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INTERIOR AND EXTERIOR FUSELAGE NOISE

MEASURED ON NASA'S C-8A AUGMENTOR WING JET-STOL RESEARCH AIRCRAFT

Michael D. Shovlin

Ames Research Center

Moffett Field, California 94035

SUMMARY

Interior and exterior fuselage noise levels were measured on NASA's
z

C-8A Augmentor Wing Jet-STOL Research Aircraft in order to provide

a

design information for the Quiet Short-Haul Research Aircraft (QSRA),

which will use a modified C-8A fuselage. The noise field was mapped by

i 11 microphones located internally and externally in three areas: mid-

fuselage, aft fuselage, and on the flight deck. Noise levels were recorded

at four power settings varying from takeoff to flight idle and were
if

plotted in one-third octave band spectra. The overall sound pressure

levels of the external noise field were compared to previous tests and

found to correlate well with engine primary thrust levels. Fuselage

values were 145t3dB over the aircraft ' s normal STOL operating range.
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INTRODUCTION

12

Shortly after NASA's C-8A Buffalo Augmentor Wing Jet-STOL Research
a

Aircraft (AWJSRA) became operational in 1972, a number of fatigue cracks

were noticed in the mid and aft fuselage areas. 	 After an initial series

of cracks, fatigue damage occurrence dropped to a level where an occasional

crack was noted and repaired during post flight inspection. 	 This fatigue #

G damage was attributed to the high structural-acoustic loads generated by

the propulsive-lift system and jet exhaust on a fuselage that had

_ originally been designed by de Havilland, Ltd. for use in the C-8A

turboprop transport aircraft.

A second prototype C-8A Buffalo fuselage is being used in the Quiet µG

Short-Haul Research Aircraft (QSRA), which is currently being designed

by the Boeing Commercial Airplane Company, and which will be used to

' i erform research in the hybrid up per surface blown propulsive-liftP	 Y	 PP	 ulsive-liftP	 P 1

concept.	 Although the QSRA will be an exceptionally quiet airplane, the

propulsive-lift system exposes the aircraft structure to an extremely

harsh environment, particularly on the sides of the fuselage aft of the
s
=y.". wing trailing edge.	 Because fatigue damage had occurred in AWJSRA's C-8A

fuselage which was attributed to structural-acoustic loads, there is

concern that the QSRA's C-8A fuselage will also be subject to fatigue

damage resulting from a similar environment. 	 The fatigue damage that

.'% occurred in the AWJSRA program was more of an annoyance than a safety '<

hazard and it is felt that if the QSRA's environment were the same or

t less severe than that of the AWJSRA then no costly modifications would

be required to its fuselage. 	 Conversely, if the environment proves to

be substantially more severe, then modification might be required to the

QSRA fuselage to assure flight safety. 	 Boeing predicted the sonic

environment of the QSRA.	 Although the AWJSRA had a history of previous

r
fatigue damage, the structural-acoustic environment had not been 'measured

or predicted prior to the current test.
r
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The present study presents the results of a series of noise measure-

s ments made simultaneously inside and outside the AWJSRA fuselage in

three areas:	 mid fuselage in the area of maximum fatigue damage; aft

fuselage section where QSRA sonic environment is expected to be the most

severe; and the flight deck at the pilot's station.

Contributions by Paul T. Soderman in support of the acoustic analysis

and of Vard B. Holland and Bruce Lilley in support of the aircraft

F;

r

operations are gratefully acknowledged.

MODIFIED C-8A AIRCRAFT

f

The C-8A Buffalo Augmentor Wing Jet-STOL Research Aircraft is a

modified version of a high-wing, T-tail turboprop military transport

manufactured by de Havilland, Ltd. of Canada, and modified jointly by

the Boeing Commercial Airplane Company and de Havilland. 	 It is used to

study the design and operational characteristics of jet-STOL aircraft

is using split-flow turbofan engines to provide both direct propulsive lift

and augmentor wing lift. 	 A description of the modified C-8A is given in

r" Table	 and in figure 1.	 Additional details of the flight and research

characteristics of the aircraft are given in reference 1 and 2. 	 Several

features of its powered-lift and propulsion system are briefly described

below, while a more complete description of all the aircraft's design

features is given in reference 3.

t, c

a	 Propulsion System
i

Two Rolls Royce Spey MK 801-SF split flow engines, one mounted in 	 r

each nacelle (figure 1), provide thrust for the aircraft as well as air
i

for the augmentation system. These are hybrid engines built by Rolls 	 j

Royce specifically for this application with a 0.6 bypass ratio and a 	 {

maximum cold flow pressure ratio of 2.5. The engine hot flow is

discharged into a Pegasus trouser piece and out through two vectorable

-3-
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conical nozzles (figure 2), while the cold flow is collected and dis-

charged through two 0.33 m diameter ducts located at the top of the

engine which supply the distribution system described below. The hot

and cold flow engine thrust split is shown on figure 3 where the cold

(bypass, air) thrust shown is the isentropic thrust at the engine offtake.

Air Distribution System ^_4

The distribution system directs the engine cold flow air to the

augmentor nozzles, to the aileron nozzles, and to the fuselage boundary

layer blowing nozzles, as shown in figures 4 and 5.

"	 I A crossover ducting system directs approximately 64 percent of the

{ bypass mass flow along the front of the wing and across the interior of

the fuselage to the augmentor and aileron nozzles on the opposite side

of the airplane and to half of the fuselage boundary layer blowing

nozzles; the remaining 36 percent of the flow is directed back to the

r• augmentor nozzles on the same side as the engine.	 Of the 64 percent of

the engine mass flow carried by the crossover ducting system, approx-

imately 7 percent is used for fuselage blowing, 44 percent by the

augmentor nozzles, and the remaining 13 percent by the aileron boundary

layer control nozzles (figures 5 and 6). 	 For reference, the physical

n characteristics of the mass flow at the takeoff power-setting are 36

kg /'sec per engine at 132°C with a pressure ratio of 2.5.

ACOUSTIC TEST

The aircraft near field noise levels were measured at the Ames

Research Center ' s X-14 static test site which is located away from the

Center's main buildings. 	 Figure 7 shows the C-8A parked on one of the
t

heavy thrust pads of the site, where the nearest building, a trailer, (

was approximately 35 m away and in a line slightly forward of the-,

1

• instrumented quadrant.

" ^
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The left side of the aircraft was chosen for the test measurements

because the fuselage interior on that side was essentially an unmodified

C-8A configuration, while the right side of the fuselage forward of the

door has additional hydraulic and test equipment installed on the fuse-

lage structure. In addition to being more accessible, the left side

appears to have sustained a higher level, of fatigue damage, possibly

because the new systems on the right side add considerable stiffness and

increased mass.

1 ­1
The interior was acoustically isolated from the exterior field as

PjA "l
-1

much as possible; the fuselage air vents and blowout panels were stuffed

with polyurethane foam; the blowout area was covered with a sheet of K,

1.25 cm exterior plywood.	 Resonance effects in the fuselage cavity were

minimized by a series of equipment racks running down the center of the

fuselage one meter from the flight deck to, with the addition of the

noise measuring equipment, within one meter of the door, 	 In addition,

the crossover ducts ran across the center of the fuselage and a large

number of aircraft systems were ceiling or side mounted, giving large

numbers of random surfaces throughout the fuselage interior.	 Finally,
A'A

all of the fuselage thermal insulation pads have been removed, resulting ;_^

in bare aircraft structure with virtually all of the fuselage interior

surface acoustically hard.

Equipment and Installation

The noise data was measured with 11 Bruel and Kjaer 1.27 cm (1/2

inch) diameter, type 4133, condenser microphones and recorded on an

Ampex FR1300 A multichannel tape recorder. 	 Microphones 7-11, were equipped

with wind shield nose cones; however, no appreciable flow was observed

over or around them during the test. IT

The interior microphones (2-6) were mounted on "C" clamp fixtures

(see figure 8) which were attached to the aircraft structure by using ^^

fiberboard and aluminum pressure pads, assuring a rigid mount at the

clamp end.	 The 0.'64 cm (1/4 inch) steel rod end was bent so that a



microphone taped to it would be positioned in the center of a panel

area, about 1-2 cm from the skin surface. Vibration of the , rod end with

its attached microphone was minimized by running tape from it to different

surrounding aircraft frames.

In the mid-fuselage area, three microphones (7-9) were used to

measure the external field (figure 9).	 These microphones were mounted
a

on 1.82 m stands with the diaphragm parallel to the ground and pointing .,

up.	 (The ground power cables shown in the picture were removed when the A

engine was started).	 The three interior microphones (2-4) are shown in

i figure 9, where 2 and 3 are installed between window frames and 4 is

a installed on the panel above the frame because of the fire extinguisher

location.	 A portion of the crossover duct can also be seen in the right

hand corner of the figure, just above microphone 2. 	 The physical locations
of each of the microphones, 2-4 and 7-9, are shown on the sketch of

figure 10.
x

The locations of the aft fuselage microphones (4, 5, 10, and 11)

' are shown in figures 11 and 12. 	 The left side of the fuselage is somewhat

cluttered aft of the door, with safety equipment and a main electrical a

panel, requiring these microphones to be placed rearward of this area.

The microphones were located half way from the floor to the fuselage

shoulder and on both sides of the main support frame at the end of the

f cargo ramp. The external microphones (10-11) were placed outside directly

.. {	 opposite the interior microphones (5-6) and positioned approximately-5

cm from the fuselage skin with the diaphragm parallel to the ground and
A

pointing upwards.

A single microphone (No. 1), was installed on the flight deck,

behind the left hand seat 0.91 , m above the floor, 12 cm to the left of.

center of the pilot ' s seat (see figure 13).

x'

-6-_

* "°r..	 mss, ^ -^.	 °-	 ^. '^	 -x^;	 r	 . -^^^,r	 K,,.^r.	 -•^..^.---.,^...._.	 .._	 .,..._,._.,,
x	 ^- ` a

,e
e	 :^t'^^e.°"^	 ._ r.	 G	 ^'y .:	 ..ua_-..;^.1^K ^.... _,..eaa..r..,..u... 	 :^^^r^ ..^ 	 t9.^. ,_ 	 "1`	 m..k'ti	 xdz^,,• :	 .,...	 .^......_..,__^:s.._.x.a,....:..,^_^,.^,,.^.:...,^...,..,:e. _ b...._^:^..,^



Test Procedure

rl During the test only the left hand engine was operated. 	 Although
v i

this procedure would adequately define the incident field in a normal s

F - aircraft, the augmentor jet flap concept is unique in that approximately

half of the au	 entor flap flow is provided b	 the opposite side engine.^	 p	 P	 Y	 PP	 g 1
The impact of the operating procedure on the data will be discussed in a

later section.

1i'	 t The engine was started and allowed to run at ground idle until its

€
V

operating parameters stabilized; at that time data was taken at the

following engine power settings:	 flight idle, normal takeoff, maximum }
u

continuous, flight idle, and 80 percent. 	 A detailed list of engine

M operating parameters is given in table II.	 The engine was stabilized at

ti each power setting and then data was recorded for approximately one

minute.	 The slight upward shift of the flight idle speed for the second

e3 point (table II) is due to the increased temperature of the engine and

nacelle at the end of the test. i

a t

The aircraft flaps and hot nozzles were set at their minimum de- k	 -'

flected positions of 5.6 and 6 degrees below the horizontal respectively.

These angle settings were maintained for the test series in order to

e prevent engine operating problems due to reingestion and to limit i	
y

ground reflection as much as possible. x
f

While the acoustic data was being recorded the atmospheric conditions^.

were fairly ideal with a temperature of 22.2°C and a relative humidity

of 46 percent, a barometric,; pressure of 29.98 inches of mercury and

winds less than 2 m/sec.

PRESENTATION OF DATA

i The results of the acoustic measurements of the external field

(microphones 7 -11) are given in figures 14-18 as one-third octave band

E
f
M
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frequency spectra.	 The one-third octave band analysis was computed with

° a Bruel and Kjaer Real Time Analyzer with all data integrated over a .A

` y period of 30 seconds or longer. There is some clipping at the higher

I
power settings in all of the external field data; the amount varies with

microphone location with the least amount at microphone 9.

The results of the internal measurements (microphones 2-6) are

given in figures 19-23 as one-third octave spectral data.	 There was a _Y

F slight amount of clipping at the mid-fuselage locations during high

power settings.	 Microphone 2, which showed severe clipping, was in-

t,. stalled using a goose neck, and became detached from its pre-amplifier

during the test..	 In addition, the crossover duct and wing structural

transmission paths introduce an undetermined amount of noise and vi-

" bration in the vicinity of microphone 2.	 Because of these factors,

care should be taken when interpretingthe data presented in these yy

figures.

The one-third octave band spectral data measured on the flight deck

is presented in figure 24. 	 Care should also be taken in interpreting

this data, as a crew member opened a window on the right side of the
w

aircraft sometime in the later stages of the test.

External Acoustic Field

F A prime objective of this study is to define the external fuselage

9 structural-acoustic environment with sufficient accuracy to provide

r design information that can be used to provide design data for the QSRA- fY

t. C-8A fuselage with minimum cost impact. 	 The highest accuracy is re-

quired in the low and mid-frequency range which has the greatest potential

impact on structural damage; the overall sound pressure levels, however,

' should be representative of the levels experienced in the normal operation.

r,

r _8-
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One Engine Operation: - Only the left side engine was operated during

the test, resulting in an accurate representation of the hot thrust, but

providing only half of the usual two-engine cold flow. The effect of

this reduced cold flow on the level of the faselage acoustic field is

believed to be minimal for several reasons: (a) in previous far field

measurements (ref. 4), the dominant noise source was determined to be

the primary exhaust system of the Spey engine; (b) in the previous two-

engine test, the far field noise levels were shown to correlate well

with the hot thrust level, and, (c) the majority of low and mid-fuselage

noise is produced by the hot flow, which is accurately represented.

Acoustic Source Characteristics: - The Spey engine hot thrust is directed

into a Pegasus trouser piece and out through two conical nozzles, each

with an exit diameter of 0.54 m and area of 0.23 m2 (figure 2).	 in

addition	 the correct back pressure on the engine is maintained by use

{ of a "colander plate" inserted in the inlet to the trouser piece, which

consists of a plate with four hundred 2.54 cm holes.	 All of the hoti
flow that passes through this plate, is split into two streams in the

trouser piece, and then is exited through the two conical nozzles.

r̀
Representative physical characteristics of this hot flow are given in

figure 25 0 where the velocities are for fully expanded flow.	 Additional

information on the hot and cold flow characteristics of this engine are

F given in references 3, 4, and 5.

E
The second major source in the external noise field is the augmentor

nozzle and flap system which is shown in figures 1, 4, 5, and 26.	 The

augmentor nozzle consists of two nozzles located one above the other,

each with a geometric height of 04533-cm, an effective.height of 0.466

cm, and length of 7.15 m.

These nozzles direct the high pressure cold flow into the bi-

surface_augmentor flap proper, where it is aligned with the center of

the diffusing and mixing chamber formed by the upper and lower flap

-9-



surface (figure 26).	 The high velocity (sonic) air from the nozzle is

shielded from the flap surfaces by the secondary air induced by the

augmentation process in order to minimize losses.

The location of these sources relative to the microphones are shown

on figure 27.	 Assuming a potential core length of about 5 ­7 nozzle

diameters, the jet transition region would be located from 3 to 7 m

downstream of the nozzle exit, placing the maximum noise generation area

about 3 m from the mid-fuselage, assuring a fairly uniform acoustic

field on the area aft of the wing trailing edge.

The data from the present test were extrapolated to the far field

using the r-square distance variation and correcting for two-engine

operation, resulting in values approximately 6dB above the corresponding

true free field level. 	 These data are shown (figure 28) to correlate

well with the OASPL vs thrust curve of ref. 4, exhibiting a similar

change of OASPL level with hot thrust variation.

Fuselage Sound Pressure Levels

The sound pressure levels (OASPL) are given in table III for each

microphone location (7-11) and power setting. The sound pressure levels

varied from 145dB at maximum continuous power to 148dB on the aft

fuselage at takeoff power.

The normal operating range of the AWJSRA is from a power setting in

the neighborhood of 90 percent high pressure compressor speed, N
h3p

during cruise and ferry missions to a STOL operating range of 93 to 99

percent Nh . In actual practice the lower limit of the STOL operating

range is shifted toward the max/continuous power setting due to the

ambient temperature usually being higher than that of the standard day

during most of the STOL operations (ref. 6). The average value of sound

_10-
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pressure level on the mid-fuselage during maximum continuous operation 	 3
(96 percent Nh) was 145dB. From figure 28 it can be seen that the level

would be about 3dB higher at takeoff power (99 percent N h), which agrees	 },

with the measured data, and about 3dB lower at the approach power setting
s

(93 percent N ), yielding an average sound pressure level in the mid- 	 }}
h	 1

fuselage area of 14513dB during STOL operations. The sound pressure

levels would be slightly lower on the aft-fuselage, as the nozzles

usually point downwards at the higher power settings and some small 	
L

effect from forward speed can be expected.

f

CONCLUDING REMARKS

The internal and external noise levers on the fuselage of the C-8A
i

Augmentor Wing Jet-STOL Research Aircraft were measured to provide

1	
design information for the Quiet Short-Haul Research Aircraft, which

j

will use a similar C-8A fuselage. This noise field was mapped by 11

(	 microphones located in the aft and mid-fuselage areas and on the flight

deck. Data was recorded at four power settings varying from flight idle

to takeoff and plotted in one-third octave band spectra. Measurements

were made on the left side of the aircraft with only the left eng'i.^e

'	 operating, however, it is believed that the sound field is adequately

represented, particularly at low and mid-frequencies. Previous tests

showed that the dominant noise source was the hot exhaust floe of the

Rolls Royce Spey 801 SF engine, and measured data from the present test

show a similar dependence on hot thrust level. The measured values of

the external field varied from 145 to 148dB at the higher power settings.

The overall sound pressure level on the fuselage aft of the wing is

predicted to be in the'range of 145i ,3dB during normal. STOL operations,

based on the observed OASPL variation with hot thrust level.

Ames Research Center

National Aeronautics'and Space Administration

t	 Moffett 'Field, California 94035, March 31, 1977
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Table I.- Modified C-8A Aircraft Characteristics

Weiahts, N

Maximum gross 213,000
Maximum gross (STOL takeoff) 200,000.

AA Maximum gross (STOL landing) 191,000
Operational empty 145,000

Areas, m

Wing area 80
Wir.g flap area (including ailerons) 17
Horizontal tail area 21
Vertical tail area 14

YV Dimensions and General Data

Wing, m
tA Span 24

Root chord 3.8
Tip chord 2.3
Mean Aerodynamic chord 3.7
Sweepback at 40 percent chord, rad 0.0
Dihedral, outer wing only, rad 0.09

A

(Note:	 Wing taper and dihedral each start 5.4 m
from plane of symmetry.)

Aspect ratio 7.2

Horizontal tail, m

Span 9.7
Root chord 2.5
Mean Aerodynamic chord 1.9
Sweep of leading edge, rad 0.08
Dihedral, rad 0.0
Aspect ratio 4.4

f4

Vertical tail, m

Span 4.1
Root chord 4.2
Mean Aerodynamic chord 3.5

Sweep of leading edge, rad 0.4
1.2Aspect ratio

Overall height, m 8.8
Overall length (with 4.9 m nose boom), m 28.3

13



Control Surface Deflections
4

Flaps 0.1 rad down to 1.26 rad down

Conical nozzles 0.11 to 1.82 rad (down from aft
of aircraft)

Ailerons t0.3 rad about a +0.61 rad
max droop angle

Augmentor choke 55 percent choke gap closure at s^
maximum flap deflection
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Figure 7.—AWJSR& at Ames Research Center's X-14 test site.
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(a) Interior microphones 2-4.

Figure 9.- Mid-fuselage microphone installation.
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(b) Exterior microphones 7-9.

Figure 9.- Concluded.
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(a) Interior microphones S and 6.

Figure 11.- Aft fuselage microphone installation.
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(b) Exterior microphones 10 and 11.

Figure ll.- Concluded.
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Figure 13.— Flight deck microphone installation.
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