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INTRODUCTION 

Nature of the Problem 

I t  i s  well-known tha t  a i r c ra f t  can be greatly affected by cross- 

winds and gusts during take-off or landing. 

The s i tuat ion i s  particularly c r i t i ca l  for vertical  and/or short 

take-off and landing (V/STOL) a i r c ra f t  which may be operating in con- 

gested urban locations and thus subjected to  the wakes o f  h ~ ~ s 2 r s  or 

ta l l  buildings. 

Wakes are  regions in which the mean velocity i s  less  b u t  the 

turbulence i s  greater than that in the unaffected flow. Semi steady 

s t a t e  vortices may be a feature of t , ~  wake in the near vicinity of 

the structure.  

Aside from t hese  qeneral s ta tem~nts :  1 i t t l ~  i s  known about the 

wakes of real structures in natural atmospheric flow. I t  follows that  

potentially hdzardous situations for  a i r c r a f t  operations conceivably 

could be avoided i f  there was greater knowledge of the structure of 

wakes and how tha t  structure i s  related t o  obstacle s ize and shape, and 

ambient wind. 

Past Studies 

Frost (1973) has provided a very useful review of over 50 papers 

and symposia proceedings dealing with a i r  flow over bluff obstacles. 

His review reveals that studies of models in low-turbulence wind 

tunnels const i tute  by f a r  the greater portion of the l i t e ra tu re  on the 

subject. These studies deal with flow over plates,  forward or  rear 

facing steps,  or buildings. 



Typical of the  s o r t  of flow found over buildings or pla tes  i s  t h a t  

given by Halitsky (1968) and shown here as Figure 1 .  

Figure 1 . - Flow zones near a sharp-edged bvi 1 ding (Hal i t s  ky, 1968). 

I t  i s  seen t h a t  flow separation occurs nezr the  forward edge of the 

bui 1 ding roof and t h a t  reattachment occurs a t  some distance downstream 

within the  wake. A closed c i rcu la t ion  i s  thus delineated which has 

been variously ca l l ed ,  a cavi ty ,  a bubble, or  an eddy. 

Evans (1957) has concentrated on determining the dimensions of 

t h i s  f e a tu r e  of the wake i n  a wind tunnel study of buildings o f  

various shapes and roof types. In addi t ion,  he shows t ha t  the  flow 

pattern i n  the  horizontal plane not only depends upon the shape of 

the s t r uc tu r e  b u t  var ies  considerably w i t h  the  or ienta t ion w i t h  

respect  t o  the wind. Unfortunately, he made no attempt to  develop 



analytical relationships in th i s  Study. 

Hal i tsky provides equations deal i ~ g  with the wake dimensions and 

mean longitudinal velocity dis t r ibut ion,  b u t  they are applicable to a 

suspended plate and therefore of limited value for  the natural set t ing.  

A very elegant theoretical treatmsnt for  the flow in the vertical plane 

is  given by Couni han e t a1 . (1  974). 

-I ne numerical simulation studies of flow around buildings (Hirt  

and Cook, 1972; Hotchkiss, 1972; Thomas, 1971 ; Frost, e t  a t . ,  1973) 

show resul t s  similar to those of the wind tunnel studies. 

I t  i s  generally agreed that wakes in the natural set t ing may 

d i f f e r  considerably from those obtained in the wind tunnel or by 

numei-ical simulation. This i s  because the real wind in passing over 

the surface boundary i s  i t s e l f  extremely turbulent and subject t o  random 

variations in speed a n d  direction. Unfortunately, 1 i t t l e  work has been 

done in the natural set t ing.  Sexton (1  971 ) describes measurements 

made on the upwind side of a building which show a downwash vortex 

(see Figure 1 ) extending about one bui 1 di ng  height upstream. Measure- 

ments of average wind speed a t  the 3-m lev21 above ground show 

reasonabl e agreement with wind tunnel data. 

A measurement program in the wake of an airport  hangar has been 

reported by Co?mer (1971). Instrumented masts were placed along a 

l ine perpendicular to and through the middle of the long side of the 

hangar a t  distances of 5,  14, and 23 building heights (10 m )  . Another 

instrumented tower 190 m upstream provided reference data. Measure- 

ments made during a single 40-min run give indications of the extent 

of the wake, -the intensity of the turbulence, and gradients of the 



mean flow within the wake. 

Purposes of Stud1 

The present study was intended as a f eas ib i l i t y  experiment to  

determine the extent to which a research a i r c ra f t  could be used as a 

rapid-turnaround, date.-acquisi t i  on system to yiel d useful data for 

a~ronaut ica l  safety applications. Such a system could be used to probe 

the wake from many buildings and obstacles and would avoid the labori- 

ous and time-consumi ng method of ineasurements obtained from towers. 

I t  i s  evident that  the s ta r t ing  point in such an experiment would 

be the establishment of standard data against which to compare the a i r -  

c ra f t  data. l i  :s can be done only by makin9 measurements in a wake 

with instrumented towers and developing a model based upon the per t i -  

nent parameters of the flow. The next problem would be the determina- 

tion of some readily-obtainable parameters in the response of the a i r -  

c ra f t  which indicate the l ike ly  s t ructure of the wake. 

Approach t o  Study 

One obvious signature of wake flaw would be the greatly enhanced 

turbulence a t  i t s  boundaries and in ter ior .  Studies have been pub1 ished 

of the response of an a i r c r a f t  to a f i e l d  of turbulence, e.g., Jones 

(1969) and Kaynes (1971 ).  However, for  t h i s  to  be a f ru i t fu l  approach, 

i t  i s  required tha t  the turbulence be homogeneous and steady s t a t e .  

Furthermore, as Col mer (op. ci t . ) points out, a conventional 

a i r c r a f t  a t  take-off o~ landing speed would pass through the wake o f  

an isolated s t ructure in one t o  two sec. The response of the a i r c ra f t  



would not be to the energy of the turbulence a t  various frequenc'es, 

b u t  ra ther  to the gradient of mean wind speed across the wake. A VTOL 

a i r c ra f t  could be affected by the turbulence b u t  the gradient of mean 

windspeed in the wake again i s  expected to be the dominant factor.  

Therefore, the main thrust  of t h i s  study has been to obtain mean 

values of the flow. The intention was t o  use these measurements in 

conjunction with theoretical r e l a t i  onships developed by nieans of 

dinlensional analysis t o  establish a model of the flow in the wake. 

The f l igh t  program was never accomplished. This was due in part 

because of down-time of the a i r c r a f t ,  in part  because of delays in 

getting the a i r c r a f t  instrumented, b u t  mainly because the appropriate 

nleteorological conditions (eas t  winds) did n o t  occur a t  times when 

the a i r c r a f t  was o~era t iona l  a d  available.  



Study S i t e  

EXPERIMENT DETAILS 

The experimental s i t e  was a large hangar (100 f t  x 123 f t  x 40 f t )  

a t  what had been a U.S.A.F. airbase a t  Bryan, Texas, b u t  which now i s  

a property of Texas A&M University. 

Figure 2 shows the s i t e .  The area t o  west of the hangar i s  a 

concrete apron t o  a distance of about 600 f t .  The area surrounding the 

hangar on the north, east  and south sides i s  grassy f ie ld .  Some one- 

story buildings l i e  330 f t  to  the north of the hangar and two more are 

shown to the south-southeast. Also shown on the n o r t h  side of the 

building are a small shed, a t r a i l e r  truck and what had been the f l igh t  

control tower, a steel girder structure about 70 f t  high. 

The climatology of the area i s  such t h a t  the prevailing wind i s  

southerly from l a t e  spring through early f a l l .  However, the most open 

and sui table  area for  set t ing u p  instrumentr and carrying out f l i gh t  

measure men^; i s  the apron. Therefore, an array of spots in a polar co- 

ordinate grid were painted on the concrete. These were numbered and 

let tered as shown in Figure 2 .  Favorable wind directions for  experi- 

mentation would be those from northeast t h r o u g h  southeast, conditions 

which prevai 1 infrequently , b u t  occasionally a f t e r  a col d-front passage. 

A second grid was la id out on the south side of the building, as 

shown in Figure 2 ,  to permit measurements during northerly flow. This 

condition i s  more common a f t e r  cold-front passages in the area. Flight 

measurements in  th is  area were ruled out because of power 1 ines which 

woul d intersect  any desi rabl e f l  ight path. 
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Figure 2 - Experimental s i t e .  Points represent gr ids  used t o  loca te  
instruments. Points a r e  40 f t  apa r t  i n  south gr id .  



Ground fieasurements 
C--IC_-. --- 

The instrumentation employed was the Climet system for  measurement 

of wind speed (model 01 1-1 ) and direction (model 01 2-1). Gill propeller 

anemometers (model 27100) were used to measure vertical  motion. The 

instruments were mounted ei ther  on portable tripods for measurements 

up  to 10 f t  above the sround or on three large towers each with a heavy 

base mounted on wheels. These towers could be moved with a small 

t rac tor  over even ground; furthermore, winches on these towers per- 

mitted instrument placement a t  any height from about 5 f t  to 60 f t  

above ground.  The unevenness and softness of the ground made i t  im- 

possible to use these towers south of the hangar. 

A n  ea r l i e r  project was carried out in 1973-74. During that  

phase of the work one of the towers was permanently located a t  a 

point 150 f t  t o  the east-northeast of the hangar (see Tower 1 in 

Figure 2 ) .  During 1975-76 the towers were unavailable most of the time. 

Consequently, a tripod generally was used for  the upwind measurement 

and the placement varied from one experiment to another, 

All experiments were composed of a ser ies  of approximately 15-min 

runs with data meiisured simultaneously a t  four or f ive locations. One 

se t  of instruments was always upstream from the building; these 

measurements were considered t o  be the refet.ence o r  free-stream values. 

The intention was t o  operate within or a t  the edges of the wake with 

the other towers or tripods. After each run the towers and/or tripods 

could be relocated and on the t a l l  towers the instruments could be 

moved to a new height. Thus, with f a i r l y  steady wind for  two-three 

hours, the wake could be probed in a number of places. 



The r e c o r d i  nq system, analog ' t a p e  u n i t s ,  was l o c a t e d  i n  t h e  

no r t heas t  co rne r  t h e  hangar. Thus, 5 0 0 - f t  cab1 e 1 engths p e r m i t t e d  

i n s t r u n l c r ~ t  placement o u t  t o  about  400 f t  t o  t h e  west  o r  south o f  t h e  

bu i  1 d i n g  . 
A number o f  problelns were encountered w i t h  t h e  r eco rd i ng  o f  da ta  

on tapes and t h e  l a t e r  convers ion  o f  t h e  da ta  f rom analog t o  d i g i t a l  

form. Consequently, many da ta  were l o s t ,  e.g., a l l  v e r t i c a ;  mot ion  

data f o r  t h e  exper iments r u n  i n  1975-76. I t  was f i n a l l y  dec ided i n  

the  s p r i n g  o f  1976 t o  abandon t h e  use o f  t h e  tqpe reco rde r  and a 

sw i t ch  was made t o  c h a r t  recorders .  



RESULTS OF THE STUDY 

Cxperi~nental Data -. --- 

Those data that  were recorded on magnetic tape were processed 

as follows. Analog values were taken from the tapes a t  each tenth of 

a second and averaged t o  give a 1-sec value. The 1-scc values were 

transformed t o  digi ta l  form and stored on a second tape for further 

analyses by computer. 

The resul ts  from three experirnents done in 1974 are presented in 

Tah ' ,~  1.  The columns in the table show the following, going from l e f t  

t o  r iqht :  ( 1 )  the dcite of the exper-iment and the run number, ( 2 )  the 

trjwer vurnbers, ( 3 )  the location of the given tower within the grid (see 

Figure 2 ) ,  ( 4 )  the height above ground of the instrunlent5 on the 

given tower. (5 ) - (6 )  the average wind speed and direction in the 

meteor01 ogi car systen, and ( 7 )  the average vertical motion. The 

vertical motion for  Tower 2 i s  missing for  a l l  three experiments. A 

W - r  an S has been used as a prefix in column 3 of Table 1 t o  indicate 

whether the observation s i t e  was in the "west grid" or the "south grid." 

The data obtained during 1975-1976 are shown in Table 2. The 

experiment on 6-6-76 was the only one for which the west grid was 

used. For the experiments on 11-12-75 and 6-6-76, the recording of 

data was accompl i shed by Ester1 i ne-Angus chart  recorders, as expl ai ned 

previously. 



Tab1 e 1 . - 1974 Experiments 

Date 
and Instr. lJi nd Vert ical  
Ru n Tower Location H t .  ( f t )  Speed (m/sec) Dir (deg) [lotion (cm/sec) 

4-17-74 1 Fixed 8 3.0 11 - 5  3.7 
8 2 S-A3 8 2.4 16.0 --- 

3 S-B3 8 2.2 6.2 -0.1 
4 S-C3 8 2.2 30.2 0.8 
5 S- D3 3 3.1 22.2 -2.0 

4-23-74 1 Fixed 8 2.5 29.9 
1 2 W- J 4  8 1.8 47.0 

3 S-A2 8 i . 3  355.0 
4 S-B2 8 1 . O  11.5 
5 S-C2 8 1.7 58 . O  

4-24-74 1 Fi xed 8 2.0 75.9 -0.6 
1 2 W-F5 3 0 1.8 88.8 --- 

3 \I!- F5 6 0 3.2 185.6 -2.8 
4 W-E5 8 1.7 86.4 -9.4 
5 W-G5 8 1.5 94.6 -1.1 



Table 2. - 1975-76 Experiments 

Date 
and In s t r ,  Wind 
Run Tower Location H t .  ( f t )  Speed (m/sec) D i  r (deg) 

10-1 6-75 
1 1 Fixed 

2 B 1 
4 C1 

2 1 Fixed 
2 C 2 
4 D2 

3 1 F i  xed 
2 E3.5 
4 F3.5 
5 63.5 

10-1 7-75 
1 1 Fixed 

2 B1 
4 C 1 
5 Dl 

1 Fixed 
2 E 2 
4 F2 



Table  2.  - Continued 

Date 
and I n s t r .  Wind 
Run Tower Locat ion H t .  ( f t )  Speed (mlsec)  Dir (deg)  

1 Fixed 
2 E3 
4 F3 

4 1 Fixed 
2 E4 
4 F4 

5 1 Fixed 
2 D 4 
4 E 3 

6 1 Fixed 
2 E 1 
4 F2 

11 -1 2-75 
2 1 Fi xed 

2 C3 

3 1 Fixed 
2 B 6 



T a b l e  2. - Cont inued  

Da te  
a n d  I n s t r .  Wind 
Run Tower L o c a t i o n  H t .  ( f t )  Speed  (m/sec)  D i  r ( d e g )  

1 Fi xed 
2 l?l- K 7  

2 1 F ixed  1 5  
2 W-.K7 8 

- 
3 1 F ixed  

2 W- K7  

4 1 F ixed  6 0 
2 \.I-K7 6 0 

5 1 Fi xed 
2 W-G9 

6 1 F ixed  
2 GI-G9 

7 1 F i  xed 
2 W-G9 



T a b l e  2. - Cont inued  

Date 
and  I n s t r .  Wind 
Run Tower L o c a t i o n  H t .  ( f t )  Speed  (rii/sec) D i  r ( d e g )  

8 1 F ixed  
2 GJ-H6 

1 F ixed  
2 W-H6 

1 0  1 F ixed  
2 W-H6 

1 Fixed  
2 W-H6 



T h e o r e t i c a l  Development. 

We f i r s t  e s t a b l i s h  t h e  n a t u r e  o f  t h e  equa t ions  which must be used 

i n  t h e  a n a l y s i s  by  a  s c a l i n g  procedure,  a l ong  t h e  l i n e s  o f  t h a t  g i ven  

by Tennekes and Lumley i n  t h e i r  d i s c u s s i o n  of t h e  t u r b u l e n t  wake (A 

F i r s t  Course * in  Turbulence, pp. 104-109). 

Accord ing ly ,  we s t a r t  w i t h  t h e  equa t ions  o: mean mot ion  and t h e  

c o n t i n u i t y  equa t i on  ( t h e  c o r i o l  i s  terms and mo lecu la r  v i s c o s i t y  terms 

a re  neg l  ec ted)  : 

A t  t h i s  p o i n t ,  we assume t h a t  t h e  f l o w  i n  t h e  wake i s  s i m i l a r  t o  

t h a t  shown i n  F igures  3 and 4. I n  these  drawings, two s c a l e  l eng ths  

a re  i n t r oduced .  The f i r s t ,  al, corresponds t o  t h a t  de f i ned  by Tetinekzs 

and Lumley as t h e  p o i n t  a t  which U-Uo = 4 Us. The sca le  leng th ,  e2, 

i n  t h e  z d i r e c t i o n  f o l l o w s  f r om t h e  d i s c u s s i o n  o f  Chang's wind tunne l  

work by P l a t e  (pp. 162-165). I t  marks t h e  su r f ace  o f  U=% U o '  . I t f o l -  

lows t h a t  bo th  a  and a2 a r e  f u n c t i o n s  o f  x. 



Figure 3. - Hypothesized charac ter i s t ics  of wake flow i n  x ,  y plane. 

S U R F A C E  OF 

Figure 4.  - Hypothesized charac ter i s t ics  of wake flow i n  x, z plane. 



Then, following Tennekes and Llrmley, we can say t ha t  

a l l  
= f l U s l a l )  and = ~ ( u , / L )  , 

aY 

where L denotes a  scale  lenqth in the  X direct ion.  From the  continuity 

equation, the  orders of maqnitude are :  

where fl( ) and Q s ignify  order of maqnitude. 

Therefore, 

!Je now assume t h a t  1JS %LUo, k l  % -- 1 L ,  and UobUo Then, assuming 
10 10 

steady s t a t e  conditions and comparing the magnitudes of the terms in  

(1)  gives: 

au2 u 2  
- % -  

u 02  1 
ax L % 1000al ; where i t  was assumed u % m U o  , 



Therefore,  t h e  approx imat ion  t o  (1 )  i s  

- - 
aU auv auw , 1 aP u - + - + - - - - -  
ax ay az p ax 

Equat ion ( 2 )  terms become: 

- 
auv u2 1 Uo2 Uo2 - % -  - % 
ax iI 100 L 10ooal 

- 
avw u2  
-TI- 

uo2 uo2 
% - % -  (Note, al % a2). 

az a2 1 0 0 ~ ~  I O O R l  

- 
1 aP a 7 +  avw - - - Then, ( 2 )  becomes: - 

aY a z  P aY 

From ( 3 ) '  



aw" u 2  u 0 2  
\ 

-$-,I,.- 

a2 100a2 az 

\Je iden t j fy  P '  2s the pressure anomaly due t o  the e f f ec t  of the build- 

ing and P o  as hydrostat ic pressure, i . e . ,  

P = P o  + P I .  

If we ignore synoptic e f f e c t s ,  then we can assume vhPo=O.  Also, i f  we 

assume tha t  the mechanical e f f e c t  of the building on the  flow i s  much 

larger  than any buoyancy e f f ec t s ,  we can use the hydrostat ic approxi- 

mati on. Thus, 

- - 
1 a P 1  aU a u v  + auw - - u - t -  

ax ay az P ax ' 



From Chang's work (Plate ,  Fig. 4. l o ) ,  i t  may be assumed that  

P '  a u o 2 .  
Then le t t ing  

P '  = A (x,y,z) U O "  

u 
gives: ---7 -= 

P ax ax p ¶ 

From the previous scale analysis we must have 

I t  i s  seen that  i f  i t  i s  reasonable to  expect that  a l  and R 2  are 

appropriate scale lengths for  pressure as well as motion, then we must 

have L 1 / R I  = @(I) .  Thus, the scale length for  pressure in the X direc- 

tion would have to  be much smaller than that  for  scaling motion. On 

the other hand, i t  seems more reasonable to expect the scale length 

for  pressure in the x direction also to  be the same as that  for  

velocity. Then, L '  Q L % 10al. Accepting the resu l t  from the second 

and third equations of motion tha t  A Q p/100 then implies that  



which i s  negl ig ible  when conipared'to the other  terms i n  ( 7 ) .  

When the Reynold's s t r e s s  terms a r e  expressed i n  terms of the  

f slni 1 i a r  mixing 1 ength concept, the system of equations becomes: 

A t  t h i s  point i t  i s  assumed t h a t  the flow in the wake i s  composed 

of a basic s t a t e  plus a perturbation.  The basic s t a t e  i s  taken t o  be 

the undisturbed, upwind value Uo, Therefore, 

U = Uo(z) + U1(x ,y ,z , t )  

Furthermore, i t  i s  assumed t h a t  Uo(z) can be represented by the famil iar  

log law. Then, 

And, K = k U* z. As a consequence (1 3) becomes 

Long (1 963) and Calder (1967) have emphasized the importance of 

using the control l ing equations when they a r e  known f o r  purposes of 

generalizing the  dimensional analys is  procedure. Frequently, the 



number of dimensional r a t i o s  can be reduced below t h a t  obtained by the 

usuai dimensional analysis  procedure and, therefore ,  a more powerful 

re la t ionship  i s  obtained. Such i s  the  case here and i t  i s  f o r  t h i s  

reason t ha t  re la t ionships  (13) - (16) were developed. 

In the present instance we use the equations of motion plus the 

"balance equation" wh~ch i s  derived from the former by using the con- 

t i  nui t y  equa-t ;cn. 

T h u s ,  

We assume the fol 1 owing boucdary condit ions.  

U l = O a t y = ? Q ~ ~  

U' = - U o  = 0 a t  z = z o ;  U' = 0 a t  z = H . 
U' = 0 a t  x = a; U' = - U o  a t  x = 0 . 
V = Vmax a t  y = r Q 9.1; V = 0 a t  z = 0,  H .  

W = O a t z = O , H ;  W = O a t y =  . t Q a l .  

P' = 0 a t y  = + Qaland z = H . 

Here, the l a t e r a l  boundary of the  wake i s  assumed t o  be a t  

y = 5 Q al  and H i s  the to;! af the wake. Q i s  a dimensionless fac tor .  

I t  i s  assumed the  H i s  3fi2 a t  best  and t ha t  a2 - height cf obstacle.  

Fol 1 owi ng Long ' s procedure, 1 e t 

[X] = A [U'] = D [ P ' / P ]  = G [fill = J 

[Y] = B [V] = E [ ~ ] = h  b 2 1  = k 

[z] = C [W] = F [ u o ] = I  



When these relationships are substituted into (14) - (17 ) ,  (18) 

and the boundary conditions, we obtain: 

I t  i s  assumed that  U ' ,  V ,  W, and are a l l  functions of 

x ,  y ,  z, K y  U o ,  el, e2. Consequently, i t  i s  found that :  

- 21 x " ,  = uo  f '  ( K  i@ - z 3 y  Y z  

In the Following we concentrate on finding the functional 

relationship for  U' for conditions tha t  match tbgse under which the 

observations were taken. Accordingly, i t  i s  assumed tha t  the basic 

flow, Uo, can be represented by the log profi le ,  i . e . ,  

for which K = k U,z. Then, (17) becomes 



We identify z = Z ,  the height of the observations so that  (23) becomes, 

Thus, the coefficients in (24) are treated as constants. 

A multitude of expressions for  U '  were tested to  see i f  they 

could serve as a solution t o  (24) keeping (19) in mind. One possi- - 
. . 

. - 
b i l i t y  i s  the relation 

- 
- .  

-. . - 
u 1  = u 0 ( z )  2' A ( A )  , 

. .-  
(25 

4 

--+ . ..,. - - 
where n = constant, x = x / h ,  5 = y /a l (x )  ; h i s  taken to  be the 

height of the building. When (25) i s  substituted into ( 2 4 )  we obtain 

We wish the solution to  describe a  self-preserving flow. This conditim 

will be met i f  

Then (26) becomes 

We expect that  A(6) should be a  maximum a t  5  = 0 and symmetric 

with respect t o  5 = 0. The values of al(ii) for  the experimental con- 

dit ions in t h i s  study range from about 7 f t  to  15 f t .  Therefore, A(5) 

should approach zero as E goes to  plus or minus f ive  or s ix .  A function 

-a52 which will behave in th i s  fashion i s  given by B e  , where B and a 



are constants. When th i s  function i s  substituted into (28),  i t  i s  

found that  i t  will be a  solution providing a = 112 and n = - 1/2. The 

statement for  (25 )  then becomes, 

The value of B can be determined by set t ing U' equal to  U s  a t  5 = 0 

on a  plot of the left-hand side of (29 )  versus 5. 

Another possible solution can be obtained by expressing A(5)  as ,  
m 

c i  
P I E )  = i;O ai  5 3 ( 3 0 )  

where the coefficients ai  are t o  be determined by substi tution into ( 2 8 ) .  

The symmetry condition requires tha t  the final expression shall contain 

no odd powers of 5. A c c o r d i n g l y ,  i t  i s  found that  

where a. can be determined in terms of U s  by set t ing 5 = 0 when (31) 

i s  substituted into (25) .  The d i f f icu l ty  with th i s  solution i s  that 

the value of n i s  n o t  readily determined. Since A(5)  = 0 a t  the 

boundary of the wake, say 5 = +6, an in f in i t e  s e t  of values of n would 

ar i se  as roots of the equation, 

I t  would be necessary to  t e s t  each value to  find the best f i t  for the 

observations - a monumental task! 



A th i rd  possibi l i ty  a r i ses  by a  change in definit ion of the 

quantity, a l  (7). A somewhat unsatisfying feature of the previous 

solations i s  tha t  the width of the obstacle i s  n o t  an expl ic i t  feature 

. .. . . of the scaling. Let t l ( Y )  be redefined as L ,  the half-width of the 

cross section presenei:ed to  the wind by the obstacle. L will vary as 

the direction of the \;lean reference wind varies. We assume as a  

solution, 

where x = x/h, 6 = y/L, ana h = $ 2  i s  the height of the structure.  

The quantity ( - Q ~ E ~  + Q l )  represents a  parabola which requires U '  = 0 

a t  6 = t l ,  i . e . ,  y  = A. 

When (32) i s  substituted into (24) ,  i t  i s  found that  

A(:) = Ble - 6 1 1  , B = constant, 

and 
2Z khU, 

61 = F U ~ ( Z ) ( I - ~ ~ )  ' 

I t  can be seen tha t  
- 

Finally,  a  solution which actually d i f fe rs  very l i t t l e  from (32) 

i s  given by 

- U 1  = U ~ Q ~ C O S ( $ E )  A(?) 

In t h i s  case i t  i s  found tha t  



where 

Then, 

and since presumably U' = U s  when 6 = 0 ,  Q2B2 can be determined from 

a plot of the left-hand side of (35 )  against 5 .  

Testing of Theory 

T a b l ~  3  contains a l i s t i n g  of those data which were suitable for  

testing the theoretical development. Most of these data were measured 

when the instruments were 8 f t  above the ground; however, on 6-6-76 

the instruments were 15 f t  above ground during runs 2 and 9 ,  30 f t  

above ground during runs 3  and 10, and 60 f t  above ground during runs 

4 and 11. 

The third and fourth columns of Table 3  give the velocity com- 

ponents relat ive to  a cartesian coordinate system in which x i s  in the 

direction of the reference wind (Uo)  and passes through the center 

of the building; x = 0 was taken t o  be a t  the building wall on the 

downwind side.  Columns 5 and 6 give the location of the observation 

point in th i s  coordinate system. In th i s  coordinate system observa- 

tions a t  points outside of y = + L do not have a defined x position. 

Therefore, some data appearing in Tables 1 and 2 do n o t  appear in 

Table 3. 

Experimental var iab i l i ty  precluded a very good match of the 

observations with any of the theoretical re1 ationships given previously. 

However, the most acceptable resu l t s  were obtained using (35). 



Tab le  3 . ' -  Wake Data 

Date and Re1 a t i v e  Components Pos i  ti on 
Run Tower U (m/sec) V(m/sec) x ( f t )  Y ( f t )  

1 U o  = 3.0 --- --- 
4-1 7-74 2 2.4 -50.2 131 -42.5 
Rur: 8 3 2.2 0.2 123 - 3 

4 2.1 -0.7 122 36 

1 Uo = 2.5 --- --- 
4-23-74 2 1.7 -0.5 190 -52 
Run 1 3 1 .O 0.7 9 2 1 

4 1 . O  0.3 92 36 
5 1.5 -0.8 9 2 70.5 

4-24-74 1 U o  = 2.0 
Run 1 5 1.4 -0.5 140 -1 3 

10-1 6-75 1 U o  = 5.1 --- - - - 
Run 2 2 0.0 -1 .3 8 7 -54.7 

4 0.8 -2.7 87 -17.8 

10-1 6-75 1 Uo = 3.6 --- --- 
Run 3 2 3.0 -1.1 146 20.1 

4 4.1 -0.6 258 58.5 

10-17-75 1 U o  = 3.4 --- --- 
Run 1 4 -0.5 -1 .O 4 5 -42.9 

5 -0.8 -2.7 45 - 6.6 

10-1 7-75 1 Uo = 5.2 --- --- 
Run 2 2 1.7 -1.4 88 10.6 

4 3.8 0.2 167 46.7 
-- 

10-1 7-75 1 U, = 5.4 --- --- 
Run 3 2 1.1 -1.9 163 -63.6 

4 4.4 -1.8 163 -34.2 



Table 3 .  - Continued 

Date and Re1 at ive Components Position 
Run Tower U (m/sec) V (mlsec) x ( f t )  Y (ft) 

10-1 7-75 1 Uo = 6.0 --- --- 
R u n  5 4 4.0 -2.2 202 -49.1 

10-1 7-75 1 Uo = 5.3 - - - - - - 
R u n  6 2 0.2 -2.2 77 -45.3 

4 3.4 -2.3 155 -57.1 

6-6-76 1 Uo = 2.9 --- --- 
R u n  1 2 2.5 0.2 239 47.8 

6-6-76 1 Uo = 3.5 --- --- 
R u n  8 2 2.7 -0.4 194 -37.1 

6-6-76 1 Uo = 3.2 --a --- 
Run 2 2 2.6 -0.4 247 58 

6-6-76 1 Uo = 3.7 - - - --- 
Run 3 2 4.0 -1 . O  278 7 9 

6-6-76 1 Uo = 3.2 --- --- 
Run 4 2 3.5 -0.7 251 42 

6-6-76 1 Uo = 3.6 - - - - - .. 
Run 9 2 2.6 0 179 13 

6-6-76 1 Uo = 3.2 --- --- 
Run 1 0  2 3.0 0.2 208 -52 

6-6-76 1 Uo = 3.8 - - - --- 
Run 11 2 3.9 -0.1 195 -25 



- 
Figu re  5 shows a  p l o t  o f  - U ' ~ ' ~ / U ~ ( Z )  vs.  6 ,  where 

and zo was es t ima ted  t o  be 0.1 ft. The p o i n t s  shown as s o l i d  do t s  

i n  F i g u r e  5 a re  t h e  o n l y  ones which a r e  cons idered  v a l i d  f o r  purposes 

o f  t e s t i n g  t h e  theory .  These a r e  t h e  o n l y  p o i n t s  t h a t  s a t i s f y  t h e  

assumption o f  t h e  t heo ry  t h a t  ti' should  be smal l  compared t o  Uo. The 

curve 5 = 0.4 c o s ( ~ r f / 2 )  has been drawn as a  suggested f i t  t o  these 

p o i n t s  - i t  has n o t  been v e r i f i e d  by t h e  leas t -squares  procedure.  

The reason t h e  o t h e r  p o i n t s  have been i gno red  a l s o  can be 

i l l u s t r a t e d  by r e fe rence  t o  F i g u r e  6 which shows ~ i n d  vec to rs ,  

no rma l i zed  by d i v i s i o n  o f  t h e  magnitude by Uo, a t  t h e  va r i ous  observa- 

t i o n  p o i n t s  i n  t h e  x-y  coo rd i na te  system. Th i s  f i g u r e  i s  o n l y  

r ough l y  r e p r e s e n t a t i v e  o f  t h ~  f l o w  t h a t  m i g h t  be expected w i t h  

s imultaneous observa t ions  a t  many p o i n t s .  Obv ious ly  i t  does n o t  

account f o r  v a r i a t i o n s  i n  t h e  shape o f  t h e  c a v i t y  and t h e  s t r u c t u r e  

o f  t h e  wake f l o w  w i t h  v a r i a t i o n s  i n  t h e  o r i e n t a t i o n  o f  Uo r e l a t i v e  

t o  t h e  b u i l d i n g ,  as shown by Evans (op. c i t . ) .  However, c e r t a i n  

f e a t u r e s  i n  F i g u r e  6 a r e  i n d i c a t i v e .  For  example, t h e  p o i n t s  shown 

by c rosses  must r ep resen t  observa t ions  w i t h i n  o r  v e r y  c l o s e  t o  t h e  

c a v i t y .  The t h e o r y  on t h e  o t h e r  hand was developed f o r  t h e  r e g i o n  

downwind f rom t h e  c a v i t y .  The obse rva t i ons  w i t h  s o l i d  d o t s  i n  

F i gu re  6 cor respond t o  those shown by s o l i d  do t s  i n  F i gu re  5, which 

indeed a r e  downwind o f  t h e  c a v i t y  r eg ion .  

The p o i n t s  shown by open squares i n  t h e  two f i g u r e s  a r e  gbserva- 

t i o n s  which seem t o  be i n  a  t r a n s i t i o n  r e g i o n  between t h e  c a v i t y  



- 
Figure 5. - A p l o t  o f  5 vs. " '  e6x us ing the d a t a  i n  T a b l e  3; -Uoo 



- J . .  

Figure 6. - Normalized wind vectors in the x-y plane, disregardino the orientation of the reference wind relative t o  
the structure. 



and t h e  remainder o f  t h e  wake f low.  These observa t ions  a l s o  f a i l  

t o  meet t h e  c r i t e r i o n  t h a t  U '  be smal l  compared t o  Uo. The t heo ry  

appears t o  become v a l i d  f o r  va lues o f  x g r e a t e r  than  100 t o  120 ft. 

Th i s  cor respor~ds  i n  t h e  p resen t  case t o  va lues o f  x o f  2.5 t o  3. 

I t  should be po in ted  o u t  t h a t  we were unsuccessfu l  i n  o b t a i n i n g  

usable observa t ions  a t  d is tances  g r e a t e r  than seven b u i l d i n g  he igh ts .  

Th is  was because when work ing a t  these d is tances  and moving t h e  

ins t ruments  about,  t he  n a t u r a l  v a r i a b i l i t y  o f  t h e  wind makes i t  

d i f f i c u l t  t o  guess  where t h e  boundaries o f  t h e  wake w i l l  be i n  t h e  

mean . 



CONCLUSIONS 

Based upon scaling and dimensional analysis, the statement 

was derived for  the flow in the wake of a building a t  points downstream 

of the cavity. In th i s  statement, 6 i s  a constant xi th  a value of 

about 0 .4  and 6 depends upon the orientation of the undisturbed 

mean flow re la t ive  to  the building. The vertical  dimension of the 

structure i s  accounted for  in x and the la teral  dimension i s  approxi- 

mated in 2. 

The foregoing relationship appears t o  be a reasonable f i t  to  the 

observations; however, there i s  a large degree of experimental varia- 

b i l i t y  and additional observations, especially a t  distances greater 

than seven building heights, are n p ~ d p d  t o  provide complete verification. 

The resu l t s  indicate that  an a i r c ra f t  passing through the wake 

during take-off or landing would experience not only a change in 

turbulence level ,  b u t  a  change in mean wind speed of a magnitude 

roughly equivalent t o  that  of the eddy components. 

An interesting difference between the resu l t s  of wind tunnel 

studies and those obtained here i s  with regard to  the bubble or 

cavity. Depending upon the author, reattachment has been found in model 

studies t o  occur seven or more obstacle heights downstream. Evans' 

(op. c i t .  ) resu l t s  are  the exception. For a building of the s ize and 

shape of the hangar involved in th i s  study, his resul ts  indicate that  

reattachment should have occurred about two and a half building heights 

downstream. Our resul ts  are in good agreement with th is .  
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