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I.	 INTRODUCTION

The effort described herein represents the initial phase of
the Ohio State University's participation in the NASA CTS Communi-
cations Link Characterization Experiment. 	 The objective of the
Ohio State University CTS angle-of-arrival experiment is to measure
angle-of-arrival, attenuation, and scintillation statistics on a
millimeter wavelength earth-space propagation path and, as a secondary
objective, to assess the performance of a self-phased array utilized
for non-mechanical tracking in an earth-space communication link.
This experiment utilizes the 11.7 GHz Beacon on the synchronous
Communications Technology Satellite (CTS). 	 The ground terminal utilized
in this experiment is located at the Ohio State University Satellite
Communications Facility in Columbus, Ohio.

The CTS 11.7 GHz beacon characteristics will be discussed and
the influence which these parameters have on the experiment design
will be presented.	 The experimental implementation will be described
and system performance will be demonstrated with measured data. 	 Finally,
measured propagation data will illustrate examples of precipitation
fade and scintillation events.	 Some of the data contained in this
report were also presented in Reference [1].

II.	 CTS 11.7 GHz BEACON CHARACTERISTICS

The CTS beacon transmits a 200 mw cw signal at 11.7 GHz. 	 The
short term amplitude stability of this signal is ±0.1 dB/hour and
the long term amplitude stability is ±1.5 dB/year. 	 The long term
frequency stability of the beacon was estimated at 1 part in 10 6 per
month.	 Additionally, maximum doppler shifts of ±650 Hz corresponding
to maximum radial velocities of 112 km/hr were expected. 	 The amplitude
stability of the beacon is quite acceptable for the measurement of
absolute fade statistics, but the frequency Instability and doppler
shift require frequency tracking of the phase lock receivers, which
will be considered in the next section.

The spacecraft is maintained on geosynchronous station to within
±0.2 0 longitude.	 Inclination is not controlled and is nominally 0.9°.
The Columbus terminal, located at 83.0417 E longitude and 40.0028° N
latitude, has nominal look angles of 225.3° azimuth and 32.7° elevation
for the satellite. 	 Predicted diurnal look angle variations are ±0.4°
in azimuth and ±0.25° in elevation.	 .- igure 1	 illustrates a typical
twenty-four hour plot of the satellite motion. 	 Superimposed on this
plot are constant gain levels for a single antenna element of the
self-phased array.

The amplitude, frequency, and orbital characteristics directly
influence the angle-of-arrival experiment design. 	 These considerations
and the experimental implementation will now be described.

4WI
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Figure 1. Diurnal satellite motion and array
element antenna pattern.
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III. DESIGN AND IMPLEMENTATION

The two primary considerations in the design of the system were
angle-of-arrival measurement capability and reliability of unattended
operation.	 Both have been satisfied by implementing a self-phased
array whose antenna elements were chosen to have individual beamwidths
wider than the diurnal motion of the satellite.	 The angle-of-arrival
in a plane containing the propagation path may be related to the
differential phase between two elements of the self-phased array
located in that plane.	 By using four elements (Figure 2), one obtains

INCREASING
ELEVATION

REF
AMPLITUDE	 D 1 FFERENTI

4	 PHASE 4 

REF	 REF

AMPLITUDE DIFFERENTIAL AMPLITUDE
PHASE 1
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BACK VIEW
Figure 2. Self-phased array configuration.
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Figure 3. CTS self-phased array.
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two independent angle -of-arrival measurements in each of two orthogonal
planes, i.e., differential phases l and 4 in the azimuth plane and
phases 2 and 3 in the elevation plane.

Each parabolic element is 0.6 m in diameter, giving a 3° beam-
width at 11.7 GHz ( see Figure 1). Left-hand-circular -polarization
(LHCP) focal point antenna feeds are used to obtain maximum signal
from the satellite, which transmits RHCP. The elements a; g mounted
on a planar surface with center-to-center spacing of 1.0 m. An
elevation-over-azimuth mount serves as a base for the array and is
fixed -pointed, with the self-phased array providing automatic beam
tracking. Hence, the automatic tracking allows unattended operation.
The system is shown in Figure 3.
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The 0.6 m element aperture size was a result of the following
constraints; first, the aperture must be small enough, i.e., the
beamwidth large enough, that adequate gain is maintained as the
satellite goes through its diurnal motion, second, the aperture must
be small to reduce measurement error due to phase averaging over the
aperture, and third, the aperture must be large enough, i.e, the gain
must be high enough, to provide an adequate signal-to-noise ratio for
the measurement. The 1.0 m element spacing was a result of the
constraint that the spacing must be large enough to provide reasonable
angular resolution and yet small enough to reduce ambiguity problems
associated with large differential phase excursions.

The self-phased array receiver (Figure 4) aligns the phase of
the signal from each element °with that of a reference signal common to
all elements. The gef^renc is a precision 455 KHz crystal oscillator
with one part in 10 accuracy. After phase alignment, the four signals
are coherently summed, giving an array gain of 6 d6 over that of a
single element. Figure 5, a plot f a representative probability
density function of amplitude variance for one array element and the
array sum, demonstrates this improvement in signal-to-noise ratio.
The mean of the variance for the array sum is approximately 6 dB below
that of the individual element.

The phase-lock-loops, which provide phase alignment for the
elements, control the receivers with 2.545 MHz VCXO mixer injection.
These VCXO outputs are also used to derive the inter-element dif-
ferential phase measurements from which angle-of-arrival is determined.
This is possible because all downconversions prior to the 2.545 MHz
injection are common to the four elements (for details, see Appendix
I). The 2.545 MHz outputs are compared with phase detectors referenced
according to Figure 2. The unambiguous output range of the phase
detectors is 190 0 . To resolve ambiguities for larger differential
phase, the VCXO control voltages are also monitored (Figure 4,outputs
9-12). The digital data systzm can detect changes as small as 39 mv,
corresponding to 0.7 0 in differential phase and 70 0 in the VCXO phase;
thus, any ambiguity in phase can be resolved.

The first downconversion to 30 MHz is made by injecting 11.67 GHz
common to all elements. This signal is obtained from a phase-lock
outer control loop referenced to one receiver element. This outer
loop tracks out doppler frequency and satellite oscillator drift (see
Appendix I for detail). Because the outer loop control is common to
all elements, it does not affect the differential phase measurements.

Amplitude detection at each element and on the coherent sum
channel is performed at 455 KHz. The 455 KHz bandwidth is 80 Hz and
the system margin per element is 19 dB. The digital data system can
detect amplitude changes on the order of 0.1 dB.

5
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Figure 5. Amplitude channels - variance probability density functions.

All data are multiplexed, A/D converted, buffered, and recorded
on digital magnetic tape. The data system is described in detail in
Reference [2]. The record type and format for CTS data is presented
in Appendix H. All channels are sampled at a rate of 1/3 samples/sec
at all times. A sample rate of 10 samples/sec can be demanded
manually for particularly interesting events.
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IV. PERFORMANCE

Two examples will be used to demonstrate the performance of the 	 '- J

self-phased array receiver. The first involves moving the array to
produce amplitude and phase patterns and the second examines the
array output as the satellite undergoes its diurnal motion with the
array fixed.

In Figure 6 the array has been moved off the propagation path
in azimuth at time 0.0 min., is slewed through its pattern maximum
at 1.1 min., and is off the path again at 2.2 min. Note that ampli-
tude channel 1 represents the single element pattern, 041 is an
azimuth differential phase output. The azimuth differential phase
undergoes progressive 90 0 shifts as the array axis passes through
the propagation path.

Using elementary array theory, if d is the distance between two
elements and a is the angle-of-arrival measured from the axis of the
array, the differential phase between the elements is:

64=kd sin a,	 (1)

where k = 2n/a is the usual propagation constant. For the case shown
in Figure 6, the azimuth, a, has varied from -2.45° to +2,45 0 and,
therefore, the total phase excursion is 1,200°. Since 641 undergoes
about 14 multiples of 90 0 , or 1260 0 , the array is indeed measuring
angle-of-arrival in the azimuth plane, 042 and 643, measures of
elevation differential phase, remain relatively constant in phase as
the array moves in azimuth, as is expected. Any change from constant
phase may be attributed to misaligned antenna feeds or non-orthogonal
baselines between elements.

Figure 7 is a similar amplitude and phase pattern taken in the
elevation plane. This time the azimuth measurement 641 remains
relatively constant while the two elevation differential phases 642
and 643 undergo phase changes as the elevation pattern is run. Again,
642 and 643 undergo approximately 1260 0 of change for an elevation
change of 4.9°.

The second example (Figure 8) examines measured azimuth and
elevation differential phases over a 24 hour period. Predicted look
angles are also plotted above the measured data. Note that the
self-phased array tracks the diurnal satellite motion quite well.
Two points of interest may be noted. An inflection point occurs in
the azimuth differential phase at hour 19 due to foldover in phase.
Also, there is some time skew for both pairs at the hour 12 cross-
over points. Both c3nditions are attributed to the fact that the
axis of the array was not centered on the diurnal pattern of the
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satellite ( Figure 1). This fact will cause a 1 to 2 dB amplitude
variation over a 24 hour period (as an example of this variation note

4	 the amplitude channel in Figure 10).

As an additional note on the coherent channel performance of a
self-phased array, examine Figure 9. The single element and sum

r
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Figure 9. Single element and array sum amplitude comparison.

channel amplitude patterns are plotted for the elevation pattern cut
previously described for Figure 7. Because the four elements are

self-phased, they maintain coherency as the array is moved off axis
in azimuth or elevation. The sum channel thus achieves a 6 dB ampli-
tude improvement compared to a single element over the entire lock
range of the array. However, the beamwidth of the sum channel is
determined by the individual element patterns and is the same as that
of a single element. This behavior is to be expected since the self-
phased array pattern varies such that maximum gain occurs in the
desired signal direction anywhere within the pattern of a single
element; thus, a 6 dB gain improvement 4c achieved across the entire
pattern.
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In conclusion, the performance of this self -phased array demon-
strates its applicability to angle -of-arrival measurement and to
geosynchronous satellite tracking. It eliminates the need for
mechanical steering, provides simple unmanned operation, provides gain
directly proportional to the number of elements, is insensitive to
high wind speeds, and is easily implemented.

V. PROPAGATION DATA

The following examples of propagation data were taken with the
array fixed-pointed in the nominal direction of the satellite. The
first channel on each plot is a single element amplitude, the second
is azimuth differential phase, and the third and fourth are elevation
differential phases.

Figure 10 illustrates a day with no significant attenuation
events. The diurnal phase variation is comparable to that explained
earlier for Figure 8.

DRY 162 NR 19 MIN 59 SEC 49 MSEC 692

3

Wis oM
S

Figure 10. Diurnal amplitude and phase variation.
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A precipitation fade event is shown in Figure 11, accompanied by
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Figure 11. Recorded amplitude and differential phase.

small phase perturbations. The data presented in these 24 hour plots
have been averaged over 60 seconds; therefore, even a small departure
from the nominal curve represents a significant variation in the
parameter being plotted. Figures 12 through 14 are expanded views of
a 15 minute period through this event. Preceding and following the
event the amplitude variation is on the order of 2 dB peak-to-peak.
The azimuth and elevation differential phases for the same time period
vary 15 0 peak-to-peak. During the most intense precipitation periods
in Figures 13 and 14 the attenuation reaches about 12 dB and the phase
excurisons occasionally exceed 40° peak-to-peak. This phase excursion
corresponds to a 0.16° peak-to-peak change in angle-of-arrival. Further
statistical analysis is being performed on such data to determine
the correlation between azimuth and elevation pair differential
phases. In addition, amplitude and phase variance will be examined
as a function of time during fade events.
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VI. OPERATIONS

The CTS 11.7 GHz beacon signal was first acquired using this
system on 20 February 1976. After initial system check-out and
debugging the system has been in virtually continuous operation with
the exception of brief periods for maintenance, system modifications
and improvements, and the CTS eclipse period. A total of 1864 hours
of data have been accumulated on digital magnetic tape; these data are
currently being processed.

VI. SUMMARY

The performance of the Ohio State University self-phased array
has been demonstrated using the 11.7 GHz CTS beacon. This system
provides angle-of-arrival as well as amplitude and scintillation
statistics. With the present signal to noise ratio, the angle-of-
arrival resolution is better than 0.050.

The technique described here also provides a convenient,
non-mechanical method for tracking synchronous satellites with a
high gain antenna. The technique has the following characteristics:

• no mechanical steering is required
• readily suited for unmanned operation
• provides gain directly proportional to the number of

elements incorporated
• degrades gracefully with front end failure
• insensitive to high wind speeds and buffeting
• can be easily implemented.
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APPENDIX I

DETAILED RECEIVER OPERATION	 k
3

An expanded block diagram of the CTS self-phased array receiver is
shown in Figure Al. The feed package contains the antennas, LHCP feeds, 	 ► '
and mixer-amplifiers whose injection is a common 11.67 GHz. The four
30 MHz IF signals enter distribution amplifiers through ±180 0 phase
shifters. These phase shifters are used to compensate for differences
in cable lengths so that normal plane wave incidence on the array results
in a zero-phase output at all differential phase detectors. The distri-
bution amplifiers are buffers which allow monitoring of the 30 MHz
amplitude, frequency, and S/N ratio.

The phase-lock receivers use modified Collins 75S-3 receivers whose
33 MHz and 2.545 MHz injections are provided externally. The 33 MHz is
derived from an HP5100A trequency synthesizer, the absolyte reference for
the entire system, which is accurate to two parts in 10 . The down-
converted 3 MHz signals are in turn mixed with a 2.545 MHz VCXO output.
This injection point is phase-lock derived and is referred to as the
inner-loop reference. The downconverted 455 KHz signals pass through 80
Hz crystal filters which determine the data bandwidth. The filter outputs
are buffered by distribution amplifiers and are used in three modules:

1. The inner-loop reference is derived from the 455 KHz receiver
oi.tput after comparison with a 455 KHz crystal oscillator.
This :rystal oscillator is common to all elements. A
limiter-phase detector and lag filter provides a phase offset
control voltage which modulates the 2.545 MHz inner-loop
VCXO. The VCXO is controlled such that the signal phase-
reference phase difference is minimized. Hence, the four
elements phase-lock to a common reference.

2. The four 455 KHz signal outputs, after phase-locking, are
coherently summed to provide the array sum output (4).

3. The four 455 KHz signal outputs are amplitude detected as
outputs (0-3).

The first mixer injection, 11.67 GHz, is phase-lock derived and is
referred to as the outer-loop reference. It is generated by a klystron
which is frequency stabilized by a DYMEC synchronizer. One DYMEC
reference is the HP5100A and the other is a 10.7 MHz VCXO-output multi-
plied to 32.1 MHz. The VCXO is controlled in order to track out doppler
frequency shift and satellite beacon instability, keeping the signal
within the 80 Hz crystal filter bandwidth. The outer-loop control is
shown in Figure A2. A window comparator monitors one inner-loop
control voltage and steps a voltage control potentiometer. This control
voltage provides ultimate klystron frequency control of ±780 Hz in 0.78
Hz increments. The increments are narrow enough so that they do not
cause detectable amplitude variations in the data bandwidth.

t
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t 1.3 V
SOO
10 TURN

TO 10.7 MM: *
VCXO CONTROL

OUTER LOOP CONTROL
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(VCXO CONTROL)
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(NOMINAL O.& V)
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I
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* VCXO sensitivity is 200 Hz/volt or, equivalently 600 Hz/volt
at the DYMEC Synchronizer.

Stepping motor controls the DYMEC over a range of 1780 Hz
°:r, equivalently 0.78 Hz/step.

Figure A2. Outer loop control.
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APPENDIX II

DIGITAL DATA FORMAT

Table la

Tape Record Format

Header

Sampled
Data

0

16

*

•

•

Table lb

Record Type Format

- Type 12 (10 samples/sec) or 13 (1/3 sample/sec)

Header from Table 1 Re ort 3863-4

0 Amplitude 1 1 Amplitude 2

2 Amplitude 3 3 Amplitude 4

4 Sum Amplitude 5 Diff. Phase 1

6 Diff. Phase 2 7 Diff. Phase 3

8 Diff. Phase 4 9 VCXO 1

10 VCXO 2 11 VCXO 3

12 VCXO 4 13 Outer Loop Control

14 Spare 15 Spare

e

*Repeats a maximum of 32 times in one record; 8 bits bipolar 0-5 volts

23
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