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EMPIRICAL COMPARISON OF A FIXED-BASE AND A MOVING-BASE SIMULATION 


OF A HELICOPTER ENGAGED IN VISUALLY CONDUCTED SLALOM RUNS 


Russell V. Parrish, Jacob A. Houck, 

and Dennis J. Martin, Jr.* 

Langley Research Center 


SUMMARY 


An evaluation study has been completed of combined visual, motion, and 

aural cues for a helicopter engaged in visually conducted slalom runs at.low 

altitude. The evaluation of the visual and aural cues was subjective, whereas 

the motion cues were evaluated both subjectively and objectively. Subjective

opinion and objective data conflicted in the detection of differences in the per­

formance of a primary and secondary task under motion and no motion conditions. 

Subjectively, differences in performance were expected, and objectively, no sig­

nificant differences were detected. However, subjective and objective results 

coincided in the area of control activity. Generally, less control activity is 

present under motion conditions than under fixed-base conditions, a fact attrib­

uted subjectively to the feeling of realistic limitations of a machine (helicop­

ter) given by the addition of motion cues. The objective data also revealed 

that the slalom runs were conducted at significantly higher altitudes under 

motion conditions than under fixed-base conditions. 


INTRODUCTION 


Some of the factors affecting the quality of a flight simulator are the 

mathematical model of the flight vehicle, the cockpit hardware (control system,

instrumentation, etc.) and the visual, motion, and aural cues provided to the 

pilot. The final three factors are thought to be of considerable importance in 

the simulation of a helicopter, particularly when low-altitude maneuvering is 

simulated. 


The importance of visual cues to the helicopter pilot is well understood 
(ref. I ) ,  although disagreement exists as to the exact nature of the visual 
requirements for simulation. The addition of motion cues seems intuitively 
important in a vehicle possessed with the capabilities of rapid movement within 

three-dimensional space. Aural cues should also be significant in providing the 

pilot with information relative to his vehicle's performance. 


The recent acquisition of a modern terrain board display system, to be used 

with the virtual image "out-the-window" display monitor available in the Langley 

visual-motion simulator (VMS), allowed for an evaluation study of combined vis­

ual, motion, and aural cues for a helicopter engaged in visually conducted Sla­

lom runs at low altitude. The study utilized a rigorously validated fixed-base 
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s imula t ion  of an S-61 h e l i c o p t e r  t h a t  was modified t o  a l l o w  f o r  the i n c l u s i o n  of 
the  v i s u a l ,  motion, and a u r a l  cues  t o  be eva lua ted .  

This  paper w i l l  p r e s e n t  the s u b j e c t i v e  and o b j e c t i v e  data c o l l e c t e d  du r ing  
fixed-base and moving-base o p e r a t i o n  of the s imula to r  du r ing  t h e  v i s u a l l y  con­
ducted s la lom r u n s ,  the main emphasis being placed on the comparison o f  t he  
o b j e c t i v e  data under fixed-base and motion-base o p e r a t i o n .  

SYMBOLS 

Measurements and c a l c u l a t i o n s  were made i n  U.S. Customary Units .  They are 
presented h e r e i n  i n  t he  I n t e r n a t i o n a l  System o f  Un i t s  (SI) w i t h  the  e q u i v a l e n t  
va lues  g iven  p a r e n t h e t i c a l l y  i n  the U.S .  Customary Units .  

main effects i n  a n a l y s i s  o f  va r i ance  

two-factor i n t e r a c t i o n s  i n  a n a l y s i s  o f  va r i ance  

t h r e e - f a c t o r  i n t e r a c t i o n  i n  a n a l y s i s  o f  v a r i a n c e  

body-axis l o n g i t u d i n a l  and lateral  a c c e l e r a t i o n  a t  c e n t r o i d  l o c a t i o n ,  
m/sec2 (f t /sec2)  

body-axis v e r t i c a l  a c c e l e r a t i o n  ( r e fe renced  about  l g )  a t  c e n t r o i d  loca­
t i o n ,  m/sec2 ( f t / s e c 2 )  

c o e f f i c i e n t s  f o r  p o s i t i o n  p e n a l t i e s  i n  c o s t  f u n c t i o n s ,  pe r  sec4 

c o e f f i c i e n t  for yaw-position p e n a l t y  i n  c o s t  f u n c t i o n ,  p e r  s ec2  


c o l l e c t i v e  s t i c k  rate, m/sec ( f t / sec)  


c o e f f i c i e n t s  f o r  v e l o c i t y  p e n a l t i e s  i n  c o s t  f u n c t i o n s ,  pe r  sec2 


damping parameters  f o r  second-order t r a n s l a t i o n a l  washouts, p e r  sec 


frequency parameters f o r  second-order t r a n s l a t i o n a l  washouts, p e r  sec2 


parameter f o r  f i r s t - o r d e r  yaw washout, p e r  sec 


deadband on peda l  f o r c e  s i g n a l ,  V 


t ransducer  s i g n a l  f o r  p i l o t  f o r c e  on p e d a l s ,  V 

peda l  f o r c e  feedback s i g n a l ,  V 

i n e r t i a l - a x i s  t r a n s l a t i o n a l  a c c e l e r a t i o n  commands p r i o r  t o  t r a n s l a ­
t i o n a l  washout, m/see2. ( f t /sec2)  

body-axis t r a n s l a t i o n a l  a c c e l e r a t i o n s ,  m/sec2 ( ft /sec2) 
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g gravitational constant, m/sec2 (ft/sec2) 


h altitude, m (ft)
-
coefficients for initial-conditionpenalties in cost func­

tions, per sec 


, Kx,1 Jy, 1 ,  gain parameters, sec3/m2 (sec3/ft2) 
Kx,3SKY,3 


4 Kx,2Jy ,2 gain parameters, sec5/m4 (sec5/ft4) 

KtCl yaw gain parameter, sec 

Pa9 qa 9 ra body-axis aircraft angular velocities, rad/sec 
\ 

PX,l,PX,3, 
adaptive parameters, position limited 


px,2,py,2 adaptive parameters, position limited, sec/m (sec/ft) 


adaptive parameters, rate limited 


Pi,1(01 ,Pi,1(01, 
pL(0)1 initial conditions on adaptive parameters, rate limited P$,3(0) ,P;,3(0) 

Pi,2,Pi,2 adaptive parameters, rate limited, sec/m (sec/ft) 
* 11 - I I  

PX ,1 ,PY,1 . 
adaptive-parameter rates, per sec 

P;, 3,b;, 3 
. I1 .If 

px,29 py,2 adaptive-parameter rates, per m (per ft) 

P'J, adaptive yaw parameter, position limited 


p i  adaptive yaw parameter, rate limited 


Pi(0) initial condition on adaptive yaw parameter, rate limited 


P; adaptive-yaw-parameter rate, per sec 


R pedal-centering signal, V 


bR pedal-position error signal, V 
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r evo lu t ions  per  minute of  r o t o r  


scale f a c t o r s  on body-axis t r a n s l a t i o n a l  a c c e l e r a t i o n s  


l o n g i t u d i n a l  body-axis v e l o c i t y ,  kno t s  


t r u e  a i r s p e e d ,  kno t s  


angular - ra te  weighting c o e f f i c i e n t s ,  m2/sec2 (ft2/sec2) 


commanded i n e r t i a l  t r a n s l a t i o n a l  p o s i t i o n  o f  motion s imula to r ,  m ( f t )  


c o l l e c t i v e  p o s i t i o n ,  m ( f t1 


pedal  p o s i t i o n  s i g n a l ,  V 


commanded pedal  p o s i t i o n ,  V 


a c t u a l  aircraft  p i t c h  ang le ,  deg 


a c t u a l  aircraft  roll a n g l e ,  deg 


commanded i n e r t i a l  angular  p o s i t i o n  of  motion s imula to r ,  rad 


a c t u a l  a i rcraf t  heading,  deg 


aircraft  angular  v e l o c i t i e s ,  rad/sec 


aural-cue pu l se  f requency,  rad/sec 


a p a s t  i t e r a t i o n  va lue  of  aural-cue p u l s e  f requency,  rad/sec 


Dots over  symbols denote  d e r i v a t i v e s  w i t h  r e s p e c t  t o  time. 

SIMULATOR DESCRIPTION 

The s imula tor  was assembled w i t h  t he  elements:  mathematical model, v i s u a l  
system, motion system, s imula to r  cockp i t ,  and a u r a l  cueing.  

Mathematical Model 

A r igo rous ly  v a l i d a t e d  six-degree-of-freedom t o t a l  f o r c e  and moment mathe­
matical model of  a h e l i c o p t e r ,  inc luding  a modified blade element r o t o r  model, 
was used i n  the s tudy.  It was a c t u a l l y  a modified model of  a Huey-Cobra h e l i ­
cop te r  w i t h  a s t a b i l i t y . a u g m e n t a t i o n  system tuned so tha t  the  handl ing charac­
ter is t ics  o f  the  S-61 h e l i c o p t e r  are c l o s e l y  dup l i ca t ed .  The development o f  
t h e  program of  the h e l i c o p t e r  model is documented i n  r e fe rence  2 ,  and the  first 
a p p l i c a t i o n  of  the  model is documented i n  r e fe rence  3 .  
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V i s u a l  System 

? 

The v i s u a l  system c o n s i s t s  of  a s t a t e -o f - the -a r t  TV-camera t r a n s p o r t  system 
used Xn 'conjunct ion wi th  a s o p h i s t i c a t e d  t e r r a i n  model board.  (See f ig .  1 . )  
The model board,  7.32 m (24 f t )  by 18.3 m (60 f t ) ,  o f f e r s  t e r r a i n  a t  a 750/1
scale and a 1500/1 scale. A slalom course  c o n s i s t i n g  o f  45.72-111 (150 f t )  trees 
placed about  426:72 m (1400 f t )  a p a r t  on a l t e r n a t i n g  s ides  of  a r i v e r  bank was 
l a i d  o u t  on p a r t  of  t h e  1500/1 scale model. The measured course  w a s  about  
9.26 km ( 5  n. m i .  ) long and cons i s t ed  o f  17 t rees .  Two e x t r a  trees were u t i ­
l i z e d  before  t h e  measured course  began to s t a b i l i z e  i n i t i a l  performance. 

The approximate second-order t r a n s f e r  func t ion  parameters  f o r  t h e  camera 
t r a n s p o r t  system are presented  i n  r e fe rence  4 ,  and show t r a n s l a t i o n a l  lags o f  
50 msec o r  less and r o t a t i o n a l  lags o f  75 msec or less.  The 'lout-the-window'l 
v i r t u a l  image system, loca t ed  nominally 1.27 m (4.17 f t )  from t h e  p i l o t ' s  eye,  
p resented  a nominal 480 width by 360 he igh t  f i e l d  of view of  a 525 TV l i n e  ras­
ter  system and provided a 460 by 260 ins t an taneous  f i e l d  of  view. The system 
s u p p l i e s  a co lo r  p i c t u r e  of  u n i t y  magni f ica t ion  wi th  a nominal r e s o l u t i o n  on t h e  
o rde r  of  9 minutes of  arc. 

Motion System 

The Langley visual-motion s imula tor  (VMS, f i g .  2 )  is a six-degree-of­
freedom s y n e r g i s t i c  motion base w i t h  performance l i m i t s  as l i s t e d  i n  tab le  I. 
References 5 ,  6 ,  and 7 document t h e  c h a r a c t e r i s t i c s  of  t h e  system, which pos­
sesses t i m e  l a g s  (around 50 msec) t h a t  are very c l o s e  t o  those  of the  v i s u a l  sys­
tem. The washout system used t o  p re sen t  t h e  motion-cue commands t o  t h e  motion 
base is nonstandard.  It was conceived and developed a t  Langley Research Center 
and it is  documented i n  r e fe rences  8 and 9.  The basis of  the  washout is t h e  
cont inuous adap t ive  change o f  parameters t o  minimize a c o s t  f u n c t i o n a l  through 
cont inuous s t e e p e s t  descent  methods, and t o  produce the  motion cues i n  t r a n s l a ­
t i o n a l  a c c e l e r a t i o n s  and r o t a t i o n a l  rates wi th in  t h e  motion envelope of t h e  syn­
e r g i s t i c  base; The s p e c i f i c  parameters  of  t he  nonl inear  coordinated adapt ive  
washout used i n  t h i s  h e l i c o p t e r  s tudy  are presented  i n  t a b l e  11. Figure  3 pre­
s e n t s  a block diagram of t h e  washout system and the  appendix p resen t s  t h e  equa­
t i o n s .  It should be noted t h a t  t h e  heave cue suppl ied  t o  t h e  p i l o t  was based 
only on t h e  rate of change of  c o l l e c t i v e  s t i c k  p o s i t i o n  rather than on normal 
a c c e l e r a t i o n .  T h i s  arrangement allowed f o r  s i g n i f i c a n t  heave-cue in t roduc t ion  
without  t h e  phasing and ampli tude problems t h a t  ar ise  when t r y i n g  t o  p re sen t  the 
cue based on normal a c c e l e r a t i o n .  Simulat ion of v i b r a t i o n ,  obtained from t h e  
aural-cue d r i v e s ,  was a l s o  presented  i n  the  v e r t i c a l  motion channel.  

Simulator  Cockpit 

The general-purpose t r a n s p o r t  cockpi t  of  the VMS was modified t o  r ep resen t  
a h e l i c o p t e r  by i n s t a l l i n g  a two-axis side-arm c o n t r o l l e r  t o  supply c y c l i c  . 
i n p u t s .  The c y c l i c  c o n t r o l l e r  was loaded w i t h  s p r i n g s  and dash po t s .  The 
rudder  peda l s  were loaded by a hydrau l i c  system coupled with a special-purpose 
analog computer. However, t o  s imula te  t h e  l l f ree- f loa t ing ' l  rudder peda ls  of a 
h e l i c o p t e r ,  i t  was necessary t o  augment t he  c o n t r o l  l oade r  w i t h  t h e  d i g i t a l  
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s imula t ion  computer, as shown i n  f i g u r e  4. With t h i s  system, t h e  rudder  peda l s  
remain i n  t h e  p o s i t i o n  a t  which t h e  f o o t  f o r c e  was removed r a t h e r  t han  r e t u r n  t o  
t h e  c e n t e r  p o s i t i o n .  The c o l l e c t i v e  s t i c k  i n  t h e  VMS is a counter-balanced,  
f r i c t i o n - c o n t r o l l e d  s t i c k ,  and it is r e p r e s e n t a t i v e  o f  a h e l i c o p t e r  c o l l e c t i v e .  

Primary ins t rumenta t ion  cons i s t ed  of an a t t i t u d e  i n d i c a t o r ,  v e r t i c a l  speed 
i n d i c a t o r ,  an alt imeter,  an RPM i n d i c a t o r ,  a t u r n  and bank i n d i c a t o r ,  a compass 
c a r d ,  and an a i r speed  i n d i c a t o r .  The a i r speed  i n d i c a t o r  was d r iven  wi th  V 
when V w a s  above 20 kno t s ,  and wi th  +u when V was below 20 kno t s .  A 
17.78-cm-diameter (7  i n . )  cathode r ay  tube  was mounted on t o p  of  t h e  ins t rument  
pane l ,  a t  a 400 angle  t o  t h e  p i l o t ' s  look a x i s ,  t o  enable  t h e  p r e s e n t a t i o n  o f  a 
secondary v i s u a l  t a s k  t h a t  would be independent of  t h e  primary v i s u a l  scene.  

Aural Cueing 

A s i n e  wave of 100 Hz was m u l t i p l i e d  on a general-purpose ana log  computer 
wi th  a h a l f - r e c t i f i e d  s i n e  wave of  c o n t r o l l e d  ampli tude and frequency genera ted  
on t h e  d ig i t a l  computer t o  provide t h e  a u r a l  cues  t o  t h e  s imula to r .  The 100-Hz 
s i n e  wave provided a realist ic tone ,  t h e  h a l f - r e c t i f y i n g  of  t h e  second s i n e  wave 
provided t h e  pu l s ing  desired,  and ampli tude and frequency v a r i a t i o n s  of  t h e  sec­
ond s i n e  wave provided t h e  r o t o r  l oad ing  cues  desired.  The empi r i ca l  equa t ions  
f o r  t h e  c o n t r o l  of  amplitude and frequency of  t h e  second s i n e  wave used wi th in  
t h e  d i g i t a l  computer were 

Amplitude = 0.203 x 10, + 0.131 + 0.002 x IRPM - 2901 + 0.00002 x 1i1 ' 

+ 0.15 x + 0.3176, 

Frequency = up 

wn = 0.1112 x RPM 

The h a l f - r e c t i f i e d  s i n e  wave was a l s o  in t roduced  i n t o  t h e  heave channel of  the 
motion base t o  s imula te  v i b r a t i o n  l e v e l s .  

PARTICIPATING PILOTS AND TASKS 

Four research  p i l o t s  and t h r e e  research engineers  wi th  ex tens ive  exper ience  
i n  f l i g h t  s imula to r s  p a r t i c i p a t e d - i n  t h i s  s tudy .  Because of t h e  ex tens ive  l e a r n ­
ing  curves a s soc ia t ed  with both t h e  primary t a s k  and t h e  secondary t a s k ,  t h e  
large number of  d a t a  f l i g h t s ,  and t h e  va r ious  schedule  i n t e r r u p t i o n s  t h a t  
occurred,  only one of t h e  fou r  r e sea rch  p i l o t s  completed a f u l l  set of  data 

I 
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runs .  Thus, o b j e c t i v e  data r e s u l t s  are a v a i l a b l e  from only  f o u r  s u b j e c t s ,  
a l though s u b j e c t i v e  comments are repor ted  from t h e  seven s u b j e c t s .  

Primary Task 

Each p i l o t  w a s  i n s t r u c t e d  t o  f l y  the  s la lom course  w i t h  three goa l s :  
( 1 )  Minimize t h e  ground track dev ia t ion  from an imaginary s t ra ight  l i n e  drawn 
between t h e  trees. A ro.ot-mean-square s c o r e  f o r  t h i s  dev ia t ion  ( c a l c u l a t e d  32 
times per sec) was measured and used i n  a primary t a s k  measure. The p i l o t  was 
i n s t r u c t e d  t o  ignore  t r e e - r o t o r  d i s t a n c e s  due t o  lack of r o t o r  v i s u a l  represen­
t a t i o n  and t o  approach each tree as c l o s e l y  as p o s s i b l e  without  h i t t i n g  i t .  
( 2 )  Two hundred and t e n  sec w a s  the  a l l o t t e d  time t o  complete the  course ;  t h i s  
t i m e  r equ i r ed  an average airspeed of  70 knots .  The primary task measure penal­
i zed  slower completion times and rewarded fas ter  completion times. However, 
the  p i l o t  g o a l  was t o  use e x a c t l y  210 sec. ( 3 )  Maintain an a l t i t u d e  o f  about  
22.86 m (75 f t )  above the ground l e v e l  or midtree he ight .  

Secondary Task 

Discr imina t ion  between f ixed-base and moving-base ope ra t ion  is o f t e n  
enhanced by increased  p i l o t  workload ( r e f .  IO). To i n c r e a s e  the  workload on the  
p i l o t ,  a v i s u a l  secondary task was provided.  An Adage g raph ics  computer was pro­
gramed t o  present  a random ser ies  of  f i v e  d i g i t  numbers which were d isp layed  on 
a 17.78-cm-diameter ( 7  i n . )  cathode ray  tube  o f f s e t  from the  p i l o t ' s  look a x i s .  
The secondary task w a s  t o  add the  f irst ,  t h i r d ,  and f i f t h  d i g i t  of  each number 
and r e p o r t  t he  answer o r a l l y .  The number was changed after each answer, and the  
number of c o r r e c t  answers recorded f o r  each f l i g h t .  

Measures 

Scores  f o r  the  primary and secondary tasks were cons t ruc ted  as fol lows:  
Primary t a s k  s c o r e  - The root-mean-square dev ia t ion  i n  ground track i n  m ( f t )  
was mul t ip l i ed  by the  t i m e  used t o  complete t h e  course  and d iv ided  by 210 s e c .  
Secondary t a s k  s c o r e  - The number of  c o r r e c t  answers g iven  dur ing  t h e  course was 
d iv ided  by t h e  t i m e  used t o  complete t h e  course .  Addi t iona l  measures - A root ­
mean-square measure of p r e s s u r e  a l t i t u d e  w a s  recorded f o r  each f l i g h t  a l though 
va r ious  p o s i t i o n s  of  the  r i v e r  on the model were ei ther  above o r  below sea l e v e l  
(a  radar a l t i t u d e  measure was not  a v a i l a b l e ) .  I n  a d d i t i o n  t o  t he  root-mean­
square  va lue  of  a l t i t u d e ,  e igh t  o t h e r  root-mean-square va lues  were determined 
f o r  a l l  c o n t r o i  i n p u t  p o s i t i o n s  and rates; these va lues  inc luded  c y c l i c  p i t c h  
s t i c k  p o s i t i o n  and rate, c y c l i c  roll s t i c k  p o s i t i o n  and rate,  t a i l  r o t o r  pedal  
p o s i t i o n  and rate,  and c o l l e c t i v e  s t i c k  p o s i t i o n  and rate. 

T R A I N I N G  PROGRAM 

The t r a i n i n g  procedure c o n s i s t e d  of f l y i n g  the course  i n  both  fixed-base 
and moving-base cond i t ions  wi thout  the  secondary t a s k  u n t i l  t h e  primary t a s k  
s c o r e s  began t o  asymptote.  The s u b j e c t s  were provided t h e i r  s c o r e s  after each 
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course  run .  To main ta in  s u b j e c t  mot iva t ion ,  t h e  s u b j e c t s  were a l s o  informed of 
the o the r  s u b j e c t s '  s co res .  The secondary task w a s  then  added and t r a i n i n g  con­
t inued  u n t i l  both the primary t a s k  and secondary task s c o r e s  appeared t o  reach 
asymptot ic  l e v e l s .  

During t r a i n i n g  it was noted t h a t  p i l o t  performance d e t e r i o r a t e d  after 
about  15 success ive  course  runs ,  t h e  d e t e r i o r a t i o n  being a t t r i b u t e d  t o  t he  h igh  
work l e v e l  involved i n  both tasks,  and rest p e r i o d s  d i d  l i t t l e  t o  r e v i v e  sus­
t a ined  performance. A s  a r e s u l t ,  it was decided t h a t  data c o l l e c t i o n  would be 
l i m i t e d  t o  10 runs  per  p i l o t  per  day and 5 p r a c t i c e  runs  p r i o r  t o  d a t a  
c o l l e c t i o n .  

EXPERIMENTAL DESIGN 

A 2 x b2 f u l l  f a c t o r i a l  design was u t i l i z e d  i n  t h i s  s tudy .  The motion fac­
t o r  was a t  two l e v e l s  ( f i x e d  and moving base),  and t h e  p i l o t  and t h e  day f a c t o r s  
a t  four  l e v e l s  each, w i t h  f i v e  r e p l i c a t e s .  T h i s  des ign  gave a t o t a l  of  160 data 
p o i n t s ,  o r  40 course runs  per  p i l o t .  Motion cond i t ions  were randomized f o r  each 
p i l o t  each day and cons i s t ed  of  f i v e  w i t h  and f i v e  without  motion. 

Analyses of  va r i ance  were c a r r i e d  ou t  on each o f  the  11 sepa ra t e .measu res  
t o  provide t h e  o b j e c t i v e  data a n a l y s i s .  Sub jec t ive  comments were c o l l e c t e d  
throughout t h e  t r a i n i n g  and d a t a  c o l l e c t i o n  stages. 

EXPERIMENTAL RESULTS 

Figure 5 d i s p l a y s  a t y p i c a l  course  run i n  terms of  ground track and air­
speed and a l t i t u d e  a long  t h e  ground track. The x ' s  symbolize tree p o s i t i o n s  
along t h e  measured course .  

Objec t ive  Data Resu l t s  

Because of t h e  ex tens ive  amount of data involved i n  t h i s  s tudy ,  data are 
presented  only i n  forms necessary t o  i l l u s t r a t e  t he  r e s u l t s .  The summary of t h e  
r e s u l t s  from the  11 ana lyses  of var iance  is  presented  i n  table  111, a s i n g l e  
asterisk rep resen t ing  s i g n i f i c a n c e  a t  t h e  5-percent l e v e l  and a double a s t e r i s k  
denot ing s i g n i f i c a n c e  a t  the I-percent l e v e l .  

S ing le  f a c t o r  effects.- Although the  main concern of  t h i s  a n a l y s i s  is the  
motion f a c t o r ,  t h e  o t h e r  f a c t o r s  are of  some i n t e r e s t .  

Days (des igna ted  by A ) :  I n  a l l  11 measures,  t h e  day f a c t o r  was h igh ly  sig­
n i f i c a n t ,  and ind ica t ed  t h a t  d e s p i t e  ex tens ive  t r a i n i n g  and the  appearance of 
asymptot ic  behavior i n  performance s c o r e s ,  p i l o t s  c o l l e c t i v e l y  flew d i f f e r e n t l y  
each day. A f u r t h e r  breakdown o f  t h e  data i n d i c a t e d  t h a t  t h e  p i l o t s  were i n  
r e a l i t y  s t i l l  on a l e a r n i n g  curve.  
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P i l o t s  (des igna ted  by B): I n  a l l  11 measures,  t he  p i l o t  v a r i a t i o n  was 
h igh ly  s i g n i f i c a n t ,  each p i l o t  f l y i n g  d i f f e r e n t l y .  
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Motion (des igna ted  by C) :  Although t h e  motion f a c t o r  w a s  n o t  s i g n i f i c a n t  
i n  t h e  primary and secondary t a s k  s c o r e s ,  it w a s  h igh ly  s i g n i f i c a n t  i n  t he  con­
t r o l  i npu t  measures,  wi th  t h e  except ion  o f  c y c l i c  r o l l .  Fu r the r  a n a l y s i s  
revea led  both root-mean-square p o s i t i o n  and rate va lues  t o  be c o n s i s t e n t l y  lower 
under motion c c n d i t i o n s  than  under f ixed-base cond i t ions ,  as depic ted  by the  
downward-pointing arrows i n  t a b l e  111. C o l l e c t i v e  rate was h ighe r  f o r  motion 
cond i t ions  f o r  two s u b j e c t s  and lower f o r  motion cond i t ions  f o r  t h e  o t h e r  two 
s u b j e c t s ,  as depic ted  by t h e  double-headed arrow. F igure  6 is  a t y p i c a l  i l l u s ­
t r a t i o n  o f  mot ion-s igni f icant  c o n t r o l  a c t i v i t i e s .  The r o o t  mean square  of  a l t i ­
tude  w a s  h igh ly  s i g n i f i c a n t ,  p i l o t s  c o l l e c t i v e l y  f l y i n g  h ighe r  (about  4 percen t )  
under motion cond i t ions  than under f ixed-base cond i t ions ,  as depic ted  by the  
upward-pointing arrow. Fur the r  a n a l y s i s  revea led  t h a t  each p i l o t  f l e w  h ighe r  
wi th  motion, and even though t h e  magnitudes o f  mean d i f f e r e n c e s  were small 
between fixed-base and motion va lues ,  t he  d i f f e r e n c e s  were h igh ly  s i g n i f i c a n t  
s t a t i s t i c a l l y .  

Repl ica tes :  The secondary t a s k  s c o r e  a n a l y s i s  showed r e p l i c a t e s  t o  be 
h ighly  s i g n i f i c a n t ,  and indeed a l e a r n i n g  curve is evident  i n  the  d a t a  as shown 
i n  f i g u r e  7. Rep l i ca t e s  were a l s o  found t o  be s i g n i f i c a n t  i n  peda l  p o s i t i o n  and 
pate, and c y c l i c  p i t c h  rate.  The data i n d i c a t e  peak a c t i v i t y  t y p i c a l l y  dur ing  
t h e  second r e p l i c a t e  and.may be i n t e r p r e t e d  as e i ther  a l e a r n i n g  curve o r  poss i ­
b ly  an i n d i c a t i o n  o f  the  t i r i n g  o f  t h e  p i l o t  ( f i g .  8 ) .  

I n t e r a c t i o n s . - The s i g n i f i c a n t  i n t e r a c t i o n s  are examined by grouping t h e  
performance measures i n  terms o f  the number of  s i g n i f i c a n t  i n t e r a c t i o n s .  

Measures wi th  one s i g n i f i c a n t  i n t e r a c t i o n ,  AB: For t he  primary t a s k  
sco re ,  a l t i t u d e ,  and c y c l i c  p i t c h  rate,  t h e  p i lo t -days  i n t e r a c t i o n  AB was t h e  
only s i g n i f i c a n t  i n t e r a c t i o n ;  t h u s ,  t h e  d i f f e r e n c e s  between p i l o t s  i n  t h e s e  mea­
s u r e s  var ied  from day t o  day. 

Measures wi th  two s i g n i f i c a n t  i n t e r a c t i o n s ,  AB and AC: For t h e  secon­
dary t a s k  s c o r e ,  t h e  p i lo t s -days  i n t e r a c t i o n  AB is  a l s o  h igh ly  s i g n i f i c a n t ;  
aga in ,  t h e  d i f f e r e n c e s  between p i l o t s  va r i ed  from day t o  day. The days-motion 
i n t e r a c t i o n  AC is a l s o  s i g n i f i c a n t  f o r  t h i s  measure, and i n d i c a t e s  t h a t  t h e  
motion effect va r i ed  from day, t o  day. A s  shown i n  f i g u r e  9 ,  on days 1 and 4 ,  
average performance o f  t h e  secondary task was h igher  w i t h  motion than without  
motion, whereas t h e  o rde r  reversed  on days 2 and 3.  However, as the  motion 
f a c t o r  was n o t  s i g n i f i c a n t ,  t h e  d i f f e r e n c e s  between performance l e v e l s  of  t h e  
secondary task  were no t  c o n s i s t e n t l y  s i g n i f i c a n t .  

Measures wi th  two s i g n i f i c a n t  i n t e r a c t i o n s ,  AB and BC: I n  a d d i t i o n  t o  
t h e  p i lo t -days  i n t e r a c t i o n  AB, the  pi lot-motion i n t e r a c t i o n  BC w a s  h igh ly  sig­
n i f i c a n t  f o r  c y c l i c  r o l l  p o s i t i o n  and rate,  c y c l i c  p i t c h  pos i� ion ,  and pedal  
rate. Thus, t h e  motion effect is i n d i c a t e d  t o  be larger f o r  some p i l o t s  than 
f o r  o t h e r s .  Indeed,  f o r  those  measures wi th  no s i g n i f i c a n t  motion f a c t o r  - ( r o l l  
p o s i t i o n  and ra te ) ,  some p i l o t s  used more c o n t r o l  wi th  motion, whereas o t h e r s  
used more c o n t r o l  under f ixed-base cond i t ions .  However, these d i f f e r e n c e s  i n  
c o n t r o l  l e v e l s  were no t  c o n s i s t e n t l y  s i g n i f i c a n t .  

Measures wi th  t h r e e  s i g n i f i c a n t  i n t e r a c t i o n s ,  AB, BC, and ABC: For col ­
l e c t i v e  p o s i t i o n  and rate, and pedal  p o s i t i o n ,  the days -p i lo t s  AB and p i l o t s ­
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motion BC i n t e r a c t i o n s  are h igh ly  s i g n i f i c a n t ,  and i n d i c a t e d  t ha t  p i l o t  d i f fer­
ences va r i ed  from day t o  day, and tha t  t h e  d i f f e r e n c e s  between t h e  h ighe r  con­
t r o l  l e v e l s  under f ixed-base ope ra t ion  and the  lower c o n t r o l  l e v e l s  w i t h  motion 
va r i ed  from p i l o t  t o  p i l o t .  A s  mentioned p r e v i o u s l y ,  a l though t h e  d i f f e r e n c e s  
under motion c o n d i t i o n s  f o r  c o l l e c t i v e  rate l e v e l s  were h igh ly  s i g n i f i c a n t ,  t he  
l e v e l s  f o r  two p i l o t s  were higher f o r  motion o p e r a t i o n  than  f o r  f ixed-base opera­
t i o n .  However, these p i l o t s  d i d  no t  use the c o l l e c t i v e  s t i c k  very much. (See 
f ig.  10.) The three f a c t o r  i n t e r a c t i o n ,  days-pi lots-motion ABC, is a l s o  s i g n i f ­
i c a n t  f o r  these performance measures,  and i n d i c a t e d  t h a t  t h e  days -p i lo t s  AB 
i n t e r a c t i o n  va r i ed  under motion c o n d i t i o n s  C;  t h a t  is, t h e  p i l o t  d i f f e r e n c e s  
which va r i ed  from day t o  day were d i f f e r e n t  under t he  motion cond i t ions .  

Summary of o b j e c t i v e  data r e s u l t s . - Although no s i g n i f i c a n t  d i f f e r e n c e s  
under motion c o n d i t i o n s  were found f o r  either the  primary t a sk  or the secondary 
t a s k ,  most c o n t r o l  a c t i v i t y ,  both rate of  change and magnitude, was lower under 
moving-base c o n d i t i o n s  than  under f ixed-base c o n d i t i o n s .  The root-mean-square 
a l t i t u d e  was higher w i t h  motion. 

Sub jec t ive  Data R e s u l t s  

Motion cues.- A l l  seven s u b j e c t s  thought  the motion cues were extremely 
r e a l i s t i c ,  i nc lud ing  the  v i b r a t i o n  in t roduced  i n t o  the  heave channel  from the  
a u r a l  c i r c u i t .  V i b r a t i o n a l  changes w i t h  p i t c h  a n g l e ,  bank ang le ,  s i n k  rate, co l ­
l e c t i v e  p o s i t i o n ,  and RPM were f e l t  t o  be very  r e p r e s e n t a t i v e  of ro tor - loading  
s i t u a t i o n s .  The s u b j e c t s  assessed t h e  motion effect on performance t o  be one 
t h a t  cons t ra ined  v i o l e n t  i n p u t s .  When f l y i n g  under f ixed-base c o n d i t i o n s ,  there 
w a s  no feeling of t h e  phys ica l  l i m i t a t i o n s  of a machine ( h e l i c o p t e r ) ,  ahd thus  
c o n t r o l  i n p u t s  could be u t i l i z e d  t h a t  under moving-base c o n d i t i o n s  p re sen t  a 
f e e l i n g  of s t r a i n  on t h e  a i r c r a f t .  Thus,  s u r p r i s e  was expressed by a l l  p i l o t s  
i n  the  f a c t  t h a t  f ixed-base performance was no t  s u p e r i o r  t o  moving-base perform­
ance i n  the pr imary task. (See f i g .  11.) Super io r  performance was a l s o  
expected,  bu t  no t  ob ta ined  ( f ig .  101, b y . t h e  s u b j e c t s  wi th  the  secondary t a s k  
under moving-base c o n d i t i o n s ,  as  they f e l t  more comfortable  i n  l eav ing  the  win­
dow scene t o  p ick  up t h e  secondary d i s p l a y  w i t h  t h e  a l e r t i n g  motion cues p r e s e n t .  

Visua l  cues.- A l l  seven p i l o t s  expressed extreme s a t i s f a c t i o n  wi th  t h e  v i s ­
u a l  scene,  a l though a l a r g e r  f i e l d  of view was thought  t o  be desirable f o r  t h e  
s la lom task, e s p e c i a l l y  i n  t h e  v e r t i c a l  f i e l d .  Earlier v i s u a l  a c q u i s i t i o n  of 
the  next  t r e e  would then  have been p o s s i b l e .  Af t e r  rounding a t r e e ,  a nosedown 
a t t i t u d e  t o  i n c r e a s e  speed was a t y p i c a l  maneuver; t h i s  maneuver o f t e n  involved 
l o s s  of s i g h t  of the  nex t  tree. This  o v e r a l l  s a t i s f a c t i o n  wi th  t he  v i s u a l  scene 
was a p l e a s a n t  s u r p r i s e ,  because the  t e r r a i n  model board was not  manufactured 
w i t h  low-a l t i tude  realism as a g o a l  o t h e r  than  i n  runway a r e a s .  No problems 
were experienced w i t h  t he  focus  c o n t r o l  of t h e  v i s u a l  system, as the  des i r ed  
o b j e c t s  t o  be viewed, both near  and far ,  were s u f f i c i e n t l y  clear t o  e l i m i n a t e  
p i l o t  d i s s a t i s f a c t i o n .  

Aural cues.- Loss of the  aural cues ,  which occurred dur ing  some of  the  
t r a i n i n g  due t o  schedule  c o n f l i c t s  f o r  t h e  ana log  computer, was viewed as h igh ly  
ob jec t ionab le  by the  p i l o t s .  Many f e l t  the a u r a l  cues  t o  be as important  as the 
motion cues i n  adding realism. Var i a t ions  w i t h  p i t c h  a n g l e ,  bank ang le ,  s i n k  
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rate, c o l l e c t i v e  s t i c k  p o s i t i o n ,  and RPM were f e l t  t o  be both h e l p f u l  and 
real is t ic .  

CONCLUDING REMARKS 

The p i l o t s  f e l t  t h a t  t h e  S-61 h e l i c o p t e r  s imula t ion  w i t h  v i s u a l ,  motion, 
and a u r a l  cues  approached the  real-world s i t u a t i o n  better than any s imula tor  i n  
the i r  exper ience ,  p a r t i c u l a r l y  s i n c e  it flew l i k e  a h e l i c o p t e r ,  a fact  a t t r i b u ­
table t o  the  mathematical linodel, as w e l l  as t o  the  v i s u a l ,  motion, and a u r a l  
cues.  Although s u b j e c t i v e  opin ion  c o n f l i c t e d  w i t h  o b j e c t i v e  data i n  the  perform­
ance o f  the  primary and secondary t a s k s  under t he  motion cond i t ions  ( i n  t h a t  no 
s i g n i f i c a n t  d i f f e r e n c e s  were de tec t ed  between f i x e d  base and motion) ,  t he  les­
sened c o n t r o l  a c t i v i t y  w i t h  motion was s i g n i f i c a n t l y  d i f f e r e n t  from t h e  a c t i v ­
i t y  without  motion. The s i g n i f i c a n t  d i f f e r e n c e  detected -in c o n t r o l  a c t i v i t y  w a s  
s u b j e c t i v e l y  a t t r i b u t e d  t o  the feeling o f  real is t ic  l i m i t a t i o n s  of  a machine 
g iven  by the  a d d i t i o n  of  motion cues .  The s i g n i f i c a n t  d i f f e r e n c e  detected i n  
a l t i t u d e  was s u b j e c t i v e l y  a t t r i b u t e d  t o  t h i s  f e e l i n g  o f  realist ic l i m i t a t i o n s  of 
a machine al though t h i s  was no t  as direct  as t h a t  f o r  lessened  c o n t r o l  a c t i v i t y  

under motion cond i t ions .  
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APPENDIX 

COORDINATED ADAPTIVE WASHOUT 

The fo l lowing  equa t ions  are those  of  t h e  non l inea r  washout and correspond 
to  f i g u r e  4. The d e r i v a t i o n  of  t h e s e  equa t ions  may be found i n  r e f e r e n c e  5. 

Longi tudina l  f i l t e r  equat ions  : 
0 .. x = ~ ~ , l f i , ~- exx- d x i  

&,1 = 

Px, l  -
L o .  1 

Px,2 = [i;; 

P G 


(p:,~ > -0.06) 

(Pa, 1 5 -0.06) 

(P;c,l ’ I) 

(-0.1 $ P i , l  5 1) 

(P;c,I < -0.1) 

(p!& > 0.01) 

(-0.01 <= p;,2 5- 0.01) 

(p;,2 c -0.01) 

(P4,2 > 0.05) 

(0.01 5 P4,2 5 0.05) 

(p;,2 < 0.01) 
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APPENDIX 


Px,3 


- COS + COS e cos Q) ae1apx,3 
fi,x = Sxfs,x(cos 8 cos $1 + Syfs,y(sin 0 sin 8 cos 9 - cos + sin Q) 

- g(cos 0 sin 0 cos $ + sin 0 sin Q) 
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APPENDIX 

Lateral filter equations: 


= c.' 
-0.06 


PY,l ­
-0.1 

0.1 

PY,2 ­
* '  -:i.-0.1 . 

(p i ,1  > -0.06) 

( P i y l  <= -0.06) 

(Pi,l > 0-8) 

' < 0.8)(-0.1 	 5 Py,l = 

(P&1 < -0.1) 

(p;,2 > 0.1) 

(-0.1 5 p;,2 5 0.1) 

(p;;,2 < -0.1) 

(Pi,2 > 0.01) 

(-0.01 5 p+,2 I 0.01) 

(P;T,2< -0.01) 
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APPENDIX 


(PZ,3 => -0.2) 


(8&3 < -0.2) 


a 


(&)= fi9y 

A­
(%y,2) = py9 '  

(&)PY,l 

(;;,2) = - f i , Y  

(&-)= -Py,2 
Y ? 3  

- dy(%) 

% Y%- d+&) 

i f f i 9 Y  

K T  - dy(&) 

*- py,2  k-.* i , Y  
Y92 

Y ? 3  
+ 4 

-


-

- e.(+) Y 9 3  
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APPENDIX 


, 

( p i  > -0.4) 

(p; -0.4) 

s 

PI) = [h 
0 

Heave f i l t e r  equa t ions  : 
.. 
z = pz6 - dzz - eZz  

* - b z z ( p )  - czi(’2 )]+ [P$(o) - Pz]Kc,~p i  = K, [( C  - Z)(g) 

PZ Pz apz 

(p i  > -1.0) 
p; 

(p i  s -1.0) 

(Pk ’ 1.0) 


Pz = [; (0 s PA I 1.0) 


(Pk 0) 
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TABLE I.- PERFORMANCE LIMITS FOR SINGLE-DEGREE-OF-FREEDOM 

OPERATION WITH A NEUTRAL POINT OF 0.6161 m (2.02 f t )  

Degrees o f  freedom 

Longi tudina l ,  

! G i - E G  

P i t c h ,  8 

Performance l i m i t s  

P o s i t i o n  Ve loc i ty  

Forward 1.245 m -+0.610 m/sec 
A f t  1.219 m 

Left 1.219 m 
Right 1.219 m 

Up 0.991 m 
Down 0.762 m 

-+320 

-+300 
-200 

-+0.610 m/sec 

-+0.610 m/sec 

Acceleratior 

-+O .6g 

~~ 

-+O .6g 

-+O .8g 



-

TABLE 11.- N O N L I N E A R  WASHOUT PARAMETER VALUES 


Variable* Value in 
SI Units 

Program value 
in U.S. Units 

Variable* Value in 
SI Units 

~~ 

Program value 
in U.S. 'Units 

b$, per sec2 1 .o 1 .o 0.81 0.81 

e+, per sec - 3  .3 -51668 .048 

KQ, sec 100 100 

w,, m2/sec2
(ft2/sec2) 

61-686 664 
0 0 

b,, per sec4 .1 .1 
.2691 .025 

c,, per sec2 2 2 .5 .5 

d,, per sec 1.2727 1.2727 .1 . I  

e,, per sec2 .81 .81 1.2727 1.2727 

K, 1 ,  sec3/m2
t sec3/ft2 

.51668 .048 .81 .81 

K, 2, sec5/m4
tsec5/ft4) 

0 0 
10.764 1.0 

Z, 3, sec3/m2
fsec3/ft2) 

.75348 .07 
.05 

.5 

.05 

.5 

.00929 .1 .05 .05 

>y, per sec' 4  .1 .1 
1,.5 1.5 

:y, per sec2 2.0 2.0 
.I .1 

ly,per sec 1.2727 1.2727 
.05 .05 

is the U.S. Unit. 

*Where two sets of units are given, the first is the SI Unit and the second 
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--- --- 

N TABLE 111.- ANALYSES OF VARIANCE RESULTS
0 

Root-mean-square measures 

I

L
Factors  Degrees of Tai l - ro tor  :yc l ic  p i t c h  Cycl ic  roll Col lec t ive  Al t i t ude  Primary Secondary 

freedom pedal  task t a s k  

Iposi t ion Rate ?os i t i on  Rate Pos i t ion  Rate Pos i t i on  Rate 

I Repl ica tes  
-
** ** 
** 3~~

** 

I 

I 
** 

** 

] P i l o t s ,  	B 3 1 ** ** 
Motion, C 

AB 

ABC 

Error  

Tota l  

*5-percent l e v e l  s ign i f i cance .  

**l-percent l e v e l  s ign i f i cance .  

+ Measures are lower with motion than with f ixed  base.  

+ Measures are h igher  with motion than with f ixed  base.  

3 Varies with p i l o t .  

i 
I 



Figure 1.- The visua l  landing display system. 
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Analog s i g n a l s  D i g i t a l  computer 

I 

R I fi+ 
DAC 

-r 
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l o a d i n g  t-
System 
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I 
ADC: Analog-to-Digi  t a l  Conver ter  I 
DAC: D i g i t a l - t o - A n a l o g  Converter 

z - l :  one i t e r a t i o n  de lay  

Figure 4.- Free- f loa t ing  rudder pedal  c i r c u i t .  
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