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SUMMARY 

The inves t iga t ions  c f d i r ec t iona l  s o l i d i f i c a t i o n  made under Contract N A S ~ -  
29669 and subsequent modifications were designed t o  e s t ab l i sh  a foundation i n  

s 

earth-based laboratory processing i n  o rde r  t o  properly assess  t h e  opportunity 
o f  low-gravity space processing o f  mater ia l s  by d i r ec t iona l  so l id i? ica t ion .  

The approach used i n  t h e  assessment o f  laboratory processed mater ia l s  has 
been t h e  examination o f  t h e  s t r u c t u r a l  r egu la r i t y  obtained i n  d i r ec t iona l ly  
s o l i d i f i e d  eu tec t i c  a l l oy  compositions under conditions o f  d i f f e r en t  s e t s  of 
s o l i d i f i c a t i o n  parameters. Alloys examined which produced lamel la r  microstruc- 
t u r e s  were A1-Cu (33 w/o CU) and Pb-Sn (30 w/o, 38.1 w/o, 45 w/o ~ b ) ;  a l loys  
which y ie lded  a rod-matrix microstructure were A1-Ni (6.2 w/o ~ i )  and Al-Ni-Mo 
(6.2 w/o Al, 31.5 w/o Mo, balance ~ i )  . The a l loys  were s o l i d i f i e d  i n  ingot  form 
under v e r t i c a l  d i r ec t iona l  s o l i d i f i c a t i o n  conditions with t h e  exception of  t h e  
Pb-Sn a l loys  which were r o l l e d  i n t o  t h i n  shee ts  and zone melted hor izonta l ly  
t o  obta in  t h i n  shee ts  with a regular  eu t ec t i c  microstructure.  

The examination of  t h e  Ni-Mo-Al system i s  discussed i n  t h i s  report .  A 
complete discussion of  t h e  experiments on t h e  A1-Cu, Al-Ni , and Pb-Sn systems 
under contract  NAS~-29669 i s  reported elsewhere (Ref. 1). 

The choice of  t h e  te rnary  system Ni-Al-Mo permitted a range of  te rnary  
compositions wherein d i r ec t iona l  s o l i d i f i c a t i o n  produces a regular  e u t e c t i c  
microstructure.  The system was a l s o  of i n t e r e s t  because of i t s  po ten t i a l  use 
f o r  high temperature turb ine  blade appl icat ions (Ref. 2) . The ph r t i cu l a r  compo- 
s i t i o n  chosen contained 6.2 w/o Al, 31.5 w/o Mo, balance N i .  The microstructure 
o f  t h e  d i r ec t iona l ly  s o l i d i f i e d  ingots  was t h a t  of subs t an t i a l l y  square molyb- 
denum rods surrounded by gamma prime ( ~ i ~ ~ l ) ,  which i n  t u r n  was separated by a 
small  amount of  gamma ( nickel-aluminum s o l i d  so lu t ion)  containing f ine  precipi-  
t a t e d  gamma prime. 

Experiments were performed t o  examine t h e  r o l e  of thermal gradient  magnitude 
a t  t h e  so l id i fy ing  i n t e r f a c e  on t h e  geometrical r egu la r i t y  of t h e  microstructure.  
The d i f f i c u l t y  i n  measuring t h e  thermal gradient  i n  t h e  melt using superheat tem- 
peratures  as high as  1 8 0 0 ° ~  r e su l t ed  in ,  t h e  examination of t h ree  l i q u i d  tempera- 
t u r e  gradient  ranges (i.e. 50 t o  80°C/cm, 250°C/cm, and 370°c/cm). Examination 
of  t h e  microstructure from d i r ec t iona l ly  s o l i d i f i e d  ingots  using t r a s v e r s e  
sec t ions  ind ica ted  t h a t  t h e  highest  gradient runs produced microstructure of no 
g rea t e r  r egu la r i t y  than runs made a t  lower gradients .  I t  was concluded t h a t  f o r  
t h e  Ni-A1-Mo monovariant eu t ec t i c  system, t h e  magnitude of t h e  thermal gradient 
at t h e  so l id i fy ing  in t e r f ace  i s  not a cont ro l l ing  parameter with respect t o  



t h e  g t o w t r i c a l  r egu la r i t y  of  t h e  m i c r o s t r ~ c t ~ w e ,  provided it i s  s u f f i c i e n t  t o  
s a t i s f y  t h e  g r a d i e n t h a t e  (G/R) r a t i o  needed LO produce a p lanar  i n t e r f a c e  
growfih. Cusps i n  nominally p lanar  l iqu id-so l id  i n t e r f a c e  adJacent t o  g ra in  
boundaries d id  not appear t o  cause the  molybdenum rods t o  bend; r a t h e r ,  t h e  
r e s u l t  was  t o  broaden rods edjaceut  t o  t h e  grain boundary i n t o  blades along 
preferred i n t e r f a c i a l  crystal lographic planes,  which were co-paral le l  t o  t h e  
rods. 

Emeriments car r ied  out  previously under t h i s  contract  using t h e  A1-CuA12 
e u t e c t i c ,  t h e  A1-A13Ni eu tec t i c ,  and t h e  Pb-Sn e u t e c t i c  ind ica ted  t h a t  c lose  
cont ro l  over t h e  processing var iab les  o f  s o l i d i f i c a t i o n  r a t e ,  thermal gradient ,  
i n t e r f a c e  curva?nre, and perturbat ions i n  t hese  parameters during t h e  process 
was required i n  order  t o  obtain e u t e c t i c  microstructure of  g rea t  regular i ty .  
I n  those s tud ie s ,  s o l i d i f i c a t i o n  r a t e  and i n t e r f a c e  curvature were determined 
t o  be important, but not  cont ro l l ing ,  with regard t o  microstructural  regular i ty .  

Since the  work with t h e  Ni-Al-Mo system reported herein implies t h a t  t h e  
magnitude of  t he  thermal gradient  a t  t he  i n t e r f ace  i s  a l so  not  a cont ro l l ing  
parameter, the  conclusion must be drawn t h a t  f luc tua t ions  i n  thermal conditions 
at the  so l id i fy ing  in t e r f ace  a r e  cont ro l l ing ,  i f  i n  f a c t  geometrical per fec t ion  
may be improved over t h a t  which has been obtained. Malmajac ( ~ e f .  3 )  supports 
t h e  present  conclusion i n  t h a t  r e s u l t s  a r e  reported of  highly regular  micro- 
s t r u c t u r e  obtained i n  t h e  Cu-A1 sys tem using a s o l i d i f i c a t i o n  apparatus speci  f- 
i c a l l y  designed t o  suppress thermal f luc tua t ions  which perturb t h e  so l id i fy ing  
so l id- l iqu id  in te r face .  



INTRODUCTION 

,. 

NASA progrems ( ~ e f .  4 )  have been d i r ec t ed  toward exploring t h e  nearly 
weightless environment provided by o r b i t i n g  spacecraf t  t o  conduct experiments 
which w i l l  l e a d  t o  manufacturing products i n  space f o r  use on ear th.  

It has been recolplized t h a t  un id i rec t ione l ly  e o l i d i f i e d  e u t e c t i c  compo- 
s i t i o n s  cons t i t u t e  a c l a s s  o f  mater ia l s  with a high degree of  thermal s t a b i l i t y  
which should be examined i n  a study of t h e  e f f e c t s  of zero-gravity on s o l i d i f i -  
cation. Only a few o f  t h e  many e u t e c t i c  compositions which have been i d e n t i f i e d  
and subjected t o  unid i rec t iona l  s o l i d i f i c a t i o n  have found p o t e n t i a l  uses. It is  
poss ib le  t h a t  with improved cont ro l  over t h e  r egu la r i t y  o f  t h e  phase d is t r ibu-  
t i o n  i n  a eu tec t i c ,  addi t iona l  uses would be  found. The r o l e  which zero-gravity 
processing could play i n  obtaining improved microstructures  i s  present ly i n  
question as d i r ec t iona l  s o l i d i f i c a t i o n  f a c i l i t i e s  adequate t o  assess  t h e  e f f e c t  
of  gravi ty on eu tec t i c  microstructure a r e  not  present ly  avai lable .  

I n  order  t o  def ine the conditions f o r  a zero-gravity s o l i d i f i c a t i o n  experi- 
ment which w i l l  provide in s igh t  i n t o  t h e  r o l e  of grav i ty  i n  a f f ec t ing  t h e  
r egu la r i t y  of  t h e  e u t e c t i c  microstructure,  an inves t iga t ion  of ea r th  based 
(one-g) processing o f  un id i rec t iona l ly  s o l i d i f i e d  eu tec t i c s  has been undertaken. 
The i n i t i a l  study evaluated various aspects o f  eu t ec t i c  s o l i d i f i c a t i o n  r e su l t i ng  
i n  a narrowing of  t he  inves t iga t ion  t o  a study of  t h e  processing parameters 
which cont ro l  t he  perfect ion of t h e  e u t e c t i c  microstructure.  Binary eu tec t i c s  
i n  the  systems Cu-A1, Ni-A1,  and Pb-Sn were used as model mater ials  which could 
be processed a t  temperatures below 1000°C. The r e s u l t s  of  t h e  inves t iga t ions  
made using these  mater ia l s  has been previously reported (Ref. 1). 

It w a s  concluded from these  s tud ie s  t h a t  t he  degree t o  which geometrical 
perfect ion o f  t h e  microstructure i n  an e u t e c t i c  could be produced depended on 
cont ro l  over t h e  growth rate, thermal gradient ,  and sol id- l iquid in t e r f ace  
curvature. The c h a r a c t e r i s t i c  spacing of  microstructural  elements is  propor- 
t i o n a l  t o  t h e  square roo t  of t h e  growth r a t e ;  changes i n  thermal gradient  pro- 
duce changes i a  hea t  flow and thus i n  pos i t ion  of isotherms, one o f  which i s  
t h e  sol id- l iquid in te r face .  A curved in t e r f ace  requires  microstructural  e le -  
ments t o  be  generated o r  t e d n a t e d ,  leading t o  f au l t s .  A s o l i d i f i c a t i o n  
i n t e r f a c e  propagating through an ingot  subJect t o  f luc tua t ing  cont ro l  parameters 
i s  much more l i k e l y  t o  have f a u l t s  than one which proceeds under constant con- 
d i t ions .  It w a s  f u r the r  concluded t h a t  f luc tua t ions  i n  t hese  processing 
vs r i ab l e s  should be  low compared t o  t h e  growth r a t e .  It w a s  reconmended t h a t  a 
study c f  t h e  e f f e c t s  of thermal gradient  be undertaken on a mater ia l  of current  
i n t e r e s t  f o r  high temperature applications.  



The addi t iona l  study reported here in  was undertaken using t h e  te rnary  
system Ni-A1-Mo using t h e  composition, by weight, 31.5% Mo, 6.2% Al, balance 
N i .  This system was chosen because of i t s  p o t e n t i a l  use as a high temperature 
turb ine  blade mater ia l  ( ~ e f .  23 and examined f o r  inf luence of t h e  thermal gra- 
dier: i n  t h e  l i q u i d  during d i r ec t iona l  s o l i d i f i c a t i o n  on t h e  r egu la r i t y  of t h e  
microstructure.  

Microstructural r egu la r i t y  was assessed using computer programs previously 
developed under t h i s  contract  which produce neares t  neighbor d i s t r i bu t ions  i n  
dis tances and angles. A high degree of r egu la r i t y  r e s u l t s  i n  d i s t i n c t  pe&s i n  
these d i s t r i bu t ions ;  t h e  l e s s  regular  t h e  s t r t c t u r e ,  t h e  more uniform t h e  dis- 
t r i b u t i o n  o f  neighbor dis tances and angles. 



EXPERIMENTAL PROCEDURES 

Master melts of  t h e  ~ i - 6 . 2  w/o A1-31.5 w/o Mo a l loy  were made i n  new re- 
c r y s t a l l i z e d  alumina c ruc ib les  i n  a Heraeus vacuum induction melting furnace 
powered by a 30 kW motor generator and pumped by a 25.4 cm (10 in .  ) vacuum 
system. The system was exhausted t o  approximately loo5 t o r r  (0,001 ~ / m ~  ) and 
then back f i l l ed  with high pu r i ty  argon t o  provide a dynamic 200 l i t e r s / h r  i n e r t  
cover a t  atmospheric pressure.  Power t o  t h e  furnace c o i l  w a s  slowly increased 
u n t i l  melting o f  t h e  n i cke l  and molybdenum charge mater ia l  was achieved. Alum- 
inum was then added separa te ly  t o  t h e  melt. Subsequently, t h e  melt was he ld  at 
a constant temperature of  1 4 0 0 ~ ~  f o r  a 15-20 min homogenization period p r i o r  t o  
pouring i n t o  copper c h i l l  molds. 

Each r e s u l t i n g  c a s t  a l l oy  ba r  was d i r ec t iona l ly  s o l i d i f i e d  v e r t i c a l l y  with- 
i n  a nominally 0.95 cm (318 in . )  diameter 99.7% rec rys t a l l i zed  alumina cylin- 
d r i ca l  closed one-end tube whose w a l l  thickness was approximately 0.2 cm. 
Ver t ica l  cont ro l led  s o l i d i f i c a t i o n  was accomplished i n  a high gradient  apparatus. 
In  t h i s  technique a known mass of a l loy ,  t yp ica l ly  200 grams, contained ir. a one 
end closed cy l ind r i ca l  alumina c ruc ib le  was posi t ioned within t h e  induction c o i l  
and graphi te  susceptor ,  water spray r ing ,  and constant water l e v e l  tank. With 
t h e  water spray inpinging on t h e  c ruc ib le  and t h e  water tank f u l l ,  melting was 
accomplished by induct ively coupling t o  t h e  s t a t i ona ry  graphi te  s leeve  which 
provided rad ian t  heat ing t o  t h e  crucible .  Power requirements were establ ished by 
monitoring t h e  temperature a t  t he  top  of  t h e  melt with an o p t i c a l  pyrometer while 
simultaneously measuring t h e  temperature within t h e  melt using a tungsten-5% 
rhenium/tungsten-26fb rhenium thermocouple. Successful measurements of  gradients  
of 375OC/crn and 80°c/cm a t  t h e  so l id- l iqu id  i n t e r f a c e  were made. These da t a  a r e  
shown i n  Fig. 1. Thermal gradients  wrrz estimated f o r  o ther  runs from t h e  moni- 
to red  melt temperature. Controlled f reez ing  commenced by t h e  withdrawal of the  
A1203 cruc ib le  through t h e  water spray r i n g  a t  1.5 c d h r  (4.17pm/znc). Exclud- 
i n g  s m a l l  end-affected regions, t h e  r a t e  of  f reez ing  i n  t h i s  setup has been 
found t o  be equal t o  t he  veloci ty  of c ruc ib le  withdrawal. 

D i f f e ren t i a l  thermal analysis  of  t h i s  a l loy  composition showed t h e  so l idus  
temperature t o  be 130g°C and t h e  l iqu idus  temperatwe t o  be 1310'~. 

Assessment of t h e  microstructural  r egu la r i t y  w a s  accomplished by es tab l i sh-  
i ng  t h e  coordinates of  t h e  centers  of  t h e  molybdenum rods with respect  t o  an 
a r b i t r a r y  o r ig in  using an automatic coordinate generating tab le .  The (x,y)  
values f o r  each point  were d i r e c t l y  s to red  i n  memory i n  t h e  Research Center 's  
PDP-6 c o q u t e r .  A program developed previously under t h i s  contract  ( ~ e f .  2 )  
generated a histogram from the da t a  which represented t h e  d i s t r i b u t i o n  of 
neighbor dis tances up t o  12.5 microns (50 mil l imeters  a t  4000 magnification) 



w i n g  photographs of  t ransverse  sec t ions .  This corresponds t o  evaluation of  
dis tances t o  first, second, and t h i r d  neares t  neighbors i n  an hexagonal array. 
The program a l s o  computes t h e  angles o f  t h e  s i x  neares t  coordinates t o  a given 
o r i g i n  and compiles t h e s e  i n t o  a histogram. A regular  array w i l l  generate dis- 
t i n c t  peaks i n  these  histograms represent ing t h e  average dis tances t o  f i r s t ,  
second, and t h i r d  neares t  neighbors, and t h e  average number of  first neares t  
neighbors found i n  5' angular increments r e l a t i v e  t o  t h e  o r ig in  point .  A uni- 
formly (random) d i s t r i b u t i o n  of  rods generates d i s t r i bu t ions  i n  neighbor dis- 
tances and angles which have no peaks. 

Seeding experiments were undertaken t o  obta in  d i r ec t iona l ly  s o l i d i f i e d  
ingots  having one o r  a t  most a few grains .  The f i r s t  method used consis ted of 
d i r ec t iona l ly  so l id i fy ing  an ingot ,  cen ter less ly  grinding it t o  reduce t h e  
diameter s o  t h a t  remelting would not  break t h e  c ruc ib le ,  p lac ing  it t a i l  first 
( t a i l  = f i n a l  s o l i d i f i c a t i o n  end of ingot )  i n  a new cruc ib le ,  and performing a 
second d i r ec t iona l  so l id i f i ca t ion .  The second method made use of  d ip  coated 
A.1203-Si02 s h e l l s  produced by PWA's Experimental Foundry. The base coat s l u r r y  
was r i ch  i n  alumina which i s  compatible with t h e  Ni-Al-Mo system. The tapered 
s h e l l  crucibles  were approximately 1.3 cm ins ide  diameter by 15 cm long with 
t h e  closed end tapered t o  a seed rod holder  0.015 cm diameter by 2 cm long. 
Seed rods were prepared fo r  these  crucibles  by choosing l a r g e  grains  from di- 
r ec t iona l ly  s o l i d i f i e d  ingots  2 cm long and using EDM techniques t o  obta in  a 
s ing le  gra in  sect ion.  Three such seed rods were prepared. Di rec t iona l  so l id i -  
f i c a t i o n  experiments were performed using th ree  tapered crucibles  i n  t h e  same 
high-gradient apparatus used fo r  t h e  runs i n  t h e  r ec rys t a l l i zed  high pur i ty  
alumina crucibles .  
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RESULTS AND DISCUSSION 
- 

The d i r ec t iona l  s o l i d i f i c a t i o n  of t h e  ~ i - 6 . 2 ~ 1 - 3 1 . 5 ~ 0  al loy produced ingots  . with square molybdenun rods spaced 2-4 pm between centers  on t h e  average i n  a 
gama/gamma prime matrix. The c rys ta l lographic  o r i en t a t ions  of t h e  interpene- 
t r a t i n g  molybdenum bcc and g m a / g a x u a  prime f cc  l a t t i c e s  a r e  described i n  
Ref. 2 as ro t a t ed  about a mutual [ loo]  groKtfi di rec t ion  by 45 degrees. F'urther, 
t h e  gamma and ganrma prime l a t t i c e s  were semi-coherent and t h e  (110) planes of 
molybdenum and t h e  {loo) cube planes of gamna prime were found t o  form t h e  
square in t e r f aces  of t h e  rods. 

I n  t h e  course o f  t h i s  inves t iga t ion ,  17  ingots  were d i r ec t iona l ly  so l id i -  
f ied .  Four o f  t hese  were used f o r  seeding experiments; t h e  remaining 13 runs 
a r e  l i s t e d  i n  Table I with estimated thermal gradients.  

Each ingot  was t ransversely sect ioned and metallographically polished i n  
at l e a s t  two regions, generally 2 t o  5 cm apa r t ,  s t d i n g  a t  3 t o  5 cm from t h e  
head end ( i n i t i a l  f reezing end) ,  f o r  exemination of  t h e  microstructure.  Among 
t h e  ingots  t h e  gradient var ied by a f ac to r  of 4 (8o0c/crn t o  375O~/cm); t h e  
microstructure of t h e  very low gradient runs tended t o  c e l l u l a r i t y  but  did not 
appear s ign i f i can t ly  d i f fe ren t  a t  t h e  higher  gradients  except f o r  t h e  lack  of  
c e l l u l a r i t y  . The phenomenon o f  banding was observed t o  occur i n  meny of  t h e  
ingots ;  while t h i s  did not  seem t o  s ign i f i can t ly  a f f e c t  t h e  appearance of t h e  
microstructure,  it indica ted  t h a t  thermal f luc tua t ions  must be occurring during 
t h e  s o l i d i f i c a t i o n ,  

Typical gra in  s t r u c t u r e  i n  tr&i.~verse sec t ions  of  -;he ingots  i s  shown i n  
Figs. 2 and 3. These ingots  were processed i n  thermal gradients  o f  80°C/cm 
(~76-225) .  50°C/cm (~76-398) ,  370°C/cm (~76-308) .  and 325°~/cm ( ~ 7 6 4 0 2 ) .  
Ingots  ~76-398  and -402 were melt-back experiments; t h e  l o w  gradient ingot  
A76-398 appears t o  have far fewer gra ins  i n i t i a l l y  than t h e  higher  gradient  
~76-402 a t  3 cm from the  head end, bu t  become comparable a t  t h e  5 cm sect ion.  
It i s  not  c l e a r  why t h e  melt-back ingot  processed at low gradient should have 
fewer gra ins  i n i t i a l l y  than t h e  high gradient  ingot ,  bu t  i n  any case, ne i the r  
melt-back experiment y ie lded  an ingot  which w a s  s i ng le  grained o r  had only two 
o r  t h ree  grains.  

Q p i c a l  microstructure observed i n  t ransverse  sec t ions  i n  t h e  ingots  pm- 
duced a r e  shown i n  Figs. 4 end 5. Figure 4 compares ~76-225 end t h e  repeat ,  
melt-back run ~76-398. These runs were low gradient,  of t h e  order  50 to 8 0 ' ~  
pe r  cm. A l a rge  port ion of t h e  rods a r e  broadened i n t o  blades i n  a pa t t e rn  
suggestive of  an approach t o  a c e l l u l a r  s t ruc ture .  Figure 5 compares A76-308 



and i ts  repeat,  melt-back run ~76-402. The gradients a t  which these  ingots were 
processed w a s  between 350 and 370°C per  cm. The melt-back ingots appear t o  have 
s l i g h t l y  b e t t e r  microstructure th rn  t h e  s ingle  run ingots they repeat. The 
microstructure shows no siepls o f  c e l l u l a r i t y ,  and t h e  regular i ty  o f  arrangement 
of the  mlybdenum rods, while acceptable, i s  no b e t t e r  than t h a t  shown i n  Fig. 
6 f o r  ~76-131, processed a t  run estimated 250°C/cm thermal gradient. Thus, in- 
creasing t h e  gradient from 250 t o  375OC/cm does not appear t o  r e s u l t  i n  improved 
mlcrostructural regulari ty.  

A small sect ion of a l a rge  grain of ingot ~ 7 6 - 1 3  was electropolished and 
replicated.  An electron microscope p ic ture  of the  repl ica t ion  at a magnifica- 
t i o n  o f  8700 is  shown i n  Fig. 7. I n  such a small sect ion,  the  regular i ty  of 
t h e  s t ruc tu re  appears excellent ,  but  i n  l a rge r  area uni ts  becomes more ran- 
domized, especial ly i n  angle d is t r ibut ion  of nearest  neighbors. Selected small 
area sect ions such as Fig. 6 show much grea ter  regular i ty  than t h e  average over 
l a rge  areas. Figure 8 shows the  d is t r ibut ion  i n  nearest neighbor distances 
obtained from a selected small area of  ingot ~76-131 (GL = 25o0c/crn), t h e  same 
ingot which yielded the  r e l a t ive ly  regular rod d is t r ibut ion  of Fig. 6. The dis- 
t r ibu t ion  f o r  t h e  selected small area of ~76-225 ( G ~  - 80O~/cm) i s  shown i n  
Fig. 9 f o r  the  f i r s t  nearest neighbors. The d is t r ibut ion  from ~76-131 ( ~ i ~ .  8) 
has a sharp peak giving the  average distance between rod centers as 2.4 xnicrom- 
c te r s .  The d is t r ibut ion  from the  selected area of ~76-225 (Fig. 9) gives peaks 
indica t ing  a first nearest neighbor average distance of 3.25 micrometers. Thus, 
se l ec t ing  s m a l l  areas of transverse sect ions provides a means of  analyzing loca l  
regular i ty ,  but t h i s  i s  not cha rac te r i s t i c  of  t h e  sect ion as a whole. Figures 
10 and 11 present nearest  neighbor s p a t i a l  and mgular  d is t r ibut ions  which are 
typ ica l  of l a rge  areas i n  transverse section. These lack peaks which can be 
re l a t ed  t o  geometrical regular i ty ,  thus indicat ing t h a t  on a large  scale,  the  
s t ruc tu re  would be described as random with regard t o  tile probabil i ty of finding 
rods a t  a given distance apart above a minimum, o r  a t  a speci f ic  angle r e l a t i v e  
t o  a f ixed axis. 

Another seeding experiment was undertaken using molds made by dipping wax 
preforms in to  ceramic s lu r ry  and then in to  coarser g r i t .  The she l l s  a re  ds- 
waxed and heated t o  y i e l d  molds with acceptable s trength fo r  handling and sub- 
sequent use. These molds  were made t o  accept a 0.15 cm by 2 cm long seed rod 
i n  the  head end. This portion of the  mold then tapers a t  abadt 45' t o  a 1.3 cm 
diemeter by 15 cm long ingot section. Seed crys ta ls  were cut from large grains 
i n  d i rec t ional ly  so l id i f i ed  ~i-6.2~1-31.5Mo ingots by EDM techniques. These 
were inser ted  i n  the  ,e?d-holder portion of the  foundry molds, and cas t  ma- 
t e r i a l  placed on top  of them. The molds were positioned i n  the  D.S. apparatus 
s o  t h a t  part of t h e  seed portion was impinged by water from the  spray rlng. 
Three attempts were made t o  produce dixectionslly so l id i f i ed  ingots; the  first 



run did not permit melt back i n t o  the  seed rod, so  t h a t  the  seed w a s  not effec- 
t ive ,  The second and t h i r d  runs broke out of the  crucibles. O f  t he  l a t t e r  * 

two, t h e  ~ e c o n d  run broke out par t  way thruugh t h e  run, but the  t h i r d  run broke 
out on start-up, so tha t  no material  was saved, Figure 12 shows +.he micro- 

. r t ruc ture  obtained i n  the  first run where the  seeding was not e f f ~ c t i v e .  This 
ingot was processed a t  a low gradient; i t s  microstructure i s  s imi lar  t o  t h a t  
of ingots so l id i f i ed  i n  t h e  recrys ta l l ized  aluminum oxide crucibles a t  high 
gradient which yielded good microstructure. Figure 1 3  shows the  dendr i t ic  
s t ruc ture  obtained i n  ingot ~76-506 wherein t h e  seed was ef fec t ive ,  but the  
run was not completed. A macro view of t h i s  ingot did not exhibi t  any struc- 
t u r e  which could be described as a grain boundary, as i l l u s t r a t e d  i n  Fig. 14. 



CONCLUSIONS 

Optical  evaluation of  t ransverse  sec t ions  as wel l  as compu'cer ana lys is  of 
neares t  nei&bor dis tance and angular pos i t ion  d i s t r i bu t ions  permitted t h e  
following statements with regard t o  t h e  e f f e c t  of thermal gradient  on producing 
regular microstructure : 

1. Low gradient (GL = 50 t o  80O~/cm) procet ing produced some ingots  
with areas  of regular  microstructure bu t  general ly  many areas around grain and 
subboundaries had rods broadened i n t o  blades,  i nd ica t ive  of an approach t o  
c e l l u l a r  growth. 

2. High gradient  (GL = 250 t o  375'~/cm) processing produced ingots  with 
areas of regular  microstructure,  with no ind ica t ion  of  c e l l u l a r  growth. 

3, As much va r i a t i on  was observed i n  t he  r egu la r i t y  of  rod s t ruc tu re  
among ingots  processed a t  high gradients  as  was observed among ingots  processed 
a t  low gradients.  

It was concluded t h a t  increasing t h e  magnitude of the  thermal g r a b e n t  above 
t h e  l e v e l  required t o  assure plane f ron t  growth does not  ipso f ac to  improve the 
geometrical r egu la r i t y  of  t h e  microstructure i n  t h e  ~i-6.2~1-31.5Mo t e r z  ary 
studied.  

Considering t h e  processing var iab les  of  s o l i d i f i c a t i o n  r a t e ,  thermal gra- 
d ien t  at t h e  in t e r f ace  i n  t h e  l i q u i d ,  i n t e r f ace  curvature,  and the  time sta- 
b i l i t y  of these ,  t h i s  study has f ixed the  sol idif ice. t ion r a t e  (1.5 cm/hr o r  about 
4 um/sec), var ied t h e  thermal gradient  i n  t h e  l i q u i d  from 50°C/cm t o  375'C/cm, 
and accepted t k -  i n t e r f ace  c u r v a t u e  these conditions produced. Examination 
was made near  t h e  ax is  of t h e  ingot  t o  ensure the  l e a s t  curvature. S t a b i l i t y  
of t h e  processing variables  r e f l e c t s  t he  s t a b i l i t y  of t he  mechanical systems 
u e d  f o r  t r ave r se  and t h e  f luc tua t ions  which m q  occur i n  t h e  power supplied 
by t h e  35 kW Lepel induction generators.  Small pewer f luc tua t ions  a r e  damped 
by t h e  graphi te  busceptor, but  t h e  thermal mass of t h e  system i s  l imited so  
t k a t  some f luc tua t ions  w i l l  be  seen by the  system. Bands, which a re  micro- 
s t r u c t u r a l  i r r e g u l a r i t i e s  caused by t h e  system response t o  Bone thermal fluc- 
t ua t ion ,  occurred i n  t h e  ingots  processed. Fluctuations i n  t h e  steady s t a t e  
plocess of  s o l i d i f i c a t i o n  do occur occasicnally.  Subt le r  compositional fluc- 
t ua t ions  than those  which cause hands observable by l i g h t  microscopy may be 
postulated,  Impuri t ies  mb;. be  responsible f o r  sub t l e  surface energy changes 
e spec i a l ly  near  high angle grcu~; boundaries but  t h e i r  quant i f ica t ion  was d i  f f i -  
c u l t  i f  no t  impossible t o  measure (dcf .  5 ) .  



With regard t o  the  e f fec t s  of  eliminating thermal f luctuat ions a t  the  
sol idifying in ter face ,  the  work reported by MalmaJac ( ~ e f .  3) implied t h a t  . 
elimination of thermal f luctuat ions resul ted  i n  a large decrease i n  f a u l t  den- 
s i t y  i n  c e r t d n  eu tec t i c  systems. A so l id i f i ca t ion  f'urnace was described which 
consists  o f  th ree  zones with a sophist icated temperature control  system vhich . 
permitted so l id i f i ca t ion  o f . t h e  copper-aluminum e u t t c t i c  i n  a v e r t i c a l  t raverse  
system resul t ing  i n  regions up t o  20 mm long ( i n  longitudinal  sect ion) with 
perfect ,  fault-free microstructure. Convection was minimized, i f  not eliminated, 
by s o l i d i f y i ~ s  ingots ve r t i ca l ly  from t h e  bottam up, as done by MahmJac and i n  
the  work reported herein as well. 

The reduction i n  thermal f luctuat ions a t ta ined by M w a c  was seen as 
the  causative fac tor  i n  t h e  reduction of  f au l t s  he obtained i n  the  Cu-A1 eutec- 
t i c .  It is suggested t h a t  s t a b i l i t y  of the  thermal conditions providing the  
gradient i n  the  l iqu id  was more important than t h e  magnitude of t h e  gradient 
i n  t e r m  of producing highly regular microstructure. 



*. - 
I 

RECOMENDATIONS FOR SPACE PROCESSING OF EUl'ECTICS 

Ihe work carried out under t h i s  contract as a whole suggests t h a t  i n  glan- 
I 

! ning eu tec t i c  so l id i f i ca t ion  studies i n  a low gravity environment, a high degree 
of  s t a b i l i t y  must be maintained over t h e  thermal conditions a t  the  sol id i fy ing 

I interface. Actual magnitudes of sol idif icat ion r a t e  and thermal gradient may 
I be any combination which s a t i s f i e s  p l a n e - m n t  growth conditions as established 

by ground-based t e s t s .  

a Development of direct ionally so l id i f i ed  materials i n  t h i n  f i l m  form mey 
provide in te res t ing  structures. Experiments ( ~ e f .  1) showed t h a t  lead-tin 
eutec t ic  films of t h e  order of 20 micrometers thick so l id i f i ed  with lamellae 
vhich spanned the  thickness of the  f i l m  without faul ts .  
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Table I 

R u n #  Rate Gradient Max Temp Remarks 

E cm/hr OC/cm O C  

(by Optical  F'yrometer) 

102 3 250( e s t )  1690 Near c e l l u l a r  

131 1.5 250(est)  1650 Good 

225 1.5 &(meas)  1400 Near c e l l u l a r  

285 1.5 cont ro l  : 1650 Resistance furnace 

1850 Power f a i l u r e  @ 6 cm 

1850 Power f a i l u r e  @ 6 cm 

1330 Melt-back; repeat  225 

1770 Melt-back ; repeat 308 

1800 Melt-back; repeat  308 

1790 Melt-back; repeat 308 

1340 93eeded; foundry c ruc ib le  

"Seeded; foundry c ruc ib le  

*Seeded; foundry c ruc ib le  

*melt broke out of  c ruc ib le  before t r ave r se  
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&dx 

AJ6-225 5 CM FROM HEAD 

6 . 4 ~  

A76-225 10 CM FROM HEAD 

A76-398 3 CM FROM HEAU 6 . 4 ~  A 7 6 - 3 9 8 5 C M  FROM HEAD 6.41 

GL = 50' C e M  

Fig. 2 Grain Strucrura of Ni - 6.2 At - 31.5 Mo 



G - 325' C cm 

Fig. 3 Grain Structure of hli - 6.2 AI - 31. Mo Ingots 



. ,  
. I  

476-398 AT 3 CM FROM HEAD A 7 6 4 9 8  5 CM FROM HEAD 
1 Q# 

EL= 500 C/cm 

Fig. 4 Miamtructurs of Ni - 6.2 AI - 31.5 Mo Ingots 



u 
AX-308 5 CM FROM HEAD T Q P  AX-JDBBCMFROMHEAD 

478402  3 CM FROM HEAD - AX-402 5 CM FROM HEAD - 
l W  fW 

G t 325°CScm CM 

Fig. 5 Miamuaurs of Ni-6.2 AI-31 .S Mo I- 
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EST GRADIENT 50° C/CM 

Fig. 12 Typical Micmtructun of Ingot 176-502 ( W i n g  Not Effssfiw) 
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Fig 14 Composite Crucible M Ingot AfG-m-Mse~wiew 
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