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ABSTRACT

- This report considers the dynamics and optimal control of
spinning spacecraft with telescoping appendages and is an extension
gf the research reported in Parts I and II (May 1974 - May 1976).
éart I concentrated on the analysis of the motion of a spinning

épaéecraft during the deployment of telescoping type of varying

. iength appendages and fixed length appendages whose orientation with

~ respect to the main hub can vary. In addition, the use of tele-

?ching appendages to detumble a spacecraft with random spin was
aléo considered. In Part II, the motion and stability analysis of
spﬁnning spacecraft with hinged appendages and an application of the
}iﬁear regulator theory using a quadratic pérformance index were con-
sidered. Also, the time optimal control with a single boom system
was con§idered analytically.

In this report, the problem of optimal control with a minimum

v’time criterion as applied to a single boom system for achieving two

‘axis control is treated in detail. The special case where the initial
coﬁditions are such that the system can be driven to the equilibrium
state with only a single switching manuever in the bang-bang optimal

sequence has been examined analytically. The system responses are

presented. Next, our previous application of the linear regulator

'prbblem for the optimal control of the telescoping system is extended

to consider the effects of measurement and plant noises.
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The noise uncgrpainties are included with an application of the
estimator - Kalman filter prdbiém! Different schemes for measuring
the‘components of the angulaf velocity are considered. Analytical
resﬁlts are obtained for special cases and numerical results are

presented for the general case.
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NOMENCLATURE
offset of the control boom w1th end mass my from the
2,3 (y,z) plane ‘
linearized system state matrix

offset of the control boom with end mass my from the
3,1 (z,x) plane

linearized system control matrix

offset of the control boom with end mass m, from the
3,1 (z,x) plane

maximum value of the control U; also, optimal feedback
control gain matrix

expected value opéra-tor

offset of the control boom with end mass m, from the
1,2 (x,y). plane

optimal f11te1j gain.matrix

matrices used in defining plant disturbance and measurement

processes

prmc1pal moments of inertia of the main part of the
spacecraft

' cost functional for optimal control

maximum value of each control boom length
mass o_f“ main part of the spacecraft

end mass | |

controi quxﬁ end masses

covariance of esfimation eerr

positive definite symmetric state weighting matrix



z < 4 o o n W

=

]

positive definite symmetric control xweighting matrix
covariances of state and estimate, respectively
time

control vector

measux}#ement noise vector

covariance of measuremeﬁt noise

plant noise vector

covariance of plant noise

coordinate of the control boom end mass m, along the
'1' axis (control variable)

state vector of the system
state vector of the estimate

coordinate of the control boom end mass my along the
'3' axis (control variable)

angular veloc1t1es about the 1,2,3 axes, respectlvely
(i-=1,2,3)

- maximum expected value of transverse rate

nominal main body spin rate

error (f( - X)

ml/ Q,;'rnbndimensionalized form of wy
“’2/9" nondimensionalized form of w,

w,/Q-1, variation-of the nondnmensmnallzed form of w
f%om the nominal value

linear damplng present in boom driving mecham.sm
qt, dimensionless time
switching time

final time
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(0)

1,2,3

z/zm, dimensionless form of z

x/zm, dimensionless form of x

nutatiqn angle

indicates differentiation with respect to t
indicates differentiation with respect to t
indicates initial conditions

indicates original system quantities in the time
domain

principal axes of main spacecraft
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I. INTRODUCTION

This report &ill describe a continuation of the NASA sponsored
research already accomplished during May 1974 - May 1976 (Parts I and
II) on the dynamics of spin stabilized spacecraft with movable étppendages.l’2
In Part I, the equations of motion have been developed for the telescoping
boom system where all the appendages are extended along the hub principal
axes. A control étrategy‘based on aﬁ,application of Lyapunov's second
method was used to recover a randomly turbling spacecraft and approach
a final state of either zerc inertial angular velocity or a flat spin
about one of the hub principal axes.1»3 The dynamics of this system
during nominal deployment‘of,théibooms with a small nutation angle have
also been considefed hath analytica;ly for special cases of a nearly
spherical hub, and numérically for the more general case.l,4

In Part II, the:following topics were treated: the dynamics and an
extensive stability anélysis of a spacecraft with hinged'appendages of
fixed length;z’5 an examination of linear optimél control theory as applied
to the deployment maneuver of a telescoping boom system (offset from the
hub principal axes) by»selectiﬁg different integrand function;Z,6 and
the time optimal control of a nutating spacecraft using a single offset
telescoping boom system.Z

The topics considérea during the;present NASA grant are: the pro-
blem;of,optimal control with a minimm timékcriterion for a single offset
boomisyétem; and an application of the linear regulator problem for the
optimal'cdntrol of the‘offset teiescoping system with measurement and

plant noiSes'present.



The first phase of the current study will examine the time optimal
control of a nutating spacecraft using a single offset telescoping
boom system. This is an extension of the work consdiered in Ref.2.

It is assumed that the spacecraft consists of a rigid central hub and

a movable telescoping boom with an end mass which is linearly offset
from the nominal hub spin axis. An advantage of such a telescoping
system as used -in the control‘of a spinning spacecraff system is its
potential reuse. The use of such a moving (internal) mass device for
the detumbling of: spacecraft was first proposed and described by Edwards
and Kaplan.7:8 The motion of tﬁe control mass was along a linear track
fixed invthe vehicle wherethe control variable was taken-as the mass
acceleration relative to the main part of the spacecraft.

The optimal control of a spin-stabilized spacecraft with one or
two movable teleScopiﬁg,booms was the sﬁbject of a ?ecent paper.6
The boomfend‘mass positions were controlled such thét a quadratic
cost funétional involving the weighted components of excess angdlar
velocity plus the contrql~§f£ort itsélf was minimized when the terminal
time was unspecifiéd. Por such a system, the computation of the control
law involved the-soiution of the matrix Riccati algebraic-eqqation.6
It was conclu&ed,that“for thieé;axis control at least two offset booms
(moving orthogonallto each other) would be required, whereas two-axis
(nutation) control could be achieved by using a single offset boom

constrained to move parallel to the spin axis.®



A very recent investigation by Kunciw and Kaplan9 utilizes a
first-order gradient optimization technique to show how a movable mass
control system may be employed to detumble a general asymmetric space
station about a principal axis in minimum time. Results indicate
that the detumbling time is minimized for larger values of control
mass and lengths of the linear track.®

The present study extends the work of Ref. 6 and complements
that of Ref. 9 by analytically determining the boom (mass) control logic
such that the terminalvtime will be minimized for the case where two-
axis control of a symmetric spacecraft is required. The equations
of rotational motion are developed and linearized about the desired
final state. .This problem has been examined analytically for the special
case of a single offset bdom~where it 1s assumed that the initial conditions
are such that the system can be drlven to the equilibrium (rest) state
w1th only a 51ng1e sw1tch1ng maneuver in the bang-bang optimal sequence.
For this system it is possible to obtain an analytical solution for the
switching and final times in terms of the initial conditions and magnitude
of thé maxiﬁﬁm value of the control force;lo’ll Also the required boom
motion can be determined analytically for this iinearVSY§fem. Some typical
numerical results based on these solutions aré discussed.

The second phase éf this year's study in thé area of optimal control
extends the previous applicationzz6 of the determiﬁistic linear regulator'
problem for the optimal control of an offset telescoping boom system to
inclu&e the effect of noise uncertainties both in the plant as well as

in the measurements.



The differences between the desired state vector components and the
actual componentsvwith noise included are now incorporated within
the control logic with an application of the Kalman filter.12

An application of modern control theory to nonrigid spacecraft
has been very recently considered in Ref. 13. Here the established -
procedures of linear quadratic Gaussian optimal estimation and control
were developed and interpreted for their application to the probleﬁ ‘
of attitude control of spacecraft with dynamically significant elastic
appendages. The conclusions were that the techniques of modern control
theory offer promise for practical applications such as spacecraft
attitude éontrol, but that the mathematical theory of modeling needs
development and the limitations of spacecraft computer capacity require
reduced estimator models.l3

'The present study is an extension of Ref. 6 where the measurement
noise and plént noise are now considered in the design of thérbptimal

controller. The equations of rotational motion are developed and lin-

earized about the desired final state. For the purpose of simplicity,

the actuafor dynamics (the motor-drive mechanism that extends 6f %efracts

the booms) w111 be 1gnored and the boom mass dynamlcs will be treated

as the control variables. (The assumption was also used in Ref. 13 for

a different application.) The measurement noise and plant noise in the

physical system are assumed to be white Gaussian processes With z¢rd mean.
For the linear system with quadratic performance indices, it has

been shownl? that the optimal control logic is a Kalman filter used in

conjunction with the optimal deterministic controller.



The model of the estimator (filter) is. the same as thatiof the '‘plant
model.'" The average perfdrmance (RMS value) of this contrblled.system
in the presence of noise can be predicted from the covariances of the
error and estimate.l2 The general system response for non-zero initial
conditions is obtained by simulating the linearized equations with the
control and filter gaiﬁs as obtained from their respective matrix Riccati
differential equations.

Both two and three axis optimal %ontrol Qf spinning spacecraft using
movable telescobihg offset boom systeﬁs will be‘cdnSidered. The dynamics
of such a systém'will be studied aﬁalytically for special cases and

numerically for the general éase.



II. TIME OPTIMAL CONTROL WITH SINGLE
OFFSET BOOM
For satellites with high attitude accuracy, contrdl jets are

often required. However, the maximum torque produced by the jets will
bezbounded Also the operation of the thrusters are often limited by

thele welght and propellant capacity of the thruster system Instead

of jet systems, externally movable appendages can be used for controllmg
the attitude of the spacecraft.6 The main advantage of movable,appendages
is their potential reuse. Optimal control theory can be applied to

minimize the time required for returning the state of the (linear) system

to its nominal value.

1. Statement of the Time Optimal Control Problem

The eciuations of mbtiion of a linear, controlled time-invariant system
are represented by: | |

X' = AX + BU . (2.1)
where

X = state vector of the system

A = system (plant) matrix
B = control matrix
U = control vector

|
1

Here the problem of determining the control U([Ul < C) which forces
the s’ysfem (2.1) from the initial state, X(0), to zero state in

minimum time is treated.



An admissible control U(f), transferring the System state from
X(0) to X(rf)’= O,Vis found from the solution of Eq. (2.1) given by
X(r) = T x(0) + £ot A Byge) ag (2.2)
For X(Tf) = 0, Eq. (2.2) reduces to _
£ ™M BU(s) dp = -X(0) (2.3)
Equation (2.3) will be used to determine the switching and final times

of the control.

2. Application to Single Offset Boom System

As an application of the time optimal control theory; the mcjable'
single offset boom system as é two-axis nutation damper is shown ini
Fig. 2.1. The equations of rotational motion are developédrgﬁg linearized
about the desired final state of a spin_about the z axis 6n1& (mz=n).2
The linearized system equations (Ref. 2; Egs. (5.4) and (5.5)) for the
special case of a symmet?icallhub (b=0, wi;hout loss of generality)

L
| I

result as: | - ‘

9 I

where _
U=n(" + 1) | o ' ’ (2.5)
d=(T5-T+ D/ (T + ;) B (2.6)
e= (I3 -D/T ‘ ; ' (2.7)
n-= cl/(T‘f clz) & | ' (2.8)“



The nondimensionalized'quantities are defined as: o = ml/Q;

a/tn; © = 2/tm; T; = Ii/uip® (i = 1,2,3) and for the assumed

I, = I; v = ot; and t represents the nondimensionless

B ‘= wz/Q; Cy

symmetry, T
time. The variational coordinates are o,B whereas ¢ represents the
control variable and describes the end mass position. From Eq. (2.4)
it is seen that the equations for the transverse angular velocity
components have the form of a coupled two dimensional harmonic oscillator
under the influence of the boom motion as a control force.

The solution for U(t), briﬁging the system state to rest in minimm
e ié known to be U(t) = jﬁ, with the humber of switches depending upon
the initial state of the system.10  Considéring the initiélkétates that
can be driven to rest in a single switch (Fig. 2.2(a)), the control takes
the formll

U

K1 for'O LTt U(t) = K2 for 1_ < 1.2 g (2.9)
where '

%y |

The state transition matrix, basing A on Eq. (2.4), is

lKZ} =C

At COs wgT - £ sin st
T S 0 (2.10)
wQ 0 COS uwgT
where

After substitution of Eqs. (2.9) and (2.10) into Eq. (2.3), one obtains:
(1 - cos moTs) Ki -’(cos wyTe = COS “015),K2 = a(0)d (2.11)



o (sin wgtg) Ky + (sin morf'- sin wgty) Ky = -8 (0w (2.12)
The expressions for the switbhing time, Tgs and the final time, Tes
are obtained by solving Eqs. (2.11) and (2.12), with the result:
1

7. =1 1

s o { tan /(gz/e1¥ -1 -tan~ (F/E) } (2.13)
“ ¢ =5%_ f t:an'1 /(g4/g3)?-?. -tan'1 (F/E) } (2.14)
where 0
E=a(0) d+K; F=28(0u,
g = (X, - K K - (BF+FY)
gy = 205, - K) 2z , (2.15)

gy = (K, - K) K+ B+ FD)
g, = K, VEET
The control scheme for'single switching and the phase plane response
of the system for a given initial condition X(O) = [a(0) B(O)]T are

shown in Figs. 2.2(b) and 2;2(9), respeciively.

3. Switching Boundary Determinatibn

The solutions for a(t) and B(r) are obtained from Eq. (2.4), with

U(r) = C, as:

a(t) = («(0) + %) cos wyT - %)? BEO) sin wyt, -% (2.16)
B(;r) = %—0 («(0) +%) sin onr * g(0) cos wyT S (2.17)

The equation of the trajectories in the a(t), 6(1)%?- plane cah,be

represented by:

2 Z 2 0. 2 |
IORS B (BERP = @ +P + 6OP E LR



These trajectories are circles with centers at (Cc/4,0). The.switching
boundary is composed of semicircles passing through the Qrigin. For
any‘given initial state X(0), the system state moves on the switching
boundary (péssing through the origin) for T 2T S Tpas shown in Figs.
2.2 (a),(c). |

In order to reach the origin with a-single switching maneuver‘under the
assumption:-.s(0)=0, the magnitude of the initial value &(0) is restricted by:

le(0)] < |2c/d] ” | S (2.19)

The control U(r) assumes the value K1= +C and K2= -C fqr the given
initial statefX(O) where a(0) satisfies‘Ineq.k(2.19) and g(0) = 0.
Equations {2.13) and (2.14) are now used to obtain the switching time,

T and final time, rf,’for this initial condition. The expressions

for v  and T, for this case become: 1
| 1 | - |
1. = =— tan | /f4CE z” i - (2.20)
> L/(‘"zsc E"-Z) -t |
I
1 -7 1
T = = tan” 2CE Z
£ U L/(Wl : (2.21)

4. System Response - Analytic Results
a. Time Response of o(t) and g(z)

Equation (2.4) can be written with Eq. (2.9) in the form:
|

.
o'l _ [0 el fa], [0 +€, 012 1 | (2.22)
] e d of]8j 1] LCrgtsygf o

-10-



The solutions for «(t) and B(t), obtained using Laplace transform

techniques, can be expressed as (B(0) = 0):

a(t) = a(0) cos wyr - 5 [(1 - cos wyr) a(x)
-2(1'i;cos mo(r-rgjﬂa(r-rs)] (2.23)
B(t) = 4 a(0) sin wgT * € [sin wgT a('r}
Wy W
-2 sin wylr-t) a(e-1)l (2.24)
where: '
| a(r) = unit step function

b. Time Response of the Control Mass Position
The equation of the boom end maséudisplacement is obtained from
Eqs. (2.5) and (2.9) and expreséed by
n(z"(x) + z(7)) = i, for 0 <t < T4
- = + C for TS ST ST, ‘ ; (2.25)
and hence the time response of the control mass is given by the
- following equation (t > 0): |
e = S0y (020 (ron) Hey (e )] | (2.26)
where L
| () = (1-COS‘;5'5(T)
When linear dampingMQb) iS assumed to be present in the boom extension

mechanism, Eq;”(Z.ZS) becomes
n(g"(x) + 2eg'(7) + (1)) = U(7) @

-11~



The solution*of:Eq. (2.27), with U(t) given in Eq. (2.9), can be

written as

£(7) = £ [y,y(0)- 2o, (r-tg)* ¥y (111 (2.28)
where '

Yyl =1 - e ” sin(vI-pZ t+2) a(x)

R '
o = cos ! (p) = tan™1 (V1°2 /o)

5. Simulation Results

In this section some typical numerical results are presented. The

following system parameters are selected (Fig. 2.1):2
7 kg-m2(10.5 x 10° slug-£t?)
6

I =1.42 x 10

7

I, = 2.03 x 107 kg-m>(15.0 x 10% slug-£tH

3
M= 6.21 x 10% kg(4258 slug)

Q = 0.314 rad/sec (3 rpm)

m = 816 kg(55.95 slug)

a = 19.8 m(65ft), b =0, $m= Zmaxi 5.4m(17«?2ft)
~w1(0) = (.0391 rad/sec, mz(O) = O,wT = 0.04 rad/sec.

max

'Fig. 2.3(a) illustrates the variation in the switéhing time, tg
and final time, tf, with the normalized’value of control effort for

a given set of initial conditions: 1(0) = 0.0391 rad/sec and mz(O) = 0.
In order to achieve the desired final state with a 51ngle sw1tch1ng
maneuver, the magnitude of C must be greater than 0.0275. The final

'tlme is rapidly reduced for small increases in the control effort near

the minimum value.

-12-



For a control effort of C = 0.03 aﬁd mZ(O) = (0, the magnitude of
wl(O) must be less than 0.0427 rad/sec, for a single switching”maneuver.
These conditions are obtained from inequality (2.19). Fig. 2.3(b)
demonstrates the manner in which.the final tﬁne?required increases
with the larger values of ml(O), whereas the switching time remains
essentially constant over a wide range of initial conditions.

The comparison of nutation angle decay for thfee different!
control laws is depicted in Fig. 2.4. Initial conditions for ailfi
cases were selected such that the initial nutation ahgle was‘S.b
degrees. In the first case, a control law described in Ref. 7 (not
based on optimal control theory) was used, which resulted in a
final time -of 850 séconds to remove the effect of nutation.

Next, the response of the system using a control law based on
minimizing a quadratic performance index2 is presented."The process
of determining the weightingﬁﬁtricésfor the nondimensionalized form
of ‘the state equations is now‘discussed. (This was not considered
in Ref. 2.) | |

The original equations of the controlled system in_the time

domain are expressed as:

X =AX +BU e (2.29)
o oo oo ...
and the cost functional by: v
o ,;— © T T .‘ "
J=/ (X QX +U RU ) dt (2.30)

The dimensionless equations corresponding to Egs. (2.29) and (2.30)
for the two axis control ﬁsing a single boom are

X' = AX + BU LT (.31

-13-



3= 7 (K'Qx + UTR)dr : (2.32)
where the prime indicates‘différéntiation with respect to the
dimensionless time, 1 = Qt. 'Then,iQ'and R in Eq. (2.32) can be

related to Qo and R.o in Eq;'(2.30) by:

= _, 2.3 .
Q= QQO, R = 2 @ R (2.33)
The values of Q and R are selected,as:6
Q b O R = [r,]
0 * o 0 . (2.34)
0 - q, 1x1
where
2 .
q, = l/mT (2.35)

. The matrices, A- and B, are readily obtained by comparing Eq. (2.4)

with the general form, Eq. (2.31).

The nutation angle decay of the system for the parameters: T max

0.04vrad/sec (maximum eXpected value of transverse rate) and [ro] =

0.00372 m®

Vsec'4(0.04 £t2 sec™)is shown in fig. 2.4 by the dotted
curve. The nutational motion has been effectively removed withiﬁ |
200 secs after control initiation which is about one-fourth ofrthe i
time obtained using non-optimal control metﬁod (Ref. 8) .

QIt‘should be mentioned that the recent resuits of Ref. 9 indicate
t%at the gradient technique permits recovery in about one-fourth the
time when compared with;the non-optimal contro} 1ay’of Réfs. 7,8j;

The response time of the nutatioh‘décay can Bé:improved by properly

varying the weighting matrices in the pérformance index.
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If a control law is now selected based on the single switching
time optimal criteria, a further improvement in response time is
obtained. The final time obtained from Eq. (2.21) is 19.47 secs.

This analytical result is shown in Fig. 2.4. In Fig. 2.5, a

comparison of this analytical result with the'numerical intégration

for the time optimal control system is presented. It is seen that

the initial decay of nutation angle (Fig 2.5 (a)) is extremely
maneuver (19.47 sec.). Wlth this control mass of 816 kg. (55.95 slug),
the analytic solutlon beglns to dlverge from the numerical integration
results towards the end of the control sequence (Flg 2.5 (a)) due

to the presence of nonlinearities associated with the larger amplitudes
of the control mass dispiacemeht;(Fig. 2.5 (bj). To remove the residual
nutatlon angle here a second switching sequence would be requlred

Also it is seen from Fig. 2.5(b) that after approx1mately 30 secs.
w1thout damping in the boom extension mechanism a steady state boom
motion would remain with an amplitude of 109.35 £t. (33.33m) with

the presence of the boom damping shown, the aﬂplitude,of this motion
has been completely reduced to Z%Qwaithin 175 secs. Here, it is
observed that initially the boom end mass undergoes a very large displace-
ment. | R o |

In order to reduce the51e%ge displacements of the end mass, the
time eptimal control of the sYstem with a larger size control mass

and a larger main spacecraft mass will be considered.
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The values of the masses selected are

M
m

19.98 x 10°kg (1.37 x 10° slug)
2.625 x 10%g (1800 slug) ;

such that m/M remains at 0.013 (as in Fig. 2.5 (a)). The other
system parameters will remain the same as considered egrlier.
'Figs. 2.6(a) and (b) show the variation of switch%ng and final

times with the controlreffort and the initial conditions with the
new mass parameters. For the same set of iqitial conditions; in order
to achieve the desired final state with a single switching maheuvef;
o >_0.042, and with C = 0.05 and mz(O) =0, wl(O) < 0.0472 rad/sec.
The decay of nufation angle using the control law described in Refs.
2,6 and that resulting from iﬁplémenfation of the timeroptimal contfdl
with a”éingle switéh‘is cbmpared in Fig. 2.7(a). The motion of the
booﬁ end mass during and immediateiy after the nutation decay is
illustrated in Fig. 2.7(b);’ It is seen that a steady state oscillation
without damping in the boom extension mechahism would remain with an
amplitude of 17.18f¢t. (5.24m) with the'présence of the boom damping
shoyn, the amplitude of this motion has beeﬁ redgced to 2.1 ft. (0.64m)
at 75 secs. For the time optimal results showh, there is negligible
difference between the analyticw§plution and the results of numerical
integratioﬁ.

 The time response of the transverse angular rates for the casé
of Fig}‘2.7ris presented in Fig. 2.8. It is obsefvedf;hét the closed
form solutions give an excellenfvcorrélation with the nﬁmerical inte-
gration for the large masses;ywhereas for the smaller masses the closed
fofm solution diverges from the mmerical integration results due to the

resulting large amplitude boom motion.

-16-



Fig. 2.9 represents the dynamic response of the time optimal
control system with a control effort of C = 0.1 which is twice of
the previous value considered with the presence of the larger control
and main spacecraft masses. It is observed that the steady state
oscillation of the boom end mass increases from 17.18 ft. (5.24n0
to 31. OS ft. (9.46m) for an increase of control effort from C = 0.05
to C = O 1. The complete control manuever time is reduced to 9.929 sec.
from 14.56 sec. | |

' For the general case where the initial conditions do not lie
within the single swntch1ng region p1ecew1se solutions can be used to
obtain the system response analytically, or, as an alternative, the

more general gradient technique of Ref. 9 can be employed.
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© - IIT. OPTIMAL ESTIMATION AND CONTROL

‘-‘This chapter deals with the application of optimal estimation
anh control techniques to the attitude control of spinning spacecraft
wikh movable telescoping appendages, The estimation is accomplished
us&ng a Kalman filter to obtain estimates of the state (variation of
thE angular velocity components) of the spacecraft; this estimateo
state constitutes the input to the controller. In the controller-a
quadratic performance index is formulated to minimize the components
of excess angular velocity plus the control effort; addltlonally,

a linearized model of the overall system is employed |

The attitude conﬁrol of a splnn;ng spacecraft w1th the use of
one or two movable telescoping appendages is‘oonsidered“(Fig. 3.1).
The performance of the system is evaluated by analytical methods
for special cases and numerical integration isvused ﬁor the general
case. In this analysis, the dynamics of the driving mechanism are
completely ignored,end the control effoft:needed for the boom movement

is assumed to be present instantaneously.

1. Formulation of the Stochastic Optimal Control Problem .

This section describes the application of well known results in
optlmal linear estimation and control theory to the problem of attltude
control of spinning spacecraft. The linear equations of state X and

measurement Y are
X' = AX +BU + Gw ' (3.1)
Y =HX + v B | : (3.2)
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where the elements of the system state vector, X, represent the -
vqriation of angular velocity compdnents of the spacecraft from a
nominal state, and the elements of the measurement vector, Y, correspbnd
to the measured components of X with noise present. The vector, w,
represents random disturbances that perturb the spacecraft, and the
vector, Vv, represents the measurement noise present in the sensors.
The measurement noise (v) and the plant noise (w) are assumed to be
white Gaussian processes with zero mean.

The cost functional to be minimized here is taken as a weighted
quadratic function of the state vector plus a weighted function of

the control:
1 T
J—E{f+°° 2—;;

The optimal control vector U'minimizing J for control over the internal

f oxTox+uTRU)dr) (3.3)

0 <t<= can be expressed as:12

U=-cX | | , (3.4)
where the control gain, C, is related by ..
 c=rl%% | (3.5)

In Eq. (3.5) K is the steady state solution of the matrix Riccati
differential equation

K' = KA*ATK-KBR 'BTK+Q | (3.6)
The estimated stéte, i,is obtained from |

X'= AX+BU+F(Y-HX) o (3.7)
with the filter gain F expressed as:

F = pylyl | (3.8)
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Again P in Eq. (3.8) results from the steady stato solution of the
3 following matrix Riccati differential equation,
P' = AP+PA'-PH'V IHP+GHG' (3.9)
The quantltles W (covariance of the plant noise) and V (covariance
of the measurement noise) are obtained from the following autocorrelations:12
: E (w(t) w(t+) '} = W 6(¢) (3.10)
E (v(t) v(t+) T} = V () (3.11)

where 8(¢) represents the Dirac delta function.

. 2. Application to Two Axis Control with a Single Offset Boom

" The optimal estimation and control theory stated in Egs. (3-1) -

(3.11) will be applied; at first, to a single offset-boom system providing

7

two axis control and then to a two offset-boom system for-three axis

B 4

. control. The present study is an extension of Ref. 6 where the measurement
- noise and plantinoise are now considered in the design of the optimal
¥ controller

The movable telescoplng single offset system Onz 0) is now analyzed

(Fig. 3.1). The 11nearlzed equatlons of motion in dimensionless form

. (Ref..z, Egs. (5.4) and (5.5) and Ref. 6) for the special case of a -
- symmetrical hub result as (for b=0): :
- Tarl] o ][« 0] [u]
_;_‘ ' - L) t . + ,‘
* LS d 0 B ‘n (3.12)
] where o

i U=7z"+g ‘ (3.13)
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The other quantities in Eq. (3.12) are defined by Eqs. (2.6) - (2.8).
Eq. (3.12) can be written in the form: X' = AX+BU. The matrices

A and B resulting from Eq. (3.12) are

1o el . .l0 |
A‘[d 3] ’B‘{n] (3.14)

Wé further assume that the control, U, and the plant noise, w, enter
the system as shown in Fig. 3.2. Thus, the equations of motion of the
system, with the plgnt noise present, can be modified to the form shown
in Eq. (3.1).

a. Single Measurement System-Analytic Results

(1) Control and Filter Gains Evaluation

The details of the steady state control gain evaluation are available
in Refs. 2 and 6. Here only the results are stated. The elements of

the K matrix are

Ky, = K21 = (/n}) ‘[di (b (a/r) 7] (3.15)
gy = & (/) Gatei /e 316
Kyy = (Kpy/e){d-n (K /1)) | | (3.17)

where the sign in front of the radicals is $e1ected such that X is
positive definite. The weighting matrices Q and R in the performance index,

J, Eq. (3.3) , havejbejen selected for the present application as:

'« o] | |
@ [0 q‘x and R =(r] | (3.18)

It should be noted that previously for convenience R was selected as the

unit matrix. From Egs. (3.4), (3.5) and (3.13) it is seen that the
control has the form |

U=t =-[C; Gl | | (3:19)
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where the contrql gains are obtained from
C; = nKlZ/r; C, = nKZZ/r | (3.20)
‘Next, the steady state filter gain determination from Eq. (3.9) is
considered. For this application of two axis control with a single mea-
surement of a such that H = [1 O]T;we assume that the con;rol, U, and
the plant noise, w, enter the system together such that B = G, The

expansion of the matrix Riccati (filter) equation, Eq. (3.9) with P' =0

yields
2P e + P2V = 0 (3.21)
P yd - Pyye - P PL/V = 0 (3.22)
2P ,d - (], 9w = 0 (3.23)

Eqs.:(3.21) - (3.23) can then be solved for the elements of the two

dimensional symmetric P matrix as:

Py, = Vidr (a%+n 7w/ V)% (3.24)
P,y = * (-26VP )% (3.25)
P,, = (P11/€) (@ (P,/V) (3.26)

Again, the sign in front of the radicals is selected such that P is
positive definite. The filter gain, F, obtained from Eq. (3.8), with

H=1[1 O]T; is expressed as

FZ (3.27)

Thus, the linear model of the plant and the estimator equations
become ’ | |
X' =AX-BC X + Gw | (3.28)
X' =(A-FH-BC) X+FH X+Fv (3.29)
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The general scheme of the stochastic optimal control configuration
represented by Eqs. (3.28) and (3.29) is shown in Fig.3.2. This

configuration is taken as the basis for studying the system behavior.

The average performance (RMS value) of the optimally controlled
system, Eqs. (3.28) and (3.29), in the presence of plant and measurement
noises can be predicted from the covariances of the error and estimate.12
The state of the controlled system and the state of the estimator are;

coupled. In terms of e = X - X, Eqgs. (3.28) and (3.29) can be written as

e = (A-F)e * Fv-Gw (3.30)

X' = (A-BC)X + FHe + Fv (3.31)
The covariance matrices of ¢ and X (P'and.é,respectively), are given by12

P' = AP + PAT-FVE! + GWG' (3.32)

§' = (a-BC) § + § (A-BO)T + FVET (3.33)
since E(iér) = O,'we have

E [X(t)X(1)1] = S(1) = S()+P(x) | (3.34)

These equations allow us to predict the mean square histories of the
state variables and their cross-correlations. The mean square values of

the control variables and. their cross-correlations may be obtained as12

CEU@ U@ =csd

| (3.35)
 In this section, the steady state analytical solutionl4 to tﬁé

optimal stochastic control problem is given. The analytic solﬁiion is

obtained from Egs. (3.32) - (3.35) by using the steady state values of

the control and filter gains obtained earlier.
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By solving these equations for the special case of a single measurement
of a(wl/n) only, the steady state variances of the state and control are

obtained as (t » =):

E [o’(1)] = )3 = §11‘+ P, (3.36)

£ [82()] = séz = §,, + Py, | (3.37)

E [UP(m)] = ;% §); + 26,C,5,,+C,%S,, (3.38)
where

Sy = VFy/ (-G H(Cp/20)F, - Fy) (3.39)

§12 %’CV/Ze)Fizé : (3.40)

S,, =CV/c2n){F22f+i(dfc1n)F12/2e} | ;" ) (3.4ij

The elements Pil and P22 are given in Egs. (3.25) and (3.26), respectively.
This analytical approach can be very useful in preliminary design of

12
sensor measurement schemes.

3. Numerical Results
Some typical numerical results based on the solutions of Sec. 1

and 2 of this chapter will now be discussed. The following system

parameters are considered here for numerical integration (Fig. 3.1)2’6:
I =1.42x107 kg-m® (10.5x10° siug-£t?)
I, = 2.05x10" kgm® (15.0x10° slug-£t)
M = 6.21x10% kg (4258 slug)
m= 816 kg (55.95 slug)
Q = 0.314 rad/sec. (3 rpm)
a=c=19.8m (65ft); b=d=0
wy(0) = 0.0391 rad/éeé; w,y(0) =0
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Four different computer algorithms are required for the
numerical solution: 1) the calculation of the control system
gains using the matrix Riccati equation for the deterministic
system (no-noise)ls, 2) the calculation of the control system
géins using the matrix Riccati equation with the filter algorithm15
i.e. - "filter gains," 3) a means of simulating random noise
input to the plant as well as in the measurement device, 4) the
simulation of the system dynamics using the control laws from
1) andtZ) and a model of the noise from 3).

a. Two Axis Control with Single Offset Boom.

(1) Single Measurement System

When a singlé boom is offset from the z axis and the hub is
symmetrical (I = I1 = IZ), it was shown earlier that the control
and filter gains can be obtained analytically. The process of
determining the weighting matrices for the nondimensionalized form
of the gtate equations was given in Sec. 5 of the last chapter. N
Here the details regarding the determination of the covariances of
the measurement and plant noises for the nondimensionalized form
“of the state and measurement equations lare considered.

The original state and measurement eqhations of the controlled
system in the tiﬁe domain are expfessed as:

X, = A X *B,U *Gu, , (3.42)

Yo HOXO+V0 : i - (3.43)
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The dimensionless equations corresponding to Eqs. (3.42) and
(3.43) are:
X' = AX+BU+Gu - (3.44)
Y = HX+v | . (3.45)
Then, the covariahces of the measurement noise (V) and the plant
noise (W) in dimensionless form arerelated to their original (time

domain) values by

v=v/a® o | (3.46)
W=W /e 2,4 | : o (3.47)
" With the values of o = 0.04 rad/sec and 2= 5.4 m |
max : mn

(17.72ft), thek following numerical values for the parameters

result: : - -3
d = 0.441, e = 0.428, n = 5.929x10

The optimal control lvaw éfor the values of
Qo EO J = 625 rad 2
and R, ] = 0.00372 m® sec” (0’.04 % sec-d') are obtained

as follows. The values of q and r in Eq. (3.18) are related to q, and

Yo bY
‘ q = aq, = 196.25
r = sz 2 = 0.397

Thus, the constant control gain matrix is obtained from Eq. (3;20) as:

= [-3.3188 31.366]

-35-




The matrix, H, in the measurement equation for a single

measurement of w; only becomes
=[1 0]
The covariances of the measurement and plant noises are assumed to

have the following values:

v, = 1078 rad? sec™?
| W_=107% ££% sec™® (0.093x10 %nsec™h

i [0} : :
! ’ ek
which appear to representative of the current‘capability of measurement
devices. Then, the values of V and W are related to vy and LA by
V=V /a? = 0.1014x10™*

W= W /g 2o% = 0.3276x107%

The filter gain is obtained from Eq. (3.27) as:
- [ 0.0104960]
~| -0.0001287

- The dyhamic Tesponses ef the system are obtained by integrating
the linearized plant and estimator equations represented by Eqs. (3.28)
andkC3.29). The decay of nutation and the motion of the boom en& B
ma%é‘is illustrated in Fig. 3.3(a). The nutation angle reaches a_
vaiue of 0.0142 deg. after 200 secs. from an initial value of 5.0 deg.
It!is seen that within 100-120 secs. (without damping in the boom
extension mechanism) the transient part of the boom end maés'motion v
is removed leaving a remalnlng steady state osc1llat10n with an
amplltude of 38.5 ft. (11.74m); with the presence of boom damping shown,

the amplltude of the boom motion has been reduced to essentially Zero

within 175 secs.
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The random noise present in the sensor measuring scheme, v,
which is simulated by generating random numbers with a zero mean
Gaussian distribution, and the actual output of the sensor (Y1 = w1+v)
are illustrated in Fig. 3.3(b). Also indicated are the time response
of the transverse angular velocity components [ml,w) and their estimated

values (&1,82 ). It is observed that the estimate of the state: (él &Z)T
has a very good correlation with the actual state: (ml.wz)T for the

given initial conditions. Within the plotting accuracy this difference
can not be detected. " | |

Next, the case of a larger control mass and a larger main Space-
craft mass, as considered in the earlier chapter,'ié taken as an
example for studying the dynamic response of the system. The values
of the masses selected are: '

M

19.98x10° kg (1.37x10° slug)

m 4

2.625x10" kg (1800 slug)

such that m/M remains at 0.013 (as in Fig; 3.3(a)). o
Figs. 3.4(a) and (b) show the time histofies of the control and

filter gains for the single offset boom case with the single measurement

of angular velocity wy only. In all these cases, the responses

indicate that the transients are brief, and steady state”valueszof K

. and F are rapidly reached. For this special case, the éteady state

control and filter gains are obtained analytically b} solving the

respective algebraic matrix Riccati equation. The plant noise énd

measurement noise are assumed to have covariance values of W=V = 10.6

(dimensionless).
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The weighting matrices of state, Q, and control, R, are indicated
in the figure. Also the steady state average performance of the

12 from the covariance of the error

system is obtained analytically
and estimate. The average value of the nutation angle from the
covariance analysis of Sec. 2. a(2) is obtained as 0.02 deg.

|  The dynamic responses of the system for constant (steady state)
c%ntrol and filter gains are shown in Fig. 3.5 for an initial nutation
aﬁgle of 5.0 degrees. The spacecraft considered is spinning at an
angular velocity of @ = 0.314 rad/eee. about the 'z' axis. For

the selected weighting matrices, Q and R, as shown, the decay of
nhtation angle 1is represented in Fig. 3.5(a) where the maximum
amplitude of boom length is taken as 17.72 ft. (5.4m). The motion

of the boom end mass during nutation decay is illustrated. Tt;is |

seen that, after approximately 25 secs. without damping in the

boom extension mechanism, a steady state oscillation would remain

‘with an amplitude‘of 13.69 ft. (4.17 m.); with the presence of the
“boom damping shown, the amplitude of the motion has been essentially

~reduced to zero within 100 secs. The random noise present in the

sensor, actual output of the sensor and the transient response of

the_engular velocity components and their estimates are shown in

‘Fig. 3.5(b).

The effect of the intensity of the eenenr aﬂd plant no1se is

considered next f01 the 51ng1e measurement (m ) scheme
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Whén_the covariance is changed from the earlier value of W=v=10"0

toja new value of 10'4

, the transient response of the system remains
eséentially unchanged except the steady state (RMS) value of the

nutation angle is increased from 0.02 degree to 0.2 degree.

(2) Two Measurement System

The traﬁsient response of the filter gains (F) whenhbbth
megsurements wy and w, are made is shown in Fig. 3.6. The resulting
dynamic response of the system for the larger control mass produced
byéihe constant control and filter gains coincides with the earlier
ca;e of single measurement of.m1 only. Also the system transient
response for the deterministicr;ase6 (no nbise present) isrcpmpared
with the stochastic system transient response and it is fbund that
both have essentially the same response for the system parameters

;
ana initial conditions considered here. It can be seen that the
stochastic syétem has a steady state (RMS) nutation angle of 0.02

deéree which is not characteristic of the deterministic_case.6

(This is consistent with the analytic result described earlier.)

b. Three Axis Control Using Two Offset Booms

_ For the general case of three-axis control numerical methods

~ are used to solve the matrix Riccati equation. The dyﬁamics'of
the controlled,sYstem arerdbtained'by numerical integration of

Egs..(3.28) and (3.29) as developed in Refs. 2 and 6.
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The matrices A and B in Eqs. (3.28) and (3.29) for this
appiication of two boom system for three axis contrdl, using the
larger control mésﬁes, ﬁith the selected system parameters are
obtained as: | h

0.0018015 -0.6667980 0.
A= | 0.6667980 -0.0018015 O.
o 0.0 0.

[To.0082732  0.637957 0.0 |
| 0.0 0.0 0.384811

SO O

: .
The reference length 2 has been assumed to be 100 ft. (30.48m) and
!

the control signals and plant noises are assumed to enter together such

that B = G. In the measuring schéme all the variations of angular

velocity components of the spacecraft from a nominal state are measured.
The optimal control constant gain, C, obtainediby solving the

matrix Riccati equation (Eq. (3.6)) numerically canzbe expréssed asz’6:

c= .| -2.2242  3.8489 0.0
: 0.0 0.0 - 3.1401
Similarly, the optimal filter constant gain,HF3 obtained from the

steady state sdlhtions of Eq; (3.9) can be written in the form:

0.3607  -0.1047

- 0.0
-0.1047 -0.5045 -.0.0
0.0 0.0 0.3848

An example of the application of a two boom system for three
axis control is shown in Fig. 3.7. where initial perturbations are
assumed to be present in all three angular rates. The decay of nutation

angle is showns in Fig. 3.7(a).
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It is seen that the nutation is reduced to approximately zero within
30 secs. Also, shown in the figure are the time responses of the
z - boom motion when there is no damping present in the boom driving
mechanism and when it is present. With the value shown in the figuré
for boom damping, the boom motion can be reduced to zero within 100 secs.
The response of x - boom motion as shown in Fig. 3.7(a) increases
linearly with time without any limitation. This is due to the fact
that control of the spin angular velocity magnitude for the linearized
system depends on the x - boom motion as seen from the numericalkvalues
of the matrices indicated earlier. Due to the stochastic disturbances,
t@e angular velocity component about the '3' axis fluctuates fromﬂifs
naminal value, which forces the x - boom as shown in Fig. 3.7(a). As
. this is not desirable, a spring force is now iassumed to be present
in the x - bo&m mechanism as shown which briﬁgsvthe X - boom within ’ﬁ
a maximm amplitude of 23.5 ft. (7.16m). The damping present in thé
boom for the selected system parameters is very weak and, hence,
additional damping in the x -Vbooh'driving mechanism is neededito bring
the x - boom motion to zero value in a reasonable time peridd,
The time Tesponses of the angular velocity components w,,u,
w; and their respective estimates 51,82, and 83 are illustrated in

and
Fig. 3.7(b). It is seen that the difference between the estimates of

the components of angular velocity and the actual values of these

components is negligible within the plotting accuracy.

-41-



The spin angular velocity reaches the desired value of 0.314 rad/sec.-
from an initial value of 0.35 rad/sec. within 20 secs. and fluctuates
with a small amplitude (hot observable orifthé figure) which is

responsible for the x - boom motion dissucssed earlier.
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Fig. 3.1. Two Boom Orientation System
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IV. CONCLUDING COMMENTS

As a result of the analysis and numerical results the following -
conclusions regarding the time optimal and stochastic optimal control
uéing telescoping booms can be made: |

A. TIME OPTIMAL CONTROL

1. The time optimal control problem is solved analytically for
a single offset boom where the initial conditions are such that the
system can be driven to the equilibrium state with a single switching
in the bang-bang optimal sequence.

2. The large amplitudes of the single offset control boom dis-

* placement can be reduced to a reasonable practical value by increasing

the size of the control mass. This also reduces the nutation angle
steady‘state amplitude to a negligible value. |

3. For the general case where the initial conditions do not lie
within the single switching region piecewise solutions can be used
to obtain the system respoﬁse.

B. STOCHASTIC OPTIMAL CONTROL

1. In the area of stochasﬁic optimal control, the average
performance of the controlled system in the presence of plant and
measurement noises for the case of single boom offset system with
the measurement of one of the transverse angular velocity components

can be predicted from the covariances of the error and estimate.
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| 2. The dynamics of spinning spacecraft using one or two movable
teléscoping offset boom systems for the general casé with étochastic
inﬁuts are obtained using numerical ihtegration. It is seen that the
difference between the estimates of the components of the angular
velocity and the actual values of these components is negligble for
the covariances, initial conditions, and system parameters considered
here.

3. In the case of three axis control using two orthogonal booms,
thg motion of the boom in a direction orthogonal to the spin axis
increases linearly with time. This is due to the fact that control
of the spin angular velocity magnitude for the linearized system
depends on this boom motion. Due to the stochastic disturbances, the
spin magnitude fluctuates from its nominal value, which forces the (x)
boom. In order to remove_this undesirable motion, additional damping
in this boom driving mechanism and aspring force acting on therboom
mass is needed. In the determihistic case, the spin magnitude reéches
the desired value and remains constant; the motion of the (x) boom

reaches a steay state (constant) amplitude.
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A.

COMMON Y

coMMmon TIt1,I2,13,M8,

cOoMMan N M

COMPUTER PROGRAMS

TIME OPTIMAL CONTROL

M1,M2,LM

 EQUIVALENCE (Y¥Y(1),WiNY,

SCOMMON C(3p3)

foD\ NQMHLLY{Z) NZMJJ(Y{dlLD7N1

EQUIVALENCE (Y(S),DXN), (Y(b)rZN):(Y(7) XN)

CALL INOUT(2,5)

CALL OBEN (1, “SELLAPPAN®

LKLTFﬁi

3.
.
’
P
”
°
v!'.
-
”
il
. o
o
L
.
’
.
-
.
e

Yo

TFCIERWNE.TY sTOP UNABLE TO OPEN FILE
EAD (2,91 TMAX, STEP TOL_“ i

BEAD(Z, 91} SI7ZE
: 91 FORMAT(8F10,0)
: PARM(1)=0,0
e PARM(2)=TMAY
e 0T PARM(CT)=STEP o
3 C CINITIAL VALUES S
. READ(2,91%) T1,12,13,M8
: READ(2,911) M1,M2,LM.
. 'READ(2,911) AA,BB,CC,DD

EORMAT(AERD A)

WRITE(S,96) Mi, M2, i M

: DZN=0,0
: DXN=0,0
— ZN 0 0
: WRITE(5,92) TMAX,STEP,TOL
: WRITE(S,95) I1,12,13

WRITE(5,97) AA,BB,CC,

WRITE(5,98) SIZE ,
>  WRITE(S,99) FrRE T ol : : '
H : 2 FORMAT(' 1TMAX=',F8 4, lox.‘STEP ,FS.“:lOX,'TOL:',Fa.é)
i 95 FORMAT('0I1=’,F15,2,2%,°12=",F15,2,2X,°13=',F15,2)
. 98 FQRMAT('QML='}F1§ >,>x,'m;=' F1= 202X, " M-;hﬁLi 2)
g 9T FORMAT('"0AA=",FB. M.SX.'BB=’ «845%,'CC=",F8,4,5X,°0D0=’,F8.4)
v 98 FORMAT(*0SIZE*,7F8.4) : o ‘
s 98 FARMAT(*1°* TA.'T'.Tt?.'W1’.T30.'W?' TU3,*W3*,755,°D2°,
s 2T69,'DX*, TR, 2,794, X", T108, THETA,T11S, ' IHLF*,/)
H CALL RKSCL(N,SIZE,DY,TOL,PARM)
. _ CALL RXGS(PARM,Y,DY,N,IHLE,BSQC1,850C2,WARK)
$ - WNRITE(S5,100) IHLF R
5 100 FORMAT(*OIKHLF= ,13)
s o CALY EXTT
H END
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P[ . PROGRAM IS RELOCATABLE | -
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EQRT/A/B/E/O/S EQAT LS/

LISTING

SUBROUTINE BSOCl(T Yy DY]
_OIMENSION ¥(Z),0Y(7),0(3,3)

REAL IlpIZ;IB,MB,MlpMEaLM
COMMON WIN,W2N,W3IN,DZN,DXN, ZN, XN

NArnMMQM—L4+LarL$»M&»ML+M2A»KT
: 'ﬂﬁ::‘:tjﬁ4hﬁflh¢ NopM o PR
- COMMON AA,BB, CC'DD

coMMaN ¢

TS=0,54
TF=6.12

IE¢T.GT,TS) GO TQ 40
.- CO=+40,03 S

60 TE 30 R

_ag IECT.GILTF) GO TO §a.

€0==0,03
GO. TO 30
$0-C0=0_0

+ CO30CONTINUE i i e
. ..CAL,OF .COEFF FOR LHS OF wATRIx EQN,__
”iu.uLxLaaimzL¢LMa¢M1+M:1 »

-

L B

ULMaUxLM»M
NONDIMENSIONALIZATION
ATL=T1ULM

(g]

L AL3=I3/ULM RS S
‘iﬁt:A&/[M‘ -

s

C2=88/LM

C3=CC/LM
CU=0D /M

o w0 we wglsg we Yo vo we Yo ’Q,’,;q‘ (TR IRIEAIN URINTE NI TE LI ‘Q<\. o

M1 (MB+M2) / ((MB+MT M) *UY
U2=M2x (MB+M1)/((MB+MLI+M2)xUY =
=M eMI /(MR LM 2MBY *11) :

h b

C(lri) AI1*U1*(C2*C2+ZN*ZV)+U2*(C3*C3+CU*CU\
! x=2 0*U3x (C2%CI+CU*ZN)
e —-,—-——-——C—(—l—,-l-)--'_u_l 2 (C1xC2) el 2xCT XN+ (C1ALILC2oXN].

I
-e w9

Y, Ul X (CL*ZN ) =U2%xCUxXNFUSR (CL*CU+ZNXXN)
;;(Z;I)=-U1*(C1*C21-U2*CS*XN+U3*(CI*C3+C2*XN)

3 Y p2) =812+ U1k (CLeCt+7ZNPZNY+1I2x (CAXCASXNAXN])
N ; o2 0*U3x(C1*XN+CLAZN)

i H C(2,3)=~U1l*x(C2*xZN) = U2*C3*Ca+u3*(CZ*CA+C3*ZN)

: v — L3, ) ==l e (CLaZN ) =U2 2 CARXNLU IR (CLACULZINRXN)

’*-FC(B.Z)--UI*(CZ*ZN) ~U2*xC3*CU+UIX(C2*CL+CIRINY
03,3 AIS+U1*(CL*C1+C2*C2)+U2*(C3*C3+XN*XN)
-*ggraxu;ch;xc3+r1*xM1

O

CaL. OF RHS OF MATRIX EQGN

CN=C1/(AT1+C1%C1)
DE=0,0

CAZN=(CO/CN)=DF %xDZN~ ZN :
AXN=0,0 '
_8N=t Ora3N

'

Alt= (AIS AT2)*W2NxSN
A121==Cl*ZNXWIN*WIN+ (C2xC2=ZN*ZN) *W2N*SN+C1*C2*WIN*SN
‘__r_______LLaz.anxZM:DLMta¢N¢C21LMLL"MxSﬁ-&awaaN)éCZxAzN

EIBR T (SR TNE YRS (AT IR TOR (LT 5 %S

- A2zl a2 XNEWINKWINS (CI#CI=CUXCL) *WIMNASN+CIXXN*W{N*SN
A2 Uz==2,0%C3XxDXNXWIN=2 O0*CUXDXN*SN+CI*Cdx (SNxSN-W2INXxpi2M)
Al2=t]t % (A121+A122) D% (A123+8124)

i
v
Ne wa.we

AiS= -(Fi*CU+ZN*XN)*w1N*w2N+2 O (C2*xC3=CUXZN) xW2N*SN
L e L e B R e
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| | : !

A16S(CI*CI+C2xXN)I *WINRSN+2, o*CAtDZN*wzv -2, 0*C2*DXN*W2N
AlZ=a2 QxDYN+ZM2SNe(C2eCHeCI®ZN) #(SNeSNaWIMAWINISCIXAZN
A13=U3x(A1S+A16+A17)

DY(1)==(A11+A12-A13)

B11=(AT1=ATI)XSNXWIN
Bl121==C2*xZNXWINXWINF+CIXC2xWIN*SN+(C1*C1=ZN*ZN) *SN*WIN
6122--2 O*ZN*DZN*W2N+C1*ZN*(SN*SN-WIN*W1N)+C1*AZN

8120--2 0*XN*DXN*W2N+CQ*XN*(SN*SN-W1N*W1N) «CU*AXN
Bi2=U1x(B121+B122)+U2*(B123+B124)

: BiS==(Co*xCA+CIxZN )W IN*WIN+ (CI*ACT+CIxXN) # W2 >IN
L BYeS2 e 0 R (CL*XN=CU*IN ) #SN*NIN=2 0 (CLDXN+CU*DZN) #W2N
0 BLT72(CI*CA+XN*ZN) * (SNASN=WIN#WINY +XN*AZN=ZN*AXN
Bi{I=Tx(R1S+B16+817)
DY(2)==(B11=B12+813)
CI1SCAI2=AT ) xWIN*W2N
,_,_~.~___C424—4CZxcanCLxCLLx&LquaMACLxZMxmzstMicaxLNxSMx&1N
C122=2 . 0*CI*DZN*WIN+2 L0 C2*DIN*W2N+CL*C2% (WIN*WIN~W2N*W2N)
CL23z(CICTmXNEXNY *WINNNSN=CO*XN*WIN*SN+CI*CU*SNAWIN
Ci2U=w2 OxYNROXMESNSICTXNE (WINXHINaWINFWNIN)+CT+AXN
Cl2=Uutx(Cla21+C122)+U2*x(C123+C124)
C15=22,0%(C2*C3=CL*#XN)*WNIN*WN=(CI*CU+XN2ZN) *W2NxSN
Lt 32 ZN)+SNAWINE2  QAXNADIN*NINED 0k CIRDXN®WIN
.C17=-2. O*CI*DXN*SN+€C1*C3+CZ*XN)*(W!N*W1N-WEN*W?N)+C2*AXM
CL3=U3X(C1S+CLe+CLTY . 0 v . ‘ :
DY(3y=w (Ll leC12+C 1Y : : et
- DY (4)=AZN i
DY (S)=4aXN
DY(6)=DZN
DY(?) DXN . i E ':12-':; :1___.
-CALL. SI“Q(C DY, ,Ks
S IF(KSY 3,2,% S
RETURN
NRITE(S,4)
_FQaMAT(//

. = e ve wp fo o Se e %0 ve Yo ve e Yo vy

* SINGULAR FQUATIONS®)

PROGRAM IS RELOCATABLE

— «L1T¢ B3QC1
S IURT/A/B/E/P/S FGRT LS/“ 5 S

g édhahnrtms BRSOC2LT,Y, DY, IHLE,NDUM,P)
i LOGICAL .RKNXT
2 DIMENSION Y(7),0Y(7),DUMMY(7) -
OIMENSION X(7) - -
REAL T1,12,13,MB,ML,M2,LM 70 0 i
COMMON WIN,W2N,W3N,DZN,DXN,ZN, XN .
_COMMON II,IB,Is,Mﬂ,MI, zL[M i
COMMON N, M ~
COMMON A4,B8,CC,0D°
__DEG=57,295779S ‘
T gALL BSOCICT, Y;DUMMYJ
. WS=0,314 .
X(1Y=Y (1) #wS
X(2)=Y(2) *WS
X(3)=(1.,0+Y(3))*WS
X (AY=Y (N) k| M3
X(S)=Y(3)xLM*WS
X(8)=Y(b)aLM
P EAALEARAR IR
HisIt=xX(1) - eq

‘9

ALER LR TR TN LI TN wo . weo



: | Ha‘rz*xca)

. Aascjtilfll ‘ : R :

3 THETASATANZ (SGRT (R1%H1+H2%H2) , HSJ*DEG

: TA=T/WS

) — — JP=TA40.00005
: 4 ©oIRCG NOT.RKNXT (IHLFY) GO TO & |
e U WRITE(S,1)Y TP, XpTHETA,IKLF o |
—-—+———f—;-aanmA1¢+xfa4rafls+srlfaa,a,LLal______*__________________

WRITE BINARY(1) TA,THETA,X(7),X(6),%X(3),X(2),%X(1)

3
: 8 CONTINUE
3 RETURN

PROGRAM 1S RELOCATABLE
+TITL BS0C2
e,-4RLnRAM_laa4s_aaL~moa_na3_naa,sse LB _EQRT LB
- "IDELETE/V SELLAPPAN L n A
I DELETED SELLAPPAN - '
S VCREATE qFL;AQpAM"
LEXEC

-60-
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B. KAIMAN FILTER PROGRAM

. “""EL S ;—R‘&GQ—A M—TF . . . S “ A,

s C RICCATI EGUATION PROGRAM (RICATI)

: DIMENSION A(10,10),8(10,10),C(10,10),R(10,10),Q(€10,10),
——r—————f*f&fre~+e+w&ero—ro+~*<re%~Fffo—f0+~E+t&—;vr,

CAIGCEO,T0) HC10,10).5¢10,10)
 DIMENSION V(3,3),LL(3),MM(3) , R
REAL—H - i e i
INTEGER QPTION,BLANK '
COMMON/KALMAN/ICC, IFF,BLANK _
B A AR LA M e
”‘CALL INOUTCZ:S) ' s TEL

o.%Ng B8 e ~ ggilwu

; 1003 FORMAT ({H0,S5X,13H THE A MATRIX/)

s 1004 FURMAT (1H0,SX,13H THE B MATRIX/)

— fﬁ@i*FGﬁ*tF*ftH&*i%*bSH—*HE—&*“#Fﬂlffr —
‘1006 FORMAT(BF10.3) S e

CEO40- FORMAT (LF0.0)Y -0 0 'ﬁ?f:gﬂ*ta~m‘<' B LN A PN
T TP ORMAT— Aty PHy 2F E0-s3y F3y— — : — ' -
s 1008 FOURMAT(LHO,45(1H*))
: 1009 FORMAT (1HO,SX,21Hx+«x FILTER QPTION x2x/)
——'—-fﬁfﬁ—re%%kF“ﬁtH&-SXTBZH***—EONFROL -GPTFLON—** 4t e
2 FURMAT (6.(1PE20.8)) S -
4 2. FORMAT CIHO,5X, 13H THE R MATRIX/) LT , R
et TP ORMA T-CERO7 5%y E3H—THE - Q- MATREX /A F—— - S —
;3 1020 FORMAT(1HO0,SX,13H THE V MATRIX/) : '
; 1014 FORMAT (1HO,SX,19H INITIAL CONDITIONS/)
O TS P ORMAT GO0 S X 8N T EME—S 5t PE2 058/ 6 X7 SHEATNS)
i & FORMATCLHO,5X, EIHSTEADY'STATE*SOLUTION// g §~r
ey 6% pbH GAINS/Y . o - » G
O READ (2T O O E N M
’

WRITE(S,1000)
WRITE(S,1001) N,M,L
ﬂﬁifELS:rﬁﬁﬁf

READ 25006 CAEE I rrdats N
110 WRITE(S,1011) C(ACIL,J),J=t,N)
WRITE(S5,1004)
UU f(U L—If
. REAocz,inoéJ (BCJ,L) p=1,N)
:ﬁuzao,NRITacs 1018y (BCJ, I) J=1,N)
—REFFE 55 1+085) - N
DO 130 I=i,L
READ (2,1006) (C(I,J),J=1,N)

LD\I ""\'J.FC.'\J; ﬁflLJ \LLLa\JJlJ—Ll'ff

150 READ(2,1007,END=999). UPTION T1,42,NPT' )

S WRTTE(S,1008) oo B O P I
stﬂPff8H~Eﬁ7ﬁb&%k+—G8—Fﬁ—fﬁu e - — e
IF(OPTION,EQ,.ICC)Y GO TO 300

WRITE(S,1009)

NS

~oNG=M

e wd Ne Mo wd WE VR wg Se we =g R wR W ~c~o~+
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S R R

XX

XePTS/XH oo s

H DO 230 I= 1 N
s E(I-J} C(J II5”' S
£ 0O 2200 d= 1,M R
—J—w—EEG—D%%TJ}-SGIrJA' -
H DO 230 J=1,N
H 230 F(l,J)=A(1,J)
3o B 330 J=1,8
T 330{;(: JISAQILTY
+*———009—WR}$EGSr}9}2’ - - —— e -
. DO 410 I=t,NR ,
: READ(2,1040) (R(I,J),J=1,NR)
?*—T-%Q—&R—HE-(—S--E%H—{R—C—I—r&)—rJ' MR
k L CWRITE(S,1013)- SRR
: D0 820 TS, NG “.2«7;,]?¢;* |
——:——-—-——RE-A-BfE-r-I-OH—J——(-G}( FDUR TR L -
H 420 WRITE(S,1011) (QCI,J).,J=1,NQ)
e DO 430 I=1,NR
-7—4—————99~w%9—&1+1wa
ol 030 VT -JdY=R(IJ) S
e CALL MINV LV, NR U,LL,MM)
—’7“‘—“‘"‘-‘#9‘1 .F‘E_(“‘S‘ri"otu + -
H D0 425 I=i,MR
: a2s WRITE(S 1011) (V(I,J),J=1,NR)
s 440 R(I J) Q(I J)+V(I II)*F(J II)
H IF(OPTION,EG,ICC) GO TO 500
l—r—;————ae—%se—r%—rst ——- e e o2
H 450 G(I1,J)=6¢I,J)+0CI,II)*QCII,Jd) ‘
H 00 460 I=1,N
7 n.,..:#cu ..J-r,l‘v';
-t e (“I"" J“)“'Q'(‘I"“H +G€15 I'I‘“}‘*D("J’r Tt} -
: 500 IF(NPT.GT.0) GO TO S30
H D0 520 I=1,N
rs ub :U.u Jet
:: S10.°6(1,J)30.0
B 520 GLI,I)=1,.0 T e T
: EPS'O"‘}. . . : PR . b anil e e e e
H GO TQ S70
H 530 WRITt(:.loiﬁ)
I v -BU—Se 0T sty
;;A, - READ(2,1006) (G(L,J),Jd=1,N)
e 540 WRITE(S, 1011) (G(I,J),d= lyN)
~;-~—~~%4}4=(5, - B el
H TIME= ABS(TZ T1)
; PTS=200,0%xTIME




ID=XxX
—BI=To— ‘ —
; YY'AES(XX-DI)‘. ,
U IF(YY,GT.0,05) ID= ID+1 ST e e B
*‘*“‘“‘”IF‘PFJ" . . o L o , : i
EPS=0,005" '
TIME=T1
‘-*————"—*fFfGP+f8N—E9—%&6?—¥%ME’
NRITE(S 1015) TIME PR
DQ_SéO}I =t ,NR IRt
BE-5S0—F=tiN-
K ( I ’ J) =O » 0 '
DO S50 II=1,N
——*———59&~*€T—ﬁf‘*{f—&?*ﬁﬁf*i}f*Gﬁf-,uz
560 WRITE(S 1011) (K(I J) J 1 N) "7
; 0870, LC=0. RN Do o e
g FEHE I“G
S75 DO 580 I=1,NR
D3 580 J=1,N
~KCId =050 DT
,?0 580 11=1, N S .
0 KCEpJY ST, J)+RCI.II)*G(II.
H —~5-590— =t N -
H D0 590 J=1,N
; H(I,J)=0,0
o N BE-390—LtI=twMNR- ——
$ % S90HCL,J)H(I,J)+ECT, IIJ*K(II JJ :
; 4'¥ INTDE) 6} Q I I N . . B :;, . ) e - ] . . -
__..Df)._e I.:)__J N —— — . . — : R —
C(I,J)=G(I,Jd) :
DG 600 II=1,N '
BT \.r}”‘*tr(*—f*—d')a +FCE T > G I—J )*+G ¢y ) *Ff‘h TIY=G e TEY*HEI Twd)—

e \' \‘Qﬁ‘- vQ“ -

-

-e o w ‘.39_ -

\.i

-

o ne

SCE, 312G (I,J)+D (L, JIXEPS.

F(NPTLLE,0) 60 TO 640 L T A B ey e
A Le‘tekx Do L B : co i
CIF(LC.LTLICH) GG TO 625

ICH=ICH+ID

A

et
ZALC*EPS
: IME= TLEeT L T
“7“—”“4““’}F(0?Tf6h fﬁ‘f€€)~%§%&‘?2'
WRITE(S,1015) TIME
DO 620 I=1,NR
6?@‘#Rffff§‘1ﬁ1¢?‘f&ff“ﬂT"i‘ffﬁu
- TC GE ITY GO T :
= 625, DO 630 . I= 1, N :
— MCG*63ﬁ*ﬂ‘T7
630 G(I,J)=8S(I,Jd)
‘ GO TQ S75
—EE—FEME oS0
f;UG 850 I=1,N"
- pa 650 -J= 1 N S Y ) : o
- ‘ 6T_ﬂ}i——“ , S h L -
650 G(I,J)=S(I,J)
IF(SUM.GT,0,01) GO TQ 573
_ "NL(cL3rLU£or : ‘
o DY 8&0 I=L MR o
.QfééofﬁRITE(S o) (K(I J) J SN
' GO O0—tS50—
999 CONTINUE
CALL EXIT

[

ey

®
’
‘
’
.
byt 4

" e’ g ve w2 g ‘. 7

i
%
1w
RE
$°

~§ “e va ~q we .'n. wy wo we



1

e i e A A e e dede ¥ e de e I e SRk R R <o e s

THE A MATRIX

[ LiB0150000E =3 . =£.66798000E =1 . 0.00000000E 0
.66798000E =1 =1,80150000E «3 . "0,00000000E 0
6000800 0E—0— o—o&ooooooe—~ﬂ-#*4;0*ﬁoooooooe~—o-~-«—~*

THE 8 MATRIX

27320300E -3 0 8.37957000E =1. . 0,00000000€ 0
«0000000CE | 'Q{gﬂq¢QOQQOOQpE’QQEJﬁ;.;3.8&811000‘ -1

THE C MATRIX

F 0o 000G E—0——— 05000 0000 0E—0———0500000000E —0— —— ——
0,00000000E 0.  1.00000000E 0 . 0,00000000€ 0
0000000008 0 . 0,00000000€ "0 . 1.00000000E -0

Jedede e de ek kA A dr ok ode ok ke kK ke g e de ke de ok gk ko Ok e e e ok e e ok gk ke ke

rr P HETER—OPTEON

1,00000000E =4 © 0.00000000E O 0,00000000E 0
—000000000E—0————1s00000000E 5 0= 000000008 —0-—————
»00000000E - 0 - 0.00000000E - 0 ©1.00000000E =5 |

FHE—g—MAT

1.00000000E =6 0,00000000E
TOROTE0a000E 013000000008

9.99999600E 5 . 0.00000000E
0,00000000E 0  9.99999500E
T ORePONesOE T 0000000908

e i

0.00000000E 0
0.00000000E 0
~9+99999600E—5———

= V) )

INITIAL CONDITIONS

—— e ot

0.00000000E O | 0.00000000E 0 ' 0.00000000E 0
0.,00000000E @ 0.00000000E O 0.00000000E 0

OO0 E 05 000000 COE—0— 050000 00¢OE—0———

*********#kﬁ*t******i**********#*#***********
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C. THREE AXIS OPTIMAL ATTITUDE CONTROL

SIRTIES RURTRY

STﬁCﬁTSTTC_OPfTMtC‘tTTrTGUE‘CONTRGi
THREE AXIS CONTRQOL=-TWQ BOOM SYSTEM
EXTERNAL SOAC1,S0AC2

» QN—?#RNfST‘fff@T‘UftrﬁT‘WURKt&‘TGT—STTElTG}

REAL It,I12,13, LM
.COMMQON. Y

—-r———————COMMUN—TTTT2TT37LM

COMMON N
COMMON wW1,Ww2,VN1,VN2,VN3

-

——r——;4——*ccwm0v*rxv2—SVZ—WWV{

——COMMON IXWI7SWI7AMWE
~COMMON. IXW2,SW2,AMN2
TCOMMON IXVI,SV1,AMVL

‘i’ : COMMON IXV3,SV3,AMV3 -
: EQUIVALENCE (YC(1),WIN), (Y C(2) , WaN), (Y (3) ,W3N)
: 58 EOULYACENCE (Yt T FEN TN Y 7 Oy ST ERSN T 7 Y (BT 7 EWSNT
T s fEQUIVALENCE CYC(TY,DZNY » (Y (8),DXN), (Y(9),ZN] (Y (10), XN)
1 s L UCALL INOUT(Z2,5) :
H —CALCC OPEN"CT7; *SECLAPPAN—37IERY
3 IF(IER.NE,1) STOP UNABLE TO OPEN FILE
T : READ(2,91) TMAX,STEP,TOL
H B READ(Z, 91T SIZE , -
Lt CREAD(2,90) I1,I2,13,LM
1‘ 5 90 FURMAT (4F20,0)
—1————9T*FURwKTTTUFc o)
; : PARM(1)=0,0
T ; PARM(2) =TMAX
. 3 ‘ ,,FKRﬂT§I-bt:H
H CUNSTO ‘
e - ‘WiNs 0.0:91/0.31&
= =3 WZN=U,0
H W3N=(0,35=-0,314)/0,314
o H ENiIN=0,0391/0,314
: H — ENENEQ,U T )
w 5 L EWIN=(0, 35-0. 314)/0 31&,_.,A
3 3 CIDZN=0L0 . o
L 7 IN=T,0
e : DXN=0.0
: . XN=0.,0
= T T LXRTELZED
. : T SW1=0.001
H AMwW1=0,0
o H IXW2=T2489%
g : Sw2=0,001
- : . AMW2=0,0
- i TTIXVIET2US
i H . 8Vi=0,001
. : E*'_mwv1 0,0
H Ixvy2=124s
& : Sv2=0,001
: H AMV2=0,0
—7—————“—T1V3*T?ﬁ5
* H - Sy3= 0 001




N
/.

ety

AMV $=Q 40 - —

’

— WRITFECST 92 —TMAXESTEPTTOL

: WRITE(S,»95) I1,12,I3 _

el T WRITE(S,98) SIZE '
——7_—‘—92—F6R%#Tf‘f?*t%**—P&~&—r&%—*STEP“,F&—&—r&%—Lfat-*—F&—ar——~—”“

; 95 FORMAT(*0I1=‘,F15.2,2X,12=",F15.2,2X, 13=",F15,2)

: 98 FORMAT(’0SIZE’,10F8,4)

— T CALLRKSCLINTSTZEF DY TOL7PARMY) —
o ‘CALL. RKGS(PARM Y DY oN, IHLF SOACi sonca,woax)
s JCALE. EXIT - S
B it ,‘
——PR&%R#%%%%‘%EQGCﬁTﬁBtE

LTITL +MAIN

SUBRQUTINE SOQACI(T,Y,O0Y)
DIMENSION Y(lO) DY(10)

F2riSy M

OMMON WIN, W2N,WIN,EWIN, EWZN;EWBN DZN DXN "IN, XN
QCOMM0N7II 12,13,1LM

e YA AL
COMMON—N

COMMON w1l ,W2,VNL,VN2,VN3
COMMON IXW1,SWi,AMWL
———EOMMEN—EXW 2SR A M2
‘“FCUMMON IXV1,Svi,AMV1
o COMMON. IXve,Sv2, amMy2
e EOMMON—TX VTSV AMYS
CALL GAUSS(IXW1,SWwi,AMWL,W1)
CALL GAUSS(IXW2,3W2,AMW2,W2)
CALL GAUSSEE T SV EFAMV-E N Y
CALL GAUSS(IXV2,SV2,AMV2,VN2)
“CALLY GAUSS(vas,svs.AMVS VUN3)
—+———————#tt-&~&&r&&

\dyg’ w0 N0 Sh N0 N6 W) Ne e -.—

‘l_‘. \_W “e v »

-

¢ Al2=0,666798

H B11=0,0082733

e 4;_321:&76379%7

: . B32s0,384811

H r Cllzez2, 2242

H €12=3.,5489

: €23=3,14

H . F11=0,3607
'77?#%——ffr2—wv~rv¢7
N AR 1320,0-

i e “F22=0, 5045

H —F23=0,0

H F33=0.,3848

H £o=0.,2

3 == rEWrNFGTZ*E?2NT-60*62Nw2ﬁ

:l - Fi=0, 02598

: T AXN= -(C23»Ew3N+F1*DXV)-XN

‘*——‘—“7‘3¥TTT'WTTTWTN—#T2*W?NiSTTfCTr*EWtV-ETT*GT?rEWQﬁ*&TT*Wt“—*“—“
L DY(2)=A12xWIN=A] | *W2N=B21*C 11 *EWIN=B21*C12+EW2N+B21*W2
i DY(3)==B22%C23*xEW3IN+BI2*W2
§vrwrﬂﬁTrPTrﬁTﬁtnanmﬁﬁﬁ?ﬁﬁ%&ﬁWCﬁanmﬁrﬁwuﬂw
o * P LI (WINFUNT) $F12x (A2N+VN2)+F 132 (W3IN$VNI)
. v DY(S)=(A12=-F12=-B21*Cl1)*EWIN=(AL]1+F22+821*%C12)*EW2N=F23*xEW3N
TR F R IR W INF VN T TR F 2 A CW N F YN T F 2 o (W AN+ V) '
O DY(B)==F | 3xEWINCF2I*%EWIN=(F33+B32xC23)%EWINFFIZIx(WINFVN])

-

\. g Be wa “o

-

H 2 +F 23 (WIN+FVN2I #7333« (AINFYNT)
- Y- CTr=sAZN—



=

i G el ol

el

d

4

'END"

s DY(9)=DZN
2 ,»ﬁa7(i0)-UAN —
: ‘RETURN. S

PROGRAM IS RELOCATABLE

"FORT/A/B/E/P/S FORT LS/ L
LLISTING. . '

SGBROUTTNE*aGﬁL CT Y5 oY ITHEF T NDUMSP Y
LOGICAL RKNXT
DIMENSION Y(10),DY(10),0UMMY(10)

.o wp wgq

-

T DIMENSTONTXCT0)

: . REAL I1,I2,I3,LM

H U COMMON WIN,W2N,WIN,EWIN, szm.EwsN DZN,DXN, ZN,XN
—y e COMMON— Tt T2 T M

H COMMON N

s CUMMON W1,w2,VN1,VN2,VUN3

T COMMON T IX W L7 SWL 7 AMN T

rA COMMON IXW2,S5w2,AMwW2

4 LU COMMON TXVE .SV AMYL

v COMMON—T XV 273V 27 AMY-2

’ COMMON IXV3,SV3,AMV3

: DEG=57.2957795S

8 ——CALLE—STACT T Y 7OUMMY S

: S W8=0,314

: X(1)=Y(1)*WS

H *E2 =Y (2 )>wsS

H X(3)=(Y(3)+1,0)%WS

: X(4)=Y(4)*wS

v T A IS SRS

s UXCeY=Y(6) FL. OJ*WS

H CXCTISY (TI*LMEWS
‘—7 B BT rEMewS

: TX(9)=Y(9)*xLM

: XC10)=Y(10)*LM

H —HTIEITEXCT)

H L H2sSI2aX(2)

H L H3=TITAX(3)

’ THETATATANZ CSART(HT* HT#+H2#H2 ) 7HI Y *¥DEG

H TA=T/WS ‘

i TP=TA+0,0000S

— T IFCINOTIRKNXT CIHEF TG0 T0—8
P .7 WRETE(S,1) TP, X(1),%(8),X(2),X(S),X(3),X(6),X(9), X(iO)  THETA, IHLF
$ U1 FORMAT(1X,F9,4,8F13,7,F9.4,12)
: "nKLTE—STWtRYfrT‘T#“THzTk—#ffvf—rf?f_r(br-rfST“ff?f—%ﬁ?frftwr~rﬁrr"
: 8 CONTINUE
: RETURN

TENDT

TTPROGRAM TS RELOCATABLE
LTITL  sOacC2
IRLDR/M TMP/S 001 002 003 0P03SSP.LB FURT,LS

— i OECETEZV SECTAPPAN
DELETED SELLAPPAN
{CREATE SELLAPPAN

[

FEXEC




