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ABSTRACT

The results of research relating to the feasibility of using
a Tow gravity environment to model geuphysical flows are presented
in this report. Atmospheric and solid earth fiows are considered.

Possible experiments and their required apparatus are suggested.




INTRODUCTION

The advert of the space shuttle presents exciting possibilities for
developing physical models of geophysical flow phenomena that cannot be
adequately modeled in the earth's gravitational environment.

During the past decade significant advanceé in the development of
theoretical models of geophysical phenomena have taken place. For example,
the theory of new global tectonics has led to the development of many new
mathematical models of the solid earth. These have had a significant
bearing on the understanding of such important phenomena as earthquakes.

In éddition to the models associated with the solid earth, an atmospheric
civculation model has also been recently developed. Many of the components
of these models could be validated if a zero G enviromnment were available,

It is known that dynamical processes in various parts of the earth
are responsible for variations in the length of the day. These variations
comprise three distinct components: (1) seasonal fluctuations on the order
of 1x 10™% sec., (2) irregular decade fluctuations on the order of 5 xllo'3
sec., and (3) a secular increase in the Tength of the day by about 1 x 1073
sec. per century. The secular increase is associated with angular momentum
transfer of the earth to the moon caused by the action of gravitational
forques associated with the tidal bulge. Seasonal fluctuations are caused
by torques on the mantle produced by the combined effect of atmospheric
winds and ocean currents. The amplitude of the decade fluctuations is too
large to be accounted for in terms of interactions of the ocean and atmosphere
and geophysicists generally agree that these Tluctuations must therefore be
due to angular momentum transfer between the mantle and the liquid core.
The nature of the stresses that couple the core to the mantle must account

for the fluctuating torques at the core mantle interface which are implied
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by the decade fluctuations. The specific nature of these stresses cannot
be determined without detailed theoretical calculations of specific models
of the coupling process. In the past, symmetric models have typically
been considered but there now exists substantial and growing evidence--

to which satellite observations have made a significant contribution--
that render symmetric models increasingly inadequate and which demand
vefinements. These refinements must reflect dynamical processes within
the earth if they are to provide the keys to the earth's past and future
evolution. )

In addition to the above-mentioned problem in gecdesy, the following
problem has received considerable attention.

Fluid motion in the liquid core of the earth is widely accepted as
the cause of the earth's magnetic field through a dynamo action. For
twenty years no general agreement on the driving mechanisms of this fluid
motion has been reached, however. Both precessional flow and thermal con-
vection have been proposed and challenged as possible driving mechanisms
of the geodynamo. The concept for an experiment described in this work
would provide a better understanding of the problem.

The proposed apparatus would consist of a concentric inner sphere

and a slightly elliptical outer shell which would be made to rotate and

- precess. A dielectric fluid would be trapped in the annulus between the

two shells and a temperature gradient would be imposed across the annulus.

An alternating electric potential between the two shells would create a

 facsimile gravity field in the annulus. The facsimile gravity is shown

to vary as 1/r5.
The feasibility of the experiment is discussed both in terms of its
power requirements and the differences in Tlow produced by the strong radial

dependence of the facsimile gravity compared to terrestrial gravity. The
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working fluid is wodelled as a constant viscosity. Boussinesq viuid and
the characteristic value problem describing the onset of thermal convec-
tion is derived from linearized marginal stability equations. Solution
of the characteristic value problem shows that, for an apparatus whose
outer shell has major and minor radii of 25 cm and 24 cm, respectively,
with a spherical core of 10 cm radius, a 10.5 KV potential is required to
create convection at Rayleigh numbers one order of magnitude larger than
the critical Rayleigh number of the non-rotating case. The power require-
ment to generate the electric field is negligibly smail in comparison to
the heating power.requirements, which are estimated to be 1 watt. It is
found that the strong radial dependence of the facsimile gravity only affects
the magnitude of the critical Rayleigh number, but does not influence the
mode of convection. The mode is found to be identical to the mode for
constant gravity and for gravity varying as 1/r2. At a rotation rate of
20 vpm, it is calculated from the empirical equation of Malkus (1968) that
precession rates less than 1 rpm would create unstable precessional flow
in the apparatus. The experiment is to be considered feasible in any zero
or low gravity laboratory which can provide these power requirements and
operating conditions.

The first part of this report describes in detail the proposed zero-
gravity geodynamo experiment.

The final sections of the report contain presentations regarding

models and proposed experiments for atmospheric flow phenomena.




INTRODUCTION

Zero-gravity laboratories such as the NASA space shuttle offer the
unique opportunity to construct physical simulations of three-qjmensional
and large-scale planetary flows. A currently viable area of planetary
fluid dynamics research is the study of fluid motion in rotating, spheri-
cal annuli in response to a variety of driving forces. The results of
thisﬁresearch are useful in understanding solar rotation phenomena, motion
in the earth's oceans and atmosphere, planetary dynamos, and wore general-
1y, Fluid motion within many planetary interiors. The objective of the
experiment described in this work is to study the response of the 1iguid
core of the earth to driving forces created both by thermal buoyancy
effects and by the precession of the earth (see Figure 1), although the
concept of the experiment may have broader applications. To create a
radial, facsimile gravity field in the experiment, a near zero gravity
laboratory is required.

The goal of the experiment is to help resolve the apparent dilemma
created by Higgins' and Kennedy's |lcore paradox' which requires that the
radial fluid motion necessary for the geodynamo (Busse, 1975a) must
occur in a liquid annulus that is for the most part, thermaily stably
stratified {Kennedy and Higgins, 1973). On one hand, vigorous radial
fluid motion in the earth's liquid core is needed to explain the existence
of the earth's magnetic field, while on the other hand, the vigor and
possibly the very existence of this fluid motion is limited by the
stable stratification of the core.

From the amount of controversy over the driving mechanism of the geo-
dynamo (see Rochester, et al., 1975, and Busse, 1975b), it.appears that

even the hjdrodynamic flow processes occurring within rotating and




Figure 1. Precesion and Structure of the Earth. Shaded region is
Tiquid core of the Earth, with inner radius R2 of 1300 km and outer
radius R of 3500 km. The axis of rotation of the Earth precesses
with a period of 25, 800 years, The angle between the axis of rota-

tjon and the axis of precession is 23 1/2 © (Malkus, 1968),




precessing spheroidal annuli are not well understood. Understanding of

the magnetohydrodynamic flow which must actually exist in the geodynamo

is probably being delayed by the absence of a strong physical background
for evaluating the coupled effects of precessional and thermal buoyancy

forces in hydrodynamic flows.

If it is eventually determined that convection can occur in the
liquid core, there are still strong reasons to expect the influence of
precession to be important in determining the resulting flow patterns.
If thermal convection is found to be inadmissable as a driving mechanism
of the geodynamo, further study of precessional influences on the flow
patterns in the liquid coré will be essential (see Young, et al., 1976).
The fact that a large fraction of the energy dissipated by the earth-
moon system is probably accounted for by precessional flow and that the
‘core paradox' appears to impose a restriction on thermal convection in
the core strongly supports the need for careful considerations of pre-
cessional effects (Young, et al., 1976).

Core convection experiments appear to be a viable topic as a zero-
gravity experiment because (1) there seems to be a need to realistically
examine the effect of the 'core paradox' on geodynamo models and (2) be-
cause core convection experiments require the particular laboratory con-
ditions presently available only in zero or low-gravity environments, the
ability to construct radial, spherically symmetric force fields.

Although a physical simv.~tion of a magnetohydrodynamic dynamo is
probably impossible to construct (Jacobs, 1974) because electrical and
fluid-dynamic processes scale differently. another need for experiments
of general hydrodynamic flow in rotating, spheroidal annuli, arises from

the fact that current analytical progress and numerical studies of the




problem have dealt only with linear models, with thin shell or other

Timiting approximations to the fully spherical, thick shell geometry re- “

quired in a study ¢f the nonlinear flow processes occuring within the
earth's core (see, for example, Durney, 1968a, 1968b, and 1970, and Gil-
man, 1975). Justification of the concept of a zero-gravity geodynamo
experiment is ample. The important question is whether or not such an
experiment is feasible.

In this work the feasibility of the experiment is examined by de-
termining the conditions for instability in the fluid, both for thermal
convection and for precessional flow. Calculation of the conditions
needed to produce instability then yields the minimum power supply de-
mand which the experiment imposes on the laboratory. The experiment is
considered feasible in any laboratory which can meet this demand.

Four combinations of driving mechanisms are probably relevant to the
geodynamo problem: 1) flow driven by simple thermal convection in a ro-
tating spherical annulus; 2) flow driven by precession of a slightly
elliptic spherical annulus (see Malkus, 1968); 3) modification of ther-
mal convection by the addition of precession; and 4) modification of
precession driven flows by stable thermal stratification. Although the
1a§t possibility may be the experiment which addresses the effects of
the 'core paradox' most directly, it is the third possibility which makes
the largest voitage demand on the laboratory power supply.

Therefore, the calculations presented here are made to estimate the
conditions needed to conduct experiment 3. It is assumed that when the
conditions necessary for the existence of thermal convection exist simul-
taneously with the conditions which create precessional instability, both

thermal convection and precessional flow will occur,




The effect of the strong radial dependence of the facsimile gravity

(~ lg ) is also examined by comparing the wave number of the critical

r
Rayleigh number for g ~ lg~ with that for constant gravity and for g ~
1 r
rz '

In the absence of a rigorous mathematical treatment of the geo-
dynamo, either by analytical or numerical methods, experiments may be
essential for interpreting geodynamo models. The hypothetical experi-
ment described here may provide the most direct means for evaluating the
effect of stable thermal stratification and thermal convection on the

precessional geodynamo model.




EXPERIMENTAL CONCEPT

Flow in the Tiquid core of the Earth is characterized by the fact
that thermal buoyancy or (in the case of Kennedy and Higgin's 'core para-
dox') thermal restoring forces do not act in the same direction as the
axis of rotation of the core, nor do they act only at right angles to it.
Because the direction of thermally-induced body forces varies and because
the solid inner core has a radius only 0.4 times the radius of the liquid
core surrounding it, fluid fiow in the Tiquid region of the core can be
expected to be strongly three-dimensional. The ease with which this po-
tentially complicated flow can be studied by direct observation is a pri-
mary impetus for the development of an experiment to model the hydrodyna-
mics of the Earth's liquid core.

The experiment must include the dominant spherical symmetry of the
gravitational field, the effects of thermal buoyancy and of inertial
forces acting on the fluid., A facsimile, radially symmetric gravitational
field can be generated by an electric field acting on a dielectric 1iquid
(see Hart, 1976; Chandra and Smylie, 1972; Gross, 1967; and Smylie, 1966).

The apparatus for a zero gravity. hydrodynamic geodynamo experiment
would consist of a concentric inner sphere of radius Ri and a slightly
elliptical outer shell of mean radius RO.1 The apparatus would rotate
and- precess, as shown in Figure 2. Trapped in the annulus between the two

shells would be a dielectric fluid (e.g., silicone 0il). A temperature

]For practical purposes, Ro can be taken as the major axis radius of

the outer shell, so long as the ellipticity of the sheil is small.
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\ OBSERVING INSTRUMENT

Ti,Ri

To,Ro
’ ROTATION DRIVE MOTOR

‘QE’E'ECESS!ON DRIVE MOTOR

Figure 2. Schematic Diagram of Proposed Apparatus. Proposed laboratory
apparatus consists of concentric outer eliiptical shell of mean radius
Ro, an inner sphere of radius Ri' Temperature of inner annulus surface
is Ti’ of outer surface To' Silicone 0i1 is contained in annulus and

the whole apparatus, including ovserving instruments is made to rotate

‘at a rate w and precess at a rate 9.




contrast across the annulus gap could be created by circulating a heating
or cooling Fluid within the inner core and heating or cooling the outside
shell, as required. An alternating electric potential zV is maintained
between the outer shell and the core to produce a facsimile gravity field
in the model. |

A shaft (not shown in the figure) supports the core inside the shell
and provides access for heating and cooling the inﬁer core as well as for
temperature measﬁring instrumentation, electrostatic power supply and il-
lumination for flow visualization. |

Inertial forces acting on the fluid as a resuit of the precession of
the apparatus would create turbulent motions within the annulus for rates
of rotation and precession greater than some critical values. The effect
of precessional forces on fluids contained in rotating,precessing and
slightly elliptical cavities is to create a cylindrical shear layer ex-
tending between #30° latitude (see Figure 3). Fiuid ‘in the central re-~
gions of the cavity has a general retrograde (westward) drift while fluid
outside of the shear layer shows prograde motion (Malkus, 1968). This
cylindrical shear layer will undoubtedly be modified somewhat by the
presence of the solid inner core.

Thermal buoyancy forces would be created in the model by the inter-
action of density gradients and the facsimile gravity field. When unstable
thermal gradients would be applied, the chiefly east-west Flow generated
by precession would interact with the north-south flow caused by thermal
convection. In the case of stable thermal stratification, the radial com-
ponents of the precessional flow would be suppressed by thermal buoyancy

forces.




Figure 3. Precessional Sheag Layer. The cylindrical shear layer
observed by Malkus (1968) within a fluid contained in a rotating

and precessing elliptical cavity.is shown in exaggerated form in this
figure. With increasing rates of rotation and precession the shear
layer becomes unstable, developing wave-Tike motions and finally

turbulence.
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Because the electric field generating the facsimile gravity field
cannot be made strong enough to overcome the external gravity in the
terrestrial laboratories without creating electrical breakdown of the
dielectric fluid (Hart, 1976), the experiment must be performed in zero

or low gravity laboratories.

To permit visualization of flow fields by tracer motions or dye‘ "
streaks, the upper hemisphzre of the outer shell would be constructed :
of glass or plexiglass with a thin, transparent coating of a metallic
oxide to hake 1t'e1ectr1ca11y conducting. The inner core could also be
constructed of coated glass or plexiglass, permitting the use of shadow
graph or Schlieren flow visualization techniques (see Hart, 1976).
In contrast to the flow visualization needs for convection experi-
ments in rotating, spherical annuli, the needs for visualizations and
data obtained from the experiments described here include making records
of east-west fluid motion as well as north-south fluid motion. The mo-
tion on latitudinal planes 1is important, as it reflects the contribution
of precessional fiow to the resu]ting fluid motion, while motion on
longtitudinal planes indicates the contribution of thermal convection.
Stable thermal stratification is created by heating the outer shell
while cooling the inner core. Unstable thermal stratification is created
by heating the inner core and cooling the outer boundary as in Chandra
and Smy1ie(1972),Pretessional instability is created by increasing the
rate of rotation or rate of precession of the apparatus.
The electric thermal buoyancy forces are created in the experiment
by the interaction of the temperature-dependent dielectric constant and

the imposed electric field. When the dielectric constant decreases with

increasing temperature (see Figure 4), warm 1iquid seeks regions of less
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intense electric field while cold 1Tiquid seeks regions of more intense
electric field (Chandra and Smylie, 1972).

Another fiow may be generated in the fluid due to the migration of
free charges. This 'streaming flow' Timits the accuracy of the simula-
tion as it introduces a transport mechanism which is not found in ter-
restrial thermal convection. An alternating electric field must be
applied to prevent the occurrence of the 'streaming flow.'

At this point the concept of a zero-gravity, hydrodynamic geo- ~
dynamo experiment has been defined. e physical design of the appara-
tus must wait until the needed boundary conditions have been determined,
however. In the next section the boundary conditions for thermal con-
vection are estimated; the boundary conditions for precessional flow
are estimated in a later section. . P

et

- . . o

———




ONSET QF THERMAL CONVECTION

The onset of convection in the annulus is determined by the criti-
cal Rayleigh number, which is defined as the product of the Prandtl and
Grashof numbers. The Grashof number represents the ratio of buoyant to
viscous forces in the fluid. The Prandtl number relates temperature
and velocity distributions in the fluid.

An eigenvalue problem is formulated from the governing equations in

which the characteristic value is the Rayleigh number and the mode rep-

resents the temperature distribﬁtion. The problem is formulated by
substituting simple forms of perturbations of the state variables into
the momentum,heat and continuity equations, yielding the perturbation
equations. An exponential time-dependence of these perturbations is
then assumed, and the marginal stability equations are derived from the
perturbation equations. The eigenvalue problem is formulated directly
from the marginal stability equations. (See Chandrasekhar, 1961.)

In this work, derivation of the perturbation equations is taken
directly from the work of Durney (1968a). The derivation is only
briefly described here to provide the background needed to understand
the marginal stability equations.

In calculating critical Rayleigh numbers by this method, it has been
assumed that the apparatus consists of two non-rotating, concentric
spheres. . The first assumption is made in order to decouple the different
modes of convection, simplifying the problem by eliminating terms in the
governing equations (see Durney, 1968b). As a consequence, the calculated
Rayleigh number represents a minimum Rayleigh number of interest in the

experiment. Fluid viscosity is assumed to be constant.
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The second assumption is reasonable since the inner boundary is
spherical and the outer boundary is nearly spherical.
Before deriving the eigenvalue problem, we must determine the form

of the electrical "gravity" field. The next section is devoted to this.

A. Electric Body Forces

The electric body force per unit volume exefted on the fluid is
(Chandra and Smylie, 1972)

F=1/2 p'v [E2 %g-)T 1 (%) (1)

s 0,0
where primes indicate flow-induced quantities and subscripted zeroes
indicate stationary values. E0 is the electric field strength, ¢ is
the dielectric permittivity, T is the temperature.

The permittivity of a material is calculated by multiplying the
material's dielectric constant and the universal constant €g? the per-
mittivity of free space. In mks units €, has the value 8.854 x 10'12
farads per meter.

The dielectric constant x of a material is defined as the ratio
of the electric field strength in a vacuum to that in the material, for
the same distribution of charge {Smyth, 1955). Another definition makes
use of the ratio of the capacitance of a flat plate condenser with a
vacuum between the plates (CO), and the same condenser with the material

between the plates. The dimensionless dielectric constant is defined as

ﬂ,(‘l
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A typical dielectric constant for silicone oils used in convection ex-
periments is x = 2.65 (see, for example, Chandra and Smylie, 1972).

The departure of density from its stationary value is

1= _ 1
p aPOT _ (2}

and the fluid state is given by

T=T+T,
p=p +p,
p=p'+p,

where p is the pressure and ¢ is the volume coefficient of expansion.
Again, subscripted zeroes indicate stationary conditions (no Ffluid
motion, purely hydrostatic pressure vield, temperature distribution
that of pure conduction), and primes denote flow-induced quantities.
Substituting (2) into (1) and dividing by bo gives the electrical

body force per unit mass

-5
_ . 2(9e’ 2 (2 '
F= /20T VIES(5E) 1,00 -1/2 e, ES(5%), 0 V7

Assuming density and permittivity changes are small, (QE-) -~ will be
3p ‘T,0

independent of the spatial coordinates and the body force per unit mass

becomes
-.)-

= -1/20 (BE 2 1 2 (3e -

F = -1/2 (ap) T.0 VB T' = 1/2 /e Eg (a ) T

p,0

4

It is the curl of the body force which we will use in the equation

of motion, or
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2 2

..).
oe oE '
VX Fs /24— VT' x VE ~1/2 1/p (=" VE " x 9T
(ap)T 0 o(ﬁfl’o 0

Equivalently, since the two vector components of ¥V x F are co-linear

2

vxF=1/2 Dip, ( )p,0 --°‘(%§)T’0] V' x VE,

o:’o:
—|m

- The permittivity coefficients must also satisfy the relation

o (), o (), = v, (B9),

from thermodynamics (Chandra and Smylie, 1972). Thus the curl of the
body force may be written
= = .' E\ 1 2
vV XF T (aT V' X VE, (3)
(s} ps0

By analogy to the terrestrial thermal buoyancy force

-5

F =0T Vo
where g =v¢ and ¢ is the geopotential, it can be shown that the elec-

tric, facsimile gravity in (3) may be written

2 0, aT. P,0 o 4

9

The electric field E in a spherical capacitor with inner radius Ri’

outer radjus Ro’ and annulus gap a is (Moore, 1973)

E=y RTRO 1
a r‘2
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where YV is the voltage across the capacitor. Inserting this in (4) we

obtain the useful expression for the electric facsimile gravity

2
2 ot R. R
ge(r) = () vz{—l—-—‘-’—} -+ (5)
D0 d r

u.po

The radial dependence of g, remains a major difference between the
facsimile gravity field and the graVity.fie1d which actually exists with-
in the interior of the earth, although this difference méy be most no-
ticeable only at the onset of thermal convection {Giiman, 1976). Other
kinds of radial dependence can be produced in facsimile gravity fields
by fhe use of other geometries for generating the electric field, as

shown in Table 1.

Table I

Geometry Electric Field Facsimile Gravity
plane | constant none
cylindrical r 13
spherical 1/r2- 1/r5

Only with spherical geometry does the facsimile gravity field posess

the spherical symmetry found inthe earth's gravitational field, however.

B. Formulation of the Eigenvalue Problem

Consider a stationary spherical annulus of thickness a filled with

a Tluid of density Py The acceleration of gravity.within the annulus

is
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(r) > (B:-:) | VZ{RoRi } i 1

g 'r‘ = — P— —
e oT 0,0 a rﬁ

aPo

The outer radius of the annulus is Ro, its ‘inner radius "Ro = Ri' The

velocity Field U, temperature T, radial coordinate r and time t are

scaled by the following definitions:

=4

i?’:

'y r =R

W T= |T 0

ol

Ny o
o

(6)
R

—E- t's g(r) = g(R) g'(r')

oF
[}}

K is the thermal diffusivity and T0 is the negative temperature of the

outer boundary of the annulus. (The temperature at the inner boundary

is assumed to be zero.) ATl primed quantities are dimensionless.
Dropping the primes in (6), the nondimensional momentum, continuity

and neat equations of the problem can be written as (Durney, 1968a)2

1
1 —an U-Vx V2'5=-_P' Vx(ﬁ-v) 'ﬁ-z-R]ng(r)'\:T
Pp Ot v
V- u=0
and
(&= -¥) 1= -v@dmn

Pr is the Prandtl number

21t should be noted that this is the curl of the momentum equation, as
the pressure term Vp is absent.
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and R1 is the Rayleigh number based on the radius of the outer annulus

boundary,

Ro=  2Ta | o(Ro) RyS
1
Kv
Another commen form of the Rayleigh number is based on the annulus

depth a
3
R = (I.ITQ l g(Ro) a

a Kwv

and is related to the outer radius Rayleigh number Ry by (Durney, 1968a)

Equivalently,
- 3
Substituting equation (5) into the definition of Ry we obtain

2 n°
o (1-n)?

aTvé( 32 00

Kwv

- the useful form of the Rayleigh number.
Burney (1968a) has derived the perturbation equations by assuming

 a temperature distribution of the form

T = Tl_ [ %’_ =11+ p(r,t) + 8(rs t)
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The first term represents the temperature field of pure conduction with
boundary conditions T = 0 at the inner boundary and T = ~1 at the outer

boundary. It is a solution of Laplace's equation V2

T = 0 in spharical
co-ordinates. ¢ (r,t) represents the mean distortion of the temperature
field by convection and is a function of the radial coordinate
and time. o (;, t) is expanded in spherical harmonics by writing

6 (rt)= 2 8 . (rt) 5™ (8:0)

L.m ?

where yLm is the spherical harmonic and is a known function of @ , ¢ »
and wave numbers L and m. Thus the temperature field is completely de-
termined by specifying only two functions, 8 L.m (r,t} and ¢(r,t), both
of which are functions of radius and time only.

Similarly a specific form for the velgccity is assumed using the
poloidal vector ﬁL,m

[

-)-
=z P {p )
L. L,m **L,m

which has the following components in spherical co~ordinates

P = E%QI—L P (1 81y (6:0)

() ¢ op, (rt) " (0.9)
PLom o7 - %
and m
p (‘f’)_ 1 9 pL,m (r, t) M (6:¢)
Lam. rsine ~ sr - Ely
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Thus tle velocity field is completely described by determining a function
PL,m (r,t) which is a function of radius and time only.

The convection problem is solved by finding the required functions
PL,m (rst), eL,m (r,t) and (r,t). From the momentum, continuity, and
heat equations, Durney (1968a) derived three equations governing these

variables, the perturbation equations

2 _
D" P m=Ryalre o 8(a)

) (L+1)L .
3t = D - —rz)'—‘l’“

1 3
z(L+HNL &= (rP, 35 ) 8(b)
Ao L.m ar L,m “L,m

and

98
L.m _ . (L)L . oy
9t DL eL,m r PL,m [ (T-n) ra ]

or

8(c)

where DL is the differential operator

D= 45,2 d (L
L drz r dr r2

and, for his own convenience, Durney has redefined PL m s

- pL,m (r.t)

L,m P
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| The boundary conditions on the temperature variabies are ¢ = eL,m
=0atr=n, 1. Either rigid or free boundary conditions are used for
the velocity,as required.
Since we are interested in those small perturbations which start
convection,'eL,m, P » and pL,m may be assumed to be small. By ignoring
products of the perturbations with themselves and their derivatives the

Tinearized perturbation equations may be obtained

2 -
U _ - (L+T)L =
B - p, y ——rzL y =0 9(b)

and
o8
L.m _ {L+1)L n
-D 0 = ~ P
ot L “L,m 1"3 L.m (1-n) 9(c)

Note that different values of wave number L are decoupled and that
the equations are m independent. Since the term containing a sum
over m terms in 8(b) has vanished in the linearization process, how-
ever, the governing equations themselves are independent of m and the
subscript will be dropped.

The marginal stability equations are obtained from the Tinearized
perturbation equations by assuming an exponential time dependence in
the state variables. The perturbed temperature distribution will be
described, for example, by the product of a function of time and a func-
tion A describing the amplitude of the perturbation in terms of the

spatial coordinates:
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T (r, t) = Pt A(R)

The conditions for stability are clearly

p > 0: unstable

p = 0: marginally stable

p < 0: stable
Thus the marginal stability equations are obtained by setting the ex-
ponent p to zero in the perturbation equations.

The three functions used to describe the temperature and velocity

fields are rewritten with.the exponential time dependence

o, (r.t) = &% o (r)

pt

pr,t) = e y{r)

and

p(rt) = eP¥ p (r)

Substituting these detinitions into the linearized perturbation equations
under marginal stability conditions (p=0), all time derivatives dis-
appear and the time-dependent terms become unity. The result is the

marginal stability equatic s

a2
D" P = Ry a(r) B 10(a)
o p+EHLE <0 10(b)
r
D8 = IL_*B‘}LL_ P _n _ _ 10(c)
r (1-n)
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Equacion (10c) can be written as

3
P, = r’(n-1) Dy -8

L
UL'I

- where L= (L+1)L. Inserting this expression into equation (10a) yields

the eigenvalue problem in terms of the temperature variable 6 s

3 )
2 - r'(n-1 _
D, [‘ﬁhﬂ—l D 8 1=Ryolr)e

- in which the Rayleigh number R] is the characteristic value and the

"; temper'aturD distribution GL is the corresponding mode. By aperating

the differential operator IJL upon itself the differential operator DLZ

may be obtained

g{r)
g'(r) = — = 1¢
(R) r

(=]

Using the definitions of DL and DL2 the efgenvalue problem may be

written as

4
L8 %, %8 dg
r ar° r.2 dr4 (continued)

DRIGINAL PAGE IS
OF POOR QUALITY
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2

168 - 241 d” oL 3L, ~-42L.+72 d® 6
+ 1 ] + 1 ] L
°3 3 4 2
r dr r dr
2 3 2
. 6L1 - 12L] deL _ L] - 2L.I o -
3 6 L
r dr r
nL] R1 8
— -3 L (11)
n-1 r

This is the basic equation of the eigenvalue problem. With the six
boundary conditions derived in the next section, formulation of the
problem describing the onsgt of convection is complete.

No-slip (rigid) boundary conditions on the velocity and constant
temperature at inner and outer annulu¢ boundaries are used. The tempera-

ture boundary condition is

o (r)=0atr=n,1

and (12a)

Pp({r) =0 atr

n, 1

The no-slip condition requires that all components of velocity

vanish at the boundaries, or

PL(r) = PL(B) =P (0) Oatr=n, 1.

By the definitions of the components of the velocity, it is apparent that
-
only two conditions are needed to make u vanish at the boundaries. These

are
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pL(r) =0atr= n, 1
and
BPL(r)
=0 atr= n,l
dr
Using the former in equation (9¢) we obtain D, § =0atr-=n, 1. (12b)
P
Substituting the definition P = FL into (10c)
L
o 1]
D, § = p
L°LT 3 1 L
gy (r) o .
The requirement y = 0 can be restated using this expression as
r
%;- [ D 61=0 (12c)

Upon substituting the definitions of the djfferential operators in-

to equations (12) we obtain the boundary conditions in their useful

form:
eL =0 atr=n, 1 (13a)
& Lo,z % H 0 at r=n,1 (13b)
> — -~ ~—5— 06, =0at rn,
drz r dr\ rz L
and
3 2
d o 6 d o 6-L de
L = ZL + 21 L (13¢c)
dr3 dr r dr
2L]
s ';g'_ eL = 0 B.t r= n, ]
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Thus equation (11) is the governing equation for the eigenvalue
problem and equations (13) are the six boundary conditions needed to

solye ijt.

C. Numerical Solution

The eigenvalue problem (11) and associated boundary conditions (13)
were solved by using the finite-difference method and the edition 5 Inter-
national Mathematics and Statistics Library (IMSL) eigenvalue subroutine
EIGZF (see Appendix I). The domain ng r < 1 was modelled with 37 nodal
points. It should be noted that the only solution to (10b} which
satisfies the boundary conditions is y (r) = 0. The temperature distri-
bution within the annulus is therefore given by

T= 10D a1+ e(r, t)

1-n
Because (11) is homogeneous, any multiple of a given solution eL(r) is
also a solution.

Solutions were obtained for n = 0.4, rigid boundaries and g ~ lg
to estimate critical Rayleigh numbers for the experimental apparatug.

To evaluate the influence of the strong radial dependence of the radial
gravity on the mode of convection, solutions were obtained with free
boundaries (see Appendix III) withn = 0.8, g ~ 1/r5. These results were
compared with the results of Durney (1968a) and Gilman {1975) which
were obtained with constant gravity and with g ~ 1/r2, respectively.
Verification of equation (11) as a model of thermal convection in the

annulus was obtained by {1} repeating the result of both Durney (1968a)

and Gilman (1975) and {2) demonstrating that the model predicts higher

e R B oy
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critical Rayleigh numbers for rigid boundaries than for free boundaries.

The results are swmarized in Table II.

Sol'n. Gravity n Boundaries L R,

1 const. . 0.8 free 9 740

2 1/r2 0.8 Frae 9 596

3 1/r° 0.8 . free 9 426

) 1/e° 0.4 free 3 142

5 1/v° 0.4 rigid 3 295
Table II

Summary of Numerical Results

Solutions (1) and (2) reproduce within 5% the results of Durney
(1968a) and Gilman (1975), respectively, indicating that the linear
model of convection represented by equation (11) with the free surface
boundary conditions is in general agreement with nonlinear models of
convection. Solutions (4) and (5) demonstrate that the linear model
with rigid boundary conditions is also consistens with physical intui-
tion (Durney, 1976), because the model predicts higher critical Rayleigh
numbers for rigid boundaries than for free boundaries. Higher Rayleigh
numbers for rigid boundaries are to be expected, since in that case
thermal buoyancy forces must overcome viscous forces both in the bulk
of the fluid and at the fluid boundaries for convection to occur. With
free boundaries buoyancy forces must overcome viscous forces only in

the bulk of the fluid to initiate convection.
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Comparison of solutions (1), (2), and (3) shows that the effect of
the strong radial dependence of the facsimile gravity only alters the
value of the critical Rayleigh number. For g ]/r5, the critical Ray-
Teigh number occurs at a wave number L = 9 (see Figure 5), as did the
critical Rayleigh numbers calculated by both Durney (1968a) and Gilman
(1975} for constant gravity and g 1/r2, respectively. The spectrum of
Rayleigh numbers over a wide range of wave numbers is shown in Figure 5.
Figure 6 shows the critical mode and temperature distribution in the
rigid boundary case.

Since the effect of rotation on thermal convection in spherical
annuli is to suppress fluid motion and therefore increase the critical
Rayleigh number (Giiman, 1975), the results calculated here represent
the bottom of the rahge of important Rayleigh numbers for the experi-
ment. It will probably be desirable to conduct experiments over the
range of Rayleigh nunbers from the minimum to at least an order of

magnitude or more above the minimum.
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Precessional Flow
The equation of motion of a viscous fluid inside the spheroidal
cavity of a precessing rigid body which is rotating about its axis with

a constant angular velocity W, is

28x G+ vi=-wp+EV]

where § is the angular velocity of the rotating frame of reference, p is
the pressure and q is the fluid velocity (Busse, 1968).

This equation illustrates the fact that equality of the Eckman num-
bers

E = \

)

wR
for two precessional fiows will establish dynamic similarity between, for
example, the liquid core of the earth and a Taboratory experiment. Some
physical properties of and vertical velocity in the earth's liquid core
are shown in Table III. These figures yield an Eckman number for the
core of

E=6.72 x 10718

based on the radius of the earth's outer core, 3500 km. Figure 7 shows
that in a feasibly-sized apparatus rotated at speeds below 5000 rpm, Eck-
man numbers in a laboratory experiment will be much larger than in the
earth's core. Although it appears impossible to establish dynamic
similarity between the experiment and the core, previous experiments with
fluid motion in rotating and precessing cavities indicate that instabili-
ties and turbulence can be made to occur for E >10'5 (Malkus, 1968). Thus
fluid motion of interest can be created in a physical simulation of the

earth's Tiquid core.
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Figure 7. Eckman numbers in the laboratory experiment. R is the mean

radius of the outer shell. (v = 12 CS, after Chandra and Smylie, 1972).




Property
Specific Heat

Coefficient of Thermal
Expansion

Thermal Conductivity
Radial Fiuid Velocity
Kinematic Viscosity

Mass Density

Table 3.

velocity in the Earth's liquid core
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Value

7.12 % 102 Jkg-lek-!

4.5 x 10-5°K-1
60 W mmioK-?

3 x10°% ms”l
0.6 centistokes

13 gm cm-3

Reference

Frazer (1973)

Frazer (1973)
Frazer (1973)
Frazer (1973)
Gans (1972)
Gans (1972)

Physical Properties of and vertical

b
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Onset of instability in a fluid contained ih a rotating and pre-
cessing spheroid can be determined from an empirical equation relating
the ratio A of the maximum toroidal velocity in the fluid to the speed
of the periphery of the container,

Instability occurs when

A>(5.0+ 0.3)E /2 (14)
where E is the Eckman numbzr,
E = N
mRm2

R, is the mean radius of the spheroid, andw is the rotation rate about
the sphere's minor axis (Malkus, 1968). A is determined from the rota-

tional velocity of the container (w) and the rate of precession (§)

e X8 g (15)

|” e

where e is the ellipticity of the spheroid,

(see Malkus, 1968). Ip is the moment of inertia of the spheroid about
1ts "polar" (minor) axis and IE is its moment of inertia about t.2
"equatorial” (major axis).

In (15) f(E) is defined by

f{E)

(E)

0.4, E » 1072
E-]/ﬁ

t

, E< 1077

Combining the definition of the Eckman number and expression (15)
for A with equation (14), we find the required rate of precession for

instability to be




38

1/4
. 5 Ly (16)
sin @ f(E) whp

For an elliptical body with a major axis Rma and ' 'nor axis Rmin

J
the moment of inertia about the pole (minor axis}-is

_M 2
I,=% (2 Rmaj )

p
and the moment of inertia about the equator (major axis) is
= m 2 2
Ig=3 (Rmaj * Rnin )

so the dynamic ellipticity of the body is
R 2.R.°
ma.j min

2
2Rmaj

Malkus (1968) found that instability in the precessional flow first
manitests itself as wave motions with the cylindrical shear layer de-
picted in Figure 3. The waves move retrograde (west) relative to the
rotation of the spheroid, For a given rate of precession, instabilities

are intensified by decreasing the Eckman number of the flow.
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EXPERIMENTAL APPARATUS

The critical Rayleigh number for convection in the experimental ap-
paratus was calculated to be Ra = 295, Using the definition of the Ray-

leigh number we find

2

2 &Yy y2 fn._ }
AT (BT) v {'I— n
P P,0
3 - = 295
v

for convection to occur when the apparatus is not rotating.

The dimensions of the hypothetical experiment considered here are

Tisted in Table IV.

Table IV

Dimensions of Hypothetical Experiment

Symbol Term Numerical Value
n aspect ratio 0.40

Ry inner radius 10 cm

R, outér radius 25 cm

a annulus depth 15 cm

AT temperature difference 5°C

e ellipticity 0.05

The properties of the hypothetical working fluid used in this ex-

periment are listed in Table V.

H
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Table V
Properties of Hypothetical Working Fluid

Symbo1 Term Numerical Value Reference
o coef. of expan, 1.08 x 103°¢ 1
(%%) coef, of permit. 3.32 x 10714 ¢/m-°c 1
K PO th. diffusivity 6.40 x 10"3n%/s 2
v kin. viscosity ]0—4m2/s 2
p density 873 kg/m3 2
€, permittivity const. 8.854 x 10712 f/m 3
E dielectric const, 2.60 1
Co sp. heat 1.9 x 10° 3/kg°C 2

The references are : (1) Chandra and Smylie (1972); (2) Hart (1976); (3)
Moore (1973).

From the definition of the Rayleigh number we find
V= 3,34 KV

for convection to occur in the hypothetical apparatus (n = 0.4) without
rotation and with a 5°C temperature contrast across the annulus. We note

that with a thin annuius gap (n = 0.8) the voltage requirement is
V=10.55 KV

under the same operating conditions. To achieve Rayleigh numbers one
order of magnitude larger than the critical Rayleigh number in the sta-

tionary apparatus requires

V =10.5 KV for n = 0.4




4]
V=1.76 KV for n = 0.8

The capacitance of the apparatus is given by

C=4'n&Rj Ro
a

which is the capacitance of a spherical condenser (Moore, 1973). For

the hypothetical experiment

12

C=48.2 x I '“ farads

The electrical energy stored in the experimental apparatus is given by

(Moore, 1973)

= 172 cv?

=
I

or

w =.003 watt-sec
for a voltage of10.5 KV,

For a rotation rate of 20 rpm the Eckman number is 7.64 x 10 "4.
The rate of precession required to produce instability is calculated
from equation (16) for an inclination of 30° between rotation and pre-

cession axes,

Q = .56 rpm

Modeling the circuit needed to create the electric field as a one

1

ohm resistance and capacitance of 48 x 10~ 2 f in series, the total im-

pedance of the circuit is 5.50 x 107

Q . The real power supplied by a
60 hz voltage supply of peak output 1g 5KV is then
=1.60 X 1073 watts.

Heat flux by conduction is (Krieth, 1973)
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_ 4wRi Ry k (To~T;)
q-= 3 .
where k is the thermal conductivity. The fluid properties in Table II
give a conductivity of k = < Cp = 1.06 x 1071 i%%%%%g and the
heat flux is thus

g = 1.11 watts e

for a temperature contrast of 5°C.

The total power demand on the laboratory is therefore on the order
of 1 watt. To achieve Rayleigh numbers up to one order of magnitude
greater than critical requires up to about 10 KV: At a rotation rate
of 20 rpm, the empirical equation of Mavkus (1968) predicts that a pre-

cession rate of 0.56 rpm is required to initiate instabilities. |




CONCLUSION
A. Current Work

A well-defined experiment could be essential for providing the
physical basis to evaluate and compare geodynamo driving mechanisms. Of
particular interest is an experiment to evaluate the effect of stable
thermal stratification and thermal convection on the precessional geo-
dynamo model. In this work it is found that such an experiment is
feasible in an apparatus consisting of a concentric inner sphere of 10
cm radius and an elliptical outer shell with major and minor radii of

25 cm and 24 cm, respectively, provided

(1) a potential of the order of 10 KV is maintained between
the shells;

(2) a temperature difference of 5°C is imposed across the
annulus;
and
(3) the apparatus can be made to rotate and pyecess at rates of
20 vpm and 1 rpm, respectively, with a 30" angle between the
axis of rotation and the axis of precession.

B. Recommendations fcr Future Research
Besides the design, construction, and testing of the experimental
apparatus important tasks which should be completed as soon as possible

include:

(1) 1Inclusion of variable viscosity and the effect of rotation in
the numerical model of convection presented here;

(2) Development of a numerical model of the precessional flow to
verify the empirical equation of Malkus (1968) and to de-
termine the effect of the inner core on the flow;

(2) Combination of the two numerical models to predict the results
- of the experiment and to verify the assumption that both con-
vective and precessional flow instabilities will exist when
the conditions generating them are present simultaneously.
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APPENDIX I

Computer Algorithm for the Eigenvalue Problem
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Eigenvalue Algorithia

The algorithm described here solves eigenvalue problems of the form

6 5 4 3 2
9_%.+ ¢y Q_%-+ c, g_%_+ Cq g—%-+ Cy g—%-+ Cg dy + cﬁy = Ac7y (1)
dy dx dx dx dx dx

on the domain ng x < %, with the six boundary conditions

4 3 2
d d d dy -
S *f S, Sy =0 (2a)
11 4,8 12&5 13 27 "4y, T N5
e, Erag Woag a0 | (2b)
23 2 T lea g " 25
and
y=0 (2c)

at x =n, &. A is the eigenvalue and coeffici?nts c; and fij are functions
of the independent variable x and wave number w.

The finite difference operators used to create ihe matrix equation
equivalent of (1) and boundary conditions (2) are shown in Figure 8. The
domain is modeled as a set of (n+6) nodes with n nodes on the interior of
the domain, 4 nodes exterior to the domain and 1 node at each boundary

{see figure below).

n L
X
X X kel 55 —t—r—K X X
1 2 3 5 0+l nt2 nt3 ntd nib ndb
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Figure 8. Finite differenca computational molecules.
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At node i the finite difference equation representing (1) is

¢ 6 2c c c
1 ] 2 3
- - Vi3 3BT~ -7t T3¢ Y
{ h6 2h5} i-3 {hﬁ h5 h4 2h3 } i-2
15 2.5¢ 4c c c c
*{'B“ 51___2_+_§+_§____}y|
h h h h h 2h 1-

h h h
15 2.5c] 4c2 cq <y Cg
+{*’5‘+ 5~ ~_ Tz * '}yiﬂ
h h h 3 h 2h
6 2¢c c c 1 o
1 2 3 } 1 _
R S I {-—-+ —& % Yiia = CoAY. (3)
{ h6 h h 2hd i+2 h6 2h5 } i+3 7771

where h is the spacing between nodal points. Applying the finite differ-
ence operators across the domain and applying the boundary conditions
puts the eigenvalue problem in standard matrix form,

[A] {y} =a([B] {y}
in which [A] and [B] are n x n matrices and {y} is the n x 1 eigenvector.
0ff-diagonal elements of [B] are zero and [A] is a banded matrix with a
bandwidth of 7.

By using the finite ‘grence operators the boundary conditions

must first be stated in the useful form

g
o
n

BC (1,1) Yo t BC(1.,2) Y5 (4a)

.Y'a = BC(Z,]) .ya + Bc(zsz) ys (4b)
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at the Teft end, and
y1 = BC (3,1) y; + BC (3,2} v, (4c)
and
Yy = BC (4,1) ¥y * 8C (4,2) Jj (4d)
at the right end (see figure below}. ;J
n 2
e X ]
X X A e 45 — Y e—r— X X
1 2 3 4 5 & ik 1 m

For example, writing the second-order boundary condition in finite djffer-

ence form for the left end, we have

f T

G- e ) o

it
3

where the coefficients fij are evalualzd at x

hpy + 2fyq ,
Y2 5 | nf 4

24 ~ 2Fpp

Solving for Yo

and we have thus found

hf,, + 2f
BG (1,1) 28 23

(5a)

and

1

BC (1,2) = 0.0 (5b)
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Writing the fourth~order boundary condition in finite-difference

form at the left end, we have

(S 2
T f
+ {‘;ll- + Eﬁg } Yy = 0

where again the coefficients fij are evaluated at x = n. After solving
for 7 and noting that |

Yo = BC (2,1) Yy we have

2 3
2h™f,, ~ 8F 2hf,,-h"f

4

Y, izacw,n +1)

=
hfy, - 2f;

We have now found ) 3

C (1.1) = (8C (2,1) + 1) th f13“8f”f+ (BC( nn}znflz_hfmf( )
B .1} = (BC (2.1) + - c{2.,1}- _ 5¢c
hﬁ22ﬁ] hﬂz Zﬁ]

and

h

+ 2f
BC (1,2) = 11

f12

- (5d)

Similarly it can be shown that
BC (3,1) = 0.0 (5e)

a
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hf,,~2f
BC (3,2) = 24 ~ 23 (57)
hf,, - 2f
and
2
BC (4,2) =(BC (3,2) + 1) ; + (BC (3,2) -1)
2f11 + hf12
3
hﬂ2-+2ﬁ1
where coefficients fi j are evaluated at x = g.

Now the matrix generated by equation (3) is an n by (n + 6) matrix
which must be transformed to an n x n matrix through the application of
the boundary conditions. With two interior nodal points, for example,

eight nodal points are used to model the domain:

n 2
g
X
X ® 3 s -, X w2
1 2 3 4 6 7 8

The resulting matrix equation formed by repeated application of (3) is

N
moYiz Mg S N A N e LA Yy
81 3y 83 398 ¥y byy by ¥s

< . r

“ Z

o

L J
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The boundary conditions are stated in the form

BC (1, 1) v, + BC (1, 2) yg

Hi

N

¥, = BC (2, 1) Yg * BC (2, 2) Yg
y; BC (3, 1) ¥ *+ BC (3, 2) Ys
Yg BC (4 1) yg + BC (4, 2) g
Substituting these into the matrix equation the eigenvalue problem

becomes
.

ayy A5l | Ya

azg 5| | Ys byy by Yy

where

+agq BC (1,1) + ayp BC (2,1) + a9 BC (3,1) + 15 BC (4,7)

ajg = Ayt Ay

”

A5 = 215 * &
250 + 8y7 BC (1,0) + 2y, BC (2,1) + 2,y BC (3,1) + ayg BC (4,1)

1t

1 BC (1,2) + 219 BC (2,2) + 217 BC (3,2) + g BC (4,2)

1

a4
and

aés = a25 + a2.| BC (1,2) + 322 .BC (2,2) + a,27 BC (3,2) + a28 BC (4,2)

At this stage the eigenvalue problem has been reduced to the form

[A] ) = a8l Ly}
which several readily available computer routines can solve.

For convenieice, the International Mathematics and Statistics Library
(IMSL) edition 5 routine EIGZF was used to solve the problem, once it had
been put in the standard form. It should be noted that the matrix equa-
tion equivalent of equation (1) with boundary conditions (2) is not

necessarily symmetric, requiring a sophisticated eigenvalue routine.
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Subroutine EIGZF was found to work well for all cases and provided
complex eigenvalues and eigenvectors. With only a few exceptions, the

imaginary parts of both the eigenvalues and eigenvectors were zero.

Use of Program CONVECT
| To solve a particular eigenvalue problem the user of program CONVECT
must
T. punch cards with the coefficients of the governing equation c,
i=1, 7, and insert them in subroutine COEFF;
2. punch cards with the coefficients fij’ i=1,2,3=1, 4, and
insert them in subroutine BCOEFF; and
3. punch data card(s) with input values for
ETA : left end of domain
XF : right end of domain
L : wave number
NUMDIV: number of divisions of the domain

The data card(s) are punched in the format shown below:

L NUMDIV ETA Xr
(110) (110) (F10.4) (F10.4)

The coefficients c; are specified by assignment statements of the form

c{1) = c]IZ.OIDXS

c(2) c2/DX4
c(3) c3/2.0/DX3
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c(4) = c,/DX2
c(5) =  cg/2.0/DX
c(6) = Cq

and
c(7) = ¢y

The coefficients fij are specified by statement functions of the form
F1](x,w), F]z(x,w), etc.

where w is a wave number. Both arguments must be included, even if both
are not used. On the printed output the program will provide, among other
things, the eigenvalues and eigenvectors as complex numbers. A single
eigenvalue or element of an eigenvector will appear as

(real part, imaginary part)

For the 35 x 35 matrices used to solve the critical Rayliegh number prob-

lem, central processor times of slightly Tess than 20 seconds were typical.

Verification of CONVECT
To verify the accuracy of-the program, a sixth order eigenvalue prob-
lem for which one solution could be determined analytically was solved.

The verification problem was]

6 5 4 3 2 '
i%+kd_% + kLY 4 Sdy +k4d_.szi = Kby

dx dx dx* dx® dx
with boundary conditions
2 3
y = gﬂ%-= 0 at x = 0,7 and Q_%_ + k2 dv 0 at x=0,n
dx dx dx

]This verification problem was suggested by Dr. Bernard Durney.
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A particular solution of the equation is
y = Asinkx + Bcoskx
After applying the boundary conditions the solution is reduced to
y = Asinkx, k=1,2, 3, . . . n
where k is the characteristic value and sin kx is the mode. The problem

was put on the computer in the form

6 .5 4 ' 1
dy , &y ,d 3
o o i’--"d_% + 24 = gy

R dx dx dx2

with the boundary conditions

2
y = g—%—= 0 atx=20

s T
dx
and
&y 4
_%-{'al =0atx=0,'ﬂ
dx X

Thus the critical (minimum) eigenvalue was expected to be

k= (-8 =1.0

and the mode y = sinx. The results are plotied in Figure 9 and show good
convergence. The convergence of the convection problem (see Chapter III)
is shown in Figure 10. Some instability was present when fewer than four
interior nodal points were used to model the domain, but these instabili-
ties disappeared as the number of equations was increased and the solution

converged to two significant figures at 35 eguations.
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y Axis

I
NUMEG = 15

XTI . . -

i -

34
£20
§2
-8
1.8
»
.5
2,08

X AXis

Figure 96: Verification of CONVECT Convergence of Mode. Solid line

is a plot of sin x for 0 < x < 7 and is the exact solution to the eigen-

value problem. The squares are the elements of the eigenvector com-
puted by program CONVECT The figure shows good agreement between

exact and computer solutions.
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Included in this appendix is a listing of program CONVECT and
sample output. The output is for the rigid boundary annulus problem
with L = 1, n = 0.4, and NUMEQ = 10. The first two pages of output
describe the formulation of the problem, ending on the second page
with the matrices A and B ready for input to the eigenvalue routine.
On the third page the solution of the eigenvalue problem is printed,
with eigenvalues representing the Rayieigh number R] and eigenvector
representing the temperature variable 8. & is arbitrarily normalized
so its largest element is unity. Tﬁe minimum eigenvalue is R1 = 2063.01

or, equivalently, R, = (.6)3 R, = 446. The corresponding mode is
a - ,

556
.875
1.00
.988
.890
746
.583
420
.265
125
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WITSU6,1)
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APPENDIX III

Free Surface Boundary Conditions
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Free-surface boundary conditions on temperature are identical to
rigid surface boundary conditions for temperature. Velocity boundary

conditions for rigid surfaces are (Durney, 1968a)
PL=P"=0 atr=n, 1.
From equation 10(c) we find the equivalent conditions

DL BL =0 atr=n, 1

and

d2 3
;—;2— [r DLGL]=Oat¥'=n,1

By inserting the definition of the operator Dy these conditions can be

written
dtog 5 o a-L)  dPey
— t = b —
dr r L r ;ﬂ}f
oy = = atr= n,
r dr ‘
and
d%e, , do L 1
+ = = - 0, =0 atr= n,1.
ar’ T ’

The mode of the free surface solution for wave number L = 3 is

'shown in Figure 11.




74

w b RN | =3 1 |
L / free surface 7 i

I j

L
N
b i b

' i
£83 r— ‘4 -1
;' 3 " 4
Y TR 8 f -

T O T T T T T PR

R ' “1
- ! o - o _ 1 '
.ss: - J -} ,
o e ; ‘
,~" .
i 4 ¥ g g £ # g £ ¥ i %
i3 ;
Figure 11a, Free Surface Solution: Mode Plot shows 6 ,, L = 3, from :
inner annulus boundary to outer annulus boundary. 6, is arbitrarily :
normalized so that its largest element is unity, :




p

75

SR T ™ ™ ¥
B 4
1ttt = L=3 -
o free surface
& n=0.4 )
b .
o
LS ;] - -
..],. =3 -
LS [
SN TR -
.
J
:"i =431 u -l
L% 1] - -
A E -
RTTR -
otds
I B T B

Figure 11b: Free Surface Solution: Temperature Profile. Dotted line is
temperature profile of pure conduction, solid 1ine shows sum of eigen-
vector BL._L = 3, and conduction profile. 63 has been arbitrarily

normalized so its length is unity.
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THERMO- HYDRO-DYNAMIC CHARACTERISTICS OF A
- | ZERO-GRAVITY, SPHERICAL MODEL OF THE TROPOSPHERE

e v 3ol burtfane For 8-1/2 » 1) F)0

- . .
.n e — -

L e v sl -0*’

8. Srivatsangsa

., Research Associate . .
Dept. of Atmospharic Science i

- "t oxuthors

! Colorado State University

Port Coltins, Colo,

. ABSTRACT
A model that exploits the radial irertia forces of
a rotating fluid contained in a spherical annulus
is described. The mcdel would be flown in a satel-
1ite and expericents would be performed in very low
or zero gravity. In such a model it would not be
necessary to srtificially simulste s radial gravity
— fileld. Thus small amounts of electrical energy
would bs sufficient to perform experiments. Since

the only forces involved are thermo- hydro-dynsmic

o:::. electromagnetic equations need not be consid-
L} .

INTRODUCTION

A variety of experiments have been performed under
usual laboratory conditions to simulate tg, large-
scale dynaaics of the earth's atmosphere ™. Of
these the most successful so far are the cylindri-
cal annulus experiments in which a liquid is cort-
fined between two concentric circular cylinders 9)
A radial thermal gradient -- resesmbling the meridi-
onal temperaturs variation in the atmosphere -~- is
imposed. Cameras are sttached to record motions at
different levels in the fluid}), The entire
system, including the cameras, is rotated in the
sans sense as the earth. Thus all cbservations ars
nzde relative to the solid-rotation ratse, N, of
the systeéa, and they resemble cbservations of the
earth made by geosynchronous satellites,

The cylindrical snnulus experiments have some of
the basic properties of the earth-atmosphere system,
vizt., a meridional thermal contrast called baro-
¢linicity, and a non-Newtonian frame which is due
.to the s0lid rotation. Under laboratory conditions
‘both these properties can be varied. Such varia-—
tions have led to important results concerning the
breakdown of toroidal (or Hadley) cells, the estab-
lishaent of wave regimes -- which are asymmetric

~ with respect to the axis of fg}ntl == and the re-
establishment of the toroids'”/. -

It may be noted that the tropics are dominaced by
toroids (with a “weak" w’go regine) and the extra-
troplcs by wave regimes(?), Thus axially symmetric
and asymmatric regimes coexist on the earth. This -
coexistence is due to the meridional variation of
sthe local normal component of fl. In the cylindri-
cal annulus models the angular velocity Q1 is every-
where.normal to the base of the cylinders. There«_

ORIGINAL PAGE IS
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fors these experiments do not possess an imsportant
characteristic of the earth-atmosphers system,

A spherical sanulus model (see Fig. 1), \;hich has
meridional variations of temperaturs and the locsl

]
4
l

OBSERVING INSTAUMENTS |-—

Fig. 1. The expsrimental setup for the zero-

gravity, spherical atmospharic model.

noraal cosponent of fl, cannot be used under normal
earth gravity to simulats the behavior of the
atmosphere. Such a model may be used successfully
under very low or zero gravity conditions. It has
been suggested that a zero-gravity, spherical model
must have a radial gravitational field, a lated
by the imposition of an electrical forca on the
fluid. The consumption of electricity for this
purposs, howaver, is a stqlﬂunt fraction of that
available in a satellite'~’. Hence an alternative
shouid be found. We suggest hers that the inertia
forces of the spherical annulus model may be used
:: simulate the effects of 2 radia) gravitationsl
eld. : : ST
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*FORCES ACTING ON THE FLUID IN THE MODEL

It is well-known from the governlg, equluorzz of
meteorology [see, e¢.g., Haltiner‘\®’, Holton )

that the forces to be considered in meteorology sre
i. the inertia forces due to the rotation of ths
coordinate system, viz. the centrifugal and Corio-
Iis forces, ii. the pressure-gradient forces, iii.
the buoyancy force, iv. the viscous forces and v.
the gravitational force. Other kinds of forces ars
of negligible importance in meteorclogy.

We note that (static) atmospheric pressure is due .
to gravity. Thus pressure-gradient forces are
indirectly dus to gravity.

In Fig. 2 wa present all the possible components of
the inertia forces in & spherical coordinate system,

2
O
NORTH_POLE

EQUATORIAL PLANE

Y

SOUTH POLE

Fig. 2. The components of the inertia forces in the
spherical model. The symbols are described
by Eqs. 1 to S. :

Thess are represented mathematically as f,olious';

“ = rﬂz cosz¢.

(vadisl centrifugal force), S (D

w, = -:n’ cos $ sin ¢,
(north-south centrifugal force), (2)

!‘ * 2u cos 'R
{radial Coriolis force), &)

i !3 . -zm sin 0, '
i {north-south Corlolis forcc). (4)

Yo P O e,

Cap .V73 4 1Y Dass

and ‘3 ‘= v sin ¢ ~ zthcoso.

5.1 f3,2 ‘; u
(east-wut Corious force). 5)

In the above equations r is the radisl distance
from the common center of the two spheres in Fig. &
0l the angular velocity of the system, § latitude ™
angle, and u, v, v the eastward, northward and
upward components of motion, respectively. The
components of motion are posit ive il’ in the sense
mentioned above.

The distributions of these forces clearly olny the
following limiting conditions:

W, w,, f), !s.z + 0,as§ =+ :-;',. {(6)
Wy £y, fs.l - 0,a3¢ +> 0 (N

Combining Eqs. 1 and 3 we obtain the radial inertia
force equatiocn:

g = T cos’d + 20 cos ¢ . (8

ot

In Eq. 8§ the left-hand side term is analogous to
gravity and hence is denoted by g; the subscript M
stands for "model'. Let us determine the relative
sagnitudes of the two right-hand side terms of E£q.8.
The ratio of these two terms is:

a7} éos ¢ - 2u , (9
mz e 0.2. fir cos ¢

. ‘The right-hand side (rhs) of Eq. 9 represents a

Rossby nuaber, dencted by Ro.

It is well known in meteorology that the condition
for the prevalence of Quasi-geostrn%}c equilibrium
is that Ro << ] [see, e.g., Holton Since
tropospheric motions are quasi-geostrophic, and
since we want to reproduce and study such conditions
in our model, we may assume that for our model
experiments alsc Ro << 1, ([The valldity of this
assumption can be experimentally established by mak-
ing r; small. See Eq. 16 below.] Using this value

in BEq. 9 we see that:

2. : (10)

Thus the second rhs ters of Eq. 8 is negligible
sgaiast the first rhs term. Therefore Eq. 8
reduces to:

2 cos $ << rﬂz cos

By * xﬁz mszo. (11}

Equation 11 may be . interpreted as follows: In s

I P T

spherical, inviscid, homogéneous, rotating fiuid mass
not_acted on by gravitational forces, the rndial
centrifupal force acts as a sphericallv asymmetric
pnvIty-l!Ee forcs.
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CHARACTERISTIC PRESSURE DISTRIBUTION IN THE

]
The hydrostatic equation is:

p = -gopér, 12)

where 6p/ér ts the variation of pressure with the
{vertical) coordinate r, g the acceleration due to
gravity, and p the density of the fluid. Let us
assume, for the moment, that p is constant. Substi-
tuting Eq. 11 in Eq. 12, and integrating froa r,
the radis) position at which the pressurs is to be
determined, to ¥, the radius of the inner sphere,
we obtain:

pr#) = G0 ¥ - o) cors. (3

From Eq. 13 it may be seen that the pressure due to
the radial centrifugal force is & maximum at the
outer sphere radius (r = r,) at the equator

(¢ =0, cos $ =1). The pgessure ‘diminishes to
zero at both poles; it is also zers at the inner
sphers (see Fig. 3).

[
Q

Jswos2025 %0 30252050 5

N
[- ]
_

RADIAL DISTANCE ,r {(em)

m [ ¥ L) AJ L) L) L) ¥ L) 1 L) \J ¥ B - L) L]
90 70 50 30 0 10 30 % 70 9
NORTH LATITUDE SOUTH LATITUDE

Fig. 3. The distribution of static pressure due to
the radial centrifugal force in a spheri-
~sl, zero-gravity model of the atzosphere,

Units: dynes o3,

DISTRQBUTION OF ZONAL MOTION DUE TO INERTIA

. FORCE

Prom £q. 13 the equation for the north-south pres-
sure-gradient force is cbtained as

2
. %;g% Lo sindcse.  ao

Combiring this force with the other nurth-south
inertia forces (Eqs. 2 and 4) we obtain

ri
g-:- » g;(l'z-l':) sin ¢ cos ¢ -

- £ cos ¢ sin ¢ - 2 sin 6. (1)

ORIGINAU PAGE IS
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for 2.1/2 » ') P

f 2 Carir! Surfite

" 1f the meridional scceleration dv/dt ¥ 0, Eq. 15

ylelds "y '

cos §. ! (18)

L ‘-:’N

o3

The following points concarnlhg Bq. 16 are worth
Mtln‘: [ et T

i. At the equator (¢ = 0) every one of the rhs
terms of Eq. 15 is zero. Thus u is indeterminite
at the equator. Therefore, Eq. 16 is invalid in
the vicinity of the squator, and ths maximum magni-
tudes of the zonal motion due to inertia forces may
ba expected in the middle latitudes,

11, In the above considerations, the effects of
viscosity have not been taken into account. For
any viscous fluid a no-siip condition has to be
applied at the spherical walls, Hence thé fluid in
contact with the walls will have only the solid-
rotation velocity. ‘

114, Since the easterlies represented by Eq. 16
are dissipated by viscosity at the walls, angular
momentum balance in the wmodel requires that wester-
13es be dissipated elsewhere. This might be
expected to happen in the tropics, where viscous
forcas might help ﬂtablish toroidal cells in the
nanner of Pesrson(8), -

iv. Since easterlies are established in the
aidlatitudes by the inertia forces in-the spherical
annulus model, it {s essential that the model be
heated in the equatorisl reglons, and couied near
the poles to produce westerlies in the midlati-
tuden, as in the earth's atmosphers. We also note
from Bq. 16 that the easterlies establiszhed by
inertia forces :an be reduced by decreasing the
value of - Ifz, =0 (i.s., for a spherical

fluld mass), the zonal motion due to inertia furces
is identically zero.

GENERATION OF THERMAL CONVECTION

It was shown earlier that the radial cent:ifugal
force is wuch larger than the radial Cori-lis forge
under quasi-geostrophic conditions, and that the
radial centrifugal force i3 a function of radial
distance r snd latitude ¢, When the radial centrif-
ugel force is the dominant radial forr- the warm-
ing of the equatorial regions near LITAL inner

radius, will not lead to thermal convection, since
only denssy fluid is drawn to the outer radius r,.

Therefore, to simulate cellular convecticr, the
fiuld must be heated at Ty rather than at Ty We
note slso the following: ). Even if the entire
outer sphere is heated, convection will not be.
generated at the poles, since the radial centrifu-
gal force is zero at these points. 2, The heating
of the cuter spiicre laads to a radial distribution
of temperature in the model corresponiing to the
vertical (radial) distribution of potential tempera-.
turs in the atmosphere. This is the proper simi-
larity between the incompressible fluid in the
model and the compressible atmosphere.

SRS g

e k.
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» CONCLUSION
It can be readily shown that the meridional pras-

sure gradient due to the radia) centrifugal force
(Eq. 14) leads to the establishaent of westerlies
which increase in magnitude radially, under geo-
strophic cuuditions. However, the meridional

centrifugal force countexacts this, and establishes

casterlies in the middle latitudes (see Eq. 16).
Therefore the establishment of westerlies in the

midlatitudes of the spherical annulus model demands

the imposition of a meridionsal tempersturs gradi-
ent. It has been shown above that heating the
outer sphere, rather than the inner sphere, lesds

to thermal convection under geostrophic conditions.
If, however, zonal velocity u becomes comparable to
fir, so that Ro v 1 (see Eq. 9), the radial Coriolis

forca also becomes important in establishing
thermal convection. Under such conditions the

. equations of motion are quite non-linear, and the

resulting circulations have to be studied through

actusl experiments or through numerical models. We

have begun a numerical model study at this time.
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ABSTRACT

Very good agreement is shown 1o exist between the meridional distributions of the gzonal wavenumber n of
rapidly amplifying baroclinic waves on a sphere and of an average wavenumber ¥ of *grid-scale” atmo-
spheric eddies, As a consequence, the zonal wavelength of both baroclinic and atmospheric eddies remains
virtually constant, i.e., within a factor of 2, over the extratropics. The values of » at different latitudes
have been obtained by using linearized baroclinic theory on diflerent meridional profiles of the unperturbed
zonal wind (MPUZW), Since they agree with ¥, atmospheric eddies are, in relation to linear baroclinic waves,

v

T RO

independent of MPUZW. In this sense ¥ is controlled locally rather than globally,
. The mutual dependence of the upward and poleward transports of (sensible) heat in baroclinic wave theory
is correctly formulated—as compared to a direct analysis of the first law of thermodynamics.

1. Introduction

Moura and Stone (1976, hereafter referred to as
M & S) and Stone (1974) have derived a number of
interesting properties of linear baroclinic waves. They
have compared their results with available meteorolog-
ical statistics such as those of Oort and Rasmusson
(1971) and found quite good agreement. In the case of
two specific results, additional methods can be used to
infer the properties of atmospheric eddies, which may
then be compared with the M & S results. The methods
we have alluded to will be discussed in this paper.
The results under consideration are the zonal scale of
eddies and the interdependence of the poleward and
upward transports of heat.
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F16. 1, The latitude dependence of tonal wavenumber for linesr
baroclinic waves om & sphere; dots, near-neutral stability (sym-
metric streamfunceisn); circled dots, far from neutral stability
(symmetric streamilanction); circled cross, far from neutral stab-
ility (streamfunction antisymmetric with respect to the equato:).
Abacissas of points refer to the latitudes at which the geopotential
eigenfunction, at the top level of the three-level model of Moura

* and Stone (1976), reaches the maximum magnitude. Each point
. corresponds to a different meridional profile of the unperturbed

zons;: wind.
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2. The zonal acale of eddies

For the study of this property we consider the
spherical, two-layer (three-level), linear guasi-geo-
strophic model of M & 5. M & S use several meridional
profiles of the unperturbed zonal wind (MPUZW).
Their results concerning the zonal scale of linear
baroclinic waves may be summarized as follows:

1) The nearer the peak in perturbation geopotential
is to the pole, the smaller is the zonal wavenumber ()
of the most unstable mode (see Fig. 1).

2) As a consequence of 1), the zonal wavelength near
the peak in perturbation geopotential is about 5000 km
on a sphere of the size of the earth. (This wavelength is
virtually independent of latitude in n broad mid-
fatitude belt.) .

3) The zonal wavelength is proportiona! to the

" radius of deformation at the latitude where the max-

imum of perturbation geopotential occurs.

The author {Srivatsangam, 1976a, b) has described a
parametric method which yields an average zonal
wavenumber ¥ for atmospheric eddies through the
geostrophic meridional wind equation. Here, the
averbar denotes a weighted root-mean-square averaging
(for details, see Srivatsangam, op. cit.) Now,

A= ([ [s" DM g fo cosd), (1)
where square brackets denote zonal averages and

_asterisks departures therefrom. Hence [}, [s**}

represent the zonal variances of the geostrophic
meridional wind at, and the height of, an isobaric
surface, respectively. Also, f is the Coriolis parameter,
o the mean radius of the earth, ¢ latitude, and g the

- N - 7 S
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Tasrz 1. Height and latitude variations of the monthly mean values 3/ (¥) and the tempoul coefficient of variation C(¥)
of the average zonal wavi aumber (¥).

—- e

Pressure Latitude (*N)
(mb) 20 25 0 as 9 45 50 55 60 65 0 15 N 8
_ a. M(®) for October 1968 _
100 407 381 - 377 387 410 392 329 270 2258 186 159 139 127 LAl
200 423 426 448 4.7i 483 457 403 3 47 293 24% 205 1D 149 1.25
300 S13 488 495 506 510 476 427 337 328 212 236 198 162 132
500 5.61 531 526 544 503 464 420 362 311 268 227 1.89 1.61 1.27
700 505 517 524 5S4 484 453 403 349 307 263 221 1.88 1.61 1.2
1000 495 498 526 538 516 468 408 363 335 307 2710 29 1.58 1.14
) b. C(¥) for October 1968
100 20 15 12 1§} 1 15 15 20 26 21 21 19 19 14
200 17 15 14 13 12 15 16 17 21 19 21 26 20 8
300 12 13 14 12 13 15 17 17 18 17 ! 2 19 2
500 9 11 13 w . 12 16 17 17 17 17 25 20 19 19
700 14 12 10 9 0 16 i6 16 18 20 23 25 18
1000 20 19 14 13 12 14 14 17 19 16 19 21 2 7]
. <. M(®) for February 1969 . -
100 320 336 37 402 360 293 248 220 202 194 186 159 134 118
200 346 377 445 494 461 362 303 2.67 241 237 245 216 143 1.09
300 413 443 507 S15 488 386 330 302 277 21 213 223 151 L1S
500 460 473 488 492 . 474 3719 33 308 294 284 281 214 1.5 518
700 488 467 486 481 463 391 343 323 304 293 266 205 152 118
1000 501 493 554 537 446 367 321 305 2% 270 259 214 163 LW
. d, C() for February 1969 ’
100 11 10 15 19 13 14 13 17 1¢ 15 17 20 21 18
200 13 10 10 1 16 11 18 20 15 12 i7 25 19 6
300 17 14 it 11 16 12 19 23 16 14 15 2 19 11 .
500 16 12 13 i3 17 14 20 23 18 15 14 il 19 14
700 15 13 18 16 15 11 17 22 2 17 13 22 24 14
1000 i. 12 16 17 15 15 20 23 26 20 22 4 23 22

acceleration due to earth’s gravity. From (1) it is seen
at once that # represents “grid-scale” atmospheric
eddies,

The daily values of # were computed at the 100, 200,
300, 500, 700 and 1000 mb levels in the region 20°N to
85°N using the National Meteorological-Center (NMC)
data for October through December, 1968, and February
through April, 1969, The hour of observation of the
data used here was 1200 GMT, and a 5° latitude by
5° longitude grid was used,

The data on monthly mean values of #, denoted by
M (#), are presented in Table 1. These are for October
1968 and February 1969 only, but are typical of all
the six months for which computations were made.

From Table 1 and Fig. 1 it is readily seen that result
1), and hence result 2), of M & S are in good agreement
with the ensemble characteristics .of atmospheric
eddies as represented by . »

It may be repeated here that each data point in
Fig. 1 corresponds to a differest MPUZW, However, the
data of Fig. 1 and Table 1 show excellent correspond-
ence. From these, the following conclusions may be

© made: .

In order to derive the typical wavenumber of

A{ﬂ« ﬁ“
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atmospheric eddies in any particular latitude through
linear baroclinic wave theory, a MPUZW which would
yield & maximum value of perturbation gepotential
height at that latitude must be used.

Conversely, the zonal wavenumber of at..nosphenc
eddies at each latitude is such as if the maximum
magnitude of perturbation geopotential height occurs
at that latitude.

Also, from the last statement and resuit 3) of M & S,
it follows that the zonal waveleryta of atmospheric
eddies is proportional to the radius of deformation at
each latitude. [This docs not contradict result 2) of
M & S. Since the radius of deformation is proportional
to 1/f, which varies by a factor of 2 from JU°N to
90°N, the typical wavelength of linear baroclinic and
atmospheric eddies varies only by a factor of 2 in the
extratropics. On the other hand, the wavenumber, as
seen from Table 1, varics by a factor of 5 from the
subtropics to the subpolar region. By comparison,
therefore, the wavclength rather than the wavenumber
is constant across latitude circles.]

Now wé turn to the quustion of the temporal variabil.
ity of #.- Table 1 coniains data on the temporal co-
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TABLE 2. Height and latitude variations of the temporal coefficients of variation C({s*']) and C{{v]) of the zoul
variances of isobaric surface height and geoal:ophic meridional wind.

Pressure Latitude ("N)
{mi) 20 25 30 35 40 45 50 55 60 65 10 5 30 as
a. C{[s*']) for October 1968
100 35 33 28 28 29 k)| 34 51 66 5 81 34 88 2
200 37 2 32 39 s 24 4 33 4 51 o4 3 86 11
300 36 2 7 9 38 25 4, 25 3 43 56 2] 86 116
500 3 33 45 56 k4 31 9 y 1] 29 45 51 67 a3 108
700 35 3 32 39 42 39 k)1 1 7 46 48 ) g 119
1000 4 9 k1) 2 5 L1 3 K} ‘33 M 41 57 n 9
b. C{[v*1]) for October 1968
100 38 30 0 34 40 31 k] 36 42 51 62 67 73 ]
200 n k11 27 41 4 - 25 2 36 29 35 5 -56 63 )
300 30 34 35 46 4 25 3 33 27 37 43 2 61 23
s00 30 33 38 45 39 26 33 3s 30 7] 45 52 62 86
700 3s k1) 271 35 38 31 35 37 29 41 3 45 o %
1000 44 35 35 33 46 48 41 43 35 9 34 36 &0 90
efficient of variation of # given by Finally, the M(#) values for October 1968 and
February 1969 in Table 1 reveal rather small inter-
(") monthly changes. This is also true of the other months
(2)  for which computations were made. Thus it appears
(“) that in each zone # remains ncarly constant at lcast

where ¢(%) is the monthly standard deviation of #.
Using the data described above, C(#). was calculated
for all latitudes, pressure levels and months.

The C(#) data in Table 1 indicate rather small
day-to-day variations in #. A comparison of the
coefficients of variation of [1**], [s**] (see Table 2)
and # shows that C(3) is only about one-half as large
as C([z"]) and C([v**]). From (1), then, it follows
that variations in [s**} are compensated by like
variations in [v**], Tkis is confirmed by Fig. 2, in

which the daily values of [5**], [+**] and # for 65°N .

200 mb and October 1968 are presented. -
The temporal quasi-constancy of # thus achieved by

the mutual compensation of [2*2] and [v*?] indicates.

that the results of M & S are valid not only on a monthly
mean basis, but also on a daily basis, i.e., for transient
atmospheric states,
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Fic. 2. Daily values of the zonal variances of the geostrophic

meridional wind [t*] and the height of the 200 mb surfuce [s*2],

and the weighted 100t-mean-square wavenumber ¥. Values are for

200 mb, 65°N and October 1968.

through the cold half of the year. This may be ‘compared
with the phenomenon of vacillation in the cylindrical
annulus experiments (see, e.g., Lorenz, 1963, and
Pfeffer and Chiang, 1967). Vacillation is & process in
which, under constant conditions of rotation and
imposed radial thermal gradient, the wavenumber
remaing a constant whereas the wave amphtude or
radia} axis tilt varies cyclicaily in time. Since 3 remains
nearly constant in the atmosphere, a similar ensemble
average wavenumber may perhaps also remain con-
stant in unsteady Rossby regimes. These arguments
are, however, quite conjectural, and need verification
through data analyses.

3. The interdependence of vertical and meridional
eddy heat fluxes

Stone (1974) has derived the following equation fo
the upward flux of the sum of sensible heat plus
potential energy [which may be closely approximated
by the upward flux of sensible heat (se.. Oort and
Rasmusson, 1971, pp. 50-51)]:

[*10*]= ~2nc| ey —x%y | 24200 ]00%*]. (3)

In (3), ¢* is perturbation potcntial temperature, #, v,
w the zonal, meridional and vertical components of
velocity, respectively, %, % the amplitude of perturba.
tion pressure at the top and botton levels, respectively,
and ¢; the imaginary part of the complex phase speed.
Eq. (3) applics to baroclinic waves on a § plane.
Since ¢;=0 ncir neutral stability, [0*w*] is directly
proportional to {§*1*]. M & S have extended this result
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of Stone {1974) to baroclinic states far from neutral
stability, and on a sphere, and concluded that even for
these cases [#*w*] is proportional to [6*+*]. Therefore,
the first right-hand side term of (3) is negligible as
compared to the second.

Kuo (1936), examining baroclinic instability in a
cylindrical coordinate system, has derived equations
similar to (3) above [Kuo, 0p. ¢it. ; Eqs. (72) and (73)].
The numerical values givep by Kuo for the upward flux
of sensible heat are in order-of-magnitude agreement
with meteorological observations,

Srivatsangam (1976a) has derived the following
equation for the upward flux of sensible heat, from
the first law of thermodynamics:

oo )[w*T*]
= —[pJestPa ([ T**]/ 200+ [x](3[T**)/ 2009)
+[w](@CT*1]/288) +[v* T* PLT)/ ade}
+&[T*3g% /01 ]+ [ ][ T*ag*/a cospdr ]
+{v)[T*a¢*/ade )+{w][T*ag*/0¢]
+Le*T*18[¢)/ s9¢)) )} + (1+7). &)

-In (4), ¢, is specific heat of air at constant pressure, p air
density, T temperature, I'q the dry adiabatic lapse rate,
k=g/L, L being the latent heat of vaporization of
water, ¢ the specific humidity of air, ¢,A, £ and /

" latitude, longitudc, altitude and ‘ime, respectively, and

y=DaLTT/at+k-'alg 1/ ok,

Fq. (4) involves several assumptions including the
omission of diabatic effects other than the release of
latent heat of vaporization of water and the negligibility
of triple correlation terms such as [T*v*aT*/ad¢ ).

We see that only two terms on the right-hand side
of (4) involve the factor [v*T™*]. An order-of-magnitude
estimate of all right-hand side terms of (4), using the
Cort and Rasmusson (1971) data as reference, shows
‘that the term involving [v*T*J0[T)/ad¢ is at least
one order of magnitude larger than the other terms,

Thus the formulation of the interdependence between
upward and poleward fluxes of sensible heat in baroclinic
wave theory is in agreement with a direct analysis of
the first law of thermodynamics. However, very many
other cffects are neglected in deriving an equation like
(3), although these cffects are small. Thus, order-of-
magnitude agreement between the predictions of
linear baroclinic wave theory and metcorological data
may be expected even in the case of upward eddy heat
flux. This is indced proved by the results of Kuo,
mentioned above,
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