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ABSTRACT
 

Title of Thesis: 	 Studies on Solar Hard X-Rays and Gamma-Rays: 
Compton Backscatter, Anisotropy, Polarization, and 
Evidence for Two Phase of Acceleration 

Taeil Bai, Doctor of Philosophy, 1977 

Thesis directed by: Frank B. McDonald 
Professor of Physics 

This thesis deals with the theory of hard x-ray emission from solar flares, with 

emphasis upon the following two aspects of this radiation: the Compton backscatter of 

X-rays from the solar photosphere, and bremsstrahlung in the transition energy region 

from non-relativistic to relativistic electron energies. 

Hard X-rays incident upon the phosphere with energies > 15 keY have high 

probabilities of backscatter due to Compton collisions with electrons. This effect has 

a strong influence on the spectrum, intensity and polarization of solar hard X-rays-­

especially for anisotropic models in which the primary X-rays are emitted predomi­

nantly toward the photosphere. We have carried out a detailed study of X-ray back­

scatter, and we have investigated the interrelated problems of anisotropy, polarization, 

and center-to-limb variation of the X-ray spectrum and Compton backscatter in a 

coherent fashion. The results of this study are compared with observational data. 

Because of the large contribution from the backscatter, for an anisotropic primary 

X-ray source which is due to bremsstrahlung of accelerated electrons moving pre­

dominantly down towards the photosphere, the observed X-ray flux around 30 keV does 

not depend significantly on the position of flare on the sun. For such an anisotropic 

source, the X-ray spectrum observed in the 15 to 50 keV range becomes steeper with 

the increasing heliocentric angle of the flare. These results are compatible with the 



data. The degree of polarization of the sum of the primary and reflected X-rays with 

energies between about 15 and 30 keV is very large for anisotropic primary X-ray 

sources, whereas it is less than about 4% for isotropic sources. We also discuss the 

characteristics of the brightness distribution of the X-ray albedo patch created by the 

Compton backscatter. The height and anisotropy of the primary hard X-ray source 

might be inferred from the study of the albedo patch. 

Until recently observations and theoretical studies of solar hard X-rays have 

been limited to energies below about 300 keV. Observations of solar X-rays and gamma­

rays from large flares such as the August 4, 1972 flare show that the hard X-ray spec­

trum extends into the gamma-ray region, where a flattening in the spectrum of the con­

tinuum emission is observed above about 1 MeV. This emission is believed to be due 

to bremsstrahlung. In addition to electron-proton collisions, at energies greater than 

-500 keV, bremsstrahlung due to electron-electron collisions becomes significant. The 

cross section for this process, applicable in the mildly relativistic region became avail­

able only recently. We provide a detailed calculation of bremsstrahlung production for 

a variety of electron spectra extending from the nonrelativistic region to relativistic 

energies and we take into account electron-electron bremsstrahlung. By comparing 

these calculations with data, we find that the flattening in the spectrum of the continuum 

emission from the August 4, 1972 flare can be best explained by an electron spectrum 

consisting of two distinctive components. This evidence, together with information on 

the X-ray and gamma-ray time profiles, implies the existence of two phases of accel­

eration. The first phase accelerates electrons mainly up to about several hundred keV; 

the second phase accelerates a small fraction of the electrons accelerated in the first 

phase to relativistic energies and accelerates protons to tens and hundreds of MeV. 
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CHAPTER 1
 

INTRODUCTION
 

This thesis is concerned with the solar flare continuum radiation from 10 keY to 

10 MeV. This continuum radiation is believed to be mainly due to bremsstrahlung of 

accelerated electrons, except for the MeV region where a part of the continuum is due 

to Doppler broadened nuclear gamma-ray lines. Therefore, the study of the flare con­

tinuum radiation from 10 keV to 10 MeV can give information on the accelerated parti­

cles in the flare region and on the properties of the emitting medium. Emphasis of the 

thesis is laid upon the two aspects of this continuum: the Compton backscatter of 

X-rays from the photosphere and related problems, and the properties of the continuum 

in the transition region from non-relativistic to relativistic energies. 

Hard X-rays from a solar flare were first detected by Peterson and Winckler 

(1959) with a balloon-born detector at an atmospheric depth of 10 g/cm2 . Soon after 

that, solar hard X-rays were also detected by Chubb, Friedman, and Kreplin (1960) 

with a detector mounted on a rocket. However, the detection limitation due to the 

earth's atmosphere and the short exposure time available in rocket flights could be 

overcome only after hard X-ray detectors were flown on artificial satellites starting 

from the early 1960's (principally on the OSO and OO series). In this introduction we 

summarize the pertinent observational characteristics of solar hard X-ray bursts, and 

we discuss the theoretical problems presented by these observations. We then describe 

the research done in each chapter of this thesis. 

The observational characteristics of solar hard X-ray bursts, generally referring 

to small flares or subflares, have been analyzed in detail by Kane and Anderson (1970), 

Kane (1971, 1973, 1974), Peterson, Datlowe, and McKenzie (1973), and Datlowe, Elcan, 

1
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and Hudson (1974). They are summarized by Svestka (1976) as follows: (1) The-hard 

X-ray burst occurs during the flash phase and peaks usually 0. 5 to 3 minutes before the 

flare maximum observed in Ha light. (2) The increases and decreases of the X-ray flux 

at 40 keV are roughly exponential, with e-folding rise times of 2 to 5 seconds and simi­

lar or slightly longer e-folding decay times. For large flares, the X-ray time profile 

consists of many spikes of the order of one minute durations; short-lived spikes of the 

order of one second duration are superimposed on top of them (van Beek et al. 1973). 

(3) The peak X-ray flux at the earth, above 10 keV, is usually 10 . to i0 - erg cm 2 

sec 1 . (4) The X-ray spectrum is of the power-law form, dq(e) , 6 (photons cm - 2 

de 

sec' keV- 1 ), with 3, 5 6 5.5 (medianS = 4.6) in the range 10 keV to about 80 keV, 

at the maximum flux, and above about 80 keV the spectrum becomes much steeper. . 

Spectral indexes larger than 7 are very rare and hard to determine because of the piletip 

effect (Datlowe et al. 1974), and they almost never become smaller than 2. 5 (Kane 1974, 

Datlowe et al. 1974). (5) The spectrum is hardest near the flux maximum (Kane and 

Anderson 1970, Kane 1973). 

Once measurements of the energy spectra of solar hard X-rays became available, 

it was possible to deduce the energy spectra of the accelerated electrons and to calculate 

the number and the energy content of the accelerated electrons (Lin and Hudson 1976). 

Electrons with power-law -energy spectra can produce power-law photon spectra usually 

observed, and this fact was regarded as an evidence of the nonthermal origin of solar 

hard X-rays (Takakura and Kai 1966, Holt and Cline 1968, Holt and Ramaty 1969).. How­

ever, power-law spectra of hard X-rays can also be due to a multi-temperature plasma 

(Chubb 1972, Milkey 1971). Because tle thermal and nonthermal interpretations require 
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quite different flare models, it is very important to determine the nature of solar flare 

hard X-rays.
 

If solar hard X-rays are due to nonthermal electrons, these electrons are expected 

to be anisotropic. It was thought that, if there existed a prevailing direction of aniso­

tropy, because of the directionality of bremsstrahlung, the frequency of occurrence of 

hard X-ray events above a certain threshold should depend on the solar longitude of the 

events. By analyzing the observational data, Ohki (1969), Pinter (1969), and Pizzichini 

et al. (1974) have studied the center-to-limb variation of the solar X-ray emission. The 

results, however, were contradictory and moreover the statistics were too low to draw a 

meaningful conclusion. Meanwhile, the angular dependence of the hard X-ray flux due 

to anisotropic electrons streaming down to the photosphere was calculated by Brown 

(1972) and by Petrosian (1973). These calculations predict that the observed X-ray flux 

will be larger for flares near the limb than for those near the disk center, and that the 

X-ray spectrum will be slightly flatter for limb flares. However, the limb brightening 

effect was not confirmed by the detailed analyses of Kane (1974) and Datlowe et al. (1974), 

who used OGO-5 data and OSO-7 data, respectively. Contrary to the prediction of these 

calculations, the result of Datlowe et al. (1974) showed that the average X-ray spectrum 

of limb flares is steeper than that of disk flares. 

The anisotropy of accelerated electrons can also be studied by polarization meas­

urenents (Korchak 1967). Polarization measurements have been carried out mainly by 

Tindo and his coworkers (Tindo et al. 1970, 1972a, 1972b), and finite degrees of polari­

zation have been reported. The degree of polarization of hard X-rays due to anisotropic 

accelerated electrons was calculated by Haug (1972) and by Brown (1972). Thus, on the 

one hand, the results of polarization measurements seem to support a nonthermal 
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interpretation and this interpretation is supported by studies of spectra and the time vari­

ations of X-rays. On the other hand, the lack of limb-brightening and limb-flattening 

effects seems to contradict the nonthermal interpretation. This apparent contradiction 

is resolved when the backscatter of X-rays described below is taken into account. 

Tomblin (1972) and Santangelo, Horstman, and Horstman-Moretti (1973) showed 

that at energies above 15 keV a significant fraction of hard X-rays incident upon the 

photosphere is backscattered due to the Compton scattering process. Thus, for aniso­

tropic models in which hard X-rays are predominantly emitted down toward the photo­

sphere, the albedo X-rays constitute a large fraction of the observed hard X-ray flux. 

Furthermore, the Compton scattering cross section is dependent upon the polarization 

of the X-ray beam. Therefore, the study of the anisotropy of the accelerated electrons 

and the polarization of hard X-radiation should be studied together with the Compton 

backscatter. This fact has been realized only recently. Henoux (1975) briefly discussed 

the effects of the backscatter of hard X-rays on the directivity and polarization, and sug­

gested that the apparent contradiction between the lack of limb brightening effect and the 

polarization measurements could be resolved by taking the Compton backscatter into 

account. In this thesis we perform a detailed calculation and confirm this result. We 

further investigate the effects of the backscatter oii the spectrum of hard X-rays, and 

show that the limb steepening observed by Datlowe et al. (1974) is well explained by an 

anisotropic model when the backscatter is taken into account. 

Another direction of solar hard X-ray research is the quest for good spatial reso­

lution. The knowledge on the size and the shape of the hard X-ray emitting region is 

very important for the understanding of flare phenomena. Hard X-ray measurements 

with a very good spatial resolution not only can tell the size and shape of the emitting 
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region, but also can give information on the height and anisotropy of the primary X-ray 

source by resolving the photospheric albedo from the primary X-ray source (Brown, 

van Beek, and McClymont 1975). However, to evaluate the relationships among the 

height, the anisotropy and the albedo brightness distribution, a complete calculation of 

backscatter is required. So far the spatial resolution of hard X-ray emission has not 

been attempted except the one-dimensional scanning by Takakura et at. (1971). How­

ever, an X-ray detector with 8 arcsecond resolution will be flown on NASA's Solar Maxi­

mum Mission (SMM), and detectors'with even better resolution might become available 

in the future. 

The study of temporal variation of solar hard X-rays is also very important. 

Through such studies, we can learn about the characteristic time of X-ray emission, T, 

the characteristic acceleration time of electrons, r a , the characteristic energy loss 

time, ri, which is related to the ambient medium, and the characteristic escape time, 

Te , which is chiefly related to the magnetic field configuration of the emitting region. 

Until recently, the temporal resolution was not so good, and theoretical discussions were 

mainly confined to arguing whether the interaction model of the accelerated electrons is 

thin-target (-a < r i <r)or thick-target (r > > r i) or the trap model (re > ri ; T). Van 

Beek et al. (1973) have measured hard X-rays with a time resolution of 1. 2 seconds for 

a long duration (10 3 seconds) during the August 4, 1972 flare. A theoretical study of 

the hard X-ray time profiles of this flare was performed by Brown and Hoyng (1975). 

However, a very large coronal magnetic trap geometry proposed by these authors for 

this flare is unrealistic. Thus, further studies of the X-ray time profiles are needed. 

On the experimental side, the detector being prepared by Frost (1976) for the SMM can 

provide very good time resolution down to 10- 3 seconds. 
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Because of steep energy spectra, observations and theoretical studies of solar hard 

X-rays have been limited mainly to energies below 300 keV. However, from observa­

tions of flare-associated electrons with mildly relativistic and relativistic energies and 

from observations of type IV metric bursts believed to be due to relativistic electrons, 

we know that such electrons are accelerated in large flares. From radio observations 

Wild, Smerd, and Weiss (1963) and de Jager (1969) proposed that energetic particles in 

solar flares are produced in two steps of acceleration. As observational evidence for 

the two-step acceleration theory, Frost and Dennis (1971) presented their data of hard 

X-rays below 250 keV, which consisted of an impulsive X-ray burst with a steeper spec­

trum and a more gradual X-ray burst with a flatter spectrum which followed the former. 

In the two-step acceleration theory, electrons with energies between ten to several 

hundred keV are accelerated in the first step, and electrons with relativistic energies 

and protons with energies greater than about 10 MeV are accelerated in the second step 

(e. g., de Jager 1969). Electrons accelerated in the second step will produce brems­

strahlung continuum extending to the MeV region. Through nuclear interactions, protons 

and heavy nuclei accelerated in the second step will produce gamma-ray lines and a con­

tinuum due to Doppler broadening of lines (Ramaty, Kozlovsky, and Lingenfelter 1975, 

Ramaty, Kozlovsky, and Suri 1977). Therefore, in order to investigate the numbers 

and spectra of the accelerated electrons, protons and heavy ions, it is necessary to ex­

tend the energy limit of the research on the flare radiation up to the MeV region. Among 

recent observations of gamma rays in this region (Gruber, Peterson, and Vette 1973, 

Chupp et al. 1973, Meliorensky et al. 1975), only Chupp et al. (1973) give a detailed 

spectrum and a time profile. The spectrum measured by the New Hampshire group 

(Chupp et al. 1973, Suri et al. 1975) shows a flattening at about 1 MeV, and a similar 
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feature could be also inferred from the other two measurements. In this thesis, by in­

vestigating in detail the spectral characteristics of the observed continuum up to 7 MeV 

and the characteristics of time profiles of X- and gamma-ray fluxes, we provide addi­

tional evidence for the two-step acceleration theory. 

In Chapter II we discuss various radiation mechanisms of hard X-rays with empha­

sis on bremsstrahlung--especially on electron-electron bremsstrahlung, whose cross 

section in the mildly relativistic region became available only recently. The inclusion 

of electron-electron bremsstrahlung is essential for a full understanding of the photon 

spectrum in the transition band from the hard X-ray to gamma-ray region. In Chapter 

III the anisotropy, Compton backscatter of solar hard X-rays and related problems are 

investigated. Here we present a coherent study of the anisotropy, polarization, and 

backscatter. We discuss the effect of the backscatter on the characteristics of the X­

ray spectrum, and we investigate the brightness distribution of the area from which 

X-rays are reflected. In Chapter IV we discuss how future observations with high spa­

tial resolution could determine the relation between the height and anisotropy of the 

primary source and the albedo brightness distribution. In this chapter we also compare 

our results with observational data on polarization. In Chapter V, by investigating in 

detail the X- and gamma-ray continuum from 0.35 to 8 MeV and the X-ray time profiles 

of the August 4, 1972 flare, we provide evidence for two phases of acceleration. In 

Chapter VI we summarize our results. 



CHAPTER II
 

PRODUCTION MECHANISMS OF SOLAR FLARE PHOTONS 

IN THE 10 KEV TO 10 MEV RANGE 

Accelerated electrons with energy >10 keV produce hard X-rays with energy 10 

keV. Accelerated protons and heavy nuclei produce narrow gamma ray lines in the MeV 

range and also gamma ray continuum in this range due to Doppler broadening of these 

lines (e. g., Ramaty, Kozlovsky, and Suri 1977). In addition, inverse Compton scatter­

ing of relativistic electrons with thermal solar photons (Shklovskii 1965) and bremsstrah­

lung due to collisions of accelerated protons with the ambient electrons (Boldt and 

Serlemitsos 1969) can produce hard X-rays. 

In Section A we discuss briefly the relative importance of these radiation mecha­

nisms in the solar flare, and show that inverse Compton scattering and bremsstrahlung 

due to energetic protons are not important under usual flare conditions. We also discuss 

in this section the gamma ray continuum due to accelerated ions. Then, -we devote the 

rest of this Chapter to the discussion of bremsstrahlung of accelerated electrons. In 

Section B we review the various characteristics of bremsstrahlung due to collisions of 

accelerated electrons with the ambient ions. In Section C we discuss the characteristics 

of bremsstrahlung due to collisions of accelerated electrons with the ambient electrons. 

In Section D we provide calculations of bremsstrahlung production rates due to collisions 

of accelerated electrons with the ambient particles, by assuming that the momentum 

vectors of accelerated electrons are isotropically distributed, and that the energy spec­

tra of the electrons are power laws. Such calculations can be used as a handy reference 

for quick estimations of the spectrum and the number of accelerated electrons in the 

flare region. 

8 
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A. 	 Production Mechanisms other than Bremsstrahlung Photons 

from Accelerated Electrons 

1. Compton Scattering 

Relativistic electrons in the flare region make high energy photons by colliding 

with thermal photons flowing out of the sun's surface. Once this mechanism was pro­

posed to be responsible for the production of hard X-rays from solar flares (Shklovskii 

1965). In this subsection we discuss the relative importance of this mechanism in solar 

flares. 

When an electron with total energy Tmc 2 collides with a photon of energy e0, the 

resultant photon energy is (Felten and Morrison 1966) 

el= 	 26 0 (l -j3 cos a0 )(1 +f3 cos a,), (2.1) 

where a o is the angle between electron's direction of motion and the incident photon's 

direction of motion in the lab frame, and a, is the angle between the direction of inci­

dent electron and the direction of the outgoing photon in the electron's rest frame. For 

isotropically distributed photons, the average energy of the resultant photons is 4/3 

60. In a thermal photon field, the photon spectrum produced by inverse Compton 

scattering 	of accelerated electrons with a power-law spectrum, 

-N(E) = KE S (electrons/MeV), (2.2) 

is given by (Ginzburg and Syrovatskii 1964) 

Q(e) =f(s) "2cUw~Ph(mc 2 )l-s (-)() 4(- 3) K e (S+)+ poos/ee) (2.3) 
2 C21 42 (photons/MeVlsec). 

Here c is the speed of light, 0 T is the Thompson cross section, Wph is the photon energy 

density, me 2 is the electron rest mass energy, and F = 2. 7 kT is the mean photon 
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energy. The factor f(s) is of the order of unity, and in particular f(2) = 0.86, f(3) = 0.99 

(Ginzburg and Syrovatskii 1964). 

Because the average amplification factor of the photon energy due to inverse Comp­

ton scattering with an electron with energy ymc is 4/3 72, we need much higher energy 

electrons in order to produce hard X-rays through inverse Compton scattering than 

through bremsstrahlung. Also the energy spectrum of the photons due to inverse Comp­

ton scattering is flatter than the spectrum of the bremsstrahlung photons. The spectral 

index of the former is (s + 1)/2, and the spectral index of the latter is about s + 0. 5 

(see Section IT.D), where s is the spectral index of the accelerated electrons. Thus, 

the photon production due to inverse Compton scattering can be important if the energy 

spectrum of the accelerated electrons is relatively flat. 

The energy spectrum of the flare-associated electrons has been reported for many 

solar events (Cline and McDonald 1968, Datlowe 1971, Datlowe et al. 1970, Sullivan 

1970, Dillworth et al. 1972, Simnett 1972, 1973). In his review paper, Simnett (1974) 

reported that the spectral index of the electrons associated with visible flares ranges 

from 2.5 to 3 in the 0.3 to 12 MeV region, and it ranges from 2.5 to 4.5 in the 12 to 

45 MeV region. He also reported that the spectrum sometimes steepens towards 

higher energies for events for which the energy spectra are measured in the both 

energy intervals. 

Let us calculate the photon production rates due to inverse Compton scattering 

by relativistic electrons with a power index 2. 5 and with no high energy cut off. Con­

sidering the observed electron spectra, this assumption for the electron spectrum is 

the most favorable assumption for X-ray production by inverse Comptdn scattering. 

Using T = 58000 K, Wph = 1 . 31 X 106 MeV/cn -3 (Allen 1964), IF= 2.7 kT = 1.35 X 10-6 



MeV, and equation (2.3), we get the following formula for photon production rate due.to 

inverse Compton scattering 

Q(e) = 3.18 X 10-4 C .75 (photons/MeV/sec) (2.4) 

2 5for an electron spectrum N(E) = 2.64 X 102 E - - (N(>30 lMeV) = 1), where e and E 

are in units of MeV. This equation is plotted in Figure 2. 1, as a solid line. Brems­

strahlung production rates by the same accelerated electrons are shown by two dashed 

lines, for ambient densities n = 1010 cm- 3 and n = 10 9 cm - 3 , respectively. The figure 

shows that the photon production rate due to inverse Compton scattering may be non­

negligible at high photon energies, if the electron spectrum is flat (s < 2. 5) up to the 

several hundred MeV region and n < 1010 cm - 3 . 

Observational data on the electron spectrum above 45 MeV are not available. 

However, for the following reasons, it is very unlikely that the electron spectrum in 

the flare region is as flat as s = 2. 5 up to the several hundred MeV region. First, 

severe synchrotron energy loss rate of high energy electrons will steepen the spec­

trum at higher energies. Second, considering the short flare time (<1000 seconds) and 

the small dimension of the flare region, we can hardly expect that electrons are accel­

erated efficiently up to several hundreds of MeV. (However, protons are accelerated 

up to these energies. See Chapter V for particle acceleration.) Third, the observa­

tional data available up to 45 MeV show a trend of steepening of the spectrum toward 

higher energies (Simnett 1974). 

In addition to the likely steepening of the electron'spectrum at higher energies, 

the following two effects also reduce the photon production rate due to inverse Compton 

scattering. Since electrons which make X-rays through inverse Compton scattering 
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have very high energies, even though the scattered photons are emitted almost isotropi­

cally in the electron's rest frame, in the lab frame almost all the scattered photons are 

well collimated in a very small cone around the electron's direction of motion. There­

fore, photons are observable only if they are scattered by electrons moving toward the 

observer. Near the solar surface the photon field is not isotropic; in fact most of the 

photons come outward from the sun, so that those electrons moving toward the observer 

collide with red-shifted photons (corresponding to small values of ao in equation 2. 1). 

Consequently, the average energy of the photons scattered by an electron moving toward 

an observer away from the sun is less thai the average energy of the photons scattered 

by an electron with the same energy in an isotropic field. Since the number of electrons 

decreases as energy increases, this means that for disk flares the photon intensity due 

to Compton scattering is lower than that obtained for an isotropic photon field. 

Furthermore, the collision frequency is expressed by (Feenberg and Primakoff 

1948) 

dcleda2 n(, ¢) (1dNcolC - 0l Cos 0) (2.5) 

dt 

where n(O, q) is the angular distribution function of the photons, and 0 is the angle be­

tween the electron's direction of motion and that of the photon. Thus the scattering 

frequency is also lower in solar flares than in an isotropic photon field. These two 

effects are more pronounced for flares near the disk center. 

We may conclude as follows. The photon production due to inverse Compton scat­

tering may be important at.high energies, if the electron spectrum is very flat (s 2. 5) 

up to several hundred MeV and the ambient density is not too high (< 1010 cm- 3 ). Ex­

pected steepening of the electron spectrum at higher energies and the anisotropic. 
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distribution of thermal photons from the sun's surface, however, make the photon pro­

duction due to inverse Compton scattering less important. Furthermore, because the 

ambient density deduced by various methods is considerably larger than 1010 cm - 3 (e. g., 

Chapter V), the importance of the inverse Compton radiation in flares is further re­

duced. Under the usual flare conditions, thereforej the photon production due to in­

verse Compton scattering is most likely to be negligible. This is particularly certain 

for photon energies below 100 keV. 

2. Bremsstrahlung due to Energetic Protons 

Energetic protons make hard X-rays by colliding with the ambient thermal elec­

trons. This mechanism was once suggested to be responsible for the production of 

hard X-rays from flares (Boldt and Serlemitsos 1969). Because an estimation of the 

number and spectrum of the accelerated protons in the flare region is available for the 

first time from the gamma ray data of the August 4, 1972 flare, we can discuss the 

relative importance of this mechanism for producing solar hard X-rays with more 

confidence. 

In the proton's rest frame, ambient thermal electrons approach the proton with 

approximately the same velocity as the proton's velocity in the laboratory system, and 

are scattered by the stationary proton, giving rise to bremsstrahlung. For nonrela­

tivistic protons, the transformation of the coordinate system back into the laboratory 

system does not significantly alter the radiation pattern in the proton's rest frame. 

Therefore, the instantaneous photon production rate and energy spectrum due to a 

nonrelativistic proton in a hydrogen plasma are the same as those of an electron with 

the same velocity in the same plasma. Thus, the instantaneous photon production rate 

and energy spectrum due to accelerated protons with a given velocity spectrum is 
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the same as those due to accelerated electrons with the same velocity spectrum. If the 

energy spectrum of accelerated protons is given by 

NP(E) = K E- (protons/MeV) for E1 ( E ( E2 , (2.6) 

the electron spectrum equivalent to this proton spectrum, in terms of instantaneous 

bremsstrahlung rate, is just 

s1b-E)'= (M) K ES (electrons/MeV) for B (E(M2 B 2 , (2.7) 

where m is the electron mass, and M is the proton mass. 

The proton spectrum deduced from the gamma ray line data of Chupp et al. (1973) 

for the August 4, 1972 flare is given by (Ramaty, Kozlovsky and Lingenfelter 1975) 

n Np (E) = 1.6 X 1045 E- 2 (protons/MeV/cm),for 10 MeV% E < 200 MeV. (2.8) 

The equivalent electron spectrum in terms of the instantaneous bremsstrahlung rate is 

nNe(E) = 4.75 X 103 E- 2 (electrons/MeV/cm 3) for 5 keV < E < 100 keV. (2.9) 

The photon intensity at 1 AU due to this spectrum can be obtained from the results in 

Section II. D: 

-5Q(e) -2.2 X Io c2.3 photons/sec/cM2 /MeV), (2.10) 

where e is in units of MeV. This intensity is five or six orders of magnitude below the­

intensity observed from this flare in the 10 to 100 keV range. 

Considering that the interplanetary proton flux (above 20 MeV) associated with 

the August 4, 1972 flare is among the largest (McDonald, Fichtel, and Fisk 1974), 



16 

bremsstrahlung due to collisions of accelerated protons with the ambient electrons must 

be negligible in all flares. 

3. Gamma Rays due to Accelerated Nuclei 

Ambient heavy nuclei are excited by collisions with accelerated protons and alpha 

particles in the flare region, and accelerated heavy nuclei in the flare region are ex­

cited by collision with ambient protons and alpha particles. Deexcitation of these 

nuclei generates nuclear gamma rays in the MeV range (e. g., Ramaty et al. 1975). 

The former process makes narrow lines with widths of about 100 keV. The latter proc­

ess makes broad lines (with widths of about 1 MeV) due to the Doppler broadening, be­

cause excited nuclei in this process emerges with large velocities, comparable to their 

initial velocities. In addition to nuclear lines, neutrons produced by collisions of 

accelerated nuclei generate a 2.2-MeV line by deuteron formation, and positrons pro­

duced bycollisions of accelerated nuclei give rise to a 0. 51 MeV line through pair 

annihilation. The study of gamma ray lines can provide information on the accelerated 

nuclei which produce them. Solar gamma rays have been studied mainly by Ramaty, 

Lingenfelter, and coworkers (Ramaty et al. 1975 and references therein). Solar gamma 

rays have been positively detected for the first time by Chupp et al. (1973) for the 

August 4, 1972 flare. 

Because the widths of the gamma ray lines due to collisions of accelerated nuclei 

with ambient protons and alpha particles are about 1 MeV, they overlap each other, and 

can no longer be called lines. Instead they form a gamma ray continuum in the MeV 

region, whose highly structured shape can be distinguished from a bremsstrahlung con­

tinuum by measurements with high energy resolution. According to Ramaty et al. 

(1977), the gamma ray continuum from 4 to 8 MeV for the August 4, 1972 flare could 
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be entirely due to Doppler-broadened nuclear lines. A detailed study of this continuum 

is provided in Chapter V. 

B. Electron-Proton Bremsstrahlung 

So far we have discussed various hard X-ray production mechanisms in solar 

flares. We have found that below the MeV region bremsstrahlung of accelerated elec­

trons is the important radiation mechanism. Let us discuss this mechanism in detail. 

Bremsstrahlung cross-section formulas and related data have been extensively 

reviewed by Koch and Motz (1959). An '.exact" expression for the bremsstrahlung cross 

section cannot be obtained, primarily because, to be exact, an electron should be repre­

sented by an infinite series of wave functions. However, many authors have tried to 

obtain bremsstrahlung cross-section formulas by using various approximatewave 

functions. 

Among these formulas, those calculated by the Born-approximation procedure are 

available in relatively simple analytical forms, and their accuracy is good in the wide 

energy range of interest (10 keV 10 MeV). In general, the Born-approximation 

theory becomes less reliable as (a) the atomic number of the target increases, (b) the 

initial electron energy decreases, and (c) the photon energy approaches the high­

frequency limit (Koch and Motz 1959). However, the above conditions are not very 

relevant to our calculations of the production rates of solar hard X-rays for the follow­

ing reasons: (a) in the solar atmosphere bremsstrahlung is almost entirely due to 

hydrogen and helium nuclei, (b) we are interested in electrons with energies 10 keV, 

and (c) the inaccuracy of the Born-approximation formulas at the high-frequency 

limit is not pronounced for targets with low atomic numbers. Therefore, the Born­

approximated formulas are expected to be reasonably accurate for our purpose. 
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A Born-approximated bremsstrahlung formula differential in photon energy and 

angle is given by (Koch and Motz 1959; Formula 2BN" Bethe and Heitler 1934) 

d2 u Z2 r 2 pr 1 8sin2 (2y2I+ 1) 
2 A4ddE, 87r 137 p e( p

2(5,y2 + 2y'y' + 3) 2(p 2 - k2 )+ 4y' 

Q2 A2 2 Ap2A2 p

(2.11)
+ L [4y sin2 0(3k - p2 t' ) + 4 2 (2 + y 2) 
p2 A4 2 A2 pp [ p 

2- "2(7y2 - 377' +-y, 2 ) 2k( 2 +-y-y' - 1)2 A2Sp p2 A ] 
OA+o'04 _6k _2k(p2 -k2)]-

A2 O2 A 
A) p A 

Here E is the kinetic energy of the incident electron, e is the photon energy, 0 is the 

photon angle With respect to the momentum vector of the incident electron, Z is the 

atomic number of the target, and r, = 2.82 X 10-13 CM. Other symbols are defined as 

follows: 

= y =E/mc2 + 1;,y' '-y e/mc2 ; k = e/mc2 ; p =(y2 - l)Y 

P t=ey2 1)/;L=2.9 (I+pp)-;2=n(Y+P (2.12)n 

=Qo=Qn Q+p ;Q 2 =- +k 2 - 2pkcos 0 ;A - pcosO. 
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The integration of equation (2. 11) over the photon angle gives rise to the bremsstrahlung 

cross-section formula differential in photon energy (Koch and Motz 1959; Equation 3BN), 

(E, 6) 13 2""Y -fk p2 ­da e Z2r2p'1J14 2 12 9'y' 

de 137 p e 3p p 

£' QQ' -[8 yy +k 2 (y27' 2 + p2 p12) 

+-- -- +L (2.13)
p13 ppt 1 3 pp' p3p13 

~k ' 2 QIYYP+ 2k-yy')} 
2pp pp3 p3 p2p2 

where k'= Rn ,,Yand all other symbols are the same as above in equation (2.12). 

For energies below 2 MeV, as a Coulomb correction factor, equation (2.13) is multi­

plied by the Elwert factor, rE, (Koch and Motz 1959; Equation 11-6) 

P[1 - exp {-2r/(1373) 1] 

fE -'[1 - exp f-21r/(1370')1 (2.14) 

where fp' = (/2 - 1) /yt. A Coulomb correction factor is not applied to equation (2. 11) 

because a detailed angle-dependent Coulomb correction factor is not available. Equa­

tions (2. 11) and (2. 13) are for non-screened targets. Because the medium of the emit­

ting region in the flare is believed to be almost completely ionized, the screening due 

to atomic electrons is negligible. Therefore, we use the nonscreened formulas. 

The accuracy of equation (2. 13) with the Elwert factor applied is within 5% below 

100 keV, within 10% above 2 MeV, and within a factor of two between these energies 

(Koch and Motz 1959). The inaccuracy between 100 keV and 2 MeV, however, is large 

only when the atomic number of the target is large; and even when Z = 13, equation 

(2. 13) with the Elwert factor applied is correct within 35% at worst. Therefore, in 
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the solar atmosphere where most of the targets are hydrogen and helium nuclei, we ex­

pect the above Born-approximated formulas to be reasonably accurate. 

Radiation by a high-velocity electron is directional. In the rest frame of the inci­

dent electron, the rest electron is accelerated by the nucleus approaching with the elec­

tron's velocity in the laboratory frame. In the electron's initial rest frame, the motion of 

the electron after the collision is nonrelativistic except for very close collisions; there­

fore, the radiation power has the classical distribution proportional to sin2 e, where e, 

is the angle measured relative to the direction of acceleration. Because of the Doppler 

effect, in the lab frame the photons in the forward directions become more energetic 

than the photons in the backward directions, and more photons are emitted in the for­

ward directions. When the electron is relativistic, the number of emitted photons peaks 

at 0 = 00 and decreases with increasing 0, and most of the photons are emitted with 

angles 0 1/y radians. Here 0 is the angle measured from the electron's momentum 

vector (Jackson 1962). Therefore, the faster the electron is, the more directional its 

radiation becomes. The angular dependence of the bremsstrahlung cross section is 

plotted in Figures 2. 2 and 2. 3 for several values of electron energy and photon energy. 

(For more drawings of the angular dependence of the bremsstrahlung cross section, see 

Koch and Motz (1959) and Petrosian (1973).) The anisotropy problems of the radiation 

by accelerated electrons will be discussed in detail in Chapters III and IV. 

Bremsstrahlung by an electron is polarized. In radiation problems, it is usual 

that the incident direction of the electron and the direction of the outgoing photon are 

known, but the deflected electron's direction is not known. Consequently the radiation 

plane which is defined by these first two directions, is a natural reference plane with 

respect to which one specifies the state of polarization. Because of the symmetry with 
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respect to the radiation plane, the possibility of elliptical polarization of the brems­

strahlung by an unpolarized beam of electrons is ruled out (Gluckstern and Hull 1953, 

McMaster 1961). 

Formulas for the polarization-dependent bremsstrahlung cross section were de­

rived by various authors (Heitler 1933, Heitler 1949, Bethe and Heitler 1934, May 

1951). Of these, the cross-section formulas of Gluckstern and Hull (1953) are accu­

rate in the wide energy range. The bremsstrahlmg cross sections for polarization 

perpendicular and parallel to the radiation plane are given by (Gluckstern and Hull 

1953) 

Z2d2 al(E, e, 0) p'1-(57 + 27y'+ 1) (p2 -k2) 

2A2 Q2 A2
ded2 8r 137 p e p

I ­

2k + L2y2(y +,y 2 ) - (57- 2,y+7' 2 ) 
p2 A PP _ p2 A2 

(2.15)
o
+ k(y2 + y'- 2)+ k k(p2 - k 2 ) ] 

p2 A p'Q[ A Q2 A 

sp2 a2 L (2, - w- 1-k) 

4o 1( -7) A 

(A y) -2_ 22A -- y 

6, 0) Z2 r p6 8i 2 y(2y2+1) (572+2'y'+5) 

2 A4 2 A2pdedS2 81r 137,P e p

2 (2.16)
(p2 - k2 ) + 2(,y+ 7)++ 47 n (3k- p2,) 

Q2 A2 p2A pp pA 4 
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+2y 2 (- +y' 2) - (972 - 4,' + - '2 ) + 2 + k(72 + yy')1 

p2 ApQ2A2 

pIQ I 2A Q2A p'A 

+ 	 i '2L (2-2 -7 I _ k) 

p2 sin2 0 L'pp' A 

42 (a- y)2 - 2(A ' 

The notation here is the same as in equations (2. 11) and (2. 12). Notice the sum of these 

two equations are the same as equation (2. 11). The minus sign indicated by an arrow in 

equation (2. 15) was misprinted as a multiplication sign in Gluckstern and Hull (1953). 

(Gluckstern 1977, private communication.) 

The degree of polarization is defined as 

[d2°ui(Ee,) d2 °'1(Ec0] d2aEE, 6) (2.17) 
PI(E, c, 6) = L ded2 ded2 ded&2 

2Because of the term containing the factor 1/(p sin 2 0), the above three equations are 

not valid when 0 is very close to zero. However, P1 approaches asymptotically to zero 

1f - 3 as Icos 01 approaches to 1 until (1 - Icos 01) X (y- 1)-'; over this limit P1 may be 

regarded to be zero. The degree of polarization defined by the above equation is plotted 

in Figure 2.4 for various electron energies and photon energies. As the figure shows, 

for e/E (( 1 the polarization is perpendicular to the radiation plane, and for e/E < 1 the 

polarization is parallel to the radiation plane. For a beam of electrons with a steep 

energy spectrum, therefore, the polarization of the bremsstrahlung must be parallel to 
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the radiation plane. A more detailed discussion of the polarization of bremsstrahlung 

hard X-rays is given in Chapters III and IV. 

C. Electron-Electron Bremsstrahlung 

Bremsstrahlung is also produced in collisions of energetic electrons with the am­

bient electrons. For low electron energies the electron-electron quadrupole emission 

is negligible in comparison with the electron-proton dipole emission. However, as the 

kinetic energy of the electron approaches its rest mass energy, electron-electron brems­

strahlung (hereafter it will be abbreviated as "e-e bremsstrahlung") begins to be com­

parable to electron-proton bremsstrahung ("e-p bremsstrahlung") (Maxon and Corman 

1967, Akhiezer and Berestetskii 1965). Compared with the e-p bremsstrahlung proc­

esses, the e-e bremsstrahlung processes are extremely complicated because of recoil 

and exchange effects. Therefore, even though the e-e bremsstrahlung cross section 

differential in emission angle and in outgoing electron direction was first calculated by 

Hodes (1953) using lowest-order perturbation theory, a manageable form for the e-e 

bremsstrahlung cross section was not available until recently, except in the nonrela­

tivistic and the extreme-relativistic limits (see Haug 1975 and references therein). 

In the mildly relativistic region, either the interpolation of the cross sections at these 

two extreme limits was used (Takakura 1967), or other assumptions were made (e. g., 

Bai and Ramaty 1976). 

Until recently, solar hard X-rays have been observed mostly at energies below 

a few hundred keV where e-e bremsstrahlung can be neglected without a large error. 

The observation of the considerable flux of continuum radiation up to -'7 MeV from the 

1972 August 4 flare (Chupp et al. 1973) and the theoretical study of the observed con­

tinuum radiation (Bai and Ramaty 1976), however, showed us that the e-e bremsstrah­

lung contribution is not negligible. 
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Recently Haug (1975) has published a manageable formula for the bremsstrahlung 

cross section in the field of an electron. It was obtained by integrating analytically the 

differential cross section (Hodes 1953) over the angles of the outgoing electrons, with­

out any approximations. The e-e bremsstrahlung cross section differential with respect 

to the photon energy and photon angles is given by (Haug 1975) 

d2 Ue(E,e,O) X- - -JAd p'1 . (2.18) 

deda 1371r wp w 4 7r 

Here 

w2= (P +P ) 2 , (2.19) 

and 

2p =(T' + 2)2 , (2.20) 

where Pl and P2 represent the four-momenta of the two electrons before the collision, 

and and -, after the collision. The lengthy expression-for [(p2 - 4)//ir] X fAdffpli 

is given in the Appendix of Haug (1975). 

In the laboratory frame where one of the electron is at rest, equations (2. 19) and 

(2.20) become 

w2 = 2(y + 1), (2.21) 

p2 2[y+ 1 -e/nc2 X (,y+ 1- p cos o)j, (2.22) 

with notation as above. From equation (2.20), we see that the maximum photon energy 

occurs when p2 = 4 and is given by 
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Cmax ('y, 0) --- - l)mC2 I(t+1 - p cos 0). (2.23) 

The absolute maximum of e occurs for the forward direction 0 = 00, 

-max (e ) = ( 1)mc2 /(,y+ I - p) = E/(1 +y- V9-1). (2.24) 

As this equation shows, the ratio em ax /E is a monotonically increasing function of E, 

approaching asymptotically to 1/2 as E becomes much less than mc 2 and to 1 as E 

becomes much larger than mc 2 . In e-pbremsstrahlung, on the other hand, this ratio 

is always almost equal to 1 because, the recoiling energy of the proton is negligible. 

This difference between e-e bremsstrahlung and e-p bremsstrahlung is a significant one. 

It makes the contribution from e-e bremsstrahlmug less important in the nonrelativistic 

region than that from e-p bremsstrahlung contribution, in addition to the fact that the 

total e-e bremsstrahlung cross section is much smaller than the total e-p bremsstrahlung 

cross section at a given energy in this regime. 

Equation (2.18) cannot be integrated analytically over photon angles, but because 

of the azimuthal symmetry about the incident direction it can be integrated numerically 

over the solid angle d92 = 27r sin 6dO. The characteristic behavior of equation (2. 18) 

as a function of 0 differs widely depending on E and e. For example, when e <E< mc2 , 

equation (2. 18) is a very gently varying function in the whole range of 0 , from 0 to 27r. 

When e < emax and E> mc2 , it varies very rapidly with a small change in 0, and has 

non-zero values in only very small range of '0. Therefore, in practice, it is not easy 

to make a computer program which can integrate accurately over the solid angle for a 

wide range of electron energy, and it is tedious and wasteful to integrate equation (2. 18) 

over the solid angle every time we need to calculate e-e bremsstrahlung from accelerated 

electrons with a certain spectrum. 
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We have found that a method of interpolation and extrapolation is very effective 

in overcoming the difficulty mentioned above. Table 2. 1 shows the e-e bremsstrahlung 

cross sections at various electron energies E and various photon energies E. It is 

tabulated with two parameters, E and i?= e/emax where max is given in equation (2. 24). 

Each of the curves in Figure 2. 5 shows the cross section as a function of 71 at a fixed 

energy. Figure 2. 5 is obtained by interpolating the points plotted from Table 2. 1. We 

see that the cross section is a smoothly varying function of ??at fixed electron energy 

E. If we plot the cross section as a function of E at fixed 17, we also find that the 

cross section varies smoothly. Therefore, we can interpolate or extrapolate to find 

the cross section at an arbitrary value of E and at an arbitrary value of e, by using the 

values tabulated in Table 2.. 1 to an accuracy of a few percent. With this method, using 

Table 2. 1, we can readily calculate the e-e bremsstrahlung production rate due to 

accelerated electrons with an arbitrary spectrum and with an isotropic distribution of 

momentum vectors. 

D. Bremsstrahlung Rates due to Isotropic Electrons with Power-Law Spectra 

The primary information available from hard X-ray data is the electron spectrum, 

from which the number and the energy content of the accelerated electrons can be de­

duced. Because the bremsstrahlung rate and spectrum are angle-dependent as we have 

seen in Section B, to deduce the electron spectrum more exactly we need to know the 

angular distribution of the momentum vectors of the accelerated electrons. However, 

because such knowledge is not usually available, and because the anisotropy of brems­

strahlung is not large in the nonrelativistic domain, accelerated electrons can be 

assumed to be isotropic without a danger of gross miscalculation. 
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With the assumption of isotropy, we can calculate the instantaneous photon pro­

duction rate per unit energy interval at photon energy e, by using 

q(e) dEc (E,e' dx n(x) Nx(E,x), (2.25) 

--4 -. -. 

where n(x) is the ambient density at the position x. N.(E, x) is the instantaneous number 

of accelerated electrons per unit volume at the position x per unit kinetic energy interval 

do 
around E, co is the velocity of the electron, and -do (E, ) is the bremsstrahlung cross 

section. Equation (2. 25) can be simplified to 

oo do 

q(e) = nf dE N(E)cf3- (E, e), (2.26) 

where n represents the average value of the ambient density weighted by the local num­

ber of accelerated electrons, and N(E) is the instantaneous number of accelerated elec­

trons in the unit energy interval around E in the entire emitting region. 

The energy spectra of solar hard X-rays follow a power law in the 20 to 100 keV 

interval. Flare associated electrons detected .in interplanetary space, which might be 

representative of the accelerated electrons in the flare region, also have power-law 

spectra. Because accelerated electrons with power-law spectra produce hard X-rays 

with power-law spectra, one might expect that the accelerated electrons in the flare 

region have power-law energy spectra. Thus, it is important to calculate photon 

production rates due to accelerated electrons with power-law spectra. 

Figure 2. 6 shows the photon production rates due to e-p bremsstrahlung of 

accelerated electrons with power-law spectra. The ambient density n has been nor­

malized to 1 cm - 3 , and the number of accelerated electrons with energies greater than 

20 keV, to 1. The production rates are multiplied by (e/20 keV) S, where e is the photon 
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energy and s is the spectral index of the'accelerated electrons. The resultant photon 

spectra, q (e), indeed follow a power law in the 10 - 100 keV interval; they gradually 

flatten in the 100 - 1000 keV interval; and then in the 1 -10 MeV interval they again 

follow a power law with smaller indexes than in the 10 - 100 keV interval. 

Similarly, we have calculated the photon production rates due to e-e bremsstrah­

lung of the accelerated electrons with power law energy spectra, which are shown in 

Figure 2. 7. Here also the ambient electron density n. is normalized to 1 cm - 3 , and 

the number of the accelerated electrons with energies greater than 20 keV is normalized 

to 1, as in Figure 2. 7. Compared with the results shown in Figure 2. 6, the e-e brems­

strahlung contribution becomes important as the electron kinetic energy becomes greater 

than or comparable to, the 'electron rest mass energy. The ratio between the e-e brems­

strahlung contribution and the e-p bremsstrahlung contribution at a given energy increases 

as the electron spectrum flattens. This is because ema x for e-e bremsstrahlung is much 

smaller than E, while emax for e-p bremsstrahlung is almost the same as E. There­

fore, more energetic electrons are needed to produce photons with a-given energy 

through e-e bremsstrahlung than through e-p bremsstrahlung. 

Total bremsstrahlung yields from accelerated electrons with power-law spectra 

in the fully ionized hydrogen plasma can be obtained by adding the results in Figures 

2.6 and 2.7. The results are shown in Figure 2.8. Most astrophysical bremsstrah­

lung sources, including solar flares, can be well approximated by a hydrogen plasma. 

(However, for calculations of Chapter V, we take the photospheric abundances into 

account..) As the figure shows, the resultant photon spectra follow a power law in the 

10 to 100 keV interval. In the 10 to 70 keV interval, where most of the solar hard X-rays 

are observed, the resultant photon spectra, q(e), can be approximated as 
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q (e) e)=-17 A1 (s) (20-eV)10 (photons/sec/keV),=1 0 7 A, ( ) ( 0 k V (2.27) 

where A, and 51 are plotted in Figure 2. 9 as functions of s. As can be seen in Figure 

-2.9, 81 s + 0.5, in agreement with the conventional wisdom. 

By using an analytical method and the nonrelativistic Bethe-Heitler formula (Koch 

and Motz 1959, Equation 3BN. a) for the bremsstrahlung cross section, Brown (1971, 

1975) obtained a relationship between solar hard X-ray spectra and accelerated electron 

spectra at the sun. He reported that the photon spectra are steeper by a unit power index 

than the electron flux spectra at the emitting region.. Since in the nonrelativistic region 

the electron flux spectrum is flatter than the electron number spectrum by one half power, 

his result is a good approximation. After converting units, we find that the flux at 20 keV 

of his result is similar to our result. The differences between our result and his are due 

partly to the e-e bremsstrahlung contribution taken into account in our result and partly 

to Brown's use of the approximate non-relativistic e-p bremsstrahlung cross-section 

formula. 

In many astrophysical sources bremsstrahlung by relativistic electrons is impor­

tant. Therefore, an expression for the relationship between the accelerated electron 

spectra and the bremsstrahlung spectra is useful. The bremsstrahlung spectra pro­

duced by accelerated electrons with the spectra, 

N(E)dE = (s - 1)E-SdE, (2.28) 

can be expressed by 

-q(e) = 5 X 10 17 A2 (s)e-6 2 () (photons/sec/MeV), (2.29) 
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- 3where E and c are in MeV, and the ambient density is 1 cm . A2 (s)'and 5.(s ) are also 

plotted in Figure 2. 9. We see that 62 s - 0.4. 



CHAPTER III
 

A COHERENT STUDY OF POLARIZATION, COMPTON BACKSCATTER,
 

ANISOTROPY, AND ALBEDO PATCH OF SOLAR HARD X-RAYS
 

A. Introduction 

As we have seen in Chapter II, hard X-rays from solar flares are mainly due to 

bremsstrahlung of accelerated electrons. Because bremsstrahlung is directional and 

it is also polarized, the study of the directionality of solar hard X-rays and/or the 

study of their polarization can lead to the knowledge on the angular distribution of the 

accelerated electrons in the emitting region. Such knowledge is essential in deter­

mining whether hard X-rays are due to thermal or nonthermal electrons. 

Brown (1972) and Petrosian (1973) studied the anisotropy of hard X-rays due to 

electrons beaming down toward the photosphere, and they reported that for such 

anisotropic models a flare near the limb would be brighter by a factor of 5 or so than 

the flare with a similar intrinsic X-ray strength near the disk center. However, 

such a large limb brightening effect was not confirmed by observations (Kane 1974, 

Datlowe, Elcan, and Hudson 1974). 

It was first pointed out by Korchak (1967) and by Elwert (1968) that the measure­

ment of polarization of solar hard X-rays can also lead to the knowledge on the aniso­

tropy of the accelerated electrons. A series of measurements by Tindo and his 

coworkers (Tindo et al. 1970, 1972a, 1972b, Tindo, Mandelstam, and Shuryghin 1973) 

and a measurement by Nakada, Neupert, and Thomas (1974) showed that solar hard 

X-rays are indeed polarized. Further calculations of polarization due to anisotropic 

distributions of accelerated electrons was performed by several authors for various 

cases: for soft X-rays by Elwert and Haug (1970), for hard X-rays due to electrons 
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with given pitch angle by Haug (1972), and for the thick-target by Brown (1972). In 

summary, these authors obtained the following result. Hard X-rays produced by 

accelerated electrons with their momentum vectors mainly in downward directions 

are partially polarized parallel to the plane containing the line of sight and the normal 

to the photosphere at the flare site, and the degree of polarization increases with the 

heliocentric angle of the flare, from zero at the disk center to the maximum polariza­

tion at the limb. 

However, as pointed out by Tomblin (1972) and by Santangelo, Horstman and 

Horstman-Moretti (1973), photons in the energy range from 10 to 100 keV, when 

emitted down toward the photosphere, have a high probability of being reflected due to 

Compton scattering. As a result of this reflection, both the spectrum and the intensity 

of the X-rays are significantly modified, especially for anisotropic X-ray sources 

which radiate predominantly in the downward direction. Furthermore, the Compton 

scattering cross section is dependent upon the polarization of photons. Because, on 

one hand, the backscattered photon component influences the degree of polarization, 

while on the other hand, the reflectivity depends on the polarization, the anisotropy, 

the polarization, and the backscatter of solar hard X-rays should be studied together 

in a coherent fashion. 

Until recently, however, the effect of the Compton backscatter was not taken 

into account in .the studies of the anisotropy and the polarization of solar hard X-rays 

(Elwert and Haug 1970, Haug 1972, Brown 1972, Petrosian 1973), nor was the effect 

of the anisotropy (and the polarization) of the primary photon source taken into con­

sideration in the study of the backscatter (Santangelo et al. 1973). Recently, Henoux 

(1975) considered the effect of the Compton backscatter on the anisotropy and the 
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polarization of solar hard X-rays. However, he used somewhat unrealistic anisotropic 

models in which electrons are spiraling down with given pitch angles 00, 600, and 900 

for each case. We have recently learned, while this thesis was in preparation, that 

Langer and Petrosian (1977) have also treated a similar problem for beams of elec­

trons directed vertically down toward the photosphere. 

As discussed above, the Compton backscatter complicates the relationships 

between the anisotropy and the polarization of hard X-rays and the anisotropy of the 

accelerated electrons. This backscatter, however, may give extra information by 

reflecting the photons incident on the photosphere which could not be observed other­

wise. If the size of the primary X-ray source is considerably smaller than its height, 

then in principle the primary source can be resolved from its albedo. When such reso­

lution is possible, three independent measurements can give information on the height 

of the primary source and the anisotropy. These are the ratio between the number of 

primary X-rays and the number of reflected X-rays, the distribution of surface bright­

ness of the albedo patch (the bright area on the photosphere from which X-rays are re­

flected), and, if the primary source is not at the disk center, the displacement of the 

projection of the source with respect to the centroid of the albedo patch. Brown, 

van Beek, and McClymont (1975) discussed the possibility of determining the height of 

the primary X-ray source from the size of the albedo patch. It is anticipated that such 

measurements could be performed by the Hard X-ray Imaging Spectrometer which will 

be included in the payload of NASA's Solar Maximum Mission. In their calculations, how­

ever, Brown et al. (1975) assumed that the reflection probability is independent of the 

incident direction of the photon. However, this assumption is not valid in general. 
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In this chapter we study the anisotropy, polarization, Compton backscatter, and 

albedo brightness distribution, and other related problems of solar hard X-rays in 

detail and coherently. In Section B we review the methods of representing the state 

of polarization by Stokes parameters and of expressing the Compton scattering cross 

section in matrix form. We further study how to calculate the Stokes parameters 

of primary X-rays due to anisotropic distributions of accelerated electrons, and we 

describe the Monte Carlo simulation used in this chapter. In Section C we discuss 

briefly the general properties of the Compton backscatter, and present the results of 

our Monte Carlo simulations for isotropic primary sources as well as anisotropic 

polarized primary sources. Here we discuss the directivity of the sum of photons due 

to the primary source and those due to the backscatter. We also discuss the charac­

teristics of the energy spectra of the resultant hard X-rays, and compare the results 

with the observed 0SO-7 data (Datlow et al. 1974). 

In Section D, by taking the effect of Compton backscatter into account, we study 

the polarization of solar hard X-rays due to both isotropic, unpolarized, and aniso­

tropic, polarized primary sources. In Section E, by calculating the differential reflec­

tivity of a beam of photons for various incident angles, we study in detail the charac­

teristics of the albedo patch, which is a bright X-ray patch on the photosphere created­

by the Compton backscatter. Information on the height of the primary source, the 

anisotropy, and polarization of primary hard X-rays might be obtained from detailed, 

albedo measurements. In Section F we summarize our results and compare with other 

researchers'.theoretical and observational results. 
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B. Methods of Calculations 

1. 	 The Stokes Parameters and the Matrix Representation of the Compton 

Scattering Cross Section 

Hard X-rays released down to the photosphere are either Compton scattered or 

absorbed by the photoelectric effect. The differential Compton cross section is given 

by (Klein and Nishina 1929) 

d-(e ' 8)=- r 2 
0+_ -2+4cos20E (3.1) 

d20s 40 ,0 6 0 	 I6 

Here 0. is the scattering angle, D is the angle between the directions of polarization 

of the initial photon and the final photon, r0 = 2.82 X 10-13 cm, and co and e are the 

initial and final photon energies related by 

e=e 0/[l+(e/mc)(l- cosO )], 	 (3.2) 

where 	mc 2 is the electron rest mass energy. 

The formula given by equation (3. 1) is applicable only to a coherent beam with 

plane 	polarization or to a beam of photons whose exact distribution of polarization 

vectors is known. To deal with a beam of photons with an arbitrary distribution of 

polarization vectors, it is more advantageous to use the Stokes parameters, because 

they are directly measurable quantities and are additive for independent (noncoherent) 

emission fluxes. In the application of the Stokes parameters to a Compton scattering 

problem, it is convenient to write them in the form of a four-vector and to use the 

matrix representation of the Compton cross section. The matrix representation of the 

Compton cross section has been well reviewed by McMaster (1961). 
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The Stokes parameters are represented by a four vector, 

PI = I 
 (3.3)P2
 
P3)
 

Here I represents the beam intensity and is normalized to 1 throughout in this thesis; 

P, = QL - I)/l represents the degree of polarization measured with respect to a given 

reference plane; P2 represents the degree of polarization measured with respect to a 

plane rotated around the direction of the propagation by 450 from the reference plane; 

and P3 represents the state of circular polarization. For example, ( represents an 

obtained by rotating the reference plane by 450, and represent left (right) circular 

polarization. Since photons with circular polarization earry angular momentum, brems­

strahiung photons produced by unpolarized electrons have no circular polarization. 

Since we consider only unpolarized electron beams, we neglect circular polarization in 

this thesis. The Stokes parameters can, therefore, be written as a three-vector, 

Since the Stokes parameters are coordinate dependent, there exists a rotation 

matrix M for the Stokes parameters (McMaster 1961): 

1 0 0 \(3.4) 
M= 0 cos 20 sin 20 

0 - sin 2¢ cos 2 , 
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where 0 is the angle of rotation around the direction of the propagation. Note that M 

is a unit matrix when =r, as it should be. 

The matrix representation of the Klein-Nishina formula is given by (McMaster 

1961) 

eeo 
+- sin2 C sinL 0 0 

J2 o - 0 sin 2 0 1 +cos 2 0s 0 (3.5) 

0 0 cos 20, )5 

where the scattering plane is the reference plane for the Stokes parameters to which 

this formula is applied. When a beam of photons characterized by the Stokes param­

eters with respect to a given reference plane is Compton scattered along the 

direction (0s, C@), the Stokes parameters after the scattering are obtained in the following 

manner. First, apply a rotation matrix to find the Stokes parameters with respect to 

the scattering plane; then apply the Compton scattering matrix. The Stokes parameters 

after the scattering are then given by 

/i 0 0
 

P 1) cos 20 sin 2¢s P
 

0 sin 2 0  -- +-- sin2 01 

sin 0 1 + cos 2 0 0 P, cos 2c( + P2 sin 20s 

0 2cos 0 P2 cos 20 s - P1 sin 20, 
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e-+--0- sin2 0 +sin2 0 (P1 cos20, + P2"sin20s) 

2 0 S) (Psin 2 0s + (I + cos cos 2ts + P2 sin 20s) (3.6) 

\ 2 cos 0Os(P 2 cos 20s - P, sin 2q¢s ) / 

where 0, is the azimuthal angle of the scattering plane measured with respect to the 

reference plane. 

The Stokes parameters after the scattering given by equation (3. 6) are measured 

with respect to the scattering plane. However, the scattering plane is not a unique 

plane to be used as a reference plane. If the distribution of the accelerated electrons 

(and consequently that of the hard X-rays) is symmetric around the normal to the 

photosphere, the plane containing the normal and the direction of the photon propaga­

tion defines a unique plane, with respect to which we can calculate the Stokes param­

eters of the photon flux propagating along that direction. Because this plane is normal 

to the photosphere, let us call it the normal plane hereafter. 

The angle between the scattering plane and the normal plane of the photon after 

the scattering, a, is given by (Appendix A) 

cos a =-(cos 0, sinO s +sin 0, cos 0s cos tt)/sin 02' (3.7) 

sin = sin 01 sin Os/sin 02, (3.8) 

where 01 is the polar angle of the photon ensemble before the scattering, (0s, 0.) are 

the scattering angles, and 02 is the polar angle of the photon ensemble after the 

scattering, which is given by 

cos 02 = cosO 1 cos 0 s - sin 0, sin 0 cos 0s. (3.9) 
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Thus, the Stokes parameters with respect to the normal plane after the scattering is 

given by 

= cos 2a sin 2a P' (3. 10)(i.,
-sin2, cos2. 2 

where a is given by equations (3.7) through (3.9), and P' and P' are given by equation 

(3.6). 

The Compton scattering cross section for a polarized beam is given bydc 0 0 1
0 ' ) = (1 
e"- 0 0) T 0 cos 20 sin 20 P1s 


0 -sin 20s cos 2 ,) P2 

2 (r.2 ) a+ ° sin 2 0s(l-P 1 cos2 - sin20,) (3.11)P2 

where 0s is the angle between the scattering plane and the reference plane for the Stokes 

parameters. For an unpolarized beam, this formula becomes 

dc 6) =r'2 ( - -- ( jsin2 (. (3.12) 

This cross section formula is also the same as equation (3.11) averaged over q5 . This 

cross section is plotted in Figure 3.1 as a function of 0 for several values of e0 . 

The total Compton cross section is 

CC(c 0T21rr2 11+a[2(l+-a) Qn(1 a 

( 
2a) 1+3c+Qn(l + 

2a (1+ 2a)2
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Figure 3. 1. Differential Compton cross section of unpolarized radiation, for several 

values of eo/mc 2. The curve for co/me 2 = 0 corresponds to the Thompson cros's 
s ection. 
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2
where a = eo/mc . In our calculation we multiply this cross section by 1. 15 to take 

into account the effects of He and heavier elements. 

We use the photoelectric absorption cross section, a, , given by Fireman (1974). 

At the energies of interest ( 10 keV), this cross section depends mainly on the abun­

dance of heavy elements such as 0, Fe, and Ni. Fireman (1974) used the photospheric 

abundances given by Withbroe (1971). The following analytical form is a good approxi­

mation to the extrapolation of his result to energies > 10 keV: 

Oa(eo) 	= 7.2 X 10-22 eo"2-78 (cm 2 /H-atom), (3.14) 

where e.is in keY. This cross section asymptotically approaches to the form e03 

as energy'increases; however, equation (3.14) is a better approximation in the regime 

where the absorption is important. This absorption cross section and the total 

Compton cross section are plotted in Figure 3. 2 as functions of the photon energy. 

2. 	 Calculation of the Stokes Parameters of the Bremsstrahlung Hard X-Rays due 

to Anisotropic Electrons 

As we have seen, the Compton cross section depends on the degree of polariza­

tion. Therefore, to calculate the backscatter, we need to know the degree of polariza­

tion of primary hard X-rays and to follow the polarization throughout the scattering 

process. Because for the integral reflectivity the azimuthal dependence of the 

Compton cross section given by equation (3. 11) is averaged over various incident 

and outgoing directions, the integral reflectivity is not much affected by neglecting 

the polarization dependence. However, the angular dependence of the reflectivity 

(the differential reflectivity) and especially the albedo brightness distribution are 

expected to be affected by the polarization dependence of the Compton cross section. 
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Figure 3.2. Photoelectric absorption cross section and total Compton cross section. 
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The degree of polarization of bremsstrahlung due to a beam of monoenergetic 

electrons is given by 

Fdo ddo 
(E,e, 0) -),Pl(e, 0)- (3.15) 

d2 d2oa 1 
where d and 1 are given by equations (2. 15) and (2. 16), E is the energy of the 

dAdC dedt2 

electron, e is the photon energy, and 0 is the angle of emission measured relative to 

the beam direction. Here the polarization is measured with respect to the radiation 

plane which contains the beam direction and the direction of photon propagation. When 

the momentum vectors of the accelerated electrons have a certain distribution, the 

radiation plane is not a unique plane with respect to which we measure the Stokes 

parameters. If the angular distribution of the electron momentum vectors are sym­

metric around the normal to the photosphere (as will be the case if the guiding mag­

netic field lines are perpendicular to the photosphere), the normal plane, as we men­

tioned earlier, is a unique reference plane for the Stokes parameters. 

The bremsstrahlung produced by the electrons with a distribution function of the 

momentum vectors, 

g(O,. )-g(O) (3.16) 

is given by 

Q(e, 0)= n dE f d(cos ) f dog(0o) d e 0) N(E)v(E), (3.17)
f dedS2' 

e -1 0 

Here N(E) is the instantaneous differential electron number, n is the ambient density, 

v(E) is the electron velocity, 0 is the angle between the line of sight and the normal to 
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the photosphere, (0, 0.) is the polar coordinate of the momentum vector of the electron 

in the system whose Z-axis is the normal to the photosphere, 0 ' is the angle between 

the line of sight and the momentum vector of the electron, and it is given by 

cos 0' = cos 0 cos 00 + sinG sin 00 cos 0o. (3.18) 

d2 o 
And d-d,(E, e, 0) is the differential bremsstrahlung cross section. 

To calculate the Stokes parameters (1, PI, P 2) due to such an electron distribu­

tion, we need to find the Stokes parameters with respect to the normal plane of the 

bremsstrahlung by an electron beam at a given direction and integrate over the electron 

direction. It can be shown that one of the Stokes parameters with respect to the normal 

plane is given by (e. g., Haug 1972) 

t C +1 27r c d2 a(E, e, e)
P1(of) J dE j d(ooo)f d o(0o) 2 [ 

C -1 0 

d2 all(E, 0)] N(E)v(E) /Q(e, 0),
dedQ j/ (3.19) 

where Q(e,0) is given by equation (3. 17), 0' is given by equation (3. 18) and a is the 

angle between the radiation plane and the normal plane, which is given by 

cosa = (cos 0 sin 0 cos 0. - sin 0 cos 00 )/sin 0'. (3.20) 

Another Stokes parameter, P2 (e, 0), is equal to zero because of the symmetry around 

the normal plane. 



54 

3. 	 A Monte Carlo Simulation 

We evaluate the backscattering of primary photons by using a Monte Carlo simu­

lation (see Appendix B for its explanation). Since we use the Stokes parameters which 

characterize an ensemble of photons, the unit of the photon flux is not an individual 

photon but a photon ensemble characterized by the Stokes parameters. In determining 

whether the absorption or Compton scattering take place, we treat this photon ensem­

ble as if it were an individual photon. Such a treatment increases the accuracy of the 

calculated polarization. 

For linearly polarized photon beams, we can use an individual photon approach, 

by regarding the photon beam to consist of an unpolarized beam and a completely 

polarized beam, by choosing the polarization vector of each individual photon accord­

ingly and by using the cross section given by equation (3. 1) (Langer and Petrosian 

1977). However, this approach is less advantageous than the approach using the 

Stokes parameters. In the latter approach, for a given photon beam the degree of 

polarization of the photons scattered along a given direction is exactly determined by 

the ensemble average given by equation (3.6). On the other hand, the degree of 

polarization calculated by the former approach is determined statistically and conse­

quently contains a statistical error. 

We choose the-incident direction of the photon in accordance with the angular 

distribution of a source function Q(e 0, 0 ,¢), where 0 and 0o are the polar and azi­

muthal angles of the photon in a system whose Z-axis is perpendicular to the photos­

phere. Photons with 00 < 90 move away from the sun. We choose the initial energy 

of the photon, e. , such that photons are uniformly distributed in log co space, and we 

then take into account the energy spectrum of the primary X-rays by assigning each 
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photon a weighted number proportional to its energy and the differential photon inten­

sity at this energy. This procedure is more advantageous for two reasons than the 

direct generation of photons with a desired energy spectrum. First, in the latter 

procedure the photon count statistics decreases rapidly with increasing energy, while 

with the present method the photon count statistics remains similar in each logarith­

mically spaced energy bin. Second, with the present method we can get the results 

corresponding to initial photons with various energy spectra with only one computer 

run by simply assigning the appropriate weighting factors to each photon for various 

spectra.
 

Upon, choosing the energy and the incident direction of the initial photon, the 

Stokes parameters of the photon ensemble are determined: For isotropic sources 

=P t 2 = 0, and for anisotropic sources they are given by the result calculated by 

using equation (3. 19). 

The Compton scattering takes place at a columnar depth of about 1024 cm - 2 , 

-where the density is about 1017 cm 3 (e. g. ,. Gingerrich et al. 1971) and the mean free 

path of the photon is of the order of 107 cm. Because this depth is much larger than 

the chromospheric and photospheric irregularities, and because the height of the 

X-ray source is much smaller than one solar radius, throughout this thesis we assume 

that the photosphere is plane-stratified. 

Since multiple scattering occurs, other than the initial incident direction and 

the initial photon energy, we need several parameters to characterize the photon: the 

present direction of propagation, the present energy, the present Stokes parameters, 

and the vertical depth at which the previous scattering took place. Since the position 
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of the photon interaction is expressed by the columnar depth, our calculation is inde­

pendent of the solar atmospheric model, as far as the plane-stratified photosphere is 

assumed. 

We choose the path length for the Compton scattering (in units of the hydrogen 

number per cm 2 ) , XI , and the path length for absorption, X,, according to the cross 

sections given by equations (3. 13) and (3. 14), respectively. If Xa ( Xs, the-photon is 

absorbed. If Xa > X s I the photon makes a Compton scattering. The scattering angles 

(6 , e.) are chosen according to equation (3. 11). The direction of the photon after the 

scattering is given by (02, ¢2), where 

cos O2 = cos 01 cos es -sin 0 1 sin Os cos 0s, (3.21) 

cos 52 = (cos 0 1 cos q5 sin 0. cos Os - sin 01 sin 0s sin 0, 

+ sin 01 cos 0, cos 0s)/sin 02, (3.22) 

sin 02 = (cos 61 sin ¢, sin 0, cos 0, + cos 0, sin 6s sin q5 

cos 6,)/sin 62.+ sin e 1 sin c1 (3.23) 

Here (01, 0,) are the direction of the photon before the collision. The energy of the 

photon after the scattering is given by equation (3. 2). The vertical columnar depth at 

which the next interaction takes place is 

X' = X - cos e2 (3.24) 

where X is the vertical depth of the present scattering point, X i is the interaction path 

length, and cos e2 is given by equation (3.21). If X' becomes a negative quantity for 

both absorption and Compton scattering, this-means that the photon escapes from the 

phQtosphere. 
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We follow all the photons until they escape or are absorbed. Then, we collect 

the reflected photons according to their final energies, e, and the directions of motion, 

(0, 4), thereby defining a source function Q'(e, 0, 0). The energy bins are logarith­

mically divided from 10 keV to 500 keV, and the angular bins are ten equally divided 

solid angle intervals. We generate enough photons so that in most of the bins the 

number of photons in one bin is larger than 100. In most cases except where the re­

flectivity is very small (such as 0 _ 900, or very low energy bins or very high energy 

bins), the number of photons is several hundred. Therefore, one standard deviation 

error of the Poissonian statistics is about a few percent. We further reduce the mag­

nitudes of the errors by fitting the calculated results with smooth curves both in 

energy space and in angular space. 

C. 	 Backscatter, Anisotropy, and Spectral Characteristics 

of Solar Hard X-Rays 

1. General Properties of Backscatter 

To investigate the general properties of Compton scattering processes before 

undertaking complicated calculations, we deal with isotropically distributed mono­

energetic photons with eo = 15 keV, 30 keV, 50 keV, and 100 keV, respectively. 

Twenty-seven per cent of the initial photons with co = 15 keV are found to escape from 

the photosphere; 50%, with e. = 30 keV; 62%, with e. = 50 keV; and 68%, with 60 = 

100 keV. These escaped photons are classified according to their numbers of colli­

sions and their final energies. 

Figure 3. 3 shows the distribution of the escaped photons as functions of number 

of collisions; Figure 3.4, as functions of final energy. At low energies the absorption 

is large and multiple scatterings are less important, because the absorption cross 
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Figure 3. 3. Distribution of photons escaped from the photosphere as a function of the 
number of collisions. 
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section is larger at low energies than at higher energies. Because the total Compton 

cross section is smaller at higher energies than at lower energies, and because 

the differential cross section is large at small e. , higher energy photons go deeper 

into the photosphere and undergo many scatterings. Because of the multiple scatter­

ings and because of large recoil energy of the colliding electron, higher energy photons 

lose significant fractions of their initial energies. Also because of multiple scatter­

ings and because of energy degradation toward the region where the absorption cross 

section is larger, about one third of photons with eo = 50 keV and 100 keV are absorbed 

even though at these energies absorption cross section is negligibly small. 

2. The Albedo of Isotropic Sources 

For the calculations of this section, we use isotropic and unpolarized primary 

photon sources. We consider power-law sources given by 

1Q(e) = Ae- s (photons sr sec keV- 1 ), (3.26) 

and optically thin thermal sources given by (e. g., Holt 1974) 

Q(e) = 2.41 X 10-16 g(T, e)Z 2 n.niv 

- 1x(kT)- 312 (e/kT) exp (-e/kT) photoV) (3.27) 

where e and kT are in keV, Z is the atomic number of the medium, ne and n i are the 

electron and ion densities, V is the volume of the emitting source, and g(T, e) is the 

Gaunt factor (Karzas and Latter 1961). 

The observed photon spectrum consists of the sum of the initial photons and the 

reflected photons: QT (e, 0, 0) = Q(e, 0, 0) + Q'(e, 0, 0), where Q'(e, 0, 0) is the reflected 

photon spectrum. Notice here that the initial energies of the reflected photons 
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observed at the energy e must be larger than e. We define the differential reflectivity 

for an isotropic source as 

R(e, 0, 0) = Q'(e, 0, 0)/Q(e) (3.28) 

With this definition, the observed photon spectrum is expressed as QT(e, 0, 0) 

[1 + R(e, 0, 0)] Q(e). The integral reflectivity is given by 

21T 1 

R(e) = (27r-I f dp f d(cos 0)R(e, 0, p). (3.29) 
0 0 

Figure 3. 5 shows the integral reflectivities of isotropic sources with power-law 

and thermal spectra. As can be seen, the reflectivity is maximum around 30 keV. 

The integral reflectivity is determined by three effects. The first is absorption due 

to the photoelectric effect. At lower energies the reflectivity is reduced mainly be­

cause of absorption. However, even at eo = 100 keV, one third of the incident photons 

are absorbed as was mentioned earlier. The second is energy degradation. At higher 

energies the reflectivity decreases due mainly to this effect, and because of this fact 

the reflectivity at higher energies is larger for flatter spectra. The third effect is the 

compression in energy space which is caused by the fact that the energy degradation 

becomes larger with the increase of energy. This effect makes the reflectivity larger, 

and because of this effect the integral reflectivity at 30 keV for s = 2 is larger than 0..5 

even though only 50% of the photons incident with e. = 30 keV escape from the 

photosphere.
 

Figure 3. 6 shows the differential reflectivity for three values of 0 and three 

incident photon spectra. (Here 0 is the polar angle of the reflected photon in the point 

of view of the source, and is the heliocentric angle of the source in the point of view 
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of the observer.) As can be seen, below - 250 keV the reflectivity is larger at 

smaller values of 0, because the amount of matter traversed is smaller in these 

cases. The trend is reversed at higher energies, because at these energies the cross 

section for large angle scattering is small. 

The idea that solar hard X-rays are produced by hot thermal electrons. began to 

gather new interest recently (Colgate, Audouze and Fowler 1977). In Figure 3.7 we 

show the total (primary and reflected) photon spectrum of thermal X-ray sources for 

kT = 20 and 30 keV and two directions of observation. As can be seen, even though the 

total spectra are somewhat steeper than the primary spectra, they can be approximated 

by single power laws only in narrow energy ranges. 

3. 	 Anisotropic Sources 

For the anisotropic sources, we assume that X-rays are produced by accelerated 

electrons with momentum vectors uniformly distributed in a cone of 300 half opening 

angle 	centered around the downward vertical vector. The distribution function of the 

momentum vectors of such electrons is 

= f l/[27r(1 -cos 300)] for 150. < O'< 1800 
0 otherwise, (3.30) 

where 0' is the polar angle measured from the normal to the plane-stratified photos­

phere. Though a unidirectional beam of electrons is easier to deal with, we introduce 

the finite dispersion of the velocity vectors of the electrons for the following reasons: 

(1) The electrons will have finite pitch angles. (2) The magnetic field lines guiding the 

electrons are not expected to be exactly straight or vertical. (3) As discussed by 

Brown (1972), collisions of the electrons with ambient particles cause the dispersion 

of the pitch angles. We also assume that the instantaneous electron energy spectra are 

power laws with power-indexes 2. 5 and 3. 5. 



65 

_- II'lI1 1 

-kT=3OKeV 

I I ii/11 I I 11Ill11 

o 

I -

ne=nv=Icm-3 

z 

o 

0 

,,-- lO-r 
'U 

I 

-

= 

i / l ! I I i i llli10-21 I I i ll1il I 
t0 100 10 100 

PHOTON ENERGY (KeY) 

Figure 3.7. Photon spectradue to a thermal hydrogen plasma with ne = ni = 1 cm - , 
and kT = 20 keV and kT = 30 keV. The resultant spectra (including the reflected com­
ponent) seen at 0 = 00 are shown by the dashed lines. The solid lines indicate the 
original spectrum. 

3 



66.
 

Using the equations (3. 17), and using equation (2. 11) for the differential cross 

- 2 "5section (non-screened), equation (3. 30) for the distribution function, and N(E) -E 

for the electron spectrum, we calculate the X-ray production rate, Q(e, 0), for various 

values of e and 0. Similarly we also calculate the degree of polarization, P1 ( e, 0), by 

using equations (3. 19), (2. 15) and (2.16). The degree of polarization is plotted in 

Figure 3. 8, and the X-ray production rates are shown by solid lines in Figure 3. 9. 

In this figure, 900 corresponds to X-ray emission from the solar limb and 0' to 

emission from the disk center. Without the reflection of the X-rays, there would be 

a large limb brightening and a slight limb flattening of the photon spectra. Similar 

results were obtained by Brown (1972) and by Petrosian (1973). 

Using the Monte Carlo simulation described in the preceding section, we cal­

culate the backscatter of the photons whose polarization and spectrum and angular 

distribution are shown in Figures 3. 8 and 3. 9, respectively. The dashed lines in 

Figure 3. 9 show the resultant total photon production rates including the primary and 

reflected sources. Similar calculations were performed for the electron spectrum 

5N(E) -E - 3- . The results are shown in Figures 3. 10 and 3. 11, similarly to Figures 

3.8 and 3.9. 

As can be seen in Figures 3. 8 and 3. 10, for the anisotropic model we use, the 

degree of polarization of the primary X-rays is very large, especially at low photon 

energies and near 900. The degree of polarization of the hard X-rays observed near 

the earth, however, will be modified due to the dominant backscattered component. 

The degree of polarization including the backscattered component will be studied in 

the next section. 
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of the primary and reflected photons. 
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As can be seen in Figures 3. 9 and 3. 11, the limb brightening effect has almost 

disappeared except at very low energies or at very high energies where the reflectivity 

is small (Figure 3. 5). Henoux (1975) also reported similar results. Therefore, the 

anisotropic model in which electrons are moving toward the photosphere is not con­

tradictory to the observational results of Datlowe et al. (1974, 1977) when the reflected 

component is properly taken into account. Therefore, the lack of limb brightening 

effect does not rule out the possibility that the accelerated electrons move predomi­

nantly down towards the photosphere; this interpretation is contradictory to that of 

Datlowe et al. (1974, 1977). 

Figure 3. 12 shows the photon spectra due to anisotropic sources, taken from 

Figures 3. 9 and 3. ii for several observation angles. Even though over the entire 

energy range the photon spectra deviate from power laws, in the 15 to 50 keV they 

can be reasonably well approximated by a single power law. Similar approximations 

can be made for the isotropic power-law sources. The resultant spectral indexes for 

this energy range are shown in Table 3. 1. As can be seen, for the isotropic sources, 

the spectral index does not change appreciably with heliocentric angle because re­

flection is not the dominant source of photons in this case. On the other hand, for the 

anisotropic sources the photon spectrum steepens as the heliocentric angle increases, 

a fact that can account for the result of Datlowe et al. (1974) who found that the 

average spectral index (in the 17 to 45 keV range) of limb flares is larger by about 

0. 5 than that of disk flares. 

Another characteristic of the spectra shown in Figure 3. 12 is that for flares 

near the disk center the spectra steepen as energy increases, but this character is 

less pronounced for limb flares (see Table 3.2). Therefore, if the accelerated 
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Table 3. 1 

Spectral Indexes of Photon Spectra in the Range from 15 keY to 50 keY 

(a) Isotropic Photon Sources with Power-law Spectra 

Original 0
 
Photon
 

Spectral 00 450 750
 
Index
 

2 1.76 1.78 1.88 

3 2.84 2.87 2.94 

4 3.94 3.96 3.95 

5 4.99 4.97 4.97 

(b) Anisotropic Sources 

Spectral B
 
Index 00 450 750
 
of the
 

Electrons No No ReflctiNo Reflection 
Reflection Reflection Reflection 

2.5 3.48 2.56 3.52 2.77 3.40 3.05 

3.5 4.44 3.73 4.49 3.95 4.39 4.11 
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Table 3.2 

Spectral Indexes of Photon Spectra in the Range from 100 to 300 keY 

for the Anisotropic Cases 

Spectral 0 
Index of 

the Electrons 00 450 750 

2.5 5.40 4.65 3.95 

3.5 6.44 5.61 5.12 
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electrons in flares move predominantly downward, the spectra measured at energies 

100 keV will show a limb flattening in contrast to the spectra measured at energies 

50 keV. This may be tested in future experiments. If the steepening of the spectrum 

at energies > 100 keV is larger for flares near the disk center than for flares near the 

limb, it can be regarded as a supporting evidence for the anisotropic model. The 

spectral characteristics up to 300 keV will be available from the measurements of 

the Hard X-ray spectrometer (Frost 1976) which is going to be included in the payload 

of NASA's SMM. 

D. Compton Backscatter and Polarization 

As we have seen in Section C, for the anisotropic model in which accelerated 

electrons move downward, the backscattered component dominates the observed flux 

except flares very close to the limb. For an isotropic source, the backscattered com­

ponent constitutes a small fraction of the observed flux. However, the backscattered 

photons are polarized due to the polarization dependence of the Compton scattering 

cross section. Therefore, in calculation of the polarization of solar hard X-rays, we 

have to take the effect of the backscatter 6n the polarization into account properly. In 

calculations of the polarization until now, however, the effect of Compton backscatter 

was not considered except by Henoux (1975) and by Langer and Petrosian (1977). 

Even though in the calculations of the preceding section the polarization of the 

photon was followed throughout the scattering process, the polarization of the back­

scattered photons was not recorded. To calculate the degree of polarization of the 

backscattered photons, we need better count statistics. Using the Monte Carlo 

simulation described in Section B, we have calculated the degree of polarization due 

to the Compton backscatter of isotropic monoenergetic photon sources with co = 15 keV 
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and e, = 30 keV, by generating 4 X10 4 photon ensembles for each case. Here we use 

monoenergetic sources in order not to worry about the effect of energy degradation 

and the spectral dependence of the reflectivity. Figure 3. 13 shows the result. 

Here the polarization is parallel to the normal plane. The dashed lines represent 

the degree of polarization of the reflected photons only, and the solid lines represent 

the degree of polarization of the sum of the reflected and the primary photons. The 

dotted line shows the degree of polarization of the single-scattered photons only, 

which can be calculated analytically (Appendix C). This result is consistent with the 

result of the Monte Carlo simulation. 

As can be seen in this figure, the degree of polarization of the sum of the re­

flected and the primary unpolarized photons is less than 4%. This result is consis­

tent with the result by Henoux (1975) and Beigman (1973). In contradiction to the 

above result, Brown, MoClymont,; and McLean (1974) argued that the polarization due 

to an isotropic unpolarized primary source might be quite large because of the back­

scattered component; however, they did not perform an actual calculation. 

Figure 3. 14 shows the degree of polarization due to backscatter of an anisotro­

pic primary source, whose angular distribution function and degree of polarization 

are given in Figure3.10and Figure 3. 11,respectively. Here the polarization is also 

parallel to the normal plane. The dashed lines show the degree of polarization of 

the photon flux due to the primary source only and that due to the scattered photons 

only, respectively. The solid lines show the degree of polarization of the sum of the 

primary photons and the reflected photons. For this evaluation, we use the relative 

contribution of the reflected photons and that of the primary photons shown in 

Figure 3. 9. As can be seen, for such an anisotropic model, the degree of 
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polarization is very large for flares far from the disk center. It is about 60% at 0 = 900, 

and decreases monotonically to zero at 0 = 00 . 

To see, the effect of the angular dispersion of the momentum vectors of the accel­

erated electrons producing hard X-rays, we made a similar calculation for an aniso­

tropic model where the electron momentum vectors are distributed uniformly in a cone 

with half-opening angle 60' centered around the vertically downward direction. The 

result is shown in Figure 3.15. Here the degree of polarization is less than the result 

in Figure 3. 14, as expected because of a larger dispersion of the momentum vectors. 

However, in this case also, the degree of polarization is substantial. Note that the sin-. 

ilarities of the degree of polarization for two energies (Figures 3. 13 through 3. 15) justi­

fies the calculation of polarization using mono-energetic sources. 

E. Characteristics of the Albedo Patch 

The Compton scattering by the photosphere backscatters a large fraction of the 

incident photons above 10 keY, which could not be observed otherwise. Thus, the back­

scattered photons, if they are resolved from the primary photons, can give extra infor­

mation on the properties of the primary X-ray source. Easiest of all, we can get in­

formation on the degree of the anisotropy of the primary source by comparing the num­

ber of photons directly coming from the bright primary source and that from the nebulous 

albedo patch. If the height of the primary source is larger than its size, such informa­

tion can be easily obtained from measurements by instruments with spatial resolution 

smaller than the size of the primary source. If the albedo brightness distribution is 

measured in detail, we can get more detailed information on the angular distribution of 

the primary X-ray emission and also on the height of the primary source. 



040- - 40 
4 
N 

j 
/ 

0 
4 

i. N 
-0 W 30 

0 PRIMARY 
< PRIMARY, ,- 9 

0 
0 

ww/ 

0 -1 
10 0 0 -

7 ­ de SCATTERED 7 - SCATTERED 

00 300 600 900 00 300 $00 900 

o e 

Figure 3.15. Same as Figure 3. 14, except that 

g(0)(coflst 
9( 0 

for 
for 

1200( 0 (1800 
001200. 

00 
(D 



81 

In this section we investigate the characteristics of the albedo patch, which is a 

bright X-ray patch on the photosphere created by the Compton backscatter. In this sec­

tion we assume that the primary source is a point source. An extended primary source 

can be regarded as a superposition of many point sources, and in principle the albedo 

brightness distribution of an extended source can be ,obtained from the result for a point 

source. A more detailed discussion on extended sources is given in the next chapter. 

-1 cm - 2The surface brightness of the albedo patch (measured in photons sr sec -1) 

observed at an angle 0 in the energy interval from e, to 62 is proportional to the num­

ber of photons incident upon unit area and their probability of reflection (for the geometry, 

see Figure 3.16): 

(61 -e 2, 0,2,0) Q(e 1 -- E 00, 0) {21rh2 [(]/h)2 + 

(3.21)
•R(e 1 - C2, 0o, 0, ) 

Here the first factor, 0(6 1 e2 , 0' ), represents the angular distribution of the incident 

photons in the energy interval e1 E2' the second factor relates a unit solid angle to the 

area on the photosphere where h is, the height of the source and 9= -h tan 0, and 

R(ej - e2 , 00, 0, 0) is the differential reflectivity of a beam of photons. It is defined as 

6 
2 

2ff f deQ'(e, 0,0) 

R(e 1 61 (3.32)j -e 2, 0o 0, = 
f2 deQ8 (e) 

where PQ and Q'(e, 0, 0)0o (e) represents a beam of primary photons incident at 0O, is the 

photon source due to reflection. Equation (3.31) implicitly assumes that the photon 
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Figure 3.16. A schematic drawing of the geometry of the scattering. The angle 0 is 
the angle of observation, and it is also the heliocentric angle of the flare in the geo­

centric point of view. 



83 

enters and escapes from the photosphere at the same position. This assumption is gen­

erally valid because the height of the X-ray source is believed to be much larger than 

the mean free path of the photon in the phbtosphere, which is only about 10 7 Cm. 

Through the second factor in equation (3.31), h affects the brightness distribution 

of the albedo -patch. Thus, by measuring the albedo brightness distribtion, we might be 

able to deduce h. This was first pointed out by Brown et al. (1975); however, in their 

calculation it was assumed that the reflection probability was constant. As will be 

shown, because it depends on the directions of the incident and outgoing photons and also 

on the polarization, this fact should be taken into account for a better deduction of h. 

Before we calculate R(e1 - e2,0o, 0,0) by a-Monte Carlo simulation, let us analyze 

the probability for a photon with energy eo incident upon the photosphere along the direc­

tion (0. 00) to be reflected per unit solid angle around the direction (0, 0). This prob­, 


ability is closely related to R(e1 62, 60 0, q5). The value of the reflection probability, 

P, is determined by the combined effects of the angular dependence of the Compton 

scattering cross section and the probability for escape determined by the amount of ma­

terial traversed before and after the scattefing process. To investigate these effects, 

we decompose P into Pi, where the superscript i represents the number of collisions 

made before the escape. Then the dominant term, P 1 , can be expressed analytically 

(Appendix C): 
00 

Pi( 0o, 0,
P(c ,0o, 0, ) 1=1 o 

1 doc 0 0 1 (3.33) 

Sc(o) + a(eo) d92 ( (-cose i=2 
cos 0 

where 
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cos Os = cosO0 cos.0 + sin 0o sin 0 cos . (3.34) 

As can be seen, the angular dependence of P1 consists of two factors, which are 

plotted in Figure 3.17 as functions of 0 for three values of 0. The factor, 1/(1 - cos 601 

cos 0), which is due to the probability for escape, is shown by solid lines. Physical 

interpretations of this figure are as follows. For example, for a given observation 

angle 0, P increases as 00 decreases from vertical incidence (0, = 1800), mainly be­

cause less material is traversed by the escaping photons when 00 is small than when 

G. is large. For a given 0O (>900), P decreases as 0 increases from 0 = 0* (vertical 

escape) because also in this case increasingly larger amounts of material are tra­

versed by the escaping photons. Another angle-dependent factor, the second factor, in 

the expression for P 1 in the above equation is due to the Compton cross section. Using 

the Thompson cross section for an unpolarized beam of photons, we plot it in this figure 

as dashed lines. -Mainly because of this factor, P depends on 0. And through this 

factor, the state of polarization of the primary source strongly affects the albedo bright­

ness distribution. 

Because the X-ray emission of the anisotropic primary source considered in this 

thesis is partially polarized along the normal plane, such X-ray emission can be regarded 

to consist of an unpolarized emission and a completely plane-polarized emission. Thus, 

it would be convenient to have calculations of the differential reflectivity of a completely 

unpolarized beam of photons and also of a completely plane-polarized beam of photons, 

for various beam directions. From such results the differential reflectivity of a beam 

of photons with an arbitrary degree of polarization can be obtained. 

Because the highest two energy bins-of the Hard X-ray Imaging Spectrometer,
 

(which are suitable for the albedo measurements, are from 16 to 22 key and from 22
 

V
I
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aT-- (d(&2 8, ) for q5= The solid lines represent f 1 and the dashed lines 
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probability due to a single scattering. 
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keY to 30 keV, we calculate the differential reflectivity in these energy intervals, for 

various beam directions (0 = 1800, 1700, 1600, . . . , 1000) and for the two states of 

polarization. We calculate for three power-law spectra of the incident beams (C3, C 4 , 

-and C ), and we fit the results for the spectrum C 3 with smooth curves in Figures 

3. 18 through 3. 21. (The results for the other spectra show similar properties as in 

these figures.) 

The major characteristics of the differential reflectivity of an unpolarized beam 

as a function of the beam direction are easily noticed from Figures 3. 18 and 3. 19, and 

are summarized as follows: (1) for 0 2- 0' (flares at the disk center), the differential 

reflectivity decreases slowly as the beam direction 0o decreases from 1800 to 900. 

(2) For large values of 0 (flares away from the disk center), the differential reflectivity 

increases as the beam direction e. decreases. The net effects of these characteristics 

are as follows: For flares near the disk center, the scale size of the albedo patch will 

be smaller than that obtained by assuming that the reflectivity is independent of the 

incident direction; on the other hand, for flares away from the disk center (0 > 350), 

the scale size of the albedo patch will be larger. 

The differential reflectivity of a completely polarized beam of photons (the 

Stokes parameters with respect to the normal plane are Pi = -1, P2 = 0) are shown in 

Figures 3.20 and 3.21. From the comparison of these figures with Figures 3. 18 and 

3. 19, the differences are self-evident. These differences are due to the fact that, for 

the Stokes parameters P 1 = -, 2 = 0, the scattering cross section is largest at 

0 = 900 or 2700 and is smallest at 0 = 00 or 1800, at a given scattering angle 0, (see 

equation 3. 11). The reason why the reflection probability at 0 = 1800 is generally 

much larger than at = 00 is as follows. From the geometry of the problem, for given 
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0 and 0., sin 0 is smaller when 4 1800 then when =0°;' thus the effect of polariza­

tion on the scattering cross section is small when 0 = 1800. 

The isobrightness contours of the albedo patch are drawn for several cases in 

Figure 3. 22 with the scale in units of the height h. Starting from the center, the albedo 

brightness drops by a factor 1/2 from one contour to the next. For the anisotropic 

source used in this figure, we assume that the photon spectrum is e- 3 regardless of the 

incident direction, and that the degree of polarization is the same as the degree of 

polarization of 20 keV photons shown in Figure 3. 8. For the anisotropic source for 

this figure, we also assume that the photon flux is constant in the downward hemisphere. 

As can be seen, the albedo patch due to the polarized primary source near disk center 

is slightly smaller than that due to the unpolarized primary source with the same con­

dition. In addition to the effect of polarization, the anisotropic distribution of the pri­

mary X-rays affects the albedo brightness distribution. However, for e< 20 keV the 

photon flux incident upon the photosphere is more or less constant independent of the 

incident angle (see Figures 3.9 and 3. 11). From Figure 3.22 d, we notice that the 

albedo brightness of the polarized primary source away from the disk center is quite 

asymetric about the upward-downward reflection. The surface brightness drops faster 

in the downward directions (0 (0 (900 and 2700 (0 (3600) than in the upward directions 

(900 (0 (2700). For example, for = 0 the surface brightness at 3h is 1/32 of that at 

the centroid of the patch, whereas for q = 1800 it is about 1/20. Thus, from the shape 

of the albedo brightness contours, we may be able to learn about the state of polariza­

tion of the primary X-ray emission. (See Chapter IV.) Together with the information 

on the anisotropy of the X-ray emission obtained from the comparison of the number of 

direct photons and the number of the reflected photons, we may be able to have better 
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understanding of the anisotropy of the accelerated electrons producing hard X-rays in 

the flare region. 

Black dots (e) in the figure represent the projection on the albedo patch of the 

primary X-ray source along the line of sight, and the cross marks (+) in the figure 

represent the centroid of the albedo patch. The distance between these two is h tan 0. 

Thus, the measurement of this distance can also give information on the height of the 

primary source. 

F. Discussion and Summary 

To check the correctness of our calculations, we compare our results with cal­

culations of other researchers, wherever similar calculations are available. Agree­

ments are generally good, and the differences can be easily attributed to the differences 

in the assumptions. We also compare our Monte Carlo results with the approximate 

analytical results, whenever they can be easily obtained with simple approximations. 

The results obtained by both methods are in good agreements, and the differences can 

be accounted for by the approximations made for the analytical calculations. 

The researchers who have calculated the polarization of solar hard X-rays until 

now have not report° that there exists a misprint in one of the formulas for the polar­

ization cross sections by Gluckstern and Hull (1953). (Gluckstern 1977, private com­

munication; see Section II. B.) The error in the calculations of polarization caused 

by overlooking this misprint is of the order of 10%. Since we use the corrected 

formula, our results are more accurate in this sense. 

Though a quite significant fraction of photons incident upon the photosphere with 

energy 15 keV are backscattered, for isotropic sources, the effect on the photon 

spectrum due to the backscatter is not easily observable. For anisotropic sources 
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which emit hard X-tays predominantly toward the photosphere, the effects of the'back­

scatter is significant. Because of the backscatter, the large limb brightening effect, 

which would be expected otherwise for such anisotropic sources, is cancelled. For such 

anisotropic sources, the observed photon spectrum in the 15 to 50 keV range steepens 

as the flare location moves toward the limb. Such a limb steepening and the lack of 

limb brightening effect are compatible with the data of Datlowe et al. (1974). For such 

anisotropic models, the spectrum above 100 keV is steeper than the spectrum at lower 

energies, particularly for flares near the disk center. Langer and Petrosian (1977) 

reported similar results. However, they assumed that accelerated electrons are 

strictly beamed. We used electrons with power-law energy spectra, whereas they used 

electrons with power-law'flux spectra. Thus, the steepening of the resultant photon 

spectra above 100 keV is larger in their results than in ours. 

Because of the different assumptions, the results of Langer and Petrosian (1977) 

cannot be directly compared with ours. However, the photon spectra they reported 

seem to be too flat. They parameterized the electron flux spectra with 6 as follows: 

dJ(E) .V E-8 1 (Petrosian 1973, Langer and Petrosian 1977). As the relationship between 
dE 

the electron spectra and the photon spectra measured in the 20 to 100 keV range for flares 

- E- 3 20 near the disk center, Langer and Petrosian (1977) give the following: q(e) . for 

=5 = 3; q(e) -, E-4- 4 6 for 8 4. In the nonrelativistic electron energy region, according to 

their notation, 5 = 3 corresponds to the electron spectrum d"(E)% E-45 ; 8 = 4,dE
 

dN(E) ^ E- 5 . On the other hand, according to our result, the relationship between the
 
dE
 

electron spectra and the photon spectra measured in the 20 to 100 keV range for disk 
3 - 4 .3 2 flares is as follows: q(e) % e 11 for dN(E) , E-2. 5 ;q(e) -- e for dN(E) ]v -5. There­. E-3 

dE dE 

fore, it seems that they parameterized the electron flux spectra erroneously. If 
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- E- (6 - 1)corresponded to the electron flux spectrum dJ (E) instead of d(E)
dE dE 

their result would be compatible with ours. 

Though the backscattered photons are dominant for the anisotropic sources consid­

ered in this chapter, the degree of polarization of the total photon flux (primary flux plus 

reflected flux) at 15 keV or 30 keV follows the pattern of the degree of polarization of 

the primary flux alone. It is zero at the disk center and monotonically increases to the 

large maximum at the limb. On the other hand, for isotropic, unpolarized primary 

sources, the degree of polarization of the total flux is less than 4% even at the maxi­

mum. Thus, the measurements of polarization can be a powerful probe for the aniso­

tropy of the accelerated electrons. The measurements by Tindo and his coworkers, 

though they are somewhat tentative in nature, show quite large degrees of polarization, 

which cannot be attributed to the backscatter of the isotropic, unpolarized primary 

source. Nakada et al. (1974) also reported the measurements of finite polarization. 

These measurements indicate that the X-rays with energy 15 keV are very likely to ­

be produced by anisotropic (nonthermal) electrons. This matter is discussed in more 

detail in the next chapter. 

Provided that the surface brightness of the albedo patch is measured in detail, the 

ratio between primary and reflected photon fluxes, the size of the albedo patch, and the­

displacement of the primary X-ray source from the centroid of the patch, can give in­

formation on the anisotropy and height of X-ray source. In favorable cases, detailed 

albedo measurements can also give information on the polarization of the primary X-rays 

incident upon the photosphere. An extended source can be regarded as a superposition 

of many point sources; however, for extended sources, it will be more difficult to ex­

tract such information. A more detailed discussion is given in the next chapter. 



CHAPTER IV
 

DATA-ORIENTED DISCUSSIONS ON THE HEIGHT AND
 

THE ANISOTROPY OF THE SOLAR HARD X-RAY
 

SOURCE AND ON THE POLARIZATION
 

OF SOLAR HARD X-RAYS
 

A. Introduction 

In Chapter III we have investigated the theoretical relationship between the 

brightness distribution function of the albedo patch and the height and the anisotropy 

of the X-ray source, and the relationship between the degree of polarization of hard 

X-rays and the anisotropy of the X-ray source. Preliminary data on the polariza­

tion already exist (Tindo et al. 1970, 1972a, 1972b, .1973, Nakada, Newpert, and 

Thomas 1974), and the data on the brightness distribution of the X-ray albedo patch 

will be available from the Hard X-ray Imaging Spectrometer, which will be included 

in the payload of SMM. In this chapter, by performing data-oriented discussions, we 

investigate the kind of data expected from the Hard X-Ray Imaging Spectrometer and 

the kind of information that can be deduced from them. We also investigate the 

implications of polarization data. 

The Hard X-Ray Imaging Spectrometer is being developed in the Space Research 

Laboratory, Utrecht, and its characteristics are described by de Jager (1976). Here 

we give a few of its characteristics relevant to our discussion. It consists of 1024 

mini proportional counters (mpc) arranged in a two-dimensional pattern of 32 rows 

and 32 columns. Each mpc is a small detector with spatial resolution of 8 X 8 arcsec 

square (FWHM) and an effective detectbr area of 0. 1 cm 2. The axes of the mpc's are 

arranged to make angles of 8 arcsec between the neighboring pairs in two mutually 

96
 



97 

perpendicular directions; thereby the instrument can produce two-dimensional pictures 

with a total field of view 4. 3 X 4. 3 arcmin square, with each mpc serving as an image 

element. The six energy bands of the instrument are 3. 5 - 5. 5 - 8. 5 - 12 - 16 - 22 

30 keV. The background count rate is less than 0. 01 count/sec/mpc, and the effi­

ciency at the 16 to 22 keV band is about 0.5 (van Beek 1977, private communication). 

With .good count statistics, the measurements in the highest two energy bands are 

most likely to give valuable information on the height of the hard X-ray source. The 

reflectivity is very high in the 22 - 30 keV energy band, and the disadvantage of the 

smaller reflectivity in the 16 - 22 keV energy band is well compensated by the higher 

flux of the primary photons in this energy band. Therefore, the albedo measurements 

in these two energy bands can give good count statistics, and consequently can lead to 

the knowledge on the height of the X-ray source. In the 12 - 16 keV energy band, the 

radiation from hot thermal plasma may dominate. Therefore, in this chapter we 

investigate the albedo brightness distribution measured in the energy bands from 16 

to 22 keV and from 22 to 30 keV. 

The polarimeters used by Tindo and his coworkers and by Nakada and his co­

workers basically utilize the fact that the Compton cross section of the polarized 

X-ray beam is dependent on the azimuthal angle of the scattering (equation 3. 11). The 

polarimeter consists of six counters separated by 600 from each other around the axis 

of the Beryllium scatterer. Thus the comparison of the counting rates of the six 

counters can in principle give information on the degree and the direction of the 

polarization. 

In Section B, by calculating the counts registered in the mpc's of the Hard X-Ray 

Imaging Spectrometer, due to idealized sources, we discuss the range of the height 
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of the X-ray source that can be deduced by using this instrument. In Section C we 

discuss in detail how to measure the anisotropy of the primary X-ray source. In 

Section D we discuss and interpret on the data on the polarization. 

B. Determination of the Height 

In order for us to deduce, h, the height of the X-ray source from the photon 

counts registered in the mini proportional counters of the Hard X-ray Imaging Spectrom­

eter, first of all, the number of mpc's with significant counts should be large enough. 

For a given X-ray source, the number of mpc's with significant counts depends on h. 

As h becomes smaller, the photon counts become concentrated in a smaller number of 

mpc's, while as h becomes larger, the surface brightness of the albedo patch becomes 

lower, and consequently the count registered in each mpc becomes smaller. These 

two effects give the lower and upper limits on the range of height that cad be deduced 

by using this instrument. 

The limits also come from other effects. If h is so large that the total field of 

view of the instrument can cover only a small fraction of the albedo patch, then the 

uncertainty of the deduced h becomes too large. If h is so small that the albedo 

photon count in one mpc comprises too large a fraction of the total albedo photon 

count, the uncertainty of the deduced h also becomes too large. 

In this section, by calculating the counts registered in mpc's of the Hard X-ray 

Imaging Spectrometer for various values of h, we are going to discuss the range of h 

that can be deduced by using this instrument. For simplicity we make the following 

idealizations: (1) The instrumental response function of the mpc is constant for a 

point source within the 8 x 8 arcsec square centered around the axis of the mpc, 
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regardless of the position within this square, and is zero for a point source outside 

this square. This idealization gives a strict one-to-one correspondence between the 

mpc and the rectangular area on the"photosphere. (2) The primary X-ray source is 

a point source. (3) The instrument is positioned such that the centroid of the albedo 

patch is at the center of the field of view of one of its mpc's and that one of the axes 

of the array is made parallel to the line joining the disk center and the primary 

source. (4) The primary source is isotropic, and its spectrum is C 3 , and the flux 

in the 16 to 22 keV interval is 3.2 X 1029 photons/(sr-sec) (except for Figure 4.4). 

1. 	 Sources at the Disk Center 

Because the differential reflectivity in the energy range from 16 to 22 keV is 

0.47 for the spectrum C 3, when 6 = 00, the total intensity in this energy range 

measured at the earth due to the above-mentioned source is -2000 photons/(sec-cm 2)* 

This is a quite strong X-ray source, when compared with -3000 photons/(sec-cm 2) 

in this energy range calculated from an extrapolation of the measurement of the 

August 4, 1972 flare by van Beek et al. (1973). Several such strong X-ray events 

may occur during the next solar maximum. 

The count of photons in the 16 to 22 keV interval, registered in 60 seconds in 

each mpc of the Hard X-ray Imaging Spectrometer, can be calculated by using the 

differential reflectivity for 0 = 00 shown in Figure 3.18. (Here notice that 60 seconds 

is the time scale of the durations of the spiky hard X-ray bursts of the August 4, 1972 

flare.) Figure 4. 1 shows the result for h = d, where d is the perpendicular distance 

at 1 AU corresponding to the angular resolution of the image element. Similarly 

Figure 4. 2 shows the result for h = 4d. From these figures we see that in both cases 
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Figure 4. 1. Calculated albedo photon counts registered in the mpe's of the Hard X-ray 
Imaging Spectrometer, for an isotropic source at 0 = 00 and h = d. Idealizations made 
for this calculation are described in the text. The large number in the parenthesis is 
due to the primary source. 
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Figure 4.2. Calculated aIbedo photon counts, for an isotropic source at C = 00 and 
h= 4d. 
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the number of mpc's which register significant counts is large enough to deduce the 

height of the source by use of such counts. Notice here the count due to the primary 

source is conspicuous. 

If h = 0. 5 d, the counts registered in neighboring four (2 X 2) mpc's in Figure 4. 1 

will be registered in one mpc. By grouping neighboring four mpcIs and adding the 

counts in these four mpes, we find the number of image elements with significant 

counts ( 5) is about 30 for the case h = 0.5 d. If he becomes smaller than 0. 5 d, not 

only the number of mpc's with significant counts decreases but also the albedo photon 

count registered in the mpc covering the centroid of the albedo patch becomes larger 

than about one third of the total albedo photon counts. Therefore, about 0. 5 d is the 

lower limit of h that can be deduced by using this instrument. 

If h is 16 d, then the counts registered in each mpc will be about 1/16 of those 

shown in Figure 4.2, which is of the order of 1. However, in such a case, by summing 

up the counts in neighboring 16(4 X 4) mpc's, we can get as good count statistics as 

shown in Figure 4. 2, in the expense of the spatial resolution. By summing up the 

counts in neighboring 16(4 X 4) mpc's, we make the Spectrometer have 64(8 X 8) 

effective image elements. When h = 16 d, the area of the albedo patch covered by 

the Spectrometer is 2h X 2h, which is a relatively small portion of the patch and gives 

about 1/3 of the albedo photons if the center of the patch falls near the center of the 

field view of the Spectrometer. Therefore, about 16 d is the upper limit of h that can 

be deduced by using the Hard X-ray Imaging Spectrometer. 

Hence in the range 

0.5d <h 16d, (4.1) 
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the height of the idealized point source with a quite strong intensity can be measured. 

For the Hard X-Ray Imaging Spectrometer for SMM, d = 5. 8 X 108 cm; therefore, the 

range of h deducible by using it is 

3 X 10 cm h 1010 cm, (4.2) 

for sources with fluxes stronger than 3.2 X 1029 photons/(sr-sec) in the 16 to 22 keV 

range. This range covers most of the heights predicted by various models (Brown 

and McClymont 1975). For the sources with fluxes weaker than 3.2 X 1029photons/ 

(sr-sec) in the 16 to 22 keV interval, the range of h deducible by using the instrument 

decreases accordingly. For example, for the source weaker than the above-mentioned 

source by a factor of four, this range is about from 109 cm to 5 X 109 cm. The.range 

for stronger sources, however, does not increase significantly from that given by 

equation 4.2. 

2. Sources Away from the Disk Center 

Because of the decrease of the differential reflectivity R(e, 6) with 0 , the surface 

brightness of the albedo patch drops as 0 increases. However, because the area of the 

albedo patch covered by each image element is sec 6 d 2, in terms of count statistics, 

the source away from the disk center is not disadvantageous. Figure 4.3 shows the 

counts in several image elements for 0 = 450 and h = 4d, calculated similarly to 

Figures 4. 1 and 4. 2. Here we use the angular dependence of the differential reflec­

tivity shown in Figure 3.18. 

Many characteristics of the albedo patch of the off-center source, which are dis­

cussed in Section III. E, become evident by comparison of Figure 4.3 with Figure 4. 2. 

However, one of the important characteristics of the albedo patch of the off-center 
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Figure 4.3. Calculated albedo photon counts, for an isotropic source at 0 = 450 and 
h = 4d. The black dot represents the projected position of the primary source. 
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source is the displacement of the projection of the primary source with respect to the 

centroid of the albedo patch. This displacement can provide us another method in 

determining the height of the source. 

In order for this method to be useful, the displacement, h tan 0, should be 

much larger than the distance on the photosphere covered by an image element along 

the direction of this displacement, which is d sec 0. The displacement, however, 

should not be larger than about one half of the field of view of the Imaging Spectrom­

eter. These two conditions yield 

d/sin 0 < h 16d/sin 0. (4.3) 

Comparing the above equation with equation (4. 1), we find that the above method 

can increase the upper limit of h deducible by using the Hard X-ray Imaging Spec­

trometer. Therefore, this method can be well utilized for large h and small 0. The 

limitation comes, however, when h becomes too large and consequently the albedo 

patch becomes too faint to determine the centroid of the patch. 

3. Extended Sources
 

So far the source has been assumed to be a point source, and this assumption 

is good as long as the size of the source is much less than its height. If the size 

becomes comparable to h, the deduction of the height becomes complicated. If the 

source is extended in two or three dimensions and its linear size is larger than its 

height, the height determination is next to the impossible. However, as we have 

seen in Figures 4. 1 through 4.3, the photon count due to the primary source is con­

spicuous. Therefore, for sources larger than the spatial resolution of the instrument, 

the shape of the primary source can be known. Hence, for the extended source with 
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the height larger than its size or the source of filament shape, the determination of 

the height is not so complicated. 

C. The Anisotropy of Solar Hard X-rays 

So far we have treated isotropic primary sources only. For an anisotropic 

source, the angular distribution of solar hard X-rays is determined by the angular 

distribution of the momentum vectors of the accelerated electrons producing them. 

The angular distribution of primary hard X-rays, in turn, influences the brightness 

distribution of the albedo patch. In addition, the degree of polarization of primary 

hard X-rays also influences the brightness distribution of the albedo patch through 

the azimuthal dependence of the Compton cross section of the polarized photon beam 

(equation 3. 11). In this section we discuss how to deduce the angular distribution of 

primary hard X-rays. 

As we have seen in Section IIl. E, the fact that the differential reflectivity of a 

photon beam depends on the degree of polarization makes the deduction of the degree 

of anisotropy (and the angular distribution) of the primary X-ray source a little bit 

more complicated. However, the degree of anisotropy of the primary X-rays can be 

inferred by any of the four ways described below roughly in descending order of 

feasibility. First, the easiest of all, by finding out the photon count due to reflection, 

we can find out the number of photons released down to the photosphere. And by com­

paring this number with the number of photons directly coming from the primary 

source, we can have an idea on the anisotropy of the solar hard X-rays. Second, if 

we can deduce h from the displacement of the projection of the primary source with 

respect to the centroid of the albedo patch, then we can find the angular distribution 

of the hard X-rays, Q(e, 60), from the albedo brightness distribution. Third, the 
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comparison of the albedo brightness distribution measured in the 16 to 22 key interval 

with that measured in the 22 to 30 keV interval may tell us the anisotropy of the 

accelerated electrons. The angular distribution of hard X-rays in the 16 to 22 keV 

interval is more or less constant in the downward hemisphere even in the anisotropic 

case (see Figures 3.9 and.3. 11). On the other hand, in the 22 to 30 keV interval, it 

quite strongly depends on the anisotropy. Fourth, from the shape of the albedo patch, 

we may know about the degree of polarization of the primary hard X-rays incident upon 

the photosphere (Figure 3. 22). This in turn can tell us the anisotropy of the acceler­

ated electrons producing hard X-rays. 

Figure 4.4 shows the counts registered in several image elements for a polarized 

anisotropic source (the same assumption of polarization as for Figure 3.22d) for 

0 = 450 and h = 4d, calculated similarly to Figure 4.3. Here notice that the count due 

to the primary source in Figure 4.4 is smaller than that in Figure 4.3 because we 

assume that the primary source for Figure 4.4 radiates less in upward directions 'than 

downward directions. The albedo count distribution of Figure 4.4 is slightly different 

than that of Figure 4.3. However, it is found that, to distinguish the effect of polariza­

tion on the albedo brightness distribution, the position of the centroid of the patch 

should be determined within the error of about 0. 1 h. 

Independent of the albedo measurement, polarization measurements can give in­

formation on the anisotropy of primary hard X-rays. However, as we have seen in 

the previous chapter, the degree of polarization of primary hard X-rays depends not 

only the degree of anisotropy of the accelerated electrons producing them but also the 

angle between the line of sight and the direction of anisotropy. Therefore, the 
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Figure 4.4. Calculated albedo photon counts, for an anisotropic polarized source at 
O= 450 and h = 4d. The black dot represent the projected position of the primary 
source.
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simultaneous measurements of both the albedo brightness and the polarization can 

complement each other and give less ambiguous information on the anisotropy and also 

the height of the primary X-ray source. 

D. Discussion on Polarization Measurements 

The degree of polarization of photons around 15 keV has been measured by 

Tindo et al. (1970, 1972a, 1972b, 1973) for various flares, and their results are 

plotted in Figure 4. 5 together with the heliocentric angles of the flares. As can be 

seen, the degree of polarization is quite large except for the flares on August 7 and 

August 11, 1972. 

As we have briefly discussed earlier in this chapter, by comparing the counting 

rates in the six counters surrounding the Beryllium scatterer of the polarimeter, we 

can find the degree and the direction of polarization. However, because the energy 

windows and the efficiencies of the six counters were not exactly the same, and because 

they were not calibrated in the laboratory before the launch, the counting rates could 

not be compared directly. Thus, for the flares measured in 1969 and 1970, before 

comparing the counting rates, Tindo et al. normalized the counting rate of each 

counter with respect to the counting rate of the counter at the decay phase of the flare, 

with the assumption that the degree of polarization is zero at the decay phase (Tindo 

et al. 1970, 1972a, 1972b). This assumption, however, may not be justified. If so, 

the actual values of the degree of polarization would be different from their estimated 

values. If the direction of the polarization at the decay phase of the flare was along 

the same direction as at the earlier phase, the actual degree of polarization would be 

larger than their estimation, and vice versa. 
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Figure 4. 5. The degree of polarization measured by Tindo and his coworkers v. s. helio­
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from Figure 3.13. 



Any way, for the flares measured in 1969 and 1970, the degree of polarization 

increases roughly with the increase of the heliocentric angle of the flare (Figure 4. 5), 

and the directions of the polarization lie in the normal plane (containing the flare site, 

the center of the sun and the observer) within 100 uncertainties (Tindo et al. 1972b). 

Thus these results were interpreted with an anisotropic electron distribution model 

in which accelerated electrons are spiraling down around the vertical magnetic field 

lines (Tindo et al. 1972b, Brown 1972). 

For the polarization measurements for the August 1972 flares, an improved 

detector was used. The detector could be rotated by 600 back and forth around the 

axis of the scatterer, which is along the direction toward the flare, in a short period 

(Tindo et al. 1973). Thus, the change of the counting rates due to the rotation can be 

easily recognized, and the efficiency of the counter can be normalized to those of the 

adjacent counters. Unfortunately, only the two of the six counters functioned properly. 

Therefore, only the lower limit of the degree of polarization could be inferred, but the 

heliocentric variation of the degree of polarization does not follow the variation ex­

pected from simple anisotropic models of 5indo et al. (1972b) and Brown (1972). If 

we accept that the direction of the anisotropy may not always be exactly along the 

vertical direction, we can easily explain the data. Taken as a whole, the data are not 

compatible with an isotropic model. In agreement with this, Nakada et al. (1974) 

reported that the degree of polarization inferred from their measurements is about 10%. 



CHAPTER V
 

X- AND GAMMA-RAY EVIDENCE FOR TWO PHASES OF
 

ACCELERATION IN SOLAR FLARES
 

A. Introduction 

Extensive measurements of solar radio emissions, X-rays, and interplanetary 

energetic particles have firmly established the fact that charged particles are copiously 

accelerated in solar flares. Even though the detailed flare acceleration mechanisms 

are not kmown, the data tend to support the suggestion (Wild, Smerd and Weiss 1963, 

de Jager 1969, Frost and Dennis 1971) that the acceleration process consists of at 

least two phases. The first phase, or flash phase, accelerates mainly electrons up to 

energies of several hundred keV. These electrons produce Type III radio bursts, im­

pulsive 10 to 100 keV X-ray emissions, microwave bursts, and EUV bursts (e. g., Kane 

1974); streams of energetic electrons detected in interplanetary space are also believed 

to be due to this acceleration phase (Lin 1974). Because the total energy in electrons 

accelerated in the first phase constitutes a large fraction of the energy of the flare 

(Lin 1974, Hudson, Jones, and Lin 1975), only very efficient first order acceleration 

mechanisms can be responsible for this phase of acceleration. 

The second phase of acceleration occurs in a smaller number of flares than does 

the first phase, and it accelerates ions to tens and hundreds of MeV and electrons to 

relativistic energies. This acceleration phase is associated with Type II and Type IV 

bursts, and produces the fluxes of ions and electrons of energies greater than several 

MeV observed in interplanetary space. The' acceleration of the ions and the electrons 

in the second place is probably due to the passage of shock fronts in the solar atmos­

phere. 
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For the first time, detailed measurements in many energy bands (X-ray, gamma­

ray, microwave, and EUV bands) are available for the August 4, 1972 flare, which 

lasted for 10 3 seconds with highly structured time profiles of the radiations in these 

energy bands. For this reason many authors have sutdied this flare. Brown and 

Hoyng (1975) and Benz (1977) have studied the hard X-rays (measured by van Beek 

et al. 1973) from this flare with emphasis on the time profiles. Using the measure­

ment (Chupp et al. 1973; 1975, Suri et al. 1975) of the gamma-ray emission from 

this flare in the 0.35 to 8 MeV region, Ramaty et al. (1975), Ramaty and Crannell 

(1976), and Wang and Ramaty (1974, 1975) have studied the implications of line 

emissions. Suri et al. (1975), Bai and Ramaty (1975, 1976), and Ramaty et al. (1977) 

have studied the implications of the X- and gamma-ray continuum. Lin and Hudson 

(1976) have studied the energetics of various phenomena of this flare, and many other 

authors have also studied various aspects of this flare. 

In this chapter we show that unique information on the two phases of acceleration 

in solar flares can be obtained byt treating the gamma-ray data together with the X-ray 

and microwave observations of the 1972, August 4 flare. A similar study has already 

been published (Bai and Ramaty 1975, 1976). However, Ramaty et al. (1977) have 

shown that the gamma-ray continuum due to Doppler broadening of gamma-ray lines 

produced by interactions of accelerated nuclei could account for all the continuum 

radiations in the 4 to 8 MeV region of the August 4, 1972 flare. Therefore, we closely 

reinvestigate the continuum radiation in the 0.35 to 8 MeV region, which shows the 

spectral flattening around 1 MeV, by taking the continuum due to nuclear gamma rays 

into account. From the deduced spectra of the accelerated electrons and the accel­

erated protons and the observed time profiles of the X-rays, gamma rays, and 



114 

microwave emissions of this flare, we suggest that the particle acceleration process of 

this flare consists of at least two phases. 

In Section B we deduce the spectra of the accelerated electrons and the accel­

erated protons. We calculate photon spectra produced by electrons and protons with 

various spectra, and fold the resultant photon spectra into the response function of the 

gamma-ray detector of the New Hampshire group, and then choose the electron and 

proton spectra which give the best fit to the observed data. In Section C, by investi­

gating the time profiles of the hard X-rays, the gamma rays, and the microwave 

emissions (Croom and Harris 1973), and we find some constraints for the acceleration 

mechanisms. In Section D we summarize our results. 

B. The Energy Spectrum of the Accelerated Electrons 

In Chapter 11 we have discussed the formulas for e-p bremsstrahlung and e-e 

bremsstrahlung, and we have also discussed how to calculate the instantaneous photon 

production rate due to bremsstrahlung of the accelerated electrons with the isotropic 

momentum distribution. Though at low energies ( < mc 2) e-e bremsstrahlung is 

negligible, at high energies it becomes comparable to e-p bremsstrahlung. In addition 

to bremsstrahlung, in the MeV range the gamma-ray continuum due to Doppler broad­

ening of nuclear gamma-ray lines becomes important. 

Figure 5. 1 shows the hard X- and gamma-ray spectrum measured by van Beek 

et al. (1973) and by Chupp et al. (1975). The shaded area in this figure shows the 

range of variability of the observed hard X-ray flux in the time interval from 06:23 UT 

to 06:30 UT, and the error bars represent the average observed gamma-ray flux over 

the time interval from 06:24 UT to 06:33 UT. As can be seen, two sets of data agree 

reasonably well. Note here that the photon spectrum flattens above 1 MeV. The 
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Figure 5.1. The-observed hard X-ray and gamma-ray continuum from the 1972, 
August 4 flare. The shaded area is based on the data of van Beek et al. (1973) and 
includes all-their spectra between 0623 and 0630 UT. The data points are from Suri 
et al. (1975). The solid line represents the bremsstrahlung spectrum calculated 
from the electron spectrum given by equation (5. 1) (Bai and Ramaty 1976). 
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solid line represents the bremsstrahlung photon spectra calculated by using the following 

electron spectrum (Bai and Ramaty 1976): 

3.3 X 1044 E-2A, E<0.1 MeV 

2.6 X 104 3 E- 3 -5nN(E) , 0.1 MeV (E < 0.8 MeV (5.1) 

1.4 X 1042 exp (-E/4), E> 0.8 MeV 

However, this result was obtained without including the gamma-ray continuum due to 

nuclear gamma rays. 

Nuclear interactions due to collisions of accelerated protons, alpha particles, 

and heavy ions with the ambient material produce nuclear gamma rays in the MeV 

region. Reactions due to energetic protons or alpha particles produce narrow lines 

with full widths at half maximum (FWHM) less than 150 keV; reactions due to energetic 

heavy ions give rise to broad lines with about 1 MeV FWHM, which overlap each other 

and make highly structured gamma-ray continuum. While the previous works (Ramaty 

et al. 1975 and references therein) mainly dealt with narrow lines, for the first time, 

Ramaty et al. (1977) have studied in detail the gamma-ray continuum due to nuclear 

interactions in solar flares. They have shown that the nuclear gamma-ray continuum 

not only can account for the total number of photons observed in the 4 to 8 MeV region 

from the August 4, 1972 flare but also can account for the observed shape of the 

continuum. 

Therefore, Suri, Ramaty, and Bai (1977) extend the calculation of the gamma­

ray continuum due to nuclear reactions down to 0.35 MeV, using the solar abundances 

given by Cameron (1973). Table 5. 1 lists the various nuclear interaction modes 

included in the calculation and the corresponding gamma-ray energies. Table 5.2 

gives abundances of various nuclei relevant to the calculation. The interaction cross 
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Table 5.2. 

Atomic abundances used for nuclear gamma-ray calculations.
 

Nucleus Relative abundance
 

H 1.0
 

He 0o1
 
-4

C 3.7 x 10 
-4
 

N 1.2 x 10­
-4
 

0 6.8 x 10 
-4 

Ne 1.1 x 10 
-5 

Mg 3.3 x 10 
-5Si 3 oIx1I0
 
-5
 

S 1.6 x 10 
2.6 x 105
Fe 
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sections and the method of calculation are well described in Ramaty et al. (1975, 

1977), and the kinematics influencing the line broadening and the method how to 

fold a given photon spectrum into the response function of the gamma-ray detector 

of the New Hampshire group are discussed in Ramaty et al. (1977). 

Figure 5.2 shows the observational data and the photon spectrum obtained from 

folding the nuclear gamma rays calculated as follows; We assume the momentum 

vectors of the accelerated nuclei are isotropic, and we use the differential energy 

spectra of the accelerated nuclei given by 

Ni(E) = KiE- 2, (5.2) 

where the subscript i denotes the species of the nuclei, K i is proportional to the 

atomic abundances listed in Table 5.2, and E is in units of MeV/nucleon. Here we use 

the spectrum E- 2 , because it is deduced from the comparison between the observed and 

calculated gamma-rays (Ramaty et al. 1977). The histogram in the figure represents the 

data, and the solid dots represent the theoretical result due to nuclear gamma-rays. 

The figure shows that above -2. 5 MeV the continuum due to nuclear gamma-rays 

could account for the data. However, below this energy additional continuum radiation 

due to bremsstrahlung is necessary. 

To the result due to nuclear gamma rays shown in Figure 5. 2, we have added 

the contribution due to a power-law bremsstrahlung continuum which fits the data at 

low energies, and we find the result does not give a satisfactory fit to the data. To 

have a good fit, additional photons in the 1 to 2. 5 MeV region are necessary. Thus, 

to account for the data, we need accelerated electrons with a spectrum other than a 

simple power-law spectrum. This result is in agreement with the previous 
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Figure 5.2. The gamma-ray counts from the 1972, August 4 flare measured by the 
New Hampshire group and the calculated nuclear gamma-ray counts. For solid dots, 
the calculated gamma-ray continuum is folded into the response function of the 
detector. 



121 

interpretation (Bai and Ramaty 1975, 1976). As we have seen in Chapter II, e-e 

bremsstrahlung contribution becomes important for mildly relativistic and rela­

tivistic energies. Including e-e bremsstrahlung, we calculate photon spectra due to 

various electron spectra. We find that the electron spectra which give good fits to 

the data should have the following characteristics: The electron spectrum consists 

of two distinctive components. The low energy component is in a form of a power-law 

spectrum which steeepens drastically at about 0. 8 MeV; the high energy component is 

flat below about 4 MeV and decreases very rapidly above this energy. 

Figure 5.3 shows the data and a theoretical result calculated from an electron 

spectrum given by 

6.9 X 104 3 12  E- 3 . 0.3 MeV<E<0.85 MeV 
nN(E) = (5.3) 

6.0 X 1042 5(E- 35) E>0.85 MeV 

This spectrum is plotted in Figure 5.4. Here a delta-function spectrum is shown as a 

representative of the high energy component. Accelerated electrons are assumed to be 

isotropic. However, even if the assumption of isotropy is removed, the observed 

photon spectrum cannot be easily explained with one electron component with a 

smoothly varying spectrum. 

The proton spectrum used in this calculation (deduced by Ramaty et al. 1977) 

is also shown in the figure. At high energies the proton number is much larger than 

the electron number. Though we have no direct information on accelerated protons 

at low energies <1 MeV, considering the energetics, the proton number is likely to 

be comparable to or less than the electron number. 

The peculiar shape of the electron spectrum is expected to be revealed in the 

microwave emission spectrum. Indeed the microwave spectrum measured by Croom 

http:MeV<E<0.85
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Figure 5.3. The gamma-ray counts from the August 4, 1972 flare and a theoretical 
fit to the data. The dashed line represents the theoretical counts calculated from the 
bremsstrahlung of the electron spectrum shown in Figure 5.4, in addition to the nuclear 
gamma-ray contribution shown in Figure 5.2. 
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Figure 5.4. An electron spectrum which gives a best fit to the continuumdata. The 
proton spectrum deduced by Ramaty et al. (1975) is also shown here. 
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and Harris (1973) shows a flattening at the frequency of about 37 GHz. Bai and Ramaty 

(1976) have shown that the spectrum and intensity of the observed microwave emissions 

can be consistently explained by the synchrotron radiation in the common emitting 

region by the same electrons producing hard X-rays. We can get a similar result by 

using the revised electron spectrum. Thus, the observed microwave spectrum renders 

more confidence to the two-component electron spectrum. 

For the following reasons, we suggest that two phases of acceleration are respons­

ible for the acceleration of particles for this flare: (1) It is very unlikely that the 

peculiar shape of the electron spectrum could be due to a single acceleration mechanism. 

(2) The accelerated electrons and protons have very differing energy spectra. It can also 

be shown that-they have differing velocity spectra and rigidity spectra. 

C. Time Profiles of Radiation Intensities 

The observed time dependences of the X-ray emission in the energy range 29 to 

41-keV (van Beek et al. 1973), of the gamma-ray flux in the range 0.35 to 8 MeV (Suri 

areet al. 1975), and of the microwave emission at 37 GHz (Croom and Harris 1973) 

shown in Figure 5. 5. The variation in time of the X-rays depends on the time profile 

On the other hand, the timeof electrons of several tens of keV in the flare region. 

dependence of the gamma rays is determined by the temporal variation of electrons 

of energies greater than hundreds of keV; according to Bai and Ramaty (1976), radio 

emission at 37 GHz is also due to electrons in this energy range. Indeed, as seen in 

Figure 5. 5, the general rise time of both the continuum gamma rays and 37 GHz radio 

emission ('v4 minutes) is longer than that of the X-rays ('v2 minutes). This result 

provides support to the suggestion made on the basis of spectral information in 

that electrons above several hundreds of keV are accelerated by a differentSection B, 
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Figure 5. 5. Time dependences of radiations of the 1972 August 4, flare. The three 
upper lines are the measured time profiles of X-rays (29 -41 keV), gamma rays 
(0. 35 -- 8 MeV), and microwaves (37 GHz). The error bars in the lower part of the 
figure represent the measured intensities of the 2.2 MeV line. The solid, dashed, 
and dotted lines are calculated time profiles of the 2.2 MeV line. The solid line is 
obtained by assuming that the instantaneous number of nuclei in the flare region has 
the same time dependence as that of the observed 0.35 to 8 MeV gamma rays. The 
dashed and dotted lines are obtained by assuming that the time dependence of the 
nuclei is the same as that of the 29 to 41 keV X-rays. For the solid and dotted lines 
we used a photospheric 3He abundance 3He/H = 5 X i0 -5 ; for the dashed line,
3He/H = 0. 
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mechanism than the mechanism which accelerates lower energy electrons. We should 

point out, however, that there is good observational correlation between the individual 

peaks of the X-ray, gamma-ray, and microwave time profiles, as can be seen in 

Figure 5. 5. Therefore, the first-phase and second-phase acceleration mechanisms 

should be closely related. For example, the first-phase mechanism could serve as an 

injection source for the second mechanism. This possibility is supported by the total 

number of electrons in the two components: from Figure 5. 4 we calculate that the 

number of electrons in the high-energy component is only 0. 14% of the number of elec­

trons in the lower energy component above 100 keV. 

If different acceleration mechanisms are responsible for the acceleration of low­

and high-energy electrons, it is of considerable interest to determine which of the 

two mechanisms accelerates protons and nuclei. The time profile of the nucleonic 

component in the flare region can be deduced directly from the observed time profile 

of the 2.2 MeV line. This line is due to the reaction n + p -* d + y, where the neutrons 

are the products of nuclear reactions of energetic protons and nuclei in the flare 

region (Ramaty et al. 1975). 

The error bars on the 2. 2 MeV gamma-ray time profile shown in Figure 5. 5 are 

the measured intensities of this line (Chupp et al. 1975). The solid, dashed, and dotted 

lines are calculated time profiles of the 2.2 MeV line obtained by using the results of 

Wang and Ramaty (1974). The solid line is obtained by assuming that the instantaneous 

number of nuclei in the flare region has the same time dependence as that of the observed 

0.35 to 8 MeV gamma-rays. The dashed and dotted lines are obtained by assuming that 

the time dependence of the nuclei is the same as that of the 29 to 41 keV X-rays. For 
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the solid and dotted lines we used a photospheric 3He abundance, 3He/H = 5 X 10- 5; 

for the dashed line, 3He/H = 0. 

As can be seen, the measured time profile of the 2.2 line is in good agreement 

with the calculated result shown by the solid line. The dashed and dotted lines, however, 

give poorer fits to the data, independent of the amount of 3He in the photosphere. (A 

smaller amount of 3He in the photosphere results in a slower loss of neutrons and hence 

a longer delay of the 2. 2 MeV line.) This result implies that the nuclei are probably 

accelerated by the second-phase mechanism. 

By assuming that the hard X-and gamma-ray continuum and the microwave emis­

sion from the August 4, 1972 flare are due to the same accelerated electrons in the 

common emitting region, Bai and Ramaty (1976) have obtained the following parameters 

3of the common emitting region: B = 415 gauss, n = 7.1 X 10 10 cm- , T = 4.5 X 106 K. 

This method is unique. However, mainly because a uniform magnetic field is assumed 

and the background radiation at 71 GHz is large, the above parameters are uncertain-­

probably within a factor of 2. The changes in the values of the above mentioned param­

eters due to the revision of the electron spectrum made in the preceding section are 

estimated to be within the above-mentioned uncertainties. Therefore, we do not repeat 

the procedure to determine these parameters again. From statistically significant 

fine structures of the X-ray time profiles observed down to 1.2 seconds, the time 

resolution of the instrument, van Beek et al. (1973) concluded that the ambient density 

is larger than 3 X 1010cm -3 , in consistence with Bai and Ramaty (1976). 

At energies below - 100 keV, the collisional energy loss rate of electrons in 

the ionized hydrogen plasma is given by (Trubnikov 1965) 

dE(E) - X (MV/sec), (5.4)) 1.55 X10-13nE 



128 

and above 150 keV, it is given by (Ginzburg and Syrovatskii 1964) 

dEdt-(E =-3.8 X 10- 13 n(McV/sec), (5.5) 

where n is the number density per cm and E is in units of MeV. In the relativistic 

domain, energy loss rate due to synchrotron radiation becomes important, and it is 

represented by (Ginzburg and Syrovatskii 1964) 

dE ­
t (E -3.75 X 10- 9 B2 (E+.511) 2 (MeV/sec), (5.6) 

where B is in gauss. In the non-relativistic energies, the energy loss rate of protons 

is given by (Hayakawa and Kiato 1956) 

- 1 2 ­dE (E) = -8.4 X 10 nE Y(MeV/ssc), (5.7) 
dt
 

and, below the energy where the proton velocity becomes equal to the thermal velocity of 

the ambient electrons, the energy loss rate of protons become constant (Ginzburg and 

Syrovatskii 1964). 

Using the energy loss rates given above and the values of the flare parameters 

mentioned earlier and T = 4. 5 X 106 K (Bai and Ramaty 1976), we find the energy loss 

times, E/(dE/dt), of electrons and protons, which are shown in Figure 5.6. It is 

noticeable that the energy loss times have very differing values at different energies. 

From this figure alone, we can see that a single acceleration mechanism is very 

unlikely to be responsible for the acceleration of particles over the entire energy 

region. For example, a Fermi type acceleration mechanism can be efficient at high 

energies where energy loss time is very large; on the other hand, such a mechanism 

cannot be efficient at low energies where energy loss time is very short. 



129 

103 

102 

" ELECTRO
 
10 

- 1 10 10 2I0- - I0 1 

.E(MeV) 

Figure 5. 6. Energy loss times, E/(dE/dt), of electrons and protonys in the medium 
° - 3 , with n =7.1 X10 10Cm B =415 gauss, and T =4. 5 X 106K. 
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Whatever the acceleration mechanism is, the acceleration time should be shorter 

than the energy loss times. Otherwise, the acceleration mechanism cannot be efficient. 

Energy loss times of electrons with energies below 50 keV are shorter than about 1 sec­

ond. Considering the rapid changes of the X-ray intensities observed in the time scale 

of 1.2 seconds, van Beek et al. (1973) concluded the acceleration time might be shorter 

than 1.2 seconds. Therefore, the characteristic time for the first phase acceleration 

is expected to be shorter than - 1 second. 

Figure 5. 7 shows the time profiles of X-ray intensities measured in several 

energy intervals (van Beek et al. 1973). Because electrons with energies below 50 keV 

have energy loss times shorter than 1 second (see Figure 5. 6), in the time scales 

longer than 1 second, the time profile of the X-rays in the 29 to 41 keV interval re­

flects the time profile of the intensity of the electron acceleration rate. Though the 

time profiles of X-rays in the different energy bands, shown in this figure, are quite 

similar to each other, a delay of temporal features, increasing with increasing energy, 

can be noticed. This delay was also noticed by Hoyng (1975) and by Benz (1977). It 

was also reported that the X-ray spectrum is flatter at flux minima than at flux maxima 

(Brown and Hoyng 1975, Benz 1976). Though these authors gave different interpretations, 

one of the simplest interpretations of these characters is that these are due to the in­

creasing energy loss times with increasing energy. With this interpretation, the above­

mentioned characters are compatible with the earlier interpretation that the acceleration 

time is less than 1 second. 

D. Summary and Conclusion 

We have performed a detailed study of the observed spectrum of the hard X-and 

gamma-ray continuum of the August 4, 1972 flare, by using an accurate e-e 
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bremsstrahlung cross section and taking the nuclear gamma-ray continuum into account. 

The deduced electron spectrum consists of two distinct components, and this spectrum 

is compatible with the observed microwave data. This spectrum supports the sugges­

tion (Wild et al. 1963, de Jager 1969, Frost and Dennis 1971) of two acceleration phases.' 

The two-phase acceleration theory is also supported by the study of time dependences. 

For the August 4, 1972 flare, the first phase accelerates electrons (and probably pro­

tons also) up to several hundred keV; the second phase accelerates electrons to at least 

several MeV. The above interpretation is basically the same as the previous interpreta­

tion (Bai and Ramaty 1975, 1976). 

The observed time profile of the 2. 2 MeV gamma-ray line is consistent with the 

assumption that the number of accelerated nuclei has the same time dependence as the 

electron number at energies greater than several hundred keV. On the other hand, the 

2.2 MeV time profile calculated by assuming that the nuclei have a similar time depen­

dence as the X-rays below - 100 keV, precedes the data by about 100 seconds. This 

result supports the idea that the second phase accelerates protons to tens and hundreds 

of MeV. From the comparison of the electron and proton spectra, we can know that 

the second phase accelerates much larger number of protons than electrons (compared 

at the same energies, it is - 100:1), and this agrees with the interplanetary observa­

tions of flare-associated particles (Datlowe 1971, Simnett 1974). 

The energy deposited in the flare medium by electrons accelerated in the first 

phase is of the order of 10 32 ergs, and it is enough to cause other flare phenomena, 

such as EUV, UV, and optical radiations and also shock waves (Lin and Huqlson 1976). 

According to these authors, above a certain height, the energy input to the flare medium 

by the electrons accelerated in the first phase cannot be balanced by cooling due to 
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various cooling mechanisms.. Thus, the medium above this height "boils", and conse­

quently shock waves are generated. The shock fronts and the turbulence due to the 

passage of shock fronts can-serve as the second phase acceleration mechanism. This 

model is compatible with the study of this chapter. 



CHAPTER VI
 

SUMMARY AND CONCLUSION
 

In Chapter I we have described the historical perspective of the work of this 

thesis by reviewing the history of solar hard X-ray research. In Chapter II, by com­

paring various production mechanisms of hard X-rays and gamma-rays, we have 

shown that the inverse Compton scattering of photospheric photons by relativistic 

electrons and bremsstrahlung due to collisions of accelerated protons with the ambient 

electrons are not important in solar flares. We have devoted most of Chapter II to the 

discussion of various properties of e-p and e-e bremsstrahlung, which is the most 

important production mechanism of solar hard X-rays. By integrating the e-e brem­

sstrahlung cross section over the photon emission angle, we have tabulated the e-e 

bremsstrahlung cross section with respect to photon and electron energies. In order 

to fully understand the properties of continuum radiation in the transition region from 

nonrelativistic to relativistic electron energies, it is necessary to include the e-e 

bremsstrahlung contribution. In this chapter we have also calculated photon spectra 

due to isotropic electrons with power-law energy spectra. 

In Chapter III we have shown that the anisotropy, polarization, and Compton 

backscatter of solar hard X-rays are interrelated and therefore should be studied 

together in a coherent fashion. The effect of Compton backscatter is not appreciable 

for isotropic primary sources. However, this effect is significant for anisotropic 

sources which radiate predominantly downward. Because of this effect, the large limb 

brightening which was expected for such anisotropic sources disappears, and for such 

anisotropic sources the photon spectrum in the 15 to 50 keV range becomes steeper 
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as the heliocentric angle of the flare increases. The limb steepening of the X-ray 

spectrum is compatible with the observations of Datlowe et al. (1974). The observec, 

X-rays due to an isotropic, unpolarized primary source are slightly polarized due to 

Compton backscatter: The degree of polarization does not exceed 4%. However, for 

anisotropic sources due to accelerated electrons with anisotropic distributions, the 

observed X-rays are highly polarized. For the anisotropic electron distribution we 

have used in this thesis, the degree of polarization of observed X-rays with energies 

between about 15 and 30 keV can be as large as 60% for limb flares. 

By investigating the differential reflectivity as a function of incident X-ray beam 

direction, in Chapter III we have also discussed the information that can be obtained 

from detailed measurements of the surface brightness of the albedo patch. The height 

and degree of anisotropy of the primary X-ray source might be deduced from such 

studies. 

In Chapter IV we have discussed how to utilize future albedo measurements with 

detectors having good spatial resolution. We have shown that heights ranging from 

3 X 10 8 cm to 1010 cm could be deduced by using the Hard X-ray Imaging Spectrometer 

to be flown on board the SMM. We have also discussed the implications of polarized' 

data. The existing polarization data suggest that hard X-rays around 15 keV are due 

to anisotropic distribution of accelerated electrons. 

In Chapter Vwe have -carefully analyzed the X-and gamma-ray continuum of the 

August 4, 1972 flare, by taking e-e bremsstrahlung and nuclear gamma-ray con­

tinuum into consideration. This spectrum shows a pronounced flattening at 11MeV. 

By folding the calculated photon spectrum into the response function of the detector 

which measured the continuum of this flare and comparing with the measurement, we 
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have deduced the electron spectrum that can best explain the observation. We then 

have provided the deduced two-component electron spectrum as evidence for the two­

phase acceleration theory. We have also shown that the time dependences of radiations 

from this flare support the two-phase acceleration theory. The spectral and temporal 

evidence we have given is the most direct evidence for this theory among the observa­

tional evidence given so far. 

In this thesis solar hard X-rays with energies greater than 15 keV are implicitly 

assumed to be nonthermal in nature. Even though they may be tentative, the existing 

polarization data support this assumption. Statistically significant fine structures in the 

X-ray time profiles observed (by the Utrecht group; Hoyng 1975) down to 1.2 seconds, 

the time resolution of the instrument, and very good temporal correlations with other 

nonthermal radiations (UV, EUV, white light, microwave, and gamma-radiation) are 

best explained by the nonthermal interpretation. The lack of the effect of hard X-ray 

limb brightening is not contradictory to -this interpretation, and the limb steepening of 

the X-ray spectrum is better explained by the downward anisotropic model. However, 

there is a class of flares whose X-ray spectra up to several tens of keV resemble 

thermal spectra and whose rises and decays are symmetric. Hard X-rays with 

energies up to several tens of keV from such flares may be due to a thermal plasma 

(Matzler 1977, private communication). 

The aim of the study of solar hard X-rays and gamma-rays is to enhance the 

knowledge on the properties of accelerated flare particles and of the medium of the 

emitting region and thereby ultimately to understand the acceleration mechanisms. To 

pursue this aim effectively, complementary to the experiments which will be flown on 

board the SMM, measurements of hard X-ray polarization and of microwave emissions 



at frequencies greater than about 50 GHz are badly reeded. To determine the nature 

of solar hard X-rays and to find out the direction and degree of anisotropy of accel­

erated electrons, it is better to have simultaneous measurements of albedo and polariz­

ation of hard X-rays, which can complement each other. The polarimeters by Tindo 

and his co-workers did not function at the optimum condition. Reliable measurements 

of polarization not only can determine the nature (thermal or nonthermal) of solar hard 

X-rays conclusively, but also can give detailed information on the directionality of 

accelerated electrons when they complement with simultaneous albedo measurements. 

Detailed measurements of time profiles of X- and gamma-rays can also further 

our understanding of accelerated flare particles.- A hard X-ray detector with time 

resolution down to 10- 3 seconds (Frost 1976) and a gamma-ray detector which can give 

better time profiles than the previous one (Chupp 1976) will be flown on board the SMM. 

However, because solar gamma-ray fluxes are low, the time resolution achievable in 

the gamma-ray measurements cannot be very good. On the other hand, the microwave 

emissions at frequencies greater than about 50 GHz, which are believed to be due to 

synchrotron radiation of relativistic electrons in the flare, can provide much better 

time profiles. Such time profiles can give information on the relativistic electrons 

which are thought to be accelerated in the second phase. 



APPENDIX A 

THE ANGLE BETWEEN THE SCATTERING PLANE 

AND THE NORMAL PLANE OF THE SCATTERED PHOTON 

Let the reference frame S be the frame where the direction of propagation of the 

initial photon is along the Z-axis and the normal to the photosphere is in the X-Z plane. 

In this frame the momentum vector of the initial photon, k1 , the momentum vector of 

the scattered photon, k 2, and the normal vector n are expressed as follows: 

k1 = k (0, 0, 1) (A. 1) 

k2 = k2 (sin 0s cos 0,, sin 0, sin 5, cos 0s), (A. 2) 

= n (-sinO 1 ,OcosO 1). (A. 3) 

The angle between n and k 2 is given by 

cos 02 =n•k 2 /k 2 =cos 01 cos 0s - sin 61, sin O, cos (A. 4) 

The normal to the k1- k 2 plane is 

A = (kI X k2)/(klk2 sin 0.) = (-sin 0., cos 0,, 0). (A. 5) 

The normal to the k 2 n plane is-

B = (k2 X n)/(k 2 sin 02) 

(A. 6)
sin 6, COs 0,, sin 0, sin 0 sin § 3)/sin 02. 

= (cos 01 sin 6S sin 0,r- cos Os sin G1 - cos 1 

The angle between the k- k2 plane and the k 2 - in plane, a,is given by 

cosa= A • B =-(sin 01 cos Os COs + cos 01 sin 08)/sin 0 2. (A. 7) 

sinc=IA • BI =sinq5, sin 01 /sin 02. (A.8) 
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APPENDIX B 

MONTE CARLO METHODS 

Because explanations of Monte Carlo methods are available in many books, here 

we give only a brief explanation. The essence of the Monte Carlo method is to generate 

values of x which are distributed according to the distribution function y = f(x) in the 

interval between a and b. The often used method is to invert the integral of the dis­

tribution function: 

Let 

F(x) -f f(x)d f(x)dx. (B. 1) 

Then the desired values of x are obtained by 

x = F-1 (R), (B. 2) 

where the values of R are chosen to have a uniform distribution in the interval from 

Oto 1. 

If the distribution function f(x) is not easily integrable and the value of f(x) does 

not change drastically in the interval between a and b, the following method is more 

convenient. Generate a set of two independent random numbers (R1 , R2 ) which runs 

from 0 to 1, and generate the following two numbers: 

x, = (b - a)R 1 + a, (B. 3) 

Yj =Ym "R 2 , (B. 4) 

where y. is the maximum of f(x) in the interval between a and b. The many 

sets of numbers (x1, y1 ) corresponding to many sets of random numbers (R 1, R 2 ) 
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define points which are uniformly distributed in the rectangle made of the following 

four lines: 

x =a, x= b, y= 0,y=y m . 

By choosing only the sets (x1 , y1 ) which satisfy the condition 

Y1 < f(xl) (B. 5) 

we obtain values of x which are distributed according to the distribution function f(x) 

in the interval from a to b. 



APPENDIX C
 

THE REFLECTION PROBABILITY DUE TO THE SINGLE SCATTERING
 

The probability for a photon incident upon the photosphere with energy e. along 

the direction (6,, 0, = 0) to be backscattered out of the photosphere along the direction 

(0, 0) due to a single scattering is given as follows: The probability for this photon to 

traverse X(H-atoms/cm 2 ) without scattering is 

Pa= exp [-(a + )XI. (C. 1) 

The probability for this photon to experience a Compton scattering in the distance dx 

along the direction (0, @) is 

du0 

Pb =d 0, (00 , 0, 0), 0s)dX. (C. 2) 

The probability for the photon to escape from the photosphere after the Compton scatter­

ing without further scattering is 

Po =exP [(Uc +o)xQCo)] (C.3) 

By multiplying equations (C. 1), (C. 2), and (C.3) and integrating over x from 0 to w, 

we get 

I dao 
1 ' AXe16= (c. 0)

S (e)o M,+), Os o ') + aa(eo)dS" ( '' , -cos0 (0.4) 
cos 0 

where cos 6s = cos 00 cos + sin 00 sin0 cost. 

We have already discussed in Section III.B how to find the Stokes parameters after 

the scattering. Since we know the reflection probability due to a single scattering, we 

can find the degree of polarization of photons reflected (due to a single scattering) along 

a given direction, by numerically integrating over the incident direction. 
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