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. RESULTS FROM THE NATIONAL AERONAUTICS AND
t

SPACE ADMINISTRATION RF14C,TE SENSING EXPERIMENTS

IN THE NEW YORK BIGHT - APRIL 1975

Joh-	 B. Hall, Jr. and Albin 0, Pearson ., s

ABSTRACT

-	 A cooperative operation between the liational Aeronautics and Space

Administration (NASA) and the rational Oceanic and Atmospheric Administration >>

New(NOAA) was conducted in the I^ew .Cork Bight during April 7--17, 1975, to eval-

uate the role of NASA remote sensing technology to monitor ocean dumping. 	 Six

NASA remote sensing experiments were flown on the C -54, U--2, and C-230 NASA

aircraft, while NOAA obtained concurrent sea truth information using heli-

copters and surface platforms.	 The experiments included 1) a. Radiometer/

£catterometer (RADSCAT), 2) an Ocean Color Scanner (OCS), 3) a Multichannel
s

Ocean Color Sensor NOCS), 4) four Ha,sselblad cau-eras, 	 } an Ebert

spectrometer, and 6) a Reconafax IV infrared scanner end a Precision

Radiation Thermometer (PET-5). 1

The purpose of this report is to present the results of these experiments
a

relative to the use of remote sensors to detect, quantify, and determine

the dispersion of pollutants dumped into the Neer York Bight. 	 Descriptions of

the experiments, : experimental. methods, data analyses techniques, and S

significant results for each experiment are given in separate sections of

the report.
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RESULTS FROM THE NATIORAL
p.ERONAUTICS AND SPACE ADM INIST-W TION

REMOTE SENSING EXPERIMENTS IN
THE NIIi YORK. BIGHT - APRIL 7-17, 1975Y

COMPIIEiD BY

John B. Hall Jr. and S bir, 0. Pearson

SUBQ4ARY

Six remote sensing experiments were conducted by the National Aeronautics

and Space Administration (NASA) in conjunction with the National Oceanic and

Atmospheric Administration (NOAA) in the New York Light between April 7-17,

1975, to evaluate the role of NASA remote sensing technology to monitoring

ocean dumping. Sixteen remote sensors were flown onF the C-54, U-2, and 0--130

NASA aircraft, while NOAA obtained concurrent in situ sea truth data using
j

helicopters and surface platforms. The six primary sensor experiments

included (1) a Radiometer Scatterometer (RADSCAT), (2) an Ocean Color Scanner

(OCS), (3) .. a Multichannel. Ocean Color Sensor (MOCS), (4) four Hasselblad

cameras, (5) an Ebert spectrometer, (6) a Reconofax N infrared scanner and a

Precision Radiation Thermometer (PRT-S).

The purpose of this report is to present the results of these

experiments.. Ibescriptions of the primary sensors,.experimental methods;

and data analysis .techniques along with significant results for each

experiment,p	 are given in separate sections of.this report.
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INTRODUCTION

The National Oceanic and Atmospheric Administration (NOAA)* in 1974

initiated a 7--year Marine Ecosystem Analysis (MESA) Program to obtain environ-

mental information in selected marine locations. The New York Bight is the

first site selected for intensive study under the MESA program. The program

is focused to provide information to better understand, utilize, and minimize
i

man's impact on the New York Bight. A more efficient utilization of the
ii
j	 Bight resources requires techniques for a rapid and accurate assessment of

i	 the effects of man's activities on the Bight ecology. This requirement,

coupled with the dynamic nature of the marine environment, accents.the need

for the synoptic spatial and_ temporal advantages of remote sensing systems.

Accordingly, as a cooperative effort in the MESA program, NOAA requested that

NASA evaluate the use of remote sensing technology to define circulation

features in the New York Fight and to apply this technology for monitoring

and managing ocean dumping. The first step of this cooperative effort was
I

accomplished in the New York Bight: during April 7--17,. 1975. The area
t

I	 selected, by NOAA for this joint NOAH-INASA evaluation was primarily the apex
I

of the Nev `.Cork Bight as shower in figure 1. The New York Bight extends from

Cape May, New Jersey, to Montauk Point, New York,.and seaward to the edge

of the continental shelf (200 meter depth). The apes is hounded on the north

E	 by Long Island, on the south by latitude 40°10'-,.and on the .east by longitude

meridian 73°30 1 W. Presently, within the apex, sewage sludge is dumped at a

*The authors are grateful to John W. Sherman and James B. Zaitzeff of NOAA
for their guidance and coordination of NOAA activities in implementing this
effort.
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location about 18 km (9.7 nautical miles (n. mi.)) south of Long Island. Acid

wastes are dumped at a location about 10 Im (5.4 n. mi.) southeast of the sewage

sludge dump site. Six remote sensing experiments were conducted by NASA

using 16 remote sensors flown onboard aircraft platforms to obtain sea surface

information relative to these dump sites. Concurrently NOAA obtained in situ.
i

"sea truth" information with a combination of helicopters and surface plat— 	 "~

forms. NASA operations associated with these experimenta are given in

reference 1.

The purpose of this report is to present the results of the NASA remote

sensing experiments. The following sections of this -report contain

descriptions of the remote sensors, experimental methods, data analysis

techniques; and pertinent experiment results.

4
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OCIAN COLOR SCAN1'lLR (OCS)

by
f.r..

Warren A. Ha-Vis

SUMPdARY

The NASA U-2 aircraft participated in the MESA experiments in the Nev

York Bight during April 7-17, 1975. 	 The OCS and four Mitchell Vinten 70 no

cameras were flown onboard the NASA U-2 aircraft on April 9, 13, and 14,

1975 . 	 The purpose of this report is to present the results of this

investigation.

FXPRRIMT DESCRIPTION

The Ocean Color Scanner (fig. 1) was flown on the U-2 aircraft at an

altitude of 19.5 km (65 5 000 ft) and was supported by four 70--mm Mitchell- 1

Vinten cameras.	 The OCS is a 10-channel multispectral scanner ranging from

433 to 772 manometer (nm) center wavelength with a 900 total scan angle

and spatial resolution of 3.5 milliradians.	 Spectral bands and saturation

radiance values used in these investigations are shorn in table 1. 	 The

radiance for saturation shown in table 1 is for a gain of one for each

channel.	 Gain may be increased separately for each channel it steps of 1.5,

2, and 3 to allow for changing Sun angle due to seasonal changes or time of

flight.	 All channels, except 9, are optimized for grater scenes, including

atmospheric.backscatter as seen from an altitude of 19.8 km.	 Channel 9 has

the same level of gain as the Landsat band 6 that covers 700 to 800 nm.

7
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Four 70 mm Mitchell.-Vinten cameras were flown with the OCS to provide

high resolution photography to aid in locating the -UT-2 position. Three of

these cameras contained black and white film, and one contained color film.

A photograph of this.system is shown in figure 2. Specific camera details

pertinent, to this experiment are shown in table 2.

DATA ACQUISITION

Flight lines for the U.-2 are given in reference 1. These lines were

established to allow the aircraft to fly directly toward, or away from the
i

Sun, to avoid Sun glint in the scanner imagery. The morning flights were

"i
in a general. southeast to northwest direction while afternoon flights were

generally southwest to northeast. A slight "fan" effect is seen due to

allowance for Sun motion during the time of each flight sequence. The actual

flight lines flown, flight altitudes, flight line locations, and sensor

operation times are given in reference 1.
F

DATA AI LYSIS AND RESULTS

The flight on April 9 was su.cceb5ful for U-2 operations. Surface truth,

however, was not available due to lack of communication between the ship

and helicopter operations in the Bight, and the U--2 base .at NASA Wallops

Flight Center. The U-2 decision to fly was based upon.: the .. weather forecast

available at Wallops.

The photographic and scanner .. data. were -both of excellent quality for

this flight. The scanner data were processed to a pictorial product using

two different enhancement techniques and, despite the lack of surface truth,.

still show some interesting information as shown in figure 3. Figure 3 is a

l
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"conventionally" enhanced image. 	 It was made. from an enhancement where a

direct current offset is applied to each of the channels used in making the
h

image	 to allow for atmospheric backscatter. 	 The amount of offset is ,.

wavelength dependent.	 The image in ;figure 3 w Ls made from the enhanced data

from channels 465, 582, and 662 nm.	 The image shows the New Jersey shore

from Barnegat Inlet to just south of Sandy Hook Point and a portion of the

south shore of bong Island.	 A new acid dump is seen as a sharp "U", while

the older dumps are shown drifting to the west. 	 The westward drift is

characteristic of all imagery obtained of this area. 	 In addition, the older

dumps are shown as being diffused in a southerly direction. 	 Also shown in

figure 3 is a square-shaped dump to the north of the acid waste dumps. 	 This

feature is a sewage sludge dump that was observed in its early stages

during the morning overpass at approximately 1450 g.m.t.	 The brightest part

of this feature, the north edge in the northwest corner, is the initial

dumping area.	 This indicates that the dump is not uniform with time and that

the concentration is higher in the initial dump area or that the sludge is

not uniformly mixed. 	 It appears that the material clumped first is brighter

in the spectral regions sensed than that dumped later.	 The bright area along

the New Jersey shore is the Hudson River plume. 	 This is the normal flow

pattern of the plume as seen in a number of images of this area. 	 The high

relative reflectivity of the plume indicates a high partic-al.ate loading tirnieh

was confirmed by sea truth measurements on April 13. 	 The plume appears

rather featureless in figure 3.	 Further enhancement was performed by squaring

all of the radiance values in the first enhanced tape. 	 The image that

results from this enhancement ;s shown in figuregu.re .A.	 In.. this image,

gradations in the plume are more easily observed. 	 An apparent layering on the
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east edge in the plume is observed as the plume bends, after leaving the

Hudson River. The .April 13 flight was performed in the morning. Cloud cover

precluded an afternoon flight. The position of the helicopter sampling grid

was located on the scanner image, and radiance levels at most of the

helicopter stations were determined. The radiance, in all channels, showed

a general increase .with increased sediment concentration.* Figure 5 shows the

measured upwelling radiance as measured by the scanner versus the log of the

measured sediment concentration. There is no immediate explanation for the

four points at the high sediment levels that appear offset from the others.

In an attempt . to extract aua.litative information from the radiometric data.,

the method of .characteristic vector signatures was tried with the addition

of variation from mean radiance as an attempt to compensate for atmospheric

effects. Briefly, a mean overall radiance level is determined for the water
F
f

in the scene, and the departure from the mean determined for each spectral

band. As shown in the formula in Figure 6, the total radiance consists of

the mean radiance, the atmospheric radiance, and a contribution due to

sediment and chlorophyll. The vector signature can be either positive or

'i negative which denotes either scattering brighter than the mean or absorption

darker than the mean. The. sediment signature shown at the top of figure 6

is positive at alb.. wavelengths which indicates no specific absorber; i,e.,. a.

near grey color. The chlorophyll signature shows that some chlorophyll

absorption can be detected inthe .plume even though chlorophyll is a minor

constituent. There is a reasonable degree of correlation between the total

*The author is grateful to Dennis S. Clark and Terry A. Nelson of NOAA for
the use of their unpublished sea truth information.

ii
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sediment and the chlorophyll concentration (fig. 7). This is to be

expected since the plume is virtually all of organic origin. The chlorophyll

content is measured in pg/k while the sediment content is measured in, mgA.

An. attempt was made to relate measured radiance to chlorophyll content in the

plume with only modest success as shown in figure 8. This result is expected

when sea truth information shows that only a small portion of the plume is

composed of chlorophyll. Chlorophyll has its specific absorption, while the

major components of the plume have spectral character. Correlation of the

calculated and measured sediment concentrations is given in figure 9. Mere

the agreement is good and would give considerable confidence that a contour

map of total sediment could be made by applying the sediment vector

signature to the entire area of the plume. It is apparent from the plume

analysis that it will be difficult to determine concentrations of minor

constituents of a plume from radiometric data only. It may be possible,

however, to infer the minor constituent concentration if its quantitative

relation to the total sediment load is known.

The magnetic tape recorder failed during the April 14 flight. Failure

was due to damage sustained in a previous shipment from Wallops Flight Center

to the Ames Research Center. The photographic quality was good, but could

not be used for quantitetiv'e analysis
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T.A 3LE 1.-- OCEAN COLOE sCAMrER

P

Center Radiance for
a	 Channel ^.avelen.gth Bsxdw d^th Saturation

(nm) (nm) (Gain x 1)

mv/cm
-

1 433 22.5
-

40.10
'j

-`

2 471 21.5 26.00

3 509 27.0 23.60

4 517 24. 5 14.70
-	 5

583 25.0 11.80

6 620 26.0 10.00

7 662 22.0 7.55

8 698 20.5 5.00

9 733 22.5 11.90 a

.10 772 23.0 3.47

-	 - -	 _ - 	 - 	 - I
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FABLE 2 . -- MITCHELL--VIVTE T CAMTT AS
n

Loris Film ttShutter Spectralp	 ^. Spatialp	 za1
Focal Speed, Filter Range F Resolution

Camera Length, Format;. Number sec Number Nanometer Stop m (ft)

E Number cm(in.) cm(in)

1 4.43 5.72 x 5.56 Paxiatomic 1/250 Wratten 5—n--mr% 9.6 9.1 to 15.2
(1.75) 1

(2X2 16 }

X, 3400 12 (30 to 50)

4

2 4.43 5..72 X 5.56 Panatomic 1/2 50 Schott GG 475-575 5.6 9.1 to 15.2
(1. 75) X, 3400 475 + (30 to 50)

(2 1 X 2 
16)4.

Schott .BG
g 1

3 4 .4 3 5.72 X 5.56 Panatomic 1/25 0 Schott OG 58G-680. 5.6 9. 1 to 15.2

(1 . 75) 1
(2	 2

X, 3400 570 +
Schott.BG

(30 to 50)

16 )

38

4 4.43 5 .72 X 5.58 Aerial. 1/25 0 'None 400 - 7 CG -. 5 9.1 to 15.2
(1.75.) .,

(2 1X 2	 }

Color
SO-242

(30 to 50)	 i
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Preliminary Analysis of Ocean Color Spectra

Measured With an Ebert Spectrometer During the

NASAfNOAA Spring 1975 Experiment in the New York Bight

By

Fames L. Mueller



PRELIMINARY ANALYSIS OF OCEAN COLOR SPECTRA
1TKASURED WITH A.N EBERT SPECTROMETERU''RING THE NASA/NOAA

APRIL 1975 MESA 2MRIMENT IN THE NEW YORK BIGHT

by

James L. Mueller

INTROiUCTION

Duxing the April 1975 NASA/NOAA MESA experiment in the New York Bight,

ocean color spectra were measured from a low flying aircraft. The short

duration of available sampling.flights precluded statistically correlating

these ocean color spectra: with simultaneous ground truth observations.

Nevertheless, the ocean color spectra are suitable for comparison, using

characteristic vector analysis, with earlier results 
152 and for studying the

spectral signature of the acid waste pollutant routinely dumped in the New

York Bight Apex.

In radiometry, a "spectrum.' is the distribution of radiant energy, or of

some optical property of the medium., as a function of wavelength. The ocean

color spectrum is defined as

N.
Uj J 	 55 ,	 (1)

N

where Ni	
th

. is the upwelled radiance from the sea in the j 5 manometer (nm)

wide wavelength band between 420 and 695 Dm, and the normalization factor N

is the average radiance, i.e.

_	 55
-	 I'j - 1/55 E N•

25
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The spectrum U
j
 must be numerically parameterized before it can be

efficiently correlated with other. measurable properties of sea water.

sMuellerl '2 reviewed previously proposed parameter:izations of ocean color

spectra -6 and applied the method of characteristic vectors to the problem.

It was shorn for a sample of ocean color spectra measured off Oregon, that 	 i

the first four characteristic vectors of the sample covariance matrix

yielded a highly accurate parameterization. To compare Mueller's earlier

Iwork with the MESA ocean color data, certain of those results must be recast
1

_	 in terms of the spectrum U^ rather than in terms of reflectance

N.

where E^ and E are the incident irradiance spectrum and its wavelength

average. This change must be made because there is no consistent means of

estimating E for the independent ocean color samples that will be

examined.

In the present report the characteristic vectors of U  spectra from

the MSA experiment will be compared with similar results from two other

independent samples of ocean color spectra measured elsewhere. The purpose.

of this comparison is to test the working hypothesis that ocean color spectra

may be parameterized, globally, with a few . standard. , characteristic basis

vectors.

In. addition, the spectral signature of the acid waste material routinely

dumped in the New York Bight will be examined. It will be demonstrated that

this material has a spectral. signature that is uniquely different from any

other ocean color spectrum yet observed.



The use of characteristic vectors to parametrize ocean color spectra was

recently discussed by Mueller I '2 . Morri_son.8 gives a comprehensive discussion

of the method within the general context of multivariate, statistical analysis.

A spectrum . Ujn , the nth of a sample of N ocean color spectra, is

parametrized by its first K principal components

55
Yk.ra y	

ekj(Ujn - Mi ); k = 1, 2,	 ., K & n W 1, 2,	 ., N,	 (2)

where ek is the kth characteristic vector of the sample covariance matrix,
j

Aj is the sample mean spectrum, and the index j denotes tine of 55 discrete

wavelength bands. The inverse approximation relating the spectrum U jn to

its first K principal components Ikn is

K
U. = Mj t E 

Ykn 
ekj ; j = 1, 2,	 ., d & n = 1, 2,	 ., N.	 (3)

k=1

The characteristic vectors e
kj 

are extracted from the Lan ple covariance

matrix such that eij is alined in the direction o#' maximum sample

dispersion (i.e., it accounts for the largest possible prcl:artion. of sarpl.e

variance). Then, e 
2 

is extracted in alinement with the largest remaining

proportion of dispersion (sample variance) orthogonal to e1j . And each

succeeding; unique characteristic vector accounts for a. smaller percentage of

sample variance than any of its predecessors. The accuracy with which a,

spectrum Ujn (j 1, 2,	 ,, 55) is parametrized by its first K principal

components 
Ykn 

(k = 1,	 . ., K), therefore, is measured by the cumulative

i
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percentage of sample variance accounted for by the first K characteristic

vectors	 ekj.

i

The "y . percent significant degrees of freedom" in ocean_ color spectra of

a given sample will be defined . as the. independent scalar parameters which "F

retain a specified cumulative percent (Y) of total sample variance. 	 For each
y

-'

of the three samples considered here, there are five 99.percent significant f

degrees of freedom contained in N (overall brightness) and the first four

principal components (Yl , Y2 , Y33 Y ) (spectral shape parameters).

Thus far characteristic vectorc applied only within the context of a

single sample of ocean color spectra have been discussed..	 Plow some elementary

relationships between characteristic vectors of two independent samples of

t

ocean color spectra must be considered.	 For convenience., consideration will be

given only to samples with five 99 percent significant desgrees of freedom.

The characteristic vectors determined from a sample	 a	 of ocean color
j

spectra are related to those determined from sample	 by the equation:

erg	 _	 £	 Ca e^	 + ECt	
(4) !

ij	
=l	 kiR	

^j	 ijG
6

.	 where	 Eaij	 is an error vector describing an orthogonal. discrepancy .i

between the two vector systems, ar.d

Ca	
W	 E5 ea	 e^	 (i, k	 1, 2, 3, 4)	

()
kia	 ij	 kj

a

The mean ocean color spectra of the two samples are related by the equations ^y

ifs r 
110 +
	 E	

Bad 
e	 +	 16)

k ''	 k

{

'	 k^l	
j

j
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r; where. p	 is an error vector similar to 
E.	

and
jo

-1
j

55

	

Bka = E eke (M^ MO} k	 1, 2, 3, ^F.	 (7)
J=1

It follows directly from equations (2) and (4) through (7) that the principal
`r

components of an ocean color spectrum are related, in the two characteristic

vector systems, by the equation

	

Y. = E Ca Y^	 Ca Ba ^r Sa	 ($}
k=1 kid;. k k=1 

kid k^	 i^
a

1

where 8i^ are residual errors due to any unresolved orthogonality between

the characteristic vectors of the two samples.

S-Then the spectra U^ of sample a are parametrized with the sample

characteristic vectors, the cumulative proportion of total sample variance

retained by the crows--sample parametrization is given by

4	 4	 2
(9)

	i=1	 k=1

where vi is the proportion of sample variance associated -with the..i^h

principal component Y, i.ev, as determined with its own a—sample

characteristic vectors:

The method of characteristic vectors may also be extended to study the

E
spectral signatures of specific pollutants as contained in a spectrum of UV

This is possible, however, only if color spectra of water containing that

pollutant were not included in the sample used to derive the characteristic

E
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a

' -	 vectors. Given this circumstance, thew-sample principal components 	 YaE
I-

of U are computed as:

55ar	 a	 r	 a
Yi	= Z eii (U^ -- M^) i = 1 1 2, 3, 4.

J=1

Then, the residual spectral signature of the specific pollutant is computed

as:

S = U -- [M^	 E Y e].	 (11)
a.=1

a^	 55 a^ 2 1
If (s[ _ [ T	

2(S) ] / is significant relative to unity,, then the pollutant
j=1

may be detected in sea water solely on the basis of its unique residual

spectral signature. On the other hand, should [S[ be negligibly small, then

except possibly'in a relative sense, a pollutant-dominated spectrum  UC is

F	 not uniquely distinguishable from "ordinary" ocean color spectra in sample a.

EXPERIMENTAL RESULTS

Upwelled radiance spectra N^ -were measured zrith an Ebert spectrometer

aimed at nadir through the bottom of an NASA C-54 aircraft. The aircraft flew

over the ocean at an altitude of 523 meters (1700 ft), covering tracklines

that included relatively clear offshore water, highly turbid Hudson River

effluent, and pollutant dumps in the New York Bight Apex. The spectrometer's

field of view was approximately 30°, thus including a circle approximately

270 meters in diameter. During the 1. 5 seconds required to observe a single

spectrum, aircraft motion displaced the field of view approximately 115 meters

along the trackline.

(1D)

r
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A grating in an Ebert spectrometer reflects the diffracted spectrum

through a slit. In this experiment, the slit was set to pass an approximately

2.5 nanometer (nm) wide hand of wavelengths onto a photomultiplier tube. The

grating is rotated to scan the spectrum across the slat, so that a time record
r

of the photomultiplier's output voltage may be calibrated to yield radiance

as a function of wavelength. For the MESA experiment, the GSFC Ebert,

spectrometer was calibrated using the diffuse integrating sphere at Goddard

Space Flight Center.

A selected subsample of the observed sLDectra was digitized into 55

channels, each 5 nm wide over the wavelength interval 420 to 695 nm. This

particular representation was selected to facilitate comparison with earlier

results 
1,2. 

The individual radiance spectra were then, calibrated and

normalized to obtain ocean color spectra U  as defined by equation (1).

Five U^ spectra measured in the vicinity of the acid waste dump site were
C

set aside for separate analysis. The remaining sample of 32 spectra Ujn

(j = 1, 2, . . ., 55; n = 1, 2, . . ., 32) was then subjected to

characteristic vector analysis.

The first four characteristic vectors e.. (i. = 1 5 2 3 3, 4; j =1, 2,

... , 55) of the I ESA sample covariance matrix are shovm, together Frith the

sample mean spectrum 11, (j = 1, .2, 	 ., 55), as dashed curves in figure 1.

Also shown in figure 1 are similar results for Mueller's 
1,2 Oregon data (OSU

sample) and Hovis's9 ocean color spectrum measurements made on his 1972 NASA

Convaix 990 flights (CV 990 sample). Inspection of table 1 shows that the

first four characteristic vectors account for 99 percent of -dotal sample vari-

anceante i.n each of the three samples Internally, therefore, each of the three

4,
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samples has exactly five 99 percent significant degrees of freedom associated 	 ''0

with 9 and the first four principal components (Y l , Y2 , Y31 YO
w

That the samples merely have the same number of 99 percent significant

degrees of freedom is not, however, sufficient evidence to support the hypoth-

esis that standard characteristic vectors are applicable to all three samples.

Obviously the parameter N is common to all three samples. The key question,

then, concerns the degree to which the characteristic vectors e ij are

mutually interchangeable between samples. lntersample agreement can be

measured by the orthogonal discrepancy terms s j pj ^, and d^ in

equations (4) through (8), and by the percent of variance retention V  in

cross-sample representations (eq. (9) ). Pending results of a larger sample

analysis now in progress, part of which will correct for intersample

spectrometer calibration discrepancies, p 	 be neglected, and it ;rill be

assumed that

1/2
(12)

k-1.

Characteristic vector coupling coefficients C a (eq.. (5) ) are given

in table 2A for a = 14ESA and R = OSU samples, and in table 2B for a = .VESA

and	 = CV 990 samples.. The magnitude of orthogonal discrepancies lea.

as defined by equation (11), are given in table 3, together with cross-sample

variance retention V^.

As indicated by the large values of the diagonal elements 
Caiko

(table 2),

the MESA characteristic vectors are reasonably well alined with their

counterparts for the OSU and CV 990 samples. The percentage variance

distributions are also similar, although the proportion (about 90 percent) of

,a
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sample variance associated with elj is larger than the corresponding propor-

tion (approximately 80 percent) for the other two samples. This may be due, in

part, to the relatively restricted subsample on which the present MESA results 	 i

are based.

Of more importance than either of the variance direction similarities

CL
r

shown by tables 1 and 2, however, are the very small values of I Ei^l in

table 3. These values show that only a few hundredths of the total lengths of

eij and e 
2 

are not completely transferable between any of the samples. And

only about a tenth of e31 and e 4 is not similarly transferable. Because

of this overall cross-sample equivalence in the first four characteristic

vectors, 96 percent to 97 percent of total sample variance is retained if MESA

spectra are parametrized with OSU or CV 990 vectors, and vice versa. This

result strongly implies that four standard characteristic vectors could well

provide a common five percent significant degrees of freedom parametrization

basis for the three samples of ocean color spectra.

Turning finally to the acid waste signature, two U^ spectra from within

a recent acid waste dump and on U^ spectrum from 200 meters beyond the

visible edge of the dump were selected for analysis. The two acid U^ spectra

are shown as solid lines in figures 2A and 2B. The third U^ spectrum is in

figure 2C_ These spectra, together with the TZSA mean and characteristic

vectors, (fig. 1), were substituted into equations (10) and (11) to obtain

residual spectral signatures 5^, which are shown as dashed curves in figure 2.

Obviously, the two acid U  spectra have a significant residual spectral

signature Sad , whereas the third spectrum does not.

Visual comparison of the overall and residual acid spectra (figs. 2A and

2B) with the reflectrance spectrum of iron hydroxide powder• (not showu) suggests

Y.
r
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that a precipitate of that substance, rather than of iron oxide, may be

responsible for the observed spectral signature of the acid dump.

CONCLUSIONS

The results of an ocean color spectrum analysis have been presented 	
^ r

which use the method of characteristic vector. The following conclusions

are made from the analysis:

1. There is strong evidence to support the working hypothesis that a

standard. set of a four characteristic basis vectors plus a. standard

itmeanil vector may be used globally to parametrize "ordinary" ocean color

spectra. An individual spectrum would be parametrized by its mean

radiance Tq and four standard principal components (Y11 Y2 , Y3 , Y)

representing the five 97 percent significant degrees of freedom found in

ordinary" ocean color data. It is emphasized, however, that much

additional data is r@auired before such a system could be accepted for

standard use. By specifying "ordinary" ocean color it is meant to

exclude waters containing industrial and acid waste materials.

2. The acid waste material routinely dumped into the New York Bight

appears to have a spectral signature with a unique component orthogonal to

the characteristic vectors of ocean color spectra observed elsekhere.

This unusual spectral signature may be caused by a re00H precipitate

that forts after the pollutant enters the water. If constant from

dump-to-dump and stable with time in the water, the residual spectral

signature may be used to accurately discriminate the acid waste from,

e.g., sediments or chlorophyll, and to roan its dispersal patterns in

remote ocean color imagery.

i

n
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In closing, it is emphasized that the numerical results given here are

preliminary and subject to modification in the future. The MESA and CV 990

spectra were measured with the same spectrometer, but in different

configurations and based on separate calibrations. The QSU spectra were

measured with a different spectrometer which was independently'~ calibrated	 r

by a different method. entirely. Errors in any or all of the radiance calibra-

tions of the spectrometers used will contribute to the error terms EUP, pjo

and his . Recognizing these errors, a method of estimating the spectral

intercalibration discrepancies between samples has been derived.

Preliminary calculations suggest that using.this method to adjust all spectra.

to a common calibration base virtually eliminates mean spectral orthogonal

discrepancies pa . Corresponding improvements in ea, and 6^ are. jo	 i^S	 1^

expected.
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Table 1.	 Percentage of total sample variance associated with
the first four charaeteristic..vector of sample eonvariance matrix for
three independent samples of ocean, color spectra.

OSU CV 990 MESA
Sample Sample sample

e
78.6% 82.9% go.8%	 ^.	 .

e
17 .1% 15.1% 5.90

2

2.4% .1.02%' .	 1..3%e
3i .

e 0.9% 0.3% 0.7%
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Table 2. Characteristic vector coupling coefficients Ch i and CikcL'	
L.

defining the projections of characteristic vectors ea. of sample a on
those a O of sample 0 and vice versa for MESA ocean co .or data. in compar'ison

	

-with OSPand CV 990 samples. (See .text for explanation of terms). 	 . !

A. MESA (sample a) vs OSU (sample}. i

OSU (Sample R}

1	 2	 3	 4
t

1	 0.850 -0-413 	m4a	 o.3o6

i^SA	 2	 0. 417	 0.861	 0.125	 0.033

(Sample: a)
3	 -0.170 --0.17	 0.858	 0.198

4	 --0.227	 o.168	 -0.132	 0.812	 y

B. MESA (Sample a) vs CV 990 (Sample

CV 990 (Sample 5)

i k	 1	 2	 3	 4	 i
I	 ^

1.	 0.933	 -0.255	 0.043	 0.2€1

MESA	 2	 0.288	 0.915	 0.Ohh	 --0.111
(Sample a)

{	 3	 -0.027 -0.141	 0.836 -0.197

4	 -o.169	 0,199	 0.320	 0.746 i

38
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Table 3. Cross-sample	 unresolved orthogonality errors 	 and
percent of cross sample variance retention V a- for ERSA ocean color spectra
compared to OSU and CV 990 samples. (See teA for explanation of terms.)

Sample cx	 OSU	 I4ESA	 Cv 990	 MESk

T	 Sample 0	 MESA	 OSU	 MESA	 CV 990

I Ea^I	 o.W	 0.012	 0.002	 0. 009	
r_`

1

1e2^ 1
	0.035	 0.020	 0.033	 0.019

IEa51	 0.091	 0.122	 0.129	 0.102

I Ea 1	 0. 130	 0 .109	 0.147	 o.184

Vs	 96.$%.	 95.70	 97.4	 97.1

:s

1
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Figure 1.--The mean vectors (M.) and first four characteristic
vectors (e:.) of the sample co4ariance matrices for three samples
of ocean c6 or spectra measured in different geographical regions.
Vectors M. are in units of relative radiance. Vectors
e.i , are d4mensionless and of unit length.
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Figure 2.- Ocean color spectra (solid curves) and residual
signatures (dashed curves) obtained as described in the main
text in the vicinity of the acid waste dump in the New 7
Bight.
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SUMKARY
r

An algorithm for the remote detection and quantification of chlorophyll-A

in coastal zone waters has been established for concentrations above 15 P9/1.

For concentrations above and below this limit chlorophyll -.A. has been detected

and identified by a signature extraction technique developed for analysis of

data collected with (Multichannel Ocean Color Sensor), (MOCS) . a multispectral

scanner. This paper presents MOCS data collected in the Rev York Eight in

April 1975 as part of an NASA-NOAA Remote Sensing Program. Spectral signa-

tures of algae, acid waste, and sediment are presented. 	 T

INTRODUCTION

It has long been recognized that the color of the ocean can be altered

by the presence of algae. It is natural., therefore, to expect that man would

investigate the possibility of remotely identifying and quantifying algae
i

from aircraft and spacecraft. TI,e desirability of generating. contour plots

of algae in the ocean is clear. Regions abundant with algae are of

AcImowledgment: The author is grateful to National Oceanic and Atmos-
pheric Administration personnel, in particular Dennis S. Clark of the national
Environmental Satellite Service, and Terry Nelson of the Atlantic Oceanographic
and Meteorological Laboratory, for use of their unpublished ground truth
information.
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particular interest to various user organizations for a number of reasons.

For example, in order to support large populations of algae, regional waters

must be rich in nutrients. The sources and circulation of these nutrients

are important directly or indirectly to the following groups: (1) to ocean-

ographers in studying ocean and coastal currents (upwelling currents in 	
'r

particular), (2) to commercial fishermen in locating feeding grounds for fish,

(3) to ecologists in locating sources of pollution, and (4) to marine

biologists in studying red 'tides. In the latter case, monitoring of red

tides, dense populations of certain dinoflagellate. algae, are important

because they can be toxic to sea life and man and have been detrimental to

the seafood industry, especially in. the states of Florida, Massachusetts,

and California, Thus, interest in large area mapping of algae in the sea by

remote-sensing techniques has been brewing since the onset of the U.S.

space program.

The feasibility of remotely detecting algae has been demonstrated by a

number of researchers. 1-3 However, it appears that, as yet, no generally

accepted algorithms for the identification and quantification of algae

remotely has been established. The major difficulty is that the total

upwelling light is dependent on so many variables, as illustrated in figure 1

The variables shown in the figure are dependent upon such factors as solar

elevation, atmospheric conditions, sea surface roughness, and composition

and vertical distributions of the suspensoids in the sea, water depth, and

ocean floor composition. Thus, an alsorithu, for algae that appears to

work for one set of data muy not work for a different set. An algorithm must

be found that negates or minimizes the influence of all other variables.
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I
Fortunately, algae possess characteristic absorption spectra which can

be used to some, as yet unknown, degree. The ability of plant cells to absorb

light depends upon their pigments. Figure 2 shows examples of absorption

spectra measured by Yentsch. 4 These curves show a strong absorption peak

at about 675 nm in the red region of the spectrum due primarily ty:) c:hlorophyll-- 	 't M

A and a second broader peak at 450 nm in the blue region resulting from the

combined absorption of chlorophyll and carotenoid pigments. The use of these

two major absorption characteristics of plants is currently under investigation

by the author for remotely quantifying algae in the sea. As will be discussed

in later paragraphs, the chlorophyll-a peak in the red is useful at high

concentrations ( >15 pg/l of chlorophyll.--a), but not at Lower concentrations

where the strong absorption characteristics of water (fig. 3) overshadow
that of algae. 5 At lower concentrations the absorption maxima in the blue is

still usable, but it becomes increasingly more difficult to separate algae

from sediment, the other major suspended matter in the ocean. It is the pur-

pose of this paper to report the progress to date made in resolving these

problems.

The data presented in this paper were collected using Multichannel

Ocean Color .Sensor (MOOS), a multispectral scanner. This instrument was developed
under NASA contract by TRW, Inc., as part of the Advanced Applications Flight

Experiments Program ( {E) NOCS is being flown on an ITASA Wallops C--54

aircraft with the prime objective of collecting ocean color data that can be

wised in a computer program developed at. Langley for extracting spectral

signatures and algorithms that uniquely identify al,gac, sediment, and

pollutants in our coastal: waters. Results presented in this report were

provided by MACS data collected on an NASA-PTOAA flight in the New York Bight
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on April 13, 1975. A good data set of chlorophyll spectra was collected

on that mission. This date .^7et is supported by some ground truth information

provided by NOAA.

MACS INSTRUMENT DESCRIPTION

MRCS is a visible imaging spectroradiometer which performs multispectral
	

r

scanning electronically. It has no moving parts. MOOS was specifically

designed for measurements of small differences in oceans color from. space. It

measures the intensity in 20 spectral bands at each of 150 spatial sites of

the ocean across the field of view. MOCS is unique in that it uses only one

detector and, as a result, it is compact and very light,_ weighing only 23

pounds.

Figure 4 is a schematic of the optical arrangement of MOCS and a listing

of its specifications. The results of recent measurements of the center

frequency of each band are given in table 1. In operation, light from the

water is focused by the objective lens on the entrance slit. The instrument

is designed to form a high—quality optical image of the ocean surface on the

slit, so that light from one edge of the field. of view is imaged at one end

of the slit, light from the center of the field is imaged. at the center of the

slit, and so forth. The light is then collimated, dispersed by a blazed.

transmission diffraction grating, and reimaged on the face of the image

dissector. The resulting image consists of a large number.of adjacent spectra,

each one composed of radiation coming from a different site across the

instantaneous field of view. The spectra are scanned in sequence in a raster

pattern on the photosensitive surface of the tube. The resulting video

signal is a measure of the spectral intensities of the light coming from each
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of 150 spatial sites. The scan rate is such that the whole raster (one

frame) is read out in the time (286 msec) it takes the spacecraft or aircraft

to move forward over the ocean one resolution element. The scan is then

repeated at a rata of about 3.5 frames/sec to give contiguous coverage of the

ocean. MDCS has a 17.1 degree field of view and a spatial resolution oi' 	
C

2 by 4 milliradians.

The present MOOS system has an alternate mode of operation made possible

by changing the image dissector. In this mode the spectral resolution (5 nm)

is increased by a factor of 3 at the expense of a factor of 3 reduction in

spatial resolution.

The output of MOCS is fed to an A/D converter and stored on magnetic

tape. The bit rate from the converter is 137 kbits/seconds. A detailed

description of MDCS and its associated electronics can be found in.reference 6.

Figure. 5 is a photograph of MACS.

NEW YORK BIGHT MISSION

Remote—sensing experiments were conducted in the New York Bight between

April 7-17, 1975, as part of cooperative program between NASA and the

Rational Oceanic and Atmospheric Administration (NOAA). The objective of

this mission was to evaluate multispectral, infrared, microwave, and

photographic remote--sensing techniques for determining surface circulation

features and for detecting sediment, chlorophyll, and other water quality

parameters in the New York Bight. 7 This mission was one of several. Marine

Ecosystems Analysis (WSA) programs that are being planned. by IdOAA. The MMA

program is focused on providing information to better understand and minimize

man's impact on the coastal zone.
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Aircraft flights of the MOCS Experiment were conducted on April 10th

and April 13th. The aircraft flight lines, environmental conditions, and

water masses were generally the same on both days. The surface winds arid,

therefore, the -waves were higher on April 13th. Good MOCS data were collected

on both days and analysis of the data revealed similar results. Since more	 r

extensive ground truth data were collected by NOAA on April 13th, that mission

is presented here. MOCS and other experiments were flown on a Wallops C -54

aircraft at 5.33 Ion altitude. The flight lines consisted of rive parallel

tracks about 3.35 km apart arid 55 I long in northwest-southeast direction

as shown in figure 6. These-flight lines are superimposed on ate i10AA generated

map showing (1) the locations of water samples collected by helicopter,

(2) the chlorophyll -a concentrations measured from these samples, and

(3) possible contour lines of the apparent algae bloom on April 13th.

Three sampling stations near. Sandy hook indicated high concentrations

of chlorophyll-a (fig. 6). Based on discussions with NOAA of their

preliminary analysis of the ground truth data, it appears highly probable

that the primary constituent in this plume was algae. Figure 7 is a plot of

averaged MOOS data for spectral band 5 (460 nm) along lime U beginning just

offshore of Staten Island. A plot of the ratio of band 14 (601 nm) mid band 5

for the same data is shown in figure 8 along with the approximate location of

ground truth points collected by means of helicopter and the 11C'AA shin

Y.elez. The chlorophyll-a levels and the times between each watex sample

pickup and the C -54 overflight are indicated.

The ratio plotted, in figure 8 is used by the author as an "indicators of

turbidity. Selection of these bands was baste on the examination of a large

number of MOCS spectra which revealed that the maxima ard zrinima of the
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spectral variations of light from the sea were at or were near wands 14 and 5,

respectively. Note that the inflection point of the attenuation length

`

	

	 curve in Figure 3 occurs at band 14. Under ideal conditions (clear, windless

day and solar elevation 20 0 -- 500 ) this turbidity indicator (TI) ratio using

uncorrected MOCS data is about 0.28 for clear water and 0.60 for very turbid.
r

water.	 -`

Figure 8 indicates turbid water in the lower bay between Staten Island

and Sandy Hook. The plume boundary beyond. Sandy Hook is quite evident.

Beyond the plume there is a relatively clear water region followed by a

sulfuric acid waste dump. Ey inspection the correlation between the TI

ratio and the chlorophyll-a levels is reasonably good. Figures 9 and 10 are

plots of the TI ratio for all five flight lines on April 13th and. April 10th.

The turbid plumes and acid waste dumps are evident in both figures.

In the following paragraphs a signature extraction technique is outlined

and at the same time spectral signatures of 'the plume water and acid waste

in the Bight are presented.

SPECTRAL SIGNATURE RMBACTION

As previously stated, many environmental parameters influence the spectra

of upplelling light from the sea. The contribution of the backscattered light

from a.particular suspensoid is often a small percentage of the total signal.

Thus, spectral data ccllected over similar water masses but under different

environmental conditions yield different spectra. it is, therefore, extremely

difficult to extract any information From a single spectrum. An investigator

must examine the variations in the spectral data that result from variations

in the ^oncentrations of a suspensoi.d.
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The MOOS ds:La used here to demonstrate the MOOS signature extraction

technique is a set of spectra collected on April 13th along line D. This

data set was collected in about 20 seconds over a 1--mile path in a region

where the chlorophyll--a concentration is assumed to have varied between 6

and 14 pg/l (see fig. 8). This assumption is rased on the ground truth and 	 i

MOOS data consistency. Figure 11 shows rather uninspiring sample reflectance
	 li

spectra from this "chlorophyll t1 data set. One needs to exarine the spectral

differences between these spectra. Figure 12 shows plots of the fractional

differences between spectra selected at random from the data aet. Although

interesting features appear, they are partially lost in the "noise." A

techniaue is needed to extract an average fractionel difference spectrum.

This can be derived in the following msuiner.

In figure 12 there appear to be fair correlations between spectral bands.

For bands 12 (568 nm) and 14 (601 nun), for example, a linear regression

equation can be determined for the chlorophyll data set of the forut

112 = A_I14 +B	 (1)

where 112 (I14 ) i.s the signal of bend 12 (band 14) for e given spectrum. A

and B are constants. For the data set, the correlation coefficient for equation

(1) was found to be 0.94. Likewise, an equation and correlation coefficient

can be determined for each of the other 18 MOCS spectral bands with respect

to band 14. These equations can be written

I1 r Ai ,14 114 + Bi,l4
	 i — 1, 2 . . . 20	

(2)
i#14
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Now the relative fractional change, g(i,lh ), fer band i for the curves in

figure 12 can be wr"tten

d1.
g(i,14) = 1	 (3)

Tr di

 from equation (2)

g(i,14) — A
1 	i = 1, 2	 20

i 14

where 1. is the average signal of band i. Plots of g(i,14) (normalized

by the peak value of g(i,"_+))and their corresponding correlation coefficients

for the chlorophyll dates set are shown in figures 13 and 14, respectively.

Compare figures 12 and 13. Figure 13 can be considered to be a variant

spectral signature of the chlorophy ll data set. Figure .15 shows Plots of

variant spectral signatures deterudned from 50 different subsets of 75 spectra

each from the chlorophyll data set. The plot in figure 13 is actually an

average g(i,14) of the data in figure 15.

Selection of band 14 in Eq. (4) was somewhat arbitrary. For a selected

band j equation (4) can be rewritten in general as

A.
g (i, j ) — -	 -	 i = 1, 2,	 20

	

1.	 (5)

	

1	 i j

A normalized variant spectral signature using j = 12 is plotted in. figure 16.

Figures 13 and 16 are essentially the same. Note that the undefined
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quantity g(12,12) has been artifically added to figure 16 by interpolation

using the values of bands 11, 12, and 13 in figure 13. The variable s, in
i

equation (5) re--introduces the atmospheric scattering component of the upwelling

light into the spectral signatures. This component, however, does not

seriously influence the spectral features; it. merely decreases the magnitudes

of g(i, j ), particularly in the blue bands. The terni is used for two basic

reasons. First, the algorithm:s selected for each suspensoid will probably

consist of ratios of two or more spectral bands. Variations in these ratios

depend on the fractional changes, Ali/Ii, of the total signal for each band.

Second, g(i,j) is independent of the sensor used, that is, for all ocean color

aystems at the same altitude, the spectral signature of a particular water

mass obtained by means of equation (5) would be identical. No sensor calibration

is required.

Further examples of variant Epectraa signatures extracted for the April

13th mission are shown in figure 17. The data set for this case was collected

over a sulfuric acid waste dump in the New York Bight. Differences between

the chlorphyll and acid waste signatures can be seen in figure 18.

ALGAE

Additional algae signatures shown in figure 19 were extracted from the New

York Bight data.. One was extracted from a data set in which the chlorophyll—

a concentration varied between 14 and 2h ug/l along line D on April 13th

(see fig.. 8). The second signature was obtained from the plume an April 10th,

Other similar spectra have been extracted from data collected with A_OCS in

the Chesapeake Bay region.

i

ti
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A prominent feature of these signatures is the chlorophyll.-a absorption
r

peak at band 19 (678 nm) in the red region of the spectrum. Note that the

absorption peak is negative going in the reflectance spectra (fig. 19) and

positive going in the-absorption spectra in figure 2. A possible secondary

absorption peak due to chloroph„ 1- a or some other pigment is evident at 	 '!

band 16 (631 nm). Absorption in the blue region of the spectrum due to

chlorophyll-a and c.arotenoid pigments is indicated by the sharp slopes of

the spectra beginning at band 14 (601 nm) and leveling off near band 9
}

(521 nm).

Since the relative signal of each band in figure 19 is positive, some of

the variable component of the upwelling light is being backscattered rather

than absorbed by the algae pigments. Whether this backscattering is due

primarily to algae itself or some other process in the sea is unclear.

Further distortion of the absorption spectra due to increased backscettering

is evident in figure 20. This signature was extracted from a data set which

included spectra all along line D from Staten Island to the -Dlume boundary,

excluding shallow water regions. A more extensive knowledge of the composi-

tion of the suspended matter in the water is needed before these spectral

signatures can be understood.

Even so, the chlorophyll-a absorption in the red region of the spectrum

should be useful to some extent for quantifying algae. As the concentration

of algae increases this chlorophyll-a feature becomes more pronounced. This

principle is illustrated in figure 21 in which the ratio 1 19/117 versus the

ratio of x20/119 is plotted for data points along line D. As the

•

	

	 chlorophyll-a feature becomes more prominent with increasing concentration

119/117 decreases and 120/119 increases as verified by the ground truth data.

r

dS

.I
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With the exception of the "tail" in the lower right of -the plot, a good

linear relationship exists between these ratios, and should, therefore,. be

useful in quantifying chlorophyll--a in the sea. Analysis of the data points
	 U

in the "tail" indicates that this deviation is due to bottom reflection in

very shallow water (<3 meters). Once the effect of shallow water is clear, an

optimum al.gorithns for chlorophyll in very shallow water can be selected using

	

j	 spectral bands 17, 19, and 20. Perhaps a combination of the two ratios,

	

_ .....r'

	 I19 /I17 and I20/I19 , should be used. For example I20 I4I19 ) is plotted

in figurA 22 versus I20 /I19 for comparison. Notice the effect of the

	I	 shallow water data for each ratio.

Since only a very few data points occur over very shallow water, the

ratio I
20

/I19 was used in figure 23 to generate the false color map

of chlorophyll-a concentration along line D. The algorithm used for this map

was

N= C	 20 +DI
19

where N is the chlorophyll-a concentration and C and D are constants.

Notice the ground truth measurement of 32.2 Vg/1 in figure 6 at a station off

Sandy Hook, but outside the field of view of MOCS for line D. It is in

agreement with the color coded level, >29 }fig/l, indicated near Sandy Hook in

figure 23, which was determined from equation (6). Figure 24 shows plots of

120/119 for the five flight lines on April 13th. The algae plume appears to

be quite strong in New York's sower- Hay and along the New Jersey shore in

agreement with the ground truth data in figure 6. Line A shows high concentra-

tions of algae in P.ockaway Inlet and much lower concentrations offshore of

(6)
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Rockaway Beach as verified also in figure 25. A similar plume existed on

April 10th as shown in figure 26 except that it extended farther seaward and

its boundary was more sharply defined.

As demonstrated by the data in figures 21 and 25, the chlorophyll-a peak

at band 19 does not appear to be useful for quantifying algae much below

15 jig/l. As the algae population thins out, absorption of light by the ocean
	 'M1

increases. A point is reached in which absorption of light by water is

much greater than by the chlorophyll--a pigment at band 19 and the feature

becomes lost in the noise. Thus, for low concentrations, another algorithm

must be found one using spectral bands in the blue and green regions where

absorption by water is not as strong. Several promising algorithms are

currently under investigation.

SEDIMENT

Two authors demonstrate elsewhere in tkis document that there is a high

correlation between the sea truth measurements in the Bight of suspended

solids and chlorophyll-a. This result practically precludes the use of this

sea truth data to separate out these two suspended materialzi!. Moreover, this

high correlation suggests that the primary constituent in the plume was algae,

as previously indicated.

A variant spectral signature of sediment, compared in figure 27 with an algae

signature, has been extracted from MSCS data on another mission (ref. 8).

This sediment signature exhibits no unique features, suggesting that clear

separation of sediment from other constituents in the ocean may be limited.

However, two separation techniques are currently under investigation by the

author. Their preliminary results are beyond the scope of this report.

. A
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CONCLUDING REMARKS

Variant spectral signatures of algae, sediment, and acid waste have

been obtained by a signature extraction technique developed specifically

for analysis of MOCS data. The signatures were normalized such that they

are independent of the ocean color sensor used; no instrument calibration is

required. As demonstrated in this paper, a distinct advantage of the variant

spectral signatures is that they can be used directly to establish algorithms.

The chlorophyll-a absorption peak in the red region of the spectrum is

clearly evident in the spectral signatures of algae. This feature appears

to be useful for quantifying chlorophyll-a above about 15 j1g/1 by use of bands

17 (647 nm), 19 (678 nm), and 20 (694 nm). A comparison between the ratios

1x9/117 
and 120/1x9 clearly separates out chlorophyll--a for the algae in

the New York Bight on April 10th and 18th. The latter ratio can be used in

deep water. For very shallow water (<3 meters) perhaps the ratio

120 • 1x7
/(,x9 )2 should be used. Whether or not these algorithms can be

used for most saltwater and freshwater species is, of course, uncertain.

F^
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Table l MOCS Spectral Bands

Centex	 Center
Band	 wavelength	 Band	 wavelength

(nanometers)	 (nanometers)
A

1 400 11 552

2 415 w2 568

3 430 13 584

4 445 14 601

5 460 15 616

6 475 16 631

7 490 l? 647

8 5o6 18 663

521 19 678

10 537 20 694

i
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REMOTE INFRAR , MEASUREI4ENTS OF WATER THERMAL APNODMTES DUF.IING THE

NEW YORK BIGHT EXPERIkUNT

by

Charles A. Hardesty

SUMMARY

This paper presents thermal data collected in the New York 13ight in

April 1975 from the Cy-54 aircraft platform as part of a NASA NOAA cooperative

program.. These thermal data were collected for correlation. with NOCE data

and are not to be confused with thermal data collected onboard other flight

platforms during this effort. Thermal data are preser:ted here aria compared

with MOCS spectral signatures for algae.
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INTRODUCTION

Remote measurement of sea surface temperatures using infrared radiornetera

has been widely studied and the technique used on many occasions. AbEolute

accuracies of better than 0.5 aC are obtainable from aircraft platforms

provided the infrared radiation measurements have been processed to remove

the atmospheric effects and by uzing ground truth calibraticn. The infrared

experiments flown on April 10th and April 13th were s part of the mission to
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evaluate multispectral, infrared., microwave, and photographic remote sensing

techniques for determining surface circulation and water quality features in

the New York Bight.

The puijose of including the infrared thermal scanning experiments on

this mission (C--54 aircraft) was to correlate the observable thermal anomalies

in the water with the remote measurements collected by the Multichannel

Ocean Color Sensor (MOCS). Water is essentially opaque to the infrared

radiation in the 8 to 14 micron range. Therefore, the upper 0.1 no of sea

surface determines the radiance variation from point to point and-the

temperature of the marine background. The thermal data collected have not

been processed to remove the effects of atmospheric constituents. These

data are presented in this report as temperature changes along the flight

lines. The ,poor quality of the thermal scanner film records and the magnetic

data tapes prevented digitizing the data and providing image enhancement

ana falze color reaps as was originally planned..

DESCRIPTION OF INFFIMED INSTRUMENTATION

A Precision Radiation Thermometer (PET-5), table 1, and a. Necanofax ICY,

Labie 2, were flown on the Dew York Bight mission. The PRT--5 consists of

an optical unit and an electronic knit. The optical unit compares the amount

of radian ene.rGy emitted by the target with that emitted by an internally

controlled, optically ebopped temperature cavity, thus providing absolute

values of infrared radiation levels. The unit uses a h perirrdrersed thermistor

detector with the area of the active elemen'd only 50 micron square. Art

objective lens and special interference filter are used to limit the :ass bard

to the atmospheric 8 to A micron window. With the 2 degree (20 ) field of view, the

s
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instrument covers a ground swath of 15.9 meters and 186 meters for altitudes

f of 0.45 and 5.33 km (1400 and 17,500 ft.), respectively.

The Reconofax instrument shown in figure 1 is a single channel infrared

mapper. Incoming radiation from ground targets is reflected from the 45

degree. surface of the rotating (11,000 rpm) scanner mirror into a parabolic

mirror. The parabolic mirror focuses this energy via a small right angle

folding mirror onto the sensitive surface of the detector. The varying

intensity of the received energy produces an electrical signal. The

resulting video signal is used to modulate a crater lamp and record the

scanned image on 70 mm film. A mercury doped germanium sensor cooled to

approximately 300K vas used on this mission with an 8 to 14 micron atmospheric.a

filter. Since this Reconofax slid not have an onboard calibration system, only

relative infrared radiation 'levels were obtained with the scanner.

The remote infrared and MOOS experiments were mounted on the Wallops

Flight Center's C-54 aircraft platform and flmirn on April lOth and April 13th.

Flight data were collected at the 0.45 and 5.33 km (1400 and 17,500 ft)

altitudes. The flight lines consisted- . of five parallel tracks (A thru F)

about 3.55 km (1.92 nautical miles, n. mi.) apart and 55 km ( 29 . 9 n . rr..) long

in the northeast-southeast directi on a.	 vn in figure 2. Flight lines 1, 2,

3, 4, and the extended C--1 line, were f_	 on April 10th at ari altitude of

0.45 ia, (1400 ft. }.

NOAA provided the ground truth data for both days, but the most extensive

set of temperature data were collected on April 13th. In most cases there,w^:s

a considerable time spread between the NOAA ground truth data points and the

VASA remote sensing data obtained.frorr the C-54 aircraft.

{
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DISCUSSION

Figure 3 provides an excellent sample of the quality of the Reconofax

IV thermal scanner film records obtained during the spring B fission. This

figure shows flight lines A I and D-1 flown on April 10th at an altitude of
ry

5.33 km (17,500 ft.). Some of the fine detail has been lost in reproduction,

but close observation of the fil: records shows several small ships (small

dots) along with their cooler wake trails. This observed temperature

difference is a result of cooler water being brought to the surface by the

mixing motion of the moving ships. The thermal boundary off shore of Long
	 1

Island is quite pronounced in this picture which indicates a temperature

difference on the surface due to the mixing motion (flow) of the water. The

sewage sludge dump is also quite apparent in the middle of the photograph and

the presence of the wake from the dumping ship indicates that this was a fresh

sewage dump. The sewage dump was first noted in flight line B-1 and it can still

be seen in run B-?, approximately 100 minutes later. The reason for this

strong sewage sludge signature and its persistence has yet to be determined.

Additional information is needed on the sludge temperature axed composition

at the time of discharge to clarify this point. I't . is j,ossible that the

sludge enrichment of the overlying Craters may have resulted in formation of

extensive surface films. The old acid clump is not visible in the photo-

graphs. This is reasonable, because the Peconofax IV can only see a

temperature change of + 0.30K or larger in the top . 0.1 mm surface of water,

or a change in the emis: ivity of the sur€'a.cc. Other features to be rated oG

the Reconofax records as p the small hairline scratches running parallel

with the pictures along with two heavier dark lines. These marks were caused

I
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by the film magazine in the scanner and makes it very difficult to digitize

and analyze the data using a densitometer.

Figure 4 is an example of the Reconofax records for the 0.45 km (1400

f`E.) low altitude radial lines 1 and 2 (reduced by 2/3 to permit printing on a

single page) flown on April. 10th. Line 1 starts just South of Sandy Hook

and ends at the bridge on Rockaway Leach. Shown are thermal gradients

located approximately midway (arrows) between the land points, and gust off

the shore of Rockaway Beach. The PET-5 low level record in figure 5 is an

example of the last 15 minutes of data for the 85 km (46 n: mi.) "C" line

on April 13th showing two thermal boundaries in the surface of the water.

These boundaries correlate with the scanner film record and are verified

by ground truth data points 23, 24, and 54. The Keles data points are

approximately 1.40C warmer than the airborne measurements which is reasonable,

since the data have not been corrected for atmospheric effects as mentioned

and the time spread between the data sets varied from 0.5 to 2.5 hours.

The magnitude of the thermal anomalies at the boundaries varied between

0.3 and 0.6oC.

One interesting phenomenon was observed on the A-2 line flown. at 5.33 km

(17,500 ft) altitude on April 10th, and it appears on both the Reconofax

(fig. 6b) and PRT-5 (fig. 7b) records. This feature appears as many

small thermal anomalies on the Reconofax film record with a paint leading

(boundary) edge to the anomaly area. Because the footprint (swath width)

of the PET-5 is 186 meters (614 ft.) for the high altitude pass, it tends to

smooth or average the small gradients seen on the Reconofax record (16--

meter IFOV) for a total change of approximately 1 0 C over the area. The

thermal feature mentioned, was not appexent on the A-1  (fig. 6a and 7a)

f
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line flown approximately 30 minutes earlier, but the gradient is still faintly

visible in the B-2 line flown 30 minutes after the A-2 line. These high

altitude flight lines were flown in the sequence of C-1, F-1, D-i, A-1, C-2,

A-2, D-2, and B-2. The phenomenon first appeared on the A-2 line, but the

area was obscured by cloud coverage on the C-2 and D-2 flight lines,, which

prevented pica-pointing the time of the occurrence. This anomaly occuvred at

the a.ppro xi.mate time of maximum current movement far this area of the New

York Light, thus indicating a possible convergence and mixing of the water

pass. In sore respects, the anomaly seen on the Reconofax record (fig. 6b)

resembles the edge of the plume area indicated in figure 8, a sketch made

from previous 1973 flight data over the bight area. The MACS record for the

A--2 line also shows an increased amount of turbidity for this time frame,

talus indicating in this case some correlation between the observed surface

thermal anomalies and the MOCS date..

Figures 9 and 10 are plots of the PRT--5 thermal data for the first five

high altitude flight lines flown on April 10, and April 13, 1975,over the

New Ycrk Bight. These data can be compared to he MGCS, Beta for rutic I2CA10

in figures 24 aza 26 in reference 14 A comparison of these data zeLs

suggests there may be same correlation between the surface therval ancr_ali:es

and MOCS data.

CONCLUDING REMARKS

Thermal records for the PRT-5 end Reconof'ax I.' were obtained for all

f Ê ; ght tines f loi-in an the C-54 aircraft for April 10, and April 13, 197 5.

the Recovniu' reccrd s for April 13th show tit^W ?.C:'L''.I1al act l'a`ity +.Sian

orP 20 tk_.`flee quality of the Reconofam film record, srd r,:asnetir tapes 	 ^

k__1_
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prevented digitizing the data as originally planned. A comparison of the

thermal IR and MOCS data sets indicated correlation in some cases, but not in

others. More consistent correlation between data sets may be obtained by

using different ratios of MOCS data other than the 1 201119 ratio. The thermal

patterns seen on the Reconofax records for this mission are indicative of

water flog conditions and are similar in appearance (ref. 2) to the restu.ts

obtained by the Environmental Research Institute of Michigan in their work

over the New York Bight in 1973.
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TABLE 1 1 -- PRECISI OLI RADIATION TRERMOMETER (PRT-5)

DF.M I RT-10 d : A LIGHTWEIGHT, PORTABLF, BATTERY—POWERED THERMAL INFRARED RAD I OM I TER

SPECTRAL_ CHARACIERISTILS-L SINGLE BANDPASS = 8 TO l id AM WAVELENGTH

SPATIA C9818 ERISTICS 2° FIELD OF VIEW OR 186 METERS a 5,335 METERS

16 METERS @ 457 M, ALTITUDE

EHYSICAL PARAMETER MEASURED THERMAL INFRARED RADIATION IN THE 8 TO 14 MICRON

WAVELEN GTH BA ND TO ±0.5 0 C

EAP,TH RESOURCES PROGRAM APPLICATIO;IS: 	 PROVIDES A TARGET TEMPERATURE REFERENCE

MAN UFACTDRER : 	 BARNES RADIATION

PHYSICAL SPECIFICATIONS:	 TWO MAJOR COMPONENTS — OPTICAL UNIT

ELECTRONICS

REQUIRES ON—BOARD RECORDER

y

4
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TABLE 2, --RECONOFAX IV - IR SCANNER.

DESERIPT OIN:	 SINGLE CHANNEL INFRARED LINE-SCANNING IMAGING SYSTEM

THAT RECORDS RADIANT ENERGY IN THE 8 TO 14 11M RANGE

SPECTRAL CHARACTERISTICS:	 SINGLE CHANNEL - 8 TO 14 PM WAVELENGTH

SPATIAL CHARACTERISTICS	 1200 SCAN (±60° FROM NADIR) 3 MRAD INSTANTANEOUS FQV

RESOLUTION:	 FOV a 501335 M ALT,: 16 METERS

FOV a 457 M ALT.: 1.4 M

GROUND SWATH a 5,335 M; 18,300 METERS

GROUND SWATH a 457 M, 1,500 METERS

PHYSICAL PARAMETERS MEASURED: INFRARED RADIANT ENERGY IN THE 8 TO 14 UM

WAVELENGTH BAND TO ±0,3 K

DATA RECORD:	 IMAGE RECORDED ON 70 MM FILM
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FLIGHT LINES APRIL IO, 1975

FIGURE 2- C-54 flight lines, flight parameter and data identification parameters
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MAPPING THE HUDSON RIVER PLUME AND

AN ACID WASTE PLUME BY REMOTE SENSING IN

THE NEWS YORK BIGHT APEX, APRIL 1975

by

Robert W. Johnson

321TRODUCTION

Suspended sediment and chlorophyll--a concentrations and their distribu-

tions have been identified as important environmental parameters for monitor-

ing water quality and pollution in coastal zones. Suspended sediment has

been recognized: as a natural tracer that may be used to measure flow and

distributions in a water body, thereby providing information on pollutant

concentrations and dispersions'. Chlorophyll-a concentrations are a measure

of the nutrient load and an indicator of current state of health of a water

.	 body. In addition, as yet unidentified materials in spectral anomalies such

as plumes resulting from .ocean dumping of acid wastes may be used to identify

and map those features. Synoptic distributions of these environmental

parameters may be determined from remotely sensed data, thereby providing

information not readily available by any other means. Calibrated regression

equations have been used by Johnson. (ref. 1, 2) to quantitatively map dis-

tributions of water quality parameters such as suspended sediment and

chlorophyll--a from remotely sensed mu'l.tispectral scanner data.

It is the objective of this investigation to apply the methodology of

reference l to a coastal zone environment and to develop calibrated regression

equations to quantitatively map distributions of water .quality parameters

(e.g., suspended sediment and chlorophyll--a) measured in the sea truth

107
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program.* In addition, other spectral anomalies in the scene, such as acid

waste plumes, will be qualitatively mapped.

MERIM[WTAL METHOD

Remotely sensed data were analyzed and interpreted using concurrently

collected sea truth information. Data collections were made on April 9, 13,

and 14, 1975, with the ;post complete set collected on April 13.. Results

presented here will be limited to analysis of remotely sensed data collected

on April 13, 1975 (ref. 3).

Remotely sensed date. were collected by the Ocean Color Scanner (OCS) and

Mitchell--Vinten cameras from a U-2 aircraft platform at a flight altitude

of 19.7 kilometers (km) (65,000 ft.). The OCS is a 10-band multispectral

scanner with 10 bands in the visible and near IR spectral range. Band center

wavelengths are from 433 nanometers (nm) to 772 nm for the nominally ' 20 nm

wide bands, table 1. Ground spatial resolution was about 75 meters (248 ±Q.

Data were recorded onboard the aircraft on magnetic tapes with four bands

(2, 4, 5 and 8) digitized during flight and the others recorded in an analog

format. Initie:l data reduction and formatting were performed by the NASA

Goddard Space Flight Center (GSFC) with calibrated digitized data in Bands 1

through 8 supplied to the Langley Research Center on computer compatible

tapes (CCT).

Sea truth measurements for this experiment were collected by helicopter

over the 25 station matrix in the New York Bight apex. In addition, six

*l would like to acknowledge the contributions of 11r. Terry A. Nelsen of the
AOML/NOAA for the collection and analysis of sea truth data during the
experiment,and also, those of Messrs. Gilbert S. Bahn and Robert. M. Glasgow
of the Vought Corporation who contributed to the computerized data, analysis
and mapping products.



samples were collected at "sites of opportunity." Sample locations are shown

in figure 1. Stations 4, 5, 10, 15, and 21 were outside of the OCS scan and

X4 and- X5 could not be located due to missing LORAN data. Suspended sediment

and chlorophyll—a determinations were made at most of the sample locations.

Table II is a listing of suspended sediment and chlorophyll a concentrations

analyzed in this report. In addition, particle size distributions were

obtained within 24 hours by Coulter Counter from water samples taken at these

stations (fig. 2). Station locations for the sea truth sampling were

determined by LORAL A with an estimated absolute accuracy of 70 meters (220 ft).

DATA ANALYSIS AND RESULTS

Pata Preprocessing

Representative radiance values corresponding to the sea, truth measurements

were determined by locating the sampling station as nearly as possible, and

then by taking the average of an 11 by 11 field centered at that location to

obtain the representative value. This field size was empirically determined

as the area required to compensate for uncontrollable spectral and spatial

"noise' s or uncertainty. Radiance values (mw/cm `_ster-•}gym) associated with

the sea truth sampling stations are listed in table III.

Quantitative Data Analysis

Stepwise Regression Analysis (SWRA) was used to determine calibrated

regression equations for quantitatively relating the sea truth measurements

to remotely sensed data, as in references 1 and 2. In an SWRA, the inde-

pendent variable (radiance in one OCS band) is selected that.has the highest

correlation with the dependent variable (water quality parameter; e.g.,

t-^
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suspended sediment or chlorophyll-a,). A number of variables are then

selected consecutively until all of the independent variables (bands of OCS

data,) that make a significant contribution to determining the dependent

variable are included in the'regression equation and the others are "outsider

the regression. Limiting the regression equation -to significant variables

reduces the analysis time and improves the accuracy of the results. The

criterion for inclusion of variables is a 90-percent confidence level.as

determined by the statistical "F" test (see p. 171, ref. 4 for a discussion

of the SWRA).

Quantitative .Analysis Results

All values obtained in the sea truth program (that could be located in

the scene) were included in the quantitative analyses of suspended sediment

and chlorophyll-a except those in the spectral anomaly associated with the

acid waste dump plume (e.g., all stations except 18, 23, X4 and X5 for suspended

sediment and 18, 23, X1, X2, X3, A, X5 . and x6 for chlorophyll-a). There

were a total of 22 observations for suspended sediment and 18 for chlorophyll-

a. The plume from the acid waste dumps will. be discussed under qualitative

mapping in a later section..

Resu^_ts of the SIM& applied to suspended sediment and subsequently to

chlorophyll-a were as follows

Water	 OCS Band,RN Standard Correlation Correlation Range of
Quality in Regression Error of Coefficient to Suspended Sea Truth
Parameter Equation	 Estimate	 Sediment	 Measurements

Suspended
Sedi-
ment . ..	 P,6.	 1.39	 0.79	 0.46 -- 8x 38. mg/Q

Chl.oro^.
phyll-
a	 R3,. R6 	3.87	 0.83	 0.90	 2.20 24.30 mg/m3

i1.

F



where RN is the radiance in OCS band N (i.e., P6 is radiance in band 6);

standard error of estimate is a measure of the scatter about the fitted

regression lane; correlation coefficient is a measure of the relative change

among variables; correlation coefficient to suspended sediment is the linear

correlation of that variable to suspended sediment; and range of sea truth 	 4

measurements are for the water quality parameter being analyzed.

Comparison of the remotely sensed (calculated from the regression

equation) and measured sea truth uralues for suspended sediment and chloroptyll-

a concentrations are shown in figures 3 and 4, respectively. Deviations from

the fitted regression line occur approximately randomly, thus the linear

model appears adequate. Johnson (ref. 1, 2) previously indicated linear

responses in this range for suspended sediment and chlorophyll-a.

Interpretations of the remotely sensed data should consider the high

correlation between changes in suspended sediment concentrations and changes

in chlorophyll.-a concentrations. In this case, where the correlation coeffi-

cient (0.90) of sea truth (suspended sediment to chlorophyll-a) is higher

than for sea truth to remotely sensed data for either parameter, it should

be interpreted as a combined response where neither parameter can be

unambigiously separated by the analysis. The high correlation between

suspended sediment and chlorophyll.-a is shown in their comparison in figure 5.

Quantitative Mapping of Suspended Sediment and Chlorophyll--a

Quantitative mapping of water quality parameter concentration distribu-

tions may be determined from the regression equations. For each water quality

parameter, concentrations are determined at each pi_xel (or equal spacings

of lines or columns), this field of data is typically smoothed to remove



local spectral and spatial noise features and then a contour map is

M	 developed by a computerized plotting routine. The smoothing routine used

in this analysis is an averaging on a line- ,by-line and .column-by-column

basis in the data field where.the middle value is replaced by the mean of it

and the two adjacent values. Edge values remain the same. In this analysis

each pixel in every third line of data was used to generate the field of data

for mapping. Two smoothing passes were made for suspended sediment concen-

trations and two were used for chlorophyllMa concentrations.

Maps of suspended sediment. and. chlorophyll-a distributions; figures 6

and 7, also indicate Lhe high correlation (0. 90, see fig. 5) between these

parameters. The Hudson River.plume extension into the Light Apex, then a

drift southward along the New Jersey shores is clearly indicated in both

figures. The previously located acid 'waste plume is shown in both the

suspended sediment and chlorophyll-.s distribution maps. Data interpretation

of this feature is discussed in the.following section. The more concentrated

portion of the acid waste plume is at station 18 which is in or near the

legal dump area. Less concentrated areas of the acid waste plume are

probably due to dispersion and to earlier- dumps. Acid waste dump plumes

have been observed to persist for greater thatt 24 hours (ref. 5}

qualitative Analysis of the Acid Waste Flume

There are not sufficient sea truth points in the acid waste plume to

apply.quantitative.analysis techniques. However, investigation of spectral

changes associated with plume dispersions indicates that the epectral range

most indicative of plume. changes axe in the OCS band 3 to'6:spectral range...

This is the same _spectral range that.indicates differences in suspended

i
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sediment and chlorophyll-a. Thus, apparent changes in suspended sediment

and chlorophyll a concentrations in the acid -waste plume area should be

interpreted as qualitative mapping of the acid plume (qualitative since

materials in the acid plume are known to be different from those in the other

locations of the experimental area).

Spectra's responses in the acid waste plume at locations of apparently

different concentrations are shown in figure S. For comparative purposes,

spectral responses for the Hudson River Plume and background (Bight Apex)

water are shown in figure 9. Radiance values in the acid plume are not as high

or as spectrally wide as in the combined suspended sediment-chlorophyll-^a.

in the Hudson River plume. This is shoran. in the ratios of plume to ocean

water radiances in figure 10.

Particle Size Distributions

Particle size distributions for the basic areas in the sea truth and

remotely sensed data are shown in figure 2 for the Hudson River plume, acid

waste plume and background water. In the Hudson River plume, the dominant-

size particles are small (6 phi(¢) or 15 micrometers (pm)); those in the

acid plume are relatively large particles (3.5$ or SO pm); and those in the

background water are essentially bimodal (both large and small) in character.

It should be emphasized that these are relative counts of particles and

only relative distributions may be compared since little is known about

the shape or specific gravity of the constituents.

Identification of Pollutant Plumes

Identification of the two major spectral features (e.g.,the Hudson

River and acid waste plumes) would be possible in future experiments by

i
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spectral responses tn'the remotely sensed data. Figures 8 and 9 are

radiances (mw/cm2-ster—pm) in the OCS bands for ranges of concentrations of

the Hud.s.oa Raver and acid waste plumes, respectively. Note the general 	 r e:

spectral similarity. However, when the highest concentration responses of

the plumes are 's=atioed to an in-scene calibration (ocean water) the
4

differences are quite apparent above Wavelengths of 580 run: (fig. 10).

It appears that both radiance values and ratios to an in-scene source will 	 .

be useful for pollutant identification and monitoring by remote sensing.

Identification of plumes by sea truth measurements will be aided by

the particle size characterization, figure 2. As indicated previously the

Hudson River plume has predominantly small particles, the acid waste plume

has predominately large particles and the ocean water is bimodal in character.

CONCLUDING REMARKS

.Remote sensing may be.effectively applied to locate, identify and map

major water features in the New York Bight Apex. A multispectral scanner

from an aircraft platform was used to . nap the synoptic dispersion patterns

of plumes from the Hudson River and ocean dumping. The ocean dumping plume

was from acid waste dumps in the Ape4 on April 13, 1975.. Results indicate

that the types of plumes may be identified from remotely sensed spectral

responses without concurrent sea truth. In addition, particle size distri-

butions from the sea truth measurements provided information to further

characterize the river and acid waste dump.plumes.

Digital data analysis techniques were used to develop quantitative

relationships between remotely sensed data and the two water quality



115
h

high correlation in the measured values of these two parameters in the- sea

truth program, it was not possible to determine unambiguous distributions

of these parameters; however,their mutual changes have been used to map the

dispersion of the Hudson River plume.

Qualitative and quantitative mapping of pollution related features were

made for the New York Bight Apex. Additional sets of data with expanded

sea truth measurements will be required to further evaluate the analysis

techniques applied to this set of remotely sensed data.
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TABLE I SPECTRAL CHARACTERISTICS OF THE OCEAN COLOR SCANNER

TEN CHANNEL SCANNER WITH 75--METER RESOLUTION j

SPECTRAL BATED

433 MANOMETERS + 10 nm,

471 N. NOMETERS + 10 nui,

509 NANOMETERS + 10 nm,

* 547 NAINOMETERS + 10 nm,

* 583 NANOMETERS + 10 nm,

620 MANOMETERS + 10 nui,

* 662 NANOMETERS + 10 nm,

698 NANOMETERS + 10 nm,

733 NANOMETERS + 10 nm,

772 NANOMETERS + 10 nui,

DIGITIZED ONBOARD U2,

INTERNAL CALIBRATION ONCE PER SCAN LINE.



ChLOROPHYLL 1:
CONCLDTFAT'ICN

jrlu/M3

1,.000

4.600

5.300

24.3oo

6.400

6.6oc-

5.000

l.J
14.00C

(4.600

3.900

17.800

2.700

2.4oc

2.2CO

1 ,'CC.t.

_. 100

:..300

2. `tco

STATION

1

2

3

6

7

8

9

11

12

13

14

16

17

18**

19

20

22

23**

24
25

j, r

Ivv:L:

11.cc

X6

*Only data in the OCS

**In acid Waste plume.

TABLE TT SEA TRUTH 1 EASbFF1J71.1TTS*

CONCE UTF;ATION
mg/1

6.1140

3.210

1.700

8.380

2.71.0

2.310

1.100

6.290

2.5`:0

1.930

1.060

3.600

0,460

9.030

0.680

0.560

0.710

1.6gG

1.364

o.690

1.730

0.'[90

0.590

5.100

Scar: are ShC'6r73.
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TABLE III REPFj,SENTATIYE RADIANCE VALUES AT THE SEA TRUTH STATIONS

Station	 OCS BAND RADIA.NCE
mw/cm2-ster-,Pm

Band

1

2

3

6

7

8

9

11

12

13

16

17

19

20

22

24

25

xi

X2

X3

X6

1 2 3 4 6 7 8

23-94 19.68 14.52 11-72 9.16 6.66 5.00 3.00

24-57 20-35 14.89 12.09 9.36 7. 01 5.26 3.37

23-74 19-93 14.68 12.07 9.61 7-o4 5.08 3.09

23-77 19.66 14.51 12.o4 io.49 7.98 5.90 4.00

23-54 19.62 14.41 11.98. 9.82 7.00 .5-00 3.00

23-08 18.67 13.45 ii.00 8.88 6.00 4.17 3.00

23-54 19-70 14-53 11-08 9.00 6.ig 5.00 3.00

23-14 18.89 13-58 11.46 lo.00 7.00 5.00 3.10

23.46 19-36 13-94 11.28 9.ol 6.6o 5.00 3.00

P-3-42 19.45 14.00 ua2 g.00 6.12 5.00 3.00

22.90 18-37 13-40 10-38 8.00 6.00 4.00 2.94

22.96 19-34 14.25 11.45 lo .88 7.07 5.07 3.30

22.44 18.OB 13-32 10-72 8.17 5.98 4.00 2.98

22.8 3 18-49 13.47 10-93 8.12 6.00 4.17 3.00

22.75 18.92 13.45 io.o8 8.00 6.00 4.00 3.00

22-31 18.o5 13-51 io.4i 8.12 6.00 4.o6 3.00

23-05 18.66 13.45 io.47 8.02 6.ol 5.01 3.00

22.71- 17-93 12.46 9.50 7.03 5.41 4.00 2.81

23-05 18.79 J-3-59 11.15 8.58 6.02 4.84 3.00

22.12 18.15 13-93 11-81 9.23 6,00 4.61 3.00

22.19 18.12 13-86 11.51 8.89 6.00 4.47 3.00

23-73 19.68 14.4T 11.41 9.0 6.38 5.00 3.00
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Figure 1, - Location of sea truth stations in the New York Bight Apex
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Figure 2. - Particle size distributions for the Hudson River and

acid waste plumes, and N.Y. sight Ap ex ocean water
on April 13, 1975. i



	

-2 1
	 1	 t	 t	 r	 I

	

0	 2	 4	 6	 8	 l 0
MEASURED SUSPENDED SEDIMENT, mg/.l

Figure 3, - Comparison of measured and remotely sensed values
of suspended sediment.

r
r` _

REMOTELY SENSED

SUSPENDED SEDIMENT,
mg1,^

P
N
N

,4

S

b

4

2

0



0	 I	 1	 I	 1	 1

5	 10	 15	 20	 25

MEASURED CHLOROPHYLL a , mg lm3

Figure 4. - -Comparison of remotely sensed and measured values
of chlorophyll a

Y	 _

r

1 ^

I

25

20

REMOTELY S ENSED	 15
CHLOROPHYLL a , mg IM 3

10

5

i

r.r

i^.



20

MEASURED
CHLOROPHYLL a, mg/m3

15

10

5

N

I

S^

25 r

2	 4	 b	 8	 10

MEASURED SUSPENDED SEDIMENT, mgli

Figure 5. - Comparison of measured values of Chlorophly a and
suspended sediment at sea truth stations..



`fr

I^

-.. :......	 ..-^.:r.,..	 ..vim.. • ..,.r.. _...	 _ ._	 _	 _	 _	 _	 _

SEA TRUTH

STATIONS

HUDSON
RIVER

ti

Figure 6. -- Quantitative distribution of suspended sediment (mg/f•

in N. Y. Bight Apex. April 13, 1975.
V,.	 .:l+iaicr.4 ..i[ik	 „^Wppi	 `"".ms's.'°+®nue.w..ilililt+l

nM'ttl191i`i a:.°.l21h r . +N24 • - .. /-•.. •:-.. ••u:	 ~.



	

LO N G I SLAND	 &0

NEW - YORK

2
ROCKAWAYS I

6HUDSON	 HUDSON RIVER
RIVER i	 12PLUME

	

1-1	 X120 6

rf 18-

F

SEA TRUTH

r— STATIONS

91

ro
O'N

24	 L6-]

SANDY HOOKJ"

NEW iE RSEY

-''^	 Z4 

AC I D WASTE

12

PT

-to 8
61 0	

5	 10km

)6

N

(MgIM3) in N. Y. 3 ight
Figure 7. - Quantitative distribution of chlorophyll a

Apex April 13, 1975.



iy	 ^	 I

12

10

40ST CONCENTRATED PLUME

I NTERMED I ATE PLUME

CONCENTRATIONS

OCEAN WATER

0	 450	 500	 550	 600	 650	 700

CENTER WAVELENGTH, nm

Figure 8. Spectral responses in the plume resulting from acid
waste dumps in the New York Bight.

u_ ,,. ^.:_.

E,	 8,steam

6

4

2 L
40



MOST CONCENTRATED

HUDSON RIVER PLUME

INTERMEDIATE

CONCENTRATIONS

\1

\ ^ 1

OCEAN

WATER	 •

1

2 E-

10

RAD IANCE,	
8

mwlsq cm 3ster^ pm

N
cc 6

4

E

12

^` ti

..

.r.

.i

I

400	 450	 500	 550	 600	 650	 700^^
6

CENTER WAVELENGTH, nm	 t'

3

Figure 9, -- Spectral responses of Hudson River plume at different0	 p

	

^	 P i
concentrations and Ocean water on April 13, 1975.

7



1..0

_s

500	 boa	 700

WAVELENGTH, nm

Ratios of pollutant plume to ocean water radiances

in the New York Bight on April 13, 1975.

m

RATIO OF

.PLUME TO 1.4

OCEAN WATER

RADIANCES

1.2

01) WASTE

PLUME

N



BROADBAND SPECTRAL PHOTOGRAPHY

Walter E. Bressette



SROADB ND SPECTRAL PHOTOGRAPHY

Sauer E. Brescebte
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SUMMARY

Comparison of broadband black and white photography at near-infrared

wavelengths with greer-yellow wavelengths shows that a substance being

dunped in the New York Bight sludge dump area has a different spectral

signature relative to the water background than does a substance from the

acid dump area. Relative to the background water, the substance being

dumped in the sludge dump area has greater reflectance at near-infrared

wavelengths than at green yellow wavelengths. The substance in the acid

dump arsa has greater reflectance than the background grater through both

optical filters. In addition, the reflectance from the substance in the

acid dump area is much greater in the green,-yellow spectral region than it

is in the near-infrared region.

Flyn density data, obtained from the green--yellow photography, show = that

waste dumping in the New York Bigi;t increases the backscattered sunlight

from the water over a Much greater area than the designated dump site areas.

it is clear from the photography that acid waste is the primary subctm ce

resrorsible for the increased backscattered sunlight, but the green-yellow

wavelength data suggests that sludge clumping is also cortrihuting.

Film deMity data Indicate that uiwelling radiancF is grea,tcr from

location: in the dump site area which contained less than 2 milligrars per

liter total suspended material than from non-dump cite areas which contained

i4p to 9 milligr&zs per liter.

1
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3
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This remote sensing mission was performed on a National Aeronautics and

Space Administration (NASA), Wallops Flight Center, C--5h aircraft and the

photographic negatives from the mission are retained at the Chesapeake Bay

Ecological Program Data Center, NASA, Wallops flight Center. The ground

truth measurement of total suspended material weight used in the data

analysis was supplied. by Terry A. Nelsen of the Atlantic Oceanographic

Meteorology Laboratory, National Oceanographic and Atmospheric Administration

(ITOAA) .

INTRODUCTION

An objective in the NASA Langley Research Center remote sensing; program

is to demonstrate that information derived from remote sensing of

chlorophyll.-a and suspended sediment can be used to control biodegradable

water pollution. In reference 1 it is shown that chlorophyll-•a produced by

blue-green phytopl,ankton can be remotely mapped with a necx--infrared

detector when the concentration of chlorophyll -a is greater than 3L ug,/l.- a

condition commonly referred to as a phytoplankton "bloom." Yowever, as

pointed out in reference 2, a "bloom" is a critical biodegradable ccnditiar.

where additional energy input above the "bloom" level becomes a stress, and

the system becomes poisoned. Therefore, it is desirable to detect and

monitor phytoplankton growth below "gloom" concentrations in order to

provide biodegradable pollution control infcrmation. In reference ? it is

shown that below "bloom" concentrations the backscattered radiance through

the optical filters flown was not proportional to chlorophyll-a concentrations,
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and an optical filtering system for identifying the chlorophyll--a back-

scattering from the total backscattered radiance is proposed. The major

objective of the present reported photographic mission was to determine the

•	 effectiveness of the optical filtering system proposed in reference 3 for

separating chlorophyll-a-containing phytoplankton radiance from total

radiance when the concentration of phytoplankton is below "bloom" conditions.

EYF.'E M- NTAL METHOD

Two photographic missions wer flown at an altitude of 5.3 Milometers (IM)

by an ILSe?, Wallops Flight Center, C--54 aircraft. One on April 10, 1975,

between the hours of 10 a.m. and 11:25 a.m. eastern daylight time and the other

on 4pril 13, 1975, between the hours of 9:53 a.m. and 11:03 a.m. eastern day-

light time. Four Hasselblad cameras were used in the missions. A description

of the camera system and the C-54 aircraft is included in reference 4 along with

pertinent documentation of the overall remote aensing missions. The camera

settings and film. type used for the mission are shown in table 1.

The time frame of both Missions was over the later portion of the

calculated sunglint free photographic window for a morning flight, 9 a.m. to

11 a.m. eastern daylight tithe. The calculated photographic window is

dependent upon the location of the remote sensing site, the day of the year, the

field of viers of the camera system, and the condition of water surface

roughness. Since water surface roughness is not predictable in advance,

calculations to determine the sunglint free window were based upon a smooth

water surface. Any increase in sunglint effects from surface graves was

expected to be overcome by overlapping the photographs GO percent. In figure

I are shown the photographic flight lines over the Flew York Bight test site,
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and the approximate location of the photographs taken during the April lb,

1975; mission. It can be seen in figure 1 that 50 percent overlap of the

photographs occurred on three of the five flight lines, evidently, when the

aircraft was heading into the wind. For the other two flight lines the over-

lap was on the order of 20 percent.

The Hasselblad cameras were equipped with different optical..filters.

The spectral transmittance (T) of each and the type used is shoim in figure 2.

additional information concerning the filters can be found in references 5

and 6.

The bandwidth and location of the optical filters were selected 'cased

on the following:

The narrow--band filter centered at 525 nanometers in figure 2 integrates

the radi ance around the central wavelength where, as shown in reference 7,

the ratio of the diffused backscattering to diffused absorption coefficient

of cblorophyll---a is equal to that for water. It is also shoran (ref. 7) that

for wavelengths less than this central wavelength the ratio of diffused

backscattering to absorption coefficients of chlorophyll-a is less than the

ratio for water, and at wavelengths greater than this central wavelength the

ratio is greater. Thus, since the diffused backscattering to absorption

coefficient ratio is proportional to reflectance (ref. 7), it is expected

that the radiance integrating narrowband filter centered at 525 nanometers

will not detect radiance variations from chlorophyll- a in water. Therefore,

it is assumed that it will be useful for detecting variations in radiance

from suspended matter, including other substances in the phytoplankton that

contain the chlorophyll-a. In reference 7 the wavelength at which the ratio

of diffused backscattering to diffused absorption coefficients of a particulate

is equal to that for water is called the hinge point wavelength.

or
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In figure 3 transmission spectrums of two concentrations of blue-green

phytoplankton Anacystis Narinus, relative to its suspension solution,

illustrate the concept of hinge point wavelengths. The transmission spectrums

were obtained from a Cary 14 spectrophotometer (ref. 8}. The transmissionn

spectrum of Ana_ystis Marinus for the heavier concentration is represented

by the solid curve. It can be seen in figure 3 that the transmission spectrum

of the heairier concentration of Anacystis Marinus pbytoplankton crosses the

transmission spectrum for the lesser concentration at three wavelengths.

These hinge point wavelengths, illustrated in figure 3, are at approximately

520, 5170, and 700 manometers. At wavelengths less than 520 nanometers the

relative transmission decreases, between the wavelengths of 520 and 570

nanometers increases, again decreases between 570 and 700 manometers, and,

finally, increases again beyond 700 nanometers with increasing concentration

of chlorophyll a in Anacysti's Marinus phytopla.nkton. The hinge- points

illustrated by the transmission spectrums in figure 3 are not necessarily

located.at the same wavelengths as hinge points from reflectance spectrums,.

because transmission spectrums can consist of both diffused and direct light

while reflectance spectrums consist of only diffused light. 'Thus, the central

wavelength for the narrowband filter that must normalize chlorophyll a

reflectance with varying concentration was selected at 520 r_anometers.from

results of the study in reference 7 and not from the transniiss-ion spectra,

shown in figure .3. This optical filter is labeled .525 B-3 filter and called

the suspended sediment filter in figure 3.

It is further shown in reference 7 that the backs cattering radiance at

560 nanometers, from chlorophyll a concentrations between 1 and 30 jig/l is

always greater than the radiance fro g. -,pater. This is also indicated by the

r
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transmission spectra in figure 3, because between the wavelengths of 520

and 570 nanometers transmission relative to water increases when chlorophyll a

increases. The narrow-band filter with the central wavelength located at

554 nanometers should be able to detect the change in upwelled radiance from

varying concentrations of chlorophyll a below the chlorophyll a concentration

of 30 pg/l. However, as shown in reference 3, the upwelled radiance from the

chlorophyll a would be combined with the upwelled radiance from all other

substances in the water, and must be separated from these substances in order

to be useful for mapping chlorophyll a in a body of water. Therefore, it is 	 r,

surmised that the upwelled radiance from chlorophyll a concentrations below

34 leg/1 can be obtained by a differencing or a. ratio technique utilizing the

radiance values from the two narrow band filteres shown in figures 2 and 3.

The 89B near-infrared filter in figure 2 must be flown simultaneously

with the two narrow-band filters to determine if the water area under

surveillance is phytoplankton "bloomed," because as shown in reference 3, the

two narrow-band filter systems would be required for "unbloomed" phytoplankton

water. In the "bloomed" water areas the concentrations of chlorophyll a could

be determined from the near-infrared system alone (ref. 1).

The 12 yellow filter in figure 2 has two purposes. It has potential for

identilyi.ng phytoplankton color groups in phytoplankton "bloomed" water, as

it did in reference 3 for blue-green phytoplankton, and the 12 yellow filter,

along with the other filter systems, has a potential for Oetecti.ng radiance in

"nonbloom:ed" phytoplankton water from large particulates, because it fills

the radiance spectral gap, between 580 and 700 nanometers, not covered by the
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Increasing concentrations of large particulates are expected to increase

reflected radiance from "nonbloomed" phytoplankton water in the yellow and

red regions of the spectrum: This increased reflected radiance from large

• particulates is sho'4m theoretically in reference 9 and is believed to be

seen through the 12 yellow filter-in photography over the Potomac Raver.

(ref. ,,).

RESULTS AIM DISCUSSION

Presented in figures 4 and 5 are 276 positive prints of photographs that

were taken with the Hasselblad cameras over the Faev- York Bight from 5.3

kilometer altitude on April 10 and 13, 1975. The negatives of these prints

are retained at the Chesapeake Bay Ecological Program Data Center, Wallops

Island., Virginia, 23377. The photographs taken on April 10 are shown in

figure 4 and those taken on April 13 in figure 5. The positive prints,

because they are reproduced from the negatives, do not show as ouch detail as

can be seen in the negatives. Positive transparencies, ohich show more detail

than the positive prints, but less than the negatives, were used to obtain the

photographic film density data used in this report. On both days only two of

the cameras functioned. On both days the 80'B (near--infrared) Y;ratter. Lpti ctLl

Filter system operated in addition to the 554 (green-yellow) R-3 Dais--Atcmic

optical filter system on April 10, 1975, and the 525 ('blue--green) B Laird-

Atomic optical filter system on April 13, 1975. It is believed that the very

cold temperature (-16 degrees C), existing in the camera compartment cf the

aircraft at, the time of the mission, is responsible for the poor performance

of the camera system. The cameras which operated, operated intermittently.

This can be seen in pictures 6, 7, 8 from the 55 (green yellow; B-3 Baird-



I
138

Atomic optical filter system in figure 4 and the lack of pictures 44 through 	 sw

50 for the 525 (blue-green) B-3 Baird-Atomic optical filter system in

figure 5. Because of the poor operating performance of the camera system any

reference to location of features seen in the pictures relative to land is

questionable, except in photographs which include land features or Imown buoy
r^

systems. In some cases,features seen in the pictures of one flight line were 	 f

also seen in the pictures from the adjacent flight lines due to overlap of 	 s

the photography, see figure 1 and pictures 6, 7, 8, 35, 36 of figure 4. When

this happened the location of the pictures between the two flight lines

became more exact.

The bright hemispherical spot originating on the border of nearly every

picture in figures 4 and 5 is the image of the Sun reflected off the water
i;

surface. The Sun image is generally largest in area in near-infrared

photographs, because the upwelling Light (radiance from the eater body) is

very weak at near-infrared wavelengths. The weak upwelling light produces

better contrast with the surface reflected Sun image in the near--infrared

photographs than it does at other wavelengths, because at the other wave-
;;.

lengths the upwelling light is much greater. See pictures 2, 3, 4, and 5 of

figure 4a and b. Whenever the image of the Sun appears it a photograph, the

remotely sensed data obtained front that area of the photograph are not useful.,

because the direct reflection of the sui. off the water surface produces

drastic effects upon the variation in off-nadir radiance that is not detected A

at other azimuth angles.

Many of the near--infrared photographs, figures 4a and 5a, contain white

fuzzy lines. These Lines are caused by light flashes in the camera, from the

discharge of static electricity that builds up on 2424 near-infrared film.	 "a
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A bright area, which appears to be symmetrical about the center of each

picture, can be seen in all the scenes of figures 4b and 5b. The intensity

of this bright area increases, in general., in photographs taken along the

flight line as the aircraft heads toward :land, and, decreases when the air-

craft heads toward the open sea. See pictures l through 20, 33 through 47,

and 61 through 74 with the aircraft heading towards land, and 21 through 32

and 48 through 60 with the aircraft heading out to sea it figure 4b.. The
intensity of the bright area, in general.., is strongest near the center of

each photograph and diminishes with increasing distance from the center of

each photograph. It is shown in reference 10, from densitometer traces over

photographs exposed from 3 kilometers altitude through two of the Ha.sselblad.

cameras used in this photographic mission, that the center of photographs are

exposed to a higher degree than the edge. This effect is normal. in photo-

graphy, and is caused by camera--lens, off-axis, falloff, which in some camera

systems must be corrected by as much as 1/(cos 0) 1"2 , where 0 is the angle

off the principal axis of the lens (ref. 11). However, for wide angle remote

sensing the camera-lens, off--axis, falloff is not.the only off-axis variable,

because atmospheric backscattering also varies from the center of the picture

to the edge of the boarder. The	 'backscattering increases from

the center of the photograph to the edge of the film, and the increase is

dependent upon increasing distance from the camera to the point of concern in

the water. Since the increase in distance, similar to camera falloff, is

dependent upon 0, the increased off-axis backscattering of sunlight compen-

sates somewhat for the camera-lens, i.e., off--axis, falloff. Thus, the

calibration of off--axis falloff must be performed during the photographic

mission to account for atmospheric effects for a particular day. Whenever
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off-axis radiance data are presented in this report it will have been

normalized to nadir by multiplying it by a correction factor that is dependent

upon the off- .adir viewing angle. The correction factors were obtained for

each filter-film-camera system from densitometer traces through the center of

photographs 61 (a and b) on April 16, 1975, and 14 (a and b) on April 13,

1975• For the reason previously explained, these correction factors cannot

be applied in areas of the photographs containing the Sun's image.

In addition to camera--lens falloff and atmospheric backscattering, a third

element affects the radiance values that expose the photographic film in

combination with upwelling radiance from the water body. The third element

is reflectance off the grater surface of diffused sunlight. In reference 9

it is shown that reflectance of diffused sunlight from a water surface is

essentially constant with a variation in Sun altitude when the altitude cf

the Sun is above 34 degrees. Since the altitude of the Sun vas above 3h

degrees for 'both photographic missions discussed in this report, it is

assumed that the reflectance of diffused sunlight from the water surface is

essentially constant in all photographs.

Because the altitude and camera system is the same for each flight line,

the camera-lens falloff, the atmospheric backscattering, and the diffused

reflectance off the water surface were assumed constart ii: conseci.ative

photographs along the same flight line. It then follows from these
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assumptions that the general increase in brightness at the center of each

photograph (nadir) along the same flight line with the aircraft heading

toward land, and the decrease. when the aircraft is heading towards the open

sea, must result from increasing or decreasing upwelling radiance. It is

further assumed that the general decrease in up*aelling radiance along each



flight line as the aircraft heads out to sea results from the settling of

reflecting substances being discharged from the rivers that flow into the

New pork Bight water.

In some photographs additional light scattering features can be seen in

the water. This is most evident in pictures 6, 7, 8, 35, 36, 39, 40, 57 and 	 - y

58 of figure 4b, and pictures }, 10, 34 and 35 of figure 5b. These features

and their approximate locations are more easily seen in figures 6, 7 and 8.

Figures 6, 7 and 8, along with figure 9, are composite Figures made from

their corresponding photographs shown in figure 4 and 5. Figure 6, which is a

composite made from the photographs in figure 4b, shows the features best.

However, the features seen within the circle labeled sludge dump area in

figure 6 are seen, because their reflectance is less than, while the features

in the area labeled acid dump area are seen, because their reflectance is

greater than the background water. In figure 7, a composite made from the

near infrared photography of figure 4a, the same features can also be seen.

However, the features within the circle in figure 7 are now seen, because

their reflectance is greater than the background water, while in figure 6

the same features were seen, because their reflectance was less than the

background water. In figure 7 the features in the acid dump area are seen,

because their reflectance is slightly greater than, while in figure 6 these

same features have a much greater reflectance than the background water.

Therefore, the substance being dumped within the circle in figures 6 and 7

must be a. different substance than that in the acid dump area, because it

has different reflecting properties i Aative to the background water through

the two broadband optical filters. Since the location of the circled area

in figures 6 and 7 relative to the area labeled acid clump area is consistent
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with the designated dump areas for waste sludge and waste acid, shown in
	 I c

reference 4, it is assumed that the substance being dumped within the circle

in figures 6 and 7 is waste sludge and the substance in the acid dump area

must be acid residue. If this assumption is correct, it should be possible

to distinguish waste sludge from waste acid by a remote sensing technique. 	
f ^4

It is also apparent that the substance being dumped within the circled area

of figures 6 and 7 has a hinge point wavelength, because at some wavelength,

between the broadband optical filters used in this photography, the substance

must have the same reflectance properties as the background water. The

significance'of a hinge point wavelength for the separation of one substance

in water relative to another using a remote sensing technique is discussed

in reference 7.

In figure 8 brightly reflecting features are visible from the water

through the 525 (blue-green) B-3 Baird-Atomic optical. filter. These bright

features are labeled as drifting acid residue in lieu of sludge residue,

because their location coincides more with the acid dump area than it does

with the sludge dump area, and their reflectance is, as it was in figure 6

through the 554 (green) B-3 Baird-Atomic optical filter, much greater than

the background water. The fact that its reflectance is greater than the

background water through the 525 (blue-green) B-3 Baird--Atomic filter is

important, because it relates to the assumed signature of acid and sludge

obtained from figures 6 and 7, and illustrates the significance of the

spectral response of reflecting substance for specific identification of

these substances.

The sludge dump area cannot be identified in the photographs taken on

April 13, 1975, because there are no easily identified areas in figure 8 where



visual observation shows reflectance from substances to be less than, and in

figure 9 greater thaw, the background water.

In figure 10 is presented the variation of nadir radiance through the

554 (green) and 89B (PAIR) optical filters along -bran line 4640 on April 10,

1975, versus miles from Staten Island. The radiance is in the form of

relative film transmittance, Rn , obtained from densitor!eter traces over the

center of positive transparencies of photographs 33 to 47, figures l and It,

from which has been subtracted relative film transmittance through the

unexposed portion of the film. The nadir radiance values are unique in

remote sensing, because they result from the perpendicular . viewing distances

through the atmosphere and into the water. As such, relative to each Other,

they require no off-nadir atmospheric or carera-lens corrections. in addition,

since they are always in the plane of the sun, any effect upon, radiance values 	 ^ r

from the variation in sun azimuth angle should be normalized.

In figure 10 the value of R  at each Location through the 554 (green)

optical filter is always greater than the value of R  through the 89B (141F)

optical filter. 'Through each optical filter the value of P  is greatest

over land, and least for the two data, points beyond 33 nautical miles from

Staten Island, labeled uniform water in figure 10. The two constant values

of Rn through each optical filter beyond station 33 were obtained from

photographs 33 and 34 in figure k. The dashed lines, drawn through the

minimum, constant values of Rn , in figure 4, represent the radiance values

for uniform water. Thus, the dashed lines in figure 4 are base reference

values for increased upwelling radiance resulting from suspended materials

during this remote sensing mission.
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In figure 10 there is a general decay in R  through both optical filters

	

I

as distance from land, increases. The general decay in Rn is distributed over

two areas; one area where the photographs showed that heavy clouds existed,

and the other is over the waste dump area,. The increase in n over the

waste dump area, between 22 and 311 nautical miles from Staten Island, is much
	 r ^4

more prominent through the green filter system than through the near-infrared

filter system, but the increase in 
R  

over -the cloudy area, between 12 and

15 nautical miles from Staten Island, is more prominent at near-infrared wave-

lengths. Thus, there is a spectral difference in reflectance between clouds

and the substances being dumped in the waste dump areas.

The increase in R  over. the waste dump area indicates, from the stand-

point of biodegradable pollution, that a substance being dumped in the waste

dump area is reflecting sunlight out of the water that, otherwise, might be

available for photosynthetic activity. The extent, of the effect of the

waste dump area upon reflected sunlight can be seen better in figure 11.

In figure 11 R  from each over water photograph obtained through the

554 (green) optical filter on April 10, 1975, is plotted, for each loran

line, against distance from Staten Island. Also drawn on the figure are two

dashed circles. The smaller of the two circles encloses the area where

visit.le dumping is taking place during the photographic mission, and the

larger circle is the area where the radiance from features in the water is

very prominent in figure 6. The location of the smaller circle is also

consistent with the location of the designated waste sludSe dump area, and

the larger circle with the designated acid waste dump area.

In figure 11 there is a high value of R n along each loran line that

increases in value from loran lane 455C to loran line 4610. At loran line 461C	 s

r
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R pears, and then decreases again toward loran line 4670. This ridged value

}	 of R  is shown by the solid line across the data. The peal, value of P.  on

loran Line 461-0 appears to be inside the designated acid waste dump area.

In front of the high value of R  on each loran line there is a

depressed value of Ra . The depressed value of R n. decreases in value fromi

loran line 4550 to loran line 4640 and then increases again to loran line 1670.

The depressed value of IRn is shown by the dashed line across the data. It

appears from figure 3-1 that the minimum depressed value of Rn , alcng loran

line 4640, is in the designated. waste sludge dump area. It also appears,

since the depressed value of R  precedes the increased value of R  along

each loran line, that at optical wavelengths transmitted by the 554 (green)

filter the upwelled radiance from the sludge waste area is less than from the

acid waste area. This is the same conclusion arrived at from analysis of

figures 6 and 7, but, in figure 11, it appears the influence of the dumping

of sludge and acid waste upon R  is much more extensive in area then the

designated dump sites. It is also seen in figure 11 that tke photographic

mission dad not overfly the complete area influenced by waste dumping, since

the tvo outer flight lines still experience increased values of R  at

distances out to sea consistent with the location of the waste dump rreas.

The effect of waste dumping upon the variation of R  did not charge

appreciably from April 10, 1975, to April 13, 1975, because, as shown in

figure 12, the variation in R  along each loran. -line obtained from the 1125

(blue.-green) optical filter system shows the depressed value of Fn

preceding an increasing value of n when the waste dump areas are cverflowa.

Rn from each over-waterphotograph through the 525 (blue-green) optical

filter on A-oril 13, 1975, is shown in figure 12 by the square symbols, and



1_	 ..	
_	

. .. ..	 ..	 ....... __..._..,..-

14 6

R  from each over grater photograph through the 554 (green) optical filt er

on April 10, 1975, is represented by the circles. Rn is plotted against

miles from Staten Island in a staggered formation to isolate R  __^ ong

each loran line from both days. The dashed lines in figure 12, shown and

discussed for figure 10, are the minimuz values of R  for each filter--film

camera system. The minimum value of Rn was different for each filter--film

camera system, and on April 13, 1975, was obtained on only loran flight

ones 4640 and 4670, perhaps, because the flight lines did not extend as far

out to sea, on that day as they did on April 10, 1975. Nevertheless, it is

clear in figure 12 that the influence of caste dumping upon Rn . was as

extensive on April 13 as it was on April 10.

Since not a single in situ data area visited by the boat or the heli-

copter occurred in the center of a photograph, it was impossible to relate

n to in situ data in this experiment. This was expected prior to the

photographic mission, because in an area as extensive as the New York bight,

a photographic mission from 5.3 km altitude cannot be preplanned to pinpoint

the center of a photograph to a specific location. In future experiments,

the calibration of the optical filter system with in situ water data nci.ght

better be accomplished from a. helicopter. From a helicopter the remote

sensing data could be taken over a location at the same time as the in situ

water data.

Even off-nadir radiance data, R,.iras not obtained in this experiment

from many of the in situ data point locations, because the lack of 50 percent

overlap in the photography placed the boat, and some of the helicopter in situ

data point locations in the sunglint areas of the photographs. In all, only

eight in situ data points were considered useful for analysis of the

^.1

^L
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photographic radiance data.. These were from the helicopter, and were

restricted to April 13, because the helicopter did not fly on April 10. On

April 13 two types of in situ data were obtained from helicopter dip samples;

the concentration of chlorophyll--a and the total suspended material weight.

Since two of the photographic systems did not operate on April 13, the

calibration of the optical filtering system could not be accomplished with 	 f

the chlorophyll-,L data.

Presented in figure 13 is the variation of R through the 525 (blue-

green) optical filter obtained from the in situ data point locations on

April 13, 1975. R is plotted versus measured total suspended material

weight in surface samples obtained from these same locations. Data points

from the waste disposal areas are represented by the circles, and those

considered to be outside of the waste disposal. areas by the squares.

It is seen in figure 13 that the variation. of R in this experiment is

not very sensitive to total suspended material weight measured in surface

samples, because with a factor of 10 variation in total suspended material

weight R did not vary appreciably. It is also apparent that the remote

sensing data shown here is affected more by other paraar.eters in the water,

since R is greatest in the waste disposal areas where the total suspended

material weight in surface samples was :he least.

CONCLUDIPTC REMARICS

The major objective of this photographic experiment, the remote.

quantification of chl_oropbyll-a in chlorophyll-a containin6 pLytopl.enkton

when phytoplankton "bloom" conditions do not exist, was not accomplished,

because of camera system malfunctions. However, some important results,

I? tPRODUMNLITY Or Tr. A

r ; F.AL FAGS Is Poor.



concerning the New York Bight waste dump area, were obtained from analysis

of radiance data through the camera systems that did operate.

Comparison of broadband black and white photography, exposed through an

optical filter that transmits only near-infrared wavelengths (700 to 900 nm)

with photography exposed through an optical filter that transmits only green-	 f

yellow wavelengths (530 to 580 nm), shows that a substance being dumped in

the sludge dump area, assumed to be sanitation sludge, has a different

spectral signature relative to the background water than does a reflecting

substance from the acid dump area, assumed to be acid waste residue.

The substance being dumped in the sludge dump area has a greater

reflectance at near--infrared wavelengths and a lesser reflectance at green-

yellow wavelengths than a background water.

The substance in the acid dump area has a greater reflectance than the

background water through both optical. filters. In addition, the reflectance

from the substance in the acid dump area -is much greater in the green-yellow

spectral region than it is in the near"infrared region.

Film-density data, obtained from the green--yellow wavelength photography,

show that waste dumping in the Nev York Bight increases the backscattered

sunlight from the water over a much greater Brea than the designated dump site

areas. It is clear from the photography that acid waste is the primary
I

substance responsible for the increased backscattered sunlight, but the

-1
green-yellow wavelength data suggests that sludge uumping is also

contributing.

Film density data, from locations on photographs where in situ measure-

vents of total: suspended material weight in surface samples were obtained,

indicate that upwelling radiance from areas in the dump site area containing
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less 'than 2 milligrams per liter total suspended material weight is greater

than radiance from non-dump site areas that contained values of total sus-- 	 -

pended material weight up to 9 milligrams per liter.

i
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By

L. C. Schroeder, W. L. Jones, and J. L. Mitchell
r.
=r

?NTRODUCTION	 #

On April 17, 1975, the Advanced Applications Flight Experiment (AAFF)

radiometer /scattezometer (=SCAT) experiment was conducted in the New York

Bight as a part of the NOAA/NASA MESA Program. The objective of this

experiment was to demonstrate the viability of the radar remote sensing

technique for measurement of ocean surface wind vectors and to provide these

measurements at selected sites for the investigation of wind-induced ocean

currents in the bight. This report describes the RADSCAT measurement

technique, presents the inferred wind vectors, and compares the radar derived

wind vector with "surface truth" (tower wind vector measurements). The wind--

induced ocean currents portion of this investigation is a NOAA responsibility

and is not discussed in this report

E7'ERTMENTAY, TECHIiIQUL

Aircraft radar scattering measurements were obtained .using the AAFE .

RADSCAT 13.9 ON scatterometer* operating on the NASA Johnson Space Center'sz

C--130 :.aircraft (NASA-929). RADSCA`!'. was mounted to the ramp (.lower cargo

door) and was configured so that the antenna scanned across the aircraft

*The reader is referred to reference l for an. in-depth discussion of the
AAFF RADSCAT instrument.

173

r	 ..



l74

"	 ground track (fig. 1).	 During the ocean measurements, the aircraft performed.

a series of counter-clockwise 360 degree (36x 0) turns (20 0 bank angle), while

the antenna was pointed to the left (inward) side of the aircraft at an angle of

500 from the aircraft vertical axis. 	 This maneuver pe:unitted:the.antenna to i

illuminate approximately the same surface areas while undergoing continuous
i

i

azimuth rotation as illustrated in figure 2. 	 The polar -nation was transmitted }

'	 horizontal, received horizontal and. the incidence angle was 30 	 .

In making the scatterometer measurements, the quantity of interest Js the

scattering coefficient	 do " -which .is- a measure of the ocean reflectivity: 	 For

incidence angles greater than 25 degrees off the nadir, the mechanism for

backscatter is a resonant. (D,=a.gg) scattering. from : ocean waves -whose lengths are

of the order of the microwave wavelength. 	 At 13.9 GH	 the ocean	 00	 is

directly:.proportional to the amplitude of centimeter-or capillary. ocean waves.

Since the generating force for capillary wave growth is the wind stress at the

air/sea interface azid since the time constant for this wave generation is a few

seconds, these radar scatterers are in equilibrium with the local surface

winds.	 Thus the radar remote sensing technique is to infer vindspped`from a

measurement of	 C°.

In this experiment, radar data taken during four circle flight patterr_s

at each preselected site were processed to produce the average scattering

coefficient as a function of flight direction (azimuth), as shown in figure 3:
J

PrevioL.s research (refs. 2 and 3) has shown that both windspeed and sq
direction can be inferred from these ani.sotropi:c scattering.sign.atures. 	 As

previously stated, the	 c'o	is proportional to the surface frictional

I
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w ndspeed; however, this is a difficult .quantity. to measure. 	 Historically the

neutral stability win.dsr.eed at 19.5 meters (m) altitude has been used by

researchers as a geophysical parameter to be correlated with radar scattering

measurements.	 An example of these radar scattering signatures for three

different ocean 19.5 m windspeeds is shown in figure 11, trhea•e tiie abscissa

is the radar azimuth relative to the crosswind direction. 	 -Note that the 	 CFO

.	 monotonically increases with windspeed and each plot is a quasi-sine-crave if

twice the frequency of the azimuth angle. 	 The peaks occur in the upwind and S

downwind directions and the minima in the crosswind direction; additionally,

the upwind peak is slightly greate_ than the downwind peak.	 For the New York

Bight RADSCAT measurements, -wind vectors were inferred,using."calibration"

curves similar to those of figure 14.	 Dut•ing the experimerJ,, windsperd,

wind direction, air 'temperature, and see. temperature were recorded every half

hour at the United J`Lates Coast Guard Ambrose Tower loc.atc.d in the Nev York

Bight.	 These measurements were used to provide surface truth for verifying the

RADSCAT inferred wind. vectors.	 The mission was flown so that the first and..
{

last RADSCAT circles would occur at Ambrose Tower to provide a direct comparx-

sort of RADSCAT measurements with truth data..	 In . addition, . NOAA investigators

also obtained. simultaneous current measurements from buoys at four sites

within:"che test area.
t

MISSION RESULTS i
S

The mission was flown on April. 17 2 1975.	 Figure-5 shows the location of

sites where RADSCAT circle patterns were flown..,.. along. .with a key.whi.ch

'The 1.0.5 meter neutral stability windspeed is the surface frietion^-1 wind--
speed extrapolated.. t E .19.5 meters . using a logarithmic profile with . .an. air-»sea .
temperature differential of zero (ref. 4

i
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correlates these sites with those of the mission plan. Time.would not allow

taking data at every site originally planned,
r

Table T shown the wind vectors determined from analysis of the RADSCAToa
circle data. jvindspeed was determined -.sing both a mean and cr down-

wind. The results obtained were consistent. The ao mean values were	 ..^i.
L :,

obtained by averaging the windspeeds over all azimuth angles. These wind

vector data have also been plotted in figure 6. On this figure, the sequence

of data taking is indicated by dashed lines, and vectors indicate the magni-

tude and direction of winds. From these results, it can be seen that the

wind is nearly constant until 12:12 p.m. e.d.t. From that time and site on,

the wind diminishes in speed and the direction becomes variable.

The wind and temperature measurements from Ambrose Tower are presented

in figures 7 and S. Also shown are the RADSCAT inferred wind vectors. The

first and last RADSCAT measurements were taken at the Ambrose site.

Accordingly, all other, RADSCA1' results should be considered in a qualitative

sense. Concurrent with the first RADSCAT measurement, th- Ambrose windspeed

(measured at 40 meters altitude) dropped abruptly from 16 isrots to apyroximately

10 knots while the air/sea temperature difference increased front + 20C to
3

+ 60C (fig., 7) Thereafter the Ambrose vindspeed was constant while the

air/sea temperature difference steadily increased to t 7aC by the completion

of the flight. The large air/sea temperature difference will result in a

neutral stability windspeed at Ambrose Tower which is significantly reduced

From measured windspeeds. From reference 4, the Ambrose 10-knot windspeed

and . approximately + 70C air/. sea. temperature difference measured at 1300 hours

would produce a 19.5 m neutral stability windspeed of about 4-5 knots. Thus

both RADSCAT windspeed measurements at Ambrose Tower are in good agreement

t
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with the "surface truth". Furthermore, the comparison of wind direction shown

in figure 8 is also in good agreement.
x

CONCLUDING REMARKS

RADSCAT scattering data have been used to infer windspeed and direction

at preselected sites in the New York Bight with the intent of:

1. Demonstrating the RADSCAT's capability as a wind sensor.

2. Providing ground truth for current measurements. made

contemporarily -with these measurements.

Tl=ough the use of"surface truth" wind measurements at Ambrose Tower, the

demonstration of the RADSCAT instrument was in good agreement for both

comparisons.

The analysis of ocean current effects is a NOAA responsibility and is

not available at this time.
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TABLE I. MESA WINDSPEED DATA FROM RADSCAT AlEASURENIENTS (4-17--71)

^-START ~WIND VVINDSPEEED (KNOTS)

TIME DIRECTION FROM FROM

S I c. (EDT) LATITUDE LONG I T V (OUT OF) ,Wkll G- ° D0'WNVV 1 ND	
^_ a

1 1008 40.45 -T.3.88 3100 10.8 10.5

7 1035 lkl38 -73.50 3300 10.7

6 1048 40.20 -73.46 3200 9.9

5 1105 40.10 -73.56 3100 11.9 12.0

13 1120 39.84 -73.58 3200 9.3

12 1138 40.01 -7.3.48 3200 11.1 11.1

Ii 1154 40.04 -73.20 3050 8.5
C,	

10 1212 40.22 -73.24 2900 6.8

9 1229 40.40 -73.10 2450 5.5 5.4

8 12 47 40.52 -73.39 300`) 6.3

1 13 66 40.44 -73.90 285" 5.0

1
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