General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

-

JPL PUBLICATION 77-4

Parallel Compilation: A Design
and Its Application to SIMULA 67

(MASE-CE=-152¢€E(Q) EABRILIEL CCPREII2TICH:) N717-22847
CESICG) ANL 17 BEEFIICETICY 1IC SIRUIZ? €7 (Jdet
Ercfpuvlsicr lak.) te fp EC 2CZ/FF 201
CSCI CSt Unclas
G3/61 <5141

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

JPL PUBLICATION 77-4

Parallel Compilation: A Design
and Its Application to SIMULA 67

Richard L. Schwartz

February 1, 1977

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

77-4

PREFACE

The work described in this report was performed by the
Telecommunications Science and Engineering Division of the

Jet Propulsion Laboratory.

ACKNOWLEDGMENT

I would 1like to thank Dr. Daniel M. Berry of the
University of California for his help in improving the

original version of this paper.

e

iij

77-4

Contents

1. Introduction « ¢« ¢« ¢ ¢ ¢ ¢ e 4 e e e
2. A Definition of Parallel and Serial Compilation
3. A Survey of Present Compilation Mechanisms . .
3.1 Parallel Compilation in FORTRAN
3.2 Parallel Compilation in PL/1
3.3 Serial Compilation in ALGOL 68
3.4 Serial Compilation in SIMULA 67
4, Philosophy of Design for Parallel Compilation
5. The Proposal . « ¢« « o ¢ & v ¢ o o o o o o o
5.1 A Module Definition
5.2 Module Communication « . . .
5.3 The Module Compilation Phase
5.4 The Pre-Linkage-Edit Phase
6. An Assessment of the Proposal
7. Application to Other Languages
B. REMArKS . + + & &« ¢ v ¢« v o o o o o o o o o

Bibliography . . « ¢ ¢ ¢ ¢ o ¢« o o« o o o o o o &

T v

16
21
22
23
24
31
34
36
40
40

41

77-4

PARALLEL COMPILATION:
A DESIGN
AND ITS APPLICATION
TO SIMULA 67

Abstract

This paper presents a design for a parallel compilation
tacility for the SIMULA 67 programming language. The vprovosed
facility allows top-down, bottom-up, or parallel development and
integration of program modules. An evaluvation of the propnsal
and a discussion of its applicability to other 1lanquages are

then given.

1. INTRODUCTION

Since the early days of FORTRAN, tne need to s»gment large
computer programs has been recognized. Wwhenever large programs
are developed, it is necessary to have some means for
considering only small segments of a orogram at one time,
whether by top-down programming, bottom-up programming or some

other method of problem confinement.

77-4

It has been shown to be beneficial to segment the projram
into "modules" containing segment% of the program with high
intraconnectivity and low interconnectivity ([SMC, dMey]). These
segments can then be compiled and tested separately.
Conceptually, each module can be thought of as a separate

program, which, given certain input, performs a certain task.

As understanding in the field of computer language desiqgn
progressed, the need for providing a reliable interface between
communicating modules was recognized ([Den,LuE] and others), and
attempts have since been made to provide a computer verified

module interface.

Various languages have implemented schemes for allowing
separate compilation. Each scheme has attempted to provide some

means of secure communication between modules.

The notions of parallel and serial separate compilation are
introduced in this paper to further distinguish between methods
of separate compilation. A discussion of the separate
compilation facilities found in FORTRAN, PL/1, ALGOL 68C, and

DEC-10 SIMULA 67 explores the problems with present approaches.

A design for a new parallel compilation facility for the
SIMULA 67 programming language is then presented as an
illustration of how the facility can be incorporated into
existing languages. SIMULA was chosen for illustration because
of its wide range of module definition and communication

concepts. An evaluation of the proposal, a discussion of its

77-4

applicability to other languages and some general remarks about

programning environments conclude the paper.

This paper assumes some knowledge of the design and
implementation of the general class of procedvre-oriented
algorithmic languages. Some specific knowledge of SIMULA /7 is

also helpful.

2. A DEFINITION OF PARALLEL AND SERIAL COMPILATION

For the purpose of this paper, the notion of separate
compilation has been further <classified into the notions of

serial and parallel compilation, with the following definitions:

Parallel Compilation:

The ability to compile program modules in any order, or in
parallel, with the module interface not being resolved at
compile-time. That is, no knowledge of the other program

moidules need be present at compile time.

jerial Compilation:

The ability to compile program modules separately in a
particular partial ordering which allows the resolution of
the module interfaces at compile~-time. That 1is, knowledge

of other program modules may be required for compilation of

77-4

an individual module.

3. A SURVEY OF PRESENT COMPILATION MECHANISMS

This section presents a short chronolojical survey of the
methods for separate compilation currently used in FORTRAN,

PL/1,ALGOL 68C, and DECsystem-1@ SIMULA 67.

3.1 Parallel Compilation in FOxTRAN

Program modularization is achieved in ANS FORTRAN ([FOR])
through the use of external subroutines. The program is
structured by dividing it into a number of separately compiled
subroutines. These subroutine modules communicate by means of
formal subroutine parameters, and through COMMON data. All
parameters must be listed in the the subroutine heading, and may
be explicitly declared. The declarations are used only to
determine the size and displacement for the formal parameters in

order to compile code to access the parameters,

In FORTRAN there need not be an explicit declaration of an
external subroutine. Any call to a subroutine for which no
subroutine body can be found is assumed to be a reference to an
external subroutine. 1In the case where the name of an external
subroutine is passed as a parameter, there must be an explicit

EXTERNAL declaration.

77-4

Non-parameter data are transmitted to the external
subroutines through the wuse of the COMMOK declaration. This
declares the usage of a block of data, labeled or unlabeled,
which may be referenced by other program modules. Each module
using the COMMON data must contain a COMMON declaration.
FORTRAN rules state that there must be identity in type for all
entities defined in the corresponding storage position from the

beginning of the COMMON block.

The following program illustrates cne method of
communication between separately compiled program segments. The

dotted lines delimit a separately compiled segment.

——————————————— XD Y Y A LY Y T Y

C MAIN PROGRAM
C THIS PROGRAM OPERATES ON A FILE OF INTEGERS
INTEGER IN,OUT,FILE(104) ,POINTR
COMMON/FILE/FILE(100) ,POINTR/
PTR=1
DO 20 I=1,109
READ(5,10) IN
20 CALL ADOFIL(IN)
10 FORMAT (I4)
END
SUBROUTINE ADDFIL(ELEH)
C THIS MODULE ADDS AN INTEGER TO THE FILE
COMMON/FILE/FILE(160) ,PTr/
INTEGER FILE(108} ,PTR,ELEM
FILE (PTR)=ELEM
PIR=PTR+1
RETURN
END

The ANS FORTRAN definition requires that the type and order
of the parameters in a subroutine call exactly match that in the

subroutine declaration, and that the declarations for the the

77-4

corresponding COMMON storage positions in each module be

cor.sistent,

Since a parallel compilation mechanism is used, there can
be no checking of the module interface at compile-time, 1In
order to check the module interface it would therefore be
necessary to employ a type-checking linkage-editor, or to use a
pre-linkage-editor to do the type checking. Unfortunately, to
the author’s knowledge, the linkage-editors wused to bring
together FORTRAN modules do not have a type-checking capability,
and there is no means for checking the module interfacecs. iost
linkayn-editors deal only with making the addresses of detining

cccurrences known to each applied occurrence.

Thus, FORTKRAN has a primitive but effective method of
program segmentation and parallel compilation. Each segment of
the program can be developed separately, and later brought
together by the linkage-editor. with all implementations known
to the author, there is no module interconnection verification
or type checking performed, althoujh programs with erroneous

intertaces are rot included in the language.

These separate compilation decisions aopear to b2
consistent with the basic philosophy of FORTRAN and the usual

implementation of the languaje,.

77-4

3.2 Parallel Compilation in PL/1

The parallel compilation mechanism in PL/1 ([IBM]) is
essentially the same a&s that used in FORTKAN. A module in PL/1
is a MAIN or an ~xternal procedure. A procedure must contain an
EXTERNAL ENTRY declaration for each external procedure it uses.
This EXTERNAL declaration contains the attributes of the
procedure (i.e., information from the procedure headinq). This
declaration is used for checking the types of the parameters and
the returned value of calls to the external procedure, and for

generating code for these calls.

The following program illustrates a multi-module program.

MAIN:PROCEDURE OPTIONS (MAIN);
/* THIS PROGRAM READS PAIRS OF INTEGERS X,Y
FROM THE INPUT STREAM4 AND OUTPUTS X MOD Y */
DCL MODULO EXTERNAL ENTRY(BIN FIXED,BIW FIXED)
RETURNS (BIN FIXED);
DCL (X,Y) BIN FIXED;
ON ENDFILE (SYSIN)STOP;
DO WHILE('1°'B);
GET LIST(X,Y):
PUT LIST(MODULO(X,Y)):
END;
END MAIN;
MODULO: PROCEDURE (X, Y) RETURNS (BIN FIXED);
DCL (X,Y)BIN FIXED;
DO WHILE (X>Y):
X=X=Y;
END;
RETURN (X) ;
END MODULO;

PL/1 requires, and to the author ‘s knowledge, never gets,
type checkina of the module interface. while the language

specification states that the ENTRY declaration 1in the main

17-4

module must agree with the procedure declaration in the external
module, there is no verification of this condition. Thus, it
the number and/or type of parameters of the module interface do
not agree, the result will be undefined., Again as in FOKTRAN,
the use of a parallel compilation facility reguires
post-compilation interface checking. Thus, in PL/1 it |is
possible to hkave parallel compilation, but with an implicit

warning of caveat programmus. Unfortunately, this lack of

adequate interface error detection 1is consistent with the
overall lack of error checking in the widely available
implementations of the 1language (see [i0oW] for a PL/1 subset

with some nice error checking).

3.3 Serial Compilation in ALGOL 68

while ALGOL 68 ([vWwi]) has not vyet adopted an official
modules facility at the time of writing this paper, various

modules facilities have been proposed and impl 'nented.

ALGOL 68C ([BBW,KTU]), the ALGOL 68 compiler, developed at
Cambridge University in England, contains an ENVIRON mechanism
for serial compilation, allowing a module to be compiled in a
specified external environment. It is the ALGOL 68C facility
which will be briefly described (see [Cle] for a more complete

description).

77-4

In order to develop large programs in small segments, a

system of partial compilation is |used. This allows the

development of program segments during separate compilations.

A module consis:-s of module text and an environment, called

an environ, in which the compilation takes place.

A module is invoked by the use o0of an ENVIRON statement.
The ENVIRON statement is used to declare the block of code which
is to be separately compiled. The block must be in what ALGCL
68 calls a "strong position” and be "voided". This statement
causes all declarations visible at that point to be made
avaj"....e to the invoked module (to be compiled later) in the

form £ an environ table.

Each module contains a USING statement which specifies the
environment in which the module should be compiled. For the
main module, the standard environment containing all standard
declarations 1is specified. For a suhbmodule, the environment
specified is that which surrounded the point of invocation (by
the corresponding ENVIRON statement). In the implementation,
this means that the file containing the environment information
generated by the corresponding ENVIRON statement is read in at
compile time, prior to parsing. All the declarations visible at
the point ot the ENVIRON statement are now visible to the
module. Thus, it is as it the invoked module were compiled in

the program at the point of the invoking ENVIRON statement.

77-4

The following program should clarify what has been said.

main
USING MACHINE FROM "STANDARD" 3 std envi
BEGIN
BOOL fill;
CHAR y;
INT x:=5; .
INT result; AR 51 1A [0 LT IR B
ENVIRON CHARS; IR VT
ENVIRON SIGHA; T
print(result,x):
print(y)
END main
sigma
USING SIGMA FROM “main® $atr file from "main" #
BEGIN
INT i;
result:=p;
FOR i:=1 TO x
DO
result:=result+i

0OD;
ENVIRON PI
END sigma
pi
USING PI FROM “"sigma® # atr file "sigma"#
BEGIN
INT t:=result:
result:=0;
FOR 1i:=2 TO t
PO
result:=result*i
oD
X:=0;
Y:="Z”
END pi
chars
USING CHARS FROM "main" # acr f:ie from "main" #
HBEGIN
y:=”a"
END

The above program is comprised of the four modules "main",
"sigma", "pi", and "chars". The accessing relationshio between

the modules, given by the ENVIRON and USIN. statements, is

10

77-4

illustrated by the following graph, where aempmb means module a

accesses the external module b,

“mai{
" si/gm{ “chars"

Clpill

This interdependence has imposed a partial orderina on the
compilation sequence of the four modules. The module “"main"
must be com; ‘ed before the modules "sigma" and “chars", while
the module “pi" must be compiled after the module “sigma". The
four modules must be serially compiled in any order sucn that:
*main" . “sigma®,"main" < "chars", and "chars" < "pi"

where a < b means a is compiled before b.

The execution of the above four modules is defined to be as

though the following program were run.,

main
USING MACHINE FROM " STANDARD"
BEGIN
BOOL fill;
CHAR vy;
INT x:=5;
INT result;
BEGIN
y:=nau
END
BEGIN
INT i;
result:=0;
FOR i:=1 TO x
[v]0)
result:=result+i
oD
END
BEGIN
INT t:=recult;

11

77-4

result:=0;
FOR i:=2 TO t
DO
result:=result*i
oD
:=0;
Y:S“Z"
END
print(result,x);
print(y)
END main

As D. M. Berry pointed out in his assessment of the

ALGOL 68C separate compilation facility ([Ber]), it
l. appears to be a distinct improvement over that of PL/1l.

2. supports the top-down programming and testing methodology
described by Mills ([Mil]) and by McGowan and Kelly ([McX]),

in that:
1. The top level calling code is written first.

2. This level can be tested with the use of stubs (null
procedures) in place of the not yet present separate

procedures.

3. Each body can then be written (expanded) and tested in

the same manner,

The serial compilation in ALGOL 68C is an improvement over
the parallel compilation in PL/1, in that the module interface
is made both more flexible and more secure. Full type-checking

of the module interface 1is done at compile-time, with the

12

77-4

linkage-editor required to resolve only the beginning address of

each module.

The module interface is more secure as a result of the
‘partial ordering of the compilation of program modules, which
requires that a submodule is compiled only after all dGeclaring
modules have been compiled. This means that full type checking

of the interface may occur when the submodule is compiled.

The module interface is made more flexible in that the
interface no longer has to take place at the program’s global
level. The call to a separately compiled procedure does not
have to parameterize all the variables necessary for the czlled
procedure. A module, consisting of any block or procedure, is
compiled at the same nesting level as where the ENVIRON
invocation occurred, and it may access all objects visible at
the point of invocation as non-locals. This facilitates
dividing the program up into modules with a minimum of interface

problems.

Unfortunately, this type of serial compilation has several

important disadvantages:

1. Since the submodule cannot be compiled until the
declaring environment 1is known, bottom-up programming is not
practical. The partial orderinj of the modules dictates that
the "bottom" modules must be the last to be compiled. Eottom-up
programming can still be done through the use of dummy drivers,

but the module being tested must be recompiled when the test

13

77-4

driver is changed, and when the driver is replaced by another
module.

2. In order to compile code within the submodule to reference
data within the declaring environment, it is necessary for the
environment file generated by the declaring module to contain
information on how to access the object. The module then uses
this information to compile code to refer to the external
ohject. If at a later time, a change in the declaring module’s
environment causes a change in the location ot any data
referenced by any submodule, then each affected module must be
recompiled. For an implementation using a run-time stack with a
display, such as ALGOL 68C, this means that if the i,j pmair
representing the base and stack offset of a referenced datum is
changed by the addition, deletion or modification of any
variable-with storage earlier in the activation recoréd (sce
[weg] for a definition), then all dependent modules must be
recompiled. Thus, it is not only changes in the actual module
interface that force recompilation of the submodules. Any

changes to identifiers stored in an activation rvecord at an

offset preceding an identifier which is referenced 2as a

non-local by the submodule, force recompilation of tne

submodule.

In the ALGOL 68C program previously given, this means that
if the declaration for the variable "fill" in module "main" is
taken out, then the dependent modules "sigma", “chars", and "pi"

must all be recompiled.

14

77-4

3. Walle the ability to 1link modules at a non=-global
level simpiifies the segmentation of the program, it can
introduce high module interconnectivity. The ability for a
module to access any of the variables statically visible at the
point of the ENVIRON statement can lead to confusion in both the
declaring module and the submodule as to which variables
constitute the interface. There is no explicit statement of the
module interface as there is in PL/l, where the only reference
to non-local variables is through the parameter interface. 7This
implies that a module is not necessarily understandable by
itself, but instead it can be understood only after determining
which non-local identifiers are used, and the types of the
identifiers. There is no type information in the submodule for
the non-local identifiers referenced. This information must be
obtained by searching through the environment surrounding tne

declaring ENVIRON statement, looking for the declarations.

This criticism stems from the author’s rersonal experience
working with the ALGOL 68C compiler which itself is writtenm in
ALGOL 68C. It 1is wvirtually impossible to understand any
submodule without considering the invoking module. By the same
token, one cannot determine from the module containing the
ENVIRON invocation which of its variables will be referenced and

possibly modified by the submodules.

The sample ALGOL 68C program given earlier illustrates
these problems. It 1is not possible to tell from considering

only the module "main" whether the variable y is used in a

15

77-4

submodule. It may bl that the programmer of the module "main"
was not aware that the variable y was modified in the module
"sigma" as well as in the module "chars". Also, looking at the
module “sigma", it requires careful examination to see that the

variables x and result are non-local references.

All of these interface problems are caused by the use of a
non-explicit module interface scheme. Enough information is
present for the compiler to generate correct code, but not for

the user to clearly see the module interdependencies.

4. Since the module interface is not made explicit, it is
not known during compilation of a module which of its variables
and procedures will be referenced by its submodules. Because of
this, the environment file produced must include the attributes
of all variables visible, even though only a small percentage of

these variables will actually be referenced by submodules.

Another, similar but more complex, scheme ([Lin]) has been

proposed by Charles Lindsey as an ALGOL 68 standard.

3.4 Serial Compilation in SIMULA 67

The SIMULA 67 Common Base Language Definition ([DMnN]) does
not include semantics for a separate compilation facility. The
definition states that if an implementation permits user-defined
procedure and class declarations to be separately compiled, then
a program should have means of making reference to such

declarations as external to the program. Suggjested syntax for

16

77-4

an EXTERNAL statement 1is given, but without a semantic

definition,

In 1971, Jacob Palme, of the ©Norwegian Computing Center,
proposed a system of Part Compi.ation ({Pal}) similar to that
used in FORTRAN, but with full module interface verification.
This system has been introduced in the DECsystem-1§ SIMULA 67

implementation ([BEOP]), and is the one that is described here.

Serial compilation in DEC-16¢ SIMULA is a bottom-up partial
ordering of modules, rather than the top-down ordering found in

ALGOL 68C.

The declaration of a <class or procedure in SIMULA as
EXTERNAL indicates the use of a separately compiled module. 1In
any module, e.g., the main program, these declarations can be
put anywhere a procedure or class declaration is allowed. The
separately compiled modules will then be available anywhere
within the scope of the EXTERNAL declaration. According to
SIMULA rules, separately compiled prefix classes must be copied
into a program in the same block as their subclasses. This is

required to prevent dangling reference problems.

To use a separately compiled module "“a" inside another
separately compiled module "b", the EXTERNAL statement for "a"
is placed before the beginning of the separately compiled module
"b". The EXTERNAL declaration for module "a" must then orecede
that of module "b" in each module that uses b, This will be

illustrated shortly.

17

77-4

SIMULA 67 has a HIDDEN PROTECTED feature to increase the
reliability and security of large programs by controlling the
interface between submodules. Attr butes of classes which are
declared PROTECTED are visible only at a prefix level egqual to
or inner to the class containing the PROTECTED specification.
Attributes declared HIDDEN are invisible at a prefix level outer
to the class containing the HIDDEN specification. Thus,
attributes declared HIDDEN PROTECTED are visible only inside the

body of tne class with the HIDDEN PROTECTED specification.

To implement serial compilation, the compilation of eacn
separately compiled class or procedure produces an attribute
file containing an entry for each externally accessible
attribute of a class module, or each parameter of a procedure
module. This entry lists the identifier and its type. when an
EXTERNAL‘ statement or declaration is encountered, the attribute
file for that module is read in by the compiler, Full type

checking is then performed.

As a consequence, a serial bottom-up compilation seguence
must be performed. Each separately compiled class and procedure
must be compiled before being referenced. Although the DEC-1¢
SI14ULA handbook does not specify this, one ramification of this
seems to be that a separately compiled procedure can communicate
only through its formal parmeters since the environment of the
EXTERNAL statement, within each, 1is -established 1later. This

also means that no GOTCOs to external labels are allowed.

18

77-4

There is an additional requirement that when a class is
separately compiled, the block level of the pnlace where it is
copied into the main program must be given as a parameter to the

compiler.

The following program illustrates the module communication:

CLASS order (account,color,guantity);
TEXT color;
INTEGER quantity,account;;
EXTERNAL CLASS crder;
PROCEDURE changecolor (object);
REF (order)object;
BEGIN
IF object.color = "green"
THEN object.color:="blue";

EXTERNAL CLASS order;
PROCEDURE deflate(object);
REF (order)object;
BEGIN
object.quantity :=object.quantity//2;
END;
BEGIN COMMENT main program;
EXTERNAL CLASS order;
EXTERNAL PROCEDURE changecolor;
EXTERNAL PROCEDURE deflate;
REF (order)get;
get :~ NEw order(4ll,"green",2):

changecolor (get) ;
deflate(get);

The above program comprises the four modules
consisting of: the CLASS order, the PROCEDUREs changecolor and

deflate, and the main program, The accessing relationship

19

between the modules is illustrated by the following graph.

“main program”

£\

“changeior" 7f1ate“
“order"

This interdependence causes a partial ordering of the
serial compilation sequence, namely
"order" < "changecolor", "order" < "deflate",

*changecolor" < "main", and “deflate" < "main".

Thus, the serial compilation mechanism in SIMULA 1is an
adaptation of the parallel compilation mechanism in FORTRAN., By
serially compiling the modules, full interface verification can
take place at compile-~time, so that the linkage-editor need only

resolve the entry address of each module.

The scheme allows the security of declaring a procedure or
class at a non-global level, without the advantaje of non-local
external reference found in ALGOL 68C. This gives a
well-defined interface, not present in ALGOL 638C, but forces

more parameters to be passed to external procedures.

20

77-4

Just as separate compilation in ALGOL 68C was designed for
mainly top-down integration, separate compilation in SIMULA is
designed mainly for bottom-up integration. Top-down integration
is possible, but only with numerous recompilations of the
program modules during the testing stages as the stubs are

replaced by actual modules.

The attribute file is not as susceptible to module chanjes
as the ALGOL 68 environment file. In SIMULA, it would seem that
the attribute file has to contain only the externally accessible
attributes of a <~lass, or the parameter information for a
procedure. This would imply that no internal change to an
external «class or procedure should change the attribute file.
Only actual interface changes should force recompilation. The
DEC-10 SIMULA compiler evidently has made some decision to alter
this, sinée the handbook states only that "in most cases no
other module need be recompiled". It may be that the temporary
locations for expression evaluation have been mixed into the

activation record. 1If so, it seems to be a design error.

4, PHILOSOPHY OF DESIGN FOR PARALLEL COMPILATION

As a result of considering the separate compilation
facilities present in existing languajes, a basic design
philosophy has been formulated regarding what the
characteristics of a separate compilation facility snould be.

This philosophy, briefly stated, is that:

21

717-4

1. Modules compiled and/or developed separately shoull -.ve

only explicitly stated interfaces.

2. Each separately compiled module should be understandable by

itself, without reference to other modules.

3. The recompilation of one module should not force the
recompilation of any other module unless a change in the

actual module interface is made.
4. Complete type checking of the interface should be done.

5. Bottom-up and top-down programming should both be accom-

modated without undue overhead.

6. The module interface should not be unnecessarily

restrictive.

7. The overhead associated with providing enough intormation
for type checking and non-local reference should oe¢

low.

5. THE PROPOSAL

A proposal which has been designed using the philosophy
outlined in Section 4 is now given for the design of a parallel
compilation mechanism for the SIMULA 67 languaje. This section
presents the proposal, and illustrates its usaje. Sections 5

and 7 will then discuss the merits of the proposal, and how it

22

77-4
can be applied to other languages.

A note about word semantics: the word "object" is used to
mean a variable, procedure, or class, rather than the SINULA
meaning ascribed to it. The word "prajmate™ is defined to mean
those attributes (in the pPL/]1 sense, not the SIMULA sense) wiich
define tie 1implementation of the object, thus leaving

*attribute” for its SIMULA meaninj.

5.1 A odule Lefinition

A nmodule is a separately compiled entity of the forn

I{ODULE <module identifier> .,AIl <module body)l

MODULE <module identitier> [<accessions>] <modulc body>

where <module body> is a main orojram, an external procedure
declaration, an external class declaration, or an external

statement (including a block).

The <module identifier> rust be unigue tfor the entire
program (throughout all the modules), and need not be distinct
from the normal program identiftiers (because it 1is always

possible to distinjuish them syntactically).

A program consists of one MAIN module and a series of
submmodules containing external class and procedure declarationsz
and external statements. ‘1nhe modules may be compiled in any

order or in parallel. The meaniny of <accessions> will be

23

Z

ri& %

describeada in Section 5.2 .

5.2 module Communication

In a given module, any procedure declaration, class
declaration or statement which is to be compiled as a separate
module is replaced by a stub statement. Each stub statement |is

of the form

STUB <stub identifier> <(stub interface>

Each <stub identifier> must correspond to a <module
identifier> which identifies the segment of code to replace the

STUB statement.

The STUB statement declares the presence of an external
segment of code which 1is to be log:‘:ially considered as being
compiled at that point in the program (subia2ct to interface
restrictions). This functions in the same manner .s the ENVIRON
statement in ALGOL 68C, or the EXTERNAL declaration in DEC-1d
SIMULA 67. There may be more than one STUB statemcnt naming the
same external module, as long as each appears in an environment

vproviding the required interface (described shortly).

There are three kinds of STUB statements:

24

17-4

1. a procedure STUB

2. a class sSTUB

3. a statement STUB

The form of the statement depends on the nature of the construct

the STUB statement replaces.

The <stub interface> in each STU3 statement describes the
interface that the declaring module assumes is present with the

STuBbed module.

For a procedure or <class STUB, the <stub interface>
specifies the objects, if any, whicn are released for use by the
5T0Bbed module, and the assumed vpraqmates of the STUBbed wodule,

which may be used within the declarinj module.

The RELEASE clause of the <stub interface> specifies the
variables, procedures, and classes visible at the point of the
STUB statement which may be used by the STUBbed module. 1In the
case of a <class, it is possible to RELEASE either the entire
class, or only individual attributes of the class. In this way,
it 1is possible to protect certain classes, procedures, oOr

variables from being used in the submodule.

The ASSUME clause of the <stub interface> specifies the
assumed externally accessible attributes of the STUBbed wmodule,
For a procedure submodule, this is the headinj of the procedure.

t

From "is, the parameter and return value types may be deduced.

25

For a class submodule, the ASSUM. clause gives the class headinj
together with a BEGIN-END enclosed sequence of variable
declarations and procedure headings which may be referenced from
outside the class body (according to SINMULA rules). Togethner,

these constitute the external attributes of the class.

In the case when a statement (or BEGIN block) S2UL iz used,
only a RELEASE clause is included in the <stub interface>, since
SIMULA rules imply that there can be no new objects declared in
the STUBbed statement which will be visible in the declaring

environment.

In the <accessions)> clause of the module specification, tne
STU3bed module must declare all non-local objects referenced,
These objects, consisting of the non=local variahles,
procedures, and classes referenced (including tne use of prefix
classes) must be a subset of the objects RELEASEd by tho
corresponding STUB statement in the declarinj module (except tor
system procedures and classes). For ACCESSed classes, it |is
necessary to include in the declaration only those attributes
which will actually be accessed by the submodule (i.e., <class
attributes which will not be wused by the submodule need not

appear within the class heading in the ACCESS declaration).

The use of GOTOs to labels outside a module has not been
included in this proposal since it violates the desiqgn
philosophy by forcing a high degree of module inter~connectivity

and decreases understandability of individual modules.

26

77-4

To illustrate what has been said, an example of each kind
of STUB and corresponding module replacement is now given:

1) Procedure STUB and module replacement

MODULE x MAIN
BEGIN

INTEGER flagl,flag2;

TEXT options;

CLASS tree(val,lson,rson);
INTEGER val;
REF(tree)lson,rson;;

CLASS prog(input);

TEXT input;;

STUB parse[RELEASE flagl,tlag2,options,tree,pro3;
ASSUME
BOOLEAN PROCEDURE parse(source,output);
REF(tree)ouvtput,REF(prog) source |}

MODULE parse
[ACCESS INTEGER flagl,flag2;
TEX'I' options;
CLASS tree{val,lson,rson);
INTEGER val;
REF(tree)lson,rson;;
CLASS progj(input)
TEXT input;;]
BOOLEAN PROCEDURE parse(source,output);
REF (tree)output,REF(proq) source;
BEGIN
IF flagl=0A flag2=0 THEN scan(options);

2) Class STUB and Module Replacement

27

77-4

MODULE y MAIN
BEGIN
INTEGER X,y,2,w;
CLASS prefix(row):
INTEGER row;

BEGIN
REAL PROCEDURE width;

BEGIN

END;
BOOLEAN PROCEDURE sturdy;
BEGIN

END

END
STUB classa [RELEASE x,y,z,prefix;
ASSUME prefix CLASS board(col);

INTEGER col;
BEGIN
REAL PROCEDURE le
END }
REF(board) tray;
tray:~-NEW board(5,6);
If mtray.sturdy THEN tray.row:=tray.row-1
END
MODULE classa
| ACCESS INTEGER X,Y;
CLASS prefix(row):
INTEGER row;
BEGIN
REAL PROCEDURE width;
END]
prefix CLASS board(col);
INTEGER col;
BEGIN
REAL PROCEDURE leng;
BEGIN

3) Statement STUB and Module Replacement:

28

77-4

MODULE z MAIN
BEGIN
INTEGER x,2,Y:
CLASS classb;;

STUB blocka [RELEASE x,z,classb];

MODULE blocka

[ACCESS INTEGER x,2Z;
CLASS classb; ;)

classb BEGIN

More formally, the syntax for each MODULE and STUB
statement is given below. The productions are proposed as an
extension to the syntactic description given in the SIMULA
Common Base Language Definition. Syntactic classes referred to
but not defined in this paper refer to syntactic definitions

given in [DMN] and [Nau].

<module>::= MODULE <module identifier> MAIN
<module body> | MODULE <module identifier>
[<accessions>] <module body>

<module identifier>::= <identifier>
<module body>::= <procedure declarationd|
<class declaration>|
<statement>
<accessions)>::= ACCESS <external accessions declaration list>
<external accessions declaration list>::=

<accession declaration>|<accession declaration> ;
<external accessions declaration list>

29

77-4

<accession daclarationd>::=
PROCEDURE <procedure heading)l
<class attribute heading> |
<type declaration>| <array declaration>

<class attribute heading>::=
<prefix option> CLASS <class identifier>
<formal paramter part> ; <value part> <specification part>
<virtual part> <local attributes option>

<prefix option>:s= <prefix>] <empty>

<local attributes option>::= <empty> | BEGIN <local
attributes list> END

<local attributes list>::= <local attribute)l <local attribute>
; <local attributes list>

<local attribute>::= <type declaration)l
<array declaration> | PROCEDURE <procedure heading>

<{stub statement>::= <procedure stub statement>‘
<class stub statement>| <{statement stub statement>

<procedure stub statement>::= STUB <module identifier>
[<release declaration> ; <assumed procedure
declaration heading>]

<class stub statement>::= STUB <module identifier>
[<release declaration> ; <assumed class attribute
heading> |

<statement stub statementd>::= STUB <module identifier>
[<release declaration>]

<release declaration>::= RELEASE <visible list>

<assumed procedure attribute heading)>::=
ASSUME PROCEDURE <procedure heading>

<assumed class attribute heading>::=
ASSUME <class attribute heading>

<visible list>::= <visible id>|
<visible id> <visible list>

<visible id>::= <variable identifier 1>'
<class identifier> | <procedure identifier 1>

30

77-4

5.3 The Module Compilation Phase

bEach module is compiled independently, without knowledge of
the other program modules. The compilation takes place in the
standard system environment, with all system classes,

procedures, and identifiers visible within the module.

During the compilation, all objects which do not have
corresponding local declarations are checked for appearance in
an ACCESS or an ASSUME declaration. If so, compilation proceeds
using the ASSUMEd or ACCESSed declared attributes for the
missing external declarations. If the object does not appear in
an ACCESS or ASSUME declaration, then it is assumed to be an
unresolved external reference, and is reported as an error. A
dummy reference (a null (i,j) pair) to the external object is
generated- in the object code, which will later be filled in by

the pre-linkage-edit step (described in Section 5.4).

All variables, procedures, and classes which appear in the
RELEASE clause of a STUB statement are checked for visibility at
that point in the module. Any object appearing in the RELEASE

clause which is not visible at that point constitutes an error.

A pragmate file and an object code file are generated by

each compilation. The pragmate file contains:

l. The module name

31

in

77-4

The pragmates for each object which is RELEASEG by one or

more STUB statements within the module

For each STUB statement, the STUB name, the nesting heignt
within the module of the STUB statement, the name of each

object RELEASEd by the STuB, and the ASSUMEd opraqgmates ot

the STUBBed meodule

The pragmates of each ACCESSed object

The pragmates of the procedure or class declaration if the
module being compiled is a class declaration or a procedure

declaration.

For each ACCESSed and ASSUMEd object, a list of its avpliea

occurrences.

while the exact amount of information that must be present

the pragirate file will depend on the actual implementation,

the pragmates for each object should include:

variable prajmates

l.

2.

variable name

type indicator

for RELEASEd variables , the (i,j) pair representing the
nesting height within the module of the block containing the

declaration, and tne offset within the block (for a RELEASEd

32

4.

variable not local to the module, the offset is not known,

and an external tag should be used)

a HIDDEN/PROTECTED flag

procedure pragmates

1.

5.

procedure name
return type indicator

the type indicator and transmission type for eacn

parameter in the proper order
a VIRTUAL/non-VIRTUAL flag for class procedures

a HIDDEN/PROTECTED flag

class pragmates

1.

2.

3.

class name

prefix class name (if any)

the type indicator and transmission tyce for

>

SRS

[oH

parameter in the proper order

33

formal

formal

77-4

4. the pragmate for each attribute in the proper order:
a) for a variable attribute, a variable pragmate

b) for a procedure attribute, a procedure pragmate

S. a HIDDEN/PROTECTED flag

6. the location of any INNER statements

5.4 The Pre-Linkage-gEdit Phase

In order to do complete type checking of the interface
between modules, and to handle non~-local object reference, it is
necessary to have a linkage=-editor preprocessor. This
preprocessor accepts all of the program object modules and their
pragmate files as input, verifies that the module interfaces are
consistent, and determines the (i,j) pair for the reference to
external objects so that it may be handled by a standard system

linkage-editor program, as described below.

The ASSUMEd <class and procedure attributes in each
declaring amodule are checked against the class and procedure
headings in the corresponding external <class and ©procedure
submodules. The ASSUMEd attributes must exactly match the
actual attributes declared in the submodule, rigqht down to
identifier names. The order of procedure and variable
declarations need not be the same in the ASSUME clause as in the

module declaration.

34

77-4

he ACCESS declarations 1in each submodule are checked
against tne corresponding RELEASE clause of the STUB statement
in the declaring module. All obicects ACCESSed must have been
RELEASEd by tne declaring 3TUB. Tne order of appearance of the
objects in the RELEASE declaration need not match the order of
appearance in the ACCESS declaration, but the type of cach
object RELEASEd must match the type of the object ACCESSed. In
the case of an ACCESSed class3, the attributes declared in tae
ACCESS declaration need not be the complete set of attributes,
but only the subset actually used, ascsuming it is consistent
with the full set of attributes of the class. Thus, only those
procedures and variables inside the class whici are actually

accessed need be declared.

The reference to non-local variables can be resolved
without Aifficulty at this staje, since tne prajerate file tor
eacn program module is available. The hierarchical structure ot
the wnole program can be determined by the module name and stud
identfiers within each prajmate file. with the knowledje of the
overall structure of the modules, the declaration for each
external reference can be found, and the overall block nesting
height and storaje offset within the hlock can then be deduced.
This information can be inserted into the instructions within
the object code which reference the wvariaovle. For an
implementation using a run-time nesting height disnlay, this
involves substituting tne actual display level ani offset within
the activation record for the dummy level and vuifset 1inserted

during compilation.

35

77-4

with the knowledge of the class hierarchy, the reference to
VIRTUAL procedures and split class bodies can be resolvea, and
the dummy reference may be replaced by actual code. The actual
address determination will be done by the linkage-editor. Note
that this implies that the identification of the actual body tor

a VIRTUAL procedure can vary witn the use of different STULs.

Tne only addresses left unresolved are tihe beginning
address of each module, the procedure and class entry points, and
references to VIRTIUAL procedures and split bodies. 'These can be

handled by a standard linkage-editor program.

6. AN ASSESSHENT OF THE PROPOSAL

The proposal outlined in the previous section appears to be
an improvement over the current schemes for separate compilation
found in the languages surveyed. The scheme given here allows
the full power of a verified non-qglobal interface with global
object reference found in ALGOL 63C, but with an explicit
interface specification. The development and compilation of
program modules may oroceed in parallel, with no imposed partial
ordering of the compilation seguence. This allows bottom-up,
ton-down, or any other sequence of program development and
testing,., In addition, the recompilation of a module only forces

recompilation of other modules if a change in tne actual module

inter face is made.

36

77-4

By postponing the resolution of the (i,j) pair for each
non=local object from the compilation phase to a
pre-linkage-edit phase, there 1is no direct dependence on
information obtained during the compilation of the other
modules. This allows complete type checkinj of the variables,
procedures and classes being used for tne communication between
modules, but without the forced top-=down or bottom=-unp testing
order imposed in ALGOL 68C and LEC=-1¢ SIMULA. This achieves the
less restrictive module interface obtained with the top-down
serial compilation in ALGOL 68C, but without the npartial
ordering of the modules and the resulting hign sensitivity of
the environment file wused to resolve external references. At
the same time, it achieves the insulation of the prasmate file
trom internal changes to a module, found in the DEC-1{ SIXULA
scheme, ‘but without sacrificing the ability to reference
non=local variables, necessitated by the strict botton-up

ordering of SIMULA program modules.

Using this scheme, it 1is possible to have multiple
invocations to a given module. The only restrictions are that a
procedure or class submodule may not be 1invoked twice in the
same range, and the module interface must be consistent with all
STUB statements., Briefly stated, the vse ot multivle STUBs to a
single submodule must be sucn that a consistent projram is
obtained by replacing each STUB statement by the submodule body.
The ability to have multiple invocations allows a
compile-time-like macro substitution, but with the resolution

being done at pre-linkajge~edit time,. Effectively, this

37

77-4

functions as a macro substitution where the macro need not be

known at uompile-time,

All assuimptions about the outside environment irust be
explicitly stated within a module. The STULZ statement
explicitly states whica objects are RELEaSEd, and may be chanjed
by the submodule. This, coupled with the HIDDEN/SPROTLECTul
attributes allows a well protected and more easily veritied
inter face. The ASSUME clause of the STUB statement and the
ACCESS <clause of the MODULE heading togethner Jive the
specification of each external object which 1is used irn the
module. unis information assures that there are no objects
referenced in the module which do not have 1local type

information.

The overhead required to implement tne proposed scheme 1is
less than that in ALGOL 68C, and is comparable to that in DEC-1lb
SIMULA. In ALGOL 68C, the pragmates of all objects visible at
the point of the ENVIRON statement must be placed in the
environment file, since it is not known during compilation which
of the objects will be accessed by submodules. In the wvwroposed
scheme, it is known at compile time which objects are RELEASEd
for use by the submodule. Only the pragmates of these objects,
together with the procedure or class prajgmates for a vrocedure

or class module need be included.

The total overhead for program development using the
proposed parallel compilation scheme should always be

approximately less than or equal to the total overhead using tne

38

77-4

ALGOL 68C serial compilation scheme, If a change in an
ALGOL 68C module does not cause a change in the environment
tile, then only that module must be recompiled, and the set of
ooject modules must be linkaje-edited again. If the change does
cause a change in the environment file, then all submodules must
be recompiled, and the set of object modules must be
linkage-edited again. Using the parallel compilation scheme,
any change not affecting a submodule interface causes only the
recompilation of that module, another pre-linkage-edit run and
another linkage-edit run. For a change that affects a submodule
inter face, the affected module and submodule have to be
recompiled, and another pre-linkage-edit and linkage-edit step

must be run.

As Berry noted (([Ber]), the STUB-replacing module facility
supports top-down development and testing of programs, since

each STUB statement may be compiled as:

l. an empty construct of its kind, returning the default value

of its type

2. a call to the interpreter, which executes intermediate

level code for the replacement module

3. <calls to the user via the interactive console, for she/he to

plug in values of the required type.

39

il

77-4

7. APPLICATION 1O OTHER LANGUAGES

while the proposal for a parallel compilation scheme nas
been designed for the SIMULA 67 programming language, it can be
applied equally well to any other procedure-oriented language.
The overhead will vary from language to language, and from
implementation to implementation depending on scoping rules,

run-time organization, etc.

8. REMARKS

A few philosophical comments appear to be in order. Many
people ([Pal, ber, B8Bw] and others) have advocated complete
compile-time resolution of the module irterface througn serial
compilation, Jacob Palme stated ([Pal}) that using
post-compile-time type checkiny of the module interfaces
recuires that "the 1loading (linkage-editing) programs must be
modified, which is something you want to avoid since these

programs are commonly used system programs".

One solution to this dilemma is to have a special ©purrose
language-specific pre-linkage-editor do the type checking. This
avoids making chanjes to a commonly used system program, and
provides useful lanjuagje-dependent features that & general

purpose system program can not provide.

This alludes to a more general concept. we should be

developing total programming environments, Instead of

developing gyeneral purpose text-editors, lanjuage=-specitic

40

(Ber]

77-4

compilers, general purpose linkage-editors, and general purpose
debuggers, we siould be developing a progiramming environment
designed for the programming language. The text-editor should
se intelligent, with features designed to aid in the coding ot
programs written in the language. The linkage-editor
(collection program) should include facilities for resolving
more of the interfaces than just the addresses. There should be
a run-time system that includes an intelligent interactive

debugger and tester.

In short, we should not develco compilers for programming
languages, and then rely on gcneral purpose system processors,
which normally handle only the co"mon subset of all 1language
needs, to provide the user support. There’'s a great deal more

we can do to aid in the production of reliable software.

Bibliography

Berry, b.M., "Separate Compilation", 1Internal Memorandum,
No. 147, UCLA, Computer Science Department, February 1976.

[BEOP] Birtwistle, G., L. Enderin, M. Ohlin, J. Palme,

[BBW]

[Cle]

[DMN]

LECsystem=-1¢ SIMULA Language Handbook Part i, Report No.
C8398, Swedish National Defense Research Institute, March
1976.

Bourne, S.k., A. Birrell, I. walker, "ALGOL 68C Reference
Manual", University of Cambridge, 1975.

Cleveland, J.C., "The ENVIRON and USING Facilities of
ALGOL 68C", Modelinj and Measurement Note, No. 33, Computer
Science Department, UCLA, April 1975.

bahl, 0., B. Myhrhaug, K. Nygaard, Common Base Language,
Publication No. §-22, Norwegian Comnuting Center, October

41

[Den]

[FOR]

[IBM]

[KTU]

[Lin]

[McK])

[Mey]

[Mil]

[MoW]

[Nau]

[Pall

[SMC]

[vWi]

[Weg]

77-4

1970,

pPennis, J., "Modularity", Computation sStructures Grouy weino,
no. 74, Project MAC, MIT, June 1972,

gEngel, F. (comm), "draft proposed ANS FORTRAN", X3J3/70,
SIGPLAN Notices, Vol 11, No. 3, #arch 1976.

IB4 System/36¢ Uperating System L/l (F) Lanjuage keferencsz

Manual, Form uLaa 3231-3, IEd Corp., white Elains, hew York,
June 1970.

Al

Kearns, %M., A. Tanennaum, R. Uzgalis, OUCLA ALGUL

-~

projrammner’s Guide, Computer Science Devartment, GCLA, -avy
1976.
Lindsey, C.H., "Propocal for a flodules Facility in

ALGOL 68", Algol Bulletin, A339.4.2, February 1976,

mcGowan, C.L., J.R. Kelly, Top-down Structured Projramuin;
Technigues, Petrocelli/Cnarter, New York, 1975.

rieyers, G.L., "Composite Design: The Design of iodular
Projrams", Technical Report, Thd?.2406, ILJd, Poughkecnsie,
ivew York, January 1973.

hills, #.D., "Top-down Projramming in Larae 3ysteas", in
rustin, k. (ed.), Dedu3zjing iechnicues in Large systeus,

Prentice-Hall, Englewood Clifts, “New “Jersey, 1971,1.3.
41-55.

Morgan, h.L., R.A. wajner, "PL/C: The LCesign of a hiah
Performance Compiler tor PL/I", Research Renort 7i=-33,
Computer 3cience Departwent, Cornell Univ., October 1974,

Naur, P. (ed.), "Revised Report on tne Algorithmic Lanjuaije
ALGOL 6¢", Communications of the ACil, ACn, January 1963.

ralme, J., "Part Compilation in [igh Level Loijuajes”,
Report No. FOA=-p-C~8396~-.i3(L5), Swedisnh national Defence
Research Institute, Nov 1971.

Stevens, W., G. dyers, L. Constantine, "Structured
Design", IBM 3ystems Journal, No. 2, 1°74.

van wijngaarden, et al., "kevised Report on the Alqorithric
Language ALGOL 68", Technical Report 1R 74~3, University ot
Alberta, tarch 1974.

wegner, P., Progranmlng Languajes, Informnation “tructures,
and sachine Organlzatlon, MicGraw-d1l11, Neéw York, ..68%.

NASA—JPL—-Coml., L. A. Calif, 42

ﬂiipenlk

<.§f°RI

(M)
[KTU]

[Lin]
{McK]

[Mey]

[Mil]

[MoW]

[Nau]

[Pal]

[sMC]

[vWi]

[Weg]

1976.

Dennis, J., “Modularity”, Computation Structures Group iemo,
No. 78, Project MAC, MIT, June 1972.

Engel, F. (comm), "draft proposed ANS FORTRAN", X3J3/76,
SIGPLAN Notices, vol 11, No. 3, March 1976.

I1BM System/36¢ Operating System PL/1(F) Lanjuage Reference
Manual, Form Cfg:gfﬁf:%. IBA Corp., white Plains, New York,
June 1974.

Kearns, M., A, Tanenbaum, R. Uzgalis, UCLA ALGOL 68C
Programmer 's Guide, Computer Science Department, UCLA, say
1976.

Lindsey, C.H., "Proposal for a Modules Facility in
ALGOL 68%, Algol Bulletin, AB39.4.2, February 1976.

McGowan, C.L., J.R. Kelly, Top-down Structured Programming
Technigues, Petrocelli/Chartér, New York, 1975.

Meyers, G.L., "Composite Design: The Design of Hodular
Programs", Technical Report, Tk09.24066, IBd, Poughkeepsie,
New York, January 1973.

%ills, H.D., "TIop-down Programming in Large 3ystems", in
Rustin, k. (ed.), Debuzzing Techniques in Large Systens,
Prentice-Hall, Englewood 1fts, New Jersey, 1971,p9.
41-55.

Morgan, h.L., R.A. VWagner, "PL/C: The Design of a High
Performance Compiler for PL/I", Research Report 7u¢-83,
Computer Science Department, Cornell Univ., October 1974.

Naur, P. (ed.), "Revised Report on tne Algorithmic Lanjuaje
ALGOL 60", Communications of the ACH, ACM, January 1963.

‘Palme, J., "Part Compilation in High Level Laijuajes”,

Report No. FOA-P-C-8306~113(E5), Swedish National Detense
Research Institute, Nov 1971.

Stevens, W., G. Myers, L. Constantine, "Structured
Design", IBM Systems Journal, No. 2, 1974,

van wijngaarden, et al., "Revised Report on the Alqgorithmic
Language ALGOL 68", Technical Report TR 74-3, University of
Alberta, March 1974.

wegner, P., Programming Languages, Information Structures,
and Machine Organization, mcGraw~dill, New York, ..%%.

NASA=IPL—Coml., L. A. Calif. 42

S

	GeneralDisclaimer.pdf
	0012A02.pdf
	0012A02_.pdf
	0012A03.pdf
	0012A03_.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012A12.pdf
	0012A13.pdf
	0012A14.pdf
	0012B01.pdf
	0012B02.pdf
	0012B03.pdf
	0012B04.pdf
	0012B05.pdf
	0012B06.pdf
	0012B07.pdf
	0012B08.pdf
	0012B09.pdf
	0012B10.pdf
	0012B11.pdf
	0012B12.pdf
	0012B13.pdf
	0012B14.pdf
	0012C01.pdf
	0012C02.pdf
	0012C03.pdf
	0012C04.pdf
	0012C05.pdf
	0012C06.pdf
	0012C07.pdf
	0012C08.pdf
	0012C09.pdf
	0012C10.pdf
	0012C11.pdf
	0012C12.pdf
	0012C13.pdf
	0012C14.pdf
	0012D01.pdf
	0012D02.pdf
	0012D03.pdf
	0012D04.pdf
	0012D05.pdf
	0013D05.pdf

