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I_	 i	 l	 C	 I	 I ^I

This report considers the dynamics and optimal control of

spinning spacecraft with telescoping appendages and is an extension 	 --

i
of the research reported in Parts I and II (May 1974 - May 1976).

Part I concentrated on the analysis of the motion of a spinning

spacecraft during the deployment of telescoping type of varying

-length appendages and fixed length appendages whose orientation with
4

respect to the main hub can vary. 	 In addition, the use of tele-

scoping appendages to detumble a spacecraft with random spin was

also considered. 	 In Part II, the motion and stability analysis of

spinning  spacecraft with hinged appendages and an application of the

linear regulator theory using a quadratic performance index were con-

Also, the	 boomsidered.	 time optimal control with a single 	 system

was considered analytically.

In this	 ^	 P	 P report, the problem of optimal control with a minimumP 

time criterion as applied to a single boom system for achieving two

axis 'control is treated in detail.	 The special case where the initial
e^

conditions	 that the	 be driven to theare such	 system can	 equilibrium

-	 state with only a single switching manuever in the bang-bang optimal* ;

sequence has been examined analytically. 	 The system responses are

presented.	 Next, our previous application of the linear regulator i

f
problem for the optimal control of the telescoping system is extended

to consider the effects of measurement and plant noises.

1
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NOMENCLATURE

a _	 offset of the control boom with end mass ml from the
3 2,3 (y, z) plane

A =	 linearized system state matrix

b =	 offset of the control boom with end mass ml from the
3,1 Cz,x) plane

B =	 linearized system control matrix

c _	 offset of the control boom with end mass m2 from the
3,1 (z,x) plane

C _	 maximum value of the control U; also, optimal feedback
control gain matrix

E , _	 expected value operator

d offset of the control boom with end mass m2 from the
1,2 (x,y),plane

F =	 optimal filter gain matrix

G,H =	 matrices used in defining plant disturbance and measurement
processes

I1,I2,I 3 =	 principal moments of inertia of the main part of the
_.. spacecraft

cost functional for optimal control 	
{

maximum value of each control boom length
u

M _	 mass of main part of the spacecraft

m _	 end mass

- M ml,m2 control boons end masses-

P _	 covariance of estimation error
n..
"
. 	 3

Q =	 positive definite symmetric state weighting matrix

q

a

n^

try

-V-



1	 R	 = positive definite symmetric control weighting matrix

Ed
S 	 = covariances of state and estimate, respectively

j	 t	 _ time

^w

U =	 control vector
1z

i v =	 measurement noise vector

V covariance of measurement noise

.`v w =	 plant noise vector

3	 '' W _	 covariance of plant noise'	
Ir

x =	 coordinate of the control boom end `mass m2 along the
'1' axis (control variable)

X =	 state vector of the system

X =	 state vector of the estimate'

z =	 coordinate of the control boom end mass ml along the
1 3' axis (control variable)

wi angular velocities about the 1,2,3 axes, respectively
(i =1,2,3)

`
"IT
max

maximum expected value of transverse rate

St _	 nominal main body spin rate

E _	 error (X - X)

C1 _	 wl/a, nondimensionalized form of' wl

S =	 w2/o ,_nondimensionalized form of w2

Y =	 w /Q-1, variation of the nondimensionalized form of w3
ffom the nominal value

p =	 linear damping present in boom driving mechanism

T =	 5n, dimensionless time

f TS =	 switching time

T
f

-	 final time

1
d

y; -vi-



=	 z/Qm , dimensionless form of z

=	 x/Qm, dimensionless form of xz
A =	 nutation angle

• =	 indicates differentiation with respect tot

' indicates differentiation with respect to T

(0) -	 indicates initial conditions

o _	 indicates original system Quantities in the time
domain ^1

1,2,3 =	 principal axes of main spacecraft

j

ie as

,i

i

Y^ x

R

9
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I. INTRODUCTION

X41

This report will describe a continuation of the XIASA sponsored

rt^
research already accomplished during May 1974 - May 1976 (Parts I and

II) on the dynamics of spin stabilized spacecraft with movable a enda es 1,2,^. PP	 g

In Part I, the equations of motion have been developed for the telescoping

:f boom system where all the appendages are extended along the hub principal

axes.	 A control strategy based onai.applcation of Lyapunov's second
X-

u^ method was used to recover a randomly tur:oling spacecraft and approach

a final state of either zero inertial angular velocity or a flat spin

about one of the hub principal axes.

1 ' 
3 The dynamics of this system

during nominal deployment of thebooms with a small nutation angle have

also been considered 6oth analytically for special cases of a nearly

spherical hub, and numerically for the more general case.1,4

._
't

In Part II, the following topics were treated: 	 the dynamics and an

extensive stability analysis of a spacecraft with hinged appendages of

" fixed length; 2,5 an examination of linear optimal control theory as applied
v

to the deployment maneuver of a telescoping boom system (offset from the

! hub principal axes) by selecting different integrand function; 2,6 and

T

the time optimal control of a nutating spacecraft using a single offset
_	 7

telescoping boom system.2

The topics considered during the present NASA grant are: 	 the pro-

blem of optimal control with a minimum time criterion for a single offset

. boom system; and an application of the linear regulator problem for the

'p
f

optimal control of the offset telescoping system with measurement	 and

plant noises present.
i

^w



The first phase of the current study will examine the time optimal

control of a nutating spacecraft using a single offset telescoping

booms stem.	 This is an extension of the work consdiered in Ref.2.

' It is assumed that the spacecraft consists of a rigid central hub and

a movable telescoping boom with an end mass which is linearly offset

from the nominal hub spin axis. 	 An advantage of such a telescoping

system as used in the control of a spinning spacecraft system is its{

,r potential reuse.	 The use of such a moving (internal) mass device for	 j

"j the'detumbling of-spacecraft was first proposed and described by Edwards

and Kaplan.	 8	 The motion of the control mass was along a linear track

fixed in the vehicle where the control variable was taken as the mass

acceleration relative to the main part of the spacecraft.

The optimal control of a spin-stabilized spacecraft with one or

two movable telescoping booms was thep' g	 subject of a recentpaper.6

The boom end mass positions were controlled such that a quadratic

wa
cost functional involving the weighted components of excess angular

velocity plus the control effort itself was minimized when the terminal

^- time was unspecified.	 For such a system, the computation of the control 	 1

law involved the solution of the matrix Riccati algebraic equation.6

It was concluded that for three-axis control at least two offset booms
w

(moving orthogonal to each other) would be required, whereas: two-axis

(nutation) control could be achieved by using a single offset boom

constrained to move parallel to the spin axis.6

i

. x
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l

m5

A very recent investigation by Kunciw and Kaplan 9 utilizes a

first-order gradient optimization technique to show how a movable mass

control system may be employed to detumble a general asymmetric space 	 j
ar

station about a principal axis in minimum time. 	 Results indicate	 j

that the detumbling time is minimized for larger values of control

mass and lengths of the linear track.9

Y The present study extends the work of Ref. 6 and complements

that of Ref. 9 by analytically determining the boom _(mass) control logic
N

such that theterminal time will be minimized for the case where two-

axis control of a symmetric spacecraft is required. 	 The equations

_ of rotational motion are developed and linearized about the desired

final state.	 This problem has been examined analytically-for the special

Tj case of a single offset boom where it is assumed that the initial conditions

are such that the system can be driven to the equilibrium (rest) state

with only a single switching maneuver in the bang-bang optimal sequence.

For this system it is possible to obtain an analytical solution for the
t,

switching and final times in terms of the initial conditions and magnitude

of the maximum value of the control force. 10,11	Also the required boom

vn motion can be determined analytically for this linear system.	 Some typical	 j

numerical results based on these solutions are discussed.

^-, The second phase of this year's study in the areaof optimal control

extends the previous application2,;of the deterministic linear regulator'

n-
problem for the optimal control of an offset telescoping boom system to 	 {

include the effect of noise uncertainties both in the plant as well as

t
in the measurements.

s

E
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The differences between the desired state vector components and the

actual components with noise included are now incorporated within

the control logic with an application of the Kalman filter.12

An application of modern control theory to nonrigid spacecraft'

has been very recently considered in Ref. 13. Here the established

procedures of linear quadratic Gaussian optimal estimation and control

were developed and interpreted for their application to the problem

of attitude control of spacecraft with dynamically significant elastic

appendages.	 The conclusions were that the techniques of modern control

theory offer promise for practical applications such as spacecraft

attitude control, but that the mathematical theory of modeling needs

development and the limitations of spacecraft computer capacity require

' reduced estimator models.13

The present study is an extension of Ref. 6 where the measurement

noise and plant noise are now considered in the design of the optimal

F
controller.	 The equations of rotational motion are developed and lin-'

earized about the desired final state. 	 For the purpose of simplicity,'

the actuator dynamics (the motor-drive mechanism that extends or retracts

` the booms) will be ignored and the boom mass dynamics will be treated

i as the control variables.	 (The assumption was also used in Ref. 13 for

a different application.) 	 The measurement noise and plant noise in the

F physical ,system are assumed to be white Gaussian processes with zero mean.
t

For the linear system with quadratic performance indices, it has

been shown12 that the optimal control logic is a Kalman filter used in

conjunction with the optimal deterministic controller.

, -4-



The model of the estimator (filter) is the same as that of the "plant

model."	 The average performance (RMS value) of this controlled system

in the presence of noise can be predicted from the covariances of the

error and estimate. 12	The general system response for non-zero initial

y conditions is obtained by simulating the linearized equations with the

, m control and filter gains as obtained from their respective matrix Riccati	 "i
­

differential equations.t^

f Both two and three axis optimal control of spinning spacecraft using 	 -

movable telescoping offset boom systems will be considered.	 The dynamics

of such a system will be studied analytically for special cases and

,F- numerically for the general case.

I

Ji.

a

j

r
9

I
3i

i

i

l
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I
II.	 TIME_ OPTIMAL CONTROL WITH SINGLE

-OFFSET BOOM

For satellites with high attitude accuracy, control jets areg	 Y	 J

often required.	 However, the maximum torque produced by the jets will

bejbounded.	 Also the operation of the thrusters are often limited by

x
i

the weight and propellant capacity of the thruster system. 	 Instead

of jet systems, externally movable appendages can be used for controlling

he attitude of the spacecraft. 6	The main advantage of movable appendages

is their potential reuse.	 Optimal control theory can be applied to

minimize the time required for returning the state of the (linear) system

to its nominal value.

1.	 Statement of the Time'.Optimal Control Problem

The equations of motion of a linear, controlled time-invariant system

are represented by:

X	 AX + BU	 (2.1) j

where

X = state ;vector of the __system
;

A = system (plant) matrix

_ B	 control matrix

U _ control vector

I
1

e problem of determining the control U(^UJ < C) which forcesHere the

F

^

the system (2.1) from the initial state, X(0), to zero state in 	 3

minimum time is treated.

j

E.
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An admissible control U(T), transferring the system state from

X(0) to X(T f)	 0, is found from the solution of Eq. (2.1) given by

• T	 OX(T) = e A	 X(0) + t T 	 A(T—e	 0) BU(0) do	 (2.2)
l

For )C(T f) = 0, Eq. 	 ( 2.2) reduces to
S

tlw^

Sr £ e-AO BU(0) do _ -X(0) (2.3)

- Equation (2.3) will be used to determine the switching and final times 	 «^

+ of the control. 3

2.	 Application to Single Offset Boom System

As an application of the time optimal control theory, the movable

single offset boom system as a two-axis nutation damper is shown in 	 !	 j

;- Fig. 2.1.	 The equations of rotational motion are developed and linearized

about the desired final state of a spin about the z axis only (wz=Q).2

The linearized system equations (Ref. 2, Eqs. (5.4) and (5.5)) for the
t	 14

special case of a symmetrical hub (b=0, without loss of generality)

result as

S'	 d .	 0 _ 1

... where
1

U (2.5)

d -	 I 3 - I + cl 2)/(I + cl2 ) (2.6)

e = ( 13 - ) / (2.7)
i

n = c1/(I + c12) (2.8)

n

l
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The nondimensiona.iized quantities are defined as: a = wl/Q;

=	

_

w2/Q; cl = a/zm; = z/Qm I i = Ii/P% 2 (i = 1,2,3) and for the assumed
i

symmetry,Il	 I 2 = I; T = Sit; and T represents the nondimensionless

time.	 The variational coordinates are a,s whereas 4 represents the

control variable and describes the end mass position. 	 From Eq. (2.4)

it is seen that the equations for the transverse angular velocity

have	 form	 two dimensional harmonic oscillatorcomponents	 the	 of a_coupled

under the influence of the boom motion as a control force.
4

nThe solution for U(t), bringing the system state to rest in minimum.

Tf ,	 i5 known to be U(T) = +C, with the number of switches depending upon

the initial state of the system. 10	Considering the initial states that

can be driven to rest in a single switch (Fi b . 2.2 a	 , the control takes

.,,. the formll
a

U(T) = K1 for 0 < T < TS; U(T) = K2 for 
TS 

< T^< Tf 	(2.9)
 —

where

I KI I	 IK2 I 	C
fl'

{	 y The state transition matrix, basing A on Eq. (2.4), is

AT 
_

COS WOT	
- sin WET

^z.lo);
rt

e a	 o_
WO	

COS
WOT	

COS WOT
n^

r; where
- WO

After substitution of Eqs. (2.9) and (2.10) into Ea. (2.3), one obtains: 	 ?

.: (1 - ;cos WOT S) Kl - (cos W O T
f 

- COS W O T S) K2	 a (0) d	 (2.11)

1

e

i

'.

y



(SL-1 wOTs) Kl + (sin w
0

T
f 

- sin w^Ts) K2 = -S (0)w0 (2.12)

The expressions for the switching time, T S , and the final time, Tf,

are obtained by solving Eqs. (2.11) and (2.12), with the result:

TS - w_ _ {
	 tan-1	 V(91190'	 -tan-1	 (F/E) }

(2.13)

-	 _	 -1
Tf 

- 1	 { tan	 g g	 tan	 (F/E) }
(2.14)WO

where E _ a(0) d + 
Kl' F	 5(0)w0 -'	 l

gl = (2K2 - Kl) Kl - (EZ + F2)
A

92
	
2(K2 _ K1)

3

(2.15)	 3

a
93
	 (2K2 - K1) K1 + (E2 

+ F2)
i

94 = ZK2

The control scheme for single switching and the phase plane response
r

of the system for a given initial condition X(0) _ [a(0) 5(0)1T are

,

shown	 respectively.
;

in Figs. 2.2(b) and 2.2(c),

3.	 Switching Boundary Determination

The solutions for a(-r) and S(T) are obtained from Eq. (2.4), with

U(T) = C, as:

a (T) _ (a (0) + C) cos w T - w0
	

S (0) sin w T, - 
3_	 d	 0	 70

(2.16)

S(T) = w	
(a(0) +	 ) sin w OT + S(0) cos wOT (2.17)

., 0
w

The equation of the trajectories in the a(-r),  6 (i) 	 plane can be
a

represented by:

MT) +) 2 + (R(T)^)	 (a (0) +) 2 + (^ (0)^) 2 , (2.18)

,

f

i

a

1

-9-



	̂ I	 I	 I	 1	 f
I
d

These trajectories are circles with centers at (C/d,0). The switching

boundary is composed of semicircles passing through the origin. For

any given initial state X(0), the system state moves on the switching

boundary (passing through the origin) for T s < T < Tf as shown in Figs.

2.2	 (a) , (c)

In order to reach the origin with a-single switching maneuver under the

assumption:	 a(_O) =0, the magnitude of the initial value a(0) is restricted by:

l a ( 0))	 <	 12C/dl	

_	
(2.19)

The control U(T) assumes the value K1= +C and K2= -C for the given

i initial state X(0) where a(0) satisfies Ineq.	 (2.19) and 5(0)' = 0.

Equations (2.13) and (2.14) are now used to obtain the switching time,

TS, and final time, Tf, for this initial condition._ The expressions

for T	 and T	 for this case become:	 j
s	

f

T	 = 1 tan-1 4CE '	 (2.20)s	 W0

_	 1	 -1T  -	 tan
0	

^2CE	 1 (2.21)

4.	 System Res once	 Analytic Results^'	 p	 v
a.- Time Response of a(T) and OCT)

Equation (2.4) can be written with Eq. (2.9) in the form:

a' 0	 -e a + 0 [C, 0<T<TS
_ (2.22 )

d	 0C,Ts <T<—Tf
3

i

-10-
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f
f

The solutions for a (T) and S (r) , obtained using Laplace transform

techniques, can be expressed as (s(0) = 0):

a(T)	 a(0) Cos w0  -	 [ (1 - ,Cos W0 r) a( r)

cos wo(T-Ts) a(-r- ,rs) (2.23)

r $(T) _	 sin w 0 T + G	 [sin woT a(T)WO
o	 wo

wo(T a(T-2 sin	 -TS)	 -TS)7 (2.2'4')

where_.
I

a(T) = unit step function

b.	 Time Response of the Control Mass Position

The equation of the boom end mass displacement is obtained from

Eqs. (2.5) and (2.9) and expressed by

n(^"(T) + c( T)) = -C for 0 < T	 TS—	 _
=+C for T	 <T< TS	 f (2,25 )

-
and hence the time response of the control mass -is given by the

i

following equation	 (T > -0)

(T)	 ° C C1^1	 (T) -2,	 (T-T )	 +^	 (T =T )1	 f (2.26)n	 1	 s	 1
„. where

3

y ^1(T) _ (1-cos T) a (T)

When linear damping (:p) is assumed to be present in the boom extension

x mechanism, ,Eq.	 (2.25)> becomes

n(^"(T) + 2Pc' ( T) + c(T))	 U( ,r) (2.27)

-

s^

1

-11-
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7 The solution of Eq. (2.27), with U(T) given in Eq. (2.9), can be

written as

^T)	 C^VZ (T) - 2 1 ,	 (T_TS)+ ^2 (T-T f)	 (2.28)n
where

e- PT	
-r^-

^V2 ( T)	 = 1 -	 sin(Y1- p `	 T +,D) , a(T)

v	 1`

_
^

I - Cos	 (p) = tan 1 V--17	 /P)
a

S.	 Simulation Results

In this section some typical numerical -results are presented. 	 The
.wow i

following system parameters are selected (Fig. 2.11;2

r= I = . 1.42  x 107 kg-m2 (10.5 x 106 slug-ft 2)

13	 2.03 x 10 7 kg-m2 (15.0 x 10 6 slug-ft 2)

M = 6.21 x 10 4 kg(42S8 slug)

r^. 12	 0.314 rad/sec (3 rpm)

m = 816 kg(55.95 slug)

• = 5.4m(17. 72ft) 	3a = 19.$ m(65ft) , b =0, m	 zmax
wl (0) = 0.0391 rad/sec, w2(0) = O,cu,i, -	 _ 0.04 rad/sec.

max.
Fig. 2.3(a) illustrates the variation in the switching time, is

:.^ and final time, t

f 
, with the normalized value of control effort for

a given set of initial conditions: 	 w  CO) = 0.0391 rad/sec and w 2 (0) _ 0.

In order to achieve the desired final state with a single switching

maneuver, the magnitude of C must be greater than 0.0275.	 The final

Y time is rapidly reduced for small increases in the control effort near

a

the minimum value

t
-12-



For a control effort of C = 0.03 and w2 (0) = 0, the magnitude of

wl (0) must be less than 0.0427 rad/sec, for a single switching maneuver.

These conditions are obtained from inequality (2.19). Fig. 2.3(b)

demonstrates the manner in which.the final time 'required increases

with the larger values of w l (0), whereas the switching time remains

essentially constant over a wide range of initial conditions.

The comparison of nutation angle decay for three different

control laws is depicted in Fig. 2.4. 	 Initial conditions for all

cases were selected such that the initial nutation angle was 5.0

degrees.	 In the first case, a control law described in Ref. 7 (not

based on optimal control theory) was used, which resulted in a

final time-of 850 seconds to remove the effect of nutation'.

" Next, the response of the system using a control law based on

minimizing a quadratic performance index 2-is presented.	 The process

of determining the weighting matrices for the nondimensionalized form

of the state equations is now discussed. 	 (This was not considered

in Ref'.	 2.) 

The original equations of the controlled system in the time

domain are expressed as:

Xo = AOXO + B0Uo	(2.29)

and the cost, functional by,:

J = to (Xo TQoXo + UaTRoUo) dt	 (2.30)

The dimensionless equations corresponding to Eqs. (2.29) and (2.30)

for the two axis control using a-single boom are

X' = AX + BU	 (2.31)-

-13-
}



rv.. J =	 (XTQX + UTRU)dTo^
(2.32)

where the prime indicates differentiation with respect to the

dimensionless time, T = at. 	 Then, Q and R in Eq. (2.32) can be

related to Qo and Ro in Eq. (2.30) by;

Q = QQo , R = Stm2Q Ro (2.33)

The values of Q
0
 and R	 are selected as:6 -W

0

Q0
Q

" Qo
0.

Ro
	 [r 01

(2.34)
q o

_	 where

_	 2qo	 1/wT max (2.,35).

The matrices, A	 and	 B, are readily obtained by comparing Eq. (2.4)

with the general form, Eq. ` (2.31).	 -
rw

' The nutation angle decay of the system for the parameters: 	 wT
max 

=

0.04 rad/sec (maximum expected value of transverse rate) and 	 [ro]

0.00372 m2 sec 4 (0.04 ft2 sec 4)is shown in Fig. 2.4 by the dotted

curve.	 The nutational motion has been effectively removed within

200; secs after control initiation which is about one-fourth of the

time obtained using non-optimal control method (Ref. 8)'.
s

r (It should be mentioned that the recent results of Ref. 9 indicate

that the gradient technique permits recovery in about one-fourth the

time when compared with the non-optimal control law of Refs. 7,8).
^y

The response time of the nutation decay can be improved by properly j

varying the weighting matrices in'the performance index.

J-_

-14-
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If a control law is now selected based on the single switching

time optimal criteria, a further improvement in response time is

obtained. The final time obtained from Eq. (2.21) is 19.47 secs.

This analytical result is shown in Fig. 2.4.	 In'Fig. 2.5, a

comparison of this analytical result with the numerical integration

.» for the time optimal control system is presented.	 It is seen that

the initial decay of nutation angle (Fig. 2.5 (a)) is extremely

rapid approaching a value of 1.1 deg. at the end of the control

maneuver (19.47 sec.). 	 With this control mass of 816 kg. (55.95 slug),

the analytic solution begins to diverge from the numerical integration

-» results towards the end of the control sequence '(Fig. 2.5 (a)) due

to the presence of nonlinearities associated with the larger amplitudes

of the control mass displacement (Fig. 2.5 (b)). 	 To remove the residual

nutation angle here a second switching sequence would be required.
1

Also, it is seen from Fig. 2.5(b) that after approximately 30 secs.

.r. without damping in the boom extension mechanism a-steady state boom

motion would remain with an amplitude of 109.35 ft. (33.33m) with

the presence of the boom damping shown, the amplitude of this motion

has been completely reduced to z4ro.within 175 secs. 	 Here, it is

observed that initially the boom end-mass undergoes a very large displace-

ment.

In order to reduce the large displacements of the end mass, the

time optimal control of the system with a larger size control mass

and 'a larger main spacecraft mass will be considered.

,tl



' M = 19.98 x 10
5 kg(1.37 x 105 slug)

m = '2.625 x 104kg (1800 slug)

such that m/M remains at 0.013 (as in Fig. 2.5 (a)). 	 The other

ysystem parameters will remain the same as considered earlier.

Figs. 2.6(a) and (b) show the variation of switching and final

times with the control effort and the initial conditions with the
J.

p	 the same set of initial conditions, in ordernew massarameters. 	 For

to achieve the desired final state with a single switching maneuver,
j

C > 0.042, and with C =_0.05 and w2 (0)	 0, wl (0) < 0.0472 rad/sec.

8̂{ M

-..

The decay of nutation angle using the control law described in Refs.	 a

-- 2,6 and that resulting from implementation of the time optimal control

with a single switch is compared in Fig. 2.7(a).	 The motion of the

boom end mass during and immediately after the nutation decay is

illustrated in Fig. 2.7(b).	 It is seen that a-steady state oscillation

without damping in the boom extension mechanism would remain with an

amplitude of 17.18ft. (5.24m) with the presence of the boom damping

^ shown, the amplitude of this motion has been reduced to 2.1 ft. (0.64m)
,

x
at 75 secs.	 For the time optimal results shown, there is negligible

difference between the analytic solution and the results of numerical

integration.

The time response of the transverse angular rates for the case

E
of Fig. 2.7 is presented in Fig. 2.8. 	 It is observed that the closed

form solutions give an excellent correlation with the numerical 'inte-

gration for the large masses, -whereas for the smaller masses the closed

form solution diverges from the numerical integration results due to the

resulting large amplitude boom motion.

u -16-
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	 Fig. 2.9 represents the dynamic response of the time optimal

control system with a control effort of C = 0.1 which is twice of

the previous value considered with the presence of the larger control

and main spacecraft masses. It is observed that the _steady state

oscillation of the boom end mass increases from 17.18 ft. (5.?4m)

to 31.05 ft. (9.46m) for an increase of control effort from C = 0.05

to C = -0.1. The complete control manuever time is reduced to 9.929 sec.

.,,	
from 14.56 sec.

For theeneral case where 	 i
re the initial conditions do not lie

g	 g	 g^	 p'4	 within the single switching region iecewise solutions can be used to

H

	

	 obtain the system response analytically, or, as an alternative, the

more general gradient technique of Ref. 9 can be employed.

^w

j

use
1

^m

.	 3
{

F 

Y

1

k

-17-
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C > 0.0275:	 CONTROL MASS = 55.95' slugs' (816 kg)
20
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16

Ul
12 m/M = .00130
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6 is = 1.72 sec s tf = 19.47 sec.
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f
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OPTIMAL CONTROL [QUADRATIC)
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Ill.	 OPTIMAL ESTIMATION AND CONTROL

This chapter deals with the application of optimal estimation

and control techniques to the attitude control of spinning spacecraft

with movable telescoping appendages. 	 The estimation is accomplished

using a Kalman filter to obtain estimates of the state (variation, of

L^
the angular velocity components) of the spacecraft; this estimated

state constitutes the input to the controller, 	 Iii the controller a

_ y quadratic performance index is formulated to minimize the components

of excess angular velocity plus the control effort; additionally,

`Y a linearized model of the overall_ system is employed.

The attitude control of a spinning spacecraft with the use of

one or two movable telescoping appendages is considered (Fig. 3.1).

The performance of the system is evaluated by analytical methods

for special cases and numerical integration is used for the general

case.	 In this analysis, the dynamics of the driving, mechanism are

completely ignored,and the control effort needed for the boom movement

is assumed to be present instantaneously.

g.

1.	 Formulation of the Stochastic Optimal Control Problem

This section describes the application of well-known results in

optimal linear estimation and control theory to the problem of attitude
f

w , control of spinning spacecraft. 	 The linear equations of state X and

measurement Y`are

X' = AX+BU+Gw	 (3.1)

Y = HX + v	 (3.2)

rz

-27-
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where the elements of the system state vector, X, represent the

variation of angular velocity components of the spacecraft from a

nominal state, and the elements of the measurement vector, Y, correspond

to the measured components of 'X with noise present.	 The vector, w,

represents random disturbances that perturb the spacecraft, and the

„.. vector, v, represents the measurement noise present in the sensors.

The measurement noise (v) and the plant noise (w) are assumed to be

white Gaussian processes with zero mean.

-- The cost functional to be minimized here is taken as a weighted

quadratic function of the state vector plus a weighted function of

. the control:
a

T
J _ E 

{'Qsm	
1'	 t0 

f 
(X
T

 QX+UTRU)dr} (3.3)
Tf} °°

The optimal control vector U minimizing J for control over the internal

0 <T<-	 can be expressed as;12

U = -CX (34)

where the control gain, C, is related by
;gib

C = R lBTK (3.5)

In Eq. (3,5) K is the steady state solution of the matrix Riccati

h
differential equation

, -K' = KA+ATK-KBR 1BTK+Q (3.6)
r	

iT The estimated state,	 is obtained from

i

X'= AX+BU+F(Y-HX) (3.7)A

with the filter gain F expressed as:g	 xP1 ,	 ^ ,

F

r	 *r

F	 PHTV- 1 (3.8)

ii

` -28-
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I

G^

Again P in Eq. (3.8) results from the steady state solution of the

following matrix Riccati differential equation,

" P' = AP+PAT-PHTV 1HP+GWGT	 (3.9)

The quantities W (covariance of the plant noise) and V (covariance

of the measurement noise) are obtained from the following autocorrelations:l2

E {w (T) w (T+^)T} = W a 	 (3.10)

lit, E {V(T) v(T+^) T I = V 6O	 (3.11)

t^
where 6(^) represents the Dirac delta function.

2.	 Application to Two Axis Control with a Single Offset Boom

The optimal estimation and control theory stated in Eqs. (3-1) -

(3.11) will be applied, at first, to a single offset-boom system providing

two axis control and then to a two offset-boom system fort°three axis

control.	 The present study is an extension of Ref. 6 where the measurement

noise and plant noise are now considered in the design of the optimal

controller.

The movable telescoping single offset system (m2-0) is now analyzed

(Fig.	 ).	 q	 motion in dimensionless formFi	 3.1	 The linearized equations of

(Ref. 2, Eqs.	 (5.4) and (5.5) and Ref. 6)' for the special case of a

symmetrical hub result as (for b=0):x

a' 0	
-
e a 0

d	 0
S + n

i

(3.12)

where

U	 (3.13)

r -29-
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The other quantities in Eq. 	 (3.12) are defined by Eqs. (2.6)	 (2.8).

Eq. (3.12) can be written in the form: 	 X	 = AX+BU.	 The matrices

A and B resulting from Eq. (3.12) are

A= 0	 -ed	 0 B=	
n

[o]
(3.14)

We further assume that the cor.trol, U, and the plant noise, w, enter

the system as shown in Fig. 3.2. 	 Thus, the equations of motion of the

system, with the plant noise present, can be modified to the form shown

in Eq.	 (3.1),

4

a.	 Single Measurement System-Analytic Results
sae w

(1)	 Control and Filter Gains Evaluation
^w
y, The details of the steady state control gain evaluation are available

7',r
in Refs. 2 and 6.	 Here only the results are stated. 	 The elements of

the K matrix are	
i

m
K12 = K21 =

 Cr/n2)
	

[L,, (d2
	

(q/r) }/J	
(3,15)

K22 _ ± (r/n) { (q- 2eK12)/r} 
Z	

(3.16)

x_ Kll _ (K22/e){d-n2(K12/r)} 	 (3.17)

where the sign in front of the radicals is selected such that K is

positive definite. 	 The weighting matrices Q and R in the performance index,

J,-Eq. (3.3), have been selected for the present application as:;

,.. q	 0
Q_	 0	 and R = [rj	 (3.18)q

It should be noted that previously for convenience R was selected as the

unit matrix.	 From Eqs.	 (3.4), (3.5) and (3.13) it is seen that the

}
control has the form

U -	 _ _[C1 CZ]	 (X)	 (3,19)_

^^ a
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where the control gains are obtained from

C1 = nK12 /r; C2 = X22 /r (3.20)

Next;  the steady state filter gain determination from Eq. (3.9) is

considered.	 For this application of two axis control with a single mea-,

^^? surement of a such that H = [1 01T we assume that the control, U, and

-: the plant noise, w, enter the system together such that B = G. 	 The

- J expansion of the matrix Riccati (filter) equation, Eq. (3,9) with P I = 0

yield

2P12e + P2 1/V = 0 (3.21)

Plld - PZZe - P11P12/V = 0 (3.22)

2P12d - (P12*n2W = 0 (3.23)

Eqs. (3.21) -_ (3.23) can then be solved for the elements of the two

dimensional , symmetric P matrix as

rrr. P12 - V{d+ . (d 2 +n 2 W/V)31 1 (3.24)

b Pll = + (-2eVP12 ) 2 (3.25)

P22	 (Pll/e) (d- (P 12/M (3.26)

Again, the sign in front of the radicals is selected such that P is
f^

positive definite.	 The filter gain, F, obtained from Ea. (3.8), with

H = [1 OJT is expressed as

^a

F = V P11 = F1

s P12 F2
(3.27)

Thus, the linear model of the plant and the estimator equations

become

X' =AX-BC X + Gw (3.28)

X' =(A-FH-BC) X+FH'X+Fv	 (3.29)

g	 ^
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C The general scheme of the stochastic optimal control configuration

u represented by Eqs, 	 (3.28) and (3.29) is shown in Fig. 3.2.	 This

configuration is taken as the basis for studying the system behavior.

(2)	 Average Performance of the System

The average performance (RMS value) of the optimally controlled

TM	 - system, Eqs. (3.28) and (3.29), in the presence of plant and measurement
..m

noises can be predicted from the covariances of the error and estimate.12

^ n The state of the controlled system and the state of the estimator are

coupled.	 In terms of e - X - X, Eqs. (3.28) and (3.29) can be written as

(A-FH) e + Fv-Gw	 (3.30)

X' = (A-BC)X + Me + Fv 	 (3.31)

The covariance matrices of e and X (P and S,respectively), are given by12

P' = AP + PAT-FVFT + GWGT	(3.32)
i
V S' = (A-BC) S + S (A-BC)T + FVF T	(3.33)

since E (X s) = 0, we have

E	 [X(T)X(T)T]	 S( ,r) = S(-r)+P(T)	 (3.34)

t^ These equations allow us to predict the mean square histories of the

state variables and their cross-correlations. 	 The mean square values of

the control variables and.their cross-correlations may be obtained as12

E [U (-r) U(T) T ^ 	 C S CT	 (3.35)

In this section, the steady state analytical solution14' to the

- optimal stochastic control problem is given. 	 The analyticsolution is

obtained from Eqs. (3.32) - (3.35) by using the steady state values of

the control and filter gains obtained earlier.
a

I	 i

d

Y

-32-



_	 l

Bysolving these equations for the special case of a single measurement

of a(w1 /sa) only, the steady state variances of the state and control are

obtained as (T
r _	 __ ^

(3..36)E (a2 (T)]	 S ll_	 Sll + Pll
i

E [s
2
	 = S22 = S22 + P22	

(3.37)_

E [U2 (T)] '= C12 S11 + 2C1C2S12+C22S22	
(3.38)	

«.

where

•J

Sll 	 {VF
1
/(d-Cln)}{(CZn/2e)Fl - FZ }	 (3.39)

I

I"
S12 - (V/2e) F12	

(3.40)

w S22 -CV/C 2n){F22 + (d-Cln)F12/2e}	 (3.41)

The elements Pil and P22 are given in Eqs.	 (3.25) and (3.26) , respectively.

{ This analytical approach can be very useful in preliminary design of

sensor.measurement schemes,12

I 3.	 Numerical Results

Some typical numerical results based on the solutions of Sec. 1

and 2 of this chapter will now be discussed. 	 The following system

parameters are considered here for numerical integration (Fig. 3.1)2,6:

I = 1.42x107 ka-m2 (10.5x106 slug-ft2)

 I 3 = 2.03x107 kg-m-2 	slug-ft`)

M = 6.21x104 kg (4258 slug)

m = 816 kg (55.95 slug)

= 0.314 ` rad/sec. 	 (3 rpm)

-a = c = 19.8 m (65ft) ; b=d=0

- w 1 (0)	 0.0391-rad/sec; w2(0) = 0

r

i
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.--  algorithms are required for theFour different computer alg	 q

- numerical solution:	 1)	 the calculation of the control system

gains using the matrix Riccati equation for the deterministic

system (no-noise) 15 , 2)	 the calculation of the control system

F gains using the matrix Riccati equation with the filter algorithml5

i.e. - "filter gains," 3) 	 a means of simulating random noise

input to the plant as well as in the measurement device, 4) 	 the

simulation of the system dynamics using the control laws from
w 

~ 1) and 2) and a model of the noise from 3).

a.	 Two Axis Control with Single Offset Boom.

.^ (1)	 Single Measurement System

-` When a single boom is offset from the z axis and the hub is

L _.
symmetrical (I = I l = I 2), it was shown earlier that the control

and filter gains can be obtained analytically. 	 The process of

determining the weighting matrices for the nondimensionalized form

of the state equations was given in Sec. 5 of the last chapter.

Here the details regarding the determination of the covari.ances of

" l the measurement and plant noises for the nondimensionalized form

of the state and measurement equations are considered.

The original state and measurement equations of the controlled 	 j

f;
system in the time domain are expressed as:

o _ AoXo+oUo+owo	 (3.42)

Yo = 
HoXo+vo 	

(3.43)

p.

a

a

.y

.4*

^.
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a

a
1.

k

-:	 The dimensionless equations corresponding to Eqs. (3.42) and

(3.43) are:
r,

X'	 AX+BU+Gw ., 	(3.44)

Y = HX+v	 (3.45)

Then, the covariances of the measurement noise (V) and the plant

noise (W) in dimensionless form arerelated to their original (time

domain) values by 	 3

V = o/Q	 (3.46)

W= o/Qm2 st4	 (3.47)
t

	

With the values of wT	= 0.04 rad/sec and z  = 5.4 m
max

Y..	 (17.72ft), the following numerical values for the parameters

result:	 _
d = 0.441, e = 0.428, n = 5.929x10 3

The optimal control law 'for the values of
4 .LL

QO _

L

O	 0	 q0 = 625 rad
-2
 sect

and Ro = [ ro ]'= 0.00372 m2 sec 4 (0.04 ft 2 sec 4) are obtained

I	 ""	 as follows. The values of q and r in Eq. (3.18) are related to qO and

1	 YO by

j	 q = stgo •	 196.25

1
r 

Qm22ro 0.397

Thus, the constant control gain matrix is obtained from Eq. (3.20) as 1

C = [ - 3.3188 31.3661

i
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The matrix, H, in the measurement equation for a single

measurement of wl only becomes

H = [ 1 0]

The covariances of the measurement and plant noises are assumed to

have the following values:

^--
Vo = 10

-6
 rad2 sec 2

I	 o = 10
-6
 ft 	 sec

-4
 (0.093x10-6m2sec-4)

which appear to representative of the current capability of measurement

.. devices.	 Then, the valuesof V and W are related to o and W o by	 {

V = V /0 2 = 0.1014x10-40

i^ W = o/Qm
204

 = 0.3276x10 4

f The filter gain is obtained from Eq. (3.27) as:

F
_ 	 0.0104960
-.^ -0.0001287 

I

The dynamic responses of the system are obtained by integrating -

the linearized plant and estimator equations represented by Eqs. (3.28)

F and (3.29).	 The decay of nutation and the motion of the boom end

mass is illustrated in Fig. 3.3(a). 	 The nutation angle reaches a

I	
. value of 0.0142 deg. after 200 secs.from an initial value of 5.0 deg.

4% -It is seen that within 100-120 secs. (without damping in the boom

G

extension mechanism) the transient part of the boom end mass motion
W.

is removed, leaving a remaining steady state oscillation with an

amplitude of 38.5 ft. (11.74m); with the presence of boom damping shown,

the amplitude of the boom motion has been reduced to essentially zero

within 175 secs.

X

t

,
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The random noise present in the sensor measuring scheme, v,

which is simulated by generating random numbers with a zero mean

Gaussian distribution, and the actual output of the sensor (Y1 = wl+v)

are illustrated in Fig. 3.3(b).	 Also indicated are the time response

of the transverse angular velocity components (wl ,w) and their estimated

values (wl , w2 ).	 It is observed that the estimate of the state: ( wl w 2 )T

has a very good correlation with the actual state: 	 (wl w2)T for the

I
given initial conditions.	 Within the plotting accuracy this difference

can not be detected.

Next	 the case of a larger control mass and a larger main space-g	 g

craft mass, as considered in the earlier chapter, is taken as an

j example for studying the dynamic response of the system.	 The values

of the masses selected are:

M = 19.98x10 5 kg (1.37x1.0 5 slug)

-r
m = 2.625x104 kg (1800 slug)

f such that m/M remains at 0.013 (as in Fig. 3.3(a)).
i

s Figs. 3.4(a) and (b) show the time histories of the control and

-filter gains for the single offset boom case with the single measurement

of angular velocity wl only.	 In all these cases, the responses

j indicate that the transients are brief, and steady state values of K

and F are rapidly reached.	 For this special case, the steady state

control and filter gains are obtained analytically by solving the

respective algebraic matrix Riccati equation. 	 The plant noise and

measurement noise are assumed to have covariance values of W = V = 10 6
	

j
(dimensionless).
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The weighting matrices of state, Q, and control, R, are indicated

in the figure. 	 Also the steady state average performance of the

system is obtained analytically 12 from the covariance of the error'-

and estimate.	 The average value of the nutation angle from the

covariance analysis of Sec. 2. a(2) is obtained as 0.02 deg.

;. The dynamic responses of the system for constant (steady state)

control and filter gains are shown in Fig. 3.5 for an initial nutation

angle of 5.0 degrees.	 The spacecraft considered is spinning at an
^r

angular velocity of a = 0.314 rad/sec. about the 'z' axis. 	 For

 the selected weighting matrices, Q and R, as shown, the decay of

notation angle is represented in Fig. 3.5(a) where the maximum

amplitude of boom length is taken as 17.72 ft. (5.4m). 	 The motion,

of the boom end mass during nutation decay is illustrated. 	 It is

seen that, after approximately 25 secs. without damping in the 	 j

boom extension mechanism, a steady state oscillation would remain

yz with anlitude of 13.69 ft. 	 4.17 m.amp	 (	 ); with the presence of the

boom damping shown, the amplitude of the motion has been essentially

reduced to zero within 100 secs. 	 The random noise present in the

sensor, actual output of the sensor and the transient response of

z the angular velocity components and their estimates are shown in

.^ Fig.	 3.5(b).

The effect of the intensity of the sensor and. plant noise is

^^
considered next for the single measurement 	 scheme,1

^Y
-38-
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When the covariance is changed from the earlier value of W=V=10-6
	

i

toia new value of 10-4 , the transient response of the system remains

essentially unchanged except the steady state:(RMS) value of the
is

nutation angle is increased from 0.02 degree to 0.2 degree.

(2)	 Two Measurement System

The transient response of the filter gains (F) when both

x measurements w1 and w2 are made is shown in Fig. 3.6. 	 The resulting

;. response of the system for the larger control mass produced_dynamic
Qti

_., bythe constant control and filter gains coincides with the earlier

case of single measurement of w l only.	 Also the system transient

response for the deterministic=case 6 (no noise present) is compared

with the stochastic system transient response and it is found that

both have essentially the same response for the system parameters

and initial conditions.considered here. 	 It can be seen that the 	 j

stochastic system has a steady state (RMS) nutation angle of 0.02

x degree which is not characteristic of the deterministic case.6

(This is consistent with the analytic result described earlier.)

:X b.	 Three Axis Control Using Two Offset Booms

For the general case of three-axis control numerical methods

are used to solve the matrix Riccati equation. 15	 The dynamics of

the controlled system are obtained by numerical integration of
l

Eqs.. (3.'28) and (3.29) as developed in Refs. 2 and 6.

z
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The matrices A and B in Eqs. (3.28) and (3.29) for this

application of two booms stem for three axis control,PP	 Y	 1, using the

larger control masses, with the selected system parameters are

obtained as:

0.0018015	 -0.6667980	 0.0''
A==	 0.6667980	 -0.0018015	 0.0

0A,	 0.0	 0.0	 ..

[0.0082732T 	 0.637957	 0.0
B = 0.0	 0.0	 0.384811

k The reference length Qm has been assumed to be 100 ft. (30.48m) and

the control signals and plant noises are assumed to enter together such
^x

that B = G.	 In the measuring scheme all the variations of angular

velocity components of the spacecraft from a nominal state are measured.	 1

..w The optimal control constant gain, C, obtained,by solving the

matrix Riccati equation (Eq. (3.6)) numerically can be expressed as2,6

C = -2.2242	 3.8489	 0.0
0.0	 0.0	 3.1401

Similarly, the optimal filter constant 'gain, F, obtained from the

" steady state solutions of Eq.' (3.9) can be written in the form:

F _
0.3607	 -0.1047	 0.0
-0.1047	 -0.5045	 0.0

^. 0.0	 0.0	 0.3848

An example of the application of a two boom system for three

j axis control is shown in Fig. 3.7. where initial perturbations are

assumed to be present in all three angular rates. The decay of nutation

i
angle is shown in Fig. 3.7(a).

^r
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It is seen that the nutation is reduced to approximately zero within

30 secs. Also, shown in the figure are the time responses of the

z - boom motion when there is no damping present in the boom driving

mechanism and when it is present. 	 With the value shown in the figure 	 33

for boomdanP^ gin, the boom motion can be reduced to zero within 100 secs.

The response of x - boom motion as shown in Fig. 3.7(a) increases

linearly with time without any limitation. 	 This is due to the fact	 1

that control of the spin angular velocity magnitude for the linearized

system depends on the x - boom motion as seen from the numerical values

of the matrices indicated earlier. Due to the stochastic disturbances,

the angular velocity component about the 1 3' axis fluctuates from its

a q nominal value, which forces the x - boom as shown in Fig. 3.7 (a).	 As

this is not desirable, a spring force is now ' assumed to be present

in the x - boom mechanism as shown which brings the x - boom within

x
a maximum amplitude of 23.5 ft. (7.16m). 	 The damping present in the

boom for the selected system parameters is very weak and, hence,

additional damping in the x - boom driving mechanism is needed to bring

the x - boom motion to zero value in a_reasonable time period.

The time responses of the angular velocity components w l ,w2 and -

W3	 and their respective estimates wl , ^	 and m3 are illustrated in

_ Fig. 3.7 (b).	 It is seen that the difference between the estimates of

the components of angular velocity and the actual values of these

f
^M

components is negligible within the plotting accuracy:
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IV. CONCLUDING COMMENTS

As a result of the analysis and numerical results the following

conclusions regarding the time optimal and stochastic optimal control

using telescoping booms can be made:

A.	 TIME OPTIMAL CONTROL 	 «.

1.	 The time optimal control problem is solved analytically for

a single offset boom where the initial conditions are such that the

system can be driven to the equilibrium state with a single switching

in the bang-bang optimal sequence.

2.	 The large amplitudes of the single offset control boom dis-

placement can be reduced to a reasonable practical value by increasing

the size of the control mass. 	 This also reduces the nutation angle'

steady state amplitude to a negligible value.

3.	 For the general case where the initial conditions do not lie

within the single switching region piecewise solutions can be used

_.d
to obtain the system response.

B.	 STOCHASTIC OPTIMAL CONTROL

1.	 In the area of stochastic optimal control, the average

performance of the controlled system in the presence of plant and

measurement noises for the case of single boom offset system with

the measurement of one of the transverse angular velocity components

r	 -F can be predicted from the covariances of the error and estimate.
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Z. The dynamics of spinning spacecraft using one or two movable

telescoping offset boom systems for the general case with stochastic

inputs are obtained using numerical integration. It is seen thatthe

difference between the estimates of the components of the angular

velocity and the actual values of these components is negligble for

the covariances, initial conditions, and system parameters considered

here.

3. In the case of three axis control using two orthogonal booms,

the motion of the boom in a direction orthogonal to the spin axis

increases linearly with time. This is due to the fact that control

of the spin angular velocity magnitude for the linearized system

depends on this boom motion. Due to the stochastic disturbances, the
r	

spin magnitude fluctuates from its nominal value, which forces the (x)
d

boom. In order to remove this undesirable motion, additional damping

in this boom driving mechanism and a spring force acting on the boom

-	 mass is needed. In the deterministic case, the spin magnitude reaches'
a

the desired value and remains constant; the motion of the (x) boom

reaches a steay state (constant) amplitude.

riy

E
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COMPUTER PROGRAMS

A. TIME OPTIMAL CONTROL

L. I STING
C	 XUAE Q 0 T_ CnNTpnj NjiDA TN T - - NL EON

ExIrERNAL 6SOCtrBSOC2
1)'IME.NSTON. PARM (5) Y; (7) DY (7)4 WORK (8 r7) f Sl ZE (7)

11-t 
2 1 ;'. Me ^A.j M2 . , jr M r

F	 0 E ' A L
COMMON Y
COMMON I1,12#I3,M8pM1pm2pLm

COMMON A-0.p.88,, . CC Do
COMMON C(3r3)
E Q U Z V' A L ENCIr (y, C j) p w I N 	 r  C 2 p	 (-Y 

C3) 
W3tq J' _ (y f JL	 N

EQUIVALENCE (Y (5 )	 O,p OXN)(Y(6) pZN),, (Y(7) v X N
CALL INOUT(2#5)
rAl I nPF_N ( 1 ,	 SEj_ I APPAN

1'F(.,IER :.,NE.1T STOP :UNABLE TO OPEN FILE
•	 READ . ( ' 2p . 92 1 I T	 T'O L,MA . X.P,.STE.P

R &.n, rz.,Q,j 3: Srl^

91 FORMAT(8FI0.0)01
PARM (1)=0,0
O AR m— C 2) =TMAY

INITIAL VALUES
R E A D-C-2 1, 9 1 1 ) I 1 0 1 2 1 3 MF;

READ(2Y911) M1#M2,LM.
- REAO ( 2,911) AA,BBtCCoDO

0..03411:;4
0, 0

,— f IN 	 & T. 11 - A	 & / I I" . 	% I I	 I .	 . I

DZN=0.0

W:R I.T E 5	 9 T X AA	 8 B cc , f D 0
d	 a .:. . WR*I.TE(5'f , 98) SIZE ^

WPT ECS' qT
.92 FORMAT('1TiqAX=',F8.4,IOXp*STEP=',F8.4,I0X,'TOL='PF8.6)
95 FORMAT('011=1,115.2#2X,'12='fF15,2p2X,113=',FI5.2)
96 i FnRMATC 1 0 M I 1 .F1 q _ p . py , I MP= I- E15 .2
97 FORMAT( ' 0 A. A	 F 8 .. . 4	 5.)(	 I 5 6 = 1 ,,. F 8 ..41 , 5 X p, I C C	 p F 8 . 41 , 5 X , O DD= , 	F8. a)

48- FORMAT( ' OS.IZE*' r7F'8	 4 Y
9 Q

11	 W1 s	 `8 2	 T43 - -W1	 rEnRMATC "I	 ML	 1 1 7	 1 10 ,

P-T69o'DX',T8t,'Z*,T94 1 ,'X',TI08F'THETA',Tll5o'IH. LF"/)
CALL	 RKSCL(NjSIZE,DYfT0L,PARm)
r	 r) Y 0 N	 T	 I F
WRrTE(5,100)	 rHLF

100 FORMAT( 001-HIL . F=`r1l)::
CALI I	 Ey TJ
ENO
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PROGRAM IS RELOCATABLE
..TITL	 .MAIN

.,F.1L..T / s F̂ / o 1S Fr1RT^) S/^

ILIS.TING
SU4ROUTINE BSOC.I(TrYoDY)

REAL I1rI2#13rM8omlrM2oLM
COMMON W1NrW2N,W3N,OZNoDXN,ZNOXN
f' f1 ^1 M f1 t^l T	 tAaa ► M I -M 2 r I M
COMMON, N, M°

COMMON A4r880CCrDO.

_---	 C;.QsAl^9 N C

TS_0.54
TF=6.12
TEC TGT - TS) GO TO 40
C0-+0.03
GO TO 30

CO=-0.03
GO.TO 30

-o co-o, 0
36 CONTINUE

C	 CAL.w,OF.COEFF„FQR LHS• OF MATRIX' EGN
timmt •,fmQ &,,A?1 /fm p+4 , m t>4.M21

..b-

.^	 •'.Ul_M1*( MS +GM23tC(M8 +M1^ +M2)*U)'	 ••
...	 U2=M2*(MB +M1.)/C (MB+Ml+M2.).*U3

E1Z'^- 	+M14AtP)*1f

C(1,1)=AII+U1*(C2*C2+ZN*ZN)+U2*(C3*C3+C4*Cu)
*-2.0*U3*(C2 *C3+C4*ZN)

r	 r r I	 =---111-*L C 1-*G2 2= U 2^G3 * Y nt tll 3 * .( C-1 * C^.t C 2 *^Crl l 	 —	 ----.
C(1r:3) 	 UI*CC1*'Z.N:? U 2*Cu*XN+U3*(CI*C4+ZN*XN)

`^ ;^	 C.('Z.s.1:)=-U1*CC1:*C2)-U2*C3*XN+U3`*(Cl*C3+C2*XN)
r C;), !3+1_ A T D + t I I ( r t* r f Z 1r Z -1112 i G4 Clttk C^ XSi
2.0 *U3*(C1 *XN+C4*ZN)

C:(2r3)=-U1*(C2*ZN)-U2*C3*C4+U3*(C2*Cu+C3*ZN)
—F	 rrz,-^-.=--U-^^-(-L-1-*-Z--^J-)=-U-2-*L.^xt^.tLL3-*-LG_1-*C_u+.ZN*XrL). 	 __^

C13 r 2) U1*(C2*ZN1-U2.*C3*C4+U3*(C2*C4+C3*ZN)
^.	 :C;G3,3)=AI3+U1*(C.t*Gi.:+C'2*C2')+U2*(G3*C3+X N. *XN)

—^ 	 ^ ^2=.-d-X11-3^•(-G2-^C-3-+.G^- *^t ^^ 1	
-

C	 CAL. OF RHS OF MATRIX EON
C'N_C1/(AI1+C1*C1)

•	 ago-.-^	 -
;.	 AZN=(C.O/CN)'-DF*DZN-ZN

AXN_O.O

;	 A`1l= (AI3-AI2)*N2N*SNi 

Al21= -C1*ZN* WiN*+v2N+(C2*C2-ZN*ZN)*w2N*SN+C1*C2*WlN*SN
!. 

x	 —'r--	 122=2-	 ZtitpZ^1*'^1.1 tC2 Z1N	 *.W2.N)+.CZ*-A.Z-N —_

• Ai l 23= -C4*XN*WIN* W2N+CC3*C3 -Cu*Cu) *W2N *SN+C3*XN * W I N *S N 	i

A1.?4= 2.0*C3*OXN*W2-N-2.0*C4*OXN*SN+C3*Cu*(SN*SN-W2N*v12N!)

—T 	 l-? =^J-^ * G-=121-+ lil 2 ? 1-} L -d-11s 3^2)	 -
A15=-(C1*C4+ZN*XN)*WIN*Ij2N+2.0*(C2*C3-Cu*ZN) *;v2N *SNI



1
A1 6=(C1*C3+C2*XN)*WIN*SN +2'..0*C4*DZN*w1N - 2:.0 *C2*DXN*WZN

^' • •

7
-
-2.
	

Q	
-

A13=U3*(A15+Alb+AI7)
DY(1)=-CA11+Al2-A13)
QrI- f^AT1 -AT, Z^1±^NttULN,;^ T,

B121'=-C2*ZN*WIN*W2N+C:I*C2 *W2N *SN+CC1*C1-ZN*ZN}*SN*w1N
_ B1.22=-2.0*ZN*DZN*W2N+C'I*ZN*(SN*SN-WIN*W1N)+C1*AZN

_ --: 81,23- -C3*C1-*W1	 u4.XN*XN)*SN*"n1N

8124= -2.0*XN*DXN*W2N+C4*XN*(SN*SN -WIN*WIN) -C4*AXN
812=U1*CB121+81227+U2*(8123+8124)
ata__ fr2* rA +rT* 7nri *WI N * W»r+fr1 * rz *C2 *YN l W^r1 Std

;.. B1b=ZrO*(CI*XN-Cu*ZN)'*SN*WIN-2
,
.0*CC1 *DXDt +C4*OZN)*W2N	 I

817=(C1*C4+XN*ZN)*CSN*SN-W1N*WIN)+XN *AZN-ZN*AXN
913' rr:	 -- al"b*^7^

^-

^.

DY(2)=-(811-812+813)

6t-: C11=(AL2-AI1)*WJN*W2N

0122=2'._ 0* CI*0`ZN*WIN+2:.'.0*C2*DZ.N*W2N+C1*C2*(VIII !*WIN-V42N*W2N) 	 i

--;
C1;Z3=(C 3*C3"- XN*XNY* WI.N*1.42N-C4 *XN *w2 N *SN+C3 *C4 *SN*Fk1N
C12-^=-2'.0'^Ynt*tl^*.S^-^r^^Ynr}rWtry+a1.n^_w^+t*tit2nt)+G *̂i1YN
C12=U1*(C121+C122)+U2*(C123 +C1241
C1.5=2.0*(C2*C3-C1*XN)*WIN*W2N-(C1*C4+XN*ZN)*W2nl*SN

U` :- t 1-b ` (C 2-C ^ ; .r z *^--- ry ^^ N * w 1..A1.-^4^c1^1.*4Z^1.*-'^1-.tiL+-2 . "4^C.3*^ Xi^l*kt2 u	 -	 ^
C1; 7= - 2.. 0* C1:*DXN*SN+ (CI*C3+C2*X'N)* C rN1 N *WIN -W 2N*W2N)+C 2 *AX,N

U3*CC15+C1.b+Ci7)	 :
O v CS) --CCI S-CA 2+C13)'	 ....
OY(4)=AZN	 i

^_.

•

DY(5)=AXN

n^ D7-,Q- ---
D Y;(; 7 )- = D X N

•	 -

CALL: SL^`Q (C' r DY rM'fiKS:)'
I F ( K S)	 3p 2r 3 r

•	 2 RETURN
3 'WR ITE(5 i 4)

07
	 u F Q. RIM ATt// _•	 STNG111 AR	 llATTflN5•)

;. RETURN	 ;
E N D. : :. ,::

PROGRA M IS RELOCATABLE
T ITL_ SSrCj

;F.ORT/A/B/E /P° /S; FOR T •L S/L .
ILI'STI,NG

G 6^izt1UTINE sSnCpCT,Y,:r)y-,I, Hj F^NNDUmop)_
LOGICAL .RKNXT

• DIMENSION	 Y(7),DY(7),DUMMY(7)
•T D I M EN SIO N 	 X 

REAL	 II'r I2 , I3: ^	 8	 ^+^1	 M2- lLM
COMMON W1 N,,W2N,W3NtaZI4,DxN.ZN,XN

•. rn AA m M:v--^t-i-IFrt/ m	 M--^	 R L

!
; COMMON N, M

COMMON	 AA,88,CC,DD	 i

;. nF r. -F??9^7Za	 --
CALL SSCC I (T,;Y., DUMMY)

i N S'=0.31.4

• x(2) =Y(2)*WS
X(3)=(1.o+Y(3))*WS'

i Y c u 1--Y(-[—Q-kL m-*-KS

X(e)=Y(b)*LM'
-; YC71-YC71*L

i
r



M^

j7

!EXEC



L I'S T I'N G,*, .

C	 RICCATI	 EQUATION	 PROGRAM	 (RICATI)
DIMENSION	 A( 10, 10),B(10,10) ► C(10,10),R(10,10),G(10r10),

^.: re-;-1-$-rr-^(-^-o--r-ro-^-; ^c ro--r: F-Fro-; 'ro-r; E-E-ro , r^r r.
t:1. 0r to	 pH(10,10).5	 10,101

;. DIMENS-ION	 V(3 .31rLL.(3),.MM(31

INTEGER OPTION,BLANK
CON^+ON/KALMAN/ICC,IFF,8LANK

l., T?-- IfE^ OFF--EtA #K f' .0-' ;-LF-'-, '	 ' t--	 - -k
CALL:	 T"NOU.T C:2', 5:)	 r

_ .
r... `1000'::.:F0R- y1A:T'(:1H. 1.r5X',37HOPTIMAt:. CON.TROL/r(Ql:MAlu _FI,L.TER ,.PROGRAM/) .

1003	 FORMAT	 (1H0,5X,13H	 THE A	 MATRIX/)

CC 1004	 FORMAT	 (1H0,5Xr13H	 THE	 8	 MATRI)(/)
I~ ---T--- o-S-FAT-tlt+cr;5r3H--THE--C-MTRIf}°

1''"6	 FORMATC.8 F jG._3)	 ;.	 -
^ Y; 0^0^.,FO.R'^tAT,( 4 F 2:0', 0)..	 -

_;_- _r	 0 -Fi -+-* -k.-T-.-E'9-1i 4Y :-2F 1'C--.-3-i I 3?= -_ '	 --- -- - ---- - -----	 -	 —	 --- _ --
1008	 F0RmAT(1H0,45(1H*))
1009	 FOR IAAT	 (1H0,5X,21H***	 FILTER	 OPTION	 ***/)

- -; --170+0•-F 8 R M 4 T--H-}+r}	 0 N-TR 0 L7- FLT--1 0 4- 
{ Y011	 FORttiTGs.(.1p.E:20.:8)l

;. E ,, ..;I012 . FGR':14AT E 1:Ha	 5 . )(r 1:3h#	 THE. .R- ;MATRr	 X.! I,- 
---;- -t? t 3^ f}R 114 A	 B H	 Ti 1 E=-

1020	 FOR M AT(1H0,5X,13H	 THE	 V	 MATRIX/)
1014	 FORMAT	 (1H0,5Xr19H	 I N ITIAL	 CONDITIONS/)

`-; 0 t^-_ r2f^	 ^f t'tt0 ,-5 ; E H -F ft'hE-= 'r-1 P^2 O---E^-f b	 5 +A-I N S-)---
w • r J. 04 6 F0R"447C.IHO,SX,21HSTEA0 	 STATE	 S0LU`T10N

• *	 6H-+GAINS/).
tvu^-

WRITE(5,1000)
1 ;' NRITE(5,1001)	 N,M,L

•r ::	 WKIE^S.f 1003)
1

--;--- ------	 EA* t 2 i t	 -1- t 4 f F ;,f-}- J = t- ^^ } -^___ _^	 ^.	 ^`_- -	 _--
110	 'ARITE(5,1011)	 (A(I,J),J=1,N)

WRITE(S,1004)

RF-AD(2,1006)	 JrI),•J= 1,N) :
120	 W RITE.(.5r1.011 1 	 (6	 J,I} rJ=IrN}

00	 130	 I=1,L
READ	 (2,1006)	 (C(IiJ)rJ=1,N)

150: RE.ACJC2r1007,END=999)	 OPT ION,TI .T2rNPT
.., NRI'TE (5:, 10'0.8'}

f

IF(OPTION.En.ICC)	 GO	 TO 300
n 4tiRITE(5,1009)

_	
Na =tit

-61-



r

.	 16:6 WRITE.(5r 1.0I01
NR^t

i7

i1

z DO	 330	 I=IfN
DO	 310	 J=1 r m

IL
2+n cr T 	 T^_arT	 T 	 h

DO 330- J=1 rN
330'•F(IrJ) =A(JrI:)

DO	 410	 I=1,NR

P* READ(2r1040)	 (R(I,J)rJ =1rNR)
---- --4-1.49 E (5 r-k

• WR I.TE(:5 r 1:01.3)r ..	 ,

420 ',+JRITE(5r1011)	 (D(IrJ),J=1,NG)
DO	 430	 I=1,NR
nn	 4 30	 7 =,1 - N R	 -	 ---	 —

;.. 4.30' v(jI`^J)=R:CI,J)
;..; CALL

•, 00 425	 I=If NR

425 WRITE(5p1011)	 (V(I,J)rJ=i,NR)
n r7	 H n n	 T .._4	 A, O

R t. T r.	 .0 	 0''

440	 R (I,J)=R(I,J)+V(I,II)*E(J,II)
-	 ; IF(OPTION.EQ.ICC)	 GO	 TO	 500

5_0-: J =1	 N Q	 .,

=x- 450	 G(I,J)_=G(I,J) +O(I_,_II)*Q(II,J)

00 460	 I=1,N
m y_^,,

Ea El 7.74	
_ r	 _

► :.
._ -	 __..^:.._^tstY---^ ti-l:: ►—.3-1-= ^-f-F^ ^ J-}•+GfI=`,- ^'-F r*o- c ;t-, T ^-r..._ . ___	 .^^___ ^.^..____._.^.____ -_

500	 IF(NPT.GT .0)	 GO	 TO 530
DO	 520	 I=1,N

52a• G C:I r I) =1 .. 0

GO TO 570
Y	 ; 530_wKITE(5,1014)	 -

-f3E3--5 ^t 8--^ =-1 , 

READ (*2,. 	 (G(IrJ),J='lrN )
:..' 540 . wR	 T E C 5	 1.011)	 (G(I,J),J=1,N)

TPlE=a3S(T2-T1)
PTS=200.0 *TIME



ol
ID-XX

Y—; ARS (X:X-0I )..
IF CY-Y-.G%;0..05). 	 10	 0t

EPS=0.005'
TIME=T1

•
-

:wITEC5:1015)	 TLME:
DO' 560	 I=1,NR

DO	 550	 II=1,N
--------5 r8--i^ E-J-Y= t F ;J-3 tR F-I-F-) *-f I-F-: 3 -}--- 	 _

56Q	 wRITE.(5, 1011)	 C 	 CI ,J} r1=1 rN)
7'0-.:LC-=0

575	 DO	 580	 I=IYNR
DO	 580	 J=I,N

K-H."j-} =tr.-.	 —
00:584	 IL =1.,N

Sc30	 K,(;I,J 7=K(.I	 J )'+R EI:II}*G>t.IL.J3' 	 ;,.

00	 590	 J'1,N
F ,

H)=(I ► J	 0.o

590- HCL,J)=HCIfJ)+ECIRI II*K CII,J)
;;

`•.
Or2.
	

6IO	 L=I	 N	
j

ol

D(I,J)=O(I,J)
DO	 600	 II=I,N

---;----if8'0"-f}'E-^ ^r-r=-t'rt--I ^ J-3'-^f`F-i-t-I?-*^ t-3-f-^ ^ }-+f^ E-^r ^F }-*'F-f ^-. I-I }--G FF-, I f-}-*t+f-l-^^)—	
^

PI J)°_G- CI	 J)+D(I.,..J)*EPS
IF:(:NP;l E.:O) . GE3 .T0 ;6u0	 .

IF(LC.LT .ICH)	 GO	 TO	 625	 !
ICH=ICH+ID
Rte =tom

:T IME=T 1 *T'
—;--	 I F t 0 P	 Q ^: E ; I£ E-)—^F' E-= -FS- 

WRITE(5,1015)	 TIME
,- - DO	 620	 I =1 ,NR

— --13-2 --	 ,	 7 -E K-t-1 —gJ1Y# =; ice)	 --
^. IF,(L.C,GE..IT) _G0 .T0	 1.50.;;
r r	 625	 DG	 630; I=I::, N

V
630	 G(I,J)=S(I,J)	 a

GO	 TO 575



v	 I	 1	 I	 i	 1

--- yt-1t^'^+t'#^Pi^#-,r-^-1r^*-fr^r^k•-,t-P ^lr ^t,fi^-^-# it irk * * *-,t it ^t ^k-^r+^ k •ir *^-^t

THE A MA TRIX:

1«J-G.15000C}E -3 	 6-.6679$000E -1	 0,000-00000E. 0-
:r60:'6679 0:00E	 Y .	 -1.40I50000E ,-3	 O<..00000000E	 0

-------Y ^ acct1-cr0-t3fr0-e---0------
0. 00000000 E 	0
0..0. 000000.0E'.:	 0

0-.-a-o ^ o-(1-^tf}-QE—p-----fl-:
1:..00000000E	 0
O.000000QOE ,: 0.

0 . 0-0 0 o-C^O-o E
O..O'000OOOOE
1.:000000.00E

— O__ ---- --
0
0

-`E-- -gip r;r•I X - - - -----	 -	 - __ _ _ - _-_---------__ — _—

ly	 1.00000000E	 -6 O.000OOOOOE	 0 0.00000000E 0

0 . *G00100.000E_.	 0 0.,0000000 GE : 	0	 - 1...00000000E -6

1.00000000E -6 0.00000000E	 0 -

@ 	 9 0 E--cam---	 fYO fl O b ^}o-E- - 6--- -- _'

THE. V WA . TR1X

9.i99999600E	 5 0.00000000E	 0 6.00000-000E D

O.000OOOOOE	 0 9.99999600E	 5 O.000000OOE 0

.,.	 f3-^t . rf?40-Ertl-^t7E---t^-4:44x9-4-b-fYO-E--S

I -ITIAL- COn;D.I.TIONS

O.00000000E	 0 O.000OOOOOE	 0 O.000OOOOOE 0

O.00000000E	 0 O;000O0000E	 0 Oo00000000E 0
0-" 0-0 0 0 o-E . 0-0-0. 0 0 O. 0-O-E-0— --

sx -64-
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C.	 THREE AXIS OPTIMAL ATTITUDE CONTROL

r1	 -tr r	 -rrrrU DE C v-TR
C THREE AXIS CONTROL-TWO BOOM SYSTEM

EXTERNAL SOACf,SOAC2
DTMENSI ON 	 r-t(-r	 .	 ,	 R	 p-rf.-- srz	 C t a

•	 RE:AL	 I:I,•I2^I:3kLM
COMMON `C

7W COMMON rr;i2or3—I ;	 -
COMMON N
COMMON	 W1,'W2,V!NI ,VN2,VN3

;COMMON. IX:W2'rSW'2rAM'W2	
-COMMON 	 IXV'1 ► SVI,AMV1.

lit
` COMMON	 IXV3,SV3,AMV3

EQUIVALENCE	 (Y(i),'WIN),(Y(2),W2N),(Y(3);	 w3r)
,:..., .rEaFrrNrrrsE-r^r^-^ tY` rE^N-r T 	-

),.) r) ^ X 	 )EGiUIV'ALENCE:	 C.YC70ZN) ► CY , C8l, DX`N1, (Y (9	 Z 	 C 	 C10
op

INOUT(2,5.)..CALL..,

E	 -L 7A• PP-tN-• 	, 3	 I E R)	 --	 ,
IFCIER.NE .1)	 STOP UNABLE TO OPEN	 FILE
READ(2p91)	 TMAX,STEP,TOL

r
READ(2:,-90)	 LlrL2',43PLM

q 9— FC3RMAT'C.4F20..0)

•
0F8:01

FARM(l)=0,0
PARM(2)=TMAX

-STE	 —
N =1 Q 

01N=0..039110.314

N3N=(0.35-0.314)/0.314
EWIN=0.0391/0.314

N-_-	
_

;EW3N= C0.35 -0.314)	 0 .31u
r

_	
--

OXN_p.p
• XN_0.0
,.

f
i

AMW1=0.0	 9
tl

i

2

SW2=0;001
AMW2=0.0

` f	 y

—	 --

3V1=Q,001.

AI^V—̂ =^2—tr5
SV2,0.001

4 ; AMV2 =0.0
3---T-2 -r-f5

SV-3= 0'•:001

,



r  _

AMV	 =010
,.. NR	 r 2)	 T M A .X t-gTfP r
•.: WRITEC5R9'ST	 I'1t I2tI3`

WRI:T'E(5,98):	 SIZE
—;-- 2̂— -T (_` 1_T-^*A X = ` i F1^X ; `9-T E^ _ ; F-8-; ro--^T a^= " , Per---

95	 FORMAT('OI1=',F15.212X,'I2=0,F15.2t2Xt'I3=0,F15.2)r
98	 FORMATC'OSIZE',lOF8.4)

r>.9'^^ErF?YRfQtiPaRM
CA . LC.. RKGSCP ARr4,:Y ,DYtP1, IHLF,.SOAC1rSOAC2 ,WORK)
C'ALL,_EXTT
END -	

Y7

y

i

.,TITL	 .MAIN
:FORT /.A/8'/E/P /S` FORT.LS/L.

- 'L

SUBROUTINE	 SOAC1(T,Y,DY)
DIMENSION	 Y(10),DY(10)

t. t
CCIMM0N' W1. N, W2N,W3N,EWINo-Ew2NtEW3N,:DZN,DXN,ZNtxN

.::.
r COMMON LiRL2tI3,LM

COMMON W1,W2rVNl,VN2,VN3
COMMON	 IXW1iSW1tAMW1

•t• COM MO N	 I' X'V 1 r S v : l v AMV 1
COMMON	 IX:V2,SV2,AMV2

—EEWMON 1X V-3 vS'V-3-v4,wV•3	 — -
CALL	 GAUSS(IXWl,3w1,AMwl,Al)
CALL	 GAUSS(IXW 2,Sw2, AMW2 ,N2)

r CALL: GAUSSC:IXV2.tSV2rAMV2,VN2)
r ;:	 C'aLL:: GAUSS. (I:XV3tS'V3PAMV3,VN3)-` t-t.=-0 f.	 178,o-r .

Al2=0.666798
811=0.0082733

.	 83-2=0.384811
' Cll=-2.2242.

C23=3.14
F11=0.3607

}	 F1,3=0	 0
k.	 F22= 0 	 5045

-:, F 33= 0.3848
CD=0.2

Ff=0.02598

^r AXN=-(C23*Ew3N+F1*DXN)-XN
- A t 1arTN = 2 rtRr^3 IC* EVy 1	 r3 ri * C Y 2 ^t E Nr2 t ± g 1-1-^r rV I----

DY(2) =Al2*',A lN-All*W2N-321*Cll*Ewl,N-821*C12*EV12N +B2 1 *v+2
DY (3) =-332*C23*Ew3N+632*,m2

s -	 a-n-=fin	 B-rr* C-rz-r*- E ^r27N-=F-r3* E^r3 IT-

*+F 1.1 * (WIN+V,N I) +F 12* (N2N+VN2) +F 13* (:v3N+VN3 )
DYCS)=(Al2-FI2-821*Cll)*EwiN-(All+F22+821*C12)*EW2N-F23*E43N

^s ^	 N^rN-r•1--f-F-2-Z^^(-w-2^-f^t^rfr
r DY(6)=-F13*F-WIN-F23*Eri2N-(F33+B32*C23)*Eei3N+Fl3*(WIN+VN1)
` *+F23*(w2N+VN2)+F33*(W3N+VN3)

, ^-r?-r= ^-•rte----
4	

_.



! PROGRAM IS	 RELOCATABLE
" T L. 3^

.!;FORT/A/^8 /E/P/S` FORT«.LS/L.	 #

• l a ^G	 J^F+ C2C I/ f /O I JItttr'I 0 d	 ar	
a

LOGICAL	 RKNXT
DIMENSION	 Y(10)rDY(10),DUMMY(10)

REAL I:S,I2rI 3, LM
COMMON WIN, w2 Nr w3N, EwiN,Ew2N,Ew3N,DZNrDXN,ZNIXN

-- cummom	 ftp I-2li
COMMON N
COMMON wirw2,VN1,VN2,VN3

r: CO.M' MON 	 IXW2 r S4v2, AMW2
of COMMON	 IXVI,SVI,AMV1

COM t 	 ll	 ' X V 2, 3t-2 —PA-M-V

COMMON	 IXV3,SV3,AMV3
• DEG=57.2957795	 j

e,	 tt	 C t f T	 Y ; D'tf-;tM-1`	
--

w5_0,31u
• XL1)-Y(1) *'wS

-, z )-= r f-rr*	 --

X(3)=(Y(3)+1.0)*wS
+ X(4)=Y(4)*wS

• X.`C6 ):=CY'C.b)°t1:.:0)*wS
: X('7')=Y(7)*LM*'NS

X (9•)=Y(9)*LM
X(10)=Y(10)*LM

_ H3='I3*X (3)

E -A : -rXNZMR-T-( H-r* H-r+	 *,DE G_
TA=T/wS
TP-TA+0.00045
I1ttQ r : RK N X-T C-17H

•' :IE?'I:TE(Srl.)	 TP,X(1? rX-( a),X(2)r X( 5)rX(.3)-, X(b:) ,X(9),X(10),THETA,IHLF
1 FORMATCIX,F9,.U,8F13.7,F9.4,I2)

j ^tF^'I'T•^B"I^^t'R'1''f'I-?-7^-filtE ^ tom, X-f ^T i X-( 9-^X"-(_b_)^'f_"3` ^X-f S-}-^-X-f 2'T i X-(^'7 i z-^Y r--
8 CONTINUE_-
RETURN

^ END
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–

.TITL	 SOAC2	 -
` IRLDR/M TMP/S	 001	 002	 003	 DPO:SSP.LB	 FORT.LB	 j

—DE:LETE.IV
DELETED

SELLxPP
SELLAPPAN

!CREATE SELLAPPAN	 3


