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corresponding flow parameters for an ideal diatomic gas are negligible, Thus, in
the incompressible flow regime, cryogenic hydrogen is an acceptable test gas.

Hydrogen properties and fan drive-power requirements related to a hydrogen wind
tunnel were also examined. The drive power requirements were found to decrease
with decreasing temperature and may be adequately predicted by using modified
versions of the ideal gas equations. Since gaseous hydrogen is capable of
penetrating and degrading the mechanical characteristics of numerous materials,
materials known to be compatible with hydrogen must be used exclusively. in the
design of a hydrogen wind tunnel to avoid problems as a resull of exposure to
gaseous hydrogen.

A literature survey resulted in the conclusion that aithough hydrogen is a highly
combustible substance, safety codes exist which, when followed, minimize the risk
involved in handling hydrogen.
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EVALUATION OF HYDROGEN AS A CRYOGENIC WIND TUNNEL TEST GAS
By Richard C. Haut#
0ld Dominion University

Norfolk, Virginia

SUMMARY

A theoretical snalysis of the properties of'hydrogen has been
made to determine the suitability of hydrogen as a cryogenic wind
tunnel test gaé. By using cryogenic hydrogen, instead of air or
cryogenic nitrogen, as the wind tunnel test gas, a significant
increase in the test Reynolds number may be achieved without increasing
the aercdynamic loads. Under sonic conditions, for example, compared
to air at ambient temperature, cryogenic hydrogen at a pressure of
one atmosphere produces an increase in Reynolds number of a factor of
approximately fourteen while cryogenie nitrogen, at the same pressure,
produces an increase of only a factor of about six.

The theoretical saturation boundary for parshydrogen is well
defihed. Thus, any possible effecits caused by the liguefaction of the
test gas can easily be avoided by knowing the maximum local Mach
number on the model.

The nondimensional ratios used to describe various flow situations
in hydrogen were determined and compared with the corresponding ideal
diatomic gas ratios. The results were used to examine different
inviscid flow configurations. This investigation concluded that the

relatively high wvalue of the characteristic rotational temperature-

¥Graduate Student, Department of Mechanical Engineering and
Mechanics, 0ld Dominion University, Worfolk, Virginia.
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causes the behavior of hydrogen, under cryogenic conditions, to
deviate substantially from the behavior of an ideal diatomic gas

in the compressible flow regime. Therefore, if an ideal diatomic
gas, is to be modeled, cryogenic hydrogen is unacceptable as a wind
tunnel test gas in a compressible flow situaiion.

However, at low Mach numbers where the assumption of incompressibility
is valid, the deviation in the isentropiec flow parameters for
cryogenic parahydrogen from the corresponding flow parameters for an
ideal diatomic gas are negligible. Thus, in the incompressible flow
regime, cryogenic hydrogen is an acceptable test gas.

Hydrogen properties and fan drive-power requirements related to
a hydrogen wind tunnel were azlso examined., The drive power require-
ments were found to decrease with decreasing temperature and may be
adequately predicted by using modified versions of the ideal gas
equations. Since gaseous hydrogen is capable of penetrating and
degrading the mechanical characteristics of numerous materials,
materials known to be compatible with hydrogen must be used exclusively
in the design of a hydrogen wind tunnel to avoid problems as a result
of exposure to gaseocus hydrogen.

A literature survey resulted in the conclusion that although
hydrogen is a highly ccombustible substance, safebty codes exist which,

when followed, minimize the risk involved in handling hydrogen.
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IHTRODUCTTION

The wind tunnel has been the primary tool for experimental aero-
dynamic research and development for many decades. Because of the
increase in size and speed of proposed aircraft configurations, a need
has developed over the years for improved ground testing capabilities
in terms of Reynolds number. The need has been well documented, for
example, in references 1 and 2. Programns aimed at the development of
efficient transport aircraft end maneuvering fighter aircraft to operate
at transonic speeds have demonstrated some of the deficiencies in the
testing capabilities of present day wind tunnels, especially with
respect to adequate Reynolds number simuletion. In the transonic
region, one of the major problems is the inability to adequately
determine the effect of Reynolds number on the boundary layer - shock
wave interactions, and in turn, on the ferformance, stability, and
trim characteristics of the aircraft.

The test Reynolds nﬁmber at a given Mach number may be increased
by using a heavy gaé rather than air as the test gas, by increasing
the size of the model and tunnel, by increasing the operating pressure
of the tunnel, and by reducing the test temperature. She dynamic
pressure, mass flow rate, and power consumption of the tumnnel will, in
general, be affected by the melhod chosen to increase the Reynolds
number.

the use of a heavy gas, such as Freon-12, is a well-xknown method
of achieving high Reynolds numberc. However, when conmpressibility
effects become significant, the difference between the ratics of

specific heats between the heavy gus enda air leads Lo an improper Ilow

RODUCIBILITY OF P
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simulation, thus msking the use of a heavy gas unsuitable for tests at
transonic speeds,

The more common approaches of increasing the gize and increasing
the stagnation pressure in order to increase the Reynolds number involve
serious problems concerning the cost of construction and operation, the
model and support loads, and the difficulty of providing continuous—
flow capability due to the large power requirements.

The fourth method of increasing the test Reynolds number, reducing
the test tempersture, offers an atiractive solution to many of the
preceding problems. However, as the test temperature is reduced the
properties of the test gas may begin to deviate significantly from
the properties of air, which, for all practical purposes under the
conditions encountered in flight, behaves like an ideal diatomic gas.
The real gas effects may become appreciable at cryogenic temperatures
and may slter the aerodynamic test results. Therefore, an analysis
must be performed to determine if a particular gas at cryogenic
temperatures and anticipated operating pressures is acceptable for
wind tunnel re;earch.

A cryogenic wind tunnel concept has evolved at the NASA Langley
Research Center in which liquid nitrogen is sprayed directly into the
tunnel circuit to cool the tunnel structure, remove the heat input
from the drive fan, and balance the heat conducted into the stream
through the tunnel walls. Nitrogen is the resulting test gas using
this cooling procedure. Throughout the development of the concept,
experimental and theoretical studies have bheen performed to assess the
suitability of cryogenic nitrogen as a test gas. By analyzing real

gas isentropic and normal shock solutions, and by measuring the surface



pressures on an airfoil, Adcock, Kilgore, and Ray, in reference 3,
concluded that the real gas effects of nitrogen at cryogenic tempera-
tufes pose no problem in its application in a cryogenic transonic wind
tunnel operating at sfagnation.pressures up to five atmospheres.

Nitrogen is, of course, not the only gas that may be considered for
use. &t cryogenic temperatures. In theory, any diatomic gas will do.
One of the most promising diatomic gases in addition to nitrogen is
hydrogen. Because of the lower vapor temperature, even higher test
Reynolds numbers may be obtained by using cryogenic hydrogen rather
than nitrogen. For example, at a pressure of one atmosphere, when
compared to ambient air, cryogenic nitrogen and hydrogen, produce
increases in Reynolds number by factors of approximately six and four-
teen respectively for sonic flows. Alternatively, in a given size
wind tunnel, it is possible to achieve a desired test Reynolds number
at a lower total pressure by using hydrogen instead of nitrogen,
thereby reducing the model, sting, and balance loads.

This thesis contains a theoretical analysis of those properties
of hydrogen needed to determine if, in fact, it is suitable for use as
a wind tunnel test gas. The thesis is divided as follows: In Chapter
I, some of the fundemental properties essential to understand hydrogen
are presented. In Chapters ITI, III, and IV scme of the nondimensional
ratios used to describe various flow situations in hydrogen are
determined and compared with the corresponding ideal diatomic gas
ratios. Chapters V and VI present inviscid flow examples to illustrate
the deviations studied in Chapters II through IV. Hydrogen properties

and fan drive-power requirements related to a hydrogen wind tunnel are



'presented in Chepter VII. TFinally, recommendations are made concerning

the use of hydrogen as a possible wind tunnel test gas.



CHAPTER I

PROPLRTIES OF GASEOUS HYDROGEN

I.1. Introduction,

Hydrogen is a homonuclear diatomic molecule having a relastively
high-characteristic rotational temperature. Because of its molecular
composition hydrogen demonstrates various anomelies in its properties
affecting its suitability as a wind tunnel test gas. The purpose

of this chapter is to introduce the reader to the major peculiarities.

I.2. Ortho—, Para~, Hormal-, and Equilibrium Kydrogen.

Hydrogen consists of a mixture of two different types of molecules
having different optical and thermal properties. %These two distinct
forms of hydrogen are known as parahydrogen (p—Hg) and orthohydrogen
(o—H2). The parahydrogen molecules have antiparallel nuclear spins
and even rotabional guantum numbers, vhile the orthohydrogen molecules
possess parallel n;clear spins and odd rotational gquantum numbers.
Figure 1 illustrates the difference between ortlio~ and parahydrogen.

The thermodynamical equilibrium between ortho~ and parakydrogen
is governed by Foltzmann's distribution law as presented in reference
L. According to this law the fraction of the molecules, Nj, of the
total number of molecules, Nt, in the rotationsl state j is given by
the equation

-k,

= )
NJ. N £P5SXP i (1.1)

where



PJ = gtatistical weight of the state
E,j = statistical energy of the state
ky = Boltzmann's constant

i

temperature

and where Nt mey be taken as equal to one. Since all parahydrogen
molecules heve even rotational quantum numbers and all orthohydrbgen
molecules have odd rotationsl quantum numbers, the ratio, B, of the
concentration of the two forms is given by

A

Lz - iz] i5even B
2 e ()

Or, considering the energy of the state J and the statistical weight

w

(1.2)

as governed by the quantum stabistics applicable to the nuclei

h2
J(5+1) = j(j+1)b
d 8w2I

=
f

2J+1 for Jj = even

b, = & g
J nuel.” odd

3(2j+1) for

where
I = moment of inertia
h = Planck's constant
g = statistical weight of a degenerate state

then



Z (2j+1) exp ,:l%i%-)-ll]
B = J=even B

2. eslen lz‘l%%“"
J=odd 3

(1.3)

or
-66 -~206 ~h20
1+ 5 exp Tr + 9 exp T t3Y 13 exp 0 Y
b= 56 120 360 (1.4)
313 exp Tr + T exp 0 L)+ 11 exp o =5 B
where
Gr = b/kB = 84,837 K (from reference L)
since
h = 6.55 x 10"2T erg/sec
I=h67x 1o'hl g-cm2

kB = 1.373 x 10—16 erg/K

Equetion 1.4 gives the composition of equilibriun hydrogen as a
function of temperature and is illustrated in figure 2. At high
temperatures (around room temperature) the constant b is much less

than kBT cgusing the equilibrium ratio to approach the ratio

B+ 1/3 (high temperature limit) (1.5}



The high temperature eguilibrium mixture, consisting of twenty-five
percent parahydrogen molecules and seventy-five percent orthohydrogen
molecules, is classified as normal hydrogen and is_the equilibrium
composition of hydrogen at room temperature and above.

The value of b becomes much greater than 'kBT as the temperature

approaches absolute zero, and from equation 1.4 the equilibrium ratio

approaches the limit
B -+ » (low temperature limit) {1.6)

Thus? at very low temperatures ‘equilibrium hydrogen consists of

egsgentially all parahydrogen molecules. Hydrogen at the lower

temperature limit consists of pure parahydrogen because as the

temperature is lowered all molecules gradually pass into the lowest

state having the quantum number zero, which is a parahydrogen state.
However, according to reference 4, the rate of conversion from

parahydrogen to orthohydrogen, that is, the rate at which equilibrium

between the two species is approached, is extremely slow unless the hydrogen.

is heated in the presence of a suitable catalyst, such as oxygen or charcoal.

In general the self conversion rate (no catalyst. present) is a fuﬁction of

temperature. TFor example at liquid air temperatures the half life,

defined as the time required to convert one half of the excess ortho-

or pare composition present at the starting time, of the conversion is

greater than a year while at 923 K and 0.0657 atmospheyes the half life

is only on the order of ten minutes. Since the hydrogen that would

be used as a wind tunnel test gas would probably be stored in liquid



form, and considering that the experimental run times are relatively
short compared to the para-ortho conversion time, the simplifying
assumption will be made that the hydrcgen gas being used in the wind

tunnel is pure parahydrogen.

1.3 Characteristic Rotational Temperature.

As previously mentioned, the charaéteristic rotational temperature
for hydrogen is relatively high. Because of this high value, hydrogen
can exist in the gaseous state for temperatures lower than the
characteristic rotational temperature. A range of influence sssociated
with the characteristic rotational temperature can be expected so that
at the lower temperature limit hydrogen should behave like an ideal
monotomic gas and at the higher temperature 1imit (around room
temperaturc) hydrogen should behave like an ideal diatomic gas.,

The range of influence may be analyzed by considering the rotational
rartition function for a homonuclear diatomic molecule given as (see,

for example, reference 5)

g (g -1) 0
Q’rot(odd) = "'n—""‘""_g Z (2j+l)e;x.p {—j(_j+l) -'.’:.‘-I;}

Jj=even
g (g +1) E 6
+ 0 2n (2j+1)exp {—j(j+l) TE} (1.7a)
j=odd.
or
g {g +1) 9
Qrot(even) = = g EE: (2j+1)exp {—j(J+l) TE}
J=even

gz, (g ~1) 8
+ = E (23+1)exp {-j(3+l) ,—l—r-; (1.7b)
j=odd
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where &, is the nuclear degeneracy. Equations 1.Ta and 1.Tb are for
odd and even mass number homonuclear molecules, respectively.

In most cases the characteristic rotational temperature, er’ is
near gbsolute zero (for example, Br is 2.1 X for oxygen and 2.9 K for
nitrogen}. Thus, the temperatures at which the gaseous phase exists
are much greater than the characteristic rotational temperature. Under

these conditions equations 1.7a and 1.7b both reduce to the form

o0 3]
i 2 r
Q =g z :(23+l)exp =3(3+1) =~ (1.8)
(rm) T>>8_ 2 "n 5=0 { . T

The sum for Sr << T is essentially equal to the area under a curve
of (23+l)exp{—j(j+l)9r/T} versus J and the summation may be replaced

with an integral

e ;]
(Qroi) = '%' 5121 j (2j+1)exp {“j(jﬂ) E,-ll}dj (1.9)
T>>er o

from which

27T
Q.. = =g o {1.10)
( ro’t) T>>er Gr )

n |-

n

Because the value of the characteristic rotational temperature for
hydrogen is large (Gr = 84.837 K for hydrogen), equation 1.10 does not
hold throughout the gaseous region of hydrogen. ZEquation 1.7a must be
used to determined the rotational partition function of hydrogen because
it has an odd mass number {equal to one). The nuclear degeneracy is

given by
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g = Emh + 1 (1.11)

where m is the nuclear spin quantum number (m.Il = %-for hydrogen}.

Substituting inteo equation 1.Ta yields

J=even

8
+ 3 Z (23+1)exp {-3{3+1) EE} (1.12)

J=oad

. 8
: = = : —if3 4
Qrot - Qrot,para * Qrot,ortho :E:: (2§41 Jexp { 3(3+1) T }

where the first summation represents the contributicn from the vara-
states and the second summation represents the contribution from the
ortho-states,

Figure 3 illustrates the influence range of the characteristic
rotational temperature for parshydrogen. At temperstures well below
the characteristic rotational tewperature the rotational partition

functicn, Q s is approximately equal to oue, signifying that the

rot ,para
rotaticnal mode is unexcited and that the gas should behave similar

to an ideal monatomic ges. For parahydrogen this occurs for tempera-
tures below approximately T5 K. For temperatures well above the
characteristic rotational temperature the rotational partiiion function
should approach the ideal diatomic gas rotational partition function
given by eguation 1.10. For parahyd?ogen, the rotational partition
funection must be multiplied by four since at higher temperatures
equilibrium hydrogen consists of only twenty-five percent parahydrogen.

Thus, for temperatures above approximately 200 K, the rot.tional

contribution is the dominant factor and parahydrogen may bte treated
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as an ideal diatomic gas. Therefore, parahydrogen may be expected to
behave similar to an ideal monatomic gas for temperatures less than
75 K and similar to an ideal diatomic gas for temperatures greater than
200 K.

The main part of this thesis will be concerned with how the
characteristic rotational temperature influences the properties of
gaseous hydrogen and the resulting deviations of hydrogen from the

behavior of an ideal diatomic gas,

1.4  Parahydrogen Equation of State.

There are literally hundreds of “equations of state" which have
been developed to deseribe parahydrogen. For example, references 6, 7,
8, 9, and 10 describe some of the equations of state to be found in the
literature.

Today there sre four general methods developed by the National
Bureau of Standards (NBS)} used to computerize the thermodynamic
properties of fluids. These are: linear interpolation; thirty-three
term modified Benedict Webb Rubin (MBWR); polynomial interpolation;
and s twenty term MBWR., The linear interpolation method is an
interpolation on a table of property values stored in compufer. The
method is fast but not very accurate (average of 1%) and requires more
computer core storage than the other methods. The most accurate
method, better than 0.1% average, is the polynomigl interpolation
method. The major disadventage of the polynomial method is' that the
computations are slow relative to the other methods.

A pgood compromise, and a widely used method, is the thirty-three

term modified Benedict Webb Rubin equation of state. The method is



faster than the polynomial interpolation and has an accuracy only
slightly worse (0.1% average). The major disadvantage of the MBWR is
the great inaccuracies near the critical region (éo% error in density
and 5% in temperature).

On a recommendation from the personnel of the HBS Cryogenics
Division, the polynomial interpolation equation of state for para-
hydrogen was selected for use in this study and a computer program was
obtained directly from them. The program gives the thermodynamic and
related properties of parahydrogen from the triple point to 300 X at

Pressures to 1000 bar.

I.5 Saturabion Boundary.

The minimum tobal temperature which could conceivably be used in a
hydrogen wind tunnel depends on several factors, but is Lasically
dependent upon the onset of condensation. The assumption is made that
condensation must be avoided under all conditions to be encountered
during the testing of a model in the wind tunnel and that condensation
is most likely to occur in localized low pressure regions near the
model. These lov pressure regions may be thought of in terms of high
local Mach numbers encountered near the model. "o calculate the
theorétical saturation boundary, the assumption is made that the test
gas expands isentropically from the total conditions to the maximum
local Mach number.

Using the vapor pressure equation for parahydrogen given in the
HBE program, along with the above assumption;, the theoretical
minimum total temperatures have been caleculated for s range of total

pressures and maximum local Mach numbers, and are presented in
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figure k. For example, if a hydrogen wind tunnel was operating at a
total pressure of five atmospheres and a maximum local Mach number of
0.5, the minimum total temperature which could be used to aveid
condensation would be approximately 28 K. However, if the maximum
locsl Mach number was increased to 1.5, the total temperature would
have to be increased to approximately 37 K.

Total conditions may be selected to avoid any possible errors in
the data caused by condensation by using figure L and by knowing the
maximum local Mach number expected during a test. The theoretical
total conditions necessary to avoid any possible errors due to
condensation are believed to be conservative since the test gas remains
at the high local Mach numbers for only very short periods of time.
If the localized high Mach number regions arve small, a nonequilibrium
frozen flow would exist where the test gas is supersalurated.

As previously mentioned, the Reynolds ﬁumber will increase with
decreasing temperature. Thus the maximum test Reynolds number which
can be achieved at a given total pressure is determined by the
saturation boundary. This will be discussed in greater detail at the

end of this chapter.

I.6 Thermel and Caloric Imperfections.

The need to consider the effects of thermal and caloric imper-
fections on flow characteristics for parahydrogen at cryogenic
temperatures is apparent from figures 5 and 6 where the compressibility
factor, 7, and the ratio of specific heats, CP/CV, as obtained from
reference 11, are shown over a range of temperatures. Departure of %

from the ideal gas value of unity is designated as a thermal imperfection

REPRODUCIBILITY OF TR
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whereas a departure of Cp/cv from the ideal diatomic gas value of
1.k is designated as a caloric imperfection.

Figure 6 illustrates how the specific heat ratio is affected by the
characteristic rotational temperature. For terperatures above 200 K
the specific heat ratio for parahydrogen is approximately the same as
the ideal diatomic gas value of 1.4 whereas, for temperatures less
than 75 X the specific heot ratio corresnonds more closely to¢ the ideal
ronztoric gas value of 1.867.

To evaluate the significance of the nonideal behavior, real-gas
isentropic and real-gas normal-shock flow solutions, along witn other
flow situations, have been obtained for parahydrogen for a range of
Pressures and temperatures down to saturation. The calculation
Procedure and discussion of the results for these flow situations are

presented in the following chapters.

I.7 Transport Properties,

The two transport properties that are of most concern in
experinental aerodynamic research are the viscosity, 1, and the tlermel
conductivity, k. These properties are relatively independent of small
changes in pressure and are plotted in Tigures T and 8 as a function
of temperature as obtained from reference 11.

The two properties along witn the specific heat at constant
pressure combine to give the Prandtl number, Fr, an imporiant dimen—
sionless parameter in viscous heat transfer provlems, defined as

nc

Pr = "iﬂ (1.13)
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This parameter for parahydrogen is shown as a function of temperature

al different pressures in figure 9 as obtained from reference 1l.
Eucken's relation, derivable through kinetic theory (see, for

éxample, reference 12), gives the Prandtl number as a function of

the specific heat ratio, ¥y, as

b
Pr = 57—1‘"5' (1.14)
The relationship gives a value of 0.667 for the Prandtl number of an
ideal monatomic gas where vy = 1,67 and s value of 0.737, which is
approximately the correct value of 0.725, for the Prandtl number of
an ideal diatomic gas where <y = 1.k,

Comparing Eucken's relation to figure 9 and considering the
characteristic rotational temperature influence, there appears to be a
major inconsistency. One explanstion for the deviation is that
Eucken's relation is a reasonably good approximation only for gases at
ordinary temperatures. At cryogenic temperatures, the transport
properties do not vary in the same manner as they do at room temperatures
thereby causing Eucken's relation not to hold at cryogenic temperatures.

Cryogenic temperatures'influence the transport properties in such
& way &s to cause the Prandtl number at one atmosphere and arcund
25 K to be equal to the ideal diatomic gas value of 0.725 instead of the
expected value of 0.667, the ideal monatomic gas value. So, under
these conditions, the thermal boundary layer profile may be expected
to vary from the velocity boundary layer profile for parahydrogen in

the same manner as an ideal diatomic gas.
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As noted in the introduction, it is necessary to match,as nearly
as possible, the Reymolds number between flight conditions and the
conditions maintained during aerodynamic testing in the wind tgnnel.
With the ever increasing flight Reynolds numbers, much work has been
devoted to increasing the test Reynolds number by decreasing the test-
ing tempersture, by increasing ilhe testing pressure,and by using
different gases (see, for example, reference 13). Figure 10
illustrates the benefits, from the viewpoint of increased Reynolds
number per meter, of using cryogenic hydrogen compered to nitrogen or
air assuming an isentropic expansion from the total conditions. For.
example, at a Mach number of 0.1, the Reynolds number per meter for
hydrogen at the total conditions of one atmosphere and 25 & is aboub
fifteen times that of air at standard conditions and approximately
three times that of nitrogén at the total conditions of one atmosphere
and 100 X.

The Reynclds number per meter for hydrogen and nitrogen cre
compared st a free stream Mach number of 1.0 and a total pressure of
one atmosrphere at various fHotal temperatures‘in figure 11. The figure
illustrates the large benefits that may be obtained by using hydrogen
instead of nitrogen from a Reynolds numbey standpoint. The bhenefits
are a direct result of the lower total temperatures which can be used
before the onset of condensation occurs.

Thus, the maximum obtainable Reynolds number per meter is directly
dependent upon the saturation limits as imposed by the maximum local
Mach ngmber generated on the model being tested. This is illustrated

for hydrogen in figure 12 where the Reynolds number per meter is shown
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as a function of total temperature for various total pressures with
the theoretical saturation boundary superimposed as a function of the
maximum local Mach number, ML' The figure shows that if the maximum
local Mach number is 1.4 a factor of 17.5 increase in Reynolds number
may be obtained at a pressure of five atmospheres by operating at
cryogenic temperatures rather than ambient temperatures. This repre-
sents a Reynolds number which is forty-five times that of air at

standard conditions.
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CHAPTER IT

ISERTROPIC FLOW OF PARANYDROGEH

IT.1 Introduction.

A useful epproximation to portlions of flows in aerodynamic re-
search is the isentropic flow of an ideal diatomic gas. Consequently,
any candidate test gas should have isentropic flow ratios similar to
an ideal diatomic gas. The purpose of this chapter is to present the

real gas isentropic flow solution and results for parshydrogen.

II.2 Isentrgpic Flow Solution.

By definition an isentrépic process occurs under the condition of
constant entropy, and the solution maey be calculated from the stagna-
tion conditions. An analytical solution may be formulated from the
simple equation of state for an ideal ges. 'The ecquation of state for
a regl gas is more complex than the state equation of an ideal gas and
an analytical solution for the real gas is not as easily determined.

As noted in Chapter I the equation of state for parahydrogen.used
in the isentropic flow s;lution was developed by the Nationsl Bureau
of Standards. The computer program for the equation of state was
modified for the flow solution into a subprogram form (identified as
subprogram THERMO) where the inputs are the temperature and pressure,
and the outputs are the thermodynamic and related properties.

In addition to the main program, a subprogram (identified as
ISENT) was also developed that makes use éf THERMO. ISENT calculates
the pressure and other thermodynamic properties for a given

temperature and entropy by using & modified interval halving technigue,
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and it is this subprogram that the main isentropic flow solution
program centers around.

The main program iterates on the Mach number and employs an
interval halving technique, modified for the isentropic flow solution,
to calculate the isentropic expansion of parahydrogen at various
total temperstures and total pregsures., Generalized fléw char?s
describing the main program and subprogram ISENT are presented in
figure 13 and the steps involved in the solution are discussed in

detailed in reference 1k.

I1.3 Isentropic Expansion Coefficient.

The pressure and density relgtionship for an isentropic expansion

of an idesl gas 1s described by the exponential equation

pxpf (2.1)

where Y 1is the ratio of specific heats and is a constant for an
ideal gas. As noted earlier in figure 6? the specific heat ratio

for the real gas parahydrogen is not constent but with decreasing
temperature deviates considerably from the ideal diatomic gas value of
1.4, Because the specific heat ratio varies with temperature,
equation 2.1, with v eqgual to a constant, would not be expected to
be valid for the isentropic flow solution of parahydrogen.

In reference 15, Wbplley and Benedict indicate that equation 2.1
may hold true for an isentropic expansion of a real gas except that
the exponent would no longer be equal to the specific heat ratio. They
define the exponent as the isentropic expansion coefficient, £, which

nay be calculated from the formula
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and indicate that equation 2.1 may be used for an isentropic expansion
of a real gas provided that £ is used instead of ¥.
In this thesis the isentropic expansion coefficient was determined
from the expression
P g

i-1 _ (Pia

Pi p

: (2.3)
i

where the states i-1 and i represent an increment along an isen-
trope which is equivalent to a variation of 0.05 in Mach number. The
variation of the isentropic expansion coefficient with total
temperature at a total pressure of one atmosphere is illustrated in’
figure 14 for expsnsions of parahydrogen to a Mach number of 2.0. This
figure illustrates that the isentropic expansion coefficient is
approximately constant cutside the characteristic rotational temperature
influence range and equivalent to the specific heat ratio fﬁr an ideal
monatomic and an ideel diatomic gas below and above the influence range
respectively. These values agree with those predicted by Woolley and
Benedict when the rotational degrees of freedom sre either unexcited

or fully excited.

I1.L Isentropic Flow Ratios.

As noted in section II.2, since, by definition, an ideal diatomic
gas is both thermally and calorically perfect, the isentropic flow

ratios may be easily solved for by using the simple ideal gas equation
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of state. These fundamental equations are found to be

- 1.=X
o= |1 ousty - | T (2.3)
t -
] 1-1
%}.: 1+ 0.5(y - l)M2 : (2.4)
t - -
[ 1 =L
E_ - 1+ 0.5(y - l)M2 y-1 (2.5)
Py |
2E1+$5 _%EL_T
ALz L ()T 2201
A¥ T M ( 2 ) [l + 0.5(y - 1)M ] (2.6)

and are a function of Mach number, M, and the specific heat ratio, ¥,
only.

As previously noted, any candidate wind tunnel test gas should have
behavior similar to air vwhich, under flight conditions, acts for all
practicallpurposes like an ideal diatomic gas. For this reason, the
isentropic flow ratios for parshydrogen will be compared with the ideal
diatomic gas ratios determined from equations 2.3 to 2.6 with the spe-
cific heat ratio, ¥y, equal to 1.h.

The deviation of the isentropic flow ratios from the gas values
are presented in graphical form. The plots were obtained from the
tabulated values generated by the computer program discussed in
reference 1k,

The deviation of the pressure ratio for an isentropic expansion
of parahydrogen to Mach 1.0 from the ideal diatomic gas value is

ilTustrated in figure 15. The figure shows that the deviation is
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mainly dependent upon the total temperature variation while the effect
of the total pressure on the deviation is comparatively small. Once
again the real gas behavior of parahydrogen, this time in terms of the
isentropic expansion pressure ratio, may be explained by the influence
of the relatively high value of the characteristic rotational tempera—
ture since the greatest deviations occur within and below the
charecteristic rotational temperature influence range, defined in
section I.3 as 75 K to 200 K,

The effect of Mach number on the deviation of the isentropie
pressure ratio is shown in figure 16. The deviation is shown to be
insignificant for low values of Mach number, which is expected because
the flow may be assumed to be incompressible under these conditions.
It is interesting to note that the maximum deviation of the isentropic
pressure ratio for parahydrogen occurs at approximately the same Mach
number as that determined for nitrogen by Adcock in reference 16. This
occurance surely must be coincidentsl because Adcock shows that for
nitrogen this deviation is in the positive sense and the maximmm value
increases with both Mach number and Pressure whereas for parahydrogen
the‘deviation is in the negative sense and the maximum value increases
with pressure but decreases with Mach number. Figure 16 also verifies
the fact that the deviation with respect to the total pfessure varia-
tion is comparatively small,

Figure 17 shows how the temperature ratioc for an isentropic
expansion of parahydrogen to Mach 1.0 deviates from the ideal diztornic
gas value. Like the pressure ratio, the deviation in temperature

ratic is seen to be only slightly dependent upon the variation in total
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pressure and to be basically dependent upon the total temperature.
The isentropic temperature ratio as a function of total temperature
curve is identical in shape to the isentropic pressure ratio versus
total temperature curve. The influence of the characteristic rota-
tional temperature is sgein the dominant factor responsible for the
deviation.

The Mach number effect on the isentropic temperature ratio
devistion is illustrated in figure 18. Similar to the isentropic
Pressure ratio, the deviation of the tempecrature ratio is insignificant
in the incompressible range of low Mach number values. This figure
also verifies that the deviation with respect to the totzl pressure is
negligible when compared with the deviation caused by the total
temperature variation.

An illustration of the isentropic density ratioc deviation for an
expansion of parahydrogen to Mach 1.0 is given in figure 19. This
figure shows that the density ratio deviates in the same manner as
the isentropic pressure and temperature ratios. That is, the isentropic
density ratio varies mainly with respect to the total temperature and
only comparatively slightly with respect to total pressure. The
characteristic rotationel temperature influence is once again the
dominant factor controlling the deviatien.

The deviation of the isentropiec density ratio is shown to be
generally less than the deviation of the pressure and temperature
ratio., The deviation may be explained by realizing that pressure,

density, and temperature are all interelated. As previously noted,
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the isentropic pressure ratio deviation and the isentropic temperature
ratio deviation have curves which are similar in shape, so that when the
density ratio deviation is calculated, the deviations of temperature
ratio and pressure ratio have a tendency to caqcel each other, thereby
keeping the density ratio deviation closer to unity.

Figure 20 gives the effect of Mach number on the deviation of the
isentropic density ratio. In the incompressible range of low Mach
numbers the real gas effects are once again shown to be ingignificant.
Figure 20 also verifies that the devistion with respect to the total
pressure variation is comparatively insignificant when considering
the deviation caused by the total tempersature variation.

The real gas effects on the iééntropic stream-tube area ratio for
parahydrogen are illustrated in figures 21 and 22. Since A -is
equivalent to A¥ when the Mach number is equal to 1.0, the devistion
from the ideal diatomic gas value ig zero at sonic conditions and
small in the transonic region, as shown in figure 21.. The deviation
is shown to be more dependent on total temperature than on total
pressures and is smaller in the incompressible range than in the
supersonic range. The deviation with respect to total temperature,
illustrated in figure 22, is again dominated by the characteristic

rotational temperature influence.

II.5 Conclusions.

1. The isentropic expansion coefficient for paraliydrogen cannot
be assumed to be constant but is governed by the

characteristic rotational temperature influence range.



The characteristic rotational temperature is also found to be
the dominant factor controlling the deviations of the
isentropic flow parameters.

The deviations of the isentropic flow parameters are primarily
a function of the total temperature, with the influence of

the total pressure being small in comparison.

At low Mach numbers, where the assumption of incompressibility

is valid, the isentropic flow deviations are negligible.
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CHAFTER IIT

PRAHNDTL-MEYER EXPANSION FLOW OF PARAHYDROGEN

IT1T.1 Introduction.

One type of isentropic flow which requires further discussion is
the supersonic isentropic flow that oceurs in the turning of a flow
around a corner. This type of flow is known as a Prandtl-Meyer flow.
The relation between the flow inclination and chenge in Mach number in
an isentropic turn is given by the Prandtl-Meyer function. By knowing
the flow inclination all of the isentropic flow ratios may be obtained
at the resulting Mach nurber through the use of the Prandtl-Meyer
function. The purpose of this chapter is to present the Prandtl-Meyer
flow solution and the dependency of Mach number on the Prandtl-Meyer
function for flow in parshydrogen as compared to the results for an

ideal diatomic gas.

IIT.2 Prandtl-Meyer Expansion Flow Solution.

Consider the semi-infinite flow field above a convex wall as shown
in figure 23 where the subscripts a and b are used to identify the
upstream and downstream conditions of the expansion wave. Here a
uniform parallel supersenic flow of Mach Ma is expanded to a higher
speed, Mb, by an increase in the local flow angle, Gb - Ga. As in all
Prandtl-Meyer flows, the Mach lines, which are inclined relative %o
the local flow direction at the Mach angle, |, given by

-1/2
tan u = (M2 - 1) (3.1)
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form as straight lines from the wall. TIn addition, the flow parameters
are constant along these lines. Therefore, the problem of determining
the flow above the wall transforms into the determination of the
velocity and the thermodynamic state as a function of the initial
conditicns and the change in the local flow direction imposed by the
wall.

The governing differential eguation for Prandtl-Meyer flow can be
determined from the geometry of a differential velocity change across
a lach line, considered as a weak, discrete expansion wave, as shown
in figure 24. lere the tangential components of the velocities on

both sides of the Mach line are equal, that is,

u = (u + (Su)t : (3.2)

From the law of sines

sin
utou_ . (3.3)
inf = - 1 -~ §0
sm(2 M )
or, using trigonometry
Su _ cos (1)
Ly T o608 (80) - sin(1)sin(88) (3.%)
So, for small 4§60
N cos(y) (3.5)

u  cos(u) - sin(p)de

This eguation reduces to
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L+ =1 tan{u)ds (3.6)
or, neglecting higher order terms
du
1+~ =1+ tan(x)ae (3.7)

Combining equation 3.7 with equation 3.1, the well-known differential

equation for Prandtl-Meyer flow is obtained
ae = ‘/142 -1 -d—l% (3.8)

To obtain a solution, two additional equations are required, the

adiabatic energy equation,

and the thermodynamic equation of state, given here in terms of the

speed of sound, ¢, for an isentropic process,
¢ = c(H,8) = c(H,Sa) (3.10)

With the initial conditions given, equations 3.8, 3.9, and 2.10 can
be solved for any three of the four variables, 0, u, ¢, H, in terms of
the fourth.

For an ideal gas, equation 3.10 can be written in a simple form

and the equations can easily be sclved. For a real gas, the eguation
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of state is more complex than the ideal gas state equation and such a
simple solution to the systém of equations is not as easily determined.
A computer program was written to solve the set of equations for
parahydrogen. The main part of the program follows the generalized
flow chart given in figure 25 and the steps involved are discussed in

reference 17.

ITT.3 Prandtl-Meyer Expansion Flow Results.

As previously stated, the system of equaiions for an ideal gas
may easily be solved for, resulting in the well-known egquation for

the Prandtl-Meyer function for an idezl diatomic gas

6; = 2.4k95 tan~t (0.&0825_/M:!L2 - 1)-— tan "t Mf -1 (3.11)

The Prandtl-lfeyer expansion flow results .for parahydrogen will be
compared with the ideal diatomic gés values since, as mentioned
earlier, any candidate wind tunnel test gas must behave like air which,
under flight conditions, acts like an ideal diatomic gas.

The deviations from the ideal diatomic gas values for the Prandtl-
Meyer expansion flow in parahydrogen are presented in graphical form.
The results, shown in figure 26, were obtained from the tabulated
values, given in reference 17, generated by the compuier program
mentioned in the previous section.

Figure 26 shows the Mach number deviation as a function of total
temperature for Prandti-Meyer expansions from Mach 1.0 through angles

of five and twenty-five degrees at total pressures of one and ten atmospheres.
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As was the case for the isentropic flow ratios, the deviation is mostly
dependent upon the total temperature variation while the deviation with
respect to the variation in total pressure is comparatively small.

Once again the influence of the characteristic rotational temperature
appears to be the dominant factor affecting the Mach number deviation,
Just as it is in the deviations of‘the isentropic ratios. The Mach
number devigtion also appears to increase with increasing Prandtl-
Meyer function, 8. This is explained by the facts that the Mach number
increases with © and, from Chapter II, that the isentropic deviations

inerease with increasing Mach number.

IIT.4 Conclusions.

1. The characteristic rotational temperature is the dominant
factor influencing the Mach number deviastion for the
Prandtl-Meyer expansion in parahydrogen.

2. The Mach number deviation ig small with respect to total
pressure varistions when compared to the influence of total
temperature.

3. The Mach number deviation generally increases with increasing

values of the Prandtl-Meyer function.
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CHAPTER IV

NORMAT, SHOCK WAVES IN PARAHYDROGEN

V.1l Introduction.

Shock waves are usually present around models tested at transonic
and supersonic speeds and the investigator would like the jump condi-
tions across the shock wave to have a behavior similar to air. ©So,
any candidate test gas should have normal shock ratios similar to an
idesl diatomic gas. The purpose of this chapter is to present the

normal shock flow solution and results for parahydrogen.

IV.2 HNormal Shock Wave Solution.

Congider a standing normal shock wave as shown in figure 27. If
the subscripts a and b are used to identify the upstream and
downstream conditions of the shock wave, the conservation equations of

mass, momentum, and energy are

p M = pMec (4.1)

2 _
P+ pamica P, * pricb (4.2)
Lo =%y (4.3)

(b.k)
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Using equation 4.1, equations 4.2 and L.l may be written as

B =P+ pamici(l - p,/p) (k.5)
H o= %—Nici [1 - (p /pb)e} (L4.6)

If the conditions upstream of the shock are known, equations 4,5 and
4.6 constitute two equations for the three unknowns Pb’ Hb’ pb. The
system of equations can be completed by assuming the gas to be in

thermodynamiec equilibrium on each side of the shock wave, which will

supply the equation of state
p = p(P,H) (k. 7)

The requirement given by the second law of thermodynamics, that the
entropy downstream of the shock wave, Sb’ be greater than the entropy
upstream of the shock wave, Sa’ asgures the uniqueness of the solution.

For an Ideel gas, equation 4.7 may be written as

= Ply/(y ~ 1)}/ (4.8)

where 7Y 1is the specific heat ratio. The system of equations may then
eesily be solved for analytically.

In the case of a real gas the eguation of state is more complex
than the state equation of an ideal gas, and en analytical solution of

the system of equations cannot be determined algebraically.
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A computer program was wriﬁten to solve the normal shock wave
system of equations for parahydrogen. The equations were solved by
iterating on the upsiream Mach number and employing a modified
interval-halving method to converge on the downstream static enthalpy
and density. To deftermine the conditions on either side of the shock
wave, the program used the assumption of local thermodynamic
equilibrium and employed subprograms THERMO and ISERT, which were
discussed in Chapter IT. ‘ !

A generalized flow chart for the main part of the computer program
is given in figure 28 gnd the steps involved are discussed in reference-
18. One step that should be mentioned here is step 10 where the static
temperature downstream of the shock is initially assumed. For this

assumption the ideal distomic gas equation was utilized, that is

+

T .= (L+o.2 Yo T (1+oa, ) ow
a a,i

t,a ‘a,l—l a,i—lI

(h.9)
where the expression enclosed between the absolute value signs
represents the deviation from the ideal diatomic gas value for the
previous iteration. The above method provided rapid convergence

throughout the domain studied.

IV.3 HNormal Shock Wave Resultis.

The normal shock wave ratios for an ideal gas may, as previously

noted, be solved for anaelytically and are given as

i_zwﬁ—w-l)
b
a

T (3.9)
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gl [2«@42 - {y - 1)] [(Y - 1)1«12 + 2]

b
2 = {4.10)
ta {y + 1)2M§

2
P (y + 1)M
b a (h.11)
Pa. (y - 1)M§ + 2
1/2
} (v -~ 1)¥2 + 2
%=% a (h.12)
“a a’ e'yMi - {y - 1)
X _ L
5 Y-1 -1

Feb _ Pen ) (v + 1)M] Y+l

Pt,a pt,a (Y - l)Mi + 2 EYMi - (Y - 1)

' (4.13)
T
LY R (h.1h)
T
t,a

The fundamental equations are found to be functions of the upstream
Machk number, Ma’ and the specific heat ratio, vy, only.

As mentioned earlier, any candidate wind tunnel test gas should
behave similar to an ideal diatomic gas. For this reason, the normal
shock wave ratios for parahydrogen will be compered with the ideal
diatomic gas ratios determined from equation 4.9 to 4.1k with the
specific heat ratio, v, equal to 1.L.

The deviations of the normal shock wave }atios for parahydrogen
from the ideal diatomic gas values are presented in graphical form.
The plots were obtained from the tabulated values given in reference

18 which were generated by the computer program discussed in

section IV.Z2.
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The deviations of the static ratios P, /P, Tb/'"i‘a, and /P>
across a normal shock wave in parahydrogen from the ideal diatomic gas
values at various upstream total pressures and for an upstream Mach
number of 2.0 are illustrated in figures 29 to 31. The figures show
that the nonideal gas behavior of parshydrogen is mainly dependent
upen the upstream total temperature variation, while the deviations with
respect to the upstream total pressure asre comparatively small. The
greatest influence on the deviations is the previously mentioned high
value of the characteristic rotational tempe;ature of hydrogen.

Figures 32 through 34 show how the deviations of the statie ratios
across a normal shock wave in parashydrogen vary with respect to the
upstream Mach number, Ma’ at various upstream total temperatures and
for an upstream total pressure of one atmosphere. The figures show
that the deviations generally increase with increasing upstream Mach
number. They also show that the deviabtions, as a function of total
temperature, have the same shape at the various upstream Mach numbers,
and appear to be greatly influenced by the relatively high value of the
characteristic rotational temperature,

The real gas effects on the Mach number downstream of a normal
shock in parahydrogen are illustrated in figure 35 for an upstream
Mach number of 2.0. The deviation from the ideal diatomic gas value
is shown to be only slightly dependent upon the upstiream total pressure
when compared to the dependence upon the upstream total temperature.
Once again the dependency is explained by the characteristic rotational

temperature range of influence.
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Figures 36 through 38 give the effect of the upstream total
pressure on the deviations of the total ratios Pt,b/Pt,a’ Tt,b/Tt,a’
pt,b/pt,a’ from the ideal dlatomic gas values for an upstream Mach
number of 2.0. The figures show that the total pressure ratic and the
total density raetio deviations are mainly dependent upon the upstream
total temperature variation and are only comparatively slightly
influenced by the variation in the upstream total pressure. The
devistions are shown to be predominantly influenced by the
characteristic rotational temperature.

On the other hand, the devistion of the total temperature ratio
from that of an ideal diatomic gas does not appear to be influenced
by the characteristic rotational temperature. The greatest deviations
of the total temperature is on the same order of magnitude as the total
Pressure and density deviations.

Figures 39 through hl illustrate how the deviations of the total
ratios across a normal shock wave in parahydrogen vary with respect
to upstream Mach number,AMa, at various upstream total temperatures
and for an upstream total pressure of one atmosphere. The figures
show that the deviations generally increase with increasing upstream
Mach number. Comparing figure 40 with figure 37, the deviation from
the ideal diatomic gas value of the total tempersture ratio is

shown to be only slightly dependent upon the upstream Mach nuwber

when compared to the dependency of the upstream total temperature.

IV.4 Conclusions.

l. The characteristic rotational temperature is the dominant

factor controlling the deviations of the static ratios
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across a normal shock wave in parahydrogen from the ideal
diatomic gas values.

The deviations of the normal shock wave static ratios increase
with increasing upstream Mach number.

The deviations of the statie ratios are small with respect to
the total pressure variations when compared to the influence
of the total tempersature.

The characteristic rotationsl temperature is also the dominsant
factor controlling the deviations of the total pressure and
total density ratios across a normal shock wave in parahydrogen
from the wvalues for an ideal diatomic gas, while the total

temperature ratio deviation is not influenced by the

" characteristic rotational temperature.

The deviastions of the total pressure and total density ratios
are small with respect to the total pressure variations when
compared to the influence of the total temperature, while the
inverse is true for the total temperature ratio.

The deviations of the stagnation ratios across normal shock

waves increase with increasing upsiream Mach number.
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CHAPTER V

NOZZLE FLOW OF PARAHYDROGEW

V.1l Introduction.

The previous chapters have described how hydrogen differs from an
ideal distomic gas for various flow situations. Also,.the dramatic
increase in Reynolds number attainable through. the use of eryogenic
hydrogen instead of air or cryogenic nitrogen was shown in Chapter II,
along with the conclusion that cryogenic hydrogen will behave like an
ideal diatomic gas in the incompressible flow regime.

This chapter considers inviscid one-dimensional cryogenic
Parahydrogen flow, both isentropic and with a normsl shock, through
the diverging section of a supersonic nozzle. Through this analysis
the differences between cryogenic hydrogen and an ideal diatomic gas

will be studied in specific compressible flow situations.

V.2 Isentropic Flow.

The dimensions for the diverging section of a Mach 2.0 nozzle
were obtained from reference 19. The values were then fitted with an

equation of the form

A 6 X k
W= oo (};) (5.1)

wnere
L total length of the diverging section of the nozzle
X distance downstream from the nozzle throszt
A area at distance x

A¥ area at the nozzle throat



%0

. and the values of ¥, are as follows:
yo = 1.0
¥, = 0.01690k1
Yo = 6.873320
Vy = -18.3097
vy = 23.9338
Vs = -16.5135

Vg = 46773k

The area distribution, along with the resulting one-~dimensional isen-
tropic flow ratios for an ideal diatomic gas, is presented in figure kL2,
The computer program discussed in reference 1lh was modified to

ocbtain the one-dimensional, inviscid, isentropic flow of parahydrogen
through the diverging section of the Mach 2.0 nozzle given by equation
2.1. ©Since the purpose of this study is to investigate the behavior of
hydrogen under cryogenic conditions where the Reynolds number advantage
occurs, the isentropic flow ratios were calculated for total conditions
of 45 X and one atriosphere. These conditions give a Reynolds number
per neter value of about seven times that of air at one atmosphere and
300 .

The results at the above total conditions are given in figure 43
in terms of the deviations from the idesl diatomic gas values. As
expected from the results of Chapter II, the deviations increase with
increasing x/L and show a rather larpge deviation in the isentropic
ratios even at the throat. The figure leads to the conclusion that

although substantial increases in Reynolds numbers méy be obtained with
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cryogenic hydrogen, hydrogen is unacceptable as a test gas if it is
essential to model an ideal diatomic gas under supersonic isentropic

flow situations.

V.3 Nozzle Flow with a Hormal Shock

The isentropic nozzle flow solution discussed in the preceding
section was altered to study the nonideal gas behavior of parahydrogen
assoclated with a one-dimensional normal shock wave. This was done by
using the real gas normal shock wave relations derived in Chapter IV
and assuming isentropic flow upstream and downstream of the shock. As
in the previous section, to take advant;ge of hydrogen's high Reynolds
number capability at cryogenic temperatures, the Mach number distribu-
tion and nozzle flow ratios were calculated for ups%ream total
conditions of 45 K and one atmosphere.

The parahydrogen and i1deal diatomic gas results for shocks
occurring st Mach 1.3 and 1.8 are shown in figures bl ang L5,
respectively. As expected from the results of Chapter II, the deviation
in the shock weave location between parahydrogen and an ideal diatomic
gas increases with increasing shock Mach number. This is predictable
from the fact that in the supersonic range, the deviation for para—
hydrogen from the ideal diatomic gas value of the isentropic stream-
tube area ratio, A¥/A, increases with increasing Mach number (as shown
in figure 22). The results indicate tha£ the shock wave location on an
airfoil being tested at supersonic s?eeds in cryogenic parahydrogen

would probably be in error by an unacceptable amount, when compared

to the shock wave location in air, thereby possibly nullifying any
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advantage of testing at the increased Reynolds nurber which may be
obtained by using cryogenie parahydrogen.

The results of figures Lk and 45 are in agreement with the results
of Chapter II, and demonstrate that the deviations in the Mach number
and nozzle flow ratios are generclly smaller downstream of the shock
wave than they are upstream of the shock wave. The results support
the conclusion reached in the Chapter IT that the isentrcpic flow
ratios for cryogenic parahydrogen at low subsonic Mach numbers do not

deviate substantially from the ideal diatomic gas values.

V.4 Conclusions.

1. Cryogenic hydrogen is unacceptable as a test gas if it is
essential to model an ideal diatomic gas under supersonic
isentropic flow situations,

2. Cryogenic hydrogen is unacceptable as a test gas if it is
essential to model an ideal diatomic gas under supersonic

flow situations where a shock occurs.



k3

CHAPTER VI

FLOW ABOUT A DIAMOND-SHAPED ATRFOTIL

V¥I.l Introduction.

Chapter V concluded that, when compared to an idesl diatomic gas,
cryogsnic parahydrogen is unacceptable as a supersonic wind tunnel test
gas. The purpose of this chapter is to verify this conclusion end,
like the nozuzle flow study, to gain insight into the flow characteris-
ties of cryogenic parahydrogen in the transonic Mach number region.
This is done by using the shock-expansion theory to study the inviscid

flow about & diamond-sheped airfoil.

VI.2 The Oblique Shoek Wave.

One of the basic concepts involved in the shock-expansion theory
is the obligue shock wave, the geometry of which is given in figure h46.
The oblique shock wave may be treated in the same manner as a normal
shock wave taking into consideration the additional velocity compcnent,
v, tangent to the shoek wave.

The continuity eguation across an oblique shock may be given in

terms of the normal velocity components as

P
=L (6.1)
1 2

p‘]mﬁ

where u is the velocity component normal to the shock wave and p is
the density.
From the oblique shock wave gecmetry given in figure 46 the

following may be written



and

L

Using the trigonometric identity

equations 6.2 and 6.3 may be combined to yield

Yo
tan (B - §) = — (6.2)
u
tan B = —x (6.3}
v
_ _tanB -~ tand
tan{p - §) = T+ Lanh tend (6.4)
° 1 - E—-—tan(?
T (6.5)
1

1+ 1 tand
v

-But, the tangential component of the velocity, v, may be written as

so that

ve 22 (6.6)

(6.7)

|
T
71
\~_/I'\>
|
1~

A
Y

Introducing the speed of sound, ¢, the above may be written as

2
°1
i’._z Mi(“‘) -1 . (6.8)
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where Ml is the upstresm Mach number and the ratio ul/cl is referred
to as the equivalent normal shock Mach number. Substituting equation
6.8 into equation 6.5 gives the following result based only on the

geometric considerations of an oblique shock wave

(6.9)

From the above equation and the equation of continuity, 6.1, the
solution for the oblique shock wave may be determined at a specified

value of 6.

VI.3 The Shock-Expansion Theory.

The oblique shock wave along with the isentropic expansion wave
are the two fundamental components used to ;nalyze many two-dimensional
flow problems by uniting the appropriate combination of the two
solutions. The shock-expansion theory may be used to analyze the flow
over two-dimensionsal airfoils.

Consider, for example, the symmetrical diamond-section airfoil in
figure 47. A shock forms at the leading edge compressing the flow to
pressures P2 and Ph above and below the airfoil. Centered
expansion waves located at the shoulders expand the flow to pressures
P3 and PS- Finally, the trailing edge shock reccmpresses the flow
to (nearly) the free-stream pressure value.

A supersonic wave drag is induced on the airfoil due to the over—

bressure on the forward faces and the underpressure on the rearward

faces. This type of supersonic drag exists even in the idealized,
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nonviscous fluid and is fundementally different from the frictional
drag and separation drag associated with the viscous boundary layer.
For unit span; the supersonic wave drag associated with the diamond-

section airfeil is given by
b=1[(p, +P)) ~ (P3 + PS)]t (6.10)

where + 1is the maximum thickness of the airfoil.

VI.4h Flow Solution.

How consider the symmetfic diemond-section airfoil in figure 4T
with a chord length, &, of three meters flying at an sltitude of
8000 meters and a Mach number, M

20 gives the following conditions

» of 1.3. At this altitude, reference

static pressure: 0.352 atm
kinematic viscosity: 2.90k x 1077 m2/sec
speed of sound: 308.07 n/sec

statie density: 0.526 kg/m3

From the above values, the Reynolds umber based on the chord length
is b1.bh x 106. To mateh the Reynolds number in a cryogenic hydrogen
wind tunnel, with a total pressure of one atmosphere and a total
temperature of 50 K a chord length of 0.L4576 meters is reduired,
which could easily be accommodated in a wind tunnel.

The 1ift and drag coefficients associated with the diamond-section
airfoil given in figure 47 may be determined using the shock-~expansion

theory. For the ideal diatomic gas the values are easily determined
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using the equations given in chapters IT, III, and IV following the
calculation procedure outlined in reference 21,

Because of the complex equation of state for a real gas, an
analytical solubtion for hydrogen is.not as easily determined. The
results obtained in chapters II, III, and IV may be used along with the
shock-expansion theory to caleculate the 1lift and drag coefficients.
Using the normal shock wave solukion tables, given in reference 18,
along with equations 6.1 and 6.9,. the Mach number normal to the shock
wave upstiream of the shock wave may be determined for various deflection
angles, §. Figure 48 gives the solubion for the free-stream conditions
of one atmosphere and 50 K, and for deflection angles, &, of two and
four degrees, and an upstream Mach number, M;, of 1.3.

The 1ift and drag coefficients were calculated for various free.
stream Mach numbers, M, airfoil half angles, ¢, and angle of attack,

¢, and are presented in table I.

V1.5 Comparison of Results.

The errors in the 1ift and drag coefficients do not vary in any
consistent manner. Occasionally the errors are less than one percent,
but, in general, the ;rrors are large enough to make hydrogen
unacceptable as a cr&ogenic wind tunnel test gas if an ideal diatomic

gas is to be simulated.

VI.6 Conclusions.

The results from the diamond-shaped airfoil study confirm the

conclusions reached in the nozzle flow study. That is, considering
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that high local Mach number regions may occur in transonic and super-
sonic flow situatiohs, and recognizing the possibility of large errors
in the determination of the 1lift and drag coefficients, cryogenic
hydrogen.is unacceptable as a transonic and supersonic wind tunnel

test gas if an ideal gas is to be simulated.
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CHAPTER VII

SELECTED WIND TUNNEL DESIGN CONSIDERATIONS

VII.l Introduction.

The purpose of this chapter is to discuss selected design aspects
which must be considered if a eryogenic wind tunnel is to be built or if
an existing wind tunnel is to be modified to use cryogenic parahydrogen
as the test gas. HNo attempt is made to cover all of the design
considerations associated with a cryogenic wind tunnel. Only those
aspects peculiar to the use of hydrogen will be examined, These
include: drive power requirements, ccoling requirements, material

compatabllity, and safety.

VII.2 Drive Power Requirements.

This section consists of a theoretical analysis of the power
required for isentropic compressions of cryogenic parahydrogen to
determine how the real gas effects influence the drive power require-
ments of & closed circuit wind tunnel. The ansalysis covers a
temperature range of 25 K to 300 K, a pressure range of one to five
gbtrospheres, and a fan pressure ratic range of 1.019 to 1.200, The
values cover the range of variables likely to be encountered in a fan-
driven eryogenic wind tunnel with hydrogen as the test gas. The results
are compared to air at total conditions of one atmosphere and 300 K.

In reference 22, Adcock and Ogburn present power calculations
for the isentropic compreséions of.cryogenic nitrogen, and their
analytical wind tunnel model, presented in figure 49, shall be

examined for the hydrogen case.
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The assumption is made that the only losses that occur are between
the tunnel throst and fan. The simplifying assumption is a direct
result of wind tunnel data which show that most of the tunnel losses
do occur in this portion of the tunnel hecause of the higher flow
velocities. As a consequence of the simplification, the total condi-
tions are the same at the fan outlet and the tunnel throat.

To remove the heat conducted through the walls of the tunnel and
the heat added to the stream by the fan, +the assumption is made that
a cooling system 1s placed upstream of the fan. A further assumption
is made that the cooling is accomplished by injecting liquid hydrogen
directly into the tunnel circuit thereby cooling the circuit through
evaporation., The location of the cooler is upstream of the fan rather
than downstream to allow a more thorough mixing of the evaporating
hydrogen with the main stream. In the case of nitrogen, Adcock and
Ogburn have shown that the additional mass flow due to the liquid nitrogen
being injected for cooling is at most two percent of the mass flow.
Their studies indicated that while the absclute powef levels were
increased by about two percent because of the additional mass being
compressed, the ratioc of the power required to compress nitrogen to
that required to compress an ideal diatomic gas was insignificantly
affected. ©Since they were primarily interested in this ratio, the
assumption was made that cooiing occured without mass addition. The
same assumption will also be made here, realizing that the power
calculations do not include the additional power required to COmpress
the mass flow of the coolant.

Based on the fan pressure ratios necessary to achieve =z given test

section Mach number in several existing tunnels, the fan pressure
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ratios presented in table IT have been assumed for this analytical
study.

Based on experience with existing tunnels, the fan pressure ratio
needed to achieve & given test section Mach number is assumed to be
invariant Vith stagnation temperature and pressure. In accordance
with the conclusions made so far with respect to the usefullness of
hydrogen as a test gas, the low subsonic Mach number region will be
studied in greater detail than the higher Mach number region.

The tunnel mass flow calculations are carried out at the throat
conditions. For subsonic velocities the assumption is made that the
throat and test section Mach numbers are identical. TFor supersocnic
speeds, the effective flow area in the test section must be greater
-than that of the throat., In practice, this larger effective arez is
created either by diverging the walls of the test section or by
allowing some of the test gas entering the test section to Tlow through
slotted or porous test section walls into a plenum chamber surrounding
the test section. In the latter case, the mass may be removed from
the plenum chamber by auxiliery suction or it may be allowed to reenter
the tunnel circuit at the diffuser entrance. TFor this analysis
it will be assumed that all the mass that passes through the tunnel
throat will also pass through the fan.

The test gas of a closed eircuit fan driven wind tunnel is forced
to flow around the tunnel circuit by the energy imparted by the fan.
Assuming that the steady flow compression that occurs at the fen is an
isentropic process, the power per unit area imparted t¢ the tegt gas is

given by
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Pur = - -1
m (Ht,z Ht,l)s (7.1)
where
m = pass flow rate per unit area of the test gas
and
{H - H, .) = enthalpy difference, at constant entropy,
t,2 t,1 5
across the fan,
The mass flow rate per unit area may be determined by
m = pMe (7.2)

and for an isentropic process of an ideal gas, this may be expressed

as a function of the stagnation conditions and Mach number
+1

, 2(1~y)
- LY Y=1 .2
m = P%M 'RTt (% + 5 M ) {7.3)

Also, fFor an ideal gas the enthalpy difference may be expressed as

Y-1
Pt 2 Y
(H . -1 .) =¢c_o L2 -1 (7.4)
27 6,1 T T el [\Fy
where (Pt Q/Pt l) is commonly referred to as the fan pressure ratio.
3 3

Tguations 7.3 and 7.4 may then be substituted into 7.1 to give the
pover requirements for an ideal gas.
In the case of a real gas such a closed form sclution cannot be

a3 easily determined. But, by using the isentropic flow computer
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program discussed in chapter IT, and specifying the fan pressure ratio,
the throat Mach-number, and the total cond;tions at the throat, the
power requirements for a wind tunnel using pa;ahydrogen as the test
gas may be calculated using the previously discussed analytical model,

Figure 50 gives the power requirements for a hydrogen wind twmel
relative to the power reiuirements for an ambient zir wind tunnel as
a function of fan outlet total température, Tt,2' Bach fan outlet total
pressure line, Pt,e’ corresponds to every test sectionIMach number at
which the power requireﬁents were calculated.n The maximum deviation
was approximately one-half of one percent between a Mach number of 1.2
and a Mach number of 0.1. This result suggests that the power require-
mént ratio is relatively independent of Mach number, a fact which
shall be applied later.

Table ITI shows how the test section size, the tunnel pressure,
and the tunnel power requirement is ;ffected by changing the test gas.
The table illustrates the advantage of hydrogen compared to nitrogen
or air. At a given Mach number and Reynolds number the drive power
requirement for hydrogen is less than the povwer requirement for nitrogen
or eir. The advantage of hydrogen is a direct result of the saturation
boundary allowing operation at a gre&tly reduced total temperature.

Since the advantage of parahydrogen lies in its high Reynolds
number capability, the power requirements forva certain Reynclds nurtber
advantage will be considered. The power requirement is analyzed best
as a ratio of the parahydrogen power requirement to the power required
for air near standard conditions. Kilgore, in reference 13, suggests
that both the Reynolds number and power are directly proportional to

the total pressure. Therefore, if the Reynolds number, divided by the
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total pressure, is plotted against the required power, divided by the
total pressure, only one curve should arise since the total pressure
dependency should cancel out. Figure 51 gives this function for
parahydrogen in terms of the Reynolds number advantage (ratio of the
Reynolds number for parahydrogen at various total pressures and
temperatures to the Reynolds number for air at one gtmosphere and
300 K), divided by the total éressure, as a function of the required
power ratio (power per unit area for parahydrogen at various total
Pressures and temperatures divided by the power per unit area for
air at one atmosphere and 300 K), divided by the total pressure. The
values for air were.determined by using the ideal gas equations for
an ideal diatomic gas.

The solid line labeled ideal gas in figure 51 evolved from a
modificetion of the closed form solution of the ideal gas equations.
The Reynolds number per meter is given by

{(Re/meter) = E%E (7.5)

By using the isentropic flow equations for an ideal gas this egquation

may be given by
X

MP' - Y"’l
(Re/meter) = —EE- %5 (% + x%l-Mg) (7.6)

The viscosity, n, is usually given by Butherland's equation, but, as
peinted out in reference 7, a more accurate value for paranydrogen is
given by Diller's formula (see the appendix). The static temperature,

T, is given by
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-1
=T, (1 + IE;-M2> (7.7)

Az noted in chapter I, the specific heat ratio, vy, for parahydrogen
is not constant but varies with temperature. TFor this analysis the

specific heat ratio is given as
k
Y= :f: Y T (7.8)
=0

where
T = temperature, K

and where the values of Yk are as follows:

YO‘= 2.6735 Y, = -1.8562 x 1072
Y, = 6.9001 x 10" Y4 = -1.0288 x 107
Y, = 5.3581 x 107 Yg = ~6.6509 x 10712
Yg = ~8.74h x 10713 Yy = 2,80k x 10717

Yg = -2.946h x 10‘18

Equation 7.8 approximates the specific heat ratio, CP/CV, given in
figure 6.

The drive power requirements for parshydrogen were then approxi-
mated by using equations T.1, 7.3, and 7.4 with vy = 1.% and
the appropriate values for the specific heat at constant pressure, CP,
and the ges constant, R. The curve was calculated for a Mach munbex
equal to one. Calculations were performed at other Mach numbers but
these resulted in similar curves demonstrating the relative independence

of Mach number.
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The amount of liquid hydrogen required for cooling may be divided
into two categories: i) thé amount initially required to cool the
cryogenic tunnel to its operating temperature,and, ii) the amount
required to remove the heat being conducted through the tunnel walls
and the heat energy added to the stream by the drive fan while the
tunnel is running.

The amount of liquid hydrogen required to cool a cryogenic wind
tunnel to its operating temperature is dependent upon the cool-down
procedure used as well as the physical characteristics of the tunnel.

To calculate the minimum liquid requirement, the simplifying
assumptions are made that no heat is conducted through the insulated
tunnel walls and that no heat is added by the drive fan to the test gas
during the cool-dowm process. With these assumptions the minimum
liquid hydrogen requirement for cool-down occurs when the tunnel is
cocled slowly in such a way that the hydrogen gas will leave the tunnel
circuit at the same temperature as that of the warmest part of the
tunnel structure. Assuming further that all of the liquid hydrogen
veporizes, the maximum emount of liquid hydrogen required for cool-down
may be calculated when only the refrigeration available in the latent
heat of vaporization is utilized and the hydrogen gas leaves the tunnel
et the saturation temperature.

If ¢ represents the mass of liquid hydrogen required to cool a
unit mass of material through a given temperature range, then,
following the analysis given in reference 23, Qmin = 0,031 and
g = 0.14 for cooling a stainless steel structure from 260 K to

max

30 K.
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Cocling through such a large temperasture range would not always
occur since under some circumstances the tunnel circuit would be
allowed to remain cold between runs. Under these conditions the heat
to be removed would be equal to the heat gained by the tunnel
structure and test gas by conduction through the insulation. This heat
conduction could be kept to an acceptable level by properly designing
the insulation.

One possible way of reducing the cost of cooling a cryogenic
hydrogen wind tunnel would be to use relatively inexpensive liquid
nitrogen to cool the structure to approximately T7 K and to use hydrogen
to cool the structure to the lower operating temperature.

The heat to be removed while the tunnel is rumning consists of the
heat conduction through the walls of the tunnel and the heat energy
added by the drive fan. The cooling thermal capacity of parahydrogen
is equal to the latent heat of vaporization (L45.5 joules per gram at
the normal boiling point) together with the sensible heat of the gas
phase hetween the saturation temperature and the desired total
temperature.

Pigure 52 gives the cooling thermal capacity for parshydrogen for
a range of final gas conditions. Here the cooling thermal capacity
is equal to the latent heat togéther with the sensible heat of the gas
phase betwgen the saturation temperature and the final gas total
temperature.

Kilgore, in reference 13, gives the cooling thermal capacity for
nitrogen. By comparison, the cooling thermal capacity for

parahydrogen is much greater than that of nitrogen, on a mass basis.
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At a temperature of 300 K, the cooling capacity of parahydrogen 1s
approximately nine times that of nitrogen and, on a mass bﬁsis, the
latent heat of vaporization of parahydrogen is more than twice that
of nitrogen.

The additional power reguired for cooling is best illustrated by
an example. The mass flow rate of the liquid hydrogen (LH2) reguired
to remove the heat of coumpression is equal to the drive fan power added
to the stream, Pwr, given by equation 7.1, divided by the cooling
capacity, given in figure 52 and Appendix I.

If € represents the energy required to produce a unit mass of
liquid hydrogen, then the power equivalent of liguid hydrogen used to

remove the heat of compression is

Pover =€ mpy (7.9}

where éLHE is the mass flow rate of the liquid hydrogen.
Table IV compares the results for cryogenice hydrogen, cryogenic
nitrogen, and air at standard temperature at a free stresm Mach number
of 1.0, & Reynolds number of 50 x 106, a total pressure of 2.5
atmospheres and a local saturation Mach number of 1.2. The value of ¢
for nitrogen was obtained from the work reported by Kilgore in
reference 13. The value of € for hydrogen was then selected to be
consistent with the liquefaction work requirements for nitrogen and
hydrogen given in reference 24. The results show that although the
drive power requirements for cryogenic hydrogen is substantiallf less

than the drive power requirements for cryogenic nitrogen or air at
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ambient temperature, the total power requirements for cryogenic
hydrogen is considerably greater because of the liquefaction power

requirements.

VII.4 Material Compatibility.

Atomic hydrogen is capasble of-entering steel and many other metals
and alloys. When this penetration occurs, any one of several undesirable
phenomena may take place which are collectively referred to as hydrogen
embrittlement. Hydrogen embrittlement is a delayed-failure phenomenon
which is also known as "hydrogen-induced, delayed brittle failure" or
"hydrogen-stress cracking" since a loss of ductility as measured in the
tensile test is not necessarily associated with the condition.

The presence of hydrogen affects the mechanical behavior of iron
and steel prineipally by: reducing the ductility (embrittlement),
lowering the fracture stress, and causing a delayed brittle failure
under suitable conditions. If an apparatus is to be used in a hydrogen
environment it should be constructed of material that would not be
affected by the hydrogen,

As a general rule for the. selection of metal alloys to use in a
hydrogen enviromnment, the aluvminum alloys and the stable austenitic
stainless steels, such as SAE 321, have been found to be insensitive to
the presence of gaseous hydrogen and, therefore, any system using these
materials should be free from degradation due to hydrogen embrittlement.
Thus, if these or similar hydrogen compatible materials are used
exclusively in a hydrogen wind tunnel, problems caused by exposure to

gaseous hydrogen will not ocecur.
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VII.5> Ilydrogen Safety.

Perhaps the greatest safety hazard encountered when handling
hydrogen is its high combustability. The ordinary burning of a mixture
of hydrogen and air camr occur within the broad limits of about four
percent to seventy-five percent of hydrogen by volume. When cémbustion
cccurs rapidly an explosion results. Thus unless suitable precautions
are taken, a flammable mixture is possible in a hydrogen wind tunnel
during some stage of operation and any source of ignition céuld then
cause serious trouble. Because hydrogen is a highly combustable
substance, the wind tunnel designer and technician should be familiar.
with the combustion of hydrogen. The following discussion serves only
as an introduction to this subject and in the event that a hydrogen
wind tunnel is constructed, the designer should refer to specific
details in other sources, for example, reference 25.

When hydrogen and air are burned the reaction is

1 = .
Hp + 3 0, + 1.89N, = 1.891, + H,0 + heat {7.10)
Tnis is the stoichiometric mixture of thirty percent hydrogen by volume
which when burned uses up all of the oxygen in the air. The heat of
combustion converts the water to steam and raises the temperature of
the resulting mixture. When this occurs in a closed volume, the

temperature increases from T. to T, and the number of moles

1 2
changes from n, to Ny causing a pressure change of
rt
P2 n, T,
R (7.11)
1 171
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Yhe above equation assumes an adiabatic process, uniform temperature
distrivution throughout the mixture, and negligible dissociation of
the combustion products, resulting-in a higher calculated pregsure
than actually occurs,

It is recommended that any wind tunnel designed to use hydrogen
as the test gas be constructed so that if the hydrogen is to be
discharged into the atmosphere, it could be burned under controlled
conditions. The principle is the same as that used in oil refineries
where combustable gases are burned rather than allowed to accumulate.

Several safety codes, such as references 26, 27, and 28, exist
which could be of help during the design of a hydrogen wind tunnel and
auxiliary equipment. Generally, the building in which the wind tunnel
is contained should have: 1) a vent system for the apparatus, 2) ade-
quate ventilstion, 3) an adequate electrical grounding system, and

4) no pockets near the ceiling which could trap hydrogen.
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CHAPTER VIIT
CONCLUSIONS
A theoretical analysis to determine the suitability of hydrogen
)
as a cryogenic wind tumnnel test gas has been made. The major
conclusions to be drawn from the analysis are as follows:

1. A wind tunnel using crycgenic hydrogen, instead of air or
cryogenic nitrogen, as the test gas will have a significant
increase in test Reynolds. number without increasing the
aerodynamic loads.

2. The theoretical saturation boundary for parahydrogen is well
defined. Therefore, any possible effects caused by the
liquefaction of the test gas can easily be avoided provided
that the maximum local Mach number on the model is known.

3. The relatively high value of the characteristic rotational
?emperature causes the behavior of hydrogen, under cryogenic
conditions, to differ substantially from the behavior of an
ideal diatomic gas when considering the combressible flow
regiﬁe. Therefore, if it is essential to model an ideal
diatomic gas, cryogenic hydrogen is unaccepbable as 2 wind
tunnel test gas in compressible flow situations. Consequently,
a cryogenic hydrogen wind tunnel would not provide an adequate
simulation of transconic and supersonic flow situations in

ambient air.
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At low Mach numbers, where the assumption of incompressibility
is valid, the deviations in the isentropic flow parameters for
cryogenic parahydrogen from the ideal diatomic gas values are
negligible. Thus, in the incompressible flow regime,
cryogenic hydrogen is an acceptable test gas. Consequently,

a cryogenic Eydrogen wind tunnel would provide an adeguate |

simulation of incompressible flow situations in ambient air.

A cryogenic hydrogen wind tunnel requires more power to
operate than a cryogenic nitrogen wind tunnel. Although a
smaller size cryogenic hydrogen wind tunnel may be designed
because of the Reynolds number advantage of hydrogen, more
power is required to produce liquefied hydrogen than is
required to produce liquefied nitrogen. 'This difference in
the liquefaction power requirements results in the above
conclusion.

In the event that a wind tunnel is constructed which would use
hydrogen as a test gas, materials compatible with hydrogen
must be used exclusively to avoid possible problems as a
result of exposure to gaseous hydrogen.

Although hydrogen is a highly combustable gas, safety codes
exist vwhich, when followed, minimize the risk involved in

handling hydrogen.
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Figure 30, Static temperature ratio across s normal shock wave in parahydrogen
relative to an ideal diatomic gas for an upstream Mach number of 2.0.
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APPENDIX B

Tables

TABLE PAGE
I. Diamond-shaped airfoil reswlts. . . . . . . . . ., . . . 132
II. Fan pressure ratio necessary to achieve a given test
section Mach number . . . + « 4 + « v o v ¢« 4 4« » o . . 133
III. Wind tunnel requiremepts for various test gases at
free stream saturation. . . + « + » + « ¢ o 0 o 4 o . . . 13k
IV, Wind tunnel requirements for various test gases at
a free stream Mach number of 1.0, a Reynolds number
of 50 x 106, a total pressure of 2!% atmospheres,

and a local saturation Mach number of 1.2 ., . . . . . . . 135



Mi . i L ¢y
ideal real EE%%E%%EEL ideal real EE%%E%%SE&
1.3 3° 1° 0.159 0.170 6.49% 0.013h 0.0136 1.34%
1.5 3° 1° 0.123 0.127 3.18% 0.0098 0.0099 0.81%
1.5 5° 1° 0.127 0.134 5.15% 0.0276 0.0280 1.33%
1.5 5° 1° 0.523 0.556 6.33% 0.0287 0.0299 4.30%
1.7 3° 1° 0.101 0.102 0.81% 0.0081 0.0080 -0.20%
1.7 5° 1° 0.100 0.110 10.07% 0.0223 | 0.0224 0.06%
1.7 5° 4° 0.418 0.k27 2.16% 0.0228 0.0230 1.41%
1.7 10° 1° 0.119 0.128 7.12% 0.0928 0.09k9 2.21%
TABLE I.

Diamond~shaped airfoil results.

443
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Test Section Fan

Mach Number Pressure Ratio
0.10 1.019
0.15 1.022
0.20 1.025
0.25 1.028
0.30 1,031
0.35 1.034
0.40 1.037
0.50 1.043
0.60 1.050
0.80 1.068
1.00 1,100
1.20 1.200

FABLE IT.

Fan pressure ratio necessary to achieve

a given test section Mach number,




ATR

NITROGEN

HYDROGEN

at 300 K at free stream saturation at free stream saturation
test test drive test drive
Mach Reynolds Pt’ section PE, section power . Pt’ section power
number | nuwber % area, % ares, relative atm area, relative
avm 2 atm 2 to air 2 to air
m m m
& 2.5 173 2.5 9 0.052 2.5 0.73 0.011
1.0 50x10
16.7 L 3.5 k 0.210 L1.2 N 0.189
6 2.0 155 2.0 4.6 0.030 2.0 0.72 0.012
0.5 25x10 .
12.5 4 2,2 L 0.176 0.2 L 0.042
6 1.0 Téh 1.0 16.2 0.021 1.0 1.k 0.005
0.1 €x10 -
5T.6 L 2.3 L 0.040 0.1 Yy 0.005
TABLE III.

Wind tunnel requirements for various test gases at free stream saturation.

RET



Mass Flow rate,

Test m, kg/sec Fower, MW
Test €, Tt 5 section }
gas Mil—sec/kg K area, test IN,, or drive Ifp or LHo total

m2 section LHs fan production
ATR —_ 300 173 103,600 —_— 77 — 777
N, 3.5 105 9 9,090 o1 23 316 BM;
H, €5 30 1.2 655 16 8.5 1040 1048.5

TABLE IV,

end a local saturation Mach number of 1.2.

Wind tunnel requirements for verious test gases at a free stream Mach number

of 1.0, a Reynolds number of 50 x 106, a total pressure of 2.5 atmospheres,

GET
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APPENDIX C

Fixed Point Properties of Parahydrogen

Below is a summary, teken from reference 11, of the P-p-T data at

selected fixed points for parahydrogen.

Critical Point

T = 32.976 + 0.05 K
P = 12,759 atm
p = 31.13 ke/m>

Normal Boiling Point

T = 20.268 K

"

P

i

1 atn
p(liquid) = 70.78 ke/m>

p(vapor) = 1.338 kg/m3

Triple Point

T

13.803 K

n

P = 0.0695 atm
p(s0lid) = 86.50 kg/m>
p(liquid) = 77.03 kg/m>

p(vapor} = 0,126 kg/m3
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APPENDIX D

Virial Coefficients
One equation of state for parahydrogen is given in terms of the
viriel coefficients. The virial coefficients are commonly defined as

P = RTp[1 + B(T)p + o(T)p° + ...] (p.1)

where B(T) and C(T) are virial coefficients of a power series
expansion in density. Equation D.1 adequately describes the P-p-T
surface for densities up to sbout one-half of critical. Reference 11

gives B(T) and ¢(T) as:

For temperatures below 100 K

_ 5
B(T) = (blT +b, + b3/T + by, /T7)/RT (D.2)
where
b, = 1.93977h1 x 107 b, = -1.9279522 x 10°
by = -2.2890051 x 10° b, = 1.1004088 x 107
For T < 55 K
C(T) = (e, T + T + c. + ¢, /T + ¢./T° + ¢, /T3)/RT (D.3)
‘ 1 p2) 3 L 5 6 :

where there are two sets of the ci ‘coefficients. One for temperatures

below Tc = 32,95 K
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¢, = 1.0541776 x 107 ¢, = -1.6597T1hL x 107
¢y = 1.0L3LLIT x 107 ¢, = -3.2538718 x 10t
cs = 5.1405848 x 10+t cg = -3.3123453 x 1072

and & second set for temperatures between Tc and 55 X,

¢, = 1.6971294 x 10° ¢, = -5.0854223 x 10°
oy = 6.7284118 x 107 ¢, = -3.80h5171 x 107
cg = 1.0789413 x 10-t eg = -1.15156k2 x 10™2

For 55 < T < 100

a./ 2
c(r) = ae 2 T{]_ - exp [33 {l - (-E}:) }]} (D.b)

where
8 = 388,682 8, = 45,5
ay = -0,6 - &, = 20.0
ag = k.0
For temperstures above 100 K
b (21-4)/k
B(T) = 3 b, x (D.5)
i=y * 1

and

¢(T) - coxg's [i + clxg][l - exp (i - x;B)] (D.6)

where
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b, = L2.khek b, = -37.1172
b, = -2.2982 by, = -3.048%
x, = 109.781/T X, = 20.615/T
e, = 1310.5 ey = 2,1486

For equations D.2 throuzh D.6 the units of temperature, T, is Kelvin,
the units of B(T) are cm3/mole and the units of C(T) are
(cm3/mole)2.

The uncertainty of B(T) is a maximm of sbout five percent at
the highest and lowest temperatures. The uncertainty of C(T) is a
minimun of around five percent between 55 and 100 K and as much as
approximatély twenty percent for temperatures below the critical

temperature.
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APPENDIX E

Tatent Heat of Vaporization

The latent heat of vaporization is the amount of 'heat required to
convert a unit mass of a substance from the ligquid state to the wvapor
state at a constant pressure and may easily be obtained by subtracting
the liguid enthalpy from the enthalpy of the vapor at the same
temperature and pressure, From reference 11, the latent heat of
vaporization for parahydrogen ranges from 448.2 Joules/gram at the
triple point to L45.5 Joules/gram at the normel boiling point to 0
Joules/gram at the critical point. The uncertainty in these values

is estimated to be 1.2 Joules/gram.
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APPENDIX ¥

Thermal Conductivity of Parahydrogen

The thermal conductivity coefficient relates the transfer of heat
through a material via molecular interaction caused by a temperature

gradient across the material. That is
g =-k grad T (F.1)

where g 1is the heat flux, grad T is the temperature gradient and k
is the thermal conductivity cocefficient.

One of the most popular methods of correlating thermal conductivity,
for example reference 11, is to separate the property into a number of

additive parts
k = ko(T) + ky(p,T) + k. (p,T) (Fr.2)

where kO(T) is the dilute gas contribution (a function of temperature
only, kE(p,T) is the excess function, and kc(p,T)giVes the
enhancement due to the eritical point behavior.

The thermal conductivity of a gas may also be expressed in terms
of its specific heat at constant volume, Cv’ its viscosity coefficient,

N, and its meolecular weight, Mw’ by

k = klnCv/MW (F.3)



ik2

where the factor kl allows for the fact that the mean energy of the

molecules appears larger as the molecules possessing large amounts of
kinetic energy travel faster and thus transfer their energy more
raplidly. VWhen the molecules possess only translationsl kinetie
energy (i.e. in the case of hydrogen at temperatures less than 50 X)
kl is equal to 2.5. If the rotational kinetic energy is completely
available (i.e. for hydrogen above 300 K) then k; is equal to 1.9.

In reference 4, Farkas gives an approximation of k

1 as

2.25 R + Cv
k [ e—

1

(F.4)

v

where R is the gas constant. Therefore, the thermal conductivity

coefficient is given as

(2.25 R + c,)n
k = 7 (F.5)
W
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APPENDIX G

Viscosity of Parshydrogen

The viscosity of a fluid may be separated into two additive parts
n =1 (T) + n(p,T) (¢.1)
where nO(T) is the dilute gas contribution and nE(p,T) is the

excess or dense gas contribution and is a strong function of density.

In the lover temperature range of T < 1b0 K, reference T gives

nO(T) =8 [TS/E/(T + a2)] [(T + a3)/(T + ah)] (G.2)
where
a, = 8.5558 x 10’6 a, = 19.55
8y = 650.39 a), = 1175.9

and for the excess viscosity contribution

np(e,T) = Alp) exp [B(p)/T] (G.3)

where

2 3
(A,p + A 0" + A07)

Alp) = —2 2 g FTx 1076 (G.h)
(1.0 + Ayp + 4,0% + A7)




1Lk

A = 306.4636 A2 = -3350.628
A3 = 38680.92 A = -18.4783
A5 = 110.915 A6 = 25,352}

b, ) b, b,
B=3B_ +B (D/Be) - (p/Bg) + By exp B, (p/3,) J (G.5)

B, = 10.0 B, = T.2
B, = 0.07 By = ~-17.63
By, = -58.75 bl = 6.0
b, = 1.5 by = 3.0

For equations G.2 through G.5, the tempersture, f, is in Kelvin, the
density, p, is in g/cmB, and the viscosity n, is in g/(cm-sec).

The uncertainty in the lower temperature range, using the ébove
formula, is estimated in reference T to be approximately one-half
percent and increases to about ten percent if the same formula is

used for temperatures up to 300 K.
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APPENDIX H

Vapor Pressure for Parahydrogen

The vapor pressure is the pressure, as a function of temperature,
of a liqui& in equilibriuvm with its own vapor. For parahydrogen, from

reference 6,

Po 3 5 7
P=10 " + A5 (P-29}° + A6(T—29) + A.T(T-—29) (H.1)
vhere
A
P0=Al+-lil—:-A-;+AhT (H.2)
and
A = 2. 000620 A, = ~50.09708
A3 = 1,004k Ay = 1.748ko5 x 1072
0 for T 229K
by = 3
{1.317 x10°° for T » 29 K
0 for T<29K
Ag = -5
-5.926 x 10 for T > 29 K

0 for T< 29K

h=

3.913 x J.o'6 for T > 29 K

The units of pressure, P, is atmospheres while the units on the

temperature, T, is Kelvin.
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APPENDIX I

Specific Cooling Capacity of Parahydrogen

The specific cooling capacity is the amount of heat which may be
absorbed by a unit mass of parahydrogen in being warmed from storage
conditions to the final tunnel total condiéions. In this investigation
the assuwmption 1s made that the liquid hydrogen is stored at
atmospheric pressure. The liquid is then compressed to the operating
Pressure of the wind tunnel before being injected into the tunnel
circuit. Assuming the compression is isentropic and assuming the
vaporizing and warming of the injected hydrogen occurs at a constant
pressure, the specific cooling capacity, as given in figure 52, is

determined by

t
specifie cooling capacity = j. T ds (I.1)
i
= Ht - Hl

where Ht is the enthalpy at the tunnel total conditions and’ Hl
is the enthalpy at the liquid initial conditions.
The specific cooling capacity for parahydrogen, in kJ/kg, may

be approximated by
2 i
specific cooling capacity = Z D, T (T.2)
i=0

where

T = temperature, X



kT

!
and where the values of Bi are given by

[e]

B, = p_ B, P (I.3)

i : ij
=0

where

P = pressure, atmospheres

and the values of Bij are as follows:

2 1

By = 2.3362 x 10 Byy, = -2-692k x 10 By = -1.9693

B, = 1.2501 x 10" B, = T.4355 x 107" B, = 7.1273 x 107
B,y = -7.%4035 x 1072 B, = -8.9004 x 1073 B, = -9.6843 x 10‘h
Bap = 9.0181 x 10“h By = 5.214Y% x 1077 B, = 6.0k x 10‘6
By, = -3.3958 x 107 By, = -1.1658 x 107 By, = -1.760% x 167
By, = 4.2281 x 1077 By, = 1.5789 x 1670 Bg, = 1.9350 x 107H

The values of the specific cooling capacity calculated from
equation I.2 agree with the wvalues calculated from equation T.1
generally within two percent for pressures from cne to ten atmospheres

and for temperstures from saturation to 300 K.



