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SUMMARY

Curved pipes have unique'stress distributions and flexibility
properties which cannot be easily reproduced using the beam elements
of the NASTRAN finite element structural analysis program. The purpose
of this research effort was to enhance the application of NASTRAN to
the structural analysis of piping systems by introducing a curved pipe
element capability. The theory used for the element stiffriess matrix
was developed from an existing flexibility matrix. The curved pipe
capability was implemented using the NASTRAN user dummy element.
The dummy element approach is compatible with most of the NASTRAN
rigid formats and requires less sophisticated programming than needed
for incorporating a new element into NASTRAN. The similarities between
the NASTRAN bar element and the curved pipe element made it possible
to use the bar element subroutines as the basis for the necessary
curved pipe subroutines. An existing program was used to link the
subroutines to NASTRAN. Test problems have been prepared and input
and output pertaining to the curved pipe element are described along

with solution results.
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INTRODUCTION

Object and Scope

Curved pipes have unique structural properties under flexure, which
cannot be easily modelled using standard NASTRAN elements. Flexure causes
an ovalization of the cross section, resulting in a significant change
in the stress distribution in the curved pipe. Longitudinal bending
stresses in the extreme fibers are relieved and high circumferential
stresses occur. As a result, the peak stress is in the circumferential
direction. This peak stress is conventionally related to that which would
exist in a sfraight pipe subjected to the same moment through a “stress
intensification factor.” An additional effect of the altered stress
redistribution is a decrease in the stiffness of the curved pipe. The
ratio of the stiffness of a straight pipe to the stiffness for the curved
pipe is denoted the "flexibility factor" and is related to the geometry
of the pipe. This behavior could be modelled using NASTRAN bar elements
by: (1) using a sufficient number of bars to model the pipe curvature;
(2) accounting for stiffness reduction by reducing the moments of inertia;
and, (3) using appropriate stiress recovery factors to simulate the stress
intensification factor. This approach would be cumbersome for a piping
system with more than a few bends. The object of this research effort is
to simplify the analysis of piping systems using NASTRAN by developing
a curved pipe element. This element would minimize the effort of the NASTRAN
user and would maintain as many of the standard NASTRAN capabilities as
possible. The NASTRAN user dummy elemert approach was chosen for

implementing this new capability because it is the simplest approach to
1



developing a new element and because the present restricted copabilities
of the curved pipe element defirition make it unsuitable for permanent
incorporation into NASTRAN at this point. Also, permanent incorporation
should be preceded by a thorough checkout of the proposed element using
the dummy element approach. The dummy element can be used for all of the
NASTRAN structural rigid formats except the piecewise iinear analysis.
The element is imp]emented by first writing FORTRAN IV subroutines for
the portions of NASTRAN which are dependent on the element used and then
linking these subroutines into NASTRAN. Capabilities which account for
offsets of bar ends from grid points, released constraints at bar ends ,
temperature loads and enforced deformation loads are included for the
element. No differential stiffness matrix is generated. A lumped mass
approach is used to described inertia properties. Input and output are
similar to that for standard NASTRAN elements.

A considerable amount of computer programming was required in
order to develop the necessary subroutines for the curved pipe element.
Maria V. Stephens of the Engineering Analysis Branch, NASA Langley
Research Center, provided this service and also provided much needed
assistance in dealing with the complicated programming logic invoived
in the general NASTRAN program. Her assistance is gratefully acknowledged.
Also, this research effort was conducted as part of the NASA-ASEE Summer

Research Program.



Literature Review

Although several finite element programs include a curved pipe
element, details about how the elements function are unavailabic. The
basis for any finite element is a stiffness or flexibility matrix which
relates the forces acting on the element to the resulting displacement.
Although several sources (References (1), (2), (3), (4)) have developed
and used stiffness matrices for curved beam elements, which have
stiffness properties similar to those of curved pipes, relatively Tittle
has been done specifically for curved pipes. A flexibility matrix
developed in Reference (5) and modified in Reference (6) is used as

the basis for this analysis.



ANALYSIS

Devé]opment of Subroutine Relationships

In order to introduce a new element capability to NASTRAN viz the
dummy element approach, five FORTRAN IV subroutines must be developed
which: (1) compute the stiffness contributions of the e]ement_to the
adjacent grid points; (2) compute mass contributions to the adjacent
grid points; (3) compute thermal and enforced deformation loads;

(4) set up force recovery matrices; and, (5) recover forces and stresses
for output. These subroutines must then be Tinked to the NASTRAN program
before the dummy element can be used. The theory invoived in these
subroutines is discussed in this section.

The development of the subroutine relationships is complicated
somewhat by the different coordinate systems involve<. NASTRAN allows
the user to define displacements at each grid point in a coordinate
system of the user's choosing. This set of coordinate systems is then
used by NASTRAN in solving for the grid point displacements. However,
the properties of an element are generally best defined using a coordinate
system peculiar to that specific element. These two coordinate system
sets are related to each other in that Loth coordinate system sets are
defined in terms of a single coordinate system, calied the “"basic"
coordinate system. The relationship between the displacement coordinate
system and the basic coordinate system is defined on bulk data cards;
information needed to define the element coordinate system in terms of
the basic system is inputted on bulk data cards, but the actual relation-

ships are developed in the first of the five "dummy" subroutines.

4



The theory used in developing the stiffness matrix for the curved
pipe element was based on the flexibility matrix described by Chen
Reference (1). The geometry and notation used by Chen is shown in
Figure (1). (The "z" direction is out of the paper). Chen's matrix
is written with reference to the center of the arc described by the
pipe centerline. It is assumed that end (b) of the bar shown 1in
Figure (1) is fixed and that a rigid connection is made between end
(a) énd the center point 0, so that the flexibility matrix relates the
deflections at point 0 to forces applied at point O, or, mathematically,

{u,} = [f] {F,3 (1)
6 x1 6 x 6 6 x1

where

{uty={u u, u © 0O 0 } is a 6 x 1 column matrix
) oy oy o, 0, oy 0,

giving the 3 component deflections and 3 component rotations at point
0 with reference to the coordinate system xyz. The flexibility matrix
[f] is a 6 x 6 matrix of influence coefficients. The force yector,

(Fy=4{F F_F_ M M M } is a 6 x 1 column matrix giving the 3
) 0y oy 0, Oy oy o,

component forces and the 3 component moments at point O with reference

to the coordinate system xyZz. Equilibrium conditions for the element,

the reciprocal theorem, and Equation (1) can be used to get relationships
between forces and displacement at the two ends of the element. Specifically,
the following relationships are required: (1) a stiffness matrix K, ,»

relating displacements at end (a) to forces at end (a); (2) a stiffness
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Figure (1). - Geometry and Notation for Chen Flexibility Matrix



matrix, Kba’ relating displacements at end (a) to forces at end (b);
{3) a stiffness matrix, Kab’ relating displacements at end (b) to forces
at end (a); and (4) a stiffness matrix, Kbb’ relating displacements at
end (b) to forces at end (b). The notation used for these forces and
displacements is given in Figure (2), with the z direction (out of the
paper) omitted.

It is convenient to work with Equation (1) in its inverted form,

(F} = K fu,) (2)

6 x1 6 x 6 6 x1

where

Since (0) - (a) is a rigid connection in Figure (1), forces applied at point

(o) could be transferred to end (a) of the element by the equation

{F.} = [B__] {F } (3)
46 x 1 %376 x 6 ©
where
[Boa] = _ I_ _ | _OH
0o 0 0 |
0 0 R | 1
0 -R O i

Displacements at point (0) can be written in terms of the displacements

at end (a) using the equation

fu} B,,1"  u} (4)

u =
06 x 1 3% x 6
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Figure (2). - In Plane Forces and Displacements
for the Curved Pipe Element.



Equations (2), (3), and (4) can be combined to get a relationship
between forces applied at end (a) and displacements at end (a):

{F.} = [K..] {u_} (5)
a6 x 1 @ v g 26 x1

where

(K..]=[B..] [K°] B 1" . (6)

aa 0a'c . 6 6x6 ©°2
‘Equilibrium requires that forces applied at end {a) be balanced
by equal and opposite forces at end (b), in the absence of intermediate
loads on the element. Thus, the reaction forces at end (b) associated
with forces applied at end (a) can be found by transferring the forces
at end (a) to end (b), redefining them in terms of the coordinate system
at end (b), and changing the signs. Thfs process can be written in

matrix notation as

Pl o177 Bavle Fale o1 )
where [ cos v sin v 0 0 0 0]
[Bab] = | -sin ¥ cos ¢ 0 0 0 0
0 0 1 0 0 0
0 0 <R sin ¥ cos ¥ sin y 0
0 0 R(1 - cos yj =-siny cos y 0
Rsiny R(1 - cos ¥) 0 0 0 1
— —




Equations (5) and (7) can be combined to yield

{u} (8)

{F
%6 x 1

} = [K..]
b’ w1 Pag 4

where

K =- Byl K1 (9)

balg 6 6x6 926 x6

Forces at both ends of the element due to displacements at end b
could be found using the same approach as for displacements at end a.
This is not necessary when a relationship between the dispiacements at
end (b) and the forces at end (a) are desired, since the reciprocal
theorem requires that

; .
(F) = (K, ] fu} . (10)
% w1 PBe .6 Pg oy

If end (a) is assumed fixed while end (b) is assumed rigidly attached
to point (0), displacements at end (b) can be related to the forces
applied at end (b) (using the coordinate system indicated in Figure {2))

by the relation

{F,) = [Kpp fu} (11)

6 x1 6 x6

where

(K% B
6 x 6 6 x 6

(K = [B

6 x 6 ob !

bb]

10



and - 7
cos Y sin 0 0 0 0
[Bob] =| -sin Y cos 0 0 0 0
0 0 1 0 0 0
0 0 0 cos ¢ sin ¥ 0
0 0 R -sin ¢ cos ¢ 0
Rsiny -Rcos ¢ 0 0 0 1
L -

The relationships between forces and displacerents at the ends of the
element can now be summarized by combining Equations (5), (8), (10),

and (11) to get

E ua
- TR ST A T (12)
12 x 1 12 x 1
where |
E Kaa Kga
(K ]12 r— | = (13)
x 12 Kb bb
a | 12 x 12

At times it is desirable to disconnect various degrees of freedom of the
ends of the element from the adjacent grid pont. This capability is
included in the curved pipe element through the NASTRAN pin flag routine.
This routine accounts for disconnected degrees of freedom by operating
on the element stiffness matrix, [KE]12 x 12 to produce the "reduced"
stiffness matrix [KR]12 x 12°

At this point forces at the ends of the element have been related
to displacements at the ends of the element, as defined by the coordinate

systems shown in Figure (2), by the equation

11



R
Fp w17 Ko w12 (Uhpp w1 -

where

R
faa
R R

R
(Ko 12 " "
ba bb

The equation solved in NASTRAN is of the form
s} = (k8 (% (15)

where
{S} includes all external loads applied to the grid point,
and is therefore equal to the sum of the internal forces

applied by the elements to grid point,

[KG] is the globai stiffness matrix, and can be partitioned as

G G
[KG]_ Kan + Kag
- | A 8

G
Kea | 88| . and

{uG} is the complete set of all grid point displacements.

Both matrices {S} and {uG} are defined in the displacement coordinate
system at each grid point. The global stiffness matrix [KG] is an
assemblage of the stiffness contributions of ail the elements. Thus, if
the force at the adjacent grid point can be written in terms of the force
at the end of the element and the displacement at the end of the element
can be written in terms of the displacement at the adjacent grid point,

the element's contribution to the global stiffness matrix can be determined

using Equation (14). The coordinate systems involved in determining this

12



PN

contribution is shown in Figure (3). Offset vectors (ZA =wp Ay towg

1 1 2

~ ~ ~

A twp Ap t*wy Ap )
B1 82 82 B3 B3

iA + wp iA and 38 = wg
2 3 73 1

are also shown. The

displacements at end (a) of the element can be written in terms of the

deflection at grid point A using the relation

{u_} [T(a)T] [CAlIE,] {uy}
u = u
6x1 ® 6x6 M Aexe Pexi
where _
[E,] = | 0 w o
A Ay A,
I - 0 W
| A3 Aq
| w -1 0
A A
- = - o
0, 1 6 x 6

and determines the displacement at (a) in the displacement

(16)

coordinate system at grid point (A) given dispiacements at (A);

gy

is an orthogonal transformation matrix which.redefines

in the basic coordinate system, vectors defined in the displacement

coordinate system at A;

(a)

{Teb ] is a transformation matrix which redefines in the bas

coordinate system, vectors defined in the element coordinate

ic

system

at end (a); since this is an orthogonal matrix, the inverse (which

redefines in the element coordinate system at end (a), vectors

defined in the basic coordinate system) is equal to the transpose.

13



/ (basic coordinate

/ system)
Zg

Figure (3). - Coordinate Systems Used in Element Subroutines.
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A force vector at grid point A can be written in terms of an equivalent

force vector at element end (a) using the relationship

- T T (+(a)
{Fpd = [Eg]7 [Ca) [Tgp’ 1F,) (17)

Combination of Equations (17), (5), and (16) yield

G
{F,} = [Kanl {uy}
A% x 1 Mexe Aexi
where
. OR e @]
gl = (Tap 1 1G] (ED)T (K1 ([Typ | [CyI(EQ]) (18)
Similar efforts produce the matrices
6 O rop L, (@]
gl = ((Tep 1 [g) [ED)T [Kpy) (T 3 (€1 [ED) (19)
and
. KON R ()
where
. 0 , - -
: sUB3 UJBZ
(E ] = I - 0 ;
b | “B, “B;
— ff? __wBl _
0 I >
. I 46 x6
(b)
and [CB] and [Teb ] are transformation matrices at B equivalent to matrices
(a)

[CA] and {Teb ] at A.

15



Finally, application of the reciprocal theorem yields

CE U . (21)

The submatrices given by Equations'(18), (19), (20), and (21), provide
the contribution of the curved pipe element to the total global stiffness
matrix of the structure.

A Tumped mass approach was used to define the inertia properties
of the curved pipe element. It is assumed that the total mass of the
element can be divided equally between the element ends. Second mass
moments are not included in the mass matrix. This omission should have a
negligible influence for curved pipes with small arc but could be significant
for curved pipes with larger arcs. This is because of the lack of
compensation for the offset of the center of gravity from a tangent
connecting the ends of the element. If it is desired to include the
effects of the second mass moments, NASTRAN has a capability for directly
inputting these properties. Forces applied to either end of the element
can be related to the corresponding acceleration components by the equat:on

{Fa}6 1 = {Mals 6 {ua}6 1

where

{Ha} is @ 6 x 1 column matrix giving the linear and angular components

of acceleration of end (a) of the element,

16



and - o

= m | ﬁ = ‘
2 b0
m
2 —
0 | 0
with

=Ry (o F (- (d-20)%) + )
o = mass density of pipe material
y = non-structural mass per unit length

The NASTRAN solution process reguires a relationship between the forces
and accelerations at the grid points rather than the ends of the element.

A process similar to that used for the stiffness matrix yields

6 .
{F,} = [My.] {us}
AMex1  Mexs Agxi
where
. (a) | : (a) T
Mgl = Ty ) 100 TEDT 1) (T 1[Gy (E,)) (23)
Similarly,
5 .
{F,} = [Moy ] {uyl
B x1 BBgx6 Apx1
where
. (b) | . (b) T
[MBB]B 6 = ([Teb ] [CBI [(Ex]) [Mb] ([Teb ] [CB][EB]) (24)

17



This formulation assumes no direct relationship between forces at
(A) and accelerations at (B) and vice versa. Thus Equaiions (23) and (24)
define the total mass contribution of the element to the structural system.

Stresses due to thermal expansion loads are significant in piping
system analysis. Stresses due to misfit may also be of interest. A
capability for handling both types of problems has been included in
the curved pipe element theory. It is assumed in both cases that the
ends of the element move together or apart, whichever the case, without
any rotation occurring. The forces required for this compression or
extension are calculated and added to the existing external loadings at
the grid points. Disconnected degrees of freedom are taken into account
in determining these forces. Once the problem has been solved, the forces:
which would have resulted from the enforced deformation are calculated and
subtracted from the forces calculated from the movement of the ends of the
element.

The element is assumed to be fixed at end (b) (see Figure (3))
so that the movement associated with the applied deformation or temperature
expansion can be interpreted as a displacement of end (a) in the plane of

the element. The equivalent grid point loads are

(Fp} = 16,17 1) [722)3 (KR 7oL (25a)
6 x1 6 x 1
and
(Fg) = (651" 1Cg) [T(b)] KR 1 (0L} (25b)
6 x1 eb ba 6 x 1

18



where

{DLa} = the displacement at end (a) in the coordinate system
at end (a). This displacement is automatically calculated in the
subroutine given the enforced deformation and temperature information.

The element temperature is calculated from the relation

T =t +2T,+T)
where
T = the temperature used to calculate expansion
TO = the temperature at the outside of the pipe wall
. Tm = the temperature at the middle of the pipe wall
T. = the temperature at the inside of the pipe wall.

i

The ambient temperature is inputted with the materials properly card.

The general portion of the NASTRAN program uses the load, stiffness
and mass matrices to compute the displacement vector for each grid
point. Force and stress recovery procedures are different for each type of
element. In the general NASTRAN scheme, matrices for recovery of element
forces are set up in one subroutine and actual force recovery takes place
in another subroutine. In the first subroutine, the matrices required to
determine forces at end (a) due to displacements of end (a} and
displacements of end (b) are generated, along with matrices which include
the original forces due to temperature expansion. These matrices are

defined by the equations

19



15,0 KA1 [Ty 1 16,0 [E,] (26)
X
O
(5], = Kab] ey | (G5 [Eg] (27)
and
- kR \
b T Ya
Coo )
0
0 |
. O J .

Once the force recovery matrices have been determined, the forces

at end (a) can be calculated by the equation

= { T -

where

{P.}y={P_ ,P ,P ,M ,M , M 1}, force vector at end a,

a ap’ "ag’ T8y’ Tap’ ay’ ey
TAMB = ambient temperature,
(P} = [K3.] (DOFAYs | 1
6 x6
and
{ DFA} = displacement components at end (a) corresponding to enforced

deformation.

The normal force is redefined so that tension is positive:

20



Once the forces at end (a) have been found, Equation (7) can be

used

to determine the forces at end (b) of the element.
The stresses to be calculated for the curved pipe element are:

For the element:

CE Pr d
Hoop stress: oy = T3 3 (30)

Linear temperature gradient stress:

C. E o (T

. - T.)

0 i’
2 (1 -v) >

U =
T

Nonlinear temperature gradient stress:

E o A T2
oy T @T-w ¢
At each end:
Axial stress:
. Cp Fo
A E ]
Torsional shear stress:
7 J :
Bending stress:
2 2
. Cp d / (MR) + (MZ) .
B J ’
Lateral shear stress:
s 12 2
A A Y
F A i

21



where

A B.C.D.E.F_ stress intensity factors input by the user,
] L) b b 1)

E = modulus of elasticity,

o = coefficient of thermal expansion,
d = outer diameter,

t = wall thickness,

v = Poisson's ratio,

A = cross sectional area,

J = polar moment of inertia.

Ty =Tl -5 1T, - T,

AT2 max

= 1
T, =Tl -5 1Ty - T

22



Incorporation of Dummy Element Into NASTRAN

The subroutines developed for a curvec pipe become an operable
reality in NASTRAN only after they have been coded in FORTRAN IV and
only after several links in NASTRAN have been changed to allow for the
use of dummy elements. A programmer famiiiar with NASTRAN data files
and tables could eventually produce the necessary FORTRAN IV coding from
scratch; however, a significant amount of time can be saved if the
subroutines are patterned after an existing set of NASTRAN subroutines. This
approach also increases efficiency since it allows the progranmer to
take advantage of existing NASTRAN subroutines and accounts for NASTRAN
idiosyncracies, such as the preference for recalculation of matrices
rather than storage of the matrices. FORTRAN IV coding used for the
curved pipe dummy element closely parallels the coding used in NASTRAN
for the bar element. NASTRAN subroutines GMMATS (GMMATD for double
precision) and TRANSS (TRANSD for double precision) were particularly
convenient in making the necessary changes to bar element subroutines.
The former, described in Articles 3.4.32 and 3.4.33 of Reference (8),
is a general matrix multiplication and transpose subroutine, while the
latter, described in Articles 3.4.37 and 3.4.38 of the same reference,
is a subroutine which maps a vector from a local coordinate system to

the basic coordinate system.
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Communication between the subroutines and the functional module
or other subroutines is simplified due to the similarity between the
curved pipe element subroutines and the NASTRAN bar element subroutines.
For all of the subroutines except the one which recovers element forces
and stresses, it is necessary to retrieve information inputted on GRID,
CDUM3, PDUM3, DEFORM, and MAT1 bulk data cards. Information onthe
DEFORM and MAT1 cards are stored and retrieved for the dummy elemenrt
exactly as for the bar element. Information from the applicable GRID,
CDUM3, and PDUM3 cards are stored in an orderly fashion in an array called
the Element Connection and Property Table (ECPT). The format of the ECPT
for all NASTRAN elements including dummy elements is described in Articie
2.3.8.3 (and preceding articles) of Reference (8). The format of the ECPT
for the dummy element depends on entries cn the bulk data ADUMi card which
defines the attributes of the dummy element. Generally, the format consists
of: element identification number; all information on the element connection
card after the property identification number; the material identification
number; all information given on the element property card after the
material identification number; the coordinate system identification
number and basic coordinates for the grid points associated with the
element; and the element temperature. Declarations in the bar subroutines
were altered for the dummy element subroutines only to account for differences
in the ECPT and in appropriate internal parameters. NASTRAN bookkeeping

parameters were not changed.
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The routine which recovers element forces and stresses (SDUM32)
receives, as partial input, the output for the subroutine which sets
up the element force recovery matrices. Most of the communication
required between this subroutine and the functional module SDR2
(Stress Data Recovery - Phase 2), is done with data block COMMON/SDR2X7/
described in Article 4.46.9 of Reference (8). The first 100 Tocations
of this block are reserved for input parameters, the second 100 Tocations
are for stress output parameters, and the third 100 locations are for force
output parameters. The actual output format for dummy element forces and
stresses is built into NASTRAN, rather than being set by the user. This
is undesirable for the curved pipe element since the NASTRAN formats
allow only nine forces and nine stresses per element as output, whereas
a format allowing twelve forces and fourteen stresses is desirable in
order to account for conditions at both ends of the element. The possibility
of using WRITE statements in the force and stress recovery subroutine was
considered and rejected because the dummy element cutput would then be
1océted at random in the output of a NASTRAN job and would be difficult to
interpret. The dummy formats could be changed using ALTER statements but
this approach appears to be quite difficult. One alternative would be to
output stresses instead of forces in the force output format since the pipe
system analyst is more interested in stress output than force output. A
cecond alternative would be to output forces and stresses at only one end
of the element, since forces, and, therefore, stresses, can then be

calculated for the opposite end. This is the approach presently being used.
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Once the dummy element subroutines have been completed, a "1inkedit"
run is necessary to load them into the NASTRAN executable. The "linkedit"
involves changes within NASTRAN itself. In this case the necessary
“linkedit" programming was provided by the NASTRAN Systems Management Office,
NASA-Langley Research Center. It was found that the "linkedit" used for
one level of NASTRAN is not always completely acceptable for a different
level.

The most efficient approach to checking out a dummy element is to
create "driver" programs which simulate NASTRAN with respect to each
of the element subroutines so that trial input can be used to check
each subroutine. A1l subroutines would be checked in this manner before
the "Tinkedit" occurred. However, time limitations have prevented
development of these "driver" programs for this effort, so present
attempts at checking involve actual NASTRAN runs on a single element test
problem.

Once the dummy element subroutines have been debugged, application
of NASTRAN with the dummy curved pipe element to the analysis of piping
systems with curved sections can be compared to solutions from other sources.
A NASTRAN formulation of Example #1 of Reference (9) has been prepared
for comparison. Appendix II gives detailed information about the test

problem and the test problem from Reference (9).
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CONCLUDING REMARKS

At this point significant advancement has been made in the
development of a curved pipe element. The new element will simplify
curved pipe analysis primarily because a single element is used
rather than multiple elements, the geometry definition is simplified,
and input/output are tailored specifically to pipe analysis. For
generality, the flexibility factor and stress intensification faztors
will be inputted by the user. The NASTRAN user dummy element has
proven to be a relatively simple means of instituting a new element,
although format restrictions have caused problems. Use of subroutines
from an existing NASTRAN element simplify communications with the
NASTRAN functional modules but could produce errors in programming
. in sections where the two elements differ. The NASTRAN Systems
Management Office provided the necessary linkedit routire and also
provided assistance in removing inherent NASTRAN errors. Apparently
the linkedit may require modification for different NASTRAN Tevels.
Once the curved‘pipe element has been completely debugged, a straight
pipe element should be considered so that piping analyses could be

performed completely with appropriate NASTRAN input and output.
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APPENDIX I
UTILIZATION OF CURVED PIPE ELEMENT IN PIPING SYSTEM ANALYSIS

The NASTRAN user can use the dummy curve pipe element almost as if it
were a standard NASTRAN element. Some variations have been made from
"standard” NASTRAN bulk data formats so that input will be as efficient
as possible. Terms which may be dependent on the radius of curvature
are restricted to the connection card, since the radius of curvature
is likely to vary for different elements. Pin flags and offsets,
conditions not expected to occur often in piping systems, were moved from
connection cards to property cards to make room for the radius of
curvature dependent terms. One ADUM3 card with non-varying entries must
be included to describe the nature of the dummy element used. The required
ADUM3, CDUM3, and PDUM3 cards are defined on the following pages. A sketch
of the curved pipe element forces and geometry is given in Figure (4).

Output for the element consists of forces and stresses at end (a)
of the curved pipe (see Figure (4)). The forces given are, in order,
the radial shear force (outward is positive), the axial force (tension
positive), the out of plane shear force, and the moments in the element
R, v, and Z directions at end (a). Stresses given for end (a) are:
hoop stress, linear temperature gradient stress, nonlinear temperature
gradient stress, axial stress (tenéion is positive), shearing stress
due to torsion, maximum bending stress, and shearing stress due to

lateral loads.
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The dummy element output formats provide headings for forces only as

F1-F9 and headings for stresses only as S1-S9. Table (1) describes the

force and stress output. Note that the outputted stresses have been

pre-multiplied by stress intensification factors CA through CF, which

were input by the user.
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Figure (4). - Element Forces and Geometry,
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BULK DATA DECK

Input Data Card ADUM3 Dummy Element Attributes

Description: Defines attributes of curved pipe element

Format:

1 2 3 4 5 6 7 8 9 10

ADUM3 | NG | NC | NP | ND —

apuM3 | 2 | 12 | 14 ;
Field:
NG Number of grid points connected by DUM3 element (2)
NC Number of additional entries on CDUM3 card (12)
NP Number of additional entries on PDUM3 card (14)

ND Number of displacement components at each grid point
used in generation of differential stiffness matrix (6)

Remarks:

1. No differential stiffness matrix is actually generated.

2. Entries on ADUM3 card for curved pipe elements will always be
as shown above.

3. Only one ADUM3 card should be present in the bulk data deck.
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Input Data Card CDUM3

BULK DATA DECK

Curved Pipe Element Connection

Description: Defines a curved pipe element using the dummy element

capability

Format and Example:

1 2 3 4 5 6 7 8 9 10
cDuM3 | EID PID GA GB X1 X2 X3 R abc
CDUM3 66 21 170 180 1. 4.5 DC3

+bc PI F CA CB CC CD CE CF !
+C3 10.{ 3.2 |

Field:

EID Unique element identification number (Integer > 0)

PID Identification number of a PDUM3 property card (Integer > 0)

GA, GB Grid point identification numbers of connection points
(Integer > 03 GA # GB)

X1, X2, X3 Components of vector vV at end (a), measured at end (a),
parallel to the components of the displacement coordinate
system for GA, to determine (with the vector from end (a)
to end (b)) the orientation of the element coordinate
system. The vector v 1ies in the plane of curvature of
the element and is directed from end (a) to the inside
of the curve and to the inside of the vector from end (a)
to end (b). (Real, X12 + x2% + x3° > 0)

R Radius of curvature of the element (Real)

PI Internal pressure (Real)

F Flexibility factor (Real)

CA, CB, Stress recovery coefficients for direct stresses, torsional

cc, Cb, stresses, shear stresses, bending stresses, hoop stresses,

Ce, CF linear temperature gradient stresses, non-linear temperature
gradient stresses (Real; default = 1)

Remarks :

1. Element identification numbers must be unique with respect to all
other element identification numbers.

2. See the sketch for a description of the curved pipe geometry.
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BULK DATA DECK
Input Data Card PDUM3 Curved Pipe Property
Description: Defines the properties of a curved pipe element
referenced by a CDUM3 card

Format and Example:

1 2 3 4 5 6 7 8 9 10
PDUM3 PID MID DO TH NSM TOJTTM T 11 abc
PDUM3 21 10 | 3.51{0.216 100.}100. | 100. | DP3
+bc PA PB | Z1A T Z2A Z3N 7718 J22B 1738 T
i +P3 ; E
Field:
PID Property identification number (Integer > 0)
MID Material identification number (Integer > 0)
DO Quter diameter (Real)
TH Wall thickness (Real)
NSM Non-structural mass per unit (Real)
length
TO, TM, TI Outside, middle, and inside wall temperature (Real)
PA, PB Pin flags for pipe ends (a) and (b), respectively, that are used

to insure that the pipe cannot resist a force or moment
corresponding to the pin flag at that respective end of the
pipe. (Up to 5 of the unique digits 1-6 anywhere in the
field with no imbedded blanks; integer > 0) (These degrees
of freedom codes refer to the element forces and not global
forces).

Z1A, Z2A, I3A, 71B, Z2B, Z3B Components of offset vectors &_and G,

respectively, in displacement coordinate systems at grid
points at ends (a) and (b), respectively (Real or biank}.
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1.

Remarks:

PDUM3 cards may only reference MAT1 material cards since the
curved pipe element is restricted to structural applications.

Note that separate property cards will be necessary when pin
flags and/or offset are used.

See the sketch for a description of the currved pipe geometry.

If there are no pin flags or offsets, the continuation card may be
omitted.
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TABLE (1)

Curved Pipe Dummy Elements

Element Printout Expianations

Force Output

Label Explanation
[A11 forces at end (a)]
EL ID Element identification number
F1 In plane shear force component (outward
is positive)
F2 Axial force (tension is positive)
F3 Out of plane shear force component
F4 Bending moment about radial axis
F5 : Torsional moment )
F6 Bending moment about axis normal to plane

Stress Output

[A11 stresses at end (a)]

EL 1D Element identification number
S1 Hoop stress
S2 Linear temperature gradient stress
S3 Nonlinear temperature gracient stress
sS4 Axial stress (tension is positive)
S5 Shear stress due to torsion
S6 Maximum bending stress
S7 Maximum shear stress due to lateral loads



APPENDIX II
TEST PROBLEMS

The one element piping system shown in Figure (5) was used for
initial tests of the dummy curved pipe element on NASTRAN. This problem
was also solved by hand as a check on the NASTRAN run. Although the
deflections and element forces found using the dummy element proved to
be correct, the single point constraint forces were in error. The error
can be traced to the transformation matrix involved in determining the
global stiffness matrix from the element stiffness matrix. At this point
the specific nature of the error is unknown.

A second, more involved piping system problem was also coded for
NASTRAN. This problem, shown in Figure 6, was taken from Reference (9)
and provides a means of comparison of the HASTRAN solution with an
available independent solution. Details of this problem are available

in Reference (9).
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R =4.,5"
Outer diameter = 3.5"

Modulus of elasticity =

© 229 x 108 psi
Moment of inertia = 3.017 1n4
Shear Modulus = 1.15 x 107
P = 90°
Flexibility factor = 2
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- Test Problem - Single Curved Element.
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