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KINEMATIC CAPABILITY IN SVDS
 

1. INTRODUCTION
 

The purpose of this document is to present the details of the Remote Manipu­
lator System (RMS) kinematic capability implemented into the Space Vehicle
 
Dynamics Simulator (SVDS). Section 2 presents a brief overview of the RMS
 
kinematic models as they are interfaced in SVDS. The basic interface shown
 
can also be used for the RMS rigid body models and the flexible body models.
 
Section 3 contains detailed engineering flow diagrams of the RMS KINMAT models.
 
Section 4 contains the definition of the SVDS RMS KINMAT common variables and
 
the user inputs required to execute these options.
 

Four appendixes have, been included. Appendix A contains a description of the
 
coordinate systems used and some notation and basic mathematical relationships.
 
Appendix B presents a development of the equations used to compute joint angles
 
given the position and orientation of the end effector. Appendix C contains a
 
development of the Resolved Rate Law, the relationship between the end effector
 
translational and rotational velocity and the arm joint rates. 
It is noted
 
that these relationships are transformed to the wrist pitch system so that
 
joint rates can be solved explicitly. This is similar to a development pre­
sented in ref. 1. Appendix D presents a development of the equations used in
 
the line-of-sight steering,and axis-of-rotation steering use by the RMS
 

kinematic model.
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2. SVDS-RMS KINMAT INTERFACE
 

The RMS kinematic model implemented into the SVDS program does not interface
 
with the dynamics.of the rigid body motion simulated by the SVDS program;
 
however, the commanded arm joints are integrated to determine the current
 
values .of the arm angles. Because of the requirement to numerically integrate
 
these variables, it was decided that this integration should be merged with
 
the integration of the rigid body equation of motion.
 

For this reason, the RMS model was interfaced at three places in the SVDS
 
program: (I) In the integration initialization to set up the additional
 
variables to-be integrated, (2)In the integration driver, and (3)Inthe
 
math model driver to compute',RMS steering commands and compute RMS joint posi­
tions for interface with future models requiring these computations.
 

The method ofinterface that was chosen can easily be followed for future
 
development items,such as RMS rigid body and flekible body dynamics. 
The
 
flowchart following is an overview of the SVDS program structure-with-the
 
KINMAT interfaces indicated.
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Figure I.-Overview of SVDS with KINMAT interfaces.
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3. ENGINEERING FLOWCHARTS,
 

This section contains flowcharts of the subroutines introduced into SVDS to
 
provide the RMS,kinematic capability. These flowcharts use engineering sym­
bols and form the basis for the routines coded into SVDS. The purpose of
 
this section is to provide logic flow in'aterminology more familiar to an
 
engineer than FORTRAN code. Definitions of symbols used are included'at the
 
end of this section.
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SUBROUTINE RMANGS
 

Subroutine RMANGS computes the RMS joint angle, given the position and
 

orientation of the end effector relative to the orbiter.*
 

START 

COMPUTE THE POSITION VECTOR FROM
 
THE SHOULDER YAW JOINT TO THE
 
WRIST YAW JOINT ON THE LONGERON
 
SYSTEM
 

{r61 } = [TLB]({r 6 B} -'{riB}) 

[81-71: [TLB] [TB7I 

-1.i{r *fr6 ,1 + T711' 

CHECK FOR SINGULARITY (WRIST YAW
 
JOINT OVER SHOULDER-YAW JOINT)
 

rT~l + i}T~l~
CK = 


.

NDITION
 

<CO 


*z
 

See Appendix A for a development of the equations used in this routine.
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COMPUTE SHOULDER YAW ANGLE
 

81 : tan-(ir}T{ 2}/{r}T{ol})
 

COMPUTE TRANSFORMATION MATRIX
 
FROM 7 SYSTEM TO 2 SYSTEM
 

[B271 =.T3(eIl[17]
 

CHECK FOR SINGULARITY WRIST YAW
 
ANGLE EQUAL ±900 

}
CK= {12}T[B27] (I11

.,.K): EQ • 	 SINGULARITY 
CONDITION 

COMPUTE WRIST YAW AND ROLL ANGLES R
 

05- =sin- ({I2}T [B27] {1})
 

06 =tan 
 T
 

6 3(7] (123)
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T
 
COMPUTE ELBOW, SHOULDER, AND WRISTPITCH ANGLES
 

(,- 3 T [B2tan§1($- )
 

a = }{r}cos 81 '+{I2}Tlrsin a-I cos 8 
Y = -1131 T ir}  £4Z sin8• 

CK (. < 2 4)/(zY 2z3) 

~(E.RROR).
 

S.,LE
 

0 = -cos- (CK) 

N + 93 cos e3 )+ Y'3 sin ) 
Cosj 12+ /3 

2 + 22 3 3 

4 = 3
 

RETURN
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SUBROUTINE LTRAJ
 

Subroutine LTRAJ computes a trapezodial time history for the magnitude of the
 
translational Velocity, and a unit vector in the direction of the line of
 

sight.
 

I START 

COMPUTE VECTOR EROM STARTING
 
POSITION TO FINAL POSITION
 

{R} = {RF} - {r6B} 

COMPUTE DISTANCE TO BE TRAVELED
 
AND UNIT VECTOR IN THE DIRECTION
 
OF THE DESIRED VELOCITY
 

D= .RRI 

f{uTIw{R1
 

1 

DETERMINE IF MAX VELOCITY WILL
 
BE REACHED
 

Dm = V2/a 
m m 

3-5
 



A
 

COMPUTE TIMES ALONG TRAJECTORY
 

Dm =D -D
 
D:D t T1 Vm/am
 

~tT2 tTlj+ D /Vm 
<
-LE tT3 tT2 + tTi
 

'COMPUTE MAX VELOCITY ATTAINED
 

V.m' A mD RETURN 

COMPUTE TIMES ALONG THE TRAJECTORY* 
tTl = Vm /m 

tT2 = tTl
 

tT3 : 2tTl
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SUBROUTINE ATRAJ
 

Subroutine ATRAJ computes a trapezodial time history for the magnitude of the
 

rotational velocity of the end effector, and a unit vector along the single
 

axis of rotation.
 

COMPUTE TRANSFORMATION FROM
 
INITIAL TO FINAL ORIENTATION
 

[B] = [BF]T[TBT]
 

[V] = ([B] - [B]T) 

CHECK TO'SEEIF ZERO OR 1800
 
ROTATION REQUIRED.
 

3
 

CK : -V.v
 

ANGLE ZERO OR 1800
 

LE DETERMINE IFIDENTITY
 
Ck:E r-.3 LT
 

Tr Tr((B])A
 

OT EQ
 

ANGLE LESS THAN 180' COMPUTE CHANGE
 
ANGLE AND UNIT ROTATION AXIS CHANG
 

= s-1 ( 
t R2 tR
3
 

sinCV~V)1

(URTURN
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T'
 
1800 ROTATION REQUIRED SET ROTA-

TION 'ANGLE AND COMPUTE ROTATION 
AXIS 
} = IT 

2Tu- Tr([TI)
 

V - -- i = 1,2,3
 

DETERMINE LARGEST
 
COMPONENT OF tV}
 

DETERMINE IF M X-VELOCTTY IS
 
REACHED
 

- , COMPUTE TIMC$ ALONG TRAJECTORY 
0:1' GT t RI OM/am 

M
0 

•tR3 t t 

=-tR2 + tRI
or 


< 

"" @
COMPUTE MAXVELOCITY ATTAINED 

COMPUTE TRAJECTORY TINES
 

tRI = lfrN
 
o
tR2 = tR1


tR = 2 tRI
3 


ORIGDTAL PAGE IS 
OF POOR QUALITy 
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SUBROUTINE LNKAGE
 

Subroutine LNKAGE computes RMS joint positions relative to the orbiter, and
 

the orientation (transformation matrices) of these coordinate systems relative
 

to the orbiter.
 

TSTART 

COMPUTE TRANSFORMATION MATRICES TO
 
THE LONGERON SYSTEM
 

B131 = [T3 (aO)]T[T2(0 2 )]T
 

T
 

[a 4] = [B13 [T2 (3)]

[B15] = [814](T 2(e4)IT
 

[B161 = [B15] T3(P)]T 

B16 ]1[Tl(e)] T
(B7 


I 
COMPUTE POSITION VECTORS TO ARM
 
JOINTS FROM BASE OF STAND INTHE
 
LONGERON SYSTEM
{r21} =- 013}it
 

{r311 = (r21} + [B13 ]3C1}1 2
 
{r4 1) = (r 3 1} + [B1 4]f11 } 3 

(r51) = (r 41 } + 1B15]f11)Z4 
{r6 1 } = (rl) + [B16 ]1 1 1Z5 

COMPUTE TRANSFORMATION MATRICES 
TO BODY SYSTEM
 

[TBi] = TLB]T[B1] i =3,---,7 

COMPUTE POSITION VECTORS FROM 
ORBITER CM TO ARM JOINTS
 

riB}I yiB}I+ [TLBI T(ril 
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SUBROUTINE KINSTR 

Subroutine KINSTR computes the end effector commanded velocity, and angular 

velocity relative to the orbiter in the orbiter body system. 

START 

COMPUTE TRANSLATIONAL 
VELOCITY COMMANDb_____ 

1 
t0V = t 

t.GE.tT 

} =andVVuT
 

;L3-I0 



A
 

COMPUTE ROTATIONAL
 
VELOCITY COMMAND
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GE
 

tI GEG 


an RICR T W{ UlmI
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SUBROUTINE KINDER
 

Subroutine KINDER computes the joint angle rates compatible with the commanded 

translational and rotation velocity of the end effector using the resolved 

rate law. 

TRANSFORM END EFFECTOR VELOCITIES
 
TO WRIST PITCH SYSTEM
 
{b1 } = [T2(O2 + 03 + 04 )1[T3(e)I[TLB](WC ] 

{b2} = [T2(02 + 03 + 04)][T3(01)] [TL8] V ] 

CALCULATE ELEMENTS OF JACOBIAN MATRIX;
 

a11 = - sin (62 + 0 +834) 

a16 = cos 05 
sin 05
 

a31 = cos (82 + ea + 84) ­
a26 = 


a41 =-5 cos (82 + 03:+ 04) sin 05 
1
a51 = Cos 62 + £3 -o .(62 + 03) + (94 +05 Cos 65)(cos (a2 + 03 + 04)) 

a61 = -5 sin (Q2 + 03 + 04) sin 05. 

a42 = £2 sin (e3 +.04) + 13 sin04 
a62 = -92 cos (03 + 04) -,3 cos 04 -i5 cos 85 -2 4 
a43 93 sin 04. 

a63 = Z4-- Z5 cos 05 - Y3 cos 04 
a64 - - (4 + Z5 cos E5) 

-9Z5 sin 05
a45  

£5 cos 85
a55  
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SOLVE FOR JOINT RATES 

-= 1(ba55 

6 a16 

31 3 

l.-IL41,-

=B43 

a 

4314 

L42a,3-86a43 

33 a6 4 

a6, I a3 a43 a--

b2 a26 6 

,°5 

RETURN 
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DEFINITIONS 	OF SYMBOLS
 

.am 	 Maximum translational acceleration-of the end effector relative
 
to the orbiter
 

aij 	 Coefficients of the Jacobian used in the resolved rate law
 

IB] .Transformation matrix from initial orientation of the end effector
 

to the final
 

[BF] Transformation matrix from final desired end effector orientation
 

to orbiter body system
 

{bl} Column matrix of the commanded end effector angular velocity
 
relative to the orbiter expressed in the wrist pitch system
 

{b2} 	 Column matrix of the components of the commanded end effector
 
translational velocity relative to the orbiter expressed in the
 

wrist pitch system
 

[13] 	 Transformation matrix from the upper arm system to the longeron
 

system
 

[B14] Transformation matrix from the lower arm system to .the longeron
 

system
 

[B15] Transformation matrix from the wrist pitch system to the longeron
 

system
 

[B16] Transformation matrix from the wrist yaw system to the longeron
 

system
 

[B7] Transformation matrix from the end effector system to the longeron
 

system­

[B27] Transformation matrix from the end effector system to the shoulder
 
yaw system
 

D Distance from initial position of end effector to final desired
 

position of the end effector
 

Dm 	 Twice distance traveled by end effector during time to reach
 
maximum velocity accelerating at maximum acceleration
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Dm Difference between D and Dm 

rl Identity matrix 

.91 Distance from RMS orbiter attach point to shoulder pitch pivot 

point 

P12 Length of lower arm 

93' Length of upper arm 

£4 Distance from wrist pitch joint to wrist yaw joint 

£5 Distance fromwrist yaw joint to tip of end effector 

{R} Column matrix of the component of position vector from initial 

position to final desired position expressed in the orbiter body 

system 

fr} Column matrix of the components of position vector from shoulder 

pitch joint to wrist yaw joint expressed in the longeron system 

{RF} Column matrix of the components of the position vector from the 

center of mass (CM) of the orbiter to the final desired position 

of the tip of the end effector expressed in the orbiter body 

system 

{riBI Column matrix of the components of the position vector from the 

CM of the orbiter to the RMS attach point in the orbiter body 

system 

{r2B} Column matrix of the components of the position vector from the 

CM of the orbiter to the shoulder pitch joint in the orbiter 

body-system 

{r3B} Column matrix of the components of the position vector from the 

CM of the orbiter to the elbow pitch joint in the orbiter body 

system 

{r4B} Column matrix of the components of the position vector from the 
CM of the orbiter to the wrist pitch joint in the orbiter body 

system 
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{r5B} 	 Column matrix of the components ofthe position vector from the CM
 

of the orbiter to the yaw wrist joint in the orbiter body system
 

{r6B} 	 Column matrix of the components of the position vector from the CM
 

of the orbiter to the tip of the end effector in the orbiter body
 

system
 

{r21} 	 Column matrix of the components of the position vector from the RMS
 

orbiter attach point to the shoulder pitch joint in the longeron
 

system
 

{r31} 	 Column matrix of the components of the position vector from the RMS
 

orbiter attach point to the elbow pitch joint in the longeron
 

system
 

{r41 } 	 Column matrix of the components of the position vector from the RMS
 
orbiter attach point to the wrist pitch joint in the longeron
 

system
 

{r51} 	 Column matrix of the components of the position vector from the RMS
 

orbiter attach point to the wrist yaw joint in the longeron system
 

{r61} 	 Column matrix of the components of the position vector from the RMS
 
orbiter attach point to the tip of the end effector in the longeron
 

system
 

[TLB] 	 Transformation matrix from the orbiter body system to the longeron
 

system
 

[TB 3] 	 Transformation matrix from the lower arm system to the orbiter
 

body system
 

[TB 4] 	 Transformation matrix from the upper arm system to the orbiter
 

body system
 

[TB5] 	 Transformation matrix from the wrist pitch system to the orbiter
 
body system
 

[TB6] Transformation matrix from the wrist yaw system to the orbiter
 

body system
 

[TB 7] 'Transformation matrix from the end effector system to the orbiter
 

body system
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V 

tRI 	 Time when max angular velocity is attained
 

tR2 -	 Time of start of angular velocity deceleration phase 

tR3 Time of end of end effector rotational maneuver
 

tTl Time when max velocity of end effector is attained
 

tT2 	 Time'of start of end effector deceleration phase
 

StT3 Time of end of end effector translational maneuver
 

[TI()] Transformation matrix representing a 6 rotation about the h-axis
 

[T2(e)] Transformation matrix representing a 0 rotation about the 2-axis
 

[T3(6)] Transformation matrix representing a 0 rotation about the 3-axis
 

(u} 	 Column matrix representing-the unit axis of rotation vector 

{UT} 	 Column matrix representing the unit vector along the line of sight
 

Magnitude of the translational velocity command
 

{V}-	 Column matrix representing a vector in the direction of the
 
single-axis of rotation vector
 

{V} 	 Column matrix of the-components of the commanded velocity vector
 
expressed in the orbiter body system
 

Vm Magnitude of the maximum allowable translational velocity of the
 
end effector relative to the orbiter
 

Ym Magnitude of the maximum translational velocity attained for the
 
end effector relative to the orbiter
 

Parameter used in arm angle initialization computations
 

-Magnitude of the maximum allowable angular acceleration of the
 
end effector relative to the orbiter
 

B Parameter used in arm angle initialization computations
 

y Parameter used in arm angle initialization computations
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01 Shoulder yaw angle 

02 - Shoulder pitch angle 

-63' Elbow pitch angle 

04 Wrist pitch angle 

05 Wrist yaw angle 

.06 Hand roll angle 

0l Shoulder-yaw angle rate 

62' Shoulder pitch angle rate 

63 Elbow pitch angle rate 

64 Wrist pitch angle rate 

65 - Wrist yaw angle rate 

06'' Hand roll angle rate 

0. Rotation angle from initial orientation of end effector to final 
desired orientation 

OM 

W 

{wc
C 

M 

Twice the angular distance traveled in acceleration from zero 
angular rate to max angular rate at max angular acceleration 

Magnitude of commanded angular velocity of end effector relative 

to orbiter 

Column matrix of the components of the commanded angular velocity 
vector for the'end effector relative to the orbiter 

Magnitude of'the-maximum allowable angular velocity of the end 

effector 

Magnitude of the maximum angular velocity attained for.the end
effector 

{li . Column matrix with ith component equal 1 and all other components 

zero 



4. SVDS-RMS KINMAT COMMON VARIABLES AND DEFINITIONS
 

This section contains a list of the SVDS-RMS KINMAT common variables and their
 
definitions. Input variables are listed at the end of this section.
 

Variable Definition 

IRMS RMS angle initialization flag 

=0 Compute RMS angles from position and orientation input data 

IRMSTR RMS steering option flag 
=0 Table lookup of joint rate commands used 
=1 Compute line-of-sight and axis-of-rotation steering 

=2 Line-of-sight'and axis-of-rotation steering has been 
initialized 

RMANGD (1) Shoulder yaw angle rate 

(2) Shoulder pitch angle rate 

(3) Elbow pitch angle rate 
(4) Wrist pitch angle rate 

(5) Wrist yaw angle rate 

(6) Hand roll angle rate 

RMSAMR Magnitude of maximum allowable angular acceleration of end 
effector relative to orbiter 

RMSAMT Magnitude of the maximum allowable end effector translational 

acceleration relative to the orbiter 

RMSANG RMS joint angles 

(1) Shoulder yaw angle 

(2) Shoulder pitch angle 

(3) Elbow pitch angle 

(4) Wrist pitch angle 
(5) Wrist yaw angle 

(6) Hand roll angle 

RMSBl3 Transformation matrix from the upper arm system to the
 

longeron system
 

4-1
 



Variable 	 Definition
 

RMSB14 	 Transformation matrix from lower arm system to the longeron
 
system
 

RMSBl5 	 Transformation matrix from the wrist pitch system to the longeron
 

system
 

RMSBl6 Transformation matrix from the wrist yaw system to the longeron
 

system
 

RMSB17 Transformation matrix from the arm end effector system to the
 

longeron system
 

RMSLTH 	 Arm member lengths
 

(1) Length from RMS orbiter attach point to shoulder pitch
 

joint
 

(2) Length-from shoulder pitch joint to elbow pitch joint
 
(3) Length from elbow pitch joint to wrist pitch joint
 
(4) Length 	from wrist pitch joint to wrist yaw joint
 
(5) Length from wrist yaw joint to tip of end effector
 

RMSRC Dependent variable in commanded arm angle rates table lookups
 

RMSRF 	 Position vector from the orbiter CM to the final desired position
 

of the tip of the end effector in the orbiter body system
 

RMSR1B Position vector from the orbiter CM to the RMS attach point in
 

the orbiter body system
 

RMSR2B Position vector from the orbiter CM to the shoulder pitch joint
 
in the orbiter body system
 

RMSR3B Position vector from the orbiter CM to the elbow pitch joint in
 

the orbiter body system
 

RMSR4B Position vector from the orbiter CM to the wrist pitch joint in
 

theorbiter body system
 

RMSR5B Position vector from the orbiter CM to the wrist yaw joint in the
 

orbiter body system
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Variable Definition 

RMSR6B Position vector from the orbiter CM to the tip of the end effector 

in the orbiter body system 

RMSR21 Position vector from the RMS orbiter attach point to the shoulder 

pitch joint in the longeron system 

RMSR31 Position vector from the RMS orbiter attach point to the elbow 
pitch joint in the longeron system 

RMSR41 Position vector from the RMS orbiter attach,point to the wrist 

pitch joint in the longeron system 

RMSR51 Position vector from the RMS orbiter attach point to the wrist 
yaw joint in the longeron system 

RMSR61 Position vector from the RMS orbiter attach point to the tip of 
the end effector in the longeron system 

RMSTBF Transformation matrix from the final desired 'orientation of the 
end-effector to the orbiter body system 

RMSTB3 Transformation matrix from the upper arm system to.the orbiter 

body-system 

RMSTB4 Transformation matrix from the lower arm system to the orbiter 
body system 

RMSTB5 Transformation matrix frqm the wrist pitch system to the orbiter 
body system' 

RMSTB6 Transformation matrix from the wrist'yaw system to the orbiter 
body system 

RMSTB7 Transformation matrix from the arm end effector system to the 

orbiter body system 

RMSTLB Transformation matrix from the orbiter body system to the longeron 

system 

RMSTRI Time relative to RMSTS of the end of the angular acceleration 

phase of axis-of-rotation steering 
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Variable Definition
 

RMSTR2 Time relative to RMSTS of the end of the angular rate coast
 

phase of axis-of-rotation steering
 

RMSTR3 Time relative to RMSTS of the end of the axis-of-rotation
 

steering maneuver
 

RMSTS Time of the start of the line-of-sight and axis-of-rotation
 

steering maneuvers
 

RMSTTl Time relative to RMSTS of the end of the translational accelera­
tion phase of the line-of-sight steering-


RMSTT2 Time relative to RMSTS of the end of the translational coast
 
phase of the line-of-sight steering
 

RMSTT3 Time relative to RMSTS of the end of the line-of-sight steering
 

maneuver
 

RMSUR -Unit vector defining the axis of rotation from the initial
 
orientation of the end effector to the final orientation of the
 

end effector.
 

RMSUT Unit vector along the line-of-sight from the initial end effector
 
position to the final end effector position in the orbiter body
 

system
 

RMSVC End effector translational velocity command in the orbiter body
 

system
 

RMSVMR Magnitude of maximum allowable angular velocity of the end
 
effector relative to the orbiter
 

RMSVMT Magnitude of maximum allowable translational velocity of the
 

end effector relative to the orbiter
 

RMSWC End effector angular velocity command in the orbiter body system
 

RMVMRS Magnitudeof-maximum angular velocity attained for the end
 
effector.relative to the orbiter
 

RMVMTS Magnitude of the maximum translational velocity attained for the
 
end effector relative to the orbiter.
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Variable Definition 

TRMS Current time relative to RMSTS used for line-of-sight and axis­

of-rotation steering 

SVDS INPUTS fOR RMS KINMAT OPTION
 

IRMS
 

=0 RMSB]7 and RMSRB6 (ft) required
 

tO RMSANG must be input
 

IRMSTR
 

=3 Tables TARATi i=1,6 must be input for commanded joint rates
 
=1 RMSAMR, (deg/sec), RMSAMT (ft/sec2), RMSRF (ft), RMSTBF,
 

RMSYMR (deg/sec), RMSVMT (ft/sec) required.
 

Other required inputs:
 

RMSLTH(ft), RMSRIB(ft), RMSTLB
 

TABLE INPUTS
 

The tables
 

TARATi i=1,6 must use RMSRC as their dependent variable and RMS as
 

their independent variable.
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APPENDIX A
 

COORDINATE SYSTEMS AND NOTATIONS
 

The purpose of this appendix is to present the definitions of the coordinate
 
systems used in the RMS kinematic model implemented into the SVDS program.
 
This appendix is concerned only with right-handed unit orthonormal systems.
 

The transformation matrix from any one coordinate system to any other
 
coordinate system is a 3 x 3 orthogonal matrix with its determinant equal
 

to +1.
 

EULER ROTATIONS
 

The notation {1.} i=1,2,3 is used to denote the components of a unit vector:
 

T= [I o, oj 
{}T 

{1 = [0, 1, 0] (A-1) 

{I33T = [0, 0, 1] 

The notation of a bar under the symbol for a column matrix denotes the 3 x 3
 
skew symmetric cross product matrix.
 

If (A)T = [a1 a2 a3] (A-2) 

0 -a3 a2.
 

then [A] a3 0 -a1 (A-3)
 

-a a 0
2 1 


Using this notation, it can be shown that the orthogonal matrix corresponding
 

to a rotation through an angle a about a unit vector u whose components are
 
{u} can be written as
 

[B] = (ri - sin, 8 [u] + (1 - cos O)[u] 2) (A-4) 

A-1
 



So that if {VA } is the representation of a vector in the A system and {VB} is
 
the representation of the same vector in the B system, and the B system is
 
obtained by rotating the A system through an angle a about u, then
 

{V B = [BIV A }  (A-5)
 

where [B] is defined by eq. (A-4). In developing the relationships obtained
 
by rotating coordinate systems about various coordinate axes, it becomes
 
convenient to define the following transformations which are sometimes called
 

Euler rotations.
 

[Ti()] = ( - sin 0 1 + (I - cos 0)[li]2) (A-6) 

Writing these transformations out explicitly:
 

[Tl(e)] = o cos e sin 

k -sin e cos aj
 

cos e 0 -sin
 

[T2 (6)] = 0 1 0 (A-7)
 

cos
[in e 0 


Fcos e sin.e o 
[T3(o)] 
= 
jsin 6 Cos 6
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A definition of the coordinate systems used in the RMS kinematics follows.
 

COORDINATE SYSTEMS
 

The orbiter body coordinate system is a standard airplane system with the
 
x-axis or 1-axis defined as positive forward, the y-axis or 2-axis is defined
 

A-2
 



as positive out-the right wing, and the z-axis or 3-axis is positive down,'as
 
shown in the figure below.
 

YB
 

XB
 

System 1 is the longeron system, which is fixed in the longeron supporting the
 
arm. The x-axis or 1-axis is positive.aft, the z-axis is downward and per­
pendicular to the longeron, and the y-axis is to the left, complbting the
 
right-hand system. This system is rolled outboard through an angle 4 during
 
RMS deployment activity. The transformation matrix from the body system to
 

the longeron system can be written as
 

[TLB] = [T1CWLO I (A-8)­

001
 

System 2 is fixed in the upper arm and is obtained from the longeron system by
 
first yawing through the shoulder yaw angle and the pitching through the
 
shoulder pitch angle. The transformation matrix from system I to system 2 can
 
be written as
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IT21] = T2 (02)][T3(8 1)] (A-9) 

System 3 is fixed in the lower arm, and is obtained by rotating about the
 
2-axis through'the elbow pitch angle, e3. The transformation from system 2
 

to system 3 can be written as:
 

[T32] = [T2(8 3)] (A-IO)
 

System 4 is obtained by rotating system 3 about the z-axis through e4' the
 
wrist pitch angle. The transformation from system 3 to system 4 is written:
 

[T43] = ET2(e 4)] (A-ll) 

System 5 is obtained by rotating system 4 about the 3-axis through e5, the
 
wrist-yaw angle. The transformation from system 4 to system 5 iswritten
 

[T54] = [T3 (e5)] (A-12)
 

System 6 is fixed in the end effector and is obtained by rotating system 5
 
about the 1-axis. The transformation from system 5 to system 6 is:
 

[T65] = [TI(06)] (A-13) 

Inmost cases, we are interested in transforming the component of vectors to
 

the longeron or system 1 or to the body system. Using the transformations
 
defined above we-can write:
 

[Tlj] = -[112] [T23].--[Tj ijI (A-14) 

and [TBjI = [TLB] T[B 1 ] (A-15) 

where we haVe used the fact that
 

[T = [Tji]T (A-16) 

A-4
 



The convention is followed of labeling as the first index the coordinate system
 

transformed to, and as the second index the coordinate system transformed from.
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APPENDIX B
 

RMS ANGLE INITIALIZATION OR COMPUTATION
 

The purpose of this appendix is to present a derivation of the equations used
 

to compute the arm angles given the position of the tip of the end effector
 

and the orientation of system 6* relative to the orbiter body system.
 

This problem can be reduced to computipg the Arm angles starting with the
 

position vector of the RMS orbiter attach point to the tip of the end effector
 

expressed in the longeron system and the transformation matrix from the end
 

effector system to the longeron system. Definitions of certain arm lengths
 

used in these computations follow.
 

z The distance from the orbiter arm attach point to the shoulder pitch 

joint 

Y2 The length of the upper arm from the shoulder pitch joint to the-elbow 

pitch joint 

£3 The length of the lower arm from the elbow pitch joint to the.wrist 

pitch joint 

t 
4-

The distance from the wrist pitch joint to the wrist yaw joint 

z5 The distance from the wrist yaw joint to the tip of the end effector 

Using this information, the transformation from the end effector system to the
 

longeron system can be written
 
[T16] = [T3(el)]T[T2(2 + 3 + 64)]T[ ]T [T(6)]T (B-1) 

Also, the component of the position vector from the orbiter attach poir
 

the tip of the end effector in the longeron system can be written
 

See Appendix A.
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fr16} - {l 3 }t 1 + tT12]1011 2 + IT13 ]{1 }k3 + IT1 4]{I 1}94 + [T16]{Iit 5 

(B-2) 

From eq. (B-2), 

{r11 = {rl6} + {13} l - [T16]{l. 5 

= [T12 ]{}1Q 2 + [T13]}11}t3 + [T14 ]f11} 4. (B-3) 

where {r1I is the position vector from the,shoplder pitch joint to the wrist
 
yaw joint. It can be seen that the projection of this vector onto the x-y
 
longeron plane defines the shoulder yaw angle
 

r,(2) 

tan 1 -r-(2I (B-4)
 

or 6l = tan-' (r, (2)/r (1)) 

Then
 

T[B] = [B16]T[T 3 (6 I = [T1 (06)] [T3 (05 )][T2(B)] (B-5) 

where O2 +3 + 04 (B-6) 

Expanding eq. (B-5), 
 -

1 0 0 Ce5 so5 0 C 0 -sF Te5cO se5 -Ce55s 

[B] = 0 CO so6 6 -S05 Ce5 0 0 1 0 = CO5CB Ce6C05 -c05Ss 

0 -s86 ce6 0 0 1 so 0 05c Ce5c -se 6ce 5 -ce5sa 

(B-7) 

From eq. (B-7),
 

-
05 =sin 1 (B(I,2)) (B-8)
 

e6 =tan-li( 3,) (B-9) 
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(B-IO)
= tan-l(-( ) 

Using eq. (B-3),
 

{p} [T3 (ol)]{r11 = [T2(a2)IT{I})2
 

+ [T2(e2 + 83)1T{.1}93 + 1T2(8 )]T{II}1I (B-1)-

From this, we can write
 

{p} = ce2{fl 1} 2 - se2{13)z2 c(e2 + 03){ll}3 

- se2{131Z3 + c0{Ij}24 - SK{1}4 (B-12) 

and 

p1 C 2 + C(O2 + 63)P3 + COZ 4 

P3 -S2 2 - S(2 + 0)3 - (B-13) 

or 

CO2t2 + C(82 + 3)3 = p1 - C4= 

Se2P2 + s(02 + e3)"3 = -P3 - S = y (B-14) 

Squaring both equations, we obtain 

+ 63)2=O t2 c2e2 2ce2c(O2 + 3)k2 +Z 

22 2 2 323 2 3~£3Bi) 

S 622 + 2S62 S(O2 + a3)2.3 + $2(0 + 03)92 = y2 (B-15 

Adding these equations, we obtain
 

k2 + 13C+2222 92 22 (B-16)
 

or (3 2 Zo (B-17) 
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From the geometry of the RMS, we know that 93 is always negative; therefore,
 
23
 

-
63 Cos + 2 (B-18) 

From eq. (B-14), wecan write 

ce2z2 + Ce2Ce3 3 - Se2So3Z3 = 

$829 2 + se2Ce3Y3 + Ce2so3z3 = y (B-19) 

Now So2(9 2 + Z3C63) = - Ce2se3Z3 (B-20) 

Y -'CO2)3P3 (B-21)
23C13
£2 +
2 P 


Substituting eq. (B-21) into the first of eqs. (B-19), we have
 

-
c(e2)(P2'+ ce3PI3) C2 soz 3)S03'3 = a (B-22) 

Solving for 02 , we have 

- /U-12+ L3Ce3) + yS93Z3 B
0 Cos(B-23) 
1 2 3 +2 3 C0 

Using eq. (B-6), we have
 

0 = 02 - 63 (B-24)
 

This completes the derivation.
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APPENDIX C
 

THE RESOLVED RATE LAW
 

The purpose ofthis appendix is to present a derivation of the Resolved Rate
 
Law, which is a relationship between the translation and angular velocity of
 

the tip of the end effector and the joint angle rates. This relationship may
 

be denoted in the following manner:
 

6xl
 
I 6X6x6x
 

[A]{}(CI
LW) 

where
 

{Vi isa column matrix of the relative translational velocity in the orbiter
 

body system
 

(w)is a column matrix of the component of the relative angular velocity
 

[A] is a 6 x 6 matrix commonly referred to as a Jacobian matrix
 

.01 is a 6 x 1 column matrix of the joint angle rates.
 

Let ei denote a unit base vector in the i direction of system j , then the 
1
 

angular velocity of the end effector can be written
 

e 21 + (62 + 83 + 84 e2 + 65 e36 + ae6 (C-2) 

Before proceeding, note the following useful relationships:
 

[Ti (e)]{l i = {II} = [Ti (e)]T li} (C-3) 

The same coordinate systems are used as defined in Appendix A.
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and 

[Ti(e)]fl-I C{}i I - se{i } x {1 .} 
iitj 

[Ti(e)IT{i = Cetli I + Se{l i} x {I (C-4) 

Using the transformation presented in Appendix A and,eq. (C-2), we can write
 

{
e4)][3 I} = [T + + f1[2('2 3+'3" l( W 2c 2 + e3 4)]{f3}61 21( 2 + 63 + 64) 

+ {3165 + IT3 Ce5 )]T{I}6 = C(02 + 03 + 04){ 3} - S(e2 + 63 + a4){11}616 


+ {12162 + 63 + 64) + {13165 + Ce5{11166 + $o5{12}66 (C-5) 

Eq. (C-S) gives one of the relationships we want. The second equation, rela­

tive translational velocity to joint rates, can be developed by writing the
 

position vector from-the shoulder pitch joint to the tip of the end effector
 

and differentiating this relationship to arrive at the desired results.
 

The components of the position vector expressed in the longeron system canbe
 

written
 

(r} = I3(1)]T[ 2 (e2 )Tf{IP 2 ± [T3(e1)]T[T2( 2 +3T{I"3 

+ [T3( 1)]T[T2 ('2 + 03 + o4 )]f1Ii} 4 

+ [ 3 el]T[T2 (e2 + 03 + e4)4TT3(e)]T{I}15 (C-6) 

Differentiating eq. (C-6), we get
 

C-2
 



k}-I{vI IL-
F( l 
- 2T(02)] 2L()[ dT()ITZ
r~e~j ]T + r T -~4T6-]= 

1I2+ [TaC 3)]T({lilzj3 + [r2ce4}]({11}2z4 + [T3CB05)]T(11i 5))) 

T ] TdT2(03)]T )]T T 
+ 6 


3( 2(6 +---Tt
+ 4[T [T)]T[T2 + 3 2,4 [ 5) 

+ 6j5T3pop ]T[T2('2 + 63 + e4)]T[dTA{5) f{l t± (C-7.)5 


After performing a considerable amount of algebra on eq. (C-7), the following
 

result can be obtained.
 

[T2 2 '3 +e4)][T3C(1)](V} = 41(-C(62 + 03 + 04)SO 5 5 111 - S(O2 + 03 + o4 )So5 5(13) ­

+ (CO2 2  + C(e2 + 03)3 + 2 + 03 + )( Z4 21)C(o + O 5))(1


+ 63 64)'Z + 53 + (-C('3 + 2- Y- (+ )){Y)5
 

+ 36043(1)+ (-co4i2 - (14+ e595)[313 


+ 4 510)1 06 S55{ 655{12})-N9.+ C0 3}) + 5 + C0 (C-8) 

Eqs. (C-5) and (C-8) are the equations to be solved. First,ilet us make the
 

following definitions.
 

b = T ) + 63 + Y4] [T36 ]w (C-9) 

b0

3
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b4 

-0 

b6 

L0 203+ + 04)J[3 ) (VjCc-1) 

Also, we will define 

a11 = -S( 2 + 03 + 64) , a16 = C"5 , a22  a23  =a24 = a35 =1 

a26 = 

a, = 

a61 = 

Se5 , a31 =0 (02 + e3 + 04), a41 = -C(e2 + '3 + 

C02Z2 + C(02 + 63)93 + C(02 + 83 + a4)( 4 + C 5Y) 

-S(e2 + a3 + e4)Se5Q5 

4)S 5 5 

a42 = 

a62 = 

a43 = 

a63 = 

S(e3 + o4)t 2 +Se 43 

-C(03 + a4)z2 7 Co4z3 -

S 42­3 

-CO4y3 - (k4 + Cee5 5) 

(Y4 + Ce5z5) 

a64 
a45 

= -(p'4 + C055 

= Se5k5 a55 = C65P5 (C-11) 

Using the definitions in eqs. (C-9) - (C-I), 

[A]{6} = {b) 

we can write 

(C-12) 

or 
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*all 0 0 0 0 a16  61 bI 

0 1 1 1 0 a26  62 b2 

a31  0 0 0 1 0 63 b3 

Sa0(C-13) 
,a41  a42  a43 0 a45  0 64 

a51  0 0 0 a55  0 65 b5 

a61  a62  a63  a64  0 0 6 b 

Because of the sparseness of the [A] matrix in eq. (C-13), it is convenient
 

to write the O's explicitly.' From eq. '(C-13)-we can write
 

[a31 1 

I [l3~t (C714) 

[as a s] bJ 

or0 a31a55- 51 [a51 a ] Z3bC3 

Also from eq. (C-13) 

-bI = a1 l61 + a656• 1 166 

or - - al (C-16) 

Thi's leaves: 

- 2 b2 a26 6 

a42  a43  0 63 = - a41 eI a (C-17) 

a62 a63 a6z e4 b6 - a61 1 
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0 

which yields
 

a43a64 a63 - a64 -a43 - a26 6b2 

a43 - '62) - a42(a64 - a63) a42 a6 -a2 6 a 42 a41- 4a64 

84 a42a63 - '62a43 a 2 - a,3 '43 -"a42  b6 - a6161
 

(G-18) 

This completes the development of the desired equations. It should be noted
 
that the following singularity conditions exist, which follow from the divisors
 
appearing in eqs, (C-15), (C-16), and (C-18):
 

C*2k2 + C(e2 + 03)P3 + C(e2 + 83 + a = 0 

Ce5 =0, so3 = 0 (c-19) 
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APPENDIX D
 

LINE-OF-SIGHT STEERING AND AXIS-OF-ROTATION STEERING
 

The purpose of this appendix is to develop the equations used in the line-of­

sight steering and the axis-of-rotation steering of the SVDS RMS kinematic
 

capability. In line-of-sight steering, the tip of the end effector is commanded
 

to move along a line from its initial position to its final commanded position.
 

In axis-of-rotation steering, the end effector coordinate system is rotated
 

about its single axis of rotation to change its orientation from its initial
 

orientation to its final commanded orientation.
 

LINE-OF-SIGHT STEERING
 

The direction of the line of sight is first determined, and a unit vector in
 

this direction is computed.
 

{Ar} 	"fRf- {RI) (D-l)
 

where­

{Rf} 	is the final desired position vector expressed in the orbiter system
 

relative to the CM of the'orbiter
 

{R1} is the initial position vector
 

fAr} 	is the position vector representing the change in position desired
 

Compute-the distance to be traveled as
 

d = {ArT{Arl 	 (D-2) 

and the unit vector in the direction of the desired velocity as
 

fu I 	 = At (D-3.) 
T	 d 



Next, assuming an initial velocity of zero and an acceleration and velocity 

limit, compute the times of the acceleration discontinuities- for a trapezoidal 

velocity time-history. Determine ifmaximum velocity will be reached by 

computing ­

dm V !am (D-4)
 

If d is greater than dm, then maximum velocity will be reached and the velocity
 

command profile will be
 

V
 
t= a
 

m
 

d - d
 
2 - Vm + t
 

t3 = t2 + tI (D-5)
 

and {VeI= amt{T}0 < t < tl
 

{Vc} = Vm{uT t I < t< t2
 

-{Vc} = am(t3 - t){uT } t2 < t < t3 (D-6) 

If d is greater than d, then maximum velocity limit will not be reached and
 

the actual maximum velocity can be computed as
 

=*famd (D-7)
 

This leads to the following times and velocity commands:
 

m
 

t 
= tI 

t3 = 2tI (D-8)
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{Vc = amt{uT} 0 < t < t
 

{Vc} = am(t3 - t){uT} 0 < t <t 3 (D-9)
 

AXIS-OF-ROTATION STEERING'
 

The algorithm for computing the desired angular velocity command requires the
 
transformation matrix to the initial orientation and the'transformation to
 

the desired final orientation. The transformation from the initial orienta­

tion is then computed and the axis of rotation and the angle of rotation are
 

extracted from this matrix.
 

]IT
[BF1 = [BF [B1 (D-1O) 

Using eq. (A-4), we can write
 

[BFI]= (rIj - sin 0 [u] + (l - cos )u]2 (D-) 

From (D-li); we see that
 

[BFI]T  [BFI]
 
[B] = 2 - sin e [u] (D-12) 

Eq. (D-12) can be used to compute the axis of rotation if e is not equal to 

1800. Compute 

WI = (B32 - B23 )12 

W2 = (B13 - B31)/2 

W3 = (B21 - B12 )/2 (D-13) 

and {W = sin 6 {u) (D-14)
 

so sin 0 = (D-15) 

adfl 1 MW (D-16)

and {u} - sin ( 
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If sin 6 = 0, then itimust be determined if the angle of rotation is 0 or­

180- and if e = 1800, what is the axis of rotation. The trace of [BFI] is 

examined: if-the trace is 3, then a = 0; if the trace is 1, then 6 = 1800. 

To determine the axis of rotation for the case where 6 = 1800, the following 
formulas can be used 

2 FI]( -rI, 2 u~u1 u 
-_[C]. - [BFI 1-Cos 0)[Ji2 [jPJ +2+=2 UU 

UU3 u2u3 


(D-17) 

3 

and u. (D-18)

•i 1 

From the diagonal elements of 1C the magnitudes of the components of fu)
 

can be determined using the following formulas.
 

Abs (u) 4('11 7c' 

Ab2) = 3 3 )4}( 2 

Abs(ub) = C2) (D-19)4-(C33 -C11 


Next, determine the component with maximum magnitude and assume it to be
 
positive. Assuming u. is this element, then
 

C.
 
Ui C.i (D-20) 

The same technique is used for the determination of the magnitude of the
 

commanded angular velocity, as was used in the line-of-sight steering.
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