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1.0	 INTRODUCTION

Future NASA . geodynamic and oceanographic programs depend on extremely

accurate knowledge of the geoid. Much of this knowledge will come from. highly

accurate altimeter measurements from future satellite missions(i:e.,'SEASAT).

4	 The full use of this data necessitates realistic models of the global

ocean' tides: for both the reduction. of altimeter data to mean sea. level. and
A+$

	

for direct orbital perturbations. Moreover, global ocean tide models are of
S.

interest in the study of energy dissipation in the earth-moon system and, for

oceanographic studies, the global ocean tidal currents are of interest.

The dyinamics.of the global ocean tides are described by. the nonlinear

Laplace Tidal Partial. Differential Equations. The equations are too complex

E	 to solve analytically, and are amenable only to numerical solution by computer.

E	
In a previous work (Estes [91) which we will refer to as report [A], a computer

{	 software system was developed to solve for theoretical global tides described by

the Laplace Tidal Equations (LTE) including static earth tides., bottom friction and

turbulent viscosity. Following. Zahel [25],a time stepping integration

fk	 technique incorporating impermeable coastal boundary conditions and a forward

i [	 time differencelcen.tral spatial difference numerical scheme was used. The

present devel,opm.er,t is an extension of that work to include ocean self--gravitation

and crustal, loading effects into the Laplace Tidal Equations. As discussed

by Hendershott U51, the inclusion of these effects forces the LTE into an

Lintegro-differential system which we denote by IDLTE (Integro -- Differential

_- Lap:l:ace Tidal. Equation) . For purposes of completeness, much of the material of

U.	 report [A] will be.repeated,.particularly in the development of the tidal
equations and in the description of the software system design.

^i	

a

L_.l
Report [A] presented numerical solutions of LTE for the M2 and Y, tidal

constituents. We have since obtained solutions for S, N Z, KZ, 0 and Pl. For

convenience of reference, we include a complete set of these theoretical

solutions, which show general agreement with empirical global, solutions with

respect to the positions of amphidromic systems and tidal amplitudes.. An M2

solution of 1DLTE (i.e., including ocean. self-gravitation and crustal. loading)

L_I	 has:been`generated and displays a marked improvement in the predicted phase 	 :-

relations with.o6servations .(generally within 30°) when compared to the LTE	 £ ^

'42 solution. IDLTE solutions for additional constituents will be generated 	 s

l	 '



and presented in a future publication.

The improved comparison with observations obtained from the theoretical

M2 solution with the inclusion of self--gravitation and crustal loading effects

are encouraging. However, the observed values of ocean tides contain meteorological 	 i

effects and effects from terms beyond the second order term of the astronomical

tidal_ potential 'which are neglected in the theoretical. models. Moreover;
i

internal waves, tide currents and long period ocean tides are not considered

in the present study. In addition, the parameters representing the earth

model (love numbers and load Love numbers) are averaged quantities so that
'F

local responses of the earth due to inhomogeneities are not included. These

effects must be correctly modeled before agreement to the 10 centimeter level 	 j

can be achieved.

I
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2:. 4	 LA-0 TL AI CE 'TIDAL EQUATIONS

The dynamic equations which describe the .ocean tides, first derived by

Laplace . (1775) , are

..
Du` 2wsinc v •	

g ^ ^s^ + FX9! R	 V,

e at + 2wsan.0	 R a¢ L SD + F

I t
(Hu) +	 8	 (1Iv cos¢)Rcbsc a	 a^ ,

The first two equations are essentially a linearized special rase of the Navier--

zjigR7 Stokes equations and the third is a continuity mass conservation equation..
i

^ dare c}	 denotes latitude, X longitude, u the eastward component of velocity,
Ai

V the: northward component of velocity, F^ and F	 the components of the tidal

force,o , the gravity-acceleration, .R the mean earth radius, and w the rotational i

' velocity of the Earth.	 The ocean depth h	 h) denotes that distance from

the water surface to the ocean bottom when averaged over a very long time period
.#

T

i F
gg

h(o,X) ^ limit	 f h(¢,X,u)dt

and ss (o., }, t) ,	 (ct,?;,t)_ denote the- .instantaneous elevati ons -of the ocean surface

aad'ocea-^ bottom above their time averaged values. 	 Thus the instantaneous upward

displacement of the ocean surface relative to the ocean bottom the quantity

measured by tidal gauges; is given by (see Figure 1)

e,
	

(2)

,i

These equations ate referred to as."long^w'ave" equations. In their

sk	 derivation the ocean is regarded `as a homogeneous and incompressible fluid,
f	 and.: nonlinear accel.erat-?on terms.are neglected as second order effects. The_

assumption of hydrostatic equilibrium is invoked in deriving the continuity
i	 equation, in, that it makes the horizontal velocity components independent -of

3
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y _

the radial direction and allows integration of.the expression  for the balanceg

of mass in a vertical water column from the ocean floor to the ocean surface.

The verticalvelocity W need not be considered exPl ci tly, as the- Coriolis term
wcos^W is neglected in the first equation for the eastward velocity cam.-

L
ponent.

y

^ RE
The displacements of the ocean and solid earth in response to T, the direct

tidal forces due to the moon and sun, results in Ln altered mass distribution

due to the formation of the tidal bulge inside the earth and hence a change
;Ln the Earth's gravitational field. 	 bet Fb and F	 denote the gravitational
disturbances of the bodily tide and ocean tide, respectively. 	 Moreover,

i

denote the forces of friction and lateral turbulent viscosity by Ff and Fv .	 Then

F	 -	 T+ Fb
+Fs+Ff+FT:	 (3)

The direct tidal force, T, can be expressed as the gradient of the tidal

potential F,

r
T	 -	 dr	 {^)

L
The gravitational disturbance due to the bodily tide results from two sources;

a primary response to the n.on"loading astronomical potential and a secondary

LI
response to the crustal loading by the time varying ocean tide.	 The Green 's

functions for the.. augmented potential and elevation caused by the loading

of the crust at an angular distance 7 (spherical earth) per unit of loading

mass are giver. by Farrell [10] as

'Cy}	 k, Pn(cosy)
e	 n-=0

R
VIM 	 h' P (cosy)	 C5)

. Me	 r=^^.	 n	 n

where, M	 is the mass of the earth and k 4 , h' are load Love numbers.	 The
e	 n'	 n

j primary solid earth tide, due to the,fact.that the free periods of the

elastic .earth -vibration are less than an hour, is accurately represented as a

!.^ static response. 	 Thus the total body elevation and gravitational disturbance
{	 ... are

5
yy.	 ^



h  r + ff R2EP U ` (Y) dQ'b	 g

Fb = kLT + VVb

i	 Vb =	 R2 E PV (Y) d 5?' .

a

I

^I

where

J

0

9

,GJ

i

it

l
i

3

i

Here p is the mean density of sea-water, the domain of integration is over the 	 }

global ocean surface and y is the angle between the integration variable

and the position at which the integrals are being evaluated, }

cosy = sin^sin^' + cos^cos^' cos(A--X'). (9) r
`}

The first terms (static) in the equations for ^b and Fb are expressed in

terms of the Love numbers kL and hL with values of approximately .3 and .6,

respectively. These parameters express the elastic yielding of the Earth

to a non loading potential. The gravitational disturbance of the ocean tide is

VVs 	(10)

where

V =	
GPR2EdPT	

(ll}s

Fs =

and the domain of integration is over the ocean surface. Here G is the

gravitational constant and x, x' represent the position on the earth's

surface at which Fs is evaluated and the position of the element of inte-

gration, respectively. On the surface of the spherical earth,

Fx'1 = 2R2(1-cosy)

6
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so that

-'i

g
t

GpR2	 d .9
" s	 21^sin (y/ 2)

f

^y
t

2	 dS^'	 ( 2)
R	 M	 2sin (y/2)Y

r i

In modeling the friction and. lateral viscosity terms we follaa Zahel [25]i

and sat

C t,72r (U)
v

F	 - C	 d	 u
by v (13

where C	 and Chv are the coefficients of friction and"horizontal eddy viscosity,
t,

respective-, and A is the horizontal Laplacian
E

r. R2cos2 i	 ah2	R2 
a^2

Ul^

The Laplace, tidal equations thus becomes

1
1

h
au	 (l+k, - L^ ar	 3	 u-^ yZ 1.	 ar , ,

f — - , 2msrev -	 -- -- —^ — .. G
at	 Rcosy^	 DA	 RcoSc	 Hl	 r	 Yi

u -- C	 du+Itv	 Rcos¢ ax

HN (l+k t :	 ,) a^	 a s	 u-	 2 x ar"
:,

^-'
C	 v s

at + 2ws inou	 R:	
a_	 _ 

R a^	 r	 H
C	 ev -^-
h-;	 R a.¢	 (14)



and r' is the potential due . to ocean loading:and salf--gravi.tational..effects,

f

f

-E

J`

EHil .

a

r't ,h, t) --

ff
2 0	 _,t) P ^	 1

2sin(Y/2} 
+ P (Y) g U' (y) d2' (1.5)

M 

S	 III`(((

{t	 cosy = sin¢sino, + cos^cos^' co's(X_V )

'

The LTE thus becomesIntegro--differential in . nature (IDLTE) when ocean

- floading and selfgravitation effects are included, as pointed out by Hendershott.
CL53.'. Neglecting . -the .perturbi.ng potential s' . reduces the system.: to that of.':.

E

report A.	 The present study solves the IDL'IE system by successive approximations
U 1

using the time stepping meVrj.od of Hansen [121 and finite differences, imposing
the boundary conditions of impermeable coasts, 3.:.e.; the perpendicular components': E

f; ,of tidal velocit y are required to vanish at the coasts. 	 The procedure i s toY	 q	 p
r

first. generate a zeroth order solution of Equation. (14) neglecting: r'.. 	 Then
P' is calculated from Equation (15) using the zeroth order solution for the ^- t

tide.	 A first "order solution.: of Equation (14) is then ° generated." using the
r poteiitzai F. 	 calculated from the zeroth. order solution., . etc::: This'' sudcessiv

f iteration. technique .is continued until convergence is . achieved.

The .periodic tidal solution is represented in the fora
r i<

II

}	
--	 A(^	 ,,l ).;cos at-h^t .: ^^ ).. 	 (^&)

' where contours of equal amplitude A(0% V) are denoted : corange lines and " .lines
of constant	 ha.se lk"are denoted cotidax lines.	 The expression for T' the'n'becomes -i

P (0 a 2L) . 'coscft --	 {$,1)	 sinctt.. tl7) .r' C,)	 R

Where

P"t^aa)	 RZAA(4^'"":yX°}cos E't 	 'rX°}}	 ^ '	 +^2' (Y)- gLTt { rJ S:LA^ do d?, t	(18)
r1 2s1n(yj2)-

S?	 -
e

F

_	 8



Q{ ^^}	 _	 R2pA(^',V) sin[
 2sin^	 }-}- ' (Y) --$Up (Y)	 sin¢'d¢'dh'^I e

Lil

Tbea
I

L ar a^ a_
ax	 cosat Sint

I	
^r

ar+  ap a
8 3i¢	

UvbU L --	 sinat	 {^ 9)

i^

n
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3.0 TTDU POTENTIAL EXP^STON

The. complex motion of the 'noon and sure results in a tidal disturbing force

;E	 w",lich displays periods ranging from thousands of yea's to hours. Doodson 171

a_ad : .recently Cartwright 14] have expanded the gravitational potential of the moon

and sun at a point on the Earth's surface into the series of tidal "components"

or "constituents"

i

J ĉ,	 VOI;,, 7; {n ,n2 , ..'.n6) ex^ (xz1T4-n s+...+naps)	 (20)

1 2	 6

there the sum is overall positive and .negative values of the integers ni. The
r	 arguments of the exponential are the six astronomical ^fregrlencies presented in

Table 1. The number

(nl ,n2 ^-5,n3-1-5,n4-3-5,n5+5,n6+5)
	

(2l)

is knotm as the Doodson number and uniquely identifies individual components.

The functions !D are grouped into -three species, for n l = 0, 1, and 2. The

functional forms are

SPECIES l:

Ko, .... ,n^) = gCKPZ.(si-0)

SPECIES M

^ l - -.,nd) = gcKp 2 (sink) e a7^
	

{22}

# #	 SPECIES III:
fit7,

F.

ii	 2	 +2 X
'	 a (2; ... Ind) = gC&? (sine) e

iza
I	 The..C.(n2,n ..On are constants,. the en 

are Legdndre.polynomials and 	 i

K 3
	 moon) _ ^ 53. cm

2 L^Ie ..
	 R3	

{2-)	 I

moon
r^

i 10i



where R	 denotes the mean lunar distance.
moon

I

The fictitious displacement

is denoted the "equilibrium tide" and represents a sea surface of constant

g.ratitational. potential.. The tidal constituent potential is then P W g^. 3

V

From the definition of r, it is clear that Species M tides are semidiurnal,

Species II diurnal, and Species I long period tides. Doodson computed the con-

stituents with amplitude greater than 10-
4 of the amplitude of the largest tide,

soma 400 terms. The most prominent terms are presented in Table II.

For the present study, long period tides are not considered and for input

purposes to the computer program, the tidal consituents are represented in the

form

'YYPE III:

CK	 2 i{ot+2a}
T =	 cos e

(25)

TYPE II:

7

r.-1#

f	 -- CK sin2c e
i(cst+a)

Wftere the constants C and or are specified by the particular constituent of w

interest, and

c nz+ns+nfi+np+n

	

	 -a 6N+r
2	 3	 4	 5	 6 s	 (26)	 u

where the rate of change is per mean solar hour. Note the factor of 2 difference

iR the semi.diurnal and diurnal representation of Equation. (25).

ll	

t

k17^-
^y



Rate
Definition Period -adians per(r -uenFreq	 qy

-. AA mean solar: hour) {deg /solar hour)

Greenwich. celestial .1 lunar day .2529359 14.492
longitude

' j,
E;. I unar orbital I t to ical,. xO95819 .549016

f
longitude month

'a -Solar o6l-tftl I tropical .007163 .041068
if 7 longitude year

p t un. ar perigee 8.85 Oulian .00008168 .004642
ri	 ude1.0 git years

1N 0 eLunar node 18.61 Julian .0000377 -.002206
longitude years

P Solar perigee 20,900 Julian
-7

.344 x 10 .00000196
S

longitude years

Table I

1	 2

12



'I
i

t

^wl

f
Designation

Amplitude Factor Frequency
Period
(Hours) r.`

Daxuin	 Doodson. Number (C) (radians/day}

Type I
14
y

(0,7,5,5,5,5) .156 .459969 327.84

Type II

0, (1,4,5,5,5,5) .377 5.840445 25..82

P1 (1,6,3,5,5,5) .776 6.265983 24.07
f

ii
I`1 (1,6,5,5,5,5) .531 6.300388 23.93

-1 Type III

'x.2.66

, r

N2 (2=4=5,6,5,5) .174 11.910864
M2 (2,5,5,5,5,5) .908 12.140833 12.42

52 (2,7,3,5,5,5) .423 12.56637051 12.00..1

K2 (2,7,5,5,5,5) .115 12.600776 17.97

i^

' P w^

z

j

a

-

i

I Table IT

LIJ	 S
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4-0  CJ.L- TATIO AL TECE IQUES

4.1 Hansen Grid

Tice numerical technique employed in the present .study for the Laplace Tidal

Equations (lea) follows Hansen [12] and Zahel [25 1 iin applying a finite difference

al& ri.thm . iu temporal and spatial variables and integrating fom7ard in time
(L- -ep pang) . We employ the global grid system proposed by Hansen (also known
as the Richardson grid) whereby a staggered grid with velocity components and

t:L 1al elevations are computed at adjacent, but not coincident, grid points. The
coastal botm.dary conditions are represented by horizontal and vertical lines
imposed on the .grid and pass only through. those points denoting 'velocity com-

ponents. Vertical boundary lines pass through u grid..points (eastward velocity)

and horizontal boundary lines pass through v grid points (northward velocity) so

that the requirement of the vanishing of perpendicular components of velocity

forces • all velocity components falling on the boundary line' to be identically -
zero for all time. Moreover, .:Lt is to be noted that with this procedure there

is never a corner point involved in the boundary conditions. This, is of consid-
erable numerical importance. The Hansen grid is depicted in Figure'2.

" .2 Finite Difference Equations

The finite difference formulation for the Laplace Tidal Equations (14),using

central differences for spatial variables and forward diffarences for the time
variable are. folloxgiug Zahel [ Z5]

u(N,M,td 6N[v(,^i-l,tn)+v(N,M,t)+v(N+1,1i 1, n)+v(N+l,M,td 72

ih(NJI)+h(N,M-1)+c (N,11,tn)-+ 9(N,M' l,tn) ]	
-

U 4 l , M, to+l)

.^ 1 
C A At

0 . . . 	 +

• u(i:?,m, t n ) + 2wAt sin[t W]

. 4 ^v(N,^frl, tn)-Pv(N,2h, ^n)+v(^r+s,rf z, n)±^(N+a.,, tn) ]

( u(N,^rl, tn) +u(N,M+ 1, t)--2u(N,M,tn)
+ C At

by	 [Rcos (N) IAX12

u(i3+1,x,tn)+tt(N-1, Il,tn)--2u(N,M,tn)

(^^]2

1

t
r^

s

sL 14



Gt	 E (N. IM, tn)-' (N,Z,-I , til)	 At	 aP	 -
^Z...	 +	 co 6t	 ^i	 o-	 -	

Rcos [^ (N) U (N,
M) s n	 ax	 n(N, ) sin[ t] {_.

Rcos [ ^ (N) J	 AX
l

j	

+ LAX-At

S1t	
^	 }

3	 EF__1[

r^

v(N,M, n)

-	 crLt v(N,rl,tn},r 
1 E

u(N31,M, t)+u(N-1,NF1, tn)+u(N,ir I,tn)+u(N,M,tn)]2
1 _	 —	 — -	 -

[h (N,^^) +h (N--x,^a)+^ (N,r,, ^n)+^	 ,^r, tn) ]

Y=(ti,M,tn) - 2wAt sin[6(N)- Ail

. x[u{v-3_,r^,	 n)+^.(N,., n)+u{N,M,tn

	

+ c , t v
(N,rt 1, tn) +v (N,^-^ , tn)-2v(N,Ai,^n}	

(27)	 E
hv`	 [Rcos[fi(N)-L1^ ]A^]2

v(N+z ji t)+v(N-1 ""t t	 2v (N, rl t )
-F

[R61-r 2
j

-• Est ^ (N,1-f, to}-- ^ (i;^-1,iI, "tn)	
+ qt aP	 a

R	 ^+	 R L(N,M)Cos[cFtn] -- -a¢(N,M)szn[crtn

P^yrat

where

aP`	 P (N;_M) - P (N,M-1)
g MM) _	 ^X

aR	 _q(NN)	 Q.(N,M-1)
ax	 AX

a  
(N, M) = P(N,M)	 P(N-1,M)

a0	 Q (N M) - Q (N-1 M)
a¢ (N'M) _	 bc^

i

. 

iki

 j

5

r

r^

(2S)



T
^a

where

Lj — —
g -- 3 

Fl	 Rcos^
{ y 2A

F^ Ra¢

Fi and

F	 -.	 Cos	 '(N)I sin [2(A(M)a2`) + 6t 17 a

Spr CIES ?II::

F	 --q	 In	 2 ¢ N.	 --	 cos	 27l (M) 	 of2R,	 2-	 n.

_
1

#I

(2g)

.^	 s7 i1	 (N) 7 sin [ (A (M) _	 + at

^
9

?	 Z)

^i

lILLEE^^..'̂

SPECIES 1!:

i
j

ME cos [ 2	(N) -	 ) 7 cos [A (M) + at
2	 n

t

?I The quantities ate, 	 and â  arise from 'tie perturbing potential r' and

^C are held constant in. tune over.an : iteration (see Section 2.0). 	 For computing efficiency

these derivatives are precalculated and held in storage for the integration

.4oal	 r	 ygithm.	 the continuity equation becomes

s

i# N,zZ) +h(N,M:I)+^(T7,M;tn}+^(i^,^^ I}tn}7u(N'^^'sn+^.}At	 ^ 2^h(
+ Rcos[b(N)7	 b1

k'

[h.(N,^iYI)-Ph (N,11)+E(hT 31K+1,t )+t(I 111 ' t;) ]Uri:14+1't

(30)

i Z [h (N, ^i}+h {^°--1: sil)+^ (N,?i, to +^{N-^ rf, tom) 7^(N^ ^^^ tn l-i^

AX/cos	 (N),--

(h(N+1,3^ )-th(N,M)+E(N+1,X, t j'r 	 (N,rr, t > ^V(N+1 M, t	 ),. 2.	 n	 n	 nib

,W cosjc{N+)-
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It is to be noted that the tidal. elevation C at time to+l is calculated in	 '4

terms of the velocities at time to+1 . The finite difference formulas for the

velocities u and v involve only nearest neighbor points, with the exception of

the Laplacian . terms for turbulant viscosity. For grid points adjacent to coastal

boundaries, the evaluation of the Laplacian central, difference term involves a

grid point which would fall on land. The computer algorithm handles this. by

assuming the normal derivative of velocity at the boundary to vanish, thereby

eliminating the need to evaluate the point. In this way values at . land grid

points are never involved in the algorithm. (Coastal boundary points are not

considered to be land paints..) Note that these Laplacian terms are small relative

to the other terms, having an R2 divisor.

4.3	 Stability

The stability of the system described by Equation (14) neglecting

the r l terms has been discussed in Report A. In particular, it was shown

that the global tides computed by the time stepping procedure become periodic

in time and independent of the initial state (providing the initial values

of u, v,^ were small enough that the system dial not immediately blow up)

within five tidal periods, provided the time step At is small enough to

insure stability. The strong dissipation of the friction and lateral

viscosity terms are the cause of this rapid convergence, quickly damping

out the initial. transients in the numerical integration and eliminating

spurious waves. A stability analysis for Equations (Lll less the r , terms

has been performed by Zahel [251 where formulas for the maximum time step

At maxas 
a function: of grid spacing, latitude limits and dissipation parameters

Cr and Chv are given which will guarantee stability for the tidal solution.

Report A describes a numerical procedure for easily establishing a suitable

time step.

c

r

JI

The successive approximation method proposed in Section 2.0 presents

no difficulty in establishing a At maxfor a given iteration to insure stability,

as the r  terms on the right hand side of Equations " are known functions of

position and time. The conditions under which a successive approximation

procedure will converge to the solution of the integro-differential system

described by Equations (L4) for the perturbing potential r , will not be

pursued in this report.

 i
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4.4 integration Algorithm and Solution Representation. 

The program implementation of the integration algorithm for.Equations

(14 .) and. their boundary conditions is briefly described in Report A, The basic

design is such that calculations are performed on a si ngle latitude band at

a time and'required quantities are accumulated over three bands. The computer

code featurds compact arrays for all variables u., v .-^ and h with values

only at- non-boundary ocean points on the global grid. Compact arrays also exist

for	 -^R. L
. 

The precalculation of the derivatives of P and Q increases

the core requirements of the program, but results in a substantial savings of

CPU time. All variables required by the integration algorithm reside in care

which helps keep I/O and CPU time requirements down. The time needed to integrate

Equations (V^ on a global 3' x 3' grid with a 3 minute step size for 12 hours

is approximately 3 CPU minutes on an IBM 360/91. Thus, to integrate over 6

-periods of a semi-diurnal tide requires approximately 20 CPU minutes. The CPU

time increases substantially.for finer global grid meshes (and consequently

smaller time steps).

The program is designed with an overlay structure to min1mize computer core

storage requirements. A solution with a global grid resolution of 3* x 3'

can be accommodated in under 500K bytes of core. A 2' x 2' global grid requires

approximately 600K bytes of core, while a global I' x V grid would need

slightly in excess of IODOK bytes.

The tidal solution	 obtained by the software system in time-stepping

from time t=O to t--T is specified on the global grid at time t = T. It

is convenient (and conventional) to represent the periodic solution in the

form (Equation (16))

cos	 + at]
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where t is expressed in mean solar time. The computer software establishes

this representation by integrating the solution over a quarter of a tidal.period

from:. t = T to t = T +912(f so that

E4 1 X;T)2 + g( ,A;T+rr/2Q)2

^r

T(^,A) = tan-]'	
,A;T+ /2a _ oT	 (31)

!^AaT)

The software system employs a graphics package to display solutions in

terms of corange lines (contours of equal amplitude A(^,A)) and cotidal lines

(lines of equal phase T(^,A)). For purposes of display, we employ the representation

= A($,A) cos [at--S (^, X)I 	 (32)

where

S {¢, A) = -- T 01 1% ) -	 (33)

The cotidal values appearing on the tidal chsr_ts presented in this report are

expressed in hours 0 to 24, instead of angular measurement. Hour values are

obtained by dividing the phase function S expressed in degrees by 15 degrees per

solar hour. Note that both diurnal anal semi-diurnal tides have cotidal values

expressed in hours from 0 to 24. These relationships are given explicitly as

T_(degrees) 0 330 300 270 240 210 180 150 1	 120 90 60 1 30

S(degrees) 0 30 60 90 120 150 180 210 240 270 300 330

S(hours) : 0 2. 4.	 6 8 10 12 14 16 18 20 22
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Me have investigated several summation techniques for evaluating the series

In Equation (35) .,. including the Shanks convergence acceleration method [231.

(35)

4.5 Evaluation of Green's Functions for Ocean Loading

The Green's functions for the augmented potential and elevation caused

by the loading of the crust given by Equations (5) are slowly converging

series,, as discussed by. Farrell [IQ. 'Followin9 Farrell,.and using the

identities

CO

P (cosy)

	

n	 2s in (-y/2)	 (34)

CO
(cosy) PS)	 f- M'I I-L	 /'3 %0

	

4=f "	 f

	

n7O 	 n

we rewritei Equations (5) in the form

CO

	

U T . (Y)	 R 1: (h	 hCO F (cosy) + hCO	 P (cosy)T	
ne n.^J	 n	

;PO 
n

R	
h.	 on

+	 (h.-h. 11 
'a 

(cosy)
e 2sin—(y/2) n--O

	

(nk T	co	 P (cosy)
REL,

	

(Y)	
n	

Pn(cosy) 
+ k	

n

CO	 n

LI
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Rowever, we found the Euler't7ransfo--oration method discussed by Farrell to be )

--
	 the most efficient.. The values of V and hn' used are those given by Farrelln.

1 	 for the G-B Earth Model, where

k =	 2.482
Ca

h
Ca
	 5.005

reover, we have used the value

ha = - .134

tained by Longman [19 for a Gutenberg Earth Model. Farrell gives values of

k' f or
n

n = 1,2,3,4,5,6,$,10,18,32,56,100,180,325,550,1000,1800,3000,10000.

adratic polynominals were fitted through these values to obtain k1, h' for

her values of n required for the summations.

'fable III presents calculated values for U'(Y), @'(Y) and the Greens function

R2p^ 2si^y/2} + @ , (Y)  - gul (Y) •	 (37)

r convenience of comparison, the values of U T and @ v are scaled by (RY) x 1012,

.th Y in radians. The quantities are in mks units, and an applied load of

kg. is assumed. Values taken for R, p, g and Me are 6371000., 1030., 9.82,

.d 5.975 x 1.0 24, respectively.

22



TABLE XTT..

_. Green,s Ii	 .. .nuctioa :.

degrees U'	 Y) x_'R x Yet	 0^ 2 ^ht:(y	 x It 	 yx:10 2 (u /sec2kg)

W13.196 -1,661 73.178

i•
2° 9:725 -	 59 30.277

17 3° 7.490 "0.02:5 17:,.576

4° - 6.028. :1..368 11.964

.5» 29.E 2.•886` 9:1

6° - 4.625 4.494 7.310

7° - 4 .:1.64 6. 15 6.112

80 3:971 7.850 5 .339

9 0 -- 3.921 9.,580 4,198

10 0 - 3, 718. 1-1.367 4..311 -

20° -- 2..603 3.214 2.328 . `N	 v

30" - 1.577 .53 .987 1.716

40 0 -. 0.293, 78.671 1. 406

50 0 . 0.838, 144.017 1.23$}}

60° 1.674 128.809 1.142 !1

70 0 2.076 52	 6.1.3 x..089

80° 2.047 :173.445 1.061

90 0 ; 1.647 192.523 1.046

.1.00 0 0.924 209.427 1.039

110 0 0.029 224.447 1.035

120° - 1.138 238.01.1 1. 033

130 0 - 2.311 25 0. 661 1'. 032'
- 1400 - 3.1439 262.991 1.030

1.50 0 - 4,506 275.579 1.028

160° - 5.438 288.956 1,.027

170 0 - 6.263 303.668 1.027	 ..

1.80 0 6.660 320.324 1.025

i
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4.6 Tidal. Solutions Neglecting Loading and Self-Gravitation Effects

Solutions for the principal tidal constituents M2, 5 2, N2 , K22 K12 01

and P1 have been generated using the integration algorithm described in

Section 4.1 neglecting the terms involving r' and are displayed in Figures 3-9.

These tide models are then solutions of the LTE as described in Report A,

and do not exhibit an integro-differential character (IDLTE). They would,

however, serve as the initial approximations for the successive approximation

algorithm described in Section 2.0 for the IDTLE (see Section. 4.7). Global

grid resolutions of both 3° x 3° and 2° x 2° have been used for generating

tide models for the principal constituents and display excellent agreement. The

Love parameter values used in these solutions were N, .3 and hL = .6 while

the dissipation parameters were Cr = .003 and Chv = 107 , respectively (the

same values used by Zahel [25, 263). Tn the 2° x 2° numerical models the

effects of the tides of polar seas north of 80° latitude are ignored

(81° latitude for the 3° x 3° models). This is due to the fact that increasing

the northern latitude limit necessitates decreasing the integration step

size to maintain stability, hence greatly increasing the computer time needed

to arrive at the solution.. 'However, our numerical experimentation has shown

that increasing the northern latitude limit has no discernable impact on the

solution south of 80°. The ocean depth profile used in the solutuions is

presented in Figure 10. Initial values of u, v and ^ at time t = 0 were set

to zero. A time series plot of the M2 tidal solutuion, g, for a grid point

in the central Atlantic is presented in Figure ll . The solution grows from

the zero initial solution to a steady stag: solution within several periods.

All solutions for the principal constituents presented in this section were

integrated over eight tidal periods (assuring a steady state solution) before the

amplitudes and phases (Equation (31) ) were calculated.

Prominent features evident in both the diurnal and semi-diurnal solutions

are amphidromic systems, or geographic regions where the tidal amplitude

vanishes. Cotidal lines radiate from the amphidromic points, where the sense of

the amphidromic system is denoted as the direction in which the high tide

occurs progressively later. Amphidromes are usually (not always) counter-

clockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere.

These stationary centers can result physically as a consequence of the character-

istic wave velocity being of the same order of magnitude of the velocity of

the sublunar point. 	
.0

L

f
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The family of semi,-diurnal wave= M , S 2 , N2 , K2 exhibits very similar character-
istics in the tidal solutions, as does the family K l , Ol, PI of diurnal waves.

`For this reason we wi-.i only discuss the X 	 and Kl solutions of .Figures	 3	 and

7	 in detail.

The X2 solution of Figure 	 3	 as compared with the numerical__ solutions of i

Hendershott [4, Pekeris and Accad 	 ^, Zahel [25], and Bogdanov and Magarik [3] as -

to tidal amplitude, phases and locat on of amphidromic systems-These solutions are con--,

1^ynieritl* su uuarized by hendewshott j	 ].	 Our lei	 solution compares ,very closely
2

Ikf̀_. ^'	 -'
With Zahel, with nearly a systematic 30% decrease in tidal amplitudes consistent ^ f

.. ith the factor (I+kZ- h2 ) inour solution.	 The various models are in fairly good

agreement in the North a-ad South Atlantic, with the exception that Hendershott

e yes not find the South Atlantic amphidrome, and the amphidrome at the southern

ti.n of Soatr'America is farther west in ours and Zahel`s solution relative to the

dissipative model. of Pekeris. 	 All models are again quite similar in the Indian

Ocean,. being dominated by a large "anti.amphidrome", i.e. a region of high tidal

a:pl.itude moving nearly synchronously. 	 The amplitude of this feature sho ran by

k	 Hendershot- is substantially larger than the other models. 	 Our experimentation

that "he r.egion at the southern tip of Madagascar is near an amphidrom?c

sate.	 The Pacific basin shows the greatest differences between the numerical

' =ode's.	 Our solution, along with Zahel, shows the appearance of an amphidromic

s; steri'off of California, and a line of rapid phase change ir_ a concave arc
running from Central America to Southern Pere. 	 Our model, in agreement with Zahel,

S.a:.s two catiamphidrot=s on either side of the dominant South Central Pacific n
.^

-amphidrome, although the eastern anti.amphxdrome of our model is more pronounced
-

thin that of Zahel. 	 The Western Pacific-,.basin does not show the pseudo-nodal
h

line extending from Japan to Near Guinea present in the empirir_al chart of I
Dietrich [6].	 This region in our M model is instead dominated by an amphi-

2
dromic system.	 The full 360° counter clockwise phase change about New Zealand

is in agreement with the empirical charts.
3

The KI tidal solution, in Figure 7 was compared with that of Zahel [2q.

The amphidromi.c systems of the Atlantic and Indian Oceans correspond quite closely

between the two"solutions, with the exception that the zero coti.dal contour

runs directly between the North Atlantic and Central Atlantic amphidromes of

. tour model . -rather than to the coasts of Spain and Dakar, respectively. 	 As with the

M2 tide, the Pacific basin offers the most contrast between the numerical models. ^6	 ^

25
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` 1	 Where Zahel finds a single dominate amphidrome in the Central Pacific, we find

s this region divided into two centers along an are running from Wake Island

to Tahiti.. In addition we find an amphidromic system off the coast of Chile. The

two models compare closely in the northeast Pacific and the South Pacific.

As with the M2 wave, general agreement isfound with the K 1 empirical chart of

Dietrich t,'ith the exception of the western and sautheastern Pacific basin.

In particular, the region of constant phase in the western Pacific found by

Dietrich s dominated b an am hidromic system in our model.h	 y	 p	 y

Tables IV--V compare tidal amplitudes and phases of the M2 , S 2 , ICI , 01

models at selected locations with the harmonic constants available from the
iY

Admiralty 'ride Tables [1]. The phases are relative to the Greenwich meridian,
L

and are the S (O, y) phases defined by Equation (33.
;:,

U

4

i

_	 5

1

F
}
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Figure 4

2° x 2° S. (Neglecting LoadioS and Self.

S: Dashed lines --- cotidal lines

A: Solid lines	 corange lines
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Figure 5

2 0 x 2 0 N 2 (Neglecting Loading and Self-Gravitation Effects)

S: Dashed lines --- cotidal lines (phase) in hours

A: Solid lines	 corange lines (amplitude) in centimeters
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^S

'
r -

I

.fitt h

^ ,!

_).
TAl,

1 3 r

—

j
-

Ic	 i07

I

7

—
•r

--

I

I^
_

a

^

S 11

t

i.

_ 9

- - -
tt

♦ 1'J

- -I

I I	 J. - J. I I I IJ 1+-H

90.
94.
78.

72.

M.
W.

31.

1c.

9E.

N	 3G.

M.

21.
IB.

12.

6.

-6.

-An

-]1.

.•S7.

7E .
-7a.

-{;4.

'ZYI.

-72.	 -36.	 0.	 3t,.	 72.	 Ica.	 141.	 180.



-C.
139.

78.
72.

5{9^. 1
9B•

92.

3fi.
34•,

29.

18.

12.

6.

0.

-6

-29.

-30.

-GG

-'30

wO

Figure 6

x 2° K2 (Neglecting Loading and Self-Gravitation Effects)

S: Dashed lines --- cotidal lines (phase) in hours

A: Solid lines	 corange lines (amplitude) in centimeters
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Figure 7

2° x 2° K 1 (Neglecting Self--Gravitation and Ocean Loading Effects)

S: Dashed lines --- r_otidal lines (phase) in hours

A: Solid lines-- corange lines (amplitude) in decimeters

= A(^,1) cos [at - S]
a = .0000729216 radians/sec
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Figure 8

2 0 x 2 0 01 (Neglecting Self-Gravitation and Ocean Loading Effects)

S: Dashed lines ---- cotidal lines (phase) in hours

A: Solid Lines	 corange lines (amplitude) in decimeters

(^,a;t) = A(^,a) cos [at - S)

a = .0000675983 radians/scc	 j
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2° x 2° P  (Neglecting Self-Gravitation and Ocean Loading Effects)

S: Dashed lines --- cotidal lines (phase) in hours

.A: Solid lines	 corange lines (amplitude) in decimeters
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Figure 10

GLOBAL OCEAN DEPTH PROFILE

Contour Valises Expressed in hundreds of Meters
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TABLE IV

Comparison of M2 and S 2 Tide Models with Observations

(Neglecting Loading and Self-Gravitation Effects)

M2 OBSERVED M2 MODEL S2 OBSERVED S2 MODEL

Azores (N. Atlantic) 63.30 26.30 820.5 480
(37 0 	44'	 N.	 25 0 	40'	 W) 49 cm. 39 18 cm. 18

Bermuda (N. Atlantic) 200 3000 450 3100
(32 0	19'	 N.	 64 0	50'	 W) 38cm. 19 8 cm. 8

St.	 Iielena	 (S.	 Atlantic) 870 540 700
(15 0	55'	 S.	 5 0	42'	 W) 34 cm. 25.5

-
1.1.

Chagos Is.	 (Indian_ Ocean) 270° 252° 3000 2680
(7 0	21'	 S.	 72 0	27'	 E) 52 cm. 25 27 cm. 13

Cocos Is.	 (Indian_ Ocean) 3060 266° 50 2880
(12 0	5'	 S.	 96 0	51'	 E) 27 cm. 22 9 cm. 12

San Francisco	 (B. Pacific) 215 0 1950 21110 2000
(37 0	48'	 N.	 122 0	27'	 W) 54 cm. 35 cm. 12 cm. 14

Honolulu (Pacific) 61` 35 620 630
(21 0 	18'	 N.	 157 0 	52'	 1 .1) 16 cm. 33 5 cm. 13

Easter Is.	 ( S. Pacific) 320 2810 2400 3000
(27 0	9'	 S.	 109 0	27'	 W) 20 cm. 35 6 cm. 16

Apia,	 Samoa (S. Pacific) 171° 870 150° 1050
(13 0	48'	 S.	 171 0	46'	 W) 38 cm. 54 9 cm. 24

Siapan (S. Pacific) 3000 2590 3150 1900
(15 0 12'	 N.	 145 0 43'	 E) 17 cm. 21 5 cm. 9

Yaruto, Marshall Is.	 (S.
Pacific) 1250 880 1500 1090

(5 0 55'	 N.	 169 0	39' E) 47 cm. 46 16 cm. 23

Burgana, Solomon Is.	 (S.
Pacific) 1340 1960 '1800 210°
(9 0	11'	 S.	 160 0	13'	 E) 11 cm. 33 8 cm. 15

,- r



TABLE V

Comparison of K1 and 01 Tide Models with Observations

(Neglecting Loading and Self-Gravitation Effects)

D	 K1 MODEL	 O1 OBSERVED

70 0	3150

4.6	 3 cm.

230"	 2100
4	 5 cm.

165 0	-
3

80°	 600
4	 3 cm.

168 0 	1270
11	 9 cm.

229 0	2100
43	 23 cm.

266 0	2250

19	 8 cm.

57 0	90
8	 5 cm.

28 0	 600
7	 3 cm.

130 0	450
11	 10 cm.

306 0	450

3	 6 cm.

60 0	220

8	 11 cm.

K1 OBSERVE

Azores (N. Atlantic;
	

660
(37 0 44' N. 25 0 40' W)
	

4 cm.

Bermuda (N. Atlantic)
	

195
(32 0 19' N. 64 0 50' W)

	
7 cm.

St. Helena (S. Atlantic)
(15 0 55' S. 5 0 42' W)

Chagos Is. (Indian Ocean)
	

840
(7 0 21' S. 72 0 27' E)

	
3 rm.

Cocos Is. (Indian Ocean)
	

1650
(12 0 5' S. 96 0 51' E)
	

11 cm.

San Francisco (E. Pacific)
	

2280
(37 0 48' N. 122 0 27' W)
	

37 cm.

Honolulu (Pacific)
	

2250

(21 0 18' N. 157 0 52' W)
	

15 cm.

Easter Is. ( S. Pacific)
	

180

(27 0 9' S. 109 0 27' W)
	

8 cm.

Apia, Samoa (S. Pacific)
	

750

(13 0 48' S. 171 0 46 ` ,4T)
	

5 cm.

Siapan (S. Pacific)
	

750

(15 0 12' :?. 145 0 43' E)
	

14 cm.

Yaruto, Marshall Is. (S.
	 750

Pacific)
(5 0 55' :J. 165 0 39' E)
	

9 cm.

Burgana, Solomon Is. (S. 	 45 0

Pacific)
( 9 0 11' S. 160 0 13' E)	 20 cm.

O1 MODEL

800
2

2200
3.5

1370
2

620
3

1390
8.5

193"
29

2300
15

17.50
8

3400
3

820

11

570

6
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4.7	 M2 Tide Including Ocean Loading and Self-Gravitation

The solutions of Section 4.6 show general agreement with empirical solutions

with respect to the positions of amphidromic systems and tidal amplitudes.

Notable exceptions to the agreement of the theoretical with empirical solutions

are in the western and southeastern portions of the Pacific basin. Phase relations

}	 also differ in portions of the North and South Atlantic. To improve the 112
	 i

model of Section 4.6, the method of successive approximations outlined in

-	 Section 2.0 was used to solve the IDLTE given by Equation (14) on a 3° x 3°

•»	 global grid. The M2 solution of Section 4.6 was used as the initial solution.

The convergence of the procedure was slow in the southeastern Pacific

basin, requiring 16 iterations to reach final convergence. Convergence in all

.:.
	 other regions was more rapid, requiring approximately 8 iterations. (con-

vergence was considered to be achieved when the corange and cotidal lines

no longer changed from one iteration to another). To assure that the iteration

procedure had stabilized, two additional iterations (18 iterations) were

calcualted. Figure 12 displays the self- gravitation and ocean loading
i'

potential 1'' obtained by evaluating Equations (15) with the initial solution

from Section 4.6 ( the 0th order approximation). The portions of r' due to

self-gravitation only and crustal deformation only (U' Green's Function) are

displayed in Figures 13 and 14 respectively. The converged 11 2 solution (16th

iteration) is presented in Figure 15.

Comparison shows no large differences in amplitude or position of amphidromes

between the 112 solution of Section 4.6 and that of Figurel5 which includes

the perturbing effects of ocean self-gravitation and crustal loading. There are,

however, significant changes in phase. In particular, the phases of the North

Atlantic amphidrome are rotated clockwise approximately 25° and the phases

from the South Atlantic amphidrome are rotated clockwise by 45° along the

South American coast and approximately 20° along the equatorial coast of

Africa. These shifts in phase improve agreement with observations in the

Atlantic as demonstrated by the comparisons at Bermuda, the Azores and St.

Helena in Table vi. The rotation of phases by approximately 20° in a counter

clockwise manner about the amphidrome off the west coast of Australia likewise

improves agreement with observations in the Indian Ocean, as demonstrated by

38
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Figure 12

3 0 x 3 ° M
2 Potential '-^ (ON ZEROTH ITMMON)
 9

S: Dashed lines --- cotidal lines (phase) in hours

A: Solid lines - corange lines (amplitude) in centimeters
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Figure 13

3° x 3° M2 Self-Gravitation Potential only 
19 

(ON 'ZEROTH ITERATION)

S: bashed lines - - - phase lines in hours

A: Solid lines	 amplitude lines in centimeters
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Figure 14

3° x V Crustal. Response to ri g Ocean Tidal Loading (ON ZEROTH ITERATION)

S: Dashed lines --- phase lines in hours

A: Solid lines	 amplitude lines in centimeters
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30 x 30 M2 (Including Loading and Self-Gravit.
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A: Solid lines	 corange lines (,
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TABLL Vi

M2 OCEAN TIDE PAHSE AND AMPLITUDE

OBSERVED THEORETICAL THEORETICAL

(Without Ocean Loading (With Ocean Loading
and Self--Gravitation) and Self-Gravitation)

Azores (N. Atlantic) 63.30 26.30 500
(37 0 44'	 N.	 25 0	40' W) 49 cm. 39 41

Bermuda (N. Atlantic) 200 3000 308°
(32 0 19'	 N.	 64 0 50' W) 38 cm. 19 17

St. Helena (S. Atlantic) 87° 540 730
(15° 55'	 S.	 5 0 42' W) 34 cm. 25.5 26.2

Chagos Is.	 (Indian Ocean) 270° 2520 264°
(7 0	21'	 S.	 72 0	27'	 E) 52 cm. 26 31

Cocos Is.	 (Indian Ocean) 3060' 266° 2850
(12 0	5'	 S.	 96 0	51'	 E) 2;	 cm. 22 29

e	 w	 San Francisco (E. Pacific) 2150 1950 2100(37 0	48'	 N.	 122 0	27'	 W) 54 cm. 35 cm. 45 cm.

Honolulu (Pacific) 610 35 660
(21 0	18'	 N.	 157 0	52' W) 16 cm. 33 31

Easter Is.	 (S. Pacific) 320 2810 3030
(27 0	9'	 S.	 109°	 27'	 W) 20 cm. 35 34

Apia,	 Samoa (S. Pacific) 171° 870 1120
(13 0 48'	 S.	 171°	 46'	 W) 38 cm. 54 55

Siapan	 (S.	 Pacific) 300° 159° 2000
(15 0 12'	 N.	 145 0 43'	 E) 17 cm. 21 25

Yaruto, Marshall Is. 	 (S. Pacific) 125° 88° 1140(5°	 55'	 N.	 169'	 39'	 E) 47 cm. 46 53

Burgana, Solomon Is.	 (S. Pacific) 134° 196° 2100
(9 0	11'	 S.	 160°	 13'	 E) 11 cm. 33 34
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comparisons at Chagos Island and Cocos Island. In the Pacific northeast,

the phase lines radiating from the amphidrome off the California coast are

rotated clockwise by approximately 15° improving the model along the North

American western seaboard. The only appreciable shift of an amphidrome involves

the system off the coast of Equador, which moves southward by approximately

15° of latitude as well as bein g rotated clockwise by 45 0 . The amphidrome which

dominates the northwest Pacific basin experiences a 45° counter clockwise

shift of the phase lines along the Asian coast making phases along Japan

and Okinawa more realistic. Agreement of the M 2 solution including ocean

loading and self- gravitation effects with island observations is generally

within 30° of phase and 25 cm. is amplitude. Exceptions are along the Aleutions,

in the Sargasso Sea region and the southeastern Pacific basin. (see Table VI).

Solutions for K1 and S 2 including the effects of ocean loading and self-

gravitation are currently being calculated and will be presented in a later

publication.

4.8 Total Tide Comparison with Observations

The complexity of the total tide becomes evident when the seven constituent

models are combined to yield an approximation to the total ocean tide. The

theoretical global ocean tide models are not expected to be realistic along

highly irregular coast lines or in shallow water along conti.ental coasts due

to the assumptions imposed in the boundary conditions. Deep ocean islands,

such as the principal ports of Honolulu, Bermuda and. the Azores of the Admiralty

Tide Tables provide a reasonable means of comparing the ocean tide models

with observations. It must be remarked, however, that groups of islands,

to small to be included in the global model, can strongly influence the tides in

their vicinity. Figures 16 - 19 display the tide composed of the S 2 , N2,

K2 , K1 , 019 P1 models of Section 4.6 and the 11 2 model of Section 4.7 for

the Azores, Bermuda, San Francisco and Honolulu. Times and values of high

and low water from the admiralty Tide Tables are indicated on the plots.

The comparison at the Azores, which is dominated by the 11 2 Tide, is very

good, while the predicted tide at Bermuda displays a reasonable phase but

small amplitude (see also Table VI). The tides at San Francisco and Honolulu

show a greater diurnal influence. The phases and amplitudes of the predicted

tide at San Francisco are reasonable, while the predicted tide at Honolulu shows

poorer agreement. Causes for possible disagreement between observations and

the theoretical models were discussed in Section 1.0.

`'s
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l 5.0	 Computer Software System

The integro-differential IDLTE Software System is composed of three

i	 modules:basic 	 d^il s. .,

'c
I	 IDLTE Integration Package.	 This program itegrates the system

described by Equation (14) of Section 2.0.	 It requires as

input the prescribed continental boundaries, the global.

;ocean depth profile defined on a grid, an initial solution, and

the potential r'.	 To calcualte the zeroth order solution both
i_ the initial solution and r' are set to zero.

II. Surface Integration Package. 	 This program evaluates the potential

r' of Equation (15) of Section 2.0. 	 It requires as input the 3

E prescribed continental boundaries, a ,specified global tide ^}

( , h) i_n; the form of gridded amplitude- and phase values and a
i table of values for the Green's functi.ons iD' and U' of Equation

(5) as a function of angle.
j_.	 IF

^. III.	 Ocean Loading Green's Function Package. 	 This program evaluates

a table of the Green's functions V and U' of Equation (35) from

an input set of load Love numbers k' and h' .

i

The three modules are written in FORTRAN IV, and Modules T and TI

u are designed with a m,odif:=.ed graphics package (WOLF PLOT PACKAGE) for solution

display.	 The 1/O design of the system uses multiple magnetic tape drives.

Table VIII defines the 1/00 units for Modules I and 11.

' 5.1	 Program Input i

User control, of Modules I and II is set up by card input for the

principal variables through a i wTAMELIST specification. 	 The variable names,

f their function, and their default values are presented in Tables Land X . 	 The !

ocean depth values required for Module I are read from an external tape, with i

values defined on a world grid. (depth values on ocean grid points and

0 on land grid points).

I^. " , Following the NAMELIST INPUT for both Modules I and II, the continental
a

boundary data is input. The ocean boundaries are instituted as horizontal and

vertical segments on the grid with horizontal boundaries along v velocity

} ` 49
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points and vertical boundaries along u velocity points. The coastal boundary

configuration is input by cards in a special compact format. For each

latitude on the world integration grid there is a data card of the format

1415 with fields.

LAT NO IDATA(12)

where LAT is the latitude in degrees, NO is an integer 0 or 1 depending on

whether the point at zero longitude at the particular latitude is on land or

oceau,respectively, and the array IDATA is the value of the longitude, in

degrees, at each grid point for that latitude where a land-water boundary

occurs. With this input technique any arbitrary coastal boundary configuration

may be implemented. The boundary configuration presently employed is a

.realistic 1° x 1° world ocean. boundary. The user specified grid size extracts

the proper ocean boundary from this 1° x 1° base.

For Module II, the ocean boundary data is followed by a table of values
°

for the Green's Functions U'(y) and0 1 (y) for y=0 r°, 2°, ..., 180'

(scaled by (Ry) x 10-12 as discussed. in Section 4.5). The input format is

8F10.3.

Module III is a stand-alone program designed to calculate the Green's

Functions 4' and U' as described in Section. 4.5 The program need only be

run when a new set of load Love number h r and k.r are employed to calculate
n	 n

new functions 0' and U'. The data for the program consists entirely of values

of ham , km and h'', k' for a set of values of n. This data is input in data

statements within the main program of Module III.

f 
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Table VII

MODULE T SUBROUTINES

Function

The executive program which reads Namelist Input and calls the
working subroutines of the system. This subroutine contains
a BL00-11C DATA subroutine.

The module which reads the input coastal boundary data and sets
up the world function (0 on land points and 1 on ocean points)
corresponuin- to the selected integration grid size. Prints
the world function to display boundaries and defines the trans-
formations from the global grid to the compacted ocean arrays.

The platting module which generates corange contours, cotidal
lines and time series piot.s for selected geographic points.

The function subroutine which evaluates the derivatives of the
tidal component for use in the driving terms of the Laplace
Tidal Equations.

The integration algorithm for the Laplace Tidal Equations.

The module which transforms the input ocean depths defined on
a world grid to the compacted ocean grid.

INPUT/OUTPUT routine for the world grid ocean depth values.

The module which transforms the compacted ocean arrays onto
world grids for display and plotting purposes.

Subroutine Name

SPLASYL

MINA

TIDPLT

FUNS

ALGR

DEPTH

SEMITR

ZARY

r

j

7
l
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i Table VIII

;4

-_ TAPE 1/0 UNITS FOR MODULES I & II

4

i

I.-
Module	 I/0 Unit Function

Module I	 30 INPUT - World ocean depth profile r

40 INPUT - Initial tide solution Ir

50 OUTPUT - Tide solution cotidal and corange ?
I

values

60 OUTPUT - Time series of tide heights over

the span of integration for three

specified geographic location.

M 70 INPUT 2'	 8P''

30 OUTPUT - Tide solution ^ at the final integration

time. }

i 1

Module zI	 30 INPUT - Tide solution cotidal and corange

values (from. unit 50 of Module 1)
:t^.

40 OUTPUT - Tide perturbation potential F'

in cotidal and corange form.
aP	 aP	 aQ	 aQ ._

'50 OUTPUT _
aa^ a^^ as s a

jr

3
•^	 3

52
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Table Iy,

MODULE I NAMELIST VARIABLES

L

L-11

Variable
Noma Function Default Value

DvILT Integration time step in minutes. (6.)

TIN Integration start time in minutes when the restart (0.)
option is used.

BR Radius of the earth iu meters. (6371 x 103)

Sc: Friction coefficient, r. (.003)

t^H Coeffi2ient of lateral turbulent viscosity, C hv , in (1 x 107)
ureters /sec.	

b

K Dimensionless "general lunar coefficient" (.842 x 10-7)

3	 mo
—
on	 E	 3

2;earth	 R noon )

where '141 denotes mass, RE the earths radius and
R	 the mean lunar distance.moon

Love number which represents the coefficient of (0.)
additional potential due to deformation by a
non.--loading potential.

Gi Amplitude factor for tidal constituent. 	 (C of Eq (25))	 (1•)

-C 1G Tidal constituent frequency in rad/sec.
_3

(.1405 x 10	 )

C Gravitational acceleration in meters/sect . (9.51)

W Rotational rate of the earth in rad/sec. (.72722 F--4)

Z1D Grid size in degrees. (60)

IFLGR Restart Flag (0)

0	 -	 Start integration from t=0 from zero initial
solution.

I	 -	 Read tidal solution at time TTN from 1/0 Unit
40 and integrate over 1/4 tidal period; Form
corange and cotidal solutions.

2	 -	 Read tidal solution at time TTN from I/O Unit
40 and integrate. over NITR tidal periods.



07S°)

(S4°)

W)

(2.)

(3.)

(3.)

(0.)

i4

.j

,r

;r

;f..3

.. 3

I #

A

Fable TX Qont.)

MODULE 1 NAMELIST VARIABLES

Variable
L]«r,le	 _ Function

IPERT	 Perturbation Flag

0 - No perturbation, potential P' included in
equations of mation.

1 - Read ap' ;P Q Q from 1/0 Unit 70, anday 

include Pa potential in equations of motion.

N00	 Lower latitude limit in degrees for global inte-
gration. :NOTE: The difference between --90° and
N00 must be an integer times the grid size ND.

'-NEE tapper latitude limit in degrees for global inte-
gration.	 NOTE:	 The difference between 90° and
NEE must he an :integer tames the grid size ID.

NITR she number of tidal, constituent periods over which
the integration is to proceed.

?;l Grid point number (in compacted form) to be sampled
for a time series analysis.

Grad point number (in compacted form) to be sampled
fcr a time series analysis.

=y 3 Grid point number (in compacted form) to be sampled
for a time series analysis.

I:TYPE Species of tidal component being integrated.
2 - diurnal
3 - semi--diurnal

^t2 Love number which represents the coefficient of
uplift response of the solid earth to a non-loading
potential..
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Table. X

MODULE II NAMELIST VARIABLES

Variable Function Default Value
Dame

BR Radius of the earth in meters (should be the (6371x103)
same value used to generate the tidal solution
from Module I.

NOO 'Lower latitude limit in degrees for global integration. (-78°)
(M=ust be the same value used to generate the
tidal solution from Module S.

NEE Upper latitude limit in degrees for global (840)
integration.	 (Must be the same value used to
generate the tidal solution from Module I.

GFCNG Greens Function Flag (0.)

0.	 -	 Use default Greens funtion
(See Table III)

1.	 --	 Use input values of 0' and	 U' functions
to calculate Greens function.

GFHP U' Input Flag (Valid ONLY IF GFING = 1.) (l.)

0.	 -	 Set U' to zero in the Greens Function

1.	 --	 Input U' as a function of angle (0°-180°)
in increments of 1 0 [FORMAT 8F10.31 in units
U'(G)*Ax0*1012.

GFKP a'	 Input Flag (Valid ONLY IF GFCNG = 1.) (l.)

0.	 --	 Set 0' to zero in the Greens Function
1.	 -	 Input	 o' as a function of angle (0° - 1$0°)

in increments of 1° [FORMAT 8F10.3] in units
4V(0) * A ^0^ 1012.

GFSG Self--Gravitation Term Flag (l.)

0.	 -	 Set self-gravitation terra to zero in the
Greens Function.

A
r^



5,2 Program Dutuut

The data output from the integration algorithm over the ocean grid network

is voluminous and difficult to analyze in taw form. This necessitates plotted

displays for visual analysis of the solution. in particular, the principal outputs

are the cotl.dal and corange solution contours and the tidal time series plots for

selected geographic points which are output to a plot tape for interface with an

external plotting device. In addition, the integrator time t and the variables

U, v, ;, and h+ r, are output to tape in their compacted ocean arrays at the end of

each integratio-a period for program restart purposes. Additionally, the tidal

time series is output on tape at the termination of the integration.

Printed plots are also produced for every plot output to the external_ plotting

device. In a -dition,' the program prints the total world function and the world

grid oW the ocean depth values for user inspection prior to calling the integra-

tion algorithm. At the end'of each integration period the variables u, v and

are printed in their compacted ocean arrays, and then are printed in a full world

grad array display.
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NEW TEMOLOGY

The effort under this contract consisted of the development and

programming of techniques to numerically calculate global semidiurnal and

diurnal ocean tide models by integration of the Laplace Tidal Equations in

.he time domain incorporating friction, lateral viscosity texas and

:rustal loading effects. Global M., S2, N2, Kz , Kl, 0  
and P  solutions

Lave been obtained (neglecting self—gravitation and crustal loading) and

:ompared with solutions existing in the literature., An M  solution including

:he effects of self--gravitation and crustal loading has been obtained by successive

approximations and compared with observations.

Frequent reviews and a final survey for new technology were performed.

It is believed that the mathematical and programming techniques and

algorithms developed do not represent "reportable items, " or patentable

items, within the meaning of the New Technology Clause. Our reviews and

final survey found no other items which could be considered reportable

items under the New Technology Clause.
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