1inear analysis," for
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example. There is ne equilibrium check, and no iteration is performed to
improve the incremental solution. The matrix KO* is determined by evaluation
or extrapolation at previous solution points. Because in an actual structure
the stress-strain slopes, creep rates, direction of the incremental plastic
and creep strain vectors, etc., will generally vary within an increment, the
pure tangent-stiffness approach can result in a substantial departurs from

the true force-dispiacement path unless Toad increments are kept quite smail.

Constant-Stiffness Residual-Load Method - This solution method [10] employs

an iterative procedure. In each iteration the residua1'(unba1anced) forces
are computed based an the current estimate for the incremental configuration,
and are then applied to the constant elastic stiffness matrix in order to
solve for displacement corrections. The approach is computationally efficient
because it requires the formation and decomposition of only a single stiff-
ness matrix, but it is not directly applicable to highly nonlinear structures

because of convergence difficulties.

Combined Methods - Various combined methods have been employed for solutioen

of elasto-plastic problems, for example that described in Reference 18. These
involve the use of an equilibrium check through the calculation of unbalanced
forces, as well as various procedures for updating the appreximate Jacobian

matrix.

BOPACE Appreoach - BOPACE provides several options for nonlinear solution,

based on user specification of the Jacobian updates and the iteration
sequence. The most general option uses a combined approach for solution, with

the iterative procedure consisting of two stages:
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1) Improvement of the solution configuration by using the Jacobian

matrix to reduce the residual nodal forces.

2) Calculation of residual forces based on the estimated configura-

tion and “exact“ constitutive theory.

Several user controlled options are available in BOPACE for defining and

updating the Jacobian matrix.
6.3 CALCULATION OF RESIDUAL °~ FORCES

It is assumed for the present discussion that the exact selution configura-
tion is known at the start of a particular lead increment. (Actually the
BOPACE program takes any unbalanced forces which might remain from the
previous incremeni and adds them to the present load increment, in order to
achieve greater accuracy.) For a given iteration within the present incre-
ment, i.e., for a given estimate of the solution, it is necessary

to compute the corresponding unbalanced forces. This section summarizes the
steps invoived in computing these forces, including determination of strains,
stresses, and forces. A flowchart for these calculations is given in Figure

6.3-1.

Strains - For the given estimate of end-of-increment global nodal displace-
ments, Q, the corresponding element nodal displacements, g, are obtained by
coordinate transfofmations at the nodes, involving appropriate direction
Cosines. For the BOPACE program, all element displacements are referred to
the basic X-Y-Z Cartesian coordinate system. Strains, e are then computed

at each réféfénce point by using the relations 3.7-9 and 3.2-1:
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5; = G35 9

I

. m“e.+%m (6.3-1)

LR A 1k%3%

The end-of-increment strain ¢ is the total (physical) strain at the point:
E-=E-+€?+Ec+€t (6.3-2)
: i i i *

The thermal strains, st, are determined as described in Sectien 2.2, and
are measured relative to the assumed zero strain condition at fabrication

time. Subtracting these strains from the total strain, gives:
€$+'p+c = s? + F!}) + z—:gJ =g, ~ ea (6.3-3)

+C

: e - +nte | . .
The corresponding incremental strain 2e5"PC is determined as the difference

from start-of-increment to estimated end-of-increment strain.

Stresses - Elastic strains are then determined using the elasto-plastic-
creep algorithm presented in Section 2.6. With the elastic strains known

at the end c¢f the increment, the stresses are computed:

1 1
o) = D?} e (6.3-4)

wheie EE]

are the known cumulative elastic strains at the end of the incre-
ment. The stress-strain calculation may need to be modified, depending on

which of three conditions exists at the particular integratien point:

Condition I Point is elastic at end of Toad increment, i.e.,
either the point remains elastic or unloading
occurs. Compute stress and elastic strains.

Plastic strains are zero.
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Condition II  Peint is plastic throughout load increment. Com-
pute stresses, elastic and plastic strains by

algorithm of Section 2.6.

Condition 111 Peint is initially elastic, but becomes plastic
at some peint during the load increment. Find
intermediate time at which yielding occurs (this
requires solving a simple quadratic equation)}.
Compute stresses and elastic strains up te that
time. Compute stresses and strains beyond yield-

ing as for Condition II.

The condition at the beginning of the increment is known for each point.
The conditien at the end of the increment is assumed, for the first
iteration, to be Condition I. The end condition is re-evaluated during
each iteration, using either the material yield value or the plastic-
strain vector, For an elastic point, it is determined whether or not the
current material yield has been exceeded. For a plastic point, the plastic
strain vector (normal to the yjeld surface) is observed; an outward vector
{(x>0) implies a plastic condition, while an inward vector (A;p) implies

elastic unioading.

Element Nodal ~ Forces - The force-siress relation for the BOPACE element is

defined by Equations 3.2-5 and 3.2-6:

1

B

0= |y Bag oa @ (6.3-5)

where V is the element volume, B is the strain-displacement matrix, and Py

are the element nodal forces.
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Global Nodal Unbalanced Forces - Global forces, P, are obtained from the

element forces, p, by adding nodal contributions from all elements

and app]yfﬁ; coordinate transformations. The global unbalanced forces, sP,

are then determined by subtracting these computed (internal) forces from the
applied (externai) loads:

6P, = Load; - P, (6.3-6)

The loads are defined as the sum of applied concentrated and distributed

mechanical and inertia loads.
6.4 IMPROVING THE SOLUTION

The basic global relation for incremental forces and displacements corresponds

to the element relation 3.2-7:
(6.4-1)

where the incremental global displacements aQ are the total physical dis-
placements (including thermal, elastic, plastic and creep effects). Ko™ is

the elasto-plastic tangent-stiffness (Jacobian) matrix for the increment.

In order to improve a given displacement configuration, the displacement
corrections 6Q corresponding to unbalanced forces &P, are obtained in BOPACE

by solving a set of linear equations of the form
5P, = KY, 80, (6.8-2)
i B | '

The ma-tr'IX'KJ is also a Jacobian (tangent-stiffness) matrix, or some approx-

imation to the Jacobian, but is used for displacement corrections rather than

" a one-step solution for the displacements of the entire increment. The

purpese of this section is to discuss the procedure for relating Equations
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6.4-1 and 6.4-2, and describe BOPACE options for updating the Jacobian.

Procedure - In the iterative BOPACE approach, the only global solution
employed is the displacement-correction relatien 6.4-2. The best approx-

imation for the Jacobian, for iterative purposes, is

J

kY = KO] = KE] + Kp1 (6.4-3)

- where KO1 is evaluated at the end of the current Toad increment using Egqua-
tion 3.2-9, and'K81 and KpI are its elastic and plastic contributions,
respectively. The affects of change in elastic properties as well as the
effects of thermal and creep strains, are computed at the integration-point
level by the algorithm of Section 2.6, and accounted for by the unbalanced

forces. Thus Eguation 6.4-1 is satisfied in an iterative fashion.

Updating the Jacobian - In order to account for pessibie Targe-scale elastic

unloading of the structure under cyclic load conditions, one or more initial
iterations are performed for each load increment using only the elastic

portion, KE}, of the KJ matrix. Succeeding jterations use the total KJ matrix.

Initié?1y the KJ matrix is taken to be the usual elastic stiffness matrix for
the structure, with elastic properties evaluated at the fabrication tempera-
ture. Whenever convergence is not achieved within a specified number of
iterations, the Jacobian matrix is updated. BOPACE allows four options for
updating the matrix KJ and/or its component matrix KET (a1 mafrix updates

are based on current temperature and geometry):

1) Use only initial elastic matrix l-(‘a‘-I with ne updating. This

option corresponds to the constant-stiffness residual-load
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method, and is most effective for problems with small plastic
strains and elastic properties which do not vary much with

temnerature.

2) Update only KE1. This option is best for problems with small
plastic strains and elastic properties which vary considerably

with temperature.

3) Update total K matrix, but not elastic matrix kel This
option may be used for problems with large plastic strains

and elastic properties which vary somewhat with temperature.

4) Update both K and k&' matrices, This is the most effective
option for problems with large plastic strains and elastic

properties which vary considerabiy with temperature.
6.5 SUMMARY OF BOPACE SOLUTION METHOD

An outline of the BOPACE solution method is given in the flowchart of Figure
.6.5-1. In step 1, the Jacobian is initialized to the elastic stiffness

matrix, based on elastic properties at the fabrication time.

At tﬁe start of each load increment (step 2) the residual forces &P are set
equal to the increment of applied loads. Also, if any residual forces ramain
from the previous 1oad increment, these are added to 6P. The estimate for
displacements, Q, is defined by displacements at the end of the previous

increment.

The iteration loop involves successive improvement of the solution, by solv-

ing for displacement corrections using the unbalanced forces and the Jacobian,
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and then recomputing the unbalanced ferces corresponding to the new displace-
ment configuration. The displacement corrections &Q are determined in step
3, and in step 4 the improved configuration Q is updated by addition of &0.
Although convergence of this iterative process is usually quite good, BOPACE
has a feature for modifying the process if convergence is not occurring.

This involves using only a specified fraction of the computed correction, e.
g.,» Q+ Q + 0.5 6Q. This would increase the numerical stability but could

tend to slow down convergence.

In step 5 the strain-displacement relations are used to compute the total
strains e from displacements Q. In step 6 the thermal strains are sub-
contracted from total strains to give the elastic+plastic+creep strains
required for the calculation of stresses. >Step 7 involves the major icera-
tion algorithm, in which the strain is separated into elastic, plastic and
creep components. Stresses are determined accorording to the algorithm of

Sectton 2.6, and the corresponding unbalanced forces are computed.

If the maximum allowable jterations have been exceeded, step 8 js used to
update the Jacobian matrices according to the specified updating option. The
Jacobian update is based on the current astimates of the yield surface and
flow paraméters for each integration point at the end of the present incre-
ment. Iteration is stopped when a residual error norm {(determined by & ratio

of residual forces to applied forces) is sufficiently small,
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7.0 LINEAR EQUATION SOLUTION

The stiffness equations relating force and displacement rates are solved in
BOPACE using a modified Gauss wavefront solution procedure [19,20]. For large
problems it uses an out-of-core method, which basically requires that core
storage be available for only one nodal row of the stiffness matrix at a

time. Special features include the use of a sparse-matrix blocked-partition
scheme, a fast merging procedure based on a binary tree algorithm, and a
method of core space allecation which eliminates searching for partitions

during the matrix decompesition process.
The basic stages required Tor soiution of general stiffness equations are:
1) Generation of the stiffness partitions for each element.

2) Merging these partitions together to form the stiffness matrix for

the entire system.
3) Decomposition of the stiffness matrix into factored form.

4) A forward/backward substitution process to solve for unknown forces

and displacements.

In the true wavefrent procedure the generation, merging and decomposition
phases are combined, and the system stiffness matrix is never formed as
such. To achieve an efficient solution the elements must be numbered in an
optimum order while the nodes may be randomly ordered. In the BOPACE modi-
fied wavefront procedure the four phases are accomplished individually, and
the entire stiffness matrix is formed and made available. To achieve an

efficient solution, the nodes must be numbered ip an aptimum order while
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the elements may be randomly ordered. It is interesting to note that from

an ordering standpoint this modified procedure may be regarded as a true
wavefront procedure, if each stiffness partition (i.e. single-node to single-
node connection) is considered as being an individual element. The BOPACE
procedure provides a simple method for incorporating multi-point constraint
effects, by transferring dependent partition contributions during the genera-

tion phase.
7.1 GENERATION

The generation stage consists of forming the stiffness partitions for each
finite element, accounting for the MPC relations, and writing the partitions
onto the generation file. Only the partitions in the upper symmetric half
of the element stiffness matrix are formed. Each partition is assigned a
packed code defining its row/column position in the system stiffness matrix,
and the partition is transposed if necessary (row/column codes correspond to
the upper symmetric half of the system matrix). Each code is unigue within
a particular element matrix, i.e., additional contributions to a partition
arising from MPC equations are all added together and grouped with their
corresponding code. SPC relations have no effect on the generation. At the
end of this stage all partitions have been written with their row/column
éodes, in more or less random order, onto the generation file. Generation
time for an element is approximately proportional to the square of the number
of element freedoms, times the number of element integration points. Gen-

eration time can be significantly increased by the presence of MPC relations.
7.2 MERGING

The merging stage consists of reading the partitions from the generation
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file, ordering them according to increasing row/column code value (adding to-

gether all partitions having the same code), and writing them onto the merge
file by rows using a blocked partition form. If no partitions exist for a
particular row, a zero diagonal partition is inserted at this time. Core is
divided into three areas - a large sorting area, and two smaller input/output
areas which serve alternately to store either previously ovrdered partitions
or the partitions curvently being ordered. If core is Timited then use is
mide of two scratch files as backup for the two smaller core areas. The

merge process is accompiished using the following steps.

1) Read as many partitions as space allows, from the generation file into
the next (sequential) available locations of the sorting area. As
each partition is read, form its binary-tree pointer {left or right link)

to allow its later ordered retrieval by row/column code.

2) Retrieve partitions from sorting area in increasing code order, by
traversing bfnary tree (see Flow Chart in Figure 7.2-1}. As these
bartitions are retrieved, merge them with all previocusly ordered par-
titions being read into the input area, and place them into the eut-
put area. (When input or output area is filled, perform a read or

write to the corresponding scratch area).

3) When sorting area is emptied, prepare to refill it from the generation

file and switch input/output areas or corresponding scratch files.

4) Repeat steps 1-3 until all partitions from the generation file have

been read and ordered.

5) Transfer ordered partitions from output area or scratch file to

final merge file, writing them by rows.
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The merge file contains two records for each nodal row of the stiffness

matrix. The first record is a single word‘whose value is the number of
equivalent single-precision words in the second record, and the second record
contains all partitions for the row in blecked form. Each block contains

the number of partitions in the block, the row/column code of the first parti-
tion, and then the partitions stored by columns. A new block is started
whenever the next partition is net sequential, i.e., its row/column code is

greater than one plus the code of the previous partition.
7.3 DECOMPOSITION AND SOLUTION

The decomposition stage accomplishes the factoring of tie stiffness matrix,
and the selutioen stage uses a forward and backward substitution te selve for

the unknown compenents of force and displacement. The stiffness equations

K..Q. = P. {7.3-1)

generally involve a combination of prescribed forces and prescribed dis-
placements. The equatiens are selved in BOPACE using the modified Gauss
wavefront appreach. Here the theoretical solution steps are first shewn

for a system invelving only prescribed forcées, and then the modifications
are shown for a general mixed preblem. Finally, the computer implementation

of these steps .is discussed.

Solution With Prescribed Forces - The decomposed form of Equation 7.3-1 ¢
is taken as

ug="p (7.3-2)

where U is an upper triangular matrix, and D is a diagonal matrix whose
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elements are equal to the diagonals of U.

procédure consists of the following three steps.

1) Decomposition:

2)

3)

Oo 0480 21AR O RIC. af7

Kis =

b

v MVEVELTNE cnrany

The elements of K are

i-1

L

k=1

i’

B
Y Pk Ui

it Uy

;)

it 1"]

the elements of Y are obtained

successively by row, as

U,

iJ

Forward substitution: Let

giving

"

Backward substitution:

Q

i1
Kij - kz-l Dkb‘ k1Ukj
Y = p~lug.
i=1
U Y+ UL Y
I i-1
Dy (Py G Ui Vi)

] .
k=§+1 1ka 11U11
-1 " ,

Yo B Vi
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The decomposition and solution
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{7.3-3b)

(7.3-4;)

(7.3-4b)

(7.3-5a)

(7.3-5b)
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! Sejution of Mixed Problem - For the general case where there is a combination

.
Shgpare .

of prescribed forces and dispiacenients, the three steps given abeve must be
modified. The preceduyre is ciscribed here for the case in which a single
(rth) displacemant iz &rascribéd,-but additioenal prescribed displacements

3

would be treated in the same mannéﬁ. The medified form of the decompesition

(7.3-2) is
‘ r Y ( 3
[-T k. ——] amry " . v - . -
"0 ol 00 E,.n Y Yl @ P
T ' ; ‘ . . (7.3-6)
U1 0 0 10 0 U, U, *l 0, 3= P, b
T Tl -1 a 1 RTINS
Uy, O unn‘J 0 0D, 0 VR K8 | R
N . - ; - _J \ 4 \. y

where ( h) denotes a prescribed quantity. The first and last rows, denoted

by 1 and n, respectively, invelve prescribed forces. The elements of U are
— given by Equation 7.3-3b, except that no contributien from Urn is distri-

buted te the elements of Unn' Betailed steps feor decomposition, and forward

and backward substitutien, are given below.

1)  Decomposition.
First rows: Compute each row of U accerding to. Equatien 7.3-3b

and distribute the contributiens to later rows.

rth row: Compute the rth rew of U according to (7.3-3b) but
do not distribute to Tater rows.
Last rows: Again compute Y according to (7.3-3b)‘and'distr1—

bute te later rows.

2) Forward substitution.

First rows: Compute Y, = U{}Pq using Equatien 7.3-4b and

7-7
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distribute to Tater elements of Y. This produces the vector

vy, -l oy )T (7.3-7)

(Y0 =Uy Yy -UppYy

rth row: The rth row of (7.3-6) can be expanded and rearranged

to give the relation

T
(Y, Uyl } l v U Yyl (7.3-8)

The quantity U} 1 is available from the Y vector (7.3-7) and is
piaced in the force vector Pr' This quantity in the Y vector is
then replaced by Qr’ and contributions are distributed to later

elements of Y as in Equation 7.3-4b,

Last rows: Continue forward substitution by Equation 7.3-4b to

obtain
v o= ul e Ul - Ul Y (7.3-9)
Backward Substitution B
Last rows: From Equation 7.3-5b
Qn - U;l.nnn Yn (7.3-10)

rth row: By Equation 7.3F8_the final contribution

(U Q) is added to the existing contribution

+ )
r rnn

Q

rr

T
er1’ to give the total
T

P = (uh,\(T + ”err * uman) (7.3-11)

r
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First rows: Continuing backward substitution by Equation 7.3-5b gives

~

- -1 N
Qp = Upy Dy (¥y- U3, 0 - Uy,Q))

Implementation - The BOPACE decompositien and solution algorithms operate

in a blocked-partitition mede, corresponding to the form of the merged stiff-
ness and decomposition matrices. By means of this procedure, the indexing
and storage operations can be applied in general to many partitions at a

time, thus increasing program efficiency.

For decomposition, the core is divided into three areas. The first area is
large enough to store the maximum size nedal row of the stiffness or decom-
position matrix. The last two areas are each equal te one-half of the re-
maining cere, and are input/output areas which serve a1ternate1y'to store
either previous decomposition contributions or the updated contributions
including effects from the current row. If core is limited, then use is

made of two scratch files as backup for the last two core areas.

A dummy decompoesition is first performed to determine the maximum wavefront
(active decompasition nodes) for the structure. The decomposition process
is then accomplished using the following steps (dependent MPC freedoms are

treated during decomposition like specified displacements).

1}  Read current nodal row of the stiffness matrix from merge file, into
_end of the row storage area. Add previous decomposition contributions
for this row from the input cere area, and store resulting completed

row of decompesition at start of the row storage area.

7-9
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2) Decompose the just completed row (i.e., compute its contributions
to later rows), merge these contributions with previous contributions
from the input area, and store results in the output area. (When input
or output area is filled, perform a read or write to the corresponding

scratch area.)
3} Switch input/output areas or corvesponding scratch files.

4) " Output current row onto decomposition file in blocked partition

- form {same row format as for merge file).
5) Repeat steps 1-4 for each nodal row of matrix.

The above procedure makes it unnecessary to search for any partition or to
store a vector for partition addressing, because the next partition needed

for caleulation is always the next ene available in the core storage area.

For solution, enough core is needed to store the maximum size nodal row of
the decomposition matrix. The forward substitution invelves reading the
decomposition matrix one row at a time, while the backward substitution
involves a similar reading of the nodal rows in reverse order. Before the
solution procedure begins, the MPC coefficients are used to take prescribed
forces at the dependent freedoms and distribute them to the independent
freedoms. During the solution procedure, dependent MPC freedoms are
ignored. After the solution procedure is completed the MPC coefficients
are again used to calculate the dependent displacements in terms of the

independent displacements.

7-10
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8.0 SUBSTRUCTURING

Substructuring cencepts are used in order to decrease computer run times or
core storage requirements, or for the convenience of being able te model
and soive several parts of a structure largely independently of each other.
Substructuring procedures can be classified generally according to three

types of applications:

1) Parameter type studies, where a small part of the structure is modi-
fied one or more times. The results of each modification can be
determined without a new formation and decomposition of the entire

stiffness matrix.

2) Nonlinear problems, where the material or geometric nenlinearity
effects are largely concentrated in a particular region of the struc-
ture. The incremental jterative selution process can often he
accomplished by updating only the portion of the stiffness matrix

corresponding to this region.

3) Large problems which can be divided into several distinct regions,
with the regions connected together at localized interfaces. Each
region can be solved largely independently, by reducing out internal

freedems in each region in terms of the connecting boundaries.

The third type of procedure is used Targely fer convenience, in order to
design and analyze individual parts of a structure separately. It does net
significantiy change the required run time, as compared to that of a similarly
efficient non-substructure precedure. It can, however, reduce the maximum

wavefront storage (by perhiaps as much as a factor of two) for some problems,

8-1
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and core storage is also reduced somewhat by the need to store only part

of the force and displacement vector values in core at any particular time.

The BOPACE substructuring approach is directed toward the first and second
types of applications. The structure is divided into two parts - a "constant"
and a "variable" structure. The variable structure defines those parts of
the structure which can be modified, and for which the stiffness matrix can
be updated as BOPACE iterates to a solution. For each new variabie structure
the decompositien process is performed only for the nodal rows corresponding
to that variable structure. The forward-backward substitution process, how-
ever, is always performed for the entire structure. Although the entire
force and displacement vectors must.be in core for solution, this approach
has the advantage that the "constant" structure is permitted to have some
nonlinear material or geometric effects, which are accounted for by itera-

tion in the solution process.

BOPACE defines three types of nodes - constant, boundary and variable, in
that order. Boundary nodes are used aleng interfaces to attach the coﬁgtaht
and variable structures together, or in the constant structure area where
it is desired to change the SPC definitions from one variable structure case
to the next. Constant elements are connected to constant or boundary nodes,

and may not be redefined. Variable elements are connected to variable or

boundary nodes, and may be redefined (or expanded or decreased in number).

The simple substructure example shown in Figure 8.0-1 will be used to help
il1lustrate the BOPACE precedure. In this exampie there are 28 ﬁodes, with
internal ordering as shown in {b). Nodes 1-17 are constant, nodes 18-26 are

boundary, and nodes 27-28 are variable. Node 18 is made a boundary node in
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(a) STRUCTURE WITH NODE I.D. NUMBERS
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Figure 8.0-1: BOPACE Substructuring Example
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Figure 8.0-2: General Stiffness latrix Substructuring Schematic
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order to allow 1ts SPC definitions to be changed from one variable structure
to the next, while nodes 19-26 are boundary nodes because they are used to
connect constant elements with variable elements. The sparse form of the
merged and decomposed stiffness matrices is apparent from (c} and {(d). (It
may be noted that in general a column of the decomposed matrix is full, be-
low the row in which its first non-zero partition occurs in the merged matrix.
In some cases, however, a null partition can occur in the decomposed column
below this point). A schematic of a general substructure stiffness matrix

is shown in Figure 8.0-2. There the letters C, B and V denote constant,
boundary and variable, respectively. Thus for example, CB denotes partitions

connecting constant to bdundary nodes.

The basic steps invelved in a BOPACE substructure problem are given as

follows:

1) Merge constant portion (CC and CB) of stiffness matrix, and merge

constant contributions to boundary (BB).

2) Decompose constant stiffness (CC and CB), and distribute constant de-

composition contributions to boundary (BB).

3) Merge variable contributions to boundary (BB and BV), and merge

variable stiffness (VV).

4) Add boundary contributions (BB) from Step 2 to stiffnesses from Step
3, to obtain total variable stiffness (BR, BV and VV).

5) Complete decomposition of total variable stiffness from Step 4.

6) Add total variable decomposition (BB, BV and VV) from Step 5, to

8-4
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6) Continued

constant decomposition (CC and CB) from Step 2, to obtain total

structure decomposition.

7)  Perform forward/backward substitution using total structure decom-
position, to obtain solution for all forces and displacements in

structure.
8) Repeat Steps 3-7 for each new variable structure.

Because of the additional substructure overhead costs which arise from the
matrix addition and input/output file operations, BOPACE substructuring is
not recommended if the variable structure is a Targe portion of the total

structure.

MPC relations require that rows and columns of the stiffness matrix corre-
sponding to the dependent freedoms, be moved to Tocations corresponding to
the independent freedoms. Because of the order in which the above matrix
contributions are formed and stored, certain restrictions are placed on sub-
structure MPC relations. The permissible forms of MPC equations for the
constant and boundary freedoms can be written symbolically as

C = f{C,B) (8.0-1a)

B = f(B) (8.0-1b)

and for the variable freedoms as

V = f(V,B) {(8.0-1c)

)
Equation 8.0-1a means, for example, that dependent constant structure dis-
placements may be defined as a function of both constant and boundary freedom

displacements, via the constant structure MPC equations.
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9.0 DEFINITIONS - THEORETICAL MANUAL

This section defines symbols used in the BOPACE Theoretical Manual.

Variables:
a

c

DO &000 2143 ORIG. 4/7:

’

Deviatoric stress center; Translational acceleration
Kinematic hardening slope

Distributed 1ocad intensity

Deviatoric strain

Function designation

Shape function derivatives matrix

Initial stress matrix

Concentrated mass

Local or element nodal forces, displacements
Isotropic hardening slope

Deviatoric (total - hydrostatic) stress
Cartesian coordinates

Displacements in x,y,z directions

Basic Cartesian Coordinates

Basic Cylindrical Coordinates

Basic Sphérica1 Coordinates

Displacements in X.Y,Z directions

Elasto-plastic hardening parameter; Strain tensor coefficient

matrix
Strain-displacement matrix

Kinematic hardening matrix; Direction Cosines matrix
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Variables:

c,B.V Constant, boundary, variable parts of substructure

0 Elasticity matrix

E Young's modulus

E' Basic yield surface normal vector

F Yield surface function

G Tensoria) shear modulus; Shape functicn derivatives matrix
H Intermediate stiffness calculation matrix

I Identity matrix

J Jacobian matrix

K Stiffness matrix

N Element shape function

P,Q System nodal forces, displacements

R Isotropic hardening matrix

T Temperature

v Volume )
Y Intermediate equation solution vector

W Work; Integration point weighting factor

a Stress center of yield surface; Rotational acceleration
w Rotational velocity

B Strain center of yield surface

Y Thermal coefficient of expansion; Shear strain

€ Strain

9 Displacement derivatives

K Cumulative plastic hardening parameter

o
1
[ ]
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Varijables:
«© Creep hardening parameter
Kk Kinematic hardening parameter
A Plastic proportionality constant
v Poisson's ratie
g Stress
p Mass density

Esn,sL Parent element Cartesian coordinate system

Subscripts:

a,b,i,i.k.g,m,n,r

General indices

Superscripts:

0 Start-of-increment quantity "
1 End-of-increment quantity

0 Known test value

o Creep quantity

e Elastic quantity

p Plastic quantity

t Thermal guantity

Special Symbois:

§( ) Residual (corrective) quantity; Virtual quantity
() Partial derivative

| ] Length of vector

9-3
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Special Symbols:

a( )
()
()
()
()
O

(")

(")
()
L

T

x

DO 0000 2145 ORIG, 4f 71

Incremental quantity

Reference equiliurium quantity

Matrix transpose

Matrix inverse

Mixed coordinate system quantity

Effective quantity; Tangent coordinate system quantity
Relative deviatoric quantity; Prescribed equation solution
quantity

Rate quantity

Second order rate (acceleration) quantity

Summation

Product Sumi

Vector cross product

9-4
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10.0 BOPACE INPUT DATA
10.1 GENERAL ORGANIZATION

The schematic of the BOPACE data deck for a problem is shown in Figure
10.0-1. A problem is defined in general by a constant structure combined
with one or more variable structures, and with one or more Toad increments
for each constant-variable structure combination. The BOPACE input data

consist of four distinct groups:

1)  Overall problem control data (for each cold start or restart),
2) Constant structure data (given for substructure problem),
3) Variable structure data, and

4)  Increment data.

The variable structure data and increment data may be redefined an unlimited

number of times in any one problem.

The overall problem control data begin with the TITLE card. Fpllowing this
are parameters to define the basic problem type, and to control the solution
method and iteration sequence. Also included are cards to control the effect
of diagnostic conditions, to restart or checkpoint the problem, and to allow
the user to select the nodal and reference-point results that are to be

printed for his problem,

The constant structure data begin with the CTITLE card. Material, coordinate

system, node, boundary node, element, multi-point constraint and single-point
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and Load increments
Variable Structures
for Additional

Optional Data

fncrement Data

ITITLE
fncrement Data
s

ITITLE

Variable Structure Data

VTITLE

Constant Structure Data

CTITLE
Problem Control Data

TITLE

Figure 10.0-1: BOPACE Problem Data Deck
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o Figure 10.0-2: Basic Coordinate Systems :

Figure 10.6-3. {soparametric Element Example

10-3



et e S

consﬁraint definiticns are included. . The constant structure data define
those.parts of the structure for which the stiffness matrix is to be treated
as constant during the solution of the'prob1em. BOPACE does not require a
problem to have a constant structure, and constant structure data is usually

not given unless the problem involves substructuring.

The variable structure data begin with the VTITLE card. Material, coordinate
system, node, element, multi-point constraint and single-point constraint
definitions are included. The variaﬁ]e structure data define those parts of
the structure which can be modified, and for which the stiffness matrix can
be updated as BOPACE iterates to a solution. A null variable structure is
unu§ual but is allowed. {In this case, if a VTITLE card is not input, a null
variable structure title is generated by the program.} If no constant struc-
ture was defined, the variable structure is the entire structure. If both a
constant and variable structure exist, they may be connected via the boundary
nodes defined under CTITLE., Certain portions of variable structure informa-
tion involving materials and coordinate systems, may have already been defined
by constant structure data, in which case the data need not be repeated.

{
The increment data begin with the ITITLE card, and consist of cumulative Toad
factors, control data, material and coordinate system data, and load set data.
The cumuiative load factors are used as multipliers for the load sets, in
order to compute the varicus cumulative mechanical and thermal loads. (A
load factor of zero means that a particular loading is not acting on the
structure.) The control data given here will override, for the particular
increment only, any of the same data definedzpnder TITLE. Material tables

may be redefined in the increment data, and will permanently replace any
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corresponding existing data; the new material data is used immediately during
the jteration process, and later when the next stiffness matrix update is
performed. Coordinate systems may also be defined or redefined (redefinition
produces a warning message). The load set data are used to modify or regener-
ate the lcad sets for concentrated, distributed, thermal, normal strain/
stress, and inertia loads. {Any Toad set data not redefined remain

unchanged,)

Multiple problems may be run simply by stacking the problem decks cansecu-

tively. The last card required after the entirggqé%é deck is the EOF card.
10.2 CARD FORMAT

A1l data cards input to BOPACE are in a free field format. The free field

data rules are:

1)  Each data card must begin with a name tag, which identifies the data on

the rest of the card. The name tag must start in column 1, and consist
- of alphanumeric characters with no imbedded blanks. Only the first four

characters in the name tag must be given correct]yf

2) A name tag of CONTINUE indicates the data on the cardxkﬁé.been continued
from the previous card. There is no 1imit on the number of continuation
cards,

3) A name tag must be {mmediately followed by one or more blarks. The
remainder of the card contains data items associated with the name tag,

with each data item followed by a delimiter.
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4) A legal delimiter is either a comma, one or more blanks, or a comma with
one or more adjacent blanks. The end of the card is equivalent to a
comma.

5} A $ causes BOPACE to ignore the columns following the § on that card.

‘The $ may be used for comments, or to allow the BOPACE input interpreter
to stop scanning the card for further data.

6) A null data item causes BOPACE to use a default value. (If a default
value does not exist, a zero value is generated.) Null items are input
by successive commas which do not enclose a data item, or by completely

omitting the last one or more items associated with a name tag.
10.3 BOPACE DATA CARD DEFINITIONS

BOPACE requires most data to be input in a predefined order. Not all data is
required to be input. If a particular portion of data is not required for

the problem to be solved, then this data may be omitted. Section 10.3.0

gives a summary name-tag list of the BOPACE data card types, shown in the
suggested order of input. The remainder of Section 10.3 gives a more detailed
explanation of each card type, including the definition of its various indi-

vidual data items.
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Summary Name-Tag List of BOPACE Data Cards

DCONDITION

CHECKPOINT

CARTESIAN }

(Cold start only).

Give for each set (cold start only).
Required to obtain output of problem results.

Isotropic elastic material data group.
Repeat for each isotropic material.

Plastic material data group.
Repeat for each isotropic material.

Creep material data group.
Repeat for each isotropic material.

Anisotropic material data group.
Repeat for each anisotropic material.

Repeat for each special coordinate system.
Repeat for each constant non-boundary node.

Repeat for each boundary node.

Use as many of these cards as required to define
properties for constant elements.

Use as many of these cards as required to define
reference points for constant elements.

Give one of these element cards for each constant e]ementf

Give one card for each multi-point constraint.
Use as many cards as desired for single-point constraints.
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VTITLE =
All,constant structure card types except BOUNDARY may be given here. Any
material data group (MATI, PLASTIC, CREEP, or MATA group)} redefined here will
permanently replace the corresponding data group defined previously. Redefi-
nition of a previously defined special coordinate system is allowed, but will
produce 2 warning message,

ITITLE

LFACTOR

CTIME

gg%gTION If given here, these override corresponding problem con-
PRT?2 trol cards, for current fincrement only.

MATI GROUPS

PLASTIC GROUPS If redefined here, each of these permanently replaces the
CREEP GROUPS material data group defined previously.

MATA GROUPS :

CLOAD C .

CTLOAD oncentrated mechanical load sets group. Use as many
C2L0AD cards as desired to redefine Toads.

g%gggn Distributed mechanical load sets group. Use as many
D21 0AD cards as desired to redefine loads.

¥%ESRD Thermal ioad set group.

T2L0AD Use as many.cards as desired to redefine thermal loads.
g%EﬁRD Normal strain/stress load set group. Use as many cards
S2L0AD as desired to redefine normal strain/stress Toads.
TAXIS

gﬁﬁég inertia loads data group.

CIMASS Use as many CMASS type cards as desired to redefine
COMASS concentrated masses.

EOF" } Final card after end of data for all problems.
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10.3.1 Problem Control - Title Card TITLE

Description:

Format

Defines the title for the problem.

TITLE

title

Exampl es

TITLE

THIS CARD IS REQUIRED

CONTINUE

FOR EVERY BOPACE PROBLEM

Field
title

Remarks: 1)

2)

Contents
Any hollerith characters.

This card is required for every BOPACE probiem
and it must be the first data card.

The non-continued part of the title appears on
the first 1ine of every page of output.
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10.3.2 Problem Control - Diagnostic Condition Card DCONDITION -

Description: Diagnostic condilion for switching to a diagnostic detection
mode only (problem solution is aborted).

Format

DCONDITION cond

Examples
DCON 1
Field Content
cond Condition code.
0 diagnostic detection only {no problem solution)
1 a warning message causes a switch to diagnostic
detection only
2 forces a solution when warning messages are present,
but an error message causes a switch to diagnostic
detection only (defauit)
>2 forces a solution when warning or error messages are
present
Remarks : 1) If a DCOND card is not input, then cond = 2.
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10.3.3 Problem Control - Problem Type Card PROBLEM
Description: Defines basic problem type.
Format
PROBLEM probt geomnl
Examples
PROB 2 1 &
Field Contents
probt Problem type.
2 two-dimensional space
3 three-dimensional space (default)
4 axisymmetric problem
geomnl Nonlinearity. code.
0 material nonlinearity only (default)
1 geometric and material nontinearity
Remarks: 1) If a PROBLEM card is not input, all default values

will be assumed.
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10.3.4 Problem Control - Solution Parameter Card SOLUTION

Description: Defines solution method'and iteration variables for
all increments. )

Format

SOLUTION  errmax scode maxup maxit] maxit2 maxit3

CONT maxie maxyc maxcut cut afact

Examples

SOLU  .005 11 4

Field Contents
errmax Maximum allowable residual error norm (default is .001).
scode Stiffness matrix generation code for updating stiffness

matrix during iteration Toop.

1 do not update matrix (always use the initial elastic
matrix generated for a temperature distribution
defined by the element fabrication temperatures)

2 update elastic matrix (based on current temperature
and geometry)

' 3 update total (elastic plus plastic) matrix (default)
4 update both elastic and total matrices
maxup Maximum number of stiffness matrix updates per increment

in order to achieve convergence to within the maximum
allowable residual error norm (default is 1).

maxiti Maximum number of residual-force iterations before update
i of t?e stiffness matrix is computed (default is 10, 10
and 10).
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10.3.4
Field

maxie
maxyc

maxcut

cut

afact

Remarks:

Probiem Control - Solution Parameter Card - continued
Contents

Maximum number of initial iterations for each increment
using the elastic matrix (default is 2).

Maximum allowable magnitude of the elastic-plastic sum
code (default is 2).

Maximum number of cuts to be performed (giving a new
solution as a fraction of a previously used displacement
correction) if residual norm is not decreasing {(default
is 1).

Cutting fraction to be muitiplied times previously used
displacement correction (default is .5).

Fraction from end of increment to evaluate stress versus
plastic-strain slope in forming total stiffness matrix
(default is .1)}.

1)  If SOLUTION is not input, all default values will be
assumed.

2) If maxity is zero, BOPACE will update the stiffness
matrix before the iteration process starts.

3) If maxity and maxup are zero, then BOPACE will not
perform an incremental solution, but will print the
requested nodal and reference-point quantities,
computed during the previous increment,
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10.3.5

Probiem Control - Restart Card RESTART ’

Description: Directs BOPACE to start a problem from a previous problem

that was checkpointed.

Format

RESTART incr vstr tapno

Examples

REST 48 3 1

Field Contents

incr Increment number on the checkpoint tape from the end of
which a restart is to be made.

vstr Variable structure number on the checkpoint tape from
the end of which a restart is to be made {default is 1).

tapno Logical unit containing a checkpoint tape from a previous
problem (default is 28%.
1) Value of zero for incr causes the restart to occur

Remarks:

after variable structure vstr.

2} A value of zero for vstr causes the restart to occur
after the constant structure.

3} In case of multiple restarts, the incr and vstr values
are cumulative,
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1G.3.6 Problem Control - Checkpoint Card CHECKPQINT
Description: Directs BOPACE to checkpeint the problem.

Format

CHECKPOINT tapeno

Examples

CHEC 56

Field Content

tapeno Logical unit on which BOPACE is to checkpoint the
problem (default is 29).

Remarks : 1) This card is required only for problems that are to

be checkpointed.
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10.3.7

Problem Control - Set Card(s) SET

Description: Defines a set of either nodes or elements for output requests.

Format
SET sid 1,, i,, etc, DO i, i1, i MINUS i, i,, etc.
1* 72 3 45 6 7 Repeat as
: required
CONTINUE DO 18,19,110 PLUS 11] 112 i]5
Examples
SET 10 3 DO 100 200 MINUS DO 50 60 PLUS 55
SET 5 PLUS DO,1,75,2
SET 100
Field Contents
sid Set identification number.
iI g, etc. Node or element identification numbers that are to.be output.
Do iy i ig Nodes or elements that are to be output, beginning at
i3, ending at i,, and those intermediate nodes or
e?ements genera%ed by repeatedly adding ig to i,.
Default ig = 1.
MINUS : Nodes or elements following the MINUS are removed
from the set definition.
PLUS Nodes or elements foilowing the PLUS are added to the
set definition.
Remarks : 1}  SET cards are optional.
2)  SET cards can be referenced by PRT1 and PRT2 cards.
3} Set generation begins with an implied PLUS operator,

which holds until a MINUS is encountered, etc.
Redundant PLUS or MINUS operators are optional.
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. 10.3.8

Description:

Problem Control - Output Regquest Card PRTI

Print selected nodal quantities.

Format
PRT1 sid
Examples
PRT1 -1
PRTI 0
PRTT . 100 .
Field Contents
n Specified type of nodal quantity.
- 1 internal forces and displacements
sid Set identification number.
-1 print all nodal quantities of specified type
0 print no nodal quantities of specified type (default)}
>0 print nodal quantities of specified type for only the
the nodes jncluded in set sid
Remarks: 1) Caution - if a PRTI card is not input, then no nodal
' quantities are printed.
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10.3.9 Problem Control - Output Regquest Card PRTZ
Description: Print selected element reference-point quantities.

Format

PRT2 " s1‘d1 Ny sid2 Ny sids' etc.

Examg]es,_

PRTZ 1,-1 2,0 11,3 6,1

Field Contents

n, Specified type of reference-point quantity.
cumulative stresses

incremental stresses

cumulative elastic strains

incremental elastic strains
cumulative plastic strains [
incremental plastic strains
cumulative creep strains

incremental creep strains

cumulative total strains

effective plastic and creep strains
thermal strains '

— oW W

_—

sid. Set identification number.

-1 print all element reference-point quantities of specified
type

0 print no element reference-point quantities of specified
type (default)

>0 print element reference-point quantities of specified
type for only the elements included in set sid

Remarks : 1) Caution - if a PRT2 card is not input, then no element
reference quantities are printed.
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10.3.10 Constant Structure - Title Card CTITLE

Description: Defines a title for the constant structure data.

Format

CTITLE ctitle

Examples

CTITLE THIS TITLE APPEARS ON THE SECOND LINE

CONT OF EVERY PAGE OF OQUTPUT

Field Contents

ctitle Any hollerith characters.

Remarks: 1)  This card is required to be the first card of the

constant structure data.

2)  The non-continued part of the title appears as the
second 1ine on every page of output.

3) This card is required only if there is constant
structure data.
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MATI
IMODULUS

10.3.11  Constant Structure - Isotropic Elastic IPOISSON {
' Properties Cards ISTRAIN

Description:

Defines Young's modulus, Poisson's ratio and thermal
strains for isotropic materials.

Format

MATI mid . density. . . ]

IMODULUS tmy mod1‘ tm,, mod2 tmy mod3 etc. Repeat

' = , L for each

isotropic

IPOISSON tpl' poi] tp2 po1'2 tp, poi3 etc. material

ISTRAIN tsT str] ts, str, t53 stry  etc. )

Example

MATI 4 .001

IMOD 0.,1.€6.1,,10.9E6

IPOT . 0 .3

ISTR 0.,1.E-6.

Field . Contents

mid Material identification number (! < mid g 5}.

deﬁsity Mass density.

tm, Temperatures at which Young's modulus is defined.

moqi Young's modulus at temperature tm, .

tp. Temperatures at which Poisson's ratio is defined.

1

10-20



10.3.1
Field

poi
ts,

stri

Remarks:

Constant Structure - Isotropic Elastic Properties Cards - continued
Contents
Poisson's ratio at temperature tpi.
Temperatures at which thermal strain is defined.
Thermal strain at temperature tsi.
1)  If the ISTRAIN card is not input for a material,

then default thermal properties are generated with
no thermal strain.
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10.3.12

Description:

Constant Structure - Isotropic Plastic
Properties Cards

PLASTIC

THERD
KSHAPE

KFACTER

Define isotropic hardening, kinematic hardening shapes,
and kinematic hardening factors for isotropic plastic

materials,

Fornat
PLASTIC mid ptype ktype
PTEMP temp
Repeat
THARD ip, is; ip, is, etc. ¢ ’;g;p:ig't‘we
KSHAPE kpl ks1 kp2 k52 etc.
KFACTOR cpy f] Cpy fz
Exemples
PLAS 3 1
PTEMP 0.
THAR 0. 2 3, 2. 9. 3.5
KSHA 0 1. 1. 3..2 9. 3.5
PTEMP
IHAR 2 3.5 2.2
KSHA 0. 9. 1. 4. 2
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10.3.12
Field
mid

ptype

ktype

temp

ip
is.

1
kpi

ks.

cp;

Constant Structure - Isotropic Plastic Properties Cards - continued

Contents
Material identification number (1 2 mid < 5).
Plasticity type.

1 strain hardening (hardening parameters = sum of i
increments of effective plastic strain, default)

=g

2 work hardening (hardening parameters = cumulative
plastic work density)

Kinematic type.

0 kinematic hardening is a function of one parameter
(default)

1 kinematic hardening is a function of two parameters

Temperature.

Cumulative hardening parameters at which isotropic stress
values are defined for temperature temp (must monatoni-
cally increase).

Isotropic stress at cumulative hardening parameter 1pi.

Kinematic parameters at which kinematic stress shapes are
defined for temperature temp {must monatonically increase).

Kinematic stress shape at kinematic parameter kpi.
Cumulative parameters at which kinematic stress factors
are defined for temperature temp (must monatonically
increase).

Kinematic stress factor at cumulative parameter Cp; (must
monatonically increase).
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10.3.12 Constant Structure - Isotropic Plastic Properties Cards - continued
k] ¥
Remarks : 1) If no plasticity data or only the PLASTIC card is input
.~ for a material, then default plastic properties are
© " “generated with an essentially infinite yield stress.

p 2) If the kinematic type is zero for a material, then
the kinematic stress factors are taken as 1.0 and
the KFACTOR card is not input.

3) Temperatures must monatonically increase.

4) For uniaxial tension case. isotropic stress = (t+c)2,

and kinematic stress = (t-c)/2, where t = tensile yfeld
stress and ¢ = compressive yield stress.
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10.3.13

Description:

CREEP

CSHAPE
Constant Structure - Isotropic Creep . CTEMP
Properties Cards ! CEACTOR

Define a creep curve shape and temperature dependent -
creep factors.

v“‘:
e

Format ‘
CREEP  mid ctype | 1
CSHAPE  time,, strain,, time., strain, etc. Repeat
1 1 2 2 £
or each
isotropic
CTEMP temp Repeat material
for each

CFACTOR stress], factl, stress2 fact2 etc, temperature )
Examples 1?
CREEP 3 2
CSHAPE 0. 0. 10.7 30. 20.  40.
CTEMP 0.
CFACT 0. 1.3, 1. 11. 9§
Field Contents
mid Material identification number (1 ¢ mid £ 5).
ctype Creep type.

1 age hardening (based o§kﬁkeéb time, default)

2 strain hardening (based on sum of increments of effective

creep strain)

3 work hardening (based on cumulative creep work density)
timei Times at which creep strains are defined {must monatonically

increase).
straini Creep strain at time timei.
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10.3.13  Constant Structure - Isotropic Creep Properties Cards - continued

Field Contents

temp Temperature.

stressi Stress ya}ues at which creep factors are defined (must
: monatonically increase).

facti Creep factor at stress value stressi.

Remarks : 1) If no creep data or only the CREEP card is input

for a material, then default creep properties are
generated with no creep.

2) Creep is equal to the creep factor (function of
temperature and stress) times the creep curve shape.
If the CTEMP and CFACTOR cards are not input for a
material, then the creep factors are taken as 1.0.

3) Temperatures must monatonically increase.
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MATA
AECASTIC
AFACTOR
10.3.14  Constant Structure - Anisotropic Elastic XSTRATHR
Properties Cards YSTRAIN
ZSTRATN
Description: Defines anisotropic elasticity matrix
and thermal strains.
Format
~
MATA mid density
AFACTOR t f t f, --- etc. Repeat
1 1 2 2 !
for each
f anisotropic
XSTRAIN tx, sx; tx, sx,--- etc. material
1 1 2 2
YSTRAIN ty1 S2 ty2 SYg--- etc.
ZSTRAIN tz] $Z; t22 §2y~-- etc. J
Examples
MATA 6
AELAT 1 0 0 0 0 0
CONT2 o 2 1 0 0 0
CONT3 0 1 5 0 0 0
CONT4 0 ¢ 0 5 0 0
CONTS 0 0 0 0 5 0
CONTE 0 0 0 o0 0 4
AFACT -1 1 o 1 10 2

10-27



density
Cij

t;

3

txi

SXi
ty;

Y5
tzi

SZ.
1

Remarks:

Constant Structure - Anisotropic Elastic Properties Cards -

continued

"chtents

Material identification number (6 < mid < 10).

Mass

density.

Entry for the elasticity matrix.

Temperatures at which elastic matrix factors are defined.

Elasticity matrix factor for temperature t;.

Temperatures at which thermal strains are defined for
direction x {element reference-point displacement coor-
dinate system) in the material.

Thermal strain for direction x at temperature tx,.

Temperatures at which thermal strains are defined for

direction y in the material.

Thermal strain for direction y at temperature ;.

Temperatures at which thermal strains are defined for

direction z in the material.

Thermal strain for direction z at temperature ty;.

1)

2)

3)

Losz

If the AFACTOR card is not input for a material, then
the elasticity matrix factors are taken as 1.0.

If the XSTRAIN, YSTRAIN or ZSTRAIN card is not input,
then default thermal properties are generated with
no thermal strain for the respective x, y or z

direction.

For an anisotropic elastic material, BOPACE computes
cumulative stress from engineering cumulative elastic
strain, using the elasticity matrix and its factor as

follows.

©15 ©16]]
€25 C26
€35 ©36
45 Ca6

C55 Cs56
C65 €66

o= N
XX

E

Yy

€2z

Yy

YXZ

\Yyz)



10.3.15 Constant Structure - Cartesian Coordinate CARTESIAN
System Card(s)

Description: Defines special Cartesian coordinate systems (used for
nodal displacements and forces, and for elemental reference-
point quantities).

Format

CARTESIAN  cid opt node, node, node, Give one of

these for
each special
CARTESIAN ~ cid opt rcid x, y z. X, ¥, 2 'xc Ye 2 gsgig;ian
Examples
CARTESIAN 100 1 4 8 3
CART 53,2 2 1.,30,10. 1.,45,10. 1.,30,12,
- Field Contents
cid Coordinate system identification number {3<cid).
opt Option code.
1 three nodes define coordinate system
2 coordinates of three points define coordinate system
nodea Node defining origin of coordinate system.
nodeb Node on the x-axis of coordinate system.
nodeC Node in the x-y plane of the coordinate system.
rcid Coardinate system referenced to define the coordinates of
three points.
1 basic Cartesian (default)
2 basic cylindrical
3 basic spherical
Xy2Yy12y Coordinates defining the origin.
Xy s ¥ 2p Coordinates defining a point on the x-axis.
- Xes¥erZe Coordinates defining a point in the x-y plane.
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10.3.15  Constant Structure - Cartesian Coordinate System Card(s) - continued

Remarks: 1)

2)

3)

Special Cartesian coordinate systems are optional.

See Figure 10.0-2 for a schematic of the BOPACE
Cartesian, cylindrical and spherical systems.

Angle coordinates are input in degrees.
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10.3.16 Constant Structure - Node Definition Card(s) NODE

Description: Define the nodes that comprise the constant structure.

Foﬁmat

NODE nid xy z 1id did spc } Repeat for each node

Examples

NODE 51 11.5 90. 0. 2 2 31

fié}ﬁ_ Contents
J“'}n'd Identification number of node {0<nid).
Xy ¥y Z Coordinates of node.
1id Coordinate system used to define coordinates of node.
1 basic Cartesian (default)
2 basic cylindrical

3 basic spherical

did Coordinate system used to compute displacements and
nodal forces {(0<did, default 1).

spc Single point constraints (packed number composed of the
digits 0, 1, 2 and/or 3).

0 no constraint (default)
1 constrain freedom 1
2 constrain freedom 2
3 constrain freedom 3

Remarks: 1) Each node must have a unique nid number.

2) Boundary nodes may be used to define a constant/
variable structure interface. In that case
non-boundary nodes are defined first and then
boundary nodes. The two groups of nodes are
separated by a data card which has only the name
tag BOUNDARY on it.

3) Angle coordinates are defined in degrees.
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10.3.17

Constant Structure - Element Property Definition .
Card(s) \ ' PBRICK

Description:  Defines properties for isoparametric BRICK elements

in the constant structure.

Repeat for each
different definition

of element properties.

Format
PBRICK . pid ftemp mcode.
Examples
PBRICK 2 70.
Field ‘Contents
pid Identification number of the element property definition,
referred to by BRICK card{s).
ftemp Fabrication temperature of the element.
mcode Mapping code for element shape functions.
0 proportionate mappin
1 serendipity mapping (crack-tip element)
Remarks :

1) Each element property definition must have a unique pid
number within constant or variable structure only. Element
property definitions arzs not recognized across constant/
variable structure boundaries.
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— 10.3.18

Constant Structure - Element Property Definition
Cards PQUAD

Description: Defines properties for isoparametric QUAD elements in

the constant structure.

Format
Repeat for each
PQUAD pid thick nscode ftemp mcode }g;f:$2§2ﬁtdgigg;§1?25
Examples
PQUAD 51 1.0 1 70. 1
Field Contents
pid Identification number of the element property definition,
referred to by QUAD card(s).
thick Thickness of the element.
nscode Number of prescribed n%fma] stress directions.
0 prescribed normal strain (generalized plane-strain element)
1 prescribed normal stress (generalized plane-stress element,
default)
ftemp Fabrication temperature of the element.
mcode Mapping code for element shape functions.
0 proportionate mapping
1 serendipity mwapping {crack-tip element).
Remarks: 1) Each element property definition must have a unique pid

number within constant or variable structure only.
Element property definitions are not recognized across
constant/variabie structure boundaries.
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10.3.19

Constant Structure - Element Property Definition
Cards - PQRING

Description:

Defines properties for isoparametric QRING elements in
the constant structure.

different definition

Repeat for each
of element properties

Format
PQRING pid ftemp mcode
Examples
PQRING 151 70. 1
Field Contents
pid Identification number of the =lement property definition,
referred to by QRING card(s).
ftemp Fabrication temperature of the element.
mcode Mapping code for element shape functions.
0 proportionate mappin
1 serendipity mapping (crack-tip element)
Remarks: 1)

Each element property definition must have a unique pid
number within constant or variable structure only.
Element property definitions are not recognized across
constant/variable structure boundaries.
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10.3.20 Constant Structure - Element Reference-Point Definition
Card(s) - ' RBRICK

Description: Defines reference points for isoparametric BRICK element(s)
in the constant structure.

Format
Repeat for
RBRICK rid 1id did. rpcode 1'c0deO icode1 icode2 icode3 each different
. definition
of element
CONTINUE gpyy 9Py OP3y 9Pyp 9Ppp P3p === 9P3pngp ;sfﬁgg’”ce
Examples
RBRICK 2 2,27 25 1,2,2,2 -1,1,.1 -1,1,.2
CONT -1,1,.5 0,0,.5
Field Contents
rid Identification numbé%%ﬁf the element reference-point ;
definition, referred to by BRICK card(s). E
1id Coordinate system used to display reference-point locations %
' in BRICK element(s). i
] basic Cartesian {(default) {
2 basic cylindrical i
3 basic spherical ¢
)

did Coordinate system used to define the stresses and strains at i
a reference point for BRICK element(s). :

tangent system (default)
basic Cartesian

basic cylindrical

basic spherical

special Cartesian

LWwwrn—O

%
B
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10.3.20

Field

rpcode

icode0

1code]

icode2

icode3 '

9Py

Remarks:

Constant Structure - Element Reference-Point Definition
Card{s} - continued

Contents

Reference-point code defining the point locations at which
stresses, strains, etc. are to be computed for printout.

This code is a packed number composed of the digits 1, 2, 3, 4
and/or 5,

U R ) PO —

integration points

corner points

surface center points

element center point (default)
general user-defined points

Integration-point type.

0

number of Gauss points in each parent coordinate direction
is equal to the maximum number of nodes in that direction

number of Gauss points in each direction is to be input as
icode], icodez, and icode3 (D<icodei)

Number of Gauss points in direction £.

Number of Gauss points in direction n.

Number of Gauss points in direction z.

ith parent coordinate of general reference-point j (given
only if rpcode includes the digit 5).

2)

Reference points consist of integration points plus
additional user selected points for output purposes.

Each element reference-point definition must have a
unique rid number within constant or variable structure
only. Element reference-point definitions are not
recognized across constant/variable structure boundaries.
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10.3.21

Constant Structure - Element Reference-Point Definition
Cards(s) ~ RQUAD

Description: Defines reference points for isoparametric QUAD element(s)

in the constant structure.

Format
RQUAD rid 1id did rpcode icode, icode, icode Repeat for each
P 0 1 2 different
definition
of element
CONTINUE 9P17 P9py PYyp TPpp ~=m IPypgp reference
points.
Examples
RQUAD 1 1,0 J245 0,,, .5,.1 .5,.2
CONT .5,.5 .5,.9 .1,0 .8,.8
Field Contents
rid Identification number of the element reference-point
definition, referred to by QUAD card{s).
1id Coordinate system used to display reference-point locations
in QUAD element(s).
i basic Cartesian {default)
2 Fasic cylindrical
3 basic spherical
did Coordinate system used to define the stresses and strains

at a reference point for QUAD element(s).

tangent system {default)
basic Cartesian

basic cylindrical
special Cartesian

wMrn — O
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10.3.21

Field

rpcode

icodeo

icodeT
1‘code2

ap;

Remarks:

Constant Structure - Element Reference~Point'Definition s
Card(s) - continued

" Contents

Reference-point code defining the point locatjons at which
stresses, strains, etc. are to be computed for printout.
This code is a packed numbher composed of the digits 1, 2, 4
and/or 5.

integration points

corner points

element center point (default)
general user-defined points

oLy —

Integration-point type.

0 number of Gauss points in each parent coordinate
direction is equal to the maximum number of nodes in
that direction

1 number of Gauss points in each diraction is to be
input as icodeT and icode, (0<icodei)

Number of Gauss points in direction &.
Number of Gauss points in direction n.

ith parent coordinate of general reference-point j
(given only if rpcode includes the digit 5).

1)  Reference points consist of integration points plus
additional user selected points for output purposes.

2) fach element reference-point definition must have a unique
rid number within constant or variable structure only.
Element reference-point definitions are not recognized
across constant/variable structure boundaries.

3) For QUAD elements used in 3-D probiem, did must be 0.
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R 10.3.22 Constant Structure - Element Reference-Point Definition
Card{s) - RQRING

Description: Defines reference points for isoparametric axisymmetric
quadrilateral element{s) in the constant structure.

Format

Repeat for
RQRING rid 1id did rpcode icodeD icode] icod92 each different

. definition

of element
CONTINUE 9Py 9Py 9Pyp 9Py - gp2ngp ;giﬁzznce
Examples
RQRING T 1,7 1 1,2,2
Field Contents
rid Identification number of the element reference-point

definition, referred to by QRING card(s).

1id Coordinate system used to display reference-point
Tocations in QRING element(s).

1 basic Cartesian (default)
2 basic cylindrical

Remarks: 1} See description of RQUAD for remaining fields and
remarks.
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10.3.23

Constant Structure - Element Definition Card(s} BRICK

Description: Defines isoparametric brick elements in the constant

structure. These elements are composed of eight corner
nodes, and from zero to three interior nodes per edge
(12 edges) in any combinations, for a maxiumum of 44 total

nodes .
Format
BRICK eid mid pid vrid n, n, ny, n, no n. n; ng n Repeat
1T "2 "3 "4 5 "6 7 8 e for each
brick

CONTINUE ng --- 1, element

Examples

BRICK 10 3,2,2 11,13,9,4,102,106,101,100

Field Contents

eid Element identification number (O<eid).

mid Material identification number (1z2mid<10).

pid Property card identification number.

rid Reference-roint card identification number.

N == nNg Corner nodes of brick (see Figure 10.0-3).

N Maximum number of interior nodes per edge.

ng == N, Edge nodes where 2 = 8 + 12 x n_. Edge nodes are defined for
each edge in the order shown in Figure 10.0-3. Edges having
less than n, nodes, have zeros inserted so that the number of
edge node entries for each edge is the same. If n. = 0,
fields ng --- n, are blank.

Remarks: 1) Each element must have a unique eid number.

2) Default element properties are assumed if pid = 0.

3) Default reference-point properties are assumed if
rid = 0,
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10.3.24

Constant Structure - Element Definition Cards QUAD

Description: Defines an isoparametric quadrilateral membrane element

in the constant structure. These elements are compcsed

of four corner nodes, and from zero to three interior

nodes per edge (4 edges) in any combinations, for a maximum
of 16 total nodes.

Format
: - : . Repeat for

QUAD eid mid pid rid Ny Ny Ny g N, ng ng ---n, } E?EEESEAD

Exampies

QUAD 201 4,51,1 10%,102,103,104 1 0,106,0,107

Field Contents

eid Element identification number (O<eid).

mid Material identification number (1smid<10}.

pid Property card identification number.

rid Reference-point card identification number.

ny==ny Corner nodes of element (see Figure 10.0-3).

Ny Maximum number of nodes per edge.

Ng=-n, Edge nodes‘where L=4+4 x Ng- ‘Edge nodes are defined for
each edge in the order shown in Figure 10.0-3. Edges having less
than ng nodes, have zeros inserted so that the number of edge
node entries for each edge is the same. If ng = 0, fields
ng---n, are blank.

Remarks: 1) Each element must have a unigue eid number.

2) Default element properties are assumed if pid = 0.

3) Default reference-point properties are assumed if
rid = 0.

4)  Curved QUAD elements may be used in 3-D problems, e.g.
as face skins combined with BRICK core elements, and
for membrance analysis of shells. MNote that membrane
shell analysis wili generally raquire double curvature
in each QUAD to prevent singulur mechanisms, because
the membrane QUAD has no bending stiffness.
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10.3.256 Constant Structure - Element Definition Cards QRING

Description: Defines an isoparametric axisymmetric quadrilateral element
(nodes as in QUAD element].

Format
Repeat
A . . . for each
QRING eid mid pid..vid ny n, ny My . Mg ng ---ng QRING
element

Remarks: 1) See description of QUAD for examples, fields and remarks.
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Description:

10.3.26  Constant Structure - Multi-Point Constraint Cards MPC

Defines the displacement for one freedom as a function of
the displacements at other freedoms of the structure. The
form of the equation is:

Qi = a"ij QJ

where Q4 and Qj are the displacements at freedoms i and j,
and aij are coefficients to be multiplied times the dis-
placements of freedoms j (summation on j).

Format
MPC n, € Ny, € a8, N, C, @ Repeat for each
! ! 2 2 2 3 13 3 multi-point
constraint
CONTINUE Py Cp 3y etc. equation.
Examples
MPC 10, 3 11,3,.5 13,2,2.5
- Field Contents
N Dependent node.
Cy Component number for the dependent node (1, 2 or 3).
Nys N3, etc. Independent nodes.
Cy» Cqs etc. Component numbers for independent nodes (1, 2 or 3)}.
5, a3, etc. Coefficients for independent nodes.
Remarks: 1) On a constant structure MPC card, only freedoms
at the constant and boundary nodes can be
referenced.
2) If the dependent freedom is at a boundary node, then
the independent freedoms must also be at boundary nodes.
3) MPC's can be used to define sliding boundaries (equal
normal displacements at pairs of nodes), to simulate
rigid connectors (constant distance between given
nodes), to enforce straight 1ines or plane surfaces
{by proper combination of normal displacements}), and

for many other purposes.
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10.3.27  Constant Structure - Single-Point Constraint Cards SPC

Description: Defines displacement freedoms of the structure. The
displacements are assumed to be zerp unless they are
defined via a concentrated load set.

Format
SPC Ny €y My .C,. Ny C, etc, } Repeat as
1 1 2 e 373 required
Example
SPC 100,71 201,3 5,2
Fié]d Contents
ny, ci The freedom corresponding to node n; and component cj
is to be constrained to zero displacement, uniess
defined as non zero via the concentrated ioad sets.
Remarks: 1)  Only freedoms at the constant and boundary nodes
can be referenced on the constant structure SPC
card.
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10.3.28 Variable Structure - Title Card VTITLE
Description: Defines a title for the variable structure.

Format

VTITLE vtitle

Examples

VTITLE The VTITLE CARD IS THE FIRST CARD

CONTINUE OF THE VARIABLE STRUCTURE DATA

Field Contents
viitle Any hollerith characters,
Remarks : 1}  This card is required as the first card of the

variable structure data. If there is no variable
structure data, this card need not be input (a null

variable structure title will be generated by BOPACE).

2)  The non-continued part of the title is printed as
either the second or third 1ine on every page of
output.

10-45



10.3.29 Variable Structure - General Cards

The variable structure data is defined in the same order as the constant
structure data. A1l data card types, except BOUNDARY, defined in the

constant structure data section can be used to define the variable structure.

Variable structure elements may be connected to only boundary or variable

structure nodes.

Materials and coordinate systems defined for the constant structure can be
referehced by the variable structure, without redefinition. Any material
group which is rgdefined will permanently replace the corresponding previously
defined group. Coordinate systems may be redefined, but if this is done a

warning message Will be produced.

In the varijable structure, the dependent freedom on an MPC card cannot be

a boundary node, Also, all freedoms referenced on the variable structure MPC
and SPC cards must be at nodes which are either boundary or variable structure
nodes (not constant structure nodes). Boundary node SPC's may be redefined

in the variable structure.
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10.3.30 Increment - Title Card ITITLE
Description: Define the title for the increment.

Format

ITITLE ititle

Examples

ITITLE . THIS CARD IS THE FIRST CARD

CONTINUE OF THE INCREMENT DATA

Field Contents
ititle Any hollerith characters.
Remarks: 1)  This card is required as the first card of the

increment data.

ge]
—

The non-continued part of the title is printed as
either the third or fourth line on every page of
increment output data.

3) If there is no increment data, no incremental
solutions will be performed.
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10.3.31

Increment - Cumulative Load Factor Card LFACTOR

Descriptian:

Defines cumulative load factors to be applied to the
various load sets, as well as acceleration quantities,
for the increment.

Format
LFACTOR . =~ = cT],. c}z, JdTi,"dTé, tT sl a  w o«
. ExampTe
LFACTOR 0, 1. 55 0. 1.0 0.5 0., 100., O. o
Fie]d Contents
cli Coefficient for concentrated nodal load set 7.
d’li Coefficient for distributed load set i.
t1 Coefficient for thermal nodal load set.
sl Coefficient for normal stress/strain element load set.
a Translational acceleration (length/time/time).
" Angular velocity {revolutions/time).
a Angular acceleration (revolutions/time/time).
Remarks: 1)  The LFACTOR card causes cumulative loads to be applied
for the increment, which are equal to the various factors
{coefficients} times their respective load sets.
2}  Acceleration quantities defined here are taken as constant
‘over the entire structure. They cause cumulative inertia
loads to be applied for the increment, based on defined
masses, translational acceleration direction, and axis of
rotation.
3) In case geometric nonlinearity was specified on the
PROBLEM card, inertia loads and follower-type distributed
loads (e.g. pressure or drag loads) are based on the dis-
placed configuration.
4) Caution - if an LFACTOR card is not input, then all its

data items are set to zero for that increment.
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\ — 10.3.32 Increment - Creep Time Card CTIME
Description: Defines incremental creep time for the increment.

Format

CTIME  creept

Example

CTIME 5.0

Field Contents
Creept Incremental creep time.

Remarks: 1) If no CTIME card is input, or a zero value is given for
creept, then no creep occurs during the fncrement.
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10.3.33  Increment - Repeated.Card Types

Increment - Solution Parameter Card SOLUTION
Increment - Qutput Request Card PRT1
Increment - Qutput Request Card PRT2

Description: These cards have been described in the Problem Control Data
section and may also be used in the Increment Data Section.
If they are defined in the Increment Data Section, then they
override the corresponding Problem Control card for that
particular increment only.

Increment - Isotropic Elastic Properties Cards MATI GROUPS
Increment - Isotropic Plastic Properties Cards PLASTIC GROUPS
Increment - Isotropic Creep Properties Cards CREEP GROUPS
Increment -~ Anisotropic Elastic Properties Cards MATA GROUPS

Description: These cards have been described in the Constant Structure Data.
Material groups may be added or redefined in the Increment Data.
Any material group redefined here will permanently replace the
corresponding previcusly defined group. The new material
properties are used immediately during the iteration process
and later when the next stiffness matrix update is performed.

Increment - Cartesian coordinate system card(s)} CARTESIAN

Description: These cards have been defined in the Constant Structure Data.
Coordinate systems may be added ar redefined in the Increment
Data, however redefinition of a system will produce a warning
message.
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CLOAD
10.3.34 Increment - Concentrated Load Set Card(s) C1LOAD
C2LOAD

Description: Define concentrated Toads at the nodes. The actual
applied loading is equal to the concentrated load factors
defined on the LFACTOR card times their respective load

sets.

Format

- - 3 -\
CLOAD clsid md1 Cy vy md2 Ty Vo etc.

. . . . Repeat as
C1LOAD clsid ¢ v n1d] md2 n1d3 etc. b required
C2LOAD clsid sid ¢ v

J.

Exampl es
CLOAD 1 101,3,.5 100,3,.5 120,1,2.75
C2LOAD -2 -1,2,0.
Field Contents
clsid + Number of concentrated Toad set (1 or 2).
nid Node number.
c Component number for Toad direction (1, 2 or 3}.
v Value of the concentrated Toad.
sid Node set number.

-1 all nodes in structure

-2 all nodes in constant structure plus boundary
-3 all nodes in variable structure

>0 all nades in set sid

10-51



70.3.34

Remarks :

Increment - Concentr.-ted Load Set Card{(s) - continued

1)

2)

The order of the concentrated load cards is a user
option. BOPACE forms each concentrated load in the
order defined by the user.

Any nodal components for which loads are not defined
for an increment, are egual to their values in the
previous increment. Before the first increment, all
concentrated loads are equal to zero.

Positive clsid denotes an add mode, i.e. each speci-
fied load is simply added to the set of concentrated
Toads already existing. Negative clsid denotes a
replace mode, i.e., any existing concentrated loads
corresponding to a specified load are first deleted
from the load set, and then the specified load is
added to the Toad set. Corresponding loads for
deletion purposes are those with identical node and
component number,

A zero c on the C2LOAD card may be used to dencte all
components of load at nodes in sid.
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DLOAD
10.3.35 Increment - Distributed Load Set Card(s) D1LOAD
NZLOAD

Description: Define distributed loads over Tine (edge) or area (surface)
regions of elements. The actual applied Toading is equal
to the distributed load factors defined on the LFACTOR
card times their respective load sets.

Format
DLOAD dlsid dim ¢id ¢ eid id] d] id2 d2 ete.
. . . . . . Repeat as
DILOAD dlsid dim c¢id ¢ id d e1d] e1d2 etc. 'required
D2LOAD disid dim c¢id ¢ sid id d
A

Exampl es
DLOAD 2 2,0,3 9 10,.2 11,.2 20,.3 21,.3
DTLOAD -1 1,1,1, 1 0., 105,706,108,109
D2L0AD 1 2,1,2 5 6 1.0
Field Lontents
dlsid + Number of distributed 1oad set (1 or 2).
dim Dimension of loaded region (1 = line, 2 = area).
cid Coordinate system used to define Toad intensity direction.

0 edge or face tangent system

1T~ basic Cartesian

2 basic cylindrical

3 basic spherical

>3 special Cartesian
c Component number for load intensity direction (1, 2 or 3).
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10.3.35
Field
eid

id

sid

Remarks:

Increment - Distributed Load Set Card(s) - continued

Contents

Element number.

Node, edge or face number of element at which Toad intensity
is defined.

Distributed l1oad intensity. Units are force per length, or
force per area.

Element set number.

-1
-2
-3
>0

1)

2)

3)

all elements in structure

all elements in constant structure
all elements ir variable structure
all elements in set sid

The order of the distributed load cards is a user option.
BOPACE forms each distributed load in the order defined
by the user.

Any regions (edges or faces) for which Toads are not
defined for an increment, are equal to their values in
the previous increment. Before the first increment,
all distributed loads are egual to zero.

Positive d1sid denotes an add mode, i.e. each specified
load is simply added to the set of distributed loads
already existing. Negative dlsid denotes a replace
mode, i.e. any existing distributed loads corresponding
to a specified load are first deleted from the load set,
and then the specified load is added to the load set.
Corresponding loads for deletion purposes are those with
identical dimension, element and region number.

On the DLOAD card, a constant (uniform) load intensity
is specified by giving only one region (edge or face)
number for field id, along with its corresponding inten-
sity d. A linear load intensity variation is specified
by giving the corner node identification numbers id; of
the loaded region {two for 1ine or four for area load),

along with their corresponding intensities di. A nonlinear

(general) load variation is specified by giving all node
identification numbers of the loaded region, along with
their corresponding intensities. Order of the nodes
given for a region is arbitrary.
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10.3.35 Increment - Distributed Lo#d Set Card(s) - continued

Remarks: 5)

6)

On the DILOAD and DZLOAD cards, only constant load
intensities can be specified.

A negative dlsid and zero id on the DZLOAD card may

be used to delete existing loads on all edges or faces
of elements in sid {no loads are added).
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TLOAD
10.3.36  Increment - Thermal Load Set Card(s} TILOAD
T2LOAD

Description: Define thermal loads (temperatures) at the nodes. The actual

applied loading is equal to the thermal load factor defined

on the LFACTOR card times the thermal load set.
Format

; - - 3
TLOAD t1sid n1d] t] md2 t2 etc.
. . . R Repeat as
TILOAD tisid t md1 md2 nidy etc. b required
T2LOAD tlsid sid t
o

Examples
TLOAD 1 159,%00. 160,940. 162,950.
T21.0AD - -2
Field Contents
tlsid + Number of thermal Toad set (1).
nid Node number.
t Temperature value,
sid fiode set number.

-1 all nodes in structure

-2 a1l nodes in constant structure plus boundary

-3 all nodes in variable structure

>0 all nodes in set sid
Remarks: 1)  The order of the thermal load cards is a user option.

BOPACE forms each thermal load in the order defined by
the user.



ke 10.3.36  Increment - Thermal Load Set Card(s) - continued

Remarks: 2)

Any nodes for which thermal loads are not defined for an
increment, are equal to their values in the previous
increment. Before the first increment, the temperature
distribution is defined by the element fabrication temp-
eratures. At the end of the first load increment, any
nodal temperatures not defined by the user are equal to
zero.

Positive t1sid denotes an add mode, i.e. each specified
load {temperature) is simply added to the set of thermal
Toads already existing. Negative tlsid denotes a replace
mode, i.e. any existing thermal Toads corresponding to a
specified Toad are first delteted from the l1oad set, and
then the specified Toad is added to the load set. Corres-
ponding loads for deletion purposes are those with
identical node number.
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SLOAD
S2LO0AD

10.3.37  Increment - Normal Strain/Stress Load Set Card(s) lSlLOAD'

Description: Define normal strain or stress loads for the surfaces of
the ROD or QUAD elements. Whether strain or stress is
defined, is a function of the nscode value on the PROD
or PQUAD card. The actual applied loading is equal to the
normal load factor defined on the LFACTOR card *imes the
normal load set.

Format

SLOAD 51sid eid] < 8 eid2 Cy S, etc.

S1LOAD slsid ¢ s eid] eid2 eid3 etc. 3 Repeat as
required

S21.0AD slsid sid ¢ s

Examples

SLOAD 1 %82,1,.00 52,1,.011  150,1,1000.

S1LOAD

1 2,1.0 106,107,108,110

S2L0AD 1 5 0 1000,

Field Contents

s1sid + Number of normal load set (1).

eid Element number.

c Component (normal direction) number.
1 normal to QUAD surface or first normal direction of ROD
2 second normal direction of ROD

5 Value of normal strain or stress.
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10.3.37 Increment - Normal Strain/Stress Load Set Card(s) - continued
Field Contents
sid Element set number.

-1 all elements in structure

-2 all elements in constant structure pius boundary

-3 all elements in varjable structure
>0 all elements in set sid

Remarks: 1) The order of the normal Toad cards is a user option.
BOPACE forms each normal load in the order defined by
the user.

2) Any element normal components for which loads are not
defined for an increment, are aqual to their values in
the previous increment. Before the first increment,
all normal loads are egqual to zero.

3) Positive slsid denotes an add mode, i.e. each specified
load is simply added to the set of normal loads already
existing. Negative slsid denotes a replace mode, i.e.
any existing normal loads corresponding to a specified
load are first deleted from the load set, and then the
specified Toad is added to the load set. Corresponding
loads for deletion purposes are those with identical
element and component number.

4) A zero ¢ on the S2L.0AD card may be used to denote all
components of load on elements in sid.
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- TAXIS
RAXIS
10.3.38 Increment - Inertia Load Cards. CMASS
CIMASS
C2MASS
Description: Define a translatiomal axis and a rotational axis for
the structure, and concentrated masses at the nodes.
The load at a particular node due to its concentrated
mass is defined by the following equation.
load = = m times (@ + w x {w x R) + a x R)
where a, w and a are vectors whose directions are
defined by the TAXIS and RAXIS cards, and whose magnitudes
are defined by the LFACTOR card. R is a vector from the
rotational axis to the node, and m is the concentrated
mass at the node. Inertia load contributions due to
element distributed mass are computed in a similar manner
using a volume integral and the element mass density.
Format
TAXIS X ¥y 2 ¢
RAXIS. Xt ¥1 Xp ¥p 2y €4 Cp
CMASS id i i - )
‘ lofji}-3) n1d1 m.i rnd2 m, etc.
CIMASS cmsid  m m‘-d.l nid2 nids etc. 3 Repeat as
required
C2MASS cmsid  sid m J

_—
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10.3.38 Increment - Inertia Load Cards - continued

Examples

TAKIS 10., 0, 2.5

RAXIS 3., 30.,0 3.,30.,2. 2,2

CMASS 1 20,10, 22,10, 14,5.

C2MASS -1 -]

Field Contents

X,¥,2 Components of the translational axis for the structure.

c Coordinate system used to define translational axis
(default 1).

X12¥7:7 Coordinates of point 1 on rotational axis.

Xo1Y9129 Coordinates of point 2 on rotational axis.

CysCo Coordinape systems used to define points 1 and 2
on rotational axis (1, 2 or 3, default 1).

cmsid + Number of concentrated mass load set (1).

nid Mode numbar.

m Value of the concentrated mass.

sid Mode set number.

-1 all nodes 1in structure

-2 all nodes in constant structure plus boundary
-3 all nodes in variable structure

>0 all nodes in set sid
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10.3.38

Remarks:

Increment - Inertia Load Cards - continued

1)

2)

3)

5)

The order of the concentrated mass cards is a user
option. BOPACE forms each concentrated mass load
in the order defined by the user.

Any nodes for which concentrated masses are not
defined for an increment, are equal to their values
in the previous increment. Before the first incre-
ment, all concentrated masses are equal to zero.

Positive cmsid denotes an add mode, i.e. each specified
mass is simply added to the set of concentrated mass
loads already existing. Negative clsid denotes a
replace mode, i.e. any existing concentrated mass locads
corresponding to a specified mass are first deleted
from the load set, and then the specified mass is

added to the load set. Corresponding loads for deletion
purposes are those with identical node number.

Concentrated masses may be defined only at nodes which
are connected to elements.
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11.0 SIZE LIMITATIONS

General Limitations - The following program variables have been used in

BOPACE, to specify several maximum size Timitations.

NMAXT =5 = maximum number of isotropic materials
= maximum number of anisotropic materials

NMAX2 = 1500 = maximum number of nodes

NMAX3 = 500 = wmaximum number of elements

NMAX4 = 5000 = maximum node I.D. number

NMAX5 = 2000 = maximum element I.D. number

NMAX6 = 20 = maximum number of points in an elastic
modulus, Poisson’s ratio or thermal strain curve

NMAX7 = 6 = maximum number of temperatures (hardening curves)
per plastic material

NMAX8A = 30 = maximum number of points per isotropic stress
hardening curve

NMAXEB = 20 = maximum number of points per kinematic stress
hardening shape curve

NMAX8C = 30 = maximum number of points per kinematic stress
hardening factor curve

NMAX9 = 10 = maximum number of points in a creep shape curve

NMAX10 = 6 = maximum number of temperatures (hardening curves)
per creep material

NMAXIT = 10 = maximum number of points per creep hardening
(strain factor vs. stress} curve

NMAX12 = 1000 = maximum number of special coordinate systems

111
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General Limitations

NMAX13 = 2 = number of concentrated mechanical load sets
= number of distributed mechanical load sets
MAXINT = 1000 = maximum total number of reference points
{including integration points) per element
MAXIG = 100 = maximum number of general user-defined reference

points per element

Data Items - Each BOPACE input data variable is allowed a maximum of 9

digits (including signs, exponents and decimal points).

Wavefront - For the BOPACE linear equations solution, the maximum allowabie
wavefront (active decomposition nodes) depends somewhat upon other storage
requirements. These requirements are defined by the number of nodal freedoms
in the problem, the MPC relations, and whether or not a geometrically non-
Tinear solution has been requested. The maximum allowable wavefront is approx-
imately 500 nodes. This number may be increased if the problem contains

less than the maximum 4500 freedoms, but the allowable wavefront is decreased
by MPC relations or by the specification of geometric nonlinearity.

(Geometric nonlinearity requires the storage of an extra vector of nodal

displacements, at certain points in the program logic).
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12.0 SUBROUTINES

This section 1ists each subroutine in the BOPACE program, along with a brief

description of its purpose and the subroutines which it calls.

MAIN - Main Calling Program.

Subroutines - BIGSC, BIGSCK, BIGSRS, COMD, COVER, DEGOMP, DUMMY, ELLOOP,
ERCOMP, ETIME, EXIT, GFORMS, HEAD, INDAT, LOADS, MERGE, MRTAPE, QUTDAT,
QUTEL, OUTPQ, RCARD, SOLN.

BLDATA (BLOCK DATA) - Block data routine to define basic program variables

ant sjzes.

ATRIA - Calculates area of a triangle.

Subroutines - HEADHG

BIGSC - Control program for reading user data after it has been checked for
erder and gross errors, data generation statements have been executed and
data has been transformed to standard form.

Subroutines - MATERL, RCURVE, READO, READ8, SKIP, STRUCT, TITLE.

BIGSCK - Writes checkpoint (restart) file.

Subroutines - ETIME, INDAT, OUTDAT, SRTAPE.

BIGSRS - Reads restart (checkpoint) Tile.

Subroutines - ETIME, INDAT, OUTDAT, SRTAPE.

COND - Tests problem condition code for bypassing MERGE, DECOMP and SOLN

routines.

12-1
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COSHAP- Generates isoparametric shape functions and their partiais, for

corner nodes of region.
COVER - Prints BOPACE output cover page.

CSYS -~ Calculates coordinate transformations at each node.

Subroutines - CSYSZ2, HEADNG,

CSYSA - Calculates coordinate transformations at each node (same as CSYS).

Subroutines - CSYS2A, HEADNG.

CSYST - Calculates basic coordinates of definition points for all special
Cartesian systems.

Subroutines - HEADNG.
CSYS2 - Calculates coordinate transformations via vector cross products.

CSYS2A - Calculates coordinate transfoemations via vector cross products

{same as CSYS2).

DECOMP - Matrix Gauss decomposition routine via modified wavefront method,
with out-of-core capability.

Subroutines - ETIME, EXIT, HEADNG, INDAT, OUTDAT.

DFORM ~ Forms stress-strain constitutive matrix for elastic or elastic-
plastic material (engineering strain definition}.

Subroutines - ZVAL.

DLFORM - Computes egquivalent concentrated nodal Toads from distributed load

sets.
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Subroutines - DLOAD, INDAT, OUTDAT, ROTQ.

DLOAD - Computes equivalent concentrated nodal loads from distributed Toad
intensities, for a particular element region.

Subroutines - COSHAP, CSYS2, EDSHAP, GAUST.

DUMMY - Dummly decomposition routine to calculate wavefront at each node.

Subroutines - EXIT, HEADNG, INDAT.
DYVAL - Linear interpolation routine for incremental ordinate.

EDSHAP - Generates isoparametric shape functions and their partials, for

interior nodes on one edge of a region.

ELLOOP - Calling routine to compute strains, stresses and force contributions
at an element refarence point,

Subroutines - ETIME, FORCE, INDAT, ITER, OUTDAT. STRAINM.

ERCOMP - Computes residual {unbalanced} forces and corresponding residual
norm.

Subroutines - HEADNG,

ETIME - Machine-dependent routine called to compute elapsed CPU time since
beginning of BUPACE execution, and clock time.

Subroutines - HEADNG.

EXIT - Routine called to indicate end of problem or end of job, and to

print problem error summary.

FORCE - Computes cumulative nodal forces for an element from stresses, and

12
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adds them to system forces. .

Subroutines - ROTQ.
GAUS1 - Sets region integration points for product Gauss formulas.

GBRICK - Computes shape functions, derivatives of shape functions and re-
ference point transformations and locations for the BOPACE elements.

Subroutines - COSHAP, EDSHAP, HEADNG, OUTDAT.

GENER8 - Forms stiffness matrix for an element, in user nodal coordinates.

Subroutines - INDAT, KBRICK, KQRING, KQUAD, ROTK, ROTQ.

GENRS - Generation/partitioning routine for element stiffness matrices, to
create system stiffness partitions including MPC effects.

Subroutines - ETIME, GENER8, HEADNG.

GETDAT - Reads BOPACE standard form data as directed by the various data

input routines.

GFORM - Calling program to compute shape functions and partials, and reference
points for all elements, Also initializes reference-point data.

Subroutines - CSYS, GBRICK, INDAT, ISET, ZVAL.

GFORMS - Allocates core space for data input or output by the calling routines
DLFORM and GFORM.
Subroutines - DLFORM, ETIME, EXIT, GFORM, HEADNG.

HEAD - Writes heading for a load increment.

Subroutines - HEADNG.
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HEADNG - Counts Tines and pages, and writes headings for varjous printed data.
INDAT - Routine for unformatted 1ist read.

ISET - Sets element reference points (locations and weights).

Subroutines - EXIT, GAUST, HEADNG, ISETT.
ISET] - Sets special user-requested element reference points.

ITER - Major iteration routine to separate elastic-plastic-creep strains,
and to compute unknown stress and strain components, at a material reference
point (uses tensorial strain components).

Subroutines - DYVAL, YVAL, ZVAL.

ITERT - Routine called by ITER tu compute improved estimate for plastic

strain, using 1inear intersection calculation.

KBRICK - Generates stiffness matrix for brick element.

Subroutines - DFORM, INDAT, YVAL.

KQRING ~ Generates stiffness matrix for axisymmetric solid ring element

(quadrilatera: shape).

KQUAD - Generates stiffness matrix for membrane guadrilateral element.

Subroutines ~ DFORM, INDAT, YVAL.

LOADS ~ Calculates equivalent concentrated nodal Toads due to inertia }oads.
Also initializes eler nt reference-point data and computes thermal strains.

Subroutines - ETIME, INDAT, QUTDAT, ROTQ, YVAL.

MATERL - Calling routine to read material data.

Subroutines - GETDAT, HEADNG, SKIP, READA, READTC, READTP.
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MERGE - Calling routine to generate element stiffness partitions and merge
them into system matrix.

Subroutines - ETIME, EXIT, GENR8, HEADNG, MERSOR.

MERSOR - Merges element stiffness partitions into system matrix.

Subroutines - ETIME, EXIT, HEADNG, INDAT, OUTDAT.

MRTAPE - Merges two stiffness files into a single total file.
Subroutines - EXIT, HEADNG, INDAT, OUTDAT.

QUTCCS - Writes cumulative creep strains.
QUTCES - Writes cumulative elastic strains.
QUTCPS - Writes cumulative plastic strains.
OUTCS - Writes cumulative stresses.

QUTCTS - Writes cumulative total strains.
OUTDAT - Routine for unformatted 1ist write.

QUTEL - Calling routine to collect all output data for an element.
Subroutines - COND, ETIME, EXIT, HEADNG, INDAT, OUTCCS, OUTCES, OUTCPS,
QUTCS, OUTCTS, OUTEPC, OUTICS, QUTIES, QUTIPS, OUTIS, OUTTHE, SET.
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QUTEPC - Writes cumulative effective plastic and creep quantities.

QUTICS - Writes incremental creep strains.

QUTIES - Writes incremental elastic strains,

OUTIPS - Writes incremental plastic strains.

QUTIS - Writes incremental stresses,

QUTPQ - Writes cumulative internal forces and displacements.

Subroutines - COND, ETIME, HEADNG, SET.
OQUTTHE - Writes cumulative thermal strains.

RCURVE - Calling routine to read load sets.

Subroutines - EXIT, HEADNG, INDAT, OUTDAT, READ3, READ4, READS, READG, READ10.

READA - Reads anisotropic material property data.

Subroutines - GETDAT, HEADNG.

READC - Reads special Cartesian coordinate systems.

Subroutines - GETDAT, HEADNG.

READEC - Reads element connection definitions.

Subroutines - ATRIA, GETDAT, HEADNG, OUTDAT, VQRING, VTET.

READEP - Reads element property and reference-point data.

Subroutines - GETDAT, HEADNG.

READND - Reads node definitions.

Subroutines - CSYST, GETDAT, HEADNG.
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READTC -~ Reads creep data.

Subroutines -

READTM - Reads isotropic material elastic and thermal strain data.

Subroutines -

GETDAT, HEADNG, YVAL.

GETDAT, HEADNG.

READTP - Reads isotropic material plastic data.

Subroutine; -

READO - Reads

GETDAT, HEADNG.

data to define basic problem type and incremental/iteration

control variables, on overall problem level.

Subroutines -

READZ - Reads

Subroutines -

READ3 - Reads

Subroutines -

READ4 - Reads

Subroutines -

READS - Reads

Subroutines -

READE - Reads

Subroutines -

READ7 - Reads

Subroutines -

GETDAT, HEADNG, SKIP.

SPC definitions.
GETDAT, HEADNG.

concentrated load data.

GETDAT, HEADNG.

distributed load data.

EXIT, GETDAT, HEADNG, INDAT, SKIP.

nodal temperature data.

GETDAT, HEADNG, SKIP.

inertia data.

CSYSA, GETDAT, HEADNG, ROTQ, SKIP.

MPC definiticons.

GETDAT, HEADNG.
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READ8 - Reads control and parameter data, on incremental Tevel.

Subroutines - GETDAT, HEADNG.

READTQ - Reads element normal loads data.

ROTK -~ Transforms element stiffness matrix from basic Cartesian to user
nodal coordinates.

Subroutines - ROTKK

ROTKK - Transforms element stiffness partition from basic Cartesian to

user nodal coordinates.

ROTQ - Transforms nodal forces or displacements for an element, between

basic Cartesian and user nodal systems.

SET - Transform a set definition into internal node or element numbers.

Subroutines - HEADNG.

SKIP - Skips to the next logical record of standard BOPACE input data.

Subroutines - GETDAT, HEADNG,

SOLN -~ Matrix forward-backward substitution routine for Gauss wavefront
solution.

Subroutines - ETIME, EXIT, HEADNG, INDAT

SRTAPc - Routine for I/0 processing of system stiffness matrix (merge or

decomposition matrix).
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Subroutines - EXIT, HEADNG, INDAT, OUTDAT.

STRAIN - Compute element reference-point strains from nodal displacements.

Subroutines - ROTQ.

STRUCT - Calling routine to read structural data.
Subroutines - EXIT, HEADNG, INDAT, OUTDAT, READC, READEC, READEP, READND,
READZ, READ7.

TITLE - Reads title card for constant structure, variable structure, or
increment.

Subroutines - GETDAT, HEADNG.
VOQRING - Computes volume of a quadrilateral solid ring element.

VTET - Computes volume of a tetrahedron.

Subroutines - HEADNG.,
YVYAL - Linear interpolation routine.

ZVAL - Linear table interpolation routine,
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13.0 LABELED COMMON BLOCKS

This section lists each Tabeled common block used in the BOPACE program,

along with its description and the subroutines 1in which it occurs.

BPARAM - Contains variables to define basic problem type.
Subroutines - MAIN, BIGSCK, BIGSRS, FORCE, GENER8, KBRICK, KQRING, KQUAD,
LOADS, READO, STRAIN.

CNTRL1 - Basic solution control variables for incrementation and iteration,
on overall problem Tevel.

Subroutines - MAIN, BIGSC, BIGSCK, BIGSRS, COND, DFORM, GBRICK, GFORM,
HEADNG, OUTEL, OUTPQ, READC, READEC, READND, READO, READ3, READS, READG,
READ8, READ10, SET, STRUCT, TITLE.

ELDATO - Logical units where element and reference-point data are stored.
Subroutines - MAIN, BLDATA, BIGSCK, BIGSRS, ELLOOP, GBRICK, GENERS, GFORM,
GFORMS, ITER, KBRICK, KQRING, KQUAD, LOADS, OUTEL, READEC, READ10, STRUCT.

ELDATT - Element data for the current element being processed.

Subroutines - BIGSCK, BIGSRS, DFORM, ELLOOP, FORCE, GBRICK, GENERS, GFORM,
ISET, ITER, KBRICK, KQRING, KQUAD, LOADS, OUTEL, OUTCES, OUTCCS, QUTCPS, OUTCSL
OUTCTS, OUTEPC, OUTICS, OQUTIES, OUTIPS, OUTIS, OUTTHE, READEC, READ10, STRAIN.

ELDATZ - Data for the current element reference point being processed.
Subroutines - BIGSCK, BIGSRS, DFORM, ELLOOP, FORCE, GBRICK, GFORM, ITER,
KBRICK, KORING, KQUAD, LOADS, OQUTEL, STRAIN.

ERRORS - Diagnostic warning and error message counters,
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Subroutines - MAIN, BIGSCK, BIGSRS, COND, CSYS, CSYSA, CSYS1, DECOMP, EXIT,
GBRICK, MATERL, RCARD, READA, READC, READEC, READEP, READND, READTC, READTM,
READTP, READO, READ2, READ3, READS, READ6, READ7, READ8, READIQ, SET, SKIP,
TITLE, VTET.

FLAGS - Logical variables indicating whether material tables and the various
load types are not defined, defined or redefined.

Subroutines - MAIN, BIGSCK, BIGSRS, LOADS, MATERL, RCURVE, READO, READ3,
READS, READ6, READT0, STRUCT.

GDATA1 - Integer variables defining properties of the current and the next
data record to be read by GETDAT.

Subroutines - MAIN, BLDATA, BIGSC, GETDAT, MATERL, READA, READC, READEC,
READEP, READND, READTC, READTM, READTP, READO, READ2, READ3, READ5, READ6,
READ7, READ8, READ10, SKIP, TITLE, VTET.

GDATAZ - Contains the current and the next data record to be read by GETDAT.
Subroutines - BLDATA, GETDAT, READO,

GENC2 - Creep dava read by READTC.
Subroutines - BIGSCK, BIGSRS, ITER, MATERL, READO.

GENPO - Plasticity hardening type codes.
Subroutines - BIGSCK, BIGSRS, ITER, MATERL, READC.

GENP7 - Number of points in isotropic hardening curve.

Subroutines - BIGSCK, BIGSRS, GFORM, ITER, MATERL, READOQ.

GENP8 - Number of points in kinematic hardening shape curves.
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Subroutines - BIGSCK, BIGSRS, ITER, MATERL, READO.

GENPS - Number of points in kinematic hardening factor curves.

Subroutines - BIGSCK, BIGSRS, ITER, MATERL, READO.

GENP1D - Number of temperatures (plastic hardening curves).

Subroutines - BIGSCK, BIGSRS, GFORM, ITER, MATERL, READO.

GENP11 -~ Isotropic hardening curve abscissas.

Subroutines - BIGSCK, BIGSRS, GFORM, ITER, MATERL, READO.

GENP12 - winematic hardening shape curve abscissas.

Subroutines - BIGSCK, BIGSRS, ITER, MATERL, READO.

GENP13 - Kinematic hardening factor curve abscissas.

Subroutines - BIGSCK, BIGSRS, ITER, MATERL, READO.

GENPT4 - Plastic hardening curve ordinates (temperatures).

Subroutines - BIGSCK, BIGSRS, GFORM, ITER, MATERL, READO.

GENP15 - Isotropic hardening tables.
Subroutines - BIGSCK, BIGSRS, GFORM, ITER, MATERL, READQ.

GENPT6 - Kinematic hardening shape tables.
Subroutines - BIGSCK, BIGSRS, ITER, MATERL, READO.

GENP17 - Kinematic hardening factor tables.
Subroutines - BIGSCK, BIGSRS, ITER, MATERL, READO.

GEN1 - Stiffness matrix elastic/plastic code.

Subroutines - MAIN, BIGSCK, BIGSRS,
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GEN6 - Material identification numbers and mass densities.

Subroutines - BIGSCK, BIGSRS, LOADS, MATERL, READA, READEC, READTM, READO.

GEN7 - Elastic modulus and Poisson's ratio data,

Subroutines - BIGSCK, BIGSRS, ITER, KBRICK, KQRING, KQUAD, MATERL, READO.

GEN8 - Thermal strain data.
Subroutines - BIGSCK, BIGSRS, LOADS, MATERL, READO.

GEN11 - Anisotropic thermal strain data.
Subroutines - BIGSCK, BIGSRS, LOADS, MATERL, READO.

GENI2 - Anisotropic elasticity data.
Subroutines - BIGSCK, BIGSRS, ITER, KBRICK, KQRING, KQUAD, MATERL, READO.

ILOADS - Axes of translation and rotation data.

Subroutines - BIGSCK, BIGSRS, LOADS, READ6.

IMAGE - Contains next card image to be read by RCARD,
Subroutines - RCARD.

INCRS - Basic solution control variables for incrementation and iteration,

on increment level,

Subroutines - MAIN, BIGSCK, BIGSRS, ELLOOP, LOADS, OUTEL, OUTP(Q, READS8.

IOUNIT - File unit numbers for input, output, structural definitions and loads.
Subroutines - MAIN, BLDATA, BIGSCK, BIGSRS, COVER, CSYS, CSYSA, CSYSi,
DECOMP, DUMMY, ETIME, EXIT, GBRICK, GENR8, GETDAT, GFORM, GFORMS, HEADNG,
ISET, MATERL, MERGE, MERSOR, MRTAPE, OUTEL, QUTCES, OUTCCS, OUTCPS, OUTCS,

IPARM - Piasticity parameters for iterative calculations,
Subroutines - ITER, ITER1.
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QUTCTS. OUTEPC, OUTICS, OQUTIES, OUTIPS, OUTIS, OUTPQ, OUTTHE, RCARD,
RCURVE, READEC, READEP, READND, READO, READ8, READ10, SET, SKIP, SOLN,
SRTAPE, STRUCT, TITLE.

JLB - Large area of core used for scratch purposes by many BOPACE subroutines.
Subroutines - MAIN, BIGSCK, BIGSRS, DECOMP, DUMMY, GFORMS, MATERL, MERGE,
MRTAPE, OUTEL, RCURVE, READO, SET, SOLM, SRTAPE, STRUCT.

JLBT - Files containing the current stiffness matrices.

Subroutines - MAIN, BLDATA, BIGSCK, BIGSRS, READO, STRUCT.

NELNGY - Number of nodes and reference points per element.

Subroutines - BLDATA, BIGSCK, BIGSRS, ELLOOP, GBRICK, GENERS, GFORM,
KBRICK, KQRING, KQUAD, LOADS, OUTEL, OUTCES, OUTCCS, QUTCPS, OUTCS, OUTCTS,
OUTEPC, OUTICS, OUTIES, OUTIPS, OUTIS, OUTTHE, READEC, READ1O.

SIZES - Fixed upper 1imits for BOPACE, set by BLDATA (BLOCK DATA) routine.
Subroutines - MAIN, BLDATA, BIGSCK, BIGSRS, GBRICK, GFORM, GFORMS, ISET,
MATERL, OUTEL, OUTPQ, RCURVE, READEC, READEP, READND, READ10, STRUCT.

SIZESA - Variable sizes, set for particular problem.

Subroutines - MAIN, BIGSCK, BIGSRS, CSYS1, ELLOOP, FORCE, GBRICK, GENERS,
GFORM, GFORMS, KBRICK, KQRING, KQUAD, LOADS, OUTEL, RCURVE, READEC, READND,
READO, READZ, READ3, READ5, READ6, READ7, READ10, ROTK, ROTQ, STRAIN, STRUCT.
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14.0 OVERLAY

The overlay of BOPACE was designed to minimize loading of segments and to
maximize the size of common JLB, for a given core size. A schematic of the

overlay is shown in Figure 14.0-1.
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15.0 FILE USAGE

BOPACE uses Fortran I/0 to access a number of files. A current list of

files by file name follows:

- e

Initial
File Value Fixed Description Defined by
UIN 5 Yes  input card file. BLDATA
uouT 6 yes output printer file. BLDATA
UNGDAL 18 yes  total nodal displacements and BLDATA
internal nodal forces.
USCRT 19 ho  scratch. BLDATA
USCR2 20 yes displacement coordinate system BLDATA
number, nodal coordinates
and coordinate system
definitions.
ucMass 21 yes  concentrated nodal mass set. BLDATA
UNTEMP 22 yes nodal temperature set.
UPREF 23 yes concentrated load sets. BLDATA
UKFMPC 24 yes constraints. BLDATA
TRANSF 25 yes input data in standard form. BLDATA
TRANSB 26 yes  distributed load sets. BLDATA
UNOD 27 yes node numbers and external- BLDATA
internal tables for node and
element numbers.
TEDAT ] no element data. BLDATA
IEDIN 2 no  current reference point data. BLDATA
[EDQUT 3 no updated reference point data BLDATA
UDCMPC 12 yes  decomposed stiffness matrix for BLDATA

DO 8000 2148 ORIG. 4/7)
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Initial

File . Value Fixed Description

UDCMPB 13 yes constant structure stiffness
matrix after it has been
reduced to the boundary nodes.

UDCMPY 14 no decomposed elastic stiffness
matrix for the varjable
structure.

- UMATX3 16 no scratch

UpcMPp 17 no  decomposed total stiffhess
matrix for the variable
structure,

UMATX1 11 no scratch.

UMATX?2 15 no scratch.,

UOUTRS 29 no checkpoint file.

28 no restart file,

UINRS

OO 6000 2148 ORIG, 4/ 11
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Defined by

BLDATA

BLDATA

BLDATA
BLDATA

MAIN
MAIN

READO
or user

READO
or user
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16.0 SAIL AUTOMATIC DATA GENERATION

The BOPACE data generation capabiiity is patterned after the highly successful
BCS SAIL IT Language [21] for generating NASTRAN Bulk Data. For BOPACE, the
SAIL II Language consists of the standard BOPACEkstatements, plus SAIL state-
ments and FORTRAN statements. The deck order of fhe standard BOPACE data
cards is the same for SAIL as was previously described for BOPACE. The SAIL

statements and the FORTRAN statements can be inserted as needed 1in the deck.
16.1 STANDARD BOPACE STATEMENTS

SAIL allows an equal sign (=) té follow the name tag on a BOPACE data card.
The equal sign tells SAIL that the fields of the card can contain constants,
variables or expressions to define the data. If there is no equal sign,
all fields of the card are assumed to contain constants. If there is an
equai sign, SAIL requires all field delimiters to be commas (with optional
adjacent blanks), and SAIL does not allow intermediate null fields (two

successive commas with optional blanks}.

The egqual sign may be placed in all BOPACE data cards except TITLE, CTITLE,
VTITLE, ITITLE, SET and CONTINUE.

16.2 SAIL STATEMENTS

Looping - SAIL LOOP statements provide an extended form of the FORTRAN DO

statements. They allow BOPACE, SAIL and FORTRAN statements to be executed

more than once. The form of the cards is
START LOOP = n, 4, 4, k, & '
END LOOP = n

16-1

DO 6000 2148 ORIG. 3/71



THIE ”ﬂ!’”g COMPAMY

where

n is the loop identification number. It must be a constant
not used as an ID in any other LOOP statement or as a
statement Tabel on any FORTRAN statement.

i is a loop parameter,

J is the initial value of £ in the looping process.

k is the final value of £ in the looping process.

L is the increment to be added to © as the loop progresses.

If £ is omitted, 1 is assumed; 7, k. and £ can be expressions.

START LOOP must be the first statement and END LOOP the last statement in the

group of statements to be executed more than once.’

Subdividing Large Decks - For large input data decks to SAIL, the amount of

FORTRAN code generated by SAIL can be large enough to cause some compilers
difficulty. The user can break up the FORTRAN code into subroutines by using
the BREAKPOINT card. An additional subroutine is generated for each
BREAKPOINT card. Variables defined before a breakpoint cannot be referenced

after a breakpoint unless the variables are redefined. A BREAKPOINT cannot

T Certéin cards should never be executed more than once. Such cards are the
BOPACE standard statements without an equal sign, and BOPACE standard
statements which have an egual sign but which contain only constant fields.
The user is cautioned to avoid using LOOP, DO, IF, GO TO, etc., operations
placed in such a manner that these cards are passed by more than once in

the SAIL program logic,

16-2
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occur within a Toop. The form of the card is

BREAKPOINT =

SAIL System Parameters - The SYSTEM statement allows the user to adjust two

of the storage arrays in SAIL. The form of the card is

SYSTEM = a, b, e

where a is not used (=0)
b is length of one input/output buffer array (constant)
e is length of the catalog array (constant)

Each BOPACE card generated by SAIL needs 3 words of storage in the catalog
array. The buffer array is used to collect BOPACE data cards, and whenever
the buffer is full it is transferred to a disk/drum file. The defaults for
b and ¢ are 5000 and 21000 respectively. If the SYSTEM card is used, it

must be the first card in the data deck.
16.3 FORTRAN STATEMENTS

I FORTRAN statements are in the BOPACE data deck, then they are assumed to
obey FORTRAN conventions. That is, Jabels are in columns 1 - 5, column 6 is
the continuation coltumn, columns 73 - 80 are ignored, C in column 1 indicates
a comment card, etc. SAIL assumes a statement is FORTRAN if the statement

cannot be identified as a BOPACE or SAIL statement.

Any legal FORTRAN statements, including subroutine and function statements,

may be used.

16-3
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16.4  SAIL EXAMPLE PROBLEM

A 2-D rectangular mesh is shown in Figure 16.4-1, with loads and boundary
conditions. The BOPACE data for this mesh can be automatically generated

using SAIL, as shown below.

l 17
TITLE RECTANGULAR MESH
PBOB 2
PRT1 1 -1
VIITLE SAIL EXAMPLE

MATI 1

IMOD 0 3.E7

IPOI 0 .3

START LOOP = 6, R, 1, 7

START LOOP =4, 5,1, 5
ID =22+ (R-1) x5+ 5
X =11.37 + {5-1) » 3.27
Y 5.19 + (R-1) * 4.23
NODE = ID, X, ¥

END LOOP = 4

END LOOP = 6

PQUAD 10, 1.

RQUAD 10
IE = -5

START  LOOP = 20, I, 23, 27
IE = 1E + 5

START ~ LOOP = 10, ZZ, 1, 6

16-4
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17

QUAD = T + IE, ¥, 10, 10, I + IE, I + IE + 1
CONT I1+IE+6, I+IE+S

ENI LOOP = 10
END LOOP = 20
pp30I1=1,2

SPC = 23, I, 27, I, 53, 1, 57, 1
30 CONTINUE
ITITLE  CENTER LINE LOAD
LFAC 1
P = -10./SQRT(2.)
START LOOP = 50, I, 25, 55, 5
CLOAD = -1, I, 1, P, I, 2, P
END LOOP = 50
EOF

16-5
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Figure 16.4-1: SA/L Example Problem Mesh
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B.1 VARIABLE STRESS (DISTRIBUTED LOAD) PROBLEM i

A1.0x1.0x 1.0 cube is uced, to analyze-a .problem with Tinear

i
g
variation of stress and strain. The loading is a uniformly distributed l
{
vertical shear, applied on all four vertical sides of the cube. Midside i

nodes are used to demonstrate equivaient leading values, which are in

the ratio of 1:4:1 for the bottom, middle and top nodes, respectively.
The input data and results are listed at the end of this section, for an

elastic situation.

\T P/24
e

?q?mm. *q§m6 A X

j 410 \—
bd P4 v 1.0 x 1.0 x 1.0 CUBE

TGTAL LOAD = P
. STRESS = gy = P{1-Y} -

Figure B.1-1: Vaeriable Stress (Distributed Load) Problem
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INPUT DATA
CARD
HUMBE R

TITCE  HOPACE VARTABLE STHRESS TOISTRTEUYED SHEAR -LUAD) PROBLEA
PRT!  1y-1
PRT2 14~1 34=1

VIITLE 30 ECERENT WITH MIDSYOE NODES

TIMODULUS T.el.

TPOISSON T.42C3
NODE 1 €00 ~u5,-u5y.5

1

2

3

&

5 MATI 1
o .

T

g8

9 NIADE 10 .53—u51.5

uam

Moate Bualness Forme, Iac. sv

10 RODE 207 =5 015
11 NODE 30 .5,04.5
1z NORE 40 ~.5;.54+.5
12 HTONE 50 L Ryetren
14 NODE 2000 ~eS54—a54==5
15 KODE 1010 .5)~e54—.5
16 NORE 1G20 ~cbfrbrmas
17 NODE 1030 ,5,0,-.5
18 NODE 1040 =~.55.5,—.5
1¥ ROOE 1050 +54+5:-+5
20 PRRICK 1
21 RBRICK 1 1,1 23
2 BRICH IGO0 1,151 1TOC0510. 50,40, 2008, T0T0,T1050,1040
23 CONT 1 0430,0,4,20,04103040,102040,040,0
‘o3 24 SPC 1600,2 1C42 200C0s2 1ID10.,2 .2000,1 2000,3 101043
. 25 TTITOE —UNTFORM 'STOE SHEARTUOADING
— 26 LFACT [+ 0,0 0,0 DarCay0e.
A 27 CLDAD 2 2(+2y.186687 30,2,.166667 1020424 . 166667 1030+ 2y « 266667
23 CONT L0727 0R 1667 502y CATEET TORU Y2y w04 1667 T050, 24041607 -_
29 TITLE ROPACE DISTRIMUTED LOADING CHLCKOUT (2 INCREMENTS) 10/28/7716

iV IVN]LE)IHO

,
i

WA BT &

0] LKITTIEIONEOHdd s

‘T\

riy
Wi
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Megie Byalnens Forma, Ine av

poLe

"

~

TITLE BCPACE VARIABLE STRESS (DISTRIBUTED SHEAR LOAD) PRDOBLEM

NUMBER OF DEGREES OF -FREEDUM PER NODE = 3

PAGE

BOPACE WILL ASSUME ONLY MATERIAL NODW-LINEARITY TOQ SOLVE THE PROBLEM

RAXTHUN SPECTFIED ERRUR RURN = T.00UUTE-U3
! SCLUTION METHOD CODE = 4
5 MAXIMUM MO. STIFFNESS UPDAYES PER JINCKEMENT = 1

RAXYMUR NUMEER “OF TTTERATIONS BEFORE UPDATE GNE
MAXTHMUM NUMEER OF ITEQATIDNS BEFURE UPLATE THO
MAX1MUM NUMBER DF ITERATIONS HEFORE UPDATE THREE AND UP

10

nnd
-t
[=]

10

TTTREXTMUMTETASTTCTITERAT TONSTPFR THCREMENT = Z
MARIMUM MAGNITUWLE FOR ELASTIC-PLASTIC SUM CUODE = 2
MAXIMUM REDUCTIONS = 1

T CONVERGENLE REDUCTION FALTOR = —ST0000CS=0T
FRACTION FROM END OF INCREMENT TO LVALUATE SLOPE = 1.00000t-01

‘-r“" o



TITLE BOPACE VARIABLE STRESS (DISTRIBUTED SHEAR LOAD) PROBLEM

M VTITLE 3-0 ELEMENT WITH MIDSIDE NOUES

PAGE
VARTABLE STRUCTURE NUMRER =

MATERTAL NO. Iy HASS DENSTTY = 0.0
TEMPERATURE DEPENDENT PROPERTIES

TERPERATURE ECASTIT MUD.
’ 1.0000E 0O 1. 0000£ CC

TERPERATURE POISSONS RATIO
- 1. CO0OE 00 a.0

2T
v

Moors Buthrast Fatma, e, vy
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TITLE BOPALE VARIABLE STRESS (DISTHRIBUTED SHEAR LOADY PROBLEM ' ' PAGE
O VIITLE 3-D ELEMENT WITH MIDSIDE NODES VARIABLE STRUCTURE NUMBER =
’ ¥ NOOE #+ COORDG., COORD.
NO. 1.0, X1 X2 X3 . LOCATE DISPLACE
1 1000 -5,00060D-C1 =5,00C00D=01 5.000000-D1 1 1 .
4 1o 5. 000 00D=01T " =5,000000=0 9.000300=07 T 1
1 20 -5,000000-01 0.0 £.000000—01 1 1
5 0 5.000000-01 €.0 5.00000D-21 1 1
S Ly =5.020000=01""50G00000-0T " 5. ¢a0000=07 T |3
- & %0 5.00000D-C1 5.000000-01 5.003330-01 Y 1
T 2000 ~5,.00000N-0Y =5.00000D~0) ~5.C0000D-G1 1 1
BT ICTO 5L N00T0D=0T =5L Co0N0UD=0T=5.00000D-01 1 1
N 9 1020 =-5.000000-01 0.0 -~£.000000~01 1 1
10 1030 5.0000CD-01 0.0 -5.0C0000=-01 1 1
& 1T 105 =5.0000C0=01" 5. GO0CCUD=01 —5.CU006GD=DT T T
E:j 12 1050 5.0000CD=-01 5.G0000D~-D1 ~5,0G0000-01 1 1
15
£
3
H
3‘)
i, . L '
.- ' 3 =
] ) ol c
3 (9] g
o B .
) =
- F"‘a .
. oy 7 )
> e
. mE
Ry
.
%r;
' e
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TITLE BLPACE VARIARLE STRESS (DISTRIBUTED SHEAR LOAD) PROBLEM PAGE 4

YTYITLE . 3-D ELEMENT WITH MIOSIDE NODES VARIABLE STRUCTURE NUMBER = 3
ECERENT FEFFIHFEFT A CORNER NODES % ¥ b ¥ 5 VOEUME MAP

NO. T.D0. MATL N1 N2 h3 N& NS N& NT KE  (ST. LINE) CODE *sxx*sxvstreviss INTERMEDIATE EDGE NODES #$e8stvssssssvsns
1 1000 1 1020 10 5Q 40 200C 1010 1050 1040 1.0000E 00 G 0 30 0 20 0 1030 0 1020 Q 0 0 0

SUM OF ELEMENT VOLUMES = 1.00C0E €OC

BEGIN GFORMS CPU = 00:00:00.988 TOD = 22:37:14

YLy




Maore futiaess Forms, bac. oy

win

~
TUTYINE BOPACE VARTABLE STRESS (DISTRIBUTED SHEAR LOAD] PROBLEM PAGE
] © . VIITLE'  3-D ELEMENT WITH MIDSIDE NODES VARIABLE STRUCTURE NUMBER =
——  ELEWMERY  REFERENLE PCINT COORD. CDURD. IKTEGRATION
= NO. 1.0 Ho. TYPE Xl X2 X3 LOCATE DISPLACE SCHEME CODES
1 1099 13 2 —5.00GE—01 ~5.009E-0G1  5.000E-01 T t 0060 O
B 14 yd SO0 CE=U"T =5.000E~=0T7 5 e COOE=OT
~ 15 2 5.0006-01 5.C00E~0  5.000E-01
16 2 -5.000E-01 5.000E~01 5.000¢=01
17 2 =5 B0 CESCT =57000E-01=5.000E=0T
N 19 2 5.COCE-01 -5,000£-01 =5,000E~G1
19 2 S.00CE—D1  5.000E~01 —5.000£-01
20 pd =5 GOCE=OT 5. 000E=DY =5 . GUOE=01
o 21 3 ©.0 0.0 5.000%-01
22 3 0.0 0.0 -5.0C0E-01
- 23 3 G.0 =5.000ES00 €, 0
D) 24 3 5.G06E~01 0.0 0.3
25 3 0.0 5.000E~D1 0.0
7% 3 SELOOCESGT 0.0 0.6~
A >
END GFORMS CPU = 00200:01.357 70D = 22:37:18
3 BEGIN  MERGE CPU = CO00:0t. 641 YOO = 22:37:18
m BEEGIN G ENRYH LPO = OCTU0SC T &5 T OO0 = 22:3731_3
2 ff STIFFENESS GENERATION COMPLETED. 7B PARTITIONS WRITTEN.
5 % emnp GENRS CPU = 00:00:01.946 TOD = 22:37:21
BEGIT METROURN P10 0T OUT U1, 900 OO = 225371521
5
END MERSOR CPU = 00:00:02.C73 TOD = 22:37:22
y END MERGE CPU = 0D:00202.078 TOD = 22:37:22

A TMUM WAVEFRORT = T2 NOOES AT INTERNAL NOUDE T

BEGIN DECOMP CPU = 00:00:02.,15% - ToD = 22:37:23

END DECOMP CPU = 0C:00:02.2E¢ TOD = 22:37F:24 ° . '
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TITLE BOPACE VARIABLE STRESS (DISTRIBUTED SHEAR LOAD) PROGLEM ; PAGE
VTITLE * 3~D ELEMENT WITH MIDSIDE NODES VARIABLE STRUCTUKE NUMBER =
ITITLE UNLFORM SIDE SHEAR LOADING INCREMENT NUMBER =

Lol ol -

PARAMETERS FOR THIS INCREMENT

COEFFICIENT FOR CONCEMNTRATED LOAD SET ONE
CUEFFICIENT FOR CONCENTRATED LOAD SET TWO

00000E QO

COEFFICIENT FOR OISTRIBUTED LCOAT SET™ UHE

CUEFFICIENT FOR DISTRIBUTED LOAD SET  TWO
COEFFTCIENT FOR NODAL TEMPERATURE SET

T COEFFICTENT FOR NORMAL STRESS/STRAIN SET

TRANSLATIONAL ACCELERATION {LEMNGTH/TIML/TIME)
AHGULAR VELCCITY (REVOLUTIOMS/TIME)

MAGUUARTATCELERATION TREVOCUTTONSZ TIMEZTIMET
CREEP TIME -

LI FI O T L 1 T

ocodoooood~D
a2l & oi0 o 8]l o
ggoocoooCo o

64Td]
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Moare Buvtiaars Formt, It v

e

TITLE BOPACE VARIABLE STRESS (DISTRIBUTED SHEAR LOAD) PRODBLEM PAGE T
VTITLE - 3-D ELEMENT WITH MIDSIDE RODES VARIABLE STRUCTURE NUMEBER = 1
ITITLE UNIFORM SIDE SHEAR LOADIWNG ‘ " INCREMENT NUMBER = 1
T CONCENTRATED NODAL LOAU SETS
SET NO. NODE I1.D. COMPONENT LOa0
é - 20 4 T.6660TE-D]
’ 2 20 2 1,6b606TE=(1 N *
2 40 2 4,166T0E-02
ed 50 4 4T 66 TCE-OY
2 1020 2 l1.6666TE-01
2 1o3¢e 2 1.56667E~C1
Z 030 4 L1660 C=D2
2 1050 2 4.166T0E=0Q2
DELIN LURUS CPU=00TOUT02.6YE TGO =453 708 0%
END LDADS CPU = D0O:00:02.85% TOD = 22:37:31 )
= )
R
¥ n B
- o
< &
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TITLE BOPACE VARIASLE SYRESS (DISTRIHUTED SHEAR LOAD) PROBLEM
VTITLE « 3-D ELEMENT WITh MTUOSIDE HODLS :

PAGE

VARIABLE STRUCTURE NUMSER =

ITITLE UNIFORM SIDE SHEAR LOADING INCREMENY NUMBER =
BEGIN SOCN CPUT= 0T I00TUZ. 938 TOD =223 77327
END SOLN CPU = 00:00:03.0384 TOD = 22:37:33
BEGIN ELLOOP CPU = 00:00:02.04] TO0D = 22:37:23
END ELTOOP CPU ="00:00302.2468 YOO = 22757355

RESIDUAL MDRM = 1.13330E-06

-

END OF LOAOD I NCREMENT 1

NO. ELASTIC INTEGRATIOM POINTS = 12y NO. PLASTIC INTEGRATION POINTS = Q
0 INTEGRATION POINTS HAVE CHANGED ELASTIC TO PLASTIC. ¢ INTEGRATION POINTS PLASTIC TG ELASTIC DURING THIS INCREMENT
T SPECTFIED MAL e RO STIFFNESS TUPDATES = 7 "1y " NOV UPDATES PERFORMED = G
?U SPECIFIED MAaX. NO, ITERATIONS PER UPDATE = 1¢ 10 10, NO. ITERATIONS PERFORMED SINCE LAST UPDATE = 1
ws SPECIFIED MaX. UNBALANCED-FORCE ERROR = 1.0000E-03, ACTUAL ERROR = 1.1333E-06
T
:: BEGIN OUuTPUT CPU = 00:00:03.3%1 TOD = 22:37:37

< g




7 TIILE BOPACE VARIABLE STRESS (DISTRTEUTED SHEAR LUAD) PRUBLEM
] VTITLE  3-D ELEMENT WITH MIOSIDE NODES VARTABLE STRUCTURE NUMBER =
- ITITLE - UNIFOR™ SIDE SHEAR LOADING INCREMENY NUMBER =
T CUMULATIVE INTERNAL FORCES AND DISPLAGCEMENTS
=T FF NUODE ¥¥ VAW EXETNVIFOYNET ORCES ¥¥FFsessd FEERFVEY t——ﬁwwmrw—mmmﬁms—iﬂw
NO.  1.D. u . v W U v W
1 1000 =1.2752156E-14 =2.0833337E~01 7.6915403E-15 1.3400%27€-07 0.0 6.T034426E-07
T =1 A SIESATESTE =2 0B II3ET 0T 1, 1636039E~14 Y. T343325E=07 0.0 1. 3308550€=07
3 20 1.9665333k~14 1.6666663F~01 —4.87H8ET73E-10 4s614385T72—08 3,.7499902E~01 1.1531602E-06
4 30 2.75620128-10 l.6606681E—0) =-9,8125099E-09 4.4395104E-03 3.7500060E-01 5.9176642¢-0V
S EUT = L TAgINZS ER0T T G TAGBL2AT=02 1.2419536E-08 L TA5 L3R 2ETUT  w.99aSs2ET0T 2.22282 (0 3E<0n
6 50 ~1.T5BT755E-Q% 4.166c914E~02 2.3T74%401lE-03 ~5.1778U90E~0T 5.CU00LINE~GE 1.T963257E~06
7 2030 2+763074BE-0R ~2,0832361E-C1 =1.3213321E-D7 2.0 6.0 0.0
- TOI N 1TOA4 ST TESGE—=2 U8 TIR9TE=Cl =6, 4983 TYTE=0T =1T2501303E=07T 0.0 4Py
9 1020 1.25098156—C8 1.bA6o6STE—01 ~2.2563430E-08 ~5.0928014E-0T7 3.75COL37E-01 1.1251723E-C6
10 1030 1,03424%3E-08_ 1.600608TE~0] =3.1512407E—03 ~5.2012783£=L7 3.7500233E-01 5.5806936E-07
T T I050 =Y 3BT TR 4. T66E9L0F~02 156 TE3C65E~0T =1024S582TE=TE  5.CO0U0232E-0T I LTE291TE-04
: 12 1050 =~2.21BCT21L-08 4.160e955k-0C2 5.7503263E-08 ~1.2924138E~06 5.0000346E-01 1.5851947E-06

l-t'e
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TITLE BOPACE VARIABLF STRESS {DISTRIBUTED SHEAR LOAD) PRODBLEM PAGE 10
] VTITLE 3-0 ELEMENT WITH MIDSIDE NODES VARIABLE STRUCTUKRE NUMBER = 1
1T1TLE UNIFORM SIDE SHEAR LOADING INCREMENT NUMBER = 1
ELEMENT POINT EFFECTIVE EEEEERFEIFEXIFRS UGB UERERS CUMULATIVE STRESSES PRIXEEFEREER VRS ASISIRNENS
NO. 1.D. WG THC COM.” STRESS XX Y ¥4 XY b ¢ 2R A
1 1000 13 2 1.COU0E 00 4.44THE~Q8 1.CO000E Q0 6.T034E-0T 1.2954E-0T —2.0112E—07 1.89S9E~-QT
14 2 1.00COE 0O 4. 4hTHE—BB 1.CO0D0E DO 1.3409E—07 7.9956E~08 —1.1488E-07 8 .4242E~08
s 2 1.4037E-08 G 124 2E=08  L.1921E=C8& Z.1113E=07 5.B245€-08 1.T427TE=0T7 4. 4551E-07
16 2 B.5830E~07 —4,1242E=08 ~T.1526E—07 ~9.5L87E-07 9.4374E~08 1.7147E-07 —3.8227E-04
17 2 _ 1. G000 00 -1.,2881%=07 1.0006E 00 6.7034E—-07 -3.9577:-07 b6.T00SE-08 6.4320E—07F
1872 1.0000E7 00 =1,2501F=07 L.GO0GE U0 1.3509E=07 —Z.0203E=0D7  1.5325E~07 T 3.2354E~07
19 2 1.27B4L~06 ~4.6832E-08 8.349TE=07 Z.1113E—07 —3.9613E-07 —4.0723E~07 L.2917E-07
20 2 3.C0z8E-06 ~4,6532E-08 1.490L1E—~06 ~9,51ETE—07 -2.8357E-07 -4.1003:~07 1.1104E-06
2173 5.00C0E-01 =T, 7488E~D9'5.COQ0E-0T  2.0B%2E~08 6.0727E-05"=T7.1013E-10 ~3.CHB&E~-08"
3 . 22 3 5.00ULDE-OL -1.,u84TE~0H 5,C000E—01 2.0842E~03 ~9.5856E—~08 —3.5648E~-09 3.5541E-07
23 3 1. 00C0E 00 -4,17704=06 1.00UCE 00 &,0221E-07 -9.T7075E~08 —2.3934E-08 3.1514E-07
2573 5. 00C0E-01 6.2 58 TE=0% " 5.00006=01 i35 9TE=08 1. A131E-087 1.3720E-10 —B,2211€E~08

ECENENT POTNT

FRAFRIFVEAE AT AR Reky  CUMULATIVE ECASTIC STRAINS *asasrssnswnpazsavawos

) MO. laDe NDO. TP. XX YvY 2z XY Xz Y2
1 1000 13 2 4.44T74E-08 1.0000E O0 6.T7034E-C7  L.2954E-07 -2. 0112E—07 1.3959E-07
o I5 2 GURATRESSE T LUCOSOE A0 l.Jaﬁét—ﬁT“_T TOYELE=TT 1 V4UBE—0T T B .w242E-08
} :_' 15 2 v =6 .1242E-03  1.19218-046 2.1YT3E-07 S5.9245E~08 1.T42TE-DT 4.4551E-07
I 16 2 —h.12426=0L —~7.152068—07 =%.5187E~0T7 9.4374E-08 1.7147€-07 =-3.522T7E-08
= 172 =1 250TE=O7  1.C000E 00 o TCEI4E=0P =3.9577E=01" 6.7005E—00 ~4&.46320E-07
) @ 18 2 —1.28CG18-07 1.GG00E 00 1.34G9E-07 —-2.02G3E~07 1.53258E=-07 3.2354E-07
19 2 —4.5932F-08 B.244TE-LT  2.1113E-0T7 ~3.9613E-07 =4,0722E-0T7 1.2917&—07
207 2 =L L6H3Z2ES08T 1LRCGO1IE=06 — 9.5 E7E=3T =283 5TE=0T =4, 1003E-07 " 1. 1104E-06
. 21 3 ~1.7458e~0vy 5.CCO00t—01 3.0B842E—-08 6.0727E-08 —-T.101AE-10G —3,.08B6E-08
’ 22 3 -1.0847E-08 5,C000£-0! 3.,0842E—-08 —-9.5856E~08 «3.5648E-0% 3.5541E~-07

73 3 =4 ITTCE=0UB" LJCGO0OE 007 4.0221E-07 —F.TOTSE~0B"—2.3938E-08 ""3.1514E-07

24 3 ~46.2%491E-0v 5.000UE-01 2.349T7TE-08 -)1.8131E~-08 1.37208-10 —8.2211£-08
ELEMENT PAINT EFFECTIVE LRAEF VXA PRI AFRRRY  CUMULATIVE STRESSES #3233 530caasaxexsusdssnssn

NO . 1.0. NO. TP. CUM. STRESS XX YY 2z XY X2 Y¥i
T 1000 252 . 1.2271E=06  —%/.+0378-08 1. UL36E=07 =3.7037E-07 =121 77E=D7 =1 1768E~07 4,117 -0
', 26 3 5.0000E-01 =6.2981E=~0% S.0000E—01 2.79EBE—08 —1.69YY8E—U0B —4.4122E-09 4.06T73E-07
ELEMENT POINT \nm#tt#?t!t»##*»i» CUMULATIVE ELASTIC .STRALNS BEFRFEBIRRESEFANEFENE

NO. I1.0. NO, TP. . Yy 2z XY p¥'4 Yz
1000 75 3 } o ; 037E =GO 7 OLO3EES0T LT G3TESGT AL ATITESOF <1 LT8BE-0T 4. 11 TLIE-DT
28 3 781E-0% S5.C0000E-01 2.79LAE-08 —1.699BE—0G8 —~4.4122E—-09 4,.CO6T3E—OT

ENT —oUuTPOT - CPU = OUTOOY0I, a0  T00 = 22EITIEN

ERD OF BoPaAls PROJLEM
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B, 2 MULTI-ELEMENT CURVED BOUNDARY PROBLEM

A plane-strain problem is analyzed using a 1.0 x 1.0 squaire, but idealized
by four elements including curved interior boundaries. The loading is a

uniform distributed vertical lcad at the top of the structure. Because of
the state of constant stress and strain throughout the cube, all reference
points in all elements have equal values for stress and strain. The input

data Tisting and results are included at the end of this section.

ﬁx——px

1.0 x 1.0 SQUARE

Figure B.2-1: Multi-Element Curved Boundary Probiem
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INPUT DATA
CARD
HUMEER
1 TITLE MULTI-ELEMENT CURVED BOUNDARY PROBLEM
2 CONT  QUAD ELEMENTS
A PROE—2
& PRT1 1,~t
5 PRTZ  1y=1 3,-1
4] Ve
7 MATE 1}
8 IMOD 1.1
9 TPCIS 073
10 NCOE 10 DeOypye 12
11 NCDE 20 +54+0vpes 2
44 NOGE-30— Yty Ovyvyy—2
.13 NODE 40 «5ye25
14 NDDE 50 9.5
TS NODE— 40— 2575
16 NODE 70 1445
17 NCDE B0 0.1 :
iR e E—Y0— St :
19 NODE 100 1,1
20 PouaD 1 1.0
' 2t ROAD— 117 [ -
[~} 22 CUAD iC 1+1s1 1064+ 20:604+50 1 D440 -
.‘;\I 23 Quab 20 1slel 204307060 Y 0,0:0440 .
= 24 QU3 it Suy 00— .
~ 25 QUAL 40 12141 60 TN 100,90
26 ITITLE
2T t-FECT—070 176
28 MMLGAD 1 Trla2 341.0 30,40
29 TITLE BAPALCE CYCLIC PLASTICL-CREEP CHECKOUT PROBLEM B
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TITLE MULTY-ELEMENT TURVED BOUNDARY PROBLEM
CONTINUE OUAD ELEMENTS

PAGE 1

NUMBER OF DEGREES OF FREEDDM PER NODE = 2

T BOFACE WILL A S SUME UNDY  MATER AT MO =L INEAR I TY —TO—SOCVE~THE—PROSLEM

MAXIMUM SPECYFIED ERROR NORM =  1,00000E-03

TTTSCGUUTION METHCO—CODE ™= 3
MAYXTIMUM NQ., STIFFNESS UPDATES PER INCHEMENY = 1
MAXTMUM NUMRBER OF ITERATIONS BEFORE UPRATE ONE 10

H

STTTTRAX IMUMTMNUMBER  OF ITERATIONS BEFURETUPDRATE TWO = 1q
MAXTHFUM NUMBER OF ITERATIONS BEFDRE UPDATE THREE AND UP 10
MAXIMUM FLAESTIC ITFRATINDNS PER IMCREMENT = 2

H

T HAX IMUMTMAGNT TUDE—FOR—EEASTICPLaAS TIC—SUM—CONE—= Z
MAXIMUM REDUCTIONS = 1
CONMVERGERLE REDUCTION FACTOR = 5,CCCGUUE-OL

T ERACTION TFROMTEND OF INCREMERNT IO CVALUAT E-SUOPE = 1S 0UO00E=01

SR SUE S S
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PAGE
VARIABLE STRUCTURE NUMHER =

TITLE MULTI-ELEMENT CURVED BOUNDARY PROBLEM
VTITLE
MATERTIAL NO. Le MASS DENSITY = Ca0

TEMPERATURE DEPENDENT PROPERTIES

TEMPERATURE ELASTIC MOD.
1.0000& GO 1.0000E OO

TEMPERATURE POISSONS RATID
G.C 3.C0R0E~C)




WA

)

TITLE RULTI-ELEMENT CURVED BOUNDARY FPROELEM . PAGE 3
VTITLE VARIASLE STRUCTURE NUMBER = 1
=+ NODE *% COO0RD. COQRD.
NO., 1.0 x1 X2 X3 LOCATE DISPLACE
I pacy UalS Ue) Vel b 1
2 20 5.000000-01 0.0 0.0 1 1
3 349 1.060030D 00 0.0 0.0 1 1
LR v k- g L 1 {00 610 Ll 1 i aru ST LI o1 L 0 e e e 1) T T
5 50 0.0 5.00000D~01 0.0 1 1
[ &0 2.500000-01 5.00000D0~-01 0.0 1 1
— I G OGO BT S SO OO O Y O 1 43
8 80 c.q 1.000000 00 0.0 1 1
9 90 5.000G60D~01 1.00000D 00 0.0 1 1
o166 12 30666661 G0 60600050 1 T
o
N
T
v
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TITLE MULTI-ELEMENT CURVED BOUNDARY PRORLEM . PAGE L3
VT1TLE VARTABLE STRUCTURE NUMBER = 1
ELEMENT wpxntxprnsks CORNER NCDES ®#*ssnsswsis VOLUME MAP
NO. I.De. MATL N1 N2 N3 N& NS N6 NT N8 (ST. LINE) CODE sx¥*xpnknsxakskd INTERMEDIATE EDGE NODES *&53nxaniiiisssss
T 1 T I 2005 C ITeTSCE=0T—0 o 14 o 1 - .
2 20 1 20 i 70 &0 - 3.125%0%=-01 O 0 v} ¢ 40
3 3¢ 1 £0 60 90 80 1.8750€-01 O
L3 50 T &0 T 100 iy 3VI7?S0E=0T O
SUM OF ELEMENT VCLUMES = 1.00C0E CO
BEGIN GFORMS CPU = Q0:00:00.768 ' TOD = 21:39:23
Fy B 2
“ro ) 4
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83

AR Rt
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TITLE MULTI-ELEMENT CURVED BOUNDARY PROBLEM PAGE
VTITLE VARTABLE STRUCTURE NUMBER =
ELEMENT REFERENCE POINT COORD. COCRD. INTEGRATION
NO. T1.D. NG. TYPE X1 X2 X3 LOCATE DISPLACE SCHEME CODES
T IO T r4 Ly o0 030 1 T o0t
B8 2 5.000E~-01 0.0 0.0 -
g 2 2.5C0E-01 5.G0CE~GY 0.0
10 2 eppa s % O00E=0T 0% 0
2 20 7 2 5.00CE~-D1 0.0 0,0 1 1 000
B 2 1.G00E CO 0.0 0,0
o e I=OGOE—Q0 3. CCOE=CY o0
10 2 2.530E~CL 5.000F~D1 0.0
3 3o 5 2 0.0 5.,006E-01 0.0 1 1 0 0o
& 2 P S OUE=0r——5C 000 E=-0Y—030
T 2 5.0005~01 1.000E 00 0.0
- 8 2 0.0 1.000E 0C 0.0
L3 L) 5 2 2T9CoE=QaY 5<C0OR=0Y c. 0 T T I
& 2 1.0G0E 0O 5.000E~01 0.0
7 2 1.000% 00 1.000FE 00 0.0 ,
B 2 SCOVCE=01 1T O0GE™ G0 ava
o END GFORMS CPU = DL:00:01.004 TOD = 21:39:38
T’ BEGIN MERGE CPU = 00:00:01.009] TOD = 21:39:38
BEGTN GENRE CPU—=C0TCe 015095 TO0D=213239+39
STIFFNESS GENEKATION COMPLETED. S0 PARTITIONS WRITTEN.

END GENRS CPU = 00:0C:01.218 TaD = 21:39:40
R GG TN MERSOR P00 0o 2 TON—="2T73940
END MERSOR CPU = 00:00:501.274 TAD = 21:32:42
END’ MERGE CPU = 00:00:01.274 T0D = 21339342

—MAXTMIM AV EFRONT =6 NODES—AT INTERRATNODE (4

BEGIN DECOMP

CPU

H

00:00:01,321)

TOD = 21339343

END DECCMP

CPU 00:00:01.394

10D = 21:39:43
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"} TITLE MULTI-ELEMENT CURVED BOUNDARY PRUBLEM PAGE .3
VTITLE C VARIABLE STRUCTURE NUMBER = 1
T‘—!"Y 11cF NCREMENT-NUMBER—>—F—

T PARAMETERSFOR-THIS INCREMENT

COEFFICIENT FOR CONCENTRATED LDAD SET OME = 0.0
T COEFFICIENTFORCONCEMTRATEL—LOAD 38T —THO = 00
COEFFICIENT FDR DISTRIBUTED LDAD SET DNE = 1,0000C0E QO
COEFFICIENT FOR DISTRIBUTED LOAD SET THWO = 0.0
—CUEFF ICIENT—FAR—NChALTEMPERATURE—SET = o0
CCEFFICIENT FOR NCRMAL STRESS/STRAIN  SET = 0.0
TRENSLATIONVAL ACCFLERATICN (LENGTH/TIME/TIME) = .0
——ANGULAR -VELEET TY{REVEEUTTOMN S ATIMEY = G
ANGULAR ACCELERATION (REVOLUTIONS/TIME/TINE) = C.0
CREEF TIME = 0.0

E-2la




TITLE MULTI-ELEMENT CURVED RQUNDARY PROBLEM
VTITLE )

PAGE 7
VARIABLE STRUCTURE NUMBER = 1

JEN AN
DISTRIBUTED LOAD SETS

T INCREMERN TNUMBER-=—)}—

—REGIN T CAD S P =00 C OO TR 33— TOD—="2140703

COORS ENGE COAN—NONDET ENGE COAD—INTENSTTY COMPONENTS
SET DIM ELEMENT SYSTEM OR FACE TYPE OR FuLE X1 X2 x3
1 1 30 1 3 UNIF 3 0.0 1.000GE 00 0.0
T I &0 T 3 UNIF k) o0 ITO0COE“COO 0.0
BEGIN GFORMS CPU = QU:30:01.447 100 = 21:39:55
END GFORMS CPU = 001:00:01.757 TOD = 21:40:01

END - LOADS CPU = 00:00:01.960 TOD = 213i4D:06

6-¢°9




['] TITLE MULTI~ELEMENT CURVED BOUNDARY PROBLEM N PAGE a8
VIITLE VARIAELE STYRUCTURE NUMBER = 1
T 1T ITEE - EREREMENT-NUMBLER— 3
BEGIN SOLN CPU © 00:00:02.003 YOD = 21:40:06
END— —SotN CPU——=0000 02058 OO —="214030T
BEGIN ELLOOP CPU = 00:00:02.060 TOD = 21:40:07
- END ELLCOP CPUY = 00:00:02.193 TOD = 21:40:09
RESHUAL—NERM—"T53TC2E-OT
3
N O F A O t-NLCH—E-ME-N—T Y
b
“ ©@ NO. ELASTIC INTEGRATION POINTS = 20y NO. PLASTIC INTEGRATION POINTS = o]
e oy N T EG RAT- TON- PO T N HAVF CHAMGEO—ELAS T IC—TFC—PLASTICT—C¢—T NY{WMWT&*O—&XWWWW__—"
3 l’\) SPECIFIED MAX. ND. STIFFNESS UPDATES = 1y NC. UPDAYES PERFORMED = ] )
s SPECIFIED “AX. ND. ITERATIONS PER UPDATE = 10 10 10, M0. ITERATIONS PERFORMED SINCE LAST UPDATE = 1
O—SpECIFIEMAX T UNREEARCED=FORCE-ERAGR—1T0000E=033ACTUA L ERROR="TTEFTOE=OT —
D BEGIN GUTPUT CPU = DO:00:02.2606 TO0D = 21:40:13

SENE T e e emreen - de P el S alngnge s T s -




MULTI-ELEMENT CURVED BOUMNDARY PROHLEM

TITLE . PAGE 9
VTITLE VARIABLE STYRUCTURE NUMBER = 1
ITITLE INCREMENTRUMBER—=———
CUMULATIVE INTERNAL FODRCES AND DISPLACEMENTS
*x MODE #*=* axdpenikrbakkaxd  FORCES FekddbkikAieirkkd HEREBRRI RS DISPLACEMENTS S&Rrkixgsniikn
NC. 1.0 U v W u v
X 10 3TTY2CY I E=08—2v vy g2E=C1 oV sy b
2 20 4. T250T01E~08 —4.599G9064E~01 —1.49%99%998F-01 Q.0
3 30 3.5183E00E~NT —2.4999986RE-0] =2.9999995E~01 0.0
5 LY VTGN e =002 T T 993 VS E=DT =135 00CUGRE~UT 2 HTITOTHFERDT
5 0 =3 .6902950E-08 =1.2C71166E=0D7 ~2.0231579E-07 4.9999988BE-01
& =14 ~& 00215826 -08 =~3.0910422E=-07 ~7.5000167E-02 4.9999994E-01
P 70 G T YTRERE E~BB =27 R0TRE GE-GT =37 000000 E~0 50003000 =0
B, ao =1.50110325-08 2.49%99994E-0] ~2.,8212310E~07 1.CO00000E OQ
9 90 =5,22130CRE~08  4,9999975E-01 ~1.5000027E~01 1.0000000% CO
1T 100 =TT GBI S B0 2 TEY YA E=TL =32 00060025 E=Ur— 1+ Co0000oe—ay

Li-g°¢
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TITLE
VYTITLE

MULTI-SLEMENT CURVED BOUNDARY PRDSLEM

, PAGE 10
VARIABLE STRUCTURE NUMBER = 1

ITYITUCE

INEREMENT- NUMBER—=—}————

FfeTfvt—————#tt*tt*at¢t**#tttt1tt##t——cvﬂvtt?1VE—sfﬁEssfﬁ——**twtttcﬁvtavtﬁ*a#tta#toc—*——-

NO. I.D. NO. TP, CUM. STRESS XX Yy r¥ s Xy XZ A 24
1 10 T 2 1.G0GOE 00 —1.3100E=07 1.0CCGE O 0.0 ~le ¥S56IE~0UT O.0 0.0
a2 10000800 5SSO0 GRS COOUE—O0 00 =TI 230800 o0
9 2 1.0000E 0Q 1.3100E-07 1.,0000F 00 0.0 ~1+2695E-07 0.0 0.0
16 2 1.00C0E 0O 0.0 1.00C05 00 0.0 ~6.3926E-06 0.0 0.0
ELEMENT PCINT makhkrrdnkknnbkrhnene CUMULATIVE ELASTIC STRAINS 3¥nsissssuteiasgdnes
et 13 5 el o ey 11 Tt b XX Yy o 4 xy X2 Y
1. 10 T 2 -3.0000E~01 1.0C00E 00 -3.0000QE~-01 <2,0232E-07 0.0 0.0
e 2 -3,0000E=01 1,00C6CE Q0 -3.000GE~0i -9.116CE-08 0.0 0.0
2 =35 0G00E=0 T 1T 00T 00 =3 000NE=0 T =18 S0RE=0T UL 0 Lo
16 2 ~3.0000F~01 1.UGCCE 0O =3.0C008-01 ~H.3106S~-08 0.0 0.6
ELEMENT POINT EEFECTIVE ABRRREERSRRARRIRRR 20 kR0S  CUMULATIVE STRESSES S34sadastsattstssssnssss
fn NC. I1.D., - NQ. TP, CUM. STRESS XX Yy 1 Xy s X2 Yz
< ey 20 T 1 0000 QU =37 5SC0E<0 130000 00— 00— =T UI2IE=08 00 0.0
R E 2 1.Q00CE 00 0.0 1.50GGE GO 0.0 -0,1699E-08 (0.0 CeD
';: g 2 1.0000E 00 6.,55G06-08 1.00CCE CO 0.0 -6.1133c~08 0.0 G.0
ro—2 - 0000E D01 3100 =0T TR0 00E— 00— 0v =008 TE=0T— O Tl

-~

e R M ER T P IR T T T T T TR R RN R TR COMU LA TIVE ECASTICTST mﬁs"_*mm'mm—““’

NG. 1.0, NO. TE. XX Yy 1z XY X2 Yz
2 20 T 2 ) ~3,0000£-31 1.0CGOE DO ~3 «0000E-01 ~%.1160E~UB 0.0 G.0
t—2 FT0000NE=0 I T COONE— OO 000 OE - Y T 19 E= T — O 0 o0
5 2 ~-3,0000E-01 1.00L0UE GO -3 .0000E-0Y -7.9473E-08 0.0 ‘ 0.0
10 2 ~3,0000E-01 1.0CC0E 00 -3.5000E-01 —2.6113E~07 0.0 0.0
ELEMENT PO INT EFFECTIVE SERERRRRERE XTSRRI DRRbEx CUMULATIVE STRESSES #sasssssssnissasssistssss
MO0 N T P CUMTSTRESS— XX Yy r o' XY XL YI—
3 30 5 2 1.0000% 00 1.31005-07 11.00(CE 20 (.0 3.03C4C-08 G.0 U.0
& 2 1.6CG0E 0O 1,3100E~G7 1,0CC0E QO Q.0 -1.8078E~08 G. 0 0.0
T prgalslolelauieli ummmnnat = (0 IoaGooE GG 0.0 TH.SSBIE=DE UL T Y
52 2 1.0C0O0E 00 0.0 1.0CCCE 0O D.L.G -6 «1390E~08 0.0 G0
ELEMENT POINT ASREBREIS0R¥I020348  CUMULATIVE ELASTIC STRAINS #2552 dsnsxsssshnssag
., NO. 1.0. NO. TP. XX Yy 12 XY xZ Yz
.1 3G 2 =3 (0O O I e CCCOE 003700 00E=T— 3L 940 Z2E=0e— 0o U oS0
o 2 ~3,AN00E-Q1 1.000GE G0 -3 ,0000E-Q1 =2.3502E-08 0.0 0.0
T 2 . =3.00C05-01 1.CCGGCE OO0 —3.00C0E-C1 =)l .I126E-0T7 0.0 N 0.0
=2 3.canﬂﬁ—of—‘rrnﬁﬁﬂE—tﬁ——3=OGaGE-OT—f?TQEOWE*ngwﬁ.&' ey 4)

SR e

e



Fj TITLE MULTI-ELEMENT CURVED BOQUNDARY PROBLEM PAGE 11
* VTITLE VARIABLE STRUCTURE NUMEER = 1
T ITITLFE INCREMENT-NUMBER—1
CEEMENT POINT EFF ECT IV E i o Ik o e e e o C UM AT IV S TR E S S ES s ks v e————
31639 1.0y NO. TP« CUM. STRESS XX YY F ¥4 XY XZ YZ
£ LG 5 2 1.00UCE 00 1.2100E-07 1l.0CCO0F 00 0.0 ~Tab4YG6E~0E (a0 G.0
R ~ R YOO N0 AT S SOUESC R I e Ut O oot e Y R =0T 0T U s 0
T 2 1.00008 00 0.0 1.0000F GO 0.0 -1.2755E~-07 0.0 0.0
& 2 1.nCCCE GO 0.0 1.00CGE c0 0.0 ~%.199E-08 0.0 0.0
ELEMENT POINT AdkprdFienrkayuankrk  CUMULATIVE EBLASTIC STRAINS #¥a%xkdsfisssiisxwhk
RO —I=DT—NOT— TP T XX~ Y fars XY Xz YZ
& 40 5 2 -3,0000E-01 1,0000FE 00 -3,3000E-01 -%,.%9341E~-08 0.9 ’ 0.0
. & 2 -3.060C0E~-D1 1.000CE Q0 <3.0C00E-0) —1.39DBE~07 2.0 0.0
T2 =X 00007 =01 1T COCC L =360 0 0F=0 == ST OB Y =0T G0 o0
- 8 2 -3 ,0000&8—-C1 1.0000E 0G =3.00CGQE~-0] —~1.1921E-07 Q.0 0.0
END— QUTPLUT CPU="0U~T00T 02 51y " TOD ="217407TS
—" m
N
4 i
—
oo
2
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B.3 THERMAL. RATCHET

This is a thermal ratchet problem, involving thermal cycling in conjunction
with a sustained mechanical load. The finite-element idealization and
mechanical loading are shown in Figure 3.3-1. The thermal loading consists
of an alternate heating and conoling of the left half of the structure

{element 1).

Because the stresses and thermal strains differ in the left and right
halves of the structure, the BOPACE MPC capability was used to allow
vertical sT1ip at the center. Thus the displacements at nodes 3-11 and
4~12 are constrained to be equal in the X direction, but are allowed to
have different values in the Y direction. Poisson's ratio is taken as
0.5 so as to avoid small errors which would otherwise be induced by

intermediate yielding within an increment.

ResuTts are summarized in Table B.3-1 for six increments, and the BOPACE
input listing and printed output results are included at thé end of this
section (some of the output pages have been combined to save space). The
mechanical loading is applied during the first increment and it then remains
on the structure, In the second increment the thermal heating load is
applied, and it results in plastic flow within the right side of the struc-
ture. Each succeeding heating and cooling cycle (two 1ncr§ments) results
in continuing plastic ¥low and an increase of 0.5 in displacement., MNote
that this occurs even though @ part of the structure is always elastic,
because yielding occurs during alternate increments in the left and right
sides. This type of behavior must be consiééked in thermal-mechanical

cycling of engines.

B.3-1
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PLATE=2.0x1.0

THICKNESS = 10.0

TENSILE YIELD POINT = 1.0

THERMAL COEFFICIENT
OF EXPANSION = 1,0

o~

e |

Y E=1.0
T V=05
- @60 L
e
LOAD >
INTENSITY  padm
=15.0 M)
—
E] -
— X
Figure B.3-1: Thermal Ratchet Problem
Table B.3-1: Thermal Ratchet Data
INCREMENT DISPLACEMENT TEMP, 1 TEMP. 11
1 0.75 o] 0
2 2,0 1.5 0
3 1.5 0 0
4 2.5 1.5 0
5 2.0 0 0
6 3.0 1.5 0
B.3-2
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INPUT DATA

CARD
THAATLEWN
1 TITLE THERMAL RATCHET PROBLEM (2 QUAD ELEMENTS)
2 PROB 2
> oot —ER M — S5 CR O MAXUP— MAX L FIMAX IT - MAXT T3 MAX IEMAXYCMAXCUT—CUT —AFACT
& SoLu LLO0UY 3 2 re + 1] y 1
5 PRTL l,-1
& P2ty —t—351 Evy—1—Hy—-1—F;=r—Yiv=1r 1Yt~}
7 vT1TLE
b MeTL 1
K4 et 1=
10 IPLIS ULyas
11 ISTHRAIN 0,0 10.4510.
12 b-p- bt b2 —
13 PTLHP G
14 IHARD  ©s1. L10C,1.
15 KyHAPE—{vo—100vu
10 NODE L Oe0
17 RODE 2 Dyl
133l h3Ere—3y it
19 MUDE & 1.1
26 NEuL 11 1,C
P F—}R—1-t
w 22 NOLE Y3 2,0
. 23 NCDE 14 241 i .
-‘;1——2‘4, P GbrE P D—FHI G NS CO PE—F FEMP—HCOBE .
w z5 PQUAL I 104 1 .
26 LREvUAh  RID  KIN DIN RPCODE  ICOULES, TYCODREY ICODEZ GPmw-
zT st ot 5 } ¥ by 3 2 2
28 uual 1 Lelel ly3yay2 B
2y DUAL LY T4yl 11413,14412
30 MPe— by t—3 vy ks
31 MEC 1241 441,11,
32 LEL 1y 1.2 241 13,41 13,2 4,1
—_—— 3 A e - Pl B R ER E M e Tl G B
34 LFACT {6 15.0,0 1
as s:h0ab  DLSID Isf4 CID C  EID 1D D
—3b— B AD 1- it & -¥ 1 z— Y30
37 TTITLE INLREMENT 2 [HCLT)
33 LFACT Uy 15.0,0 1
35 Fitrpa 1 =5 Ty 3ye
H ITITLE IMCRLMEMT 3 {COLD)
%} LEACT  Ge7% 16.04C 1
i 2 Fi-tadr 1 @ Loy vk
452 ITITLE INCRIMENT & [HLTY
44 LFACT Gt E.0yL 1
I -t irA } ek Iy 24D i
4o ITITLE THCKEMEMT 5 {COLD)
oY LEALT G,C 15.6406 1
4y — s et ity £ 42y =
49 ITITLL INLRLEMENT & (HUT)
50 LFACT 046 15.04C 1
51 TILGAD =1 1.5 1,2,344 —— - -—-
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TITLE THERMAL RATCHET PROBLEM (2 QUAD ELEMENTS) PAGE 1
T———NUHDER GF—REtHEES— o~ PRt DCM-PER—REOE—F

BOPACE WILL ASSUME ONLY MATERIAL NON-LINEARITY TO SOLVE THE PRDBLEM

MAXIMUM SPECIFIED ERRCKR KORM = 1.000COE-0S

SCLUTICN METRGD CODE = 3
—MAX UMM ET ST I PPN ES SR R FE S PER—IRCREMENT = r4

MAXIMUM NUMEER OF TTERATIONS REFORE WPLATE GNE = 1¢
MaX IMUM NUMBER DF ITEKATILNS BEFLKE UPDATE TWQ = 10

A X MU N BRI T R RO e R E UK T U Pt A T THREE AN DU =10
MAXIMIM ELASTIC ITERATILNS PR INCRLEMENT = 2
MAX MU MAGNLTULE FCR ELASTIL-PLASTIC SuM CCDE = Z
——MA X TH UM EUET BN S 1

CChVERGENCE KEDUCTICN FACTOR = 5.0C0Cut~ul
FRACTIUN FROM ENL OF IRCKEMEMT TO EVALUATE SLOPE = 1.00000E8-01
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TITLE THERMAL RATCHET PROBLEM 2 QUAD ELEMENTS)

PAGE 2
VTITLE VARIABLE STRUCTURE NUNGBER = 1
MATEK]AL NO. 1y MASS DENSITY = 0.0

TEMPERATURE DREPENDENT PROPERTIES

TEMPERATURE ELASTIC MOD.
0.0 ) T.OOOCE QG

TEMPERATURE POISSLNS RATIUO

W ARNINGF PO SSONS KT IC 1S TESS  THAN  OR—EQUATTO = 99
OR GREATLR THEN LK EVUAL TO .«9v ON CARD 10

[ 5000 0E~Q]
TEMPERATURE  THLRMAL STRATI}
0.4 €.
1+OCo0 Tt =< iout—iY
MATERIAL NOD 1, PLASTICITY TYFE 2y KINEMATIC CODE
MATEKTAL NO. 1y TEMPERATUKE = GC.0
[we]
TPAR AMEFTER———TSOTRBF TN AEDEWING
w 0.0 1.(0000F GO
-J1 1.0U010E 2 1.LOLO0E OC
PARAMETER KINEMATIC HARDEMING SHAPE
6.0 Ul
sty 2 ot
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