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ABSTRACT

The results of research relating to the feasibility of using

a low gravity environment to model geophysical flows are presented

in this report. Atmospheric and solid earth flows are considered..

Possible experiments and their required apparatus are suggested.
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INTRODUCTION

The advent of the space shuttle presents exciting possibilities for

developing physical models of geophysical flow phenomena that cannot be

adequately modeled in the earth's gravitational environment.

During the past decade significant advances in the development of

theoretical models of geophysical phenomena have taken place. For example,

the theory of new global tectonics has led to the development of many new

mathematical models of the solid earth. These have had a significant

bearing on the understanding of such important phenomena as earthquakes.

In addition to the models associated with the solid earth, an atmospheric

c3:culation model has also been recently developed. Many of the components

of these models could be validated if a zero G environment were available.

It is known that dynamical processes in various parts of the earth

are responsible for variations in the length of the day. These variations

comprise three distinct components: (1) seasonal fluctuations on the order

of l x 10 -3 sec., (2) irregular decade fluctuations on the order of 5 x 10-3

sec., and (3) a secular increase in the length of the day by about 1 x 10-3

sec. per century. The secular increase is associated with angular momentum

transfer of the earth to the moon caused by the action of gravitational

torques associated with the tidal bulge. Seasonal fluctuations are caused

by torques on the mantle produced by the combined effect of atmospheric

winds and ocean currents. The amplitude of the decade fluctuations is too

large to be accounted for in terms of interactions of the ocean and atmosphere

and geophysicists generally agree that , these fluctuations must therefore be

due to angular momentum transfer between the mantle and the liquid core.

The nature of the stresses that couple the core to the mantle must account

for the fluctuating torques at the core mantle interface which are implied

i
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by the decade fluctuations. The specific nature of these stresses cannot

be determined without detailed theoretical calculations of specific models

of the coupling process. In the past, symmetric models have typically

been considered but there now exists substantial and growing evidence--

to which satellite observations have made a significant contribution--

that render symmetric models increasingly inadequate and which demand

refinements. These refinements must reflect dynamical processes within

the earth if they are to provide the keys to the earth's past and future

evolution.

In addition to the above-mentioned problem in geodesy, the following

problem has received considerable attention.

Fluid motion in the liquid core of the earth is widely accepted as

the cause of the earth's magnetic field through a dynamo action. For

twenty years no general agreement on the driving mechanisms of this fluid

motion has been reached, however. Both precessional flow and thermal con-

vection have been proposed and challenged as possible driving mechanisms

of the geodynamo. The concept for an experiment described in this work

would provide a better understanding of the problem.

The proposed apparatus would consist of a concentric inner sphere

and a slightly elliptical outer shell which would be made to rotate and

process. A dielectric fluid would be trapped in the annulus between the

two shells and a temperature gradient would be imposed across the annulus.

An alternating electric potential between the two shells would create a

facsimile gravity field in the annulus. The -Facsimile gravity is shown

to vary as 1/r5.

j	 The 'Feasibility of the experiment is discussed both in terms of its

power requirements and the differences in flow produced by the strong radial

dependence of the facsimile gravity compared to terrestrial gravity. The
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working fluid is modelled as a constant viscosity, Soussinesq fluid and

the characteristic value problem describing the onset of thermal convec-

tion is derived from linearized marginal stability equations. Solution

of the characteristic value problem shows that, for an apparatus whose

outer shell has major and minor radii of 25 cm and 24 cm, respectively,

with a spherical core of 10 cm radius, a 10.5 KV potential is required to

create convection at Rayleigh numbers one order of magnitude larger than

the critical Rayleigh number of the non-rotating case. The power require-

ment to generate the electric field is negligibly small in comparison to

the heating power requirements, which are estimated to be 1 watt. It is

found that the strong radial dependence of the facsimile gravity only affects

the magnitude of the critical Rayleigh number, but does not influence the

mode of convection. The mode is found to be identical to the mode for

constant gravity and for gravity varying as 1 /r2 . At a rotation rate of
20 rpm, it is calculated from the empirical equation of Malkus (1408) that

precession rates less than 1 rpm would create unstable precessional -flow

in the apparatus. The experiment is to be considered feasible in any zero

or low gravity laboratory which can provide these power requirements and

operating conditions.

The first part of this report describes in detail the proposed zero-

gravity geodynamo experiment.

i
The final sections of the report contain presentations regarding

1	 models and proposed experiments for atmospheric flow phenomena.

.6U.
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INTRODUCTION

Zero-gravity laboratories such as the NASA space shuttle offer the

unique opportunity to construct physical  simulations of three-dimensionalpp	 y

and large-scale planetary flows. A currently viable area of planetary

fluid dynamics research is the study of fluid motion in rotating, spheri-

cal annuli in response to a variety of driving forces. The results of

this research are useful in understanding solar rotation phenomena, motion

in the earth's oceans and atmosphere, planetary dynamos, and more general-

ly, fluid motion within many planetary interiors. The objective of the

experiment described in this work is to study the response of the liquid

core of the earth to driving forces created both by thermal buoyancy

effects and by the precession of the earth (see Figure 1), although the

concept of the experiment may have broader applications. To create a

radial, facsimile gravity field in the experiment, a near zero gravity

laboratory is required.

She goal of the experiment is to help resolve the apparent dilemma

created by Higgins' and Kennedy's 'core paradox' which requires that the

radial fluid motion necessary for the geodynamo (Busse, 1975a) must

occur in a liquid annulus that is for the most part, thermally stably

stratified (Kennedy and Higgins, 1973). On one hand, vigorous radial

fluid motion in the earth's liquid core is needed to explain the existence

of the earth's magnetic field, while on the other hand, the vigor and

possibly the very existence of this fluid motion is limited by the

stable stratification of the core.

From the amount of controversy over the driving mechanism of the geo-

dynamo (see Rochester, et al., 1975, and Busse, 1975b), it appears that

even the hydrodynamic flow processes occurring within rotating and



Figure 1. Precesion and Structure of the Earth. Shaded region is

liquid core of the Earth, with inner radius R2 of 1300 km and outer

radius R of 3500 km. The axis of rotation of the Earth precesses

with a period of 25, 800 years. The angle between the axis of rota-

tion and the axis of precession is 23 1/2 ° (Malkus, 1968).
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precessing spheroidal annuli are not well understood. Understanding of

the magnetohydrodynamic flow which must actually exist in the geodynamo

is probably being delayed by the absence of a strong physical background

for evaluating the coupled effects of precessional and thermal buoyancy

forces in hydrodynamic flows.

If it is eventually determined that convection can occur in the

liquid core, there are still strong reasons to expect the influence of

precession to be important in determining the resulting flow patterns.

If thermal convection is found to be inadmissable as a driving.mechanism

of the geodynamo, further study of precessional influences on the flow

patterns in the liquid core will be essential (see Young, et al., 1976).

The fact that a large fraction of the energy dissipated by the earth-

moon system is probably accounted for by precessional flow and that the

'core paradox' appears to impose a restriction on thermal convection in

the core strongly supports the need for careful considerations of pre-

cessional effects (Young, et al., 1976).

Core convection experiments appear to be a viable topic as a zero-

gravity experiment because (1) there seems to be a need to realistically

examine the effect of the 'core paradox' on geodynamo models and (2) be-

cause core convection experiments require the particular laboratory con-

ditions presently available only in zero or low-gravity environments, the

ability to construct radial, spherically symmetric force fields.

Although a physical simti ,, .tion of a magnetohydrodynamic dynamo is

probably impossible to construct (Jacobs, 1974) because electrical and

fluid-dynamic processes scale differently, another need for experiments

of general hydrodynamic flow in rotating, s pheroidal annuli, arises from

the fact that current analytical progress and numerical studies of the
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problem have dealt only with linear models, with thin shell or other

limiting approximations to the fully spherical, thick shell geometry re-

quired in a study of the nonlinear flow processes occuring within the

earth's core (see, for example, Durney, 1968a, 1968b, and 1970, and Gil-

man, 1975). Justification of the concept of a zero-gravity geodynamo

experiment is ample. The important question is whether or not such an

experiment is feasible.

In this work the feasibility of the experiment is examined by de-

termining the conditions for instability in the fluid, both for thermal

convection and for precessional flow. Calculation of the conditions

needed to produce instability then yields the minimum power supply de-

mand which the experiment imposes on the laboratory. The experiment is

considered feasible in any laboratory which can meet this demand.

Four combinations of driving mechanisms are probably relevant 'to the

geodynamo problem: 1) flow driven by simple thermal convection in a ro-

tating spherical annulus; Z) flow driven by precession of a slightly

elliptic spherical annulus (see Malkus, 1968); 3) modification of ther-

mal convection by the addition of precession; and 4) modification of

precession driven flows by stable thermal stratification. Although the

last possibility may be the experiment which addresses the effects of

the 'core paradox' most directly, it is the third possibility which makes

the largest voltage demand on the laboratory power supply.
{

Therefore, the calculations presented here are made to estimate the

conditions needed to conduct experiment 3. It is assumed that when the

conditions necessary for the existence of thermal convection exist simul-

taneously with the conditions which create precessional instability, both

thermal convection and precessional flow will occur,

i
t	 ^
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The effect of the strong radial dependence of the facsimile gravity

15 ) is also examined by comparing the gave number of the critical
r

Rayleigh number for° g 	 1	 with that for constant gravity and for g

1	 r

rZ
In the absence of a rigorous mathematical treatment of the geo-

dynamo, either by analytical or numerical methods, experiments may be

essential for interpreting geodynamo models. The hypothetical experi-

ment described here may provide the most direct means for evaluating the

effect of stable thermal stratification and thermal convection on the

precessional geodynamo model.



EXPERIMENTAL CONCEPT

Flow in the liquid core of the Earth is characterized by the fact

that thermal buoyancy or (in the case of Kennedy and Higgin's 'core para-

dox') thermal restoring forces do not act in the same direction as the

axis of rotation of the core, nor do they act only at right angles to it.

Because the direction of thermally-induced body forces varies and because

the solid inner core has a radius only 0.4 times the radius of the liquid

core surrounding it, fluid flow in the liquid region of the core can be

expected to be strongly three-dimensional. The ease with which this po-

tentially complicated flow can be studied by direct observation is a pri-

mary impetus for the development of an experiment to model the hydrodyna-

mics of the Earth's liquid core.

The experiment must include the dominant spherical symmetry of the

gravitational field, the effects of thermal buoyancy and of inertial

forces acting on the fluid. A facsimile, radially symmetric gravitational

field can be generated by an electric field acting on a dielectric liquid

(see Hart, 1976; Chandra and Smylie, 1972; Gross, 1967; and Smylie, 1966).

The apparatus for a zero gravity, hydrodynamic geodynamo experiment

would consist of a concentric inner sphere of radius R  and a slightly

elliptical outer shell of mean radius Ro. I The apparatus would rotate

and precess, as shown in Figure 2. Trapped in the annulus between the two

shells would be a dielectric fluid (e.g., silicone oil). A temperature

For practical purposes, R  can be taken as the major axis radius of

the outer shell, so Lang as the ellipticity of.the shell is small.
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Figure 2. Schematic Diagram of Proposed Apparatus. Proposed laboratory

apparatus consists of concentric outer elliptical shell of mean radius

Ro , an inner sphere of radius R i . Temperature of inner annulus surface

is Ti , of outer surface To . Silicone oil is contained in annulus and

the whole apparatus, i ncluding ovserving instruments is made to rotate

at a rate w and precess at a rate Q.



A

8
s

contrast across the annulus gap could be crewed by circulating a hewing

or cooling fluid within the inner core and heating or cooling the outside

shell, as required. An alternating electric potential iV is maintained

between the outer shell and the core to produce a facsimile gravity field

in the model.

A shaft (not shown in the figure) supports the core inside the shell

and provides access for hewing and cooling the inner core as well as for

temperature measuring instrumentation, electrostatic power supply and il-

lumination for flow visualization..

Inertial forces acting on the fluid as a result of the precession of

the apparatus would create turbulent motions within the annulus for rates

of rotation and precession greater than some critical values. The effect

of precessional forces on fluids contained in rotating,precessing and

slightly elliptical cavities is to create a cylindrical shear layer ex-

tending between ±30 0 latitude (see Figure 3). Fluid in the central re-

gions of the cavity has a general retrograde (westward) drift while fluid

outside of the shear layer shows prograde motion (Malkus, 1968). This

cylindrical shear layer will undoubtedly be modified somewhat by the

presence of the solid inner core.

Thermal buoyancy forces would be created in the model by the inter-

action of density gradients and the facsimile gravity field. When unstable

thermal gradients would be applied, the chiefly east-west flow generated

by precession would interact with the north-south flow caused by -thermal

convection. In the case of stable thermal stratification, the radial com-

ponents of the precessional flow would be suppressed by thermal buoyancy

forces.

*^6_ 3
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Figure 3. Precessional Shear Layer. The cylindrical shear layer

observed by Malkus (1968) within a fluid contained in a rotating

and precessing elliptical cavity is shown in exaggerated form in. this

figure. With increasing rates of rotation and precession the shear

layer becomes unstable, developing waves-like motions and finally

turbulence..
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Because the electric field generating the facsimile gravity field

cannot be made strong enough to overcome the external gravity in the

terrestrial laboratories without creating electrical breakdown of the

dielectric fluid (Hart, 1976), the experiment must be performed in zero

or low gravity laboratories.

.To permit visualization of flow fields by tracer motions or dye

streaks, the tapper hemisphere of the outer shell would be constructed

of glass or plexiglass with a thin, transparent coating of a metallic

oxide to make it electrically conducting. The inner core could also be

constructed of coated glass or plex1glass, permitting the use of shadow

graph or Schlieren flow visualization techniques (see Hart, 1976).

In. contrast to the flow visualization needs for convection experi-

ments in rotating, spherical annuli, the needs for visualizations and

data obtained from the experiments described here include making records

of east-west fluid motion as well as north-south fluid motion. The mo-

tion on latitudinal planes is important, as it reflects the contribution

of precessional flow to the resulting fluid motion, while motion on

longtitudinal planes indicates the contribution of thermal convection.

Stable thermal stratification is created by heating the outer shell

while cooling the inner core. Unstable thermal stratification is created

by heating the inner core and cooling the outer boundary as in Chandra

and Smylie(1972), precessional instability is created by increasing.the

rate of rotation or rate of precession of the apparatus.

The electric thermal buoyancy forces are created in the experiment

by the interaction of the temperature-dependent dielectric constant and

the imposed electric field. When the dielectric constant decreases with

increasing temperature (see Figure 4), warm liquid seeks regions of less
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intense electric field while cold liquid seeks regions of more intense

electric field (Chandra and Smylie, 1972).

Another flow may be generated in the fluid due to the migration of

free charges. This 'streaming flow' limits the accuracy of the simula-

tion as it introduces a transport mechanism which is not found in ter-

restrial thermal convection. An alternating electric field must be

applied to prevent the occurrence of the 'streaming flow.'

At this point the concept of a zero-gravity, hydrodynamic geo-

dynamo experiment has been defined. 	 ie physical design of the appara-

tus must wait until the needed boundary conditions have been determined,

however. in the next section the boundary conditions for thermal con-

vection are estimated; the boundary conditions for precessional flow

are estimated in .a later section.

,I



ONSET OF THERMAL CONVECTION

The onset of convection in the annulus is determined by the criti-

cal Rayleigh number, which is defined as the product of the Prandti and

Crashof numbers. The Grashof number represents the ratio of buoyant to

viscous forces in the fluid. The Prandtl number relates temperature

and velocity distributions in the fluid.

An eigenvalue problem is formulated from the governing equations in

which the characteristic value is the Rayleigh number and the mode rep-
V

resents the temperature distribution. The problem is formulated by

substituting simple forms of perturbations of the state variables into

the momentum,heat and continuity equations, yielding the perturbation

equations. An exponential time-dependence of these perturbations is

then assumed, and the marginal stability equations are derived from the

perturbation equations. The eigenvalue problem is formulated directly

from the marginal stability equations. (See Chandrasekhar, 1961.)

In this work, derivation of the perturbation equations is taken

directly from the work of Gurney (1968a). The derivation is only

briefly described here to provide the background needed to understand

the marginal stability equations.

In calculating critical Rayleigh numbers by this method, it has been

assumed that the apparatus consists of two non-rotating, concentric

spheres.. The first assumption is made in order to decouple the different

modes of convection, simplifying the problem by eliminating terms in the

governing equations (see Durney, 1968b). As a consequence, the calculated

Rayleigh number represents a minimum Rayleigh number of interest in the

experiment. Fluid viscosity is assumed to be constant.

*,A-
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The second assumption is reasonable since the inner boundary is

spherical and the outer Boundary is nearly spherical.

Before deriving the eigenvalue problem, we must determine the form

of the electrical "gravity" field. The next section is devoted to this.

A. Electric Body Forces

The electric body force per unit volume exerted on the fluid is

(Chandra and Smylie, 1972)

f - 1/2 p'V EE02 lip 1	 ] - 1/2 E
o2 (BT I	 VT	 (1

T,o	
A ^a

where primes indicate flow-induced quantities and subscripted zeroes

indicate stationary values. E  is the electric field strength, a is

the dielectric permittivity, T is the temperature.

The permittivity of a material is calculated by multiplying the

material's dielectric constant and the universal constant Eo , the per-

mittivity of tree space. In mks units s0 has the value 8.854 x 10-
12

farads per meter.

The dielectric constant K of a material is defined as the ratio

of the electric field strength in a vacuum to that in the material, for

the same distribution of charge (Smyth, 1955). Another definition makes

use of the ratio of the capacitance of a flat plate condenser with a

vacuum between the plates (Co), and the same condenser with the material

between the plates. The dimensionless dielectric constant is defined as

K -

c0
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A typical dielectric constant for silicone oils used in convection ex-

periments is K = 2,65 (see, for example, Chandra and Smylie, 1972),

The departure of density from its stationary value is

P 1 = - ap0T'
	

(2}

and the fluid state is given by

T =T' +To

p=p'+Po

P = P' +Po

where p is the pressure and a is the volume coefficient of expansion.

Again, subscripted zeroes indicate stationary conditions (no fluid

motion, purely hydrostatic pressure Yield, temperature distribution

that of pure conduction), and primes denote flow-induced quantities.

Substituting (2) into (1) and dividing by p 0 gives the electrical

body force per unit mass

- = -1/2 al" 0 CE 2
/IaE 1 	 2 r ac t

a 0TP T, ol " I /2 1 /Po Co `a^ ^p , o QT

Assuming density and permittivity changes are small,(aP }
T,
o will be

independent of the spatial coordinates and the body force per unit mass

becomes	

11F = -1/26 
(ap 1 T,o VE 

2

It is the curl of the bo

of motion, or
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V x F= -1/2 
ra	

VT' x ©E o 2 -1/2 
1/poCa^ I	

VEo2 x VT'
` ap T 	 pao

Equivalently, since the two vector components of Q x F are co-linear

V x F = 1/2 DO t a`Ef ^	
~ a CaP 

I	 ^ VT' x vEo2
p,a	 T,o

The permittivity coefficients must also satisfy the relation

C

aE	 a E 	 ( Lr:. )P,o
1/Ao aT Aso- a ap 

T,o
- 1/AoaT

From thermodynamics (Chandra and Smylie, 1972). Thus the curl of the

body force may be written

V x F = 
2

1 A 
C aT }	

VT' x vEo2	(3)

a	 pyo

By analogy to the terrestrial thermal buoyancy force

-0
F =a T' w

where g =vc and ^ is the geopotential, it can be shown that the elec-

tric, facsimile gravity in (3) may be written

_ 1	 aE
ge r 2 ap	 l aT^	 vEo2	 (4).

O	 p'o

The electric field E in a spherical capacitor with inner radius Rig

outer radius Ro , and annulus gap a is (Moore, 1973)

E = V	
i

Ro	 1
a	 r2
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where V is the voltage-across the capacitor. Inserting this in (4) we

obtain the useful expression for the electric facsimile gravity

2	 ac	 2	 ^i Ro	
2	

Ige(r)	 a p	 a T	 v
}	 5	 (5)

o	 pro	 a	 r

The radial dependence of ge remains a major difference between the

facsimile gravity field and the gravity field which actually exists with-

in the interior of the earth, although this difference may be most no-

ticeable only at the onset of thermal convection (Gilman, 1976). Other

kinds of radial dependence can be produced in facsimile gravity fields

by the use of other geometries for generating the electric field, as

shown in Table L

Table I

Geometry	 Electric Field	 Facsimile Gravit

plane	 constant	 none

cylindrical	 1/r	 l/r3

spherical	 1/r2	 l/r5

Only with spherical geometry does the facsimile gravity field posess

the spherical symmetry found in the earth's gravitational field, however.

B. Formulation of the Eigenvalue Problem

Consider a stationary spherical annulus of thickness a filled with

a fluid of density po . The acceleration of gravity within the annulus

is
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2

9 (r) =	
a^	

2 RoRi	
1rr

e	
of P0
	` eT p,o	 a	 r5

The outer radius of the annulus is Ro , its inner radius r1Ro = RV The

velocity field u, temperature T, radial coordinate r and time t are

scaled by the following definitions:

u =	
K	

u'; T -- IT01 T', r	 = Ror'
R

0
R 2
	 (5)

t = o	 t'; g (r ) = g ( Ro ) g'(r')
K

K is the thermal diffusivity and T o is the negative temperature of the

outer boundary of the annulus. (The temperature at the inner boundary

is assumed to be zero.) All primed quantities are dimensionless.

Dropping the primes in (G), the nondimensional momentum, continuity

and 'neat equations of the problem can be written as (Durney, 1968a)2

1	 a 24
7

V  u - ox V U ^ P Clx (u 'o) u+Rl Vxg(r) rT
Pr at	 r

0 ' u = 0

and

( a- - 02) T = .. v • (u T)

Pr is the Prandtl number

`It should be noted that this is the curl of the momentum equation, as

the pressure term Op is absent.
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P -	
Kr 

and R1 is the Rayleigh number based on the radius of the outer annulus

boundary,

R1 _
	 a JTn ! q(Ra) Rai

K 

Another common form of the Rayleigh number is based on the annulus

depth a

R 
y	 a ITo I 9( Ro ) a3

a	 K 

and is related to the outer radius Rayleigh number R 1 by ( gurney, 1968a)

Ra = R1 C	
a	

33

0

Equivalently,

Ra = Rl (1- n)3

Substituting equation (5) in-to the definitio

	

ATV  ^e	 2

	

DT	
^

	

T	
p ' o	 Ao 	 (1 -n )2

R1

K 

the useful form of the Rayleigh number.

Durney ( 1968x) has derived the perturba

a temperature distribution of the form

T =	 1	 [ r. - 
1] + ,( r ,t} + 9(r,)

T- n

4
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The first term represents the temperature field of pure conduction with

boundary conditions T = 0 at the inner boundary and T = -1 at the outer

boundary. It is a solution of Laplace's equation V 2 = 0 in spherical

co-ordinates. * (r,t) represents the mean distortion of the temperature

field by convection and is a function of the radial coordinate

and time. 6 (r, t) is expanded in spherical harmonics by writing

e (r,t) = E 6L,m (r,t) 
YLm 

(OM
L,m

where 
yLm 

is the spherical harmonic and is a known function of 0 , $ ,

and wave numbers L and m. Thus the temperature field is completely de-

termined by specifying only two functions, 6 L,m 
(r,t) and * (r,t), both

of which are functions of radius and time only.

Similarly a specific form for the velocity is assumed using the

poloidal vector ^L,m

u = E 
PL,m (pL,m)L,m

which has the following components in spherical co-ordinates

PL,m (r)	 L+r2L 	 p ! , ,m (r, t) YLm (6,^)

(6}	 I aPL,m (r,t)	 YLm ( 6 y$)
pL,m	

r
r	 a^

and

W I 	
a pL,m 

(r, t)	 YLm (6,0

PL 'm	 r sin 6	 a r	 a^

I



21,

'thus tfje velocity field is completely described by determining a functions

PL,m (r,t) which is a function of radius and time only.

The convection problem is solved by -Finding the required functions

PL,m (r,t), 6L,m (r,t) and *(r,t). From the momentum, continuity, and

heat equations, Durney (1968a) derived three equations governing these

variables, the perturbation equations

DL 2 PL,m = Rl g(r) a L,m	 8(a)

ate, -	 ( L+1 L
at DLL -	

r2

12	 E (L+l)L ar (r PL,m 3L,m )	 8(b)
4nr	 L,m

and

ae L,m
 - D	 8	

= (L+1 )L	
P	 C	 2	 -

at	 L	 L,m	 r	 L,m	 1 -n r	 Dr

8(c)

where DL is the differential operator

D = d2 + 2
	 d - (L+1)L

L	 dr2	 r dr	 r2

and, for his own convenience, Durney has redefined PL,m as

PL,m (r,t)
PL,m =	

r
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The boundary conditions on the temperature variables are ^ = eL,m

0 at r	 1. Either rigid or free boundary conditions are used for

the velocity,as required.

Since we are interested in those small perturbations which start

convection, eL,m , , and pL,m may be assumed to be small. By ignoring

products of the perturbations with themselves and their derivatives the

linearized perturbation equations may be obtained

D 2= R	 r 6	 9a
L	 RL,m	 1 9( }	 L,m

a$ - DL - 
(L+I)L	

= 0	 9(b)
r

and

ae L,m 	 __	 L+l L	 n

at	 DL e L,m	 r,3	 pL,m	 0-TO	 9(c)

Note that different values of wave number L are decoupled and that

the equations are m independent. Since the term containing a sum

over m terms in 8(b) has vanished in the linearization process, how-

ever, the governing equations themselves are independent of m and the

subscript will be dropped.

The marginal stability equations are obtained from the linearized

perturbation equations by assuming an exponential time dependence in

the state variables. The perturbed temperature distribution will be

described, for example, by the product of a function of time and a func-

tion A describing the amplitude of the perturbation in terms of the

spatial coordinates:
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T (r, t) = ept A(r)

The conditions for stability are clearly

p > 0: unstable
1

p = 0: marginally stable

p < 0: stable

'.	 Thus the marginal stability equations are obtained by setting the ex-

ponent p to zero in the perturbation equations.

The three functions used to describe the temperature and velocity

fields are rewritten with the exponential time dependence

eL (r,t) = ept OL(r)

+(r,t) = ept *(r)

and

PL ( r ,t) = ept PL (r)

Substituting these definitions into the linearized perturbation equations

under marginal stability conditions'(p =0);	 all time derivatives dis-

appear and the time-dependent terns become unity. The result is the

marginal stability equate s

OL2 P
L = R1 g(r) e L	 10(a)

OL ^^	 L-^l L	 = 0	 10(b)
r

nL OL = L31 L PL
	

10(c)
r	 0-n)

J
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Equac,ion (10c) can be written as

	

PL
	 r3 n-1	

DUOL	
nL	

!. Ll
where L1 , (L+1)L. Inserting this expression into equation (lea) yields

the efgenvalue problem in terms of the temperature variable 6L°

	

D2Cr3 - 1
	Q 6j = R g(r)e

	

L	 Tj L 1	 L L	 1	 L

in which the Rayleigh number R l is the characteristic value and the
a

temperature distribution A L is the corresponding mode. By operating

the differential operator Q L upon itself the differential operator QL2

may be obtained

2 _ d4	 $ d3	2Ll	 d2	 L12 - 2L1

	

L	
dr4	

r dr3 	r2 	
d^
	

r4

We note that the definition of the non-dimensional gravity term

when applied to the electrical gravity yields (see equation (6))

	

g(r)	 l

g(R }
	 r5

0

Using the definitions of 
D  

and 
QL2 

the eigenvalue problem may be

written as

(continued)

d
o 

0 
	

18	 d
_ 5e,	 96 -3L1	 d4OL

-dr6	r	 dry	 r2	 dr4

1

i:e ^. J fh f ^+ 	 .1

3
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168 - 24L1	d3 6L1	3L12-42L1+72	 d2 6L

r3	dr3	 r4	 dr2

	

6L2 _ 12L 1 	d9!-	 - L^ - 2L2 	y
+	

6L -
r3	 dr	 r6

nL 1 	 Rl	 6	 (11 }L
n - i	 r

This is the basic equation of the eigenvalue problem. With the six

boundary conditions derived in the next section, formulation of the

problem describing the onset of convection is complete.

No--slip (rigid) boundary conditions on the velocity and constant

temperature at inner and outer annulus boundaries are used. The tempera-

ture boundary condition is

6 L (r) = 0 atr=n, 1

and
	

(i 2a)

^ (r) = 0	 at r = n, 1

The no-slip condition requires that all components of velocity

vanish at the boundaries, or

pL (r) = p L (6 ) = P  ($) = 0 at r = n, 1.

By the definitions of the components of the velocity, it is apparent that

only two conditions are needed to make u vanish at the boundaries. These

are
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=6

PL (r) = 0 at r = n, 1

and

DP L (r)	 -
-0 at r- n,1

dr

Using the former in equation (9c) we obtain DL 0L = 0 at r =n, 1. (12b)
P

Substituting the definition PL = rL into (10c).

0 e -- 
L1	 n	

pL L

	

	 4	 n -1	
L

r 

dpL(r)
The requirement = 0 can be restated using this expression as

dr

dF 
r4 D

L OLI = 0
	 (12c)

Upon substituting the definitions of the differential operators in-

to equations (12) we obtain the boundary conditions in their useful

form:

0L = 0	 at r= n, 7	 (13a)

d2 0L

	 L

d8	 L

dr2	r	 dr 	 -	 r2	 A L = 0 at r=n,1 (13b)

and

d30	 b d2 6	 6-L	 d 0
L + _	 L	 +	 1	 L	 (13c)

dr3	 r	 dr2	r -	 dr

2Ll	
-	 -- r3	 O L -Oatr- n, 1

i
1

•	 1
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Thus equation (11) is the governing equation for the eigenvalue

problem and equations (13) are the six boundary conditions needed to

solve it.

C. Numerical Solution

The eigenvalue problem (11) and associated boundary conditions (13)

were solved by using the finite-difference method and the edition 5 Inter-

national Mathematics and Statistics Library (IMSL) eigenvalue subroutine

EIGZF (see Appendix I). The domain n:s r s 1 was modelled with 37 nodal

points. It should be noted that the only solution to (10b) which

satisfies the boundary conditions is ^ (r) = 0. The temperature distri-

bution within the annulus is therefore given by

T =	 1	
r 

-I] + 6( r , t)
1- ^1

Because (11) is homogeneous, any multiple of a given solution 6 L (r) is

also a solution.

Solutions were obtained for n = 0.4, rigid boundaries and g - l5
r

to estimate critical Rayleigh. numbers for the experimental apparatus.

To evaluate the influence of the strong radial dependence of the radial

gravity on the movie of convection, solutions were obtained with free

boundaries (see Appendix III) with n = 0.8, g - 1/r 5 . These results were

compared with the results of Durney (1968a) and Gilman (1975) which

were obtained with constant gravity and with g - 1/r2 , respectively.

Verification of equation (11) as a model of thermal convection in the

annulus was obtained by (1) repeating the result of both Durney (1968a)

and Gilman (1975) and (2) demonstrating that the model predicts higher
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critical Rayleigh numbers for rigid boundaries than for free boundaries.

The results are summarized in Table II.

Sol'n.	 Gravity	 n	 Boundaries	 L	
R 

I	 const.	 .. 0.8	 free	 9	 740

2	 1/r2	 0,8	 free	 9	 596

3	 1/r5	 0.8	 free	 9	 426

4	 1/r5	 0.4	 free	 3	 142

5	 I/r5	 0.4	 rigid	 3	 295

Table II

Summary of Numerical Results

Solutions (1) and (2) reproduce within 5% the results of Durney

(1968a) and Gilman (1975), respectively, indicating that the linear

model of convection represented by equation (11) with the free surface

boundary conditions is in general agreement with nonlinear models of

convection. Solutions (4) and (5) demonstrate that the linear model

with rigid boundary conditions is also consistens with physical intui-

tion (Durney, 1976), because the model predicts higher critical Rayleigh

numbers for rigid boundaries than for free boundaries. Higher Rayleigh

numbers for rigid boundaries are to be expected, since in that case

thermal buoyancy forces must overcome viscous forces both in the bulk

of the fluid and at the fluid boundaries for convection to occur. With

free boundaries buoyancy forces must overcome viscous forces only in

the bulk of the fluid to initiate convection.
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Comparison of solutions (1), (2), and (3) shows that the effect of

the strong radial dependence of the facsimile gravity only alters the

value of the critical Rayleigh number. For g 1/r5 , the critical Ray-

leigh number occurs at a wave number L = 9 (see Figure 5), as did the

critical Rayleigh numbers calculated by both Durney (1968a) and Gilman

(1975) for constant gravity and g 1/r2 , respectively. The spectrum of

Rayleigh numbers over a wide range of wave numbers is shown in Figure 5.

Figure 6 shows the critical mode and temperature distribution in the

rigid boundary case.

Since the effect of rotation on thermal convection in spherical

annuli is to suppress fluid motion and therefore increase the critical

Rayleigh number (Gilman, 1975), the results calculated here represent

the bottom of the range of important Rayleigh numbers for the experi-

ment. It will probably be desirable to conduct experiments over the

range of Rayleigh numbers from the minimum to at least an order of

magnitude or more above the minimum.
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Figure 5a, Rayleigh Number vs. Wave Number L for n = 0.4 and rigid

boundary conditions. Minimum Rayleigh number of 295 occurs at a

wave number of 3.
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Precessional Flow

The equation of motion of a viscous fluid inside the spheroidal

cavity of a processing rigid body which is rotating about its axis with

a constant angular velocity w  is

2 tx q ̀'q	 q="gp+En2q

where	 is the angular velocity of the rotating frame of reference, p is

the pressure and q is the fluid velocity (Busse, 1968).

This equation illustrates the fact that equality of the Eckman num-

bers

E	
v2

for two precessional flows will establish dynamic similarity between, for

example, the liquid core of the earth and a laboratory experiment. Some

physical properties of and vertical velocity in the earth's liquid core

are shown in Table III. These figures yield an Eckman number for the

core of

E = 6.72 x 10-16

based on the radius of the earth's outer core, 3500 km. Figure 7 shows

that in a feasibly-sized apparatus rotated at speeds below 5000 rpm, Eck-

man numbers in a laboratory experiment will be much larger than in the

earth's core. Although it appears impossible to establish dynamic

similarity between the experiment and the core, previous experiments with

fluid motion in rotating and precessing cavities indicate that instabili-

ties and turbulence can be made to occur for E >10-5 (Malkus, 1968). Thus

fluid motion of interest can be created in a physical simulation of the

earth's liquid core.
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Figure 7. Eckman numbers in the laboratory experiment. R is the mean

radius of the outer shell. (v = 12 CS, after Chandra and Smylie, 1912).
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Pro2erty Value Reference

Specific Heat 7.12 x 10 2 Jkg -1
°K-1 Frazer (11073)

Coefficient of Thermal
Expansion 4.5 x 10- GO K- 1 Frazer (1973)

Thermal Conductivity 60 W m-1 °K- 1 Frazer (1973)

Radial	 Fluid Velocity 3 x 10- 4 m s - 1
Frazer (1973)

Kinematic Viscosity 0.6 centistokes Gans	 (1972)

Mass Density 13 gm CM-3 Gans	 (1972)

Table 3. Physical Properties of and vertical
velocity in the Earth's liquid core
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Onset of instability in a fluid contained ih a rotating and pre-

cessing spheroid can be determined from an empirical equation relating

the-ratio A of the maximum toroidal velocity in the fluid to the speed

of the periphery of the container.

Instability occurs when

A > (5.0 ± 0.3) E 1/2	 (14)

where E is the Eckman number,

E _ -M
w Rm2

i

R. is the mean radius of the spheroid, and w is the rutation rate about

the sphere's minor axis (Malkus, 1968). A is determined from the rota-

tional velocity of the container (w) and the rate of precession (St)

A =	2x1 f(E)	 (15)

e

where a is the ellipticity of the spheroid,

11 IE
e=	 I

p

(see Maikus, 1968). I p is the moment of inertia of the spheroid about

its "polar" (minor) axis and 
I  

is its moment of inertia about La

"equatorial" (major axis).

In (15) f(E) is defined by

f(E) = 0.4, E > 10-5

f(E) Z E-1/6 , E < 10-7

Combining the definition of the Eckman number and expression (15)

for A with equation (14), we find the required rate of precession for

instability to be
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1/4

	

^ ^ e	 5	 ^_	 (16 )
sin 6	 f(E)	

wRm2

For an elliptical body with a major axis R maj and :nor axis 'min

the moment of inertia about the Pole (minor axis)-ts

1 P = ^ (2 Rmaj)

and the moment of inertia about the equator (major axis) is

	

_ m	 z
ZE 5 (Rmaj + Rmin 

2
)

so the dynamic ellipticity of the body is

R 2-R 2
e ,

	R maj	 mi n

2Rmaj 
z

Malkus (1968) found that instability in the Precessional flow first

manifests itself as wave motions with the cylindrical shear layer de-

picted in Figure 3. The waves move retrograde (west) relative to the

rotation of the spheroid. For a given rate of precession, instabilities

are intensified by decreasing the Eckman number of the flow.

Now
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EXPERIMENTAL APPARATUS

The critical Rayleigh number for convection in the experimental ap-

paratus was calculated to be R  = 295. Using the definition of the Ray-

leigh number we find

2

	

P2	
DT ^aT 

P'oV2 

	° 	 =
K	

295
v

for convection to occur when the apparatus is not rotating.

The dimensions of the hypothetical experiment considered here are

listed in Table IV.

Table IV

Dimensions of Hypothetical Experiment

Symbol	 Term	 Numerical	 Value

t^	 aspect ratio	 0.40

Ri	inner radius	 10 cm

R 
	 outer radius	 25 cm

a	 annulus depth	 15 cm

AT	 temperature difference 	 5°C

e	 ellipticity	 0.05

The properties of the hypothetical working fluid used in this ex-

periment are listed in Table V.

•%,	 I
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Table V

Properties of Hypothetical Working Fluid

S mbol Term Numerical Value Reference

U. coef. of expan. 1;08 x 10-3 °C 1

(8T )
coef. of permit. 3.32 x 10`14 f/m_°C 1

K	 p'o th. diffusivity 6.40 x 10-8m2A 2

v kin. viscosity 10`4m2A 2

P density 873 kg/m3 2

E 
permittivity const. 8.854 x 10 -12 f/m 3

C dielectric coast. 2.60 1

Cp sp. heat 1.9 x 103 j/kg°C 2

The references are : (1) Chandra and Smylie (1972); (2) Hart (1976); (3)

Moore (1973).

From the definition of the Rayleigh number we find

V = 3.34 KV

for convection to occur in the hypothetical apparatus (n = 0.4) without

rotation and with a 5°C temperature contrast across the annulus. We note

that with a thin annulus gap (n = 0.8) the voltage requirement is

V = 0.55 KV

under the same operating conditions. To achieve Rayleigh numbers one

order of magnitude larger than the critical Rayleigh number in the sta-

tionary apparatus requires

V=10.5 KV for n =0.4
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V = 1 . 76 KV for -n=0.8

The capacitance of the apparatus is given by

C= 4-ffcRi Rn

a

which is the capacitance of a spherical condenser (Moore, 1973). For

the hypothetical experiment

C = 48.2 x IV_
12
 farads

The electrical energy stored in the experimental apparatus is given by

(Moore, 1973)

w = 1/2 CV 

or

w = .003 watt-sec

for a voltage of 10.5 KV.

For a rotation rate of 20 rpm the Eckman number is 7.64 x I0 -4.

The rate of precession required to produce instability is calculated

from equation ("16) for an inclination of 30 0 between rotation and pre-

cession axes,

R = .56 rpm

Modeling the circuit needed to create the electric field as a one

ohm resistance and capacitance of 48 x 10 -12 f in series, the total im-

pedance of the circuit is 5.50 x 10 7 R . The real power supplied by a

60 hz voltage supply of peak output 1 0.5 KV is then

P = 1 .60 x 10-3 watts.

Heat flux by conduction is (Krieth, 1973)



ti

q = 47rRi RD k (To-Ti)

a

where k is the thermal conductivity. The fluid properties in Table II

give a conductivity of k = K C pp = 1.06 x 10-1	
os^uless 

and the

heat flux is thus

q = 1.11 watts

for a temperature contrast of 5°C.

The total power demand on the laboratory is therefore on the order

of 1 watt. To achieve Rayleigh numbers up to one order of magnitude

greater than critical requires up to about 10 KV. At a rotation rate

of 20 rpm, the empirical equation of Ma ? kus (1968) predicts that a pre-

cession rate of 0.56 rpm is required to initiate instabilities.

;i



CONCLUSION

A. Current Work

A well-defined experiment could be essential for providing the

physical basis to evaluate and compare geodynamo driving mechanisms. Of

particular interest is an experiment to evaluate the effect of stable

thermal stratification and thermal convection on the precessional geo-

dynamo model. In this work it is found that such an experiment is

feasible in an apparatus consisting of a concentric inner sphere of 10

cm radius and an elliptical outer shell with major and minor radii of

25 cm and 24 cm, respectively, provided

(1) a potential of the order of 10 KV is maintained between
the shells;

(2) a temperature difference of 50C is imposed across the
annulus;

and
(3) the apparatus can be made to rotate and p6ecess at rates of

20 rpm and i rpm, respectively, with a 30 angle between the
axis of rotation and the axis of precession.

B. Recommendations fcr Future Research

Besides the design, construction, and testing of the experimental

apparatus important tasks which should be completed as soon as possible

incl ude:

(1) Inclusion of variable viscosity and the effect of rotation in
the numerical model of convection presented here;

(2) Development of a numerical model of the precessional flow to
verify the empirical equation of Malkus (1968) and to de-
termine the effect of the inner core on the flow;

(3) Combination of the two numerical models to predict the results
of the experiment and to verify the assumption that both con-
vective and precessional flow instabilities will exist when
the conditions generating them are present simultaneously.

r
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APPENDIX I

Computer Algorithm for the Ei genval ue Problem
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'	 1
Ei genval ue Al gori thin

The algorithm described Here solves eigenvalue problems of the form

X + c L+ c y— c d— X + c dy+ c L+ c Y = Ac Y
x6	 1 dx5 	 2 dx4 	 3 dx3 	4	

(1)
d	 dx2	

5 dx	 6	 7

on the domain n< x < Z, with the six boundary conditions

f d^ + f d3	
^

+ f d^ + f dy + f y = 0
	

(2a)
11 dx	 dx

 12 dx3	 13 dx	 14 dx	 15

Ly- +f L +f =0	 (2b)
f23 dx2	 24 dx	 25Y

and

y = 0	 (2c)

at x = Tj	 a is the ei genvalue and coefficients c  and fij are functions

of the independent variable x and wave number w.

The finite difference operators used to create the matrix equation

equivalent of (1) and boundary conditions (2) are shown in Figure 8. The

domain is modeled as a set of (n+6) nodes with n nodes on the-interior of

the domain, 4 nodes exterior to the domain and 1 node at each boundary 	 {

(see Figure below).

	

x	 l

1	 2 3 4 5	 n+l n+2 n+3 n+4 n+5 n+6

1



^	 I	 I	 I I	 l	 ^	 f

d 6 = ., +l -b4J+15	 -20 	U+15	 U-6	 +1
dx 	ie

d	 =	 1 -1 +4	 -5	 0	 +5	 -4	 +7

dx5 20

d	 = 1 +1	 -4	 +6	 -4	 +1

dx h4

!x i=
dx

3

2h

-1	 +2	 0	 -2	 fl

d.^ 1 +1	 -2	 +1-

dx2
h2

dx	 -
7

-1	 0	 +l

2h

Figure 8. Finite differenCq computational molecules. h is the

spacing between nodes.
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At node i the finite difference equation representing (1) is

1	 _ ci	
6	 2c 1 	c 2 	cB

+hb 	2h5 ^ Y^ -3 - j hb - T - h4 	2h3 ^ Yi -2

15	 2.5c 1 	4c2 

+ 
c 3 	c4 	c5 

^
+ h6 - h5	 - h4	 h3 + h2 	2h	 Y i - I

_ 20	 6c  2c4

hb - h4 +" c
b	 Yi

15	 2.5c1	 4c2 	c3 

+ 
c4 	c5

+^h3 + 	 h 3
	

h2 } 2h ^ Yi+i

6	 2c1	 c 2 	c3 	1	

c 
h6 + h'	 h4	2h^ ^ yi+2 +	 h6 + 2h5	

Y ^+3	 C7aYi	 (3)

where h is the spacing between nodal points. Applying the finite differ-

ence operators across the domain and applying the boundary conditions

puts the eigenvalue problem in standard matrix form,

[A] fy) = X [B] {y)

in which [A] and [B] are n x n'niatrices and { y) is the n x 1 eigenvector.

Off-diagonal elements of [B] are zero and [A] is a banded matrix with a

bandwidth of 7.

	

By using the finite	 erence operators the boundary conditions

must first be stated in the useful form

	

Y1 = BC (1,1) Y4 + BC (1,2) y5 	(4a)

and

y2 = BC(2,1) Y4 + BC(2,2) Y5	 (4b)
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at the left end, and

yl = BC (3 1 1) yi + BC (3,2) yj 	(4c)

and

ym = BC (4,1) yi + BC (4, 2 ) Y . 	(4d)

at the right end (see figure bel ow) .

TI

x

X ---^:-- ---	 x x

1	 2	 3	 4	 5	 6	 i	 j k	 l	 m

For example, writing the second-order boundary condition in finite differ-

ence form for the left end, we have

f23	 f24 1
y2	

23	
f
24	 y4 = 0

h	 2h	 h	 2h

where. the coefficients fij are evaluµ.-r=d at x =	 Solving for y2

hf24 + 2f23
Y4Y2 -	 hf24 - 2f22	 4

and we have thus found

BC (10) = hf
24 + 2f23

hf24 - 2f22	
{5a)

1

and

BC (1,2) = 0.0	 (5b)
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r^

Writing the fourth-order boundary condition in finite -difference

form at the left end, we have

f 11	 f 12 Y-
	 4fl 1

-
f12	 + f 14	 Y

h4	 2h 3	 i	 h4 h2 2h	 2

4fll 	 f12	 f13 f14 #`
`	 h4	 h3	 - J

- 2h	
^ Y 4

f11	 f 2
+	 y	 =

h4	 2h3	 5
o

where again the coefficients fij are evaluated at x = n. After solving

for y1 and noting that

Y2 = BC ( 2,1) yl we have

2h2f
13

8f
ii

2hf	 -h3f

Y 1 	= 1,BC(2,I) + 1) +	 (BC(2,1)	 -	 1)
12 - 2f74

Y4hf

12

2f

ii
hf

12 17

12+ 2f11
+	 ^

if
Y

hf	 - 2f	
5

12	 11

We have now found

2h2f13 - 8f11 2hf12-
h3f14

BC	 (1,1)	 =	 (L;C	 (2,1)	 +	 1) hf
12 	 11-2f 1+ (BC(2'1)-1)^hf

U -
2f 

11
(5c)

and

hfi2 + 2f11

BC	 (1,2)	 -

hf(V - 2f11 (5d)

Similarly it can be shown that

BC	 (3,1)	 = 0.0 (5e)

0
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hf24-21:23
BC (3,2) _	 (5f)

.hf24 + 2f23

BC (4,1 ) = hf
12 - 2f 

11	

(59)
hf12 + 2f 11

and

BC (4,2) = (BC (3,2) + 1) 8f 
11 - 

2h2f 
13 

J+ (BC (3,2) -1)

2f11 + hf12

2hf12 - h3f14

	

+ 2f	 ^	
(5h)

hf12	 11

	

where coefficients f 	 evaluated at x = R.

Now the matrix generated by equation (3) is an n by (n + 6) matrix

which must be transformed to an n x n matrix through the application of

the boundary conditions. With two interior nodal points, for example,

eight nodal points are used to model the domain:

	

n	 R

f
X	 x	 A	 kx 	 k

	

1	 2	 3	 4	 5	 6	 7	 8

The resulting matrix equation formed by repeated application of (3) is

	

a ll	 a ll	 a13	
a18	

Y1	 bll	 b12	 Y4
r

	

a 21	 a22 a23	 a28	 Y2	 b21	 b22	 Y5

Y$
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The boundary conditions are stated in the norm

Yl = BC (1, 1) Y4 + BC (1, 2 ) Y5

Y2 
= BC (2, 1) Y4 + BC (2, 2) Y5

Y7	
BC (3, 1) Y5 + BC (3, 2 ) Y5

Y8	BC (4, 1) Y5 + BC (4, 2) Y5

Substituting these into the matrix equation the eigenvalue problem

becomes

a14 a15	 Y4	 b11	 b12	 Y4

a24 a25	 Y5	 b21	 b22	 Y5

where

a14 =
a14 +

a
ll

BC	 (1 ,1) + a12 BC (2,1) + 
a17 BC	 (3,1) + a73

BC (4,1)

a15 = a15 + all BC	 (1,2)
+ a12

BC (2,2)
+ al7

BC (3,2) + a, B BC (4,2)

a24 = a24 + a21
BC	 (1,1) + a22 BC	 (2,1) + a27 BC	 (3,1) + a 2$ BC (4,1)

and

a25 = a25 +
a21

Bd (1,2) + a22 BC (2,2) + a27 BC (3,2) + a2B BC (4,2)

At this stage the eigenvalue problem has been reduced to the form

[A] {y} = a [B] {Y}

which several readily available coa;1puter routines can solve.

For convenieltce, the International Mathematics and Statistics library

(I19SL) edition 5 routine EIGZF was used to solve the problem, once it had

been put in the standard form. It should be noted that the matrix equa-

tion equivalent of equation (1) with boundary conditions (2) is not

necessarily symmetric, requiring a sophisticated eigenvalue routine.

.^IA.
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Subroutine EIGZF was found to work well for all cases and provided

complex eigenvalues and eigenvectors. With only a few exceptions, the

imaginary parts of both the eigenvalues and eigenvectors were zero.

Use of Program CONVECT

To solve a particular eigenvalue problem the user of program CONVECT

must

1. punch cards with the coefficients of the governing equation c 

i = 1, 7, and insert them in subroutine COEFF;

2. punch cards with the coefficients f ij , i = 1, 2, j = 1, 4, and

insert them in subroutine SCOEFF; and

3. punch data card(s) with input values for

ETA : left end of domain

XF : right end of domain

L	 . wave number

NUMDIV: number of divisions of the domain

The data card(s) are punched in the format shown beli

L	 NUMDIV	 ETA	 XF

(110)	 (I10)	 (FlO.4) (F1O.4)

The coefficients c  are specified by assignment stag

CM = cl /2.0/DX5

c(2) c2/DX4

c(3) c3/2.O/DX3
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c(4) =	 c4/DX2

c(5) =	 c5/2.0/DX

c(6) =	 c5

and

c(7) =	 c7

The coefficients fij are specified by statement functions of the form

F 71 (x,w), F12 (x,w), etc.

where w is a wave number. Both arguments must be included, even if both

are not used. On the printed output the program will provide, among other

things, the eigenvalues and eigenvectors as complex numbers. A single

eigenvalue or element of an eigenvector will appear as

(real part, imaginary part)

For the 35 x 35 matrices used to solve the critical Rayliegh number prob-

lem, central processor times of slightly less than 20 seconds were typical.

Verification of CONVECT

To verify the accuracy of-the program, a sixth order eigenvalue prob-

lem for which one solution could be determined analytically was solved.

The verification problem was 

	

d +k d5 +k2dy +k3d^+ + 0	 -_„k6Y

	dx	 dx	 dx	 dx	 dx

with boundary conditions

y= d= Oatx = O,7r and d 	+k2gX = 0 atx=0,n
	dx	 dx	 dx

1 This verification problem was suggested by Dr. Bernard Durney.

i
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A particular solution of the equation is

y = Asinkx + Bcoskx

After applying the boundary conditions the solution is reduced to

Y = Asinkx, k = 1, 2, 3, . . . n
where k is the characteristic value and sin kx is the mode. The problem

was put on the computer in the form

6	 5	 '+	 +f + dam' + _
dx6 dx5	dx	

dx3 	 dx2

with the boundary conditions

y= dly 	 atx = 0, Tr

dx

and

6—
 +fix = 0 atx =0,Tr

dx

Thus the critical (minimum) eigenvalue was expected to be

k = (-A)
1/6

 = 1.0

and the mode y = sinx. The results are plotted in Figure 9 and show good

convergence. The convergence of the convection problem (see Chapter III)

is shown in Figure 10. Some instability was present when fewer than four

interior nodal points were used to model the domain, but these instabili-

ties disappeared as the number of equations was increased and the solution

converged to two significant figures at 35 equations.
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n	 r.	 r	 '^.	 r	 n	 r	 n	 w

Number of Equations

Figure 9a: Verification of CONVECT: Convergence of Eigenvalue. After

10 equations the solution has converged to within 1% of 1.00, the

exact solution.



W

58

^•	 ^	 M	 •	 •	 w	 .Y	 M	 M	 1..

x Axis

Figure 9b; Verification of CONVECT Convergence of Mode. Solid line

is a plot of sin x for 0 < x <- 7r and is the exact solution to the eigen-

value problem. The squares are the elements of the eigenvector com-

puted by program CONVECT The figure shows good agreement between

exact and computer solutions.
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Figure 10. Convergence of Rayleigh Number. Solution of annulus problem

is plotted for up to 40 equations. Some instability is present with less

than 4 equations. 35 equations were used in the numerical solution de-

scribed in Chapter III.
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Included in this appendix is a listing of program CONVECT and

sample output. The output is for the rigid boundary annulus problem

with L = 1, n = 0.4, and NUMEq = 10. The first two pages of output 	
i

describe the formulation of the problem, ending on the second page

with the matrices A and B ready for input to the eigenvalue routine.

On the third page the solution of the eigenvalue problem is printed,

with eigenvalues representing the Rayleigh number Rl and eigenvector

F	 representing the temperature variable e. 6 is arbitrarily normalized

so its largest element is unity. The minimum eigenvalue is R 1 = 2053.01

or, equivalently, Ra = (.6) 3 R1 w 446. The corresponding mode is
j

.556
.	

3

.875

1.00

.988

.890

.746

.583

.420

.265

.125
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a

PRCGASM cOfiVEC
s tlti*4T,CUTpUT^TAPES^I^PUT ,TAPEbROUTPUi1

USING T 4E FIN M-D IFFEItE110E METHGQ. TH:3 PAOSriA :1 SOLVE$ Ay
DIMESSICNAL. SIXTH-GAGER EIGEVVALUE PROALRM 4 110 TPO ZEQJ 0AGERs

F
TAa Sj=41I OPCEi ANN TWO FOURT H OROER SOUN.7AKY C3;r0:T:+.;+5.
FL'RT'{EA DOCU44ENTATICH IS TO RE FOU40 IN

1 -

C CGX•	 S.L. IL9T61	 FEASIBILITY Of A ZERO GRAVIiY GEOCYA _.40
C WERIPENT • MSC thts1st CEPAR'MFNI of MEJH:..4ICAL

3 E66IN EERING9 CCLGRa00 STATE UNIVERSITY.	 F;;itt CCLUNS
;. CCLORA 00

NOTE-- TwE USSR MUST SUPPLY THE ZG9F9IC : EI+TS CF T"G E ]U;.T13N
ANN T'• , iOU;404&RY CGNOMO NS IN SJ34 :11TINES CJZF X	 AUD Jy1► .t=
RESPECTIVELY.	 IMOGRtIL4T 1ARIABLES 14 t',E PROGR.N ARE

,.,
^

C?^ 1 NFUt	 ^
^

I

1

t	 WAVE NUMBERS
titt 10 01 11	 %UM3ER OF '3IVISIONS CF ^OMALh
$i A	 CCCA OINAT= Of LIFT : u^. 3F 33MA1 1

' rf	 CCOR3IA4Ti GF RLGHT : y0 of OcralN

Cti CuI PUT ITO SUBRCUTINE E.M%1

v.11:3	 NUMBER OF E3J A TIQNS
.ST 9t1L .J1 	 MATRIX A 3F STAnDAR3 — FOP.i R:GE^iVALJE	 ?u3L_^!F
ji: , J1	 ASSCCIATEO MATRIX 3 3F E :rc.AVALJ Z 3^L34t"

CUR: yv' wxEGUT:.Cu	 -

1
x	 PCSITI"N OF N30E

_r	 SPACING SETwersl MOOES
C4:1	 CGEFM^,:E'4TS OF GOVEV11'4 c3UAT:.!

BCulJOARY CON:ITION 147219
i iriz(D	 iel514t-•+A%0 aJOE OF	 E:U..T:O •i 	 1

:&4	 SRR3R PARAMETER F ROM 4OUII•+E EIGZF
3	 ;:ts 1 	 NUM4Q EY	 iNU4=1061	 MATAIA Of GJJLA;iV44 i3UAT13N

tL:	 ;G46 REPRE30TATION OF AAVE NUMJLQ	 LI
! ♦ E.;A# XF, A.i.A.RLj

r:.St„i55,331.3I3':r351	 ^

•A14L.4,11 .;Jry 	 !S),JCtw9211CCrf

sEAO iN3 :HECK :RPUT CATA

^J	 rah T l;iV:

1'i3i7,21	 L,Hi:r3IY . ET1.,xF
IFI^;c^^;1 ► 	 ^zao. w^

+.A	 C.104t?I.ut

PRYGINAD PAGE . IS
UP I WR1	 QU.AT,I'ry
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i

41PITE16921 L9KUMCIV9ETA*XF

Ii9ITI.:LIZ=

IPAGEit
LINEzS
x*ETa
Ox*()(F-ETA)/FL3AT IfsUPPOIV)
DXG*Cx••s.o
L1=(L+;1•L
2L1*FLOAT1Li1
Cv 53 I *19 +1
CC 5', .1 i 4 9 iI
.1 419.0=G93

5: Co•ifltru,
JiU1E..--NZ.4 ?IV - i
Cc 1J,: 1 3 11,% •'EO
30 1:C i:L9NUME2
w,"i^^tllJ1 Y•2.i1

;:: Cat+TIt.UE ,

FC- MV 44t'S THE A M+Tk;x

E3't'3s^U rC. Y+:
t.a

•	 x=x+Dx
CALL CC--'Fr(C)

J	 •
^tI-391-31x^1.3/9xb-.t11
»tI- 3ri -?)=-5.3/CA6+4.a1 • Clil+G 12	 3)
»II-391-11 1,+1 Soo /3x6-5.3•.'1.1-4.J*;;(2)+2.u`;{31+:.(4)-i.(5)
^1 t- 3 911* -23.G/t3xo +O ali•L+{^)-^.^^{i {i1+^^ {^1 1
1eI + 39E ► t) *t15.^/DxE+ss.3^Ct11- 4. 3`^i?1 -^,3';:111+::(..::y131

+21=-59J/Ox6-L.3 • v111rG12)+C 131
Ati-391+3)=♦1. J/3xQ+C [1)

iP lL:1:E .iu69
hv ITS (5961
^.) i:c is:9kUCcQ

^iITEt6.3) tAti9J19J*19^Etia)
4ZTTE169141
LI'icxLlk_^3

5:^ CC`+TIt,Uc

w;IT_(691)
AJ ITS 16 9 5) 1R1+51I19Is19hL'ME31
i :'^E zL I t.E+ 2

'4 0!Ol Y T"_ + MiLtRIA TO AGC"NT
F: 2 ?CU..J»RY C;.'4CIf:6rh5

8.',NGINAL PAGE T

POOP, QUALITY
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CULL nGUFFISCI
IFiLIt.E •GT• SW CALL NWPGtIP AGE,.INE!
WPITE4bv31
WAITE(bo4l iiBCII^^I^Js1^21,t=l,yi
L:'^EsLIt^B+r
03 30G IsitSUN£3

f^

LzFT ENO
AtI,4I=411941+A(191) 4301190 +A(I.ZI63C42,1I
A(1911)sA(193)+AtI.li•BC41rZI+AIItZ1.3Ct2•2I

FIGHT ENO
4t I•t^uMCIV+II=At I,WGIV+1! +A t2• NU -40IV+4I •ECI3• l3
#4 R I ,hU MCl VI-S) •$C t4 9 1)

se : •hi;rtOl y +21 =at I,NtMDIV + EI ♦ A SI. f4u.4010 41 6 sat IPZI
1+-I IstiUe!OIY+ y ! •gG I^c,2?

333 G3:.TIi.Lc

i	 CISC.:FC UN+N ME0 ELEMENT; 3F TmE MAT21A A.
t

Jd'+Csl,U^' 'JI1+2
37 54w I=19hume3
G:. 50C J349JEND

3

J'+3=J-3

ASTCt:.Jy3I=AII.J!

5:.: CV4TINUE	 a

IF(Li `̂ e .GE• 150 ? • #U NE.1l .:Mtl .'lk?^tI P; 3e.Ll#»3
^aITet£•3!
7J 7JG I=L,hUMEQ
^?:T'Io.S! iA?TO t:•.i1•.J si•'is!!c;7
^FlTcib.la!	 -
LlNC LI#E ♦ 3

7'.1 GONT V-UE

GC4E;ate 9 y a*aiX FaCtA NHS

If tLII:E .0». tS4-NUMECIf' Call
^+?IT£tb.5!

CC 3ZG J=1,NUME.3

9,3 6.- .4 t I Nu a

Et1•IlsFt!5II!
%RITE(6.5) I9tI,J1,JxlpNUHE3i

JCL CCNTI!Us
L.'NCxt ll iO4UME3

C04PUTE EIGENVALUES AND Ej2j4VECT3g7b ANJ ARIV 3Vt 4 F-3,uLT
3
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G3 TO 33
M

1204 CCNT'stluf

ST 3p

i rG+RMATI ly l •2xl +T ME EIGEIVA1.uE vgg3j e 4 13 FC=y utATED WLTH••/%/ v4GM
!	 L	 hut+OIY	 ETA	 XFi

2 F-^RMATt2I14s2F10•41
3 FORNATI /9 1OWBOUNDARr CONOITLON xr^Ix+1
. FCn`taTt312°_i3.3^/1^2r1R•31
3 FC g 4AT ( 12Elar 3)
5 FaAoAT [/•:'Jxq"A MATRIX BEFORE RE0uCTIOR`)
T FC?MAT t/,4.3X1.+RMS•1
A F"?4AT( /+ 2x.•: MAT R IX a;TM 3=43ART GCt.]ITIZ%; *)
} '-Z .T^tT1/r2X• ag !+AT.RI x•1

:w FCR.4 aT ill+ 1

5i1°RCt; TIha +1 ;1pG[FMGE^Gi^1E1
I47£3i 2, P»GE,LINE

*...«r cr^a^^ut7 F.^ snudl.l!7: oC} i:iT ►a T.]	 SIAGe
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SUNCUTIN COEFF(C)
J	

T}+:S KaLTINE C4♦. CuLATES THE CC£F F &VITENTS OF TN= GC ViRNjhG
EaUAT13N. USER MUST SUPPLY STITEMENTS GIlt TmiOU GH Ct7}.
GV nr4Clo/CCf F/	 .
OETa.xF,x,Ox.4L1
	 w

DE AL CtTI

:x2sGx•Ox

Cx3:,xZ•Cx
0xas7xx'rX2
ox5 max 4•Dx

LSitxrlj.:/^/t.0 /Gx5
•	 .t^t *rc=e.3- 3.3*^Llt/tx••2t /cxa

.:[3t:r I lolt.,i^^'w. ^*^L!} /t x •+31 /2.0/Gx3
C I41.xri.3.^• 4.L1^^Z-42.','2L1+72r:i}/Ix••rllJx3
''.tSl^rly.:•WLI••2-:^.^'^1.31/Ix•'^} /2.0 /Jd
v i ^ t ^+ t iLI'• 3-d. 1`x#.1'• 21 / [ ^i••5}
Ct r1= %61•:T.4/ IET+I .1.0 }/x•rS

r	 i:TUAP.
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i

_^u^^i7UT : trE 3CG$FF(aCl

T y ;5 tX INE G=•Ic;FTEE THE SQU'N3*l V' CCr. J.:TIF'V 4Arkz x, J3e3 oust
Su OPLY STATEMEVT FUNGTI3Ni F11(xy+11 TMR,)UGH F24(X,wi.

+eT..xF,ft.3x.,YL1

F.SIY1^11s:.^

}i4(X,d1s^ ( q .3-,II /^c^s2

♦ 71, (x, rt1 J.4
F?SIt.A)=#-1•v.

•	 42 r^r+•2` A Z_ : J(	 i

i: t_.i1 x { 7X•FtrL ( L T..,RLiI ft.3 • F23[c3 +, ^t.1 )/
•	 I}x•^FalwT^yRLll - z.;^r'^3( % T^r=.11121, I3..: 1 ;r. 3
J;13.11X:.1

.(.1,%1*()f#":Z4IXF . -3t1)-c . 3•FZ3 [ XF.4LiI
+	 (^x+'2s.(%-'yF^ili2 m PFzi ( YFoRL:11

?s.11/I1=(1V( ? 1 11 . 1•vl *( Z	 0X2 09 13 9 I TI tkLLI i	 11 ( CTR.26211/
^	 (^k^F1? ( ET:..+if..11 - ^.uFi1x(MTl.y^:.li)
r	 r11:(2x11 - 1.31•(z. .;*,)x*Fizizr b:9 4LII—	 ( ET 1.	 1T/
.

	

	 t;RO'F12lLUv FLi1 - 2. 3 41 F I t( ETA 9R,1)1
,'(:,Z1=!i' 1*F:2 (ETrrkLi)*2.3%Fllt_f,syi.L111/

+	 (:A"12IEtA v ;Li)-2 . : 'Fll( T4 ,F,1,111
s:Iv.t1=S ZX+F,?(;Fy^L11-2.1'=11IK^,-Lilt/

♦ I. awF.. 2 ( OL 4. ) ► 2*J*FIt ( XF,.RL1)!
?. ( 4. ;1-1?Ct392)+ L. i.1*I 9.3 •Fii('( F ,-I Li1-2.' & )if .'131XF.i.11)/

► 	 ("o 1' FillXFokLiI+CX+F12()fF.-^t.111
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_	 s

5UMCIITIN. EtrjEhINURE01

T41S SUBROUTINE CALL S THE IMU COITION 5 RCUT 13C EIGZF TJ : G:IPUTE

Tr.: UGENVALL F S ANO h1GiNVEOTCRS OF MATRIX A 440 mATRix d.

•	 vGMNCN /E1GEl4V /.
r,^t35.391.8{36.391

y
REAL Av3

r
C^^PL-x

•dLF^I331•LA»30AI331.Zt35.3S1

ZEAL
r^gT:.I331•itK[Ps0J1

r	 a^iT=(5.:1
w'IT : tn p 21 NUMEJ

M
GALL cIvZFI :. ♦ 33•+35 • i+UM^i • 2^aL ? A•3ETG^Zr35rdK.IIR1

;F (aK I:1 . LT. 1.01 F rw.FQ'1s i0F1WEU.
:FiwRl21 aGT. I.:+ ..LNG • WK(il .LT. : 30.3) PiFRl z.'. HS;.T5;r+r.T.Y
Ir('AK(;! * "PT * 14C.G1 PPFR"l,0H0GG2,Y
s•^iTE{7•nl RRF +.M

n31T:to..J1 a£R

0r, 23G I=isSU ME -)

Trt&tdl ( L^'"dcl ( I)VI:i •-+UM•:31
6ilTE 15.5}
Lr 33: Isif numea

WRITE{c#4) 4;. (I,J)•J2i•NUAE'1}

F3,izs+dTlis i•3g m Ty e EisENVA6UE -2:W4 .s y, :33 S:.oZJ o+:TH,J./•l..A
*W4E:}

Z Fr,?M+Tt1i3i
3 F •̂ RMdT { iM 1
t F:.RMll1,HCr34M NOTE-- THE ALG04ST 4M 4.5 404<0 PAL;l	 _
7 FZ4" "AT( 1M^C • 43" EIGENVSL.UE3 LAM334 (i ) ..+ L^°l3Jr' (1tU.+1[rl .ic- }
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Free -surface boundary conditions on temperature are identical to 	 t

rigid surface boundary conditions for temperature. 	 Velocity boundary

conditions for rigid surfaces are (Durney, 1958a)

PL= PL" -0	 atr

From equation 10 (c) we find the equivalent conditions

DL 6L = 0	 atr=n, 1	 s

and

2d	 [r3 DL 0L]=0atr=n,1
dr

E

By inserting the definition of the operator DL these conditions can be

wri tten

( 14 - L1 )	 d2B Ld4 eL 	 8	 d3QL.^.
E

+
d^	 r ^^	 d^

4-2L	 d9
L+--- I 	=0	 at 	 n, 1

r	 dr
S

k
and

2d	
deb'ZL	 r	 -	 9L	 = 0	 at r =	 n, 1.

dr	 dr	 r

y
The mode of the free surface solution for wave number L = 3 is

d

shown in Figure 11•

i '
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Figure Ila. Free Surface Solution: Mode Plot shows 0 L 3, from

inner annulus boundary to outer annulus boundary.. 0
L 

is arbitrarily

normalized so that its largest element is unity.
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THERMO- HYDRODYNAMIC CHARACTERISTICS OF A

`	 ZERO—GRAVITY, SPHERICAL MODEL OF THE TROPOSPHERE 	 1

S. srivatsansm
_	 Research Associate	 • ^; ;^ .;^.,rors

Dept. of Atmospheric Science
Colorado State University
Fort Collins, Colo.	 SOS23

ABSTRACT fora these experiments d© not possess an important
characteristic of the earth-atmosphere system.

s A model. that exploits the radial inertia forces of
a rotating fluid contained in a spherical annulus A spherical annulus model (see Fig. 1), which has
is described.	 The model would be flown in a satel- meridional variations of temperature and the local
lite and experiments would be performed in very low
or zero gravity.	 In such a model it would not be
necessary to artificially simulate a radial gravity

--field.	 Thus small amounts of electrical energy
would be sufficient to perform experiments.	 Since
the only forces involved are thermo- hydro-dynamic
ones, electromagnetic equations need not be consid-
ored. r

^rINTRODUCTION ^^+e F QED

A variety of experiments have been performed under AFMxl.us	 r	 ra
usual laboratory conditions to simulate. III large-scale dynamics of the earth's atmosphere 	 Of
these the most successful so far are the cylindri-
cal annulus experiments in which a liquid is coef}
fined between two concentric circular cylindersl9.
A radial thermal gradient -- resembling the meridi-
onal temperature variation in the atmosphere -- is
imposed.	 Cameras are attache

l
 o record motions at I i

different levels in the fluid 	 The entire
system, including the cameras, is rotated in the
same sons*-to the earth. 	 Thus all observations are
made relative to the solid-rotation rate, A, of
the system, and they resemble observations of the Fig. 1.	 The experimental setup for the taro-
earth made by geosynchronous satellites. gravity, spherical atmospheric model.

The cylindrical annulus experiments have some of
the basic properties of the earth-atmosphere system,
viz., a meridionsl thermal contrast called barn- normal component of 11, cannot be used under normal

s elinitity. and a non-Newtonian frame-which is due earth gravity to simulate the behavior of the
.to the solid.rotation.	 Under laboratory conditions atmosphere.	 Such a model may be used successfully
both these properties can be varied. 	 Such varia- - under very low or zero gravity conditions. 	 It has A

r tions have led to important results concerning the been suggested that a zero-gravity, spherical model
breakdown of toroidal Car Hadley) calls. the *stab- must have a radial gravitational field. ^^Mulated
lishment of wave regimes -- which are asymmetric by the imposition of an electrical force 	 1 on the
with respect to the axis of oration.-- and the re- fluid..	 The consumption of electricity for this
establishment of the toroids purpose, however, is a st9ificant fraction of that

s available in a satellite	 .	 Bence an alternative
It may be noted that the tropics are dominated by should be found.	 We suggest here that the inertia

?
torodds (with a "weak" w	 e regime) and-the extra-

by wave regimes i ^..	 Thus. axially symmetric
forces of the spherical annulus model may be used
to	 thetropics simulate	 effects of a radial gravitational

and asymmetric regimes coexist on the earth.	 This field.
. coexistence is due to the meridional variation of

;the' local normal component of n. 	 In the cylindri-
cal annulus models the angular velocity fl is every-
whom.-normal to the base of .the.cylinders. 	 There_
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"FORCES ACTING ON THE FLUID IN THE MODEL

It is well -known from the governtit equetiomof
meteorology [see, e. g.. Holtiner J, Holton ]
that the forces to be considered in meteorology are
L. the inertia forces due to the rotation of the
coordinate system, viz. the centrifugal and Corio-
lis forces, ii. the pressure -gradient forces, iii.
the buoyancy force, iv. the viscous forces and v.
the gravitational force. Other kinds of forces are
of negligible importance in meteorology.

Ne note that (static) atmospheric pressure is due
to gravity. Thus pressure -gradient forces are
Indirectly due to gravity.

Iu Fig. 2 we present all the possible components of
the inertia forces in a spherical coordinate system.

rQV

SOUTH POLE

Fig. T. The components of the inertia forces in the
spherical model. The synbols,are described
by Eqs. 1 to S.

These are represented mathematicaay as follows:

ell • d Cos #,
(radial centrifugal force),_ 	 (1)

102	 -rA2 cos ♦ sin 4, .
(north-south centrifugal farce), 	 (2)

;1 • 2Qu Cos ^.
(radial Coriolis force), 	 (3)

i	 f2 r -2IL sin 4,
i	 (north-south Coriolis force), 	 (4)

and f3 *. 20v sin 0 - 2lkr cos 4.

is,1	 f3,2	 i
(east-west Coriolis force). 	 (S)

In the above equations r is the radial distance
from the common center of the two spheres in. Fig.
A the-angular velocity of the system, # latitude
angle, and u, v, w the eastward, northward and
upward components of motion, respectively. The
components of motion are positive . if in the sense
mentioned above.

The distributions of these forces clearly obey the
following limiting conditions:

ml' m20 f1" f3,2 + 0' as	 ' '• ..	 (b)

6'2, fZ, E3,1 + 0, as # - 0	 (y)

Combining Eqs. 1 and 3 we obtain the radial inertia
force equation:

gH • r02 c022# + 2Ru cos 1	 (t)
t

In Eq. 4 the left-hand side term is analogous to
gravity and hence is denoted by S; the subscript K
stands for "model". Lot us determine the relative
magnitudes of the two right-hand side terms of Eq.t.
The ratio of these two terms is:

211u cos 4	 2u	 (9)
re Cos 2 4	 cos

The right-hand side (rhs) of Eq. 9 represents a
lossby number, denoted by Ro.

It is well known in meteorology that the condition
for the prevalence of quasi-geostro^4 c equilibrium
is that Ro << 1 [see, e.g.. Holton 	 ). Since
tropospheric motions are quasi-geostrophie. and
since we want to reproduce and study such conditions
in our model, we may assume that for our model
experiments also Ro « 1. (The validity of this
assumption can be experimentally established by mak-
ing rl small. See Eq. lb below.) Using this value

In Eq. 9 we see that:

261u cos 4 <C 102 Cos2+.	 (10)

That the second rhs term of Eq. t is negligible
against the first rhs term. Therefore Eq. It
reduces to:

EH r rR2 Cos 2+.	 (11)

Equation 11 may be -interpreted as follows: In a
spherical. inviscid, hoeoacneous. rotatiot flail  most
not acted on by ravitational forces. the radial
centr uroforce acts as a s phericall y ;:symmetric
ravity-like force.
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CHARACTERISTIC PRESSURE DISTRIBUTION IN THE
'MODEL

The hydrostatic equation is:

dp + - g P dr,	 (12)

where dp/dr is the variation of pressure with the
(vertical) coordinate r, g the acceleration due to
gravity, And p the density of the fluid. Let us
assume, for the moment, that p is constani. Substi-
tuting Eq. 11 in Eq. 12, and integrating from r,
the radial position at which.the pressure is to be
determined, to ri , the radius of the inner sphere.
we obtain:

p{r.+)	 02 (r2 - r2) cos2#.	 (i3)

From Eq. 13 it may be seen that the pressure due to
the radial centrifugal force is a maximum at the
outer sphere radius C r n r ) at the equator
(f - 0, cos # + 1). The pressure -diminishes to
zero at both poles; it is also zero at the inner
sphere (see Fig. 3).

NORTH LATITUDE	 SOUTH LATITUDE

Pig. 3. The distribution of static pressure due to
the radial centrifugal force in a spheri-
^al, zero-gravity model of the atmosphere.

Units: dynes cm-Z.

DISTRIBUTION OF ZONAL MOTION DUE TO INERTIA
FORCES

Fran Sq. 13 the equation for the north-south pres-
sure-gradient force is obtained as

2
Pr2 + —r(r2 - r,) sin 0 cos 4.	 (14)

Combiring this force with the other north-south
inertia forces (Eqs. 2 and 4) we obtain

3
Tt y Ar (r2 - r^) sin ! cos + -

ro cos ` sin - 2An sin	 (IS)

`ORIGINAL` .PAGE IS
OF POOR QUALITY

If the meridionst acceleration dv/dt 1 0, Eq. 1S
yields	 s

r2	I
u n -	 cos	 (16)

The following points concerning Sq. 16 are worth
noting:	 ... ,w...^.....	 ..

i. At the equator (1 a 0) every one of the rhs
terms of Sq. i3 is zero. 'thus u is indeterminate
at the equator. Therafori. Eq. 16 is invalid in
the vicinity of the equator, and the maximum magni-
tudes of the zonal motion due to inertia forces may
be expected in the middle latitudes.

ii. In the above considerations, the effects of
viscosity have not been taken into account. For
any viscous fluid a no-slip condition has to be
applied at the spherical walls. Hence the fluid in
contact with the walls will have only the solid-
rotation velocity.

iii. Since the easterlies represented by Eq. 16
are dissipated by viscosity at the walls, angular
momentum balance in the model requires that wester-
lies be dissipated elsewhere. This might be
expected to happen in the tropics, where viscous
forces might help tablish toroidal calls in the
manner of Pearson { . '

iv. Since easterlies are established in the
midiatitudes by the inertia forces in , the spherical
annulus model, it is essential that the model be
heated in the equatorial regions, aid cooled near
the poles to produce westerlies in the midlati-
tudsm, as in the earth's atmosphere. We also note
from Eq. 16 that the easterlies established by
Inertia forces :an be reduced by decreasing the
value of ri. if .rI - 0 (i.a., for a. spherical

fluid muss), the zonal notion due to inertia farces
is identically zero.

GENERATION OF THERMAL CONVECTION

It was shown earlier that the radial cent:ifugal
force is such larger than the radial Cori-+lis force
under quasi-geastrophic conditions, and that the
radial centrifugal force is a function of radial
distance r and latitude $. When the radial centrif-
ugaI force is the dominant radial forr7- the war*-
ing of the equatorial regions near r l . r .e inner

radius, will not lead to thermal convection, since
only denser fluid is drawn to the outer radius r2.
Therefore to simulate cellular convectior, the
u must beheated at r2 rather than at , ri . we

not* also the following: 1. Even if the entire
outer sphere is heated, convection will not be.
generated at the poles. since the radial centrifu-
Sai force is zero at these points. 2. The heating
of the outer sphere leads to a radial distribution
of tempersture in the model corresponuing to the
vertical (radial) distribution of potential tempera-
ture in the atmosphere. This is the proper simi-
larity between the incompressible fluid in the
model and the compressible atmosphere.
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-CONCLUSION

It can be readily shown that the meridional pros-
sure gradient due to the radial centrifugal force
(Eq. 14) leads to the establishment of westerlies
which increase in magnitude radially, under Sao-
strophic cvaiditions. However. the meridlonai
centrifugal force counteracts this, and establishes
easterlies in the middle latitudes (see Eq. 16).
Therefore the establishment of westerlies in the
midlatitudes of the spherical annulus model demands
the imposition of a meridional temperature gradi-
ent. It has been shown above that heating the
outer sphere, rather than the inner sphere, leads
to thermal convection under neostrophic conditions.
If. however, zonal velocity u becomes comparable to
(Jr, so that Ro ti 1 (see Eq. 9), the radial Coriolis
force also becomes important in establishing
thermal convection. Under such conditions the

-. equations of-motion are quite non-linear. and the
resulting circulations have to be studied through
actual experiments or through numerical models. We
have begun a numerical model study at this time.
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`	 "STRACT

Very good agreement is shown to exist between the meridional distributions of the aonal wavenumber a of
rapidly amplifying baroclinic waves on a sphere and of an average wavenumber if of "grid -scale" atmo-
spheric eddies. As a consequence, the tonal wavelength of both barocliriic and atmospheric eddies remains
virtually constant, Le., within a factor of 2, over the extratropics. The values of to at different latitudes
have been obtained by using linearized bar"linic theory on different meridional profiles of the unperturbed
zonal wind (MPUZW). Since they agree with It, atmospheric eddies are, in relation to linear baroclinic waves,
independent of MPUZW. In this sense It is controlled locally rather than globally.

The mutual dependence of the upward and poleward transports of (sensible) heat in baroclinic wave theory
is correctly formulated---as compared to a direct analysis of the first law of thermodynamics.

.... y

1. Introduction

Moura and Stone (1976, hereafter referred to as

M & S) and Stone (1974) have derived a number of
interesting properties of linear baroclinic waves. They
have compared their results with available meteorol*
ical statistics such as those of Oort and Rasmussen
(1971) and found quite good agreement. In the case of
two specific results, additional methods can be used to
infer the properties of atmospheric eddies, which may
then be compared with the M tit S results. The methods
we have alluded to will be discussed in this paper.
The results under consideration are the zonal scale of
eddies and the interdependence of the poleward and
upward transports of brit.
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NO. 1. The latitude dependence of sonal waveaumber for linear
baraclink Naves as a sphere. dots, near -neutral stability (aym-
metric streamfuncgaa); circled dots, far from neutral stability
(symmetric strearainction); circled cross, far from neutral stab-
ility (streamfunction andsymmetdc with respect to the equate_).
Abscissas, of points refer to the latitudes at which the geopotential.
elgenfunction, at the top level of the three -level model of Mourn
and Stone (1976), reaches the maximum magnitude. Each point
corresponds to a different meridional profile of the unperturbed
zones .rind.
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x. The zonal scale of eddies

For the study of this property we consider the
spherical, two-layer (three-level), linearquasi-geo-
strophic model of M tit S. M tit S use several meridional
profiles of the unperturbed zonal wind (MPUZW).
Their results concerning the zonal scale of linear
baroclinic waves may be summarized as follows:

1) The nearer the peak in perturbation geopotential
is to the pole, the smaller is the zonal wavenumber (ts)
of the most unstable mode (see Fig. 1).

2) As a consequence of 1), the zonal wavelength near
the peak in perturbation geopotential is about 5000 km
on a sphere of the sire. of the earth. (This wavelength is
virtually independent of latitude in a broad mid-
latitude belt.)

3) The zonal wavelength is proportional to the
radius of deformation at the latitude where the max-
imum of perturbation geopotential occurs.

The author (Srivatsangam, 1976a, b) has described a
parametric method which yields an average zonal
wavenumber If for atmospheric eddies through the
geostrophic meridional wind equation. Here, the
overbar deiiotes a weighted root-mean-square averaging
(for details, see Srivatsangam, op. cit.) Now,

;,_ (Ct'"YES"1 1(ofs cog#),	 (1)

where square brackets denote zonal averages and
asterisks departures therefrom. Hence [v"j, [s"]
represent the zonal variances of the geostrophic
meridional wind at, and the height of, an isobaric
surface, respectively. Also, f is the Coriolis parameter,
a the mean radius of the earth, # latitude, and j the



Tears 1. Height and latitude variations of the monthiy man values 2f (117 and the temporal coefficient of variation C(V)
of the average Zonal Wavq 'iumber (91).

Preaura latitude (ON)
(mb) 20 25 30 35 40 45 so	 55 60 65 70 73 80 85

a. M(if) for October 1%8

100 4.02 3.81 3.77 3.87 4.10 3.92 3.29	 2.70	 • 2.25 1.86 1.59 1.39 1.27 1.11
200 4.23 4.26 4.48 4.71 4.83 4.57 4.03	 3.47 2.93 2.41 2.05 1.79 1.49 1.25
300 5.13 4.88 4.95 5.16 5.10 4.76 4.27	 3.77 US 2.72 2.36 1.98 1.62 1.32
500 5.61 5.31 5.26 5.44 5.03 4.65 4.20	 3.62 3.11 2.63 2.27 1.69 1.61 1.27
700 5.05 5.17 5.24 5.14 4.84 03. 4.03	 3.49 3.07 2.63 2.21 1.88 1.61 1.24

1000 4.95 4.98 5.26 5.38 5.16 4.68 4.06	 3.63 3.35 3.07 2.70 2.09 1.55 1.14

b. CM for October 1%8

100 20 15 12 U 11 15 15 20 26 21 21 19 19 14

200 17 1S 14 13 1Z_ 13 16 17 21 19 21 26 20 25
300 12 13 14 12 13 l5 17 17 18 17 24 22 19 21
500 9 11 13 16	 - 12 16 17 17 17 17 23 20 19 19
700 14 12 t0 9 10 14 16 16 16 18 20 23 25 t8

1000 20 19 14 13 12 14 14 17 19 16 19 21 21 14

c. M(3) for February 1969

100 3.29 3.36 3.71 4.02 3.60 2.93 2.48 2.20 2.02 1.94 1.86 1.59 1.34 1.13
200 3.46 3.77 4.45 4.94 4.61 3.62 3.03 2.67 2.41 2.37 2.45 2.16 1.43 1.09
300 4.13 443 5.07 5.15 4.88 3.86 3.30 3.02 2.77 2.71 2.73 2.23 t.51 1.1S
500 4.60 4.73 4.88 4.92 4.74 3.79 3.36 3.18 2.94 2.84 2.81 2.14 1.50 1.18
700 4.88 4.67 4.86 4.81 4.63 3.91 3.43 3.23 3.04 2.93 2.66 2.05 t.52 1.18

1000 5.01. 4.93 5.S4 5.37 4.46 3.67 3.21 3.05 2.96 2.70 2.59 2.14 1.63 1.27

d. C(V) for February 1969

100 11 10 15 19 13 14 18 17 14. 13 17 20 21 18

200 13 10 to it 16 11 18 20 1s 12 17 25 .19 6

300 17 14 it 11 16 12 19 23 16 14 13 22 19 11

500 16 12 13 J 17 .14 20 23 is 15 14 21 19 14
700 15 13 is 16 15 11 17 22 21 17' 13 22 24 14

1000 1: 12 16 17 15 15 20 23 26 20 22 24 23 22

acceleration due to earth's gravity. From (1) it is seen
at once that $1 represents "grid-scale" atmospheric
eddies.

The daily values of V were computed at the 100, 200,
300, 500, 700 and 1000 mb levels in the region 20°N to
85°N using the National Meteorological-Center (NMC)
data for Oc tober through December,1968, and February
through April, 1969. The hour of observation of the
data used here was 1200 GMT, and a 5° latitude by
5° longitude grid was used.

The data on monthly mean values of rV, denoted by
M(R), are presented in Table 1. These are for October
1968 and February 1969 only, but are typical of all
the six months for which computations were made.

From Table 1 and Fig. 1 it is readily seen that result
1), and hence result 2), of M & S are in good agreement
with the ensemble characteristics . of atmospheric
eddies as represented by V.

It may be repeated here that each data point in
Fig. 1 corresponds to a different MPUZW. However, the
data of Fig. 1 and Table 1 show excellent correspond-
ence. From these, the fallowing conclusions may be
m

atmospheric eddies in any particular latitude through
linear baroclinic wave theory, a MPUZW which would
yield a maximum value of perturbation ge )potential
height at that latitude must be used.

Conversely, the zonal wavenumber of atmospheric
eddies at each latitude is such as if the maximum
magnitude of perturbation geopotential height occurs
at that latitude.

Also, from the last statement and result 3) of Al & S,
it follows that the zonal wavelergta of atmospheric
eddies is proportional to the radius of deformation at
each latitude. [This dons not contradict result 2) of
M & S. Since the radius of deformation is proportional
to 11f, which varies by a factor of 2 from 30'N to
90°N1 the typical wavelength of linear baroclinic and
atmospheric eddies varies only by a factor of 2 in the
extratropics. On the other hand, the wavenumber, as
seen from Table 1, varies by a factor of 5 from the
subtropics to the sublxwlar region. By comparison,
therefore, the wavelength rather than the wavenumber
is constant across latitude circles.]

ade:	 Now we turn to the question of the temporal variabil-
In order to derive the typical wavenumber of ity of 11. , Table 1 contains data an the temporal co-
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Tastx 2. Height and latitude variations of the temporal coefficients of variation C([e"]) and C([*"]) of the zonal.
variances of isobaric surface height and jeostrophic meridiotull wind.

Pretsure f atit» de (•N)
(mi;) 20 25 30 35 40	 45	 5o	 55 60 65 70 73 190 85

a. C([s"]) for October 196E
too 35 33 2& 28 29	 31	 34	 51 66 75 31 84 8E 93
200 37 32 32 39 35	 24	 24	 33 41 51 64 73 86 111
300 36 32 37 49 38	 • 25	 24	 25 31 43 56 69 86 116
Soo 31 33 45 56 39	 31	 29'	 23 29 45 51 67 83 too
700 35 31 32 39 42	 39	 31	 24 27 46 48 65 93 119

1000 44 29 35 22 51	 37	 33	 31 '33 34 41 57 91 99

b. C(COIJ) for October 196E
loo 3s 30 20 34 40	 31	 30	 36 42 51 62 67 73 36
200 27 31 27 41 41	 25	 32	 36 29 35 31 -56 63 93
300 30 34 35 46 44	 25	 31	 33 27 37 48 52 61 93
Soo 30 33 38 45 39	 26	 33	 3S 30 42 45 52 62 86
700 35 31 27 35 3E	 31	 35	 37 29 41 39 45 69 99

1000 44• 35 36 33 46	 48	 4L	 43 3S 29 34 36 60 90

t

i

efficient of variation of N given by

C(31) - 
or On)) 

X100,	 (2)

where e(#) is the monthly standard deviation of I
Using the data described above, QN). was calculated
for all latitudes, pressure levels and months.

The Co;) data in Table 1 indicate rather small
day-to-day variations in I A comparison of the
coefficients of variation of [v* s], Cs"] (see Table 2)
and N shows that C(ii) is only about one-half as large
as C([s*t]) and C([v*;]). From (1), then, it follows
that variations in [s"] are compensated by like
variations in [v*r]. This is confirmed by Fig. 2, in
which the daily values of [s*s], Cv"] and R for 65°N,.
200 mb and October 1968 are presented.

The temporal quasi-constancy of 71 thus achieved by
the mutual compensation of [s*=] and [v*s] indicates
that the results of M & S are valid not only on a monthly
mean basis, but also on a daily basis, i.e., for transient
atmospheric statef.

YONO

R	 :

FIG. 2. Daily values of the zonal variances of the geostrophie
meridional wind [v"] and the height of the 100 mb surface [s"],
and the weighted toot-Ineanaquare wavenumber 1t. Values are for
200 mb, 65°\ and October 1968.

Finally, the M(H) values for October 1968 and
February 1969 in Table 1 reveal rather small inter.
monthly changes. This is also true of the other months
for which computations were inade. Thus it appears
that in each zone V remains nearly constant at least
through the cold half of the year. This may be compared
with the phenomenon of vacillation in the cylindrical
annulus experiments (see, e.g., Lorenz, 1963, and
Pfeffer and Chiang, 1967). Vacillation is a process in
which, under constant conditions of rotation and
imposed radial thermal gradient, the wavenumber
remains a constant whereas the wave amplitude or
radial axis tilt varies cyclically in time. Since a remains
nearly constant in the atmosphere, a similar ensemble
average wavenumber may perhaps also remain con-
stant in unsteady Rossby regimes. These arguments
are, hoFrevcr, quite conjectural, and need verification
through d.tta analyses.

3. The interdependence of vertical and meridional
eddy heat fluxes

Stone (1974) has derived the following equation fot
the upward flux of the sum of sensible heat plus
potential energy [which may be closely approximated
by the upward flux of sensible heat (sea- Oort and
Rasmusson, 1971, pp. 50-S1)]:

In (3), 0* is perturbation potential temperature, u, a,
w the zonal, meridional and vertical components of
velocity, respectively, er*s, it* t the amplitude of perturba-
tion pressure at the top and bot(om levels, respectively,
and ci the imaginary part of the complex phase speed.
Eq. (3) applies to baroclinic waves on a 0 plane.
Since c;,=0 near neutral stability, [B*w*] is directly
proportional to 16 00]. N1 & 5 have extended this result.
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of Stone (1974) to baroclinic states far from neutral
stability, and on a sphere, and concluded that even for
these cases [000] is proportional to [6*0]. Therefore,
the first right -hand side term of (3) is negligible as
compared to the second.

Kuo (1956), examining baroclinic instability in a
cylindrical coordinate system, has derived equations
similar to (3) above [Kuo, op. cit. ; Eqs. (72) and (73)].
The numerical values givela by Kuo for the upward flux
of sensible heat are in order -of-magnitude agreement
with meteorological observations.

Srivatsangam (1976a) has derived the following
equation for the upward flux of sensible heat, from
the first law of thermodynamics:

c.D][w*T`]
— ^Jcs^ I`•^t(d[7''s]/2d1-{-[t^](^[Ts=]/2aa^}
+CwJ(aCT'=]/2a^)+Cv`T*]aCTJlaa^i
+k-r.j[T*aq*1a1]+Cu ][T*d9*1a cosOX]
+Cti][T*dg`la^]+CwJ[T'ag*la^J

+Ln`T'](aCg7/^^}ll (1+7}• (4)
In (4), c, is specific beat of air at constant pressure, p air
density, T temperature, r, the dry adiabatic lapse rate,
k=g/L, L being the latent heat of vaporization of
water, q the specific humidity of air, 0,' A, t and J
latitude, longitude, altitude and :time, respectively, and

y 9 r: ta[T]/dt+k-'a[g7 8f.
Eq. (4) involves several assumptions including the
omission of diabatic effects other than the release of
latent heat of vaporization of water and the negligibility
of triple correlation terms such as [T*v*ar/a4].

We see that only two terms on the right-hand side
of (4) involve the factor [v*T#]. An order-of-magnitude
estimate of all right-hand side terms of (4), using the.
Dort and Rasmusson (1971) data as reference, shows
that the term involving [0T*]d[T]1a4 is at least
one order of magnitude larger than the other terms.

Thus the formulation of the interdependence between
upward and poleward !luxes of sensible heat in bar(K linic
wave theory is in agreement with a direct analysis of
the first law of thermodynamics. However, very many
other effects are neglected in deriving an equation like
(3), although these effects are small. Thus, order-of-
magnitude agreement between the predictions of
linear baroclinic wave theory and meteorological data
may be expected even in the case of upward eddy heat
flux. This is indeed proved by the results of KtLo,
mentioned above.
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